WO2012132004A1 - ハニカム構造体及び排ガス浄化装置 - Google Patents

ハニカム構造体及び排ガス浄化装置 Download PDF

Info

Publication number
WO2012132004A1
WO2012132004A1 PCT/JP2011/058333 JP2011058333W WO2012132004A1 WO 2012132004 A1 WO2012132004 A1 WO 2012132004A1 JP 2011058333 W JP2011058333 W JP 2011058333W WO 2012132004 A1 WO2012132004 A1 WO 2012132004A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb structure
honeycomb
fired body
cross
ratio
Prior art date
Application number
PCT/JP2011/058333
Other languages
English (en)
French (fr)
Inventor
重晃 後藤
豊樹 小笠原
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Priority to PCT/JP2011/058333 priority Critical patent/WO2012132004A1/ja
Priority to EP11181031A priority patent/EP2505248B1/en
Priority to US13/343,235 priority patent/US8721979B2/en
Publication of WO2012132004A1 publication Critical patent/WO2012132004A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2474Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the walls along the length of the honeycomb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2455Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the whole honeycomb or segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/247Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2478Structures comprising honeycomb segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2482Thickness, height, width, length or diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2484Cell density, area or aspect ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/249Quadrangular e.g. square or diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/2494Octagonal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like

Definitions

  • the present invention relates to a honeycomb structure and an exhaust gas purification device.
  • Particulates such as soot (hereinafter also referred to as PM) and other harmful components contained in exhaust gas discharged from internal combustion engines such as vehicles such as buses and trucks or construction machinery may cause harm to the environment and the human body. It has become a problem recently.
  • honeycomb filters for purifying exhaust gas.
  • Conventionally known as such a honeycomb structure is a honeycomb structure formed of a ceramic block in which a plurality of honeycomb fired bodies in which a large number of cells are arranged in parallel in the longitudinal direction with a cell wall interposed therebetween.
  • Patent Document 1 discloses a honeycomb structure that can ensure sufficient collection efficiency even if the thickness of the cell wall is reduced in order to keep the pressure loss of the honeycomb structure low.
  • the thickness of the cell wall is A (mm), and the surface area per unit volume of the cell wall is B (m 2 / cm 3 ).
  • the expression 11 / 6 ⁇ 10 / 3 ⁇ A ⁇ B is satisfied.
  • Patent Document 2 discloses a ceramic honeycomb structure material that is useful as a coating material or an impregnating material in order to improve the strength and airtightness of the ceramic honeycomb structure. Specifically, a rotary heat storage type ceramic heat exchanger having a high heat exchange rate and low pressure loss is disclosed.
  • the present invention has been made to solve the above problems, and can be used for a large vehicle or the like.
  • the honeycomb structure can be reduced in volume, has high strength, and has low pressure loss.
  • the purpose is to provide a body. It is another object of the present invention to provide an exhaust gas purification apparatus in which the honeycomb structure is disposed.
  • the honeycomb structure according to claim 1 A plurality of honeycomb firings comprising a large-capacity cell and a small-capacity cell, wherein an area of a cross section perpendicular to the longitudinal direction of the large-capacity cell is larger than an area of a cross-section perpendicular to the longitudinal direction of the small-capacity cell
  • a honeycomb structure including a ceramic block in which a body is bound via an adhesive layer, and one end of either the large capacity cell or the small capacity cell is sealed,
  • the opening ratio of the cross section perpendicular to the longitudinal direction in the central portion of the honeycomb structure is 65% or more
  • the ratio of the opening ratio of the first end face of the honeycomb structure to the opening ratio of the second end face of the honeycomb structure (opening ratio of the first end face / opening ratio of the second end face) is 1.4 or more
  • the cell wall thickness excluding the outer peripheral wall of the honeycomb fired body is 0.1 mm or more and less than 0.2 mm,
  • the honeycomb structure
  • the honeycomb structure When the honeycomb structure is used for a large vehicle or the like, if the honeycomb structure has a large volume, the entire exhaust gas purification device becomes large. Therefore, it is necessary to reduce the volume of the honeycomb structure. Therefore, in a honeycomb structure having a diameter of 200 mm or more, (a) the ratio of the length of the honeycomb structure to the diameter of the honeycomb structure (the length of the honeycomb structure / the diameter of the honeycomb structure) is 1.0. And (b) the ratio of the opening ratio of the first end face of the honeycomb structure to the opening ratio of the second end face of the honeycomb structure (opening ratio of the first end face / opening ratio of the second end face).
  • the thickness of the cell wall excluding the outer peripheral wall of the honeycomb fired body is 0.1 mm or more and less than 0.2 mm, and (d) in the longitudinal direction at the center of the honeycomb structure
  • the volume ratio of the honeycomb structure can be reduced by setting the length ratio of the honeycomb structure (honeycomb structure length / honeycomb structure diameter) to 1.0 or less. Furthermore, the ratio of the aperture ratio of the first end face of the honeycomb structure to the aperture ratio of the second end face of the honeycomb structure is 1.4 or more, and the thickness of the cell wall is 0.1 mm or more and less than 0.2 mm And the opening ratio of the cross section perpendicular
  • the filtration area can be increased even when the aperture ratio of the cross section perpendicular to the longitudinal direction in the central portion of the honeycomb structure is as high as 65% or more. Therefore, the pressure loss of the honeycomb structure can be reduced. Therefore, when the honeycomb structure including the above (a) to (d) is used for a large vehicle or the like, the volume of the honeycomb structure can be reduced, the strength is high, and the pressure loss is reduced. it can.
  • the capacity of the honeycomb structure cannot be reduced if at least one of the elements (a) to (d) is missing. Further, the strength of the honeycomb structure cannot be increased and the pressure loss cannot be decreased.
  • the honeycomb structure according to claim 1 since the opening ratio of the cross section perpendicular to the longitudinal direction in the central portion of the honeycomb structure is as high as 65% or more, the pressure loss before PM deposition (initial) is reduced. Can do.
  • the honeycomb structure is used as a honeycomb filter for a large vehicle or the like, the exhaust temperature of exhaust gas tends to be high because the large vehicle has many continuous operations. Therefore, PM in the discharged exhaust gas does not need to be burned after forcibly depositing a large amount in the honeycomb structure, and can be burned continuously. Therefore, in such a honeycomb structure, it is important to lower the pressure loss before PM deposition (initial stage) than the pressure loss after PM deposition.
  • the ratio of the opening ratio of the first end face of the honeycomb structure to the opening ratio of the second end face of the honeycomb structure is 1.4 or more, and the thickness of the cell wall is as thin as 0.1 mm or more and less than 0.2 mm. A high aperture ratio can be obtained.
  • the aperture ratio of the honeycomb structure (the aperture ratio of the first end face / the aperture ratio of the second end face) is less than 1.4, and the aperture ratio of the cross section perpendicular to the longitudinal direction in the central portion of the honeycomb structure is 65% or more
  • it becomes necessary to further reduce the thickness of the cell wall of the honeycomb structure and the mechanical characteristics are likely to deteriorate (the strength of the cell wall becomes weak), or the cell density needs to be lowered. There is an increase in pressure loss and the collection efficiency decreases.
  • the open area ratio at the end face of the honeycomb structure is a portion where cells (openings) are formed with respect to the total area of the end face of the honeycomb structure, and the end face is open without sealing the cells. The percentage of area (%).
  • the opening ratio of the cross section perpendicular to the longitudinal direction in the central portion of the honeycomb structure means the opening ratio at the cross section of the intermediate position between both ends parallel to the both end faces of the honeycomb structure.
  • the cross section perpendicular to the longitudinal direction at the center of the honeycomb structure means a cross section of the honeycomb structure in which no sealing material is provided.
  • the opening ratio of the cross section perpendicular to the longitudinal direction in the central portion of the honeycomb structure refers to the ratio (percentage) of the total area of the portion where the cells are formed and the opening with respect to the total area of the cross section described above.
  • the center portion of the honeycomb structure means an intermediate position between both ends parallel to both ends of the honeycomb structure.
  • the longitudinal direction of the honeycomb structure means a direction parallel to the cells.
  • the honeycomb structure has a diameter of 200 mm or more, and the ratio of the length of the honeycomb structure to the diameter of the honeycomb structure (ratio of the length and the diameter of the honeycomb structure). (Also referred to as the length of the honeycomb structure / the diameter of the honeycomb structure) is 1.0 or less. That is, the honeycomb structure according to claim 1 is a large-sized honeycomb structure so that it can be used for a large vehicle or the like. The honeycomb structure has a large diameter, and the honeycomb structure has a larger diameter than the honeycomb structure. The length is shortened. Therefore, the area of the end face of the honeycomb structure is large, and the length of the cell is shortened.
  • the honeycomb structure When a honeycomb structure is used as a filter, it is necessary to satisfy conditions such as a certain filtration area. Therefore, when the honeycomb structure has a diameter of less than 200 mm, the length of the honeycomb structure / the diameter of the honeycomb structure Will exceed 1.0. Therefore, the pressure loss of the honeycomb structure tends to increase. In addition, when the ratio of the length of the honeycomb structure to the diameter of the honeycomb structure exceeds 1.0, the length of the honeycomb structure is longer than the diameter of the honeycomb structure, so that the pressure loss of the honeycomb structure is likely to increase. .
  • the cell wall of the honeycomb fired body refers to a portion that exists between two adjacent cells and separates the two cells.
  • the outer peripheral wall of the honeycomb fired body refers to a wall portion formed on the outermost periphery of the honeycomb fired body so that the cell walls are not exposed to the outer periphery.
  • the opening ratio of the cross section perpendicular to the longitudinal direction in the central portion of the honeycomb structure is 80% or less. Therefore, the number of cells existing per unit area of the honeycomb structure can be set to an appropriate number (for example, 31 to 62 cells / cm 2 ). Therefore, the cell wall functions as a wall that supports the honeycomb structure, and the mechanical strength of the honeycomb structure can be maintained in an appropriate range.
  • the ratio of the aperture ratio (the aperture ratio of the first end face / the aperture ratio of the second end face) is 3.0 or less. Therefore, it is possible to suppress an increase in the pressure loss of the honeycomb structure resulting from the ratio between the opening ratio of the first end face and the opening ratio of the second end face being too large. That is, when the volume difference between the large-capacity cells and the small-capacity cells in the honeycomb structure is large, the exhaust gas that has flowed into the honeycomb structure due to the small area of the cell wall that separates the two cells flows out. It is considered that the wall area to be reduced is reduced and the pressure loss of the honeycomb structure is increased.
  • the aperture ratio of the honeycomb structure is 3.0 or less, the area of the cell wall separating the two is not reduced, and the exhaust gas flowing into the honeycomb structure The area of the wall from which the gas flows out is not reduced, and the pressure loss of the honeycomb structure is difficult to increase.
  • the ratio of the length of the honeycomb structure to the diameter is 0.5 or more. If the ratio between the length and the diameter of the honeycomb structure is too small, less than 0.5, the exhaust gas flowing into the honeycomb structure easily flows backward (exhaust gas outflow side). Becomes easy to knitting. As a result, the pressure loss of the honeycomb structure increases. However, in the honeycomb structure according to claim 4, since the ratio of the length of the honeycomb structure to the diameter of the honeycomb structure is 0.5 or more, the exhaust gas flowing into the honeycomb structure is behind (exhaust gas outflow side). Therefore, PM is uniformly deposited on the cell walls of the honeycomb structure. As a result, the increase in pressure loss of the honeycomb structure hardly occurs.
  • the thickness of the outer peripheral wall of the honeycomb fired body is 0.2 to 0.5 mm. Therefore, since the outer peripheral wall is thicker than the cell wall of the honeycomb structure, the outer peripheral wall of the honeycomb fired body maintains mechanical strength even if the cell wall thickness of the honeycomb fired body is reduced. It plays the role of a reinforcing material and can maintain good mechanical properties of the honeycomb fired body. When the thickness of the outer peripheral wall of the honeycomb fired body is less than 0.2 mm, the outer peripheral wall of the honeycomb fired body does not serve as a strong member for maintaining mechanical strength, and it becomes difficult to ensure the strength of the honeycomb fired body. .
  • the thickness of the outer peripheral wall of the honeycomb fired body exceeds 0.5 mm, the ratio of the outer peripheral wall to the area of the end face of the honeycomb structure increases, and the cross section perpendicular to the longitudinal direction in the central portion of the honeycomb structure It becomes difficult to keep the aperture ratio at 65% or more.
  • the number per unit area of cells in the cross section perpendicular to the longitudinal direction of the honeycomb fired body is 31 to 62 cells / cm 2 (200 to 400 cells / inch 2 ). is there. Therefore, the number (area) of cell walls occupying per unit area in the cross section of the honeycomb structure is within an appropriate range, and the cell walls function as a part that maintains the mechanical characteristics of the honeycomb fired body. Characteristics can be maintained.
  • the number of cells per unit area in the cross section perpendicular to the longitudinal direction of the honeycomb fired body is less than 31 cells / cm 2 , the number of cell walls per unit area in the cross section of the honeycomb structure is too small. The mechanical properties of the fired body deteriorate.
  • the mechanical properties of the honeycomb fired body refer to the bending strength, tensile strength, compressive strength, fracture toughness, etc. of the honeycomb fired body. Among these mechanical properties, it is preferable to maintain the compressive strength.
  • the shape of the cross section perpendicular to the longitudinal direction of the large capacity cell may be an octagon, and the shape of the cross section perpendicular to the longitudinal direction of the small capacity cell may be a square. .
  • the shape of the cross section perpendicular to the longitudinal direction of the large capacity cell may be a quadrangle
  • the shape of the cross section perpendicular to the longitudinal direction of the small capacity cell may be a quadrangle
  • each side of the large capacity cell and the small capacity cell may be configured by a curve in a cross section perpendicular to the longitudinal direction of the large capacity cell and the small capacity cell.
  • the ceramic block is formed of a honeycomb fired body having an outer peripheral wall on the entire outer periphery.
  • the ceramic block is configured by bonding a honeycomb fired body of a predetermined shape having an outer peripheral wall to the entire outer periphery via an adhesive layer, a cutting process for forming a portion that becomes the outer periphery of the honeycomb structure A process becomes unnecessary and a honeycomb structure can be easily manufactured.
  • the exhaust gas purification apparatus wherein the holding sealing material is disposed on a side surface of the honeycomb structure, and the honeycomb structure and the holding sealing material are disposed in a metal container,
  • the structure is a honeycomb structure according to any one of claims 1 to 10, wherein the honeycomb structure is arranged such that an exhaust gas inlet side is a first end face of the honeycomb structure. It is characterized by.
  • the honeycomb structure according to claims 1 to 10 is arranged in the exhaust gas purifying apparatus, and the capacity of the honeycomb structure can be reduced, the exhaust gas purifying apparatus itself Can be miniaturized.
  • the honeycomb structure has high strength, it is possible to provide an exhaust gas purifying apparatus with excellent durability in which cracks and the like hardly occur in the honeycomb structure even when used for a long period of time.
  • the pressure loss before the PM deposition (initial stage) of the honeycomb structure is low, an exhaust gas purification apparatus having a low initial pressure loss can be obtained.
  • FIG. 1 (a) is a perspective view which shows typically an example of the honeycomb structure which concerns on 1st embodiment of this invention.
  • FIG. 1 (b) is a cross-sectional view taken along line AA of the honeycomb structure shown in FIG. 1 (a).
  • FIG. 2A is a perspective view schematically showing an example of an inner honeycomb fired body constituting the honeycomb structure according to the first embodiment of the present invention.
  • FIG. 2B is a cross-sectional view of the inner honeycomb fired body shown in FIG. 2A taken along line BB.
  • FIGS. 3A and 3B are side views schematically showing an example of an outer honeycomb fired body constituting the honeycomb structure according to the first embodiment of the present invention.
  • FIG. 4 is an explanatory view showing a pressure loss measuring device in Example 1 and Comparative Example 1.
  • FIG. 5 is a perspective view schematically showing an example of the honeycomb structure of the second embodiment of the present invention.
  • Fig.6 (a) is a perspective view which shows typically an example of the honeycomb fired body which comprises the honeycomb structure which concerns on 2nd embodiment of this invention.
  • FIG. 6 (b) is a cross-sectional view taken along the line CC of the honeycomb fired body shown in FIG. 6 (a).
  • FIG. 7 is a perspective view schematically showing an example of a honeycomb fired body of another shape constituting the honeycomb structure of the second embodiment of the present invention.
  • FIG. 5 is a perspective view schematically showing an example of the honeycomb structure of the second embodiment of the present invention.
  • Fig.6 (a) is a perspective view which shows typically an example of the honeycomb fired body which comprises the honeycomb structure which concerns on 2nd embodiment of this invention.
  • FIG. 6 (b) is a cross-section
  • FIG. 8 is a perspective view schematically showing an example of a honeycomb fired body of another shape constituting the honeycomb structure of the second embodiment of the present invention.
  • FIG. 9 is a side view of the honeycomb structure according to the second embodiment of the present invention shown in FIG.
  • FIG. 10A and FIG. 10B are side views schematically showing an example of an outer honeycomb fired body constituting a honeycomb structure according to another embodiment of the present invention.
  • Fig.11 (a), FIG.11 (b), and FIG.11 (c) are side views which show typically an example of the honeycomb fired body which comprises the honeycomb structure which concerns on other embodiment of this invention.
  • FIG. 12 (a), 12 (b) and 12 (c) schematically show an example of an end face of a honeycomb fired body having another shape constituting a honeycomb structure according to another embodiment of the present invention. It is a side view. 13 (a), 13 (b), and 13 (c) schematically show an example of an end face of a honeycomb fired body having another shape constituting a honeycomb structure according to another embodiment of the present invention.
  • FIG. FIG. 14 is a cross-sectional view schematically showing an exhaust gas purifying apparatus according to the present invention.
  • the conventional honeycomb structure described in Patent Document 1 secures PM collection efficiency by controlling the fine structure of the cell wall to a structure that easily collects PM even when the cell wall is thin. It is thought that.
  • the thickness of the cell wall is assumed to be 0.1 to 0.4 mm, and even if the thickness of the cell wall is thin, the fine structure of the cell wall is made of PM. It is considered that the collection efficiency is to be secured by controlling the structure so as to be easily collected. However, it is considered that the strength of the honeycomb structure is lowered by reducing the thickness of the cell wall.
  • a honeycomb structure with a thin cell wall has a high strength by reducing the opening ratio of a cross section perpendicular to the longitudinal direction at the center of the honeycomb structure. By doing so, a honeycomb structure having low pressure loss and high strength can be obtained.
  • a large honeycomb structure used for a large vehicle has a problem that it is difficult to obtain a honeycomb structure having high strength and low pressure loss.
  • the partition wall thickness is 0.12 to 0.15 mm, and the ratio of the length of the honeycomb structure to the diameter of the honeycomb structure (the length of the honeycomb structure / the honeycomb structure) It is assumed that the diameter of the structure is 1.0 or less.
  • the partition walls are thin and the ratio of the length of the honeycomb structure to the diameter of the honeycomb structure is 1.0 or less, it is considered that the heat exchange efficiency is high and the pressure loss is low.
  • the rotary heat storage type ceramic heat exchanger Is used in a state where PM is not deposited, it is considered that the pressure loss becomes high. Further, it is considered that the heat storage efficiency of the rotary heat storage type ceramic heat exchanger is lowered by increasing the aperture ratio and reducing the area of the cell wall.
  • the honeycomb structure according to the first embodiment of the present invention A plurality of honeycomb firings comprising a large-capacity cell and a small-capacity cell, wherein an area of a cross section perpendicular to the longitudinal direction of the large-capacity cell is larger than an area of a cross-section perpendicular to the longitudinal direction of the small-capacity cell
  • the opening ratio of the cross section perpendicular to the longitudinal direction in the first central portion of the honeycomb structure is 65% or more
  • the ratio of the opening ratio of the first end face of the honeycomb structure to the opening ratio of the second end face of the honeycomb structure (opening ratio of the first end face / opening ratio of the second end face) is 1.4 or more
  • the honeycomb fired body located at the position constituting the outer periphery of the ceramic block is also referred to as “outer honeycomb fired body”, and the honeycomb fired body positioned inside the outer honeycomb fired body is also referred to as “inner honeycomb fired body”. To do.
  • the honeycomb fired body and the inner honeycomb fired body they are simply referred to as a honeycomb fired body.
  • the section perpendicular to the longitudinal direction of the honeycomb structure refers to a cross section perpendicular to the longitudinal direction or a cross section perpendicular to the longitudinal direction of the honeycomb formed body.
  • the expression “cross section of the central portion of the honeycomb structure” indicates a cross section perpendicular to the longitudinal direction of the central portion of the honeycomb structure.
  • the cross-sectional area of the honeycomb fired body it refers to the area of the cross section perpendicular to the longitudinal direction of the honeycomb fired body.
  • FIG. 1 (a) is a perspective view which shows typically an example of the honeycomb structure which concerns on 1st embodiment of this invention.
  • FIG. 1 (b) is a cross-sectional view taken along line AA of the honeycomb structure shown in FIG. 1 (a).
  • a plurality of honeycomb fired bodies 110, 120, and 130 are bonded together through the adhesive layer 11 to form a ceramic block 13
  • An outer peripheral coat layer 12 is formed on the outer periphery of the ceramic block 13.
  • the honeycomb fired bodies 110, 120, and 130 that constitute the honeycomb structure 10 will be described later, but are preferably porous bodies made of silicon carbide or silicon-bonded silicon carbide.
  • the eight outer honeycomb fired bodies 120 and the outer honeycomb fired bodies 120 at positions constituting the outer periphery of the ceramic block 13 are The eight outer honeycomb fired bodies 130 having different shapes and the sixteen inner honeycomb fired bodies 110 positioned inside the honeycomb fired bodies 120 and 130 are cross-sectional shapes of the ceramic block 13 (honeycomb structure 10). Are bound via an adhesive layer 11 so as to be circular.
  • the cross-sectional shape of the inner honeycomb fired body 110 is a quadrangle (square).
  • the cross section of the outer honeycomb fired body 120 has a shape surrounded by three line segments and one arc. Two angles formed by two of the three line segments are both 90 °.
  • the cross section of the outer honeycomb fired body 130 has a shape surrounded by two line segments and one arc. The angle formed by these two line segments is 90 °.
  • FIG. 2A is a perspective view schematically showing an example of an inner honeycomb fired body constituting the honeycomb structure according to the first embodiment of the present invention.
  • FIG. 2B is a cross-sectional view of the inner honeycomb fired body shown in FIG. 2A taken along line BB.
  • a large number of large-capacity cells 111a and small-capacity cells 111b are arranged in the longitudinal direction with cell walls 113 therebetween (in FIG. 2 (a)).
  • an outer peripheral wall 114 is formed on the outer periphery thereof.
  • One end of the large-capacity cell 111a and the small-capacity cell 111b is sealed with the sealing material 112a or the sealing material 112b.
  • the end of the small capacity cell 111b is sealed with the sealing material 112a on the exhaust gas inlet side, and the end of the large capacity cell 111a is sealed with the sealing material 112b on the exhaust gas outlet side. ing.
  • the exhaust gas G (in FIG. 2B, the exhaust gas is indicated by G and the flow of the exhaust gas is indicated by an arrow in FIG. 2 (b)) is always connected to the large capacity cell 111a.
  • the cell wall 113 After passing through the cell wall 113 separating the small-capacity cell 111b, the end surface on the outlet side of the exhaust gas flows out from the small-capacity cell 111b opened. And when exhaust gas G passes the cell wall 113, since PM etc. in exhaust gas are collected, the cell wall 113 functions as a filter.
  • FIGS. 3A and 3B are side views schematically showing an example of an outer honeycomb fired body constituting the honeycomb structure according to the first embodiment of the present invention.
  • the cross-sectional shapes of the outer honeycomb fired body 120 shown in FIG. 3 (a) and the outer honeycomb fired body 130 shown in FIG. 3 (b) are the inner honeycomb fired bodies shown in FIGS. 2 (a) and 2 (b).
  • 110 has a shape obtained by removing a part of 110.
  • the honeycomb fired body 110 having the shape shown in FIGS. 2A and 2B is used. This is because a cylindrical ceramic block is formed by cutting a periphery of the prismatic ceramic block after producing a prismatic ceramic block by binding a plurality of the ceramic blocks. Accordingly, the outer honeycomb fired body 120 shown in FIG.
  • FIG. 3 (a) and the outer honeycomb fired body 130 shown in FIG. 3 (b) are the same as those shown in FIG. 2 (a) and FIG.
  • the outer honeycomb fired body 120 shown in FIG. 3 (a) and the outer honeycomb fired body 130 shown in FIG. 3 (b) there is no outer peripheral wall in the cut portion.
  • 121a and 131a and small-capacity cells 121b and 131b are exposed as grooves in the outer peripheral portion. Therefore, as described above, the outer peripheral coat layer 12 is formed on the outer periphery of the ceramic block 13, and the exposed grooves are filled with the members constituting the outer peripheral coat layer 12.
  • large capacity cells 111a, 121a, and 131a are opened on one end face, and the small capacity cells 111b, 121b, and 131b are sealed.
  • small capacity cells 111b, 121b, and 131b are opened on the other end face of the honeycomb structure 10, and the large capacity cells 111a, 121a, and 131a are sealed.
  • the end face where the large capacity cells 111a, 121a, 131a of the honeycomb structure 10 are opened is the first end face
  • the end face where the small capacity cells 111b, 121b, 131b are opened is the second end face.
  • the opening ratio of the cross section perpendicular to the longitudinal direction in the central portion of the honeycomb structure 10 is set to 65% or more.
  • the ratio of the opening ratio of the first end face of the honeycomb structure 10 to the opening ratio of the second end face of the structure 10 is 1.4 or more Yes.
  • the opening ratio of the cross section perpendicular to the longitudinal direction in the central portion of the honeycomb structure 10 is desirably 80% or less, and preferably 78% or less. More desirable. In order to suppress an increase in pressure loss, it is desirable that the aperture ratio of the honeycomb structure 10 (the aperture ratio of the first end face / the aperture ratio of the second end face) is 3.0 or less. It is more desirable that it is 5 or less.
  • the thickness of the cell wall 113 excluding the outer peripheral walls of the honeycomb fired bodies 110, 120, and 130 is suppressed in order to suppress an increase in pressure loss while maintaining a high aperture ratio. Is 0.1 mm or more and less than 0.2 mm.
  • the cell wall thickness excluding the outer peripheral wall of the honeycomb fired body is preferably 0.150 to 0.195 mm.
  • the outer peripheral wall refers to the portion of the wall formed on the outermost periphery of the honeycomb fired bodies 110, 120, and 130.
  • FIGS. 2 (a) and 2 (b) FIGS. 3 (a) and 3 (b)
  • reference numeral 114 is used. 124, 134.
  • the cut portions of the honeycomb fired bodies 120 and 130 are not included in the outer peripheral wall.
  • the cell walls 113, 123, 133 As the cell walls 113, 123, 133, the cell walls 113a, 123a, 133a that separate the large capacity cells 111a, 121a, 131a and the small capacity cells 111b, 121b, 131b and the cells that separate the large capacity cells 111a, 121a, 131a from each other.
  • the walls 113b, 123b, and 133b exist, it is desirable that the cell walls 113a, 123a, and 133a and the cell walls 113a, 123a, and 133a have the same thickness.
  • the thickness of the cell walls 113, 123, 133 is more preferably 0.25 mm or less.
  • the length of the honeycomb structure 10 is indicated by L
  • the diameter (end surface diameter) of the honeycomb structure 10 is indicated by D.
  • the diameter (D) of the honeycomb structure 10 is set large as 200 mm or more
  • the length (L) of the honeycomb structure 10 with respect to the diameter (D) of the honeycomb structure 10 is set.
  • Ratio is 1.0 or less so that the pressure loss of the honeycomb structure 10 is reduced.
  • the length of the honeycomb structure with respect to the diameter (D) of the honeycomb structure 10 is prevented in order to prevent the mechanical strength of the end surface from being reduced due to the flat shape.
  • the ratio (L / D) of the thickness (L) is desirably 0.5 or more, and more desirably 0.6 or more.
  • the thickness of the outer peripheral walls 114, 124, 134 of the honeycomb fired bodies 110, 120, 130 constituting the honeycomb structure 10 according to the embodiment of the present invention is preferably 0.2 to 0.5 mm.
  • the outer peripheral walls 114, 124, and 134 serve as reinforcing members.
  • the longitudinal direction of the honeycomb fired bodies 110, 120, and 130 is used in order to make the cell walls 113 function as portions that maintain the mechanical characteristics of the honeycomb fired bodies 110, 120, and 130.
  • the number of cells per unit area in a cross section perpendicular to the substrate is preferably 31 to 62 cells / cm 2 (200 to 400 cells / inch 2 ), and 38 to 55 cells / cm 2 (250 to 350 cells / inch 2 ). 2 ) is more desirable.
  • the shape of the cross section perpendicular to the longitudinal direction of the large capacity cell 111a is an octagon
  • the shape of the cross section perpendicular to the longitudinal direction of the small capacity cell 111b is a quadrangle.
  • the shape of the cross section perpendicular to the longitudinal direction of the large capacity cell may be a quadrangle
  • the shape of the cross section perpendicular to the longitudinal direction of the small capacity cell may be a quadrangle.
  • the shape of the cross section perpendicular to the longitudinal direction of the large capacity cell 111a and the shape of the cross section perpendicular to the longitudinal direction of the small capacity cell 111b are such that the large capacity cell 111a and the small capacity cell 111b have the same pattern vertically and horizontally.
  • the shape of the repeated part shall be said.
  • the large-capacity cell and the small-capacity cell may have a cross-sectional shape perpendicular to the longitudinal direction and a shape in which the apex of the quadrangle is an arc shape.
  • a forming step for producing a honeycomb formed body by extruding a wet mixture containing a ceramic powder and a binder is performed. Specifically, first, a wet mixture for manufacturing a honeycomb formed body is prepared by mixing silicon carbide powder having different average particle sizes as ceramic powder, an organic binder, a liquid plasticizer, a lubricant, and water. To prepare. Subsequently, the wet mixture is put into an extruder and extruded to produce a honeycomb formed body having a predetermined shape. At this time, a honeycomb molded body is manufactured using a mold that can generate a cross-sectional shape of the honeycomb fired body 110 having the large-capacity cells 111a and the small-capacity cells 111b shown in FIG.
  • the honeycomb formed body is cut into a predetermined length and dried using a microwave dryer, hot air dryer, dielectric dryer, vacuum dryer, vacuum dryer, freeze dryer, or the like. Then, a sealing step of filling a predetermined cell with a sealing material paste as a sealing material and sealing the cell is performed.
  • a sealing material paste as a sealing material and sealing the cell is performed.
  • the wet mixture can be used as the sealing material paste.
  • the honeycomb formed body is heated in a degreasing furnace, and after performing a degreasing process for removing organic substances in the honeycomb formed body, the degreased honeycomb formed body is conveyed to a firing furnace and a firing process is performed.
  • a honeycomb fired body having a shape as shown in FIGS. 2A and 2B is manufactured.
  • the sealing material paste with which the edge part of the cell was filled is baked by heating and becomes a sealing material.
  • the conditions currently used when manufacturing a honeycomb fired body can be applied to the conditions of a cutting process, a drying process, a sealing process, a degreasing process, and a firing process.
  • an adhesive paste is applied to each predetermined side surface of the honeycomb fired body in which predetermined ends of each cell are sealed to form an adhesive paste layer. Bonding the honeycomb fired bodies together, and heating and solidifying the adhesive paste layer to form an adhesive layer, thereby producing a binding step for producing a ceramic block in which a plurality of honeycomb fired bodies are bound through the adhesive layer.
  • the adhesive paste for example, a paste made of an inorganic binder, an organic binder, and inorganic particles is used.
  • the adhesive paste may further contain inorganic fibers and / or whiskers.
  • an outer peripheral machining step for cutting the ceramic block is performed. Specifically, the outer periphery of the ceramic block is cut using a diamond cutter to produce a ceramic block whose outer periphery is processed into a columnar shape.
  • an outer peripheral coat layer forming step is performed in which the outer peripheral coat material paste is applied to the outer peripheral surface of the columnar ceramic block and dried and solidified to form the outer peripheral coat layer.
  • the said adhesive paste can be used as an outer periphery coating material paste.
  • a paste having a composition different from that of the adhesive paste may be used as the outer periphery coating material paste.
  • a honeycomb structure having a diameter of 200 mm or more (a) the ratio of the length of the honeycomb structure to the diameter of the honeycomb structure (the length of the honeycomb structure / the diameter of the honeycomb structure) is 1.0 or less, and (B) The ratio of the opening ratio of the first end face of the honeycomb structure to the opening ratio of the second end face of the honeycomb structure (opening ratio of the first end face / opening ratio of the second end face) is 1.4. And (c) the thickness of the cell wall excluding the outer peripheral wall of the honeycomb fired body is 0.1 mm or more and less than 0.2 mm, and (d) a cross section perpendicular to the longitudinal direction in the central portion of the honeycomb structure.
  • the aperture ratio By setting the aperture ratio to 65% or more, the volume of the obtained honeycomb structure can be reduced, the strength can be further increased, and the pressure loss can be decreased.
  • the capacity of the honeycomb structure cannot be reduced. Further, the strength of the honeycomb structure cannot be increased and the pressure loss cannot be decreased.
  • the ratio of the honeycomb structure length to the honeycomb structure diameter is 1.0 or less, pressure loss due to friction when exhaust gas passes through the cell wall Can be suppressed. Further, by setting the thickness of the cell wall excluding the outer peripheral wall of the honeycomb fired body to be 0.1 mm or more and less than 0.2 mm, the pressure loss of the honeycomb structure increases even when the flow rate of exhaust gas passing through the cell wall is high. The contribution of can be reduced.
  • the ratio of the aperture ratio of the first end face of the honeycomb structure to the aperture ratio of the second end face of the honeycomb structure is 1.4 or more, and the thickness of the cell wall is 0.1 mm or more and less than 0.2 mm
  • the opening ratio of the cross section perpendicular to the longitudinal direction in the central portion of the honeycomb structure can be made 65% or more.
  • the filtration area is decreased.
  • the thickness of the cell wall is reduced, the filtration area can be increased even when the aperture ratio of the cross section perpendicular to the longitudinal direction in the central portion of the honeycomb structure is as high as 65% or more. Therefore, the pressure loss of the honeycomb structure can be reduced. Therefore, when the honeycomb structure according to claim 1 is used for a large vehicle or the like, the volume of the honeycomb structure can be reduced, the strength is high, and the pressure loss can be reduced.
  • the opening ratio of the cross section perpendicular to the longitudinal direction in the central portion of the honeycomb structure is as high as 65% or more, so the pressure loss before PM deposition (initial) can be reduced.
  • the honeycomb structure is used as a honeycomb filter for a large vehicle or the like, the exhaust temperature of exhaust gas tends to be high because the large vehicle has many continuous operations. Therefore, PM in the discharged exhaust gas does not need to be burned after forcibly depositing a large amount in the honeycomb structure, and can be burned continuously. For this reason, in such a honeycomb structure, it is important that the pressure loss before PM deposition (initial) can be made lower than the pressure loss after PM deposition. In the described honeycomb structure, the pressure loss before (initial) PM deposition can be reduced.
  • the opening ratio (the opening ratio of the first end face / the opening ratio of the second end face) is 1.4 or more, and the thickness of the cell wall is 0.1 mm or more. Since it is as thin as less than 0.2 mm, the above-described high aperture ratio of 65% or more can be achieved while increasing the filtration area.
  • the diameter of the honeycomb structure is 200 mm or more, and the ratio of the length of the honeycomb structure to the diameter (the length of the honeycomb structure / the diameter of the honeycomb structure) is: 1.0 or less. That is, the honeycomb structure is a large honeycomb structure that can be used for a large vehicle, etc., and the honeycomb structure has a large diameter, and the honeycomb structure has a shorter length than the honeycomb structure. Yes. Therefore, the area of the end face of the honeycomb structure is large, and the length of the cell is shortened. As a result, an increase in pressure loss due to friction when exhaust gas passes through the cells of the honeycomb structure can be suppressed.
  • the honeycomb structure has a large end face area and a short cell length
  • the cell wall thickness is reduced, so that an increase in pressure loss of the honeycomb structure can be suppressed. Further, even if the flow velocity passing through the cell wall is high, the contribution of the pressure loss increase of the honeycomb structure becomes small. Furthermore, PM is uniformly deposited on the entire cells of the honeycomb structure. Moreover, since the pressure loss of the honeycomb structure can be reduced by reducing the length of the honeycomb structure as compared with the diameter of the honeycomb structure in this way, the volume of the honeycomb structure can be reduced. . When a honeycomb structure is used for a large vehicle or the like, since the honeycomb structure is continuously regenerated (PM removal), it is not necessary to deposit a large amount of PM on the honeycomb structure.
  • the opening ratio of the cross section perpendicular to the longitudinal direction in the central portion of the honeycomb structure is 80% or less.
  • an appropriate number of cells for example, 31 to 62 cells / cm
  • the cell wall functions as a wall that supports the honeycomb structure, and the mechanical strength of the honeycomb structure can be maintained in an appropriate range.
  • the aperture ratio (the aperture ratio of the first end face / the aperture ratio of the second end face) is 3.0 or less.
  • the aperture ratio (the aperture ratio of the first end face / the aperture ratio of the second end face) is 3.0 or less, the aperture ratio of the first end face and the aperture ratio of the second end face of the honeycomb structure.
  • the increase in the pressure loss of the honeycomb structure due to the excessively large ratio can be suppressed. That is, when the volume difference between the large-capacity cells and the small-capacity cells in the honeycomb structure is large, the exhaust gas that has flowed into the honeycomb structure due to the small area of the cell wall that separates the two cells flows out.
  • the wall area to be reduced is reduced and the pressure loss of the honeycomb structure is increased.
  • the aperture ratio of the honeycomb structure is 3.0 or less, the area of the cell wall separating the two is not reduced, and the exhaust gas flowing into the honeycomb structure The area of the wall from which the gas flows out is not reduced, and the pressure loss of the honeycomb structure is difficult to increase.
  • the ratio of the length of the honeycomb structure to the diameter is preferably 0.5 or more. If the ratio between the length and diameter of the honeycomb structure is too small, less than 0.5, if the ratio between the length and diameter of the honeycomb structure is too small, the exhaust gas flowing into the honeycomb structure will be behind (exhaust gas outflow side) Therefore, PM is easily knitted on the gas outflow side of the honeycomb structure. As a result, the pressure loss of the honeycomb structure increases.
  • the ratio of the length of the honeycomb structure to the diameter is 0.5 or more, the exhaust gas that has flowed into the honeycomb structure does not easily flow backward (exhaust gas outflow side). PM accumulates. As a result, the increase in pressure loss of the honeycomb structure hardly occurs.
  • the thickness of the outer peripheral wall of the honeycomb fired body is preferably 0.2 to 0.5 mm.
  • the thickness of the outer peripheral wall of the honeycomb fired body is 0.2 to 0.5 mm, the thickness of the outer peripheral wall is larger than that of the cell wall of the honeycomb structure. Even if the thickness of the honeycomb fired body is reduced, the outer peripheral wall of the honeycomb fired body serves as a reinforcing material for maintaining the mechanical strength, and the mechanical properties of the honeycomb fired body can be favorably maintained.
  • the number of cells per unit area in a cross section perpendicular to the longitudinal direction of the honeycomb fired body is preferably 31 to 62 cells / cm 2 .
  • the number of cell walls (area) occupied per unit area in the cross section of the honeycomb structure is appropriate.
  • the cell wall functions as a portion for maintaining the mechanical characteristics of the honeycomb fired body, and the honeycomb fired body can maintain the mechanical characteristics.
  • the shape of the cross section perpendicular to the longitudinal direction of the large capacity cell is an octagon
  • the shape of the cross section perpendicular to the longitudinal direction of the small capacity cell is a quadrangle.
  • Example 1 Production of honeycomb fired body First, 54.6% by weight of silicon carbide coarse powder having an average particle size of 22 ⁇ m and 23.4% by weight of fine powder of silicon carbide having an average particle size of 0.5 ⁇ m were mixed, To the obtained mixture, 4.3% by weight of organic binder (methyl cellulose), 2.6% by weight of lubricant (Unilube manufactured by NOF Corporation), 1.2% by weight of glycerin, and 13.9% by weight of water In addition, the mixture was kneaded to obtain a wet mixture. Then, the shaping
  • organic binder methyl cellulose
  • lubricant Unilube manufactured by NOF Corporation
  • glycerin 1.2% by weight of gly
  • the raw honeycomb formed body was dried using a microwave dryer, thereby manufacturing a dried body of the honeycomb formed body.
  • the sealing material paste was filled in predetermined cells of the dried honeycomb molded body to seal the cells.
  • the wet mixture was used as a sealing material paste.
  • the dried honeycomb molded body filled with the plug paste was again dried using a dryer.
  • a degreasing process was performed in which the dried honeycomb formed body was degreased at 400 ° C., and further, a firing process was performed under conditions of 2200 ° C. and 3 hours in an atmospheric argon atmosphere. Thereby, a honeycomb fired body 110 (also referred to as a honeycomb unit) was manufactured.
  • the obtained honeycomb fired body is composed of a porous silicon carbide sintered body, and has a large-capacity cell having an octagonal cross section and a small-capacity cell having a quadrangular cross section, as shown in FIG.
  • the rate is 42%
  • the average pore diameter is 9 ⁇ m
  • the size is 34.3 mm ⁇ 34.3 mm ⁇ 200 mm
  • the number of cells (cell density) is 46.5 cells / cm 2 (300 cells / inch 2 )
  • the thickness is 0.175 mm
  • the thickness of the outer peripheral wall is 0.3 mm.
  • honeycomb structure was manufactured using the honeycomb fired body obtained by the above process. An adhesive paste is applied to a predetermined side surface of the honeycomb fired body 1, and 36 (6 ⁇ 6) honeycomb fired bodies 1 are bonded through the adhesive paste, thereby collecting the honeycomb fired bodies 1. The body was made. Furthermore, the aggregate of the honeycomb fired bodies was dried and solidified at 180 ° C. for 20 minutes to produce a prismatic ceramic block having an adhesive layer thickness of 1 mm.
  • the adhesive paste 30.0% by weight of silicon carbide having an average particle diameter of 0.6 ⁇ m, 21.4% by weight of silica sol (solid content 30% by weight), 8.0% by weight of carboxymethyl cellulose, and water 40 An adhesive paste consisting of 6% by weight was used.
  • the cylindrical ceramic block of diameter 198mm was produced by grinding the outer periphery of a prismatic ceramic block using a diamond cutter.
  • the outer periphery coating material paste is applied to the outer periphery of the cylindrical ceramic block, and the outer periphery coating material paste is heated and solidified at 120 ° C., thereby forming an outer periphery coating layer having a thickness of 1.0 mm on the outer periphery of the ceramic block. Formed.
  • the said adhesive material paste was used as an outer periphery coating material paste.
  • the opening ratio of the cross section perpendicular to the longitudinal direction in the central portion of the obtained honeycomb structure is 71.1%, and the honeycomb structure has a first opening ratio with respect to the opening ratio of the second end face (end face where the small-capacity cells are opened).
  • the ratio of the aperture ratio of one end face (the end face where the large-capacity cell is opened) (the aperture ratio of the first end face / the aperture ratio of the second end face) is 1.46.
  • the ratio of the length of the honeycomb structure to the diameter of the honeycomb structure is 1.00.
  • the aperture ratio described above is obtained from photographs obtained by photographing a cross section perpendicular to the longitudinal direction in the central portion of the honeycomb structure, the first end face of the honeycomb structure, and the second end face of the honeycomb structure. The total area and the area of the portion where the opening was formed were determined, and the opening ratio was calculated.
  • the opening ratio of the cross section perpendicular to the longitudinal direction in the central portion of the honeycomb structure is referred to as the central portion opening ratio
  • the ratio of the opening ratios is
  • the ratio of the length of the honeycomb structure to the diameter of the honeycomb structure is also referred to as the aperture ratio
  • the ratio of the diameter to the length is also called.
  • Examples 2 to 7 and Comparative Examples 1 to 6 In order to make the cell wall thickness and cell density (cells / cm 2 ) of the honeycomb fired body to be manufactured to the values shown in Examples 2 to 7 and Comparative Examples 1 to 6 in Table 1, the mold was changed as necessary.
  • the honeycomb fired body was made in the same manner as in Example 1 except that the cutting conditions were changed as necessary in order to set the length of the honeycomb fired body to the values shown in Examples 2 to 7 and Comparative Examples 1 to 6 in Table 1. Manufactured.
  • the opening ratio of the central part of the honeycomb structure to be manufactured the ratio of the opening ratio, the diameter, the length of the honeycomb structure, the ratio of the diameter to the length (length / diameter), the opening ratio of the central part, the ratio of the opening ratio,
  • the number of the honeycomb fired bodies to be combined was changed, and the thickness of the adhesive layer and the outer peripheral coat layer was changed.
  • a honeycomb structure was manufactured.
  • Cell wall thickness of the obtained honeycomb structure of Example 2 0.175 mm, cell density: 46.5 cells / cm 2 (300 cells / inch 2 ), central area opening ratio: 71.1%, aperture Rate ratio: 1.46, diameter: 225 mm, length: 158 mm, ratio of diameter to length (length / diameter): 0.70, volume: 6.28 L.
  • Cell wall thickness of the obtained honeycomb structure of Example 3 0.175 mm, cell density: 46.5 cells / cm 2 (300 cells / inch 2 ), central area opening ratio: 71.1%, aperture Rate ratio: 1.46, diameter: 250 mm, length: 128 mm, ratio of diameter to length (length / diameter): 0.51, volume: 6.28 L.
  • Cell wall thickness of the obtained honeycomb structure of Example 4 0.150 mm, cell density: 46.5 cells / cm 2 (300 cells / inch 2 ), center portion opening ratio: 73.7%, opening Rate ratio: 1.46, diameter: 225 mm, length: 158 mm, ratio of diameter to length (length / diameter): 0.70, volume: 6.28 L.
  • Cell wall thickness of the obtained honeycomb structure of Example 5 0.100 mm, cell density: 62 cells / cm 2 (400 cells / inch 2 ), central portion opening ratio: 79.1%, opening ratio : 1.46, diameter: 225 mm, length: 158 mm, ratio of diameter to length (length / diameter): 0.70, volume: 6.28 L.
  • Cell wall thickness of the obtained honeycomb structure of Example 6 0.195 mm, cell density: 46.5 cells / cm 2 (300 cells / inch 2 ), center portion opening ratio: 68.5%, opening Rate ratio: 1.46, diameter: 225 mm, length: 158 mm, ratio of diameter to length (length / diameter): 0.70, volume: 6.28 L.
  • Cell wall thickness of the obtained honeycomb structure of Example 7 0.175 mm, cell density: 46.5 cells / cm 2 (300 cells / inch 2 ), central part opening ratio: 71.1%, opening Rate ratio: 2.29, diameter: 225 mm, length: 158 mm, ratio of diameter to length (length / diameter): 0.70, volume: 6.28 L.
  • Cell wall thickness of the obtained honeycomb structure of Comparative Example 1 0.175 mm, cell density: 46.5 cells / cm 2 (300 cells / inch 2 ), central portion opening ratio: 71.1%, opening Rate ratio: 1.46, diameter: 180 mm, length: 247 mm, diameter to length ratio (length / diameter): 1.37, volume: 6.29 L, honeycomb structure diameter, diameter and length
  • the thickness ratio (length / diameter) does not meet the requirements of claim 1 of the present invention.
  • Cell thickness of the honeycomb structure of Comparative Example 2 obtained: 0.300 mm, cell density: 46.5 cells / cm 2 (300 cells / inch 2 ), center opening ratio: 58.6%, opening Rate ratio: 1.46, diameter: 225 mm, length: 158 mm, diameter to length ratio (length / diameter): 0.70, volume: 6.28 L, cell wall thickness of honeycomb structure And the opening ratio of the central portion does not satisfy the requirement described in claim 1 of the present invention.
  • Cell wall thickness of the obtained honeycomb structure of Comparative Example 5 0.200 mm, cell density: 46.5 cells / cm 2 (300 cells / inch 2 ), center opening ratio: 68.5%, opening Rate ratio: 1.46, diameter: 180 mm, length: 247 mm, ratio of diameter to length (length / diameter): 1.37, volume: 6.29 L, cell wall thickness of honeycomb structure,
  • the diameter and the ratio of diameter to length (length / diameter) do not meet the requirements of claim 1 of the present invention.
  • Cell wall thickness of the obtained honeycomb structure of Comparative Example 6 0.175 mm, cell density: 46.5 cells / cm 2 (300 cells / inch 2 ), central part opening ratio: 71.1%, opening Rate ratio: 1.46, diameter: 200 mm, length: 225 mm, ratio of diameter to length (length / diameter): 1.13, volume: 7.07 L, ratio of diameter to length (length / length) Diameter) does not meet the requirements of claim 1.
  • FIG. 4 is an explanatory view showing the pressure loss measuring device 170 in Example 1 and Comparative Example 1.
  • a metal casing 174 is attached to an exhaust pipe 177 of a 6.4 L common rail type diesel engine 176, and an alumina mat (holding sealing material) is placed inside the metal casing 174.
  • an alumina mat holding sealing material
  • the honeycomb structure 1 is wound.
  • the pressure gauge 178 is attached before and behind the honeycomb structure 1.
  • the engine speed was set to 3000 rpm and the torque was set to 50 Nm, 25 g of PM was deposited on the honeycomb structure, and the pressure difference at that time was measured to obtain the pressure loss.
  • the pressure loss of Example 1 is 2.8 kPa
  • the pressure loss of Example 2 is 2.6 kPa
  • the pressure of Example 3 The loss is 2.8 kPa
  • the pressure loss of Example 4 is 2.4 kPa
  • the pressure loss of Example 5 is 2.3 kPa
  • the pressure loss of Example 6 is 2.8 kPa
  • the pressure loss of Example 7 is 2.7 kPa.
  • the pressure loss was a good value in the range of 2.3 to 2.8 kPa.
  • the pressure loss of Comparative Example 1 is 3.4 kPa
  • the pressure loss of Comparative Example 2 is 4.2 kPa
  • the pressure loss of Comparative Example 3 is 3.1 kPa
  • the pressure loss of Comparative Example 4 is 3.0 kPa
  • the pressure loss of Comparative Example 5 is 3.2 kPa
  • the pressure loss of Comparative Example 6 is 2.8 kPa
  • the pressure loss is 2. It was in the range of 8 to 4.2 kPa, and the pressure loss of the comparative example was higher than that of the example.
  • the honeycomb structures according to Comparative Examples 1 to 5 have the same volume as the honeycomb structures according to Examples, but have a high pressure loss of 3.0 to 4.2 kPa.
  • the pressure loss is 2.8 kPa, which is about the same as that of the example, but the volume is larger than that of the example.
  • FIG. 5 is a perspective view schematically showing an example of the honeycomb structure of the second embodiment of the present invention.
  • Fig.6 (a) is a perspective view which shows typically an example of the honeycomb fired body which comprises the honeycomb structure which concerns on 2nd embodiment of this invention.
  • FIG. 6 (b) is a cross-sectional view taken along the line CC of the honeycomb fired body shown in FIG. 6 (a).
  • FIG. 7 is a perspective view schematically showing an example of a honeycomb fired body of another shape constituting the honeycomb structure of the second embodiment of the present invention.
  • FIG. 8 is a perspective view schematically showing an example of a honeycomb fired body of another shape constituting the honeycomb structure of the second embodiment of the present invention.
  • FIG. 9 is a side view of the honeycomb structure according to the second embodiment of the present invention shown in FIG.
  • honeycomb fired bodies 210, 220, and 230 that are made of porous silicon carbide and have the shapes shown in FIGS. 6 (a), 6 (b), 7, and 8.
  • the ceramic block 23 is formed by being bundled individually through the adhesive layer 21, and the outer peripheral coat layer 22 is formed on the outer periphery of the ceramic block 23.
  • the eight honeycomb fired bodies 220 and the four honeycomb fired bodies 230 having different shapes from the honeycomb fired bodies 220 at the positions constituting the outer periphery of the ceramic block 23, and the honeycomb fired bodies are formed.
  • the 32 honeycomb fired bodies 210 positioned inside the bodies 220 and 230 are bound together via the adhesive layer 21, and the outer peripheral coat layer 22 is formed on the outer peripheral portion.
  • the cross-sectional shape perpendicular to the direction is circular.
  • a large number of large-capacity cells 211a and small-capacity cells 211b are formed on the cell walls 213 as in the honeycomb fired body 110 according to the first embodiment.
  • the end of the small capacity cell 211b is sealed with the sealing material 212a on the exhaust gas inlet side, and the end of the large capacity cell 211a is sealed with the sealing material 212b on the exhaust gas outlet side. ing.
  • the exhaust gas G that has flowed into the large-capacity cell 211a having an open end surface on the exhaust gas side always passes through the cell wall 213 that separates the large-capacity cell 211a and the small-capacity cell 211b, and then the end surface on the exhaust gas outlet side It flows out of the small capacity cell 211b that is opened. And when exhaust gas G passes the cell wall 213, since PM etc. in exhaust gas are collected, the cell wall 213 functions as a filter.
  • the shape of the cross section perpendicular to the longitudinal direction of the 32 honeycomb fired bodies 210 is a square, and this honeycomb fired body 210 is a honeycomb fired body having a square cross section. Further, the lengths of the four sides 214 constituting the outer periphery of the square are the same, and the shape of the cross section perpendicular to the longitudinal direction of the honeycomb fired body 210 is a square.
  • the honeycomb fired body 220 shown in FIG. 7 located near the outer periphery of the honeycomb structure 20 also has a large number of large-capacity cells 221a, small-capacity cells 221b, a sealing material 222a (not shown), as in the honeycomb fired body 210, Sealing material 222b and cell wall 223 (cell wall 223a, cell wall 223b) are provided. Therefore, the honeycomb fired body 220 functions as a filter for collecting PM and the like.
  • An outer peripheral wall 228 is provided on the outer peripheral portion of the honeycomb fired body 220.
  • the shape of the honeycomb fired body 220 in the cross section perpendicular to the longitudinal direction is a shape in which the first side 224, the second side 225, the third side 227, and the inclined side 226 are combined.
  • the angle formed by the first side 224 and the second side 225 is a right angle, and the inclined side 226 is provided to face the right angle.
  • the inclined side 226 is an arc.
  • “opposing at right angles” means “facing at right angles” and means different sides from the two sides forming the right angle.
  • the third side 227 is a side connecting the inclined side 226 and the first side 224, and the third side 227 is parallel to the second side 225. That is, the honeycomb fired body 220 is a honeycomb fired body having a cross-sectional fan shape including one arc and three straight portions.
  • the honeycomb fired body 230 shown in FIG. 8 also has a large number of large-capacity cells 231a, small-capacity cells 231b, a sealing material 232a (not shown), a sealing material 232b, and cell walls 233, as in the honeycomb fired body 210. (Cell wall 233a, cell wall 233b) are provided. Therefore, the honeycomb fired body 230 functions as a filter for collecting PM and the like.
  • the shape of the cross section perpendicular to the longitudinal direction of the honeycomb fired body 230 is a triangle, and the honeycomb fired body 230 is a honeycomb fired body having a triangular cross section.
  • the shape of the cross section perpendicular to the longitudinal direction of the honeycomb fired body 230 has a right angle formed by the first side 234 and the second side 235, and a right isosceles triangle having the oblique side 236 opposed to the right angle. It has become.
  • An outer peripheral wall 238 is provided on the outer peripheral portion of the honeycomb fired body 230.
  • each honeycomb fired body and the shape of the cells are expressed by names such as triangles and quadrangles, but the triangles and quadrangles in this specification are strictly defined by only complete straight lines. It does not mean a figure, but includes a shape whose corners (vertices) are chamfered with straight lines or curves and can be substantially equated with a triangle or a quadrangle. Further, in the present specification, terms such as “right angle”, “parallel”, and “right angled isosceles triangle” do not mean a mathematically exact shape, but “right angle”, “parallel”, “right angled isosceles triangle”. It includes shapes that can be substantially equated with shapes such as “”.
  • FIG. 9 is a side view of the honeycomb structure 20 shown in FIG.
  • a honeycomb fired body 210 (a honeycomb fired body having a square cross section) is disposed at the center of the cross section.
  • the number of honeycomb fired bodies 210 is 32.
  • honeycomb fired bodies 220 are arranged around the honeycomb fired body 210.
  • the honeycomb fired body 220 is disposed so that the second side 225 is adjacent to the honeycomb fired body 210.
  • the inclined side 226 is disposed so as to be the outer peripheral surface of the ceramic block.
  • the honeycomb fired bodies 220 are arranged so that the first sides 224 of the honeycomb fired bodies 220 are adjacent to each other.
  • the length of the second side 225 of the honeycomb fired body 220 is longer than the length of the side 214 constituting the outer periphery of the honeycomb fired body 210.
  • the length of the second side 225 of the honeycomb fired body 220 is preferably 1.5 to 2.5 times the length of the side 214 constituting the outer periphery of the honeycomb fired body 210.
  • honeycomb fired bodies 230 honeycomb fired bodies having a triangular cross-section
  • the honeycomb fired body 230 is disposed such that the first side 234 and the second side 235 thereof are adjacent to the honeycomb fired body 210. Moreover, it arrange
  • honeycomb fired bodies 210, 8 honeycomb fired bodies 220, and 4 honeycomb fired bodies 230 are bundled through the adhesive layer 21 to form the ceramic block 23.
  • a sealing material layer 22 is formed on the outer peripheral surface of the ceramic block 23, and the shape of the cross section perpendicular to the longitudinal direction of the honeycomb structure 20 is circular.
  • the opening ratio of the cross section perpendicular to the longitudinal direction in the central portion of the honeycomb structure 20 is set to 65% or more, and the second end face of the honeycomb structure 20 ( The ratio of the opening ratio of the first end face of the honeycomb structure 20 to the opening ratio of the end face where the small-capacity cells are opened (the opening ratio of the first end face / the opening ratio of the second end face) is 1.4 or more. Yes.
  • the aperture ratio of the cross section perpendicular to the longitudinal direction in the central portion of the honeycomb structure 20 is desirably 80% or less, and more desirably 78% or less.
  • the aperture ratio of the honeycomb structure 10 is desirably 3.0 or less, and more desirably 2.5 or less.
  • the thickness of the cell walls 213, 223, 233 excluding the outer peripheral walls of the honeycomb fired bodies 210, 220, 230 is 0.1 mm or more and less than 0.2 mm.
  • the cell wall thickness excluding the outer peripheral wall of the honeycomb fired body is preferably 0.150 to 0.195 mm.
  • the cells 213a, 223a, 233a separating the large capacity cells 211a, 221a, 231a and the small capacity cells 211b, 221b, 231b and the cells separating the large capacity cells 211a, 221a, 231a are used.
  • the walls 213b, 223b, and 233b exist, it is desirable that the cell walls 213a, 223a, and 233a and the cell walls 213b, 223b, and 233b have the same thickness.
  • the thickness of the cell walls 213, 223, 233 is more preferably 0.25 mm or less.
  • the diameter of the honeycomb structure 20 is set as large as 200 mm or more, and the ratio of the length of the honeycomb structure 20 to the diameter of the honeycomb structure 20 (honeycomb structure) Length / diameter of the honeycomb structure) is 1.0 or less.
  • the ratio of the length of the honeycomb structure to the diameter of the honeycomb structure 10 is preferably 0.5 or more, and more preferably 0.6 or more. Moreover, the diameter of the honeycomb structure 20 is desirably 450 mm or less, and more desirably 400 mm or less.
  • the thickness of the outer peripheral walls 214, 228, 238 of the honeycomb fired bodies 210, 220, 230 constituting the honeycomb structure 20 according to the embodiment of the present invention is preferably 0.2 to 0.5 mm.
  • the number of cells per unit area in the cross section perpendicular to the longitudinal direction of the honeycomb fired bodies 210, 220, and 230 is 31 to 62 cells / cm 2 (200 to 400 cells). / Inch 2 ), and more preferably 38 to 55 pieces / cm 2 (250 to 350 pieces / inch 2 ).
  • a method for manufacturing a honeycomb structure according to the second embodiment of the present invention will be described.
  • a honeycomb formed body is prepared.
  • a honeycomb molded body is manufactured in the same manner as in the first embodiment of the present invention, except that the mold for manufacturing the honeycomb fired bodies 220 and 230 is different from that in the first embodiment of the present invention. .
  • a cutting process, a drying process, and a sealing process of the honeycomb molded body are performed.
  • a honeycomb fired body is manufactured by performing a degreasing process and a firing process.
  • an adhesive paste layer is formed on a necessary portion of the side surfaces of the honeycomb fired bodies 210, 220, and 230, and the honeycomb fired bodies are bonded to each other through the adhesive paste layer. Is heated and solidified to form an adhesive layer, and a binding process is performed in which a plurality of honeycomb fired bodies are bound via the adhesive layer to form a ceramic block.
  • an adhesive paste containing inorganic fibers and / or whiskers, inorganic particles, an inorganic binder, and an organic binder is suitably used.
  • the honeycomb fired body 210 is disposed in the central portion, and the honeycomb fired body 220 and the honeycomb fired body 230 are disposed around the center to produce the ceramic block 23 having a cross-sectional shape as shown in FIG. .
  • the honeycomb fired body 220 is disposed such that the second side 225 is adjacent to the honeycomb fired body 210 and the inclined side 226 is the outermost periphery of the ceramic block 23.
  • the honeycomb fired body 230 is disposed so that the first side 234 and the second side 235 are adjacent to the honeycomb fired body 210 and the oblique side 236 is the outermost periphery of the ceramic block 23.
  • the outer peripheral walls 214, 228, and 238 are formed on all the outer peripheral portions of the honeycomb fired bodies 210, 220, and 230, and the ceramic block 23 is manufactured. Since it is cylindrical at the time, there is no need for cutting.
  • an outer peripheral coat layer forming step is performed in which an outer peripheral coat material paste is applied to the outer peripheral surface of the ceramic block 23 and dried and solidified to form an outer peripheral coat layer.
  • honeycomb structure according to the second embodiment of the present invention is described in the first embodiment of the present invention (1) to (9), as in the case of the honeycomb structure according to the first embodiment of the present invention. Has the same effect as.
  • An exhaust gas purifying apparatus in which a holding sealing material is disposed on a side surface of the honeycomb structure, and the honeycomb structure and the holding sealing material are disposed in a metal container,
  • the honeycomb structure is a honeycomb structure of the present invention having the above-described configuration,
  • the honeycomb structure is arranged such that the inlet side of the exhaust gas becomes the first end surface of the honeycomb structure.
  • FIG. 14 is a cross-sectional view schematically showing an exhaust gas purifying apparatus according to the present invention.
  • the exhaust gas purification apparatus 720 according to the embodiment is disposed between the honeycomb structure 10, the metal container 721 that covers the outside of the honeycomb structure 10, and the honeycomb structure 10 and the metal container 721.
  • An inlet pipe 724 connected to an internal combustion engine such as an engine is connected to the end of the metal container 721 on the side where the exhaust gas is introduced, and is connected to the other end of the metal container 721.
  • a discharge pipe 725 connected to the outside is connected to the section.
  • arrows indicate the flow of exhaust gas.
  • the holding sealing material 722 is disposed on the side surface of the honeycomb structure 10, and the honeycomb structure 10 and the holding sealing material 722 are disposed in the metal container 721.
  • the honeycomb structure 10 is the honeycomb structure 10 according to the first embodiment of the present invention, and the first structure of the honeycomb structure 10 is disposed on the inlet side of the exhaust gas to which the introduction pipe 724 of the exhaust gas purification device 720 is connected.
  • An end face (end face where the large-capacity cell is opened) is arranged, and a second end face (end face where the small-capacity cell is opened) is arranged on the outlet side of the exhaust gas to which the discharge pipe 725 is connected. Has been placed.
  • the holding sealing material 722 is a mat-like material composed of inorganic fibers such as alumina-silica, and the honeycomb structure 10 comes into contact with the metal container 721 and is damaged by vibration or impact caused by traveling of the automobile. In order to prevent the exhaust gas from leaking between the honeycomb structure 10 and the metal container 721, the honeycomb structure 10 and the metal container 721 are interposed.
  • the honeycomb structure according to the present embodiment may be the honeycomb structure 20 according to the second embodiment of the present invention.
  • the honeycomb structure 10 is disposed in the exhaust gas purifying apparatus 720 in the above-described manner, so that the following effects can be achieved.
  • the opening ratio of the cross section perpendicular to the longitudinal direction in the central portion of the honeycomb structure constituting the exhaust gas purifying apparatus is as high as 65% or more.
  • An exhaust gas purification device with low pressure loss can be obtained.
  • the aperture ratio of the honeycomb structure constituting the exhaust gas purification apparatus (the opening ratio of the first end face / the opening ratio of the second end face) is 1.4 or more.
  • the thickness of the cell wall is as thin as 0.1 mm or more and less than 0.2 mm, the filtration area of the honeycomb structure is increased. Therefore, the filtration area of the cell wall of the honeycomb structure becomes relatively large with respect to the inflowing exhaust gas. For this reason, in the exhaust gas purification apparatus of the present embodiment, the initial pressure loss can be reduced.
  • the diameter of the honeycomb structure constituting the exhaust gas purifying apparatus is 200 mm or more, and the ratio of the length of the honeycomb structure to the diameter (honeycomb structure length / honeycomb
  • the diameter of the structure is 1.0 or less. That is, the honeycomb structure is a large honeycomb structure that can be used for a large vehicle, etc., and the honeycomb structure has a large diameter, and the honeycomb structure has a shorter length than the honeycomb structure. Yes. Therefore, the area of the end face of the honeycomb structure is large, and the length of the cell is shortened. As a result, an increase in the pressure loss of the honeycomb structure due to friction when the exhaust gas passes through the cells of the honeycomb structure can be suppressed.
  • the honeycomb structure has a large end face area and a short cell length
  • the cell wall thickness is reduced, so that an increase in pressure loss of the honeycomb structure can be suppressed. Further, even if the flow velocity passing through the cell wall is high, the contribution of the pressure loss increase of the honeycomb structure becomes small.
  • PM is uniformly deposited on the entire cells of the honeycomb structure. In this way, by reducing the length of the honeycomb structure compared to the diameter of the honeycomb structure, the pressure loss of the honeycomb structure can be reduced, so the volume of the honeycomb structure disposed in the exhaust gas purification device is reduced. It is possible. When used in a large vehicle or the like, since the honeycomb structure is continuously regenerated (PM removal), it is not necessary to deposit a large amount of PM on the honeycomb structure.
  • the opening ratio of the cross section perpendicular to the longitudinal direction in the central portion of the honeycomb structure constituting the exhaust gas purifying apparatus is 80% or less.
  • an appropriate number of cells for example, 31 to 62 cells / cm
  • the cell wall functions as a wall that supports the honeycomb structure, and the mechanical strength of the honeycomb structure can be maintained in an appropriate range. Therefore, it is possible to provide an exhaust gas purifying apparatus with excellent durability in which cracks and the like are not easily generated even when used for a long period of time.
  • the aperture ratio of the honeycomb structure constituting the exhaust gas purification apparatus is 3.0 or less. It is desirable to be.
  • the aperture ratio (the aperture ratio of the first end face / the aperture ratio of the second end face) is 3.0 or less, the aperture ratio of the first end face and the aperture ratio of the second end face of the honeycomb structure. It is possible to suppress an increase in pressure loss of the exhaust gas purification apparatus due to the ratio of
  • the ratio of the length and the diameter of the honeycomb structure constituting the exhaust gas purification apparatus (the length of the honeycomb structure / the diameter of the honeycomb structure) is 0.5 or more. It is desirable to be.
  • the ratio between the length and the diameter of the honeycomb structure is too small, less than 0.5, the exhaust gas that has flowed into the honeycomb structure easily flows backward, so PM is easily knitted on the exhaust gas outflow side of the honeycomb structure. Become. As a result, the pressure loss of the honeycomb structure increases.
  • the ratio between the length and the diameter of the honeycomb structure is 0.5 or more, the exhaust gas that has flowed into the honeycomb structure does not easily flow to the outflow side, and therefore PM is uniformly deposited on the cell walls of the honeycomb structure. . As a result, it is possible to provide an exhaust gas purification device in which the pressure loss is unlikely to increase.
  • the thickness of the outer peripheral wall of the honeycomb fired body constituting the honeycomb structure disposed in the exhaust gas purifying apparatus is preferably 0.2 to 0.5 mm. .
  • the thickness of the outer peripheral wall of the honeycomb fired body is 0.2 to 0.5 mm, the thickness of the outer peripheral wall is larger than that of the cell wall of the honeycomb structure. Even if the thickness of the honeycomb fired body is reduced, the outer peripheral wall of the honeycomb fired body serves as a reinforcing material for maintaining the mechanical strength, and the mechanical characteristics of the honeycomb fired body disposed in the exhaust gas purification device can be favorably maintained. . Therefore, it is possible to provide an exhaust gas purifying apparatus with excellent durability in which cracks and the like are not easily generated even when used for a long period of time.
  • the number of cells per unit area in the cross section perpendicular to the longitudinal direction of the honeycomb fired body constituting the honeycomb structure disposed in the exhaust gas purifying apparatus is 31 to 62. / Cm 2 is desirable.
  • the number of cells per unit area in the cross section perpendicular to the longitudinal direction of the honeycomb fired body is 31 to 62 cells / cm 2
  • the number of cell walls (area) occupied per unit area in the cross section of the honeycomb structure is appropriate.
  • the cell wall functions as a portion for maintaining the mechanical characteristics of the honeycomb fired body, and the honeycomb structure can maintain the mechanical characteristics. Therefore, it is possible to provide an exhaust gas purifying apparatus with excellent durability in which cracks and the like are not easily generated even when used for a long period of time.
  • the outer honeycomb fired bodies 120 and 130 have no outer peripheral wall in the cut portion, the large-capacity cells 111a and the small-capacity cells 111b remain as they are. It has a shape exposed to the outer peripheral portion as a groove.
  • the outer honeycomb fired body may have an aspect in which an outer peripheral wall is formed on the entire outer periphery.
  • the honeycomb structure according to the embodiment of the present invention includes an inner honeycomb fired body 110 shown in FIGS. 2 (a) and 2 (b) and an outer honeycomb fired body shown in FIG. 10 (a). 310 and an outer honeycomb fired body 320 shown in FIG. 10 (b).
  • FIG. 10A and FIG. 10B are side views schematically showing an example of an outer honeycomb fired body constituting a honeycomb structure according to another embodiment of the present invention.
  • the outer honeycomb fired body 310 shown in FIG. 10 (a) and the outer honeycomb fired body 320 shown in FIG. 10 (b) are shown in the outer honeycomb fired body 120 shown in FIG. 3 (a) and FIG. 3 (b). This is a modified example of the outer honeycomb fired body 130.
  • the outer honeycomb fired body 310 shown in FIG. 10 (a) and the outer honeycomb fired body 320 shown in FIG. 10 (b) have the same outer shape as the honeycomb fired bodies 120 and 130 shown in FIG.
  • the shapes of 311a and 321a and the small capacity cells 311b and 321b are the same as the shape of the honeycomb fired body 120 shown in FIGS. 3 (a) and 3 (b).
  • the outer peripheral walls 314 and 324 having a predetermined thickness are also formed on the side portions of the circular arc shape.
  • the large capacity cells 311a and 321a and the small capacity cells 311b and 321b close to the outer peripheral walls 314 and 324 314 and 324 are modified.
  • honeycomb structure having such honeycomb fired bodies 310 and 320 has a cylindrical shape at the time when the ceramic block is produced, similarly to the honeycomb structure 20 according to the second embodiment of the present invention, There is no need for cutting, and the manufacturing process of the honeycomb structure can be simplified.
  • the inner honeycomb fired body 110 shown in FIG. 2 the outer honeycomb fired body 310 shown in FIG. 10 (a), and the outer honeycomb shown in FIG. 10 (b).
  • a honeycomb formed body may be manufactured using a mold corresponding to the fired body 320.
  • the cell is composed of a large-capacity cell and a small-capacity cell. It is not limited to the form described in the embodiment.
  • the large-capacity cells and the small-capacity cells have different shapes for the honeycomb fired bodies having the same shape as the plurality of honeycomb fired bodies constituting the honeycomb structure according to the second embodiment of the present invention.
  • the shape of the honeycomb structure or the honeycomb fired body constituting the honeycomb structure is not limited to the honeycomb structure according to the second embodiment of the present invention or the shape of the honeycomb fired body constituting the honeycomb structure.
  • FIG.11 (a), FIG.11 (b), and FIG.11 (c) are side views which show typically an example of the honeycomb fired body which comprises the honeycomb structure which concerns on other embodiment of this invention.
  • honeycomb fired body 410 shown in FIG. 11A large-capacity cells 411a and small-capacity cells 411b are alternately arranged.
  • the shape of the cross section perpendicular to the longitudinal direction of the large capacity cell 411a is a quadrangle
  • the shape of the cross section perpendicular to the longitudinal direction of the small capacity cell 411b is a quadrangle.
  • a honeycomb fired body 420 shown in FIG. 11B is configured by alternately arranging large-capacity cells 421a and small-capacity cells 421b.
  • the shape of the cross section perpendicular to the longitudinal direction of the large-capacity cell 421a is a shape in which a portion corresponding to a square corner is arcuate, and the longitudinal direction of the small-capacity cell 421b.
  • the cross-sectional shape perpendicular to the direction is a shape in which a portion corresponding to a corner portion of a quadrangle is an arc shape.
  • large-capacity cells 431a and small-capacity cells 431b are alternately arranged.
  • the cross section perpendicular to the longitudinal direction of the large capacity cell 431a and the small capacity cell 431b has a shape in which each side of the cell is a curve. That is, in FIG. 11C, the cross-sectional shape of the cell wall 433 is a curve.
  • the cross-sectional shape of the large-capacity cell 431a is such that the cell wall 433 is convex outward from the center of the cell cross-section.
  • the cross-sectional shape of the small capacity cell 431b is such that the cell wall 433 is convex from the outside to the center of the cell cross section.
  • the cell wall 433 has a “corrugated” shape that undulates in the horizontal and vertical directions of the cross-section of the honeycomb fired body, and the corrugated peak portion of the adjacent cell wall 433 (maximum amplitude in a sinusoidal curve).
  • a large-capacity cell 431a in which the cross-sectional shape of the cell expands outward and a small-capacity cell 431b in which the cross-sectional shape of the cell is recessed inward are formed.
  • the amplitude of the waveform may be constant or may vary, but is preferably constant. Note that the large-capacity cell and the small-capacity cell may have shapes other than those described above.
  • the distance between the centroids of the cross section perpendicular to the longitudinal direction of the adjacent large-capacity cells, and the distance between the centroids of the cross-section perpendicular to the longitudinal direction of the adjacent small-capacity cells are preferably equal.
  • “Distance between centroids of cross sections perpendicular to the longitudinal direction of adjacent large-capacity cells” means the centroid of the cross-section perpendicular to the longitudinal direction of one large-capacity cell and the cross-section perpendicular to the longitudinal direction of adjacent large-capacity cells.
  • the minimum distance from the center of gravity on the other hand, the “distance between the centers of gravity of cross sections perpendicular to the longitudinal direction of adjacent small capacity cells” is adjacent to the center of gravity of the cross section perpendicular to the longitudinal direction of one small capacity cell. The minimum distance from the center of gravity of the small capacity cell.
  • honeycomb fired body composed of large-capacity cells and small-capacity cells has been described by taking the honeycomb fired body having a quadrangular cross-sectional shape perpendicular to the longitudinal direction shown in FIG. 2 as an example, but the honeycomb fired body 220 shown in FIG.
  • the honeycomb fired body 230 shown in FIG. 8 may include large-capacity cells and small-capacity cells having shapes different from the shapes shown in FIGS.
  • FIGS. 12A, 12B, and 12C schematically show an example of an end face of a honeycomb fired body having another shape constituting a honeycomb structure according to another embodiment of the present invention. It is a side view.
  • the shape of the honeycomb fired body shown in FIGS. 12A, 12B, and 12C is the same as the shape of the honeycomb fired body 220 shown in FIG.
  • the honeycomb fired bodies 510, 520, and 530 shown in these drawings large-capacity cells 511a, 521a, and 531a and small-capacity cells 511b, 521b, and 531b are alternately arranged. Since the shapes of the large-capacity cells and the small-capacity cells are the same as those of the honeycomb fired bodies 410, 420, and 430 described above, detailed description thereof is omitted.
  • FIGS. 13A, 13B, and 13C schematically show an example of an end face of a honeycomb fired body having another shape constituting a honeycomb structure according to another embodiment of the present invention.
  • FIG. 13C Note that the shape of the honeycomb fired body shown in FIGS. 13A, 13B, and 13C is the same as the shape of the honeycomb fired body 230 shown in FIG.
  • the honeycomb fired bodies 610, 620, and 630 shown in these drawings are formed by alternately arranging large capacity cells 611a, 621a, and 631a and small capacity cells 611b, 621b, and 631b, respectively.
  • the shapes of the large-capacity cells and the small-capacity cells are the same as those of the honeycomb fired bodies 410, 420, and 430 described above.
  • the shape of the honeycomb structure according to the embodiment of the present invention is not limited to a columnar shape, but may be an arbitrary column such as an elliptical column shape, an oval shape, a polygonal column shape, or a columnar body whose apex portion of a cross-sectional triangle is an arc. Any shape is acceptable.
  • the end portion of the cell may not be sealed without providing the cell with the sealing material.
  • the honeycomb structure functions as a catalyst carrier that purifies harmful gas components such as CO, HC, or NOx contained in the exhaust gas by supporting the catalyst on the cell walls.
  • the porosity of the honeycomb fired body constituting the honeycomb structure is not particularly limited, but is 35 to 60%. Is desirable. When the porosity of the honeycomb fired body is less than 35%, the honeycomb fired body is likely to be clogged. On the other hand, when the porosity of the honeycomb fired body exceeds 60%, the strength of the honeycomb fired body is reduced, and the honeycomb fired body is easily broken.
  • the average pore diameter of the honeycomb fired body constituting the honeycomb structure is preferably 5 to 30 ⁇ m. If the average pore diameter of the honeycomb fired body is less than 5 ⁇ m, the honeycomb fired body is likely to be clogged. On the other hand, when the average pore diameter of the honeycomb fired body exceeds 30 ⁇ m, the particulates pass through the pores of the honeycomb fired body, the honeycomb fired body cannot collect the particulates, and the honeycomb fired body functions as a filter. Can not do it.
  • the porosity and pore diameter can be measured by a mercury intrusion method that is a conventionally known method.
  • the shape of the cross section perpendicular to the longitudinal direction of the honeycomb fired body of each cell of the honeycomb fired body is not particularly limited, and for example, any shape such as a quadrangle and a hexagon Any shape can be used. Various shapes may be mixed.
  • the material of the honeycomb fired body constituting the honeycomb structure according to the embodiment of the present invention is not limited to silicon carbide or silicon-bonded silicon carbide, and examples thereof include aluminum nitride, silicon nitride, boron nitride, and titanium nitride.
  • non-oxide ceramics are preferable, and silicon carbide or silicon-bonded silicon carbide is particularly preferable from the viewpoint of excellent heat resistance, mechanical strength, thermal conductivity, and the like.
  • the organic binder contained in the wet mixture used when manufacturing the honeycomb fired body constituting the honeycomb structure according to the embodiment of the present invention is not particularly limited, and examples thereof include methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, and polyethylene glycol. Etc. Of these, methylcellulose is desirable.
  • the blending amount of the organic binder is desirably 1 to 10 parts by weight with respect to 100 parts by weight of the ceramic powder.
  • plasticizer contained in the said wet mixture
  • glycerol etc.
  • lubricant agent contained in the said wet mixture
  • polyoxyalkylene type compounds such as polyoxyethylene alkyl ether and polyoxypropylene alkyl ether, etc.
  • specific examples of the lubricant include polyoxyethylene monobutyl ether and polyoxypropylene monobutyl ether.
  • the plasticizer and the lubricant may not be contained in the wet mixture.
  • a dispersion medium liquid may be used.
  • the dispersion medium liquid include water, an organic solvent such as benzene, and an alcohol such as methanol.
  • a molding aid may be added to the wet mixture.
  • the molding aid is not particularly limited, and examples thereof include ethylene glycol, dextrin, fatty acid, fatty acid soap, polyalcohol and the like.
  • a pore-forming agent such as balloons that are fine hollow spheres containing oxide-based ceramics, spherical acrylic particles, and graphite may be added to the wet mixture as necessary.
  • the balloon is not particularly limited, and examples thereof include an alumina balloon, a glass micro balloon, a shirasu balloon, a fly ash balloon (FA balloon), and a mullite balloon. Of these, alumina balloons are desirable.
  • Examples of the inorganic binder contained in the adhesive paste and the outer periphery coating material paste include silica sol and alumina sol. These may be used alone or in combination of two or more. Among inorganic binders, silica sol is desirable.
  • organic binder contained in the adhesive paste and the outer periphery coating material paste examples include polyvinyl alcohol, methyl cellulose, ethyl cellulose, carboxymethyl cellulose, and the like. These may be used alone or in combination of two or more. Among organic binders, carboxymethylcellulose is desirable.
  • Examples of the inorganic particles contained in the adhesive paste and the outer periphery coating material paste include carbide particles and nitride particles. Specific examples include silicon carbide particles, silicon nitride particles, and boron nitride particles. These may be used alone or in combination of two or more. Among the inorganic particles, silicon carbide particles having excellent thermal conductivity are desirable.
  • Examples of the inorganic fibers and / or whiskers contained in the adhesive paste and the outer periphery coating material paste include inorganic fibers and / or whiskers made of silica-alumina, mullite, alumina, silica, and the like. These may be used alone or in combination of two or more. Among inorganic fibers, alumina fiber is desirable.
  • the inorganic fiber may be a biosoluble fiber.
  • the adhesive paste and the outer periphery coating material paste may be added with a pore-forming agent such as balloons, spherical acrylic particles, and graphite, which are fine hollow spheres containing oxide ceramics as necessary.
  • a pore-forming agent such as balloons, spherical acrylic particles, and graphite, which are fine hollow spheres containing oxide ceramics as necessary.
  • the balloon is not particularly limited, and examples thereof include an alumina balloon, a glass micro balloon, a shirasu balloon, a fly ash balloon (FA balloon), and a mullite balloon. Of these, alumina balloons are preferred.
  • a catalyst for purifying exhaust gas may be supported on the cell wall of the honeycomb fired body.
  • a noble metal such as platinum, palladium, or rhodium is desirable.
  • alkali metals such as potassium and sodium, alkaline earth metals such as barium, and zeolite can be used. These catalysts may be used alone or in combination of two or more.
  • the honeycomb structure of the present invention includes a large-capacity cell and a small-capacity cell, and an area of a cross section perpendicular to the longitudinal direction of the large-capacity cell is larger than an area of a cross-section perpendicular to the longitudinal direction of the small-capacity cell.
  • a honeycomb structure including a ceramic block in which a plurality of large honeycomb fired bodies are bundled through an adhesive layer, wherein one end of either a large capacity cell or a small capacity cell is sealed, The opening ratio of the cross section perpendicular to the longitudinal direction in the central portion of the honeycomb structure is 65% or more, and the opening ratio of the first end face of the honeycomb structure is larger than the opening ratio of the second end face of the honeycomb structure.
  • the ratio (opening ratio of the first end face / opening ratio of the second end face) is 1.4 or more, and the thickness of the cell wall excluding the outer peripheral wall of the honeycomb fired body is 0.1 mm or more, 0. Less than 2 mm, Is 200 mm or more, and the ratio of the length of the honeycomb structure to the diameter of the honeycomb structure (the length of the honeycomb structure / the diameter of the honeycomb structure) is 1.0 or less. It is an essential component.
  • the essential components include various configurations described in detail in the first to second embodiments of the present invention and other embodiments (for example, the shape of the honeycomb fired body constituting the honeycomb structure, honeycomb firing).
  • the desired effect can be obtained by appropriately combining the shape of the cell walls of the body, the cell structure of the honeycomb fired body, the manufacturing process of the honeycomb structure, and the like.

Abstract

本発明のハニカム構造体は、大容量セルと小容量セルとからなり、上記大容量セルの上記長手方向に垂直な断面の面積が、上記小容量セルの上記長手方向に垂直な断面の面積よりも大きい複数個のハニカム焼成体が接着材層を介して結束されたセラミックブロックを含み、上記大容量セルと上記小容量セルのいずれか一方の端部が封止されたハニカム構造体であって、上記ハニカム構造体の中央部における長手方向に垂直な断面の開口率は、65%以上であり、上記ハニカム構造体の第二の端面の開口率に対する上記ハニカム構造体の第一の端面の開口率の比(第一の端面の開口率/第二の端面の開口率)は、1.5以上であり、上記ハニカム焼成体の外周壁を除くセル壁の厚さは、0.1mm以上、0.2mm未満であり、上記ハニカム構造体の直径は、200mm以上であり、上記ハニカム構造体の直径に対する上記ハニカム構造体の長さの比(上記ハニカム構造体の長さ/上記ハニカム構造体の直径)は、1.0以下であることを特徴とする。

Description

ハニカム構造体及び排ガス浄化装置
本発明は、ハニカム構造体及び排ガス浄化装置に関する。
バス、トラック等の車両又は建設機械等の内燃機関から排出される排ガス中に含有されるスス等のパティキュレート(以下、PMともいう)及びその他の有害成分が環境及び人体に害を及ぼすことが最近問題となっている。
そこで、排ガスを浄化するハニカムフィルタとして、多孔質セラミックからなるハニカム構造体が種々提案されている。
このようなハニカム構造体として、従来、多数のセルがセル壁を隔てて長手方向に並設されたハニカム焼成体が、複数個結束されたセラミックブロックからなるハニカム構造体が知られている。
特許文献1には、ハニカム構造体の圧力損失を低く保つために、セル壁の厚さを薄くしても、充分な捕集効率を確保することができるハニカム構造体が開示されている。
具体的には、特許文献1に開示されている従来のハニカム構造体は、セル壁の厚さをA(mm)とし、上記セル壁の単位体積あたりの表面積をB(m/cm)としたとき、11/6-10/3×A≦Bの式を満足することを特徴としている。
また、特許文献2には、セラミックハニカム構造体の強度及び気密性を向上させるために、被覆材若しくは含侵材などとして有用なセラミックハニカム構造体材料が開示されている。具体的には、熱交換率が高く、圧力損失が低いことを特徴とする回転蓄熱式セラミック熱交換体について開示されている。
特開2006-25574号公報 特開昭60-141667号公報
近年、バス、トラック等の大型車両等に用いられる大型のハニカムフィルタにおいて、車両の底部に設置場所を確保するために、従来より容積の小さいハニカムフィルタが求められている。
しかしながら、ハニカムフィルタの容積が小さくなるとハニカムフィルタの圧力損失が増加する。そのため、ハニカムフィルタのセル壁を薄く(薄壁化)することでハニカムフィルタび圧力損失の増加を抑制し、排気ガス浄化性能を高めることが求められている。
本発明は、上記課題を解決するためになされたものであり、大型車両等に用いることができ、ハニカム構造体の容積を小さくすることが可能であり、強度が高く、圧力損失が低いハニカム構造体を提供することを目的とする。また、当該ハニカム構造体が配置されている排ガス浄化装置を提供することを目的とする。
上記目的を達成するために、請求項1に記載のハニカム構造体は、
大容量セルと小容量セルとからなり、上記大容量セルの上記長手方向に垂直な断面の面積が、上記小容量セルの上記長手方向に垂直な断面の面積よりも大きい、複数個のハニカム焼成体が接着材層を介して結束されたセラミックブロックを含み、上記大容量セルと上記小容量セルのいずれか一方の端部が封止されたハニカム構造体であって、
上記ハニカム構造体の中央部における長手方向に垂直な断面の開口率は、65%以上であり、
上記ハニカム構造体の第二の端面の開口率に対する上記ハニカム構造体の第一の端面の開口率の比(第一の端面の開口率/第二の端面の開口率)は、1.4以上であり、
上記ハニカム焼成体の外周壁を除くセル壁の厚さは、0.1mm以上、0.2mm未満であり、
上記ハニカム構造体の直径は、200mm以上であり、
上記ハニカム構造体の直径に対する上記ハニカム構造体の長さの比(上記ハニカム構造体の長さ/上記ハニカム構造体の直径)は、1.0以下であることを特徴とする。
上記ハニカム構造体を大型車両等に用いる場合、ハニカム構造体の容積が大きいと、排ガス浄化装置全体の大きさが大きくなるため、ハニカム構造体の容積を小さくする必要がある。そこで、直径が200mm以上のハニカム構造体において、(a)ハニカム構造体の直径に対する上記ハニカム構造体の長さの比(上記ハニカム構造体の長さ/上記ハニカム構造体の直径)が1.0以下、かつ、(b)ハニカム構造体の第二の端面の開口率に対する上記ハニカム構造体の第一の端面の開口率の比(第一の端面の開口率/第二の端面の開口率)が1.4以上、かつ、(c)ハニカム焼成体の外周壁を除くセル壁の厚さが0.1mm以上、0.2mm未満、かつ、(d)ハニカム構造体の中央部における長手方向に垂直な断面の開口率が65%以上とすることで、得られたハニカム構造体の容積を小さくすることができ、さらに強度を高く、圧力損失を低くすることができる。
具体的には、ハニカム構造体の長さの比(ハニカム構造体の長さ/ハニカム構造体の直径)を1.0以下にすることにより、ハニカム構造体の容積を小さくすることができる。
さらに、ハニカム構造体の第二の端面の開口率に対するハニカム構造体の第一の端面の開口率の比を1.4以上、かつ、セル壁の厚さを0.1mm以上、0.2mm未満、かつ、ハニカム構造体の中央部における長手方向に垂直な断面の開口率を65%以上とすることができる。一般的に、ハニカム構造体の中央部における長手方向に垂直な断面の開口率を高くすると濾過面積は小さくなる。しかし、セル壁の厚さを薄くしているため、ハニカム構造体の中央部における長手方向に垂直な断面の開口率が65%以上と高い場合であっても、濾過面積を大きくすることができるため、ハニカム構造体の圧力損失を低くすることができる。従って、上記(a)~(d)を含むハニカム構造体は、大型車両等に用いる場合に、ハニカム構造体の容積を小さくすることが可能であり、強度が高く、圧力損失を低くすることができる。
本発明の請求項1に記載のハニカム構造体では、上記(a)~(d)の少なくとも一つの要素が欠けていると、ハニカム構造体の容量を小さくすることができない。また、ハニカム構造体の強度を高く、圧力損失を低くすることができない。
請求項1に記載のハニカム構造体では、上記ハニカム構造体の中央部における長手方向に垂直な断面の開口率は、65%以上と高いので、PM堆積前(初期)の圧力損失を低くすることができる。
上記ハニカム構造体をハニカムフィルタとして大型車両等に用いる場合、大型車両は連続運転が多いため、排ガスの排気温度は高い傾向にある。そのため、排出された排ガス中のPMは、ハニカム構造体中で強制的に多量に堆積させた後に燃焼させる必要がなく、連続的に燃焼させることができる。そのため、このようなハニカム構造体において、PM堆積後の圧力損失よりもPM堆積前(初期)の圧力損失を低くすることが重要となるが、上述のように、請求項1に記載のハニカム構造体では、PM堆積前(初期)の圧力損失を低くすることができる。
また、請求項1に記載のハニカム構造体では、ハニカム構造体の第二の端面の開口率に対するハニカム構造体の第一の端面の開口率の比(開口率比(第一の端面の開口率/第二の端面の開口率)ともいう)を1.4以上とし、セル壁の厚さを0.1mm以上、0.2mm未満と薄くしているので、濾過面積を大きくしつつ、上記した高い開口率とすることができる。
ハニカム構造体の開口率比(第一の端面の開口率/第二の端面の開口率)が1.4未満で、ハニカム構造体の中央部における長手方向に垂直な断面の開口率65%以上を達成しようとすると、ハニカム構造体のセル壁の厚さをさらに薄くする必要が生じ、機械的特性が劣化し易くなる(セル壁の強度が弱くなる)か、又は、セル密度を低くする必要があり、圧力損失の上昇、捕集効率が低下する。すなわち、ハニカム構造体のセル壁の厚さが0.1mm未満では、ハニカム構造体のセル壁が薄すぎるため、ハニカム構造体の機械的強度が低下し、再生処理等の際にハニカム構造体にクラック等が発生し易くなる。
一方、ハニカム構造体のセル壁の厚さが0.2mm以上では、ハニカム構造体のセル壁の厚さが厚くなるため、ハニカム構造体の圧力損失を低く保つことが難しくなる。
なお、ハニカム構造体の端面における開口率とは、ハニカム構造体の端面の総面積に対してセル(開口)が形成された部分であってセルが封止されずに端面が開口されている部分の面積の割合(%)をいう。
また、ハニカム構造体の中央部における長手方向に垂直な断面の開口率とは、ハニカム構造体の両端面に平行な両端の中間位置の断面での開口率のことをいう。ハニカム構造体の中央部における長手方向に垂直な断面とは、封止材が配設されていないハニカム構造体の断面をいう。ハニカム構造体の中央部における長手方向に垂直な断面の開口率とは、上述した断面の総面積に対し、セルが形成され、開口となっている部分の合計面積の割合(百分率)をいう。
また、本発明において、ハニカム構造体の中央部とは、ハニカム構造体の両端に平行な両端の中間位置のことをいうこととする。さらに、本発明において、ハニカム構造体の長手方向とは、セルに平行な方向をいうこととする。
さらに、請求項1に記載のハニカム構造体では、ハニカム構造体の直径は、200mm以上であり、ハニカム構造体の直径に対するハニカム構造体の長さの比(ハニカム構造体の長さと直径との比(ハニカム構造体の長さ/ハニカム構造体の直径)ともいう)は、1.0以下である。すなわち、請求項1に記載のハニカム構造体は大型車両等に用いることができるように大型のハニカム構造体であり、ハニカム構造体の直径が大きく、ハニカム構造体の直径に比べてハニカム構造体の長さが短くなっている。従って、ハニカム構造体の端面の面積が大きく、セルの長さが短くなる。その結果、排ガスがハニカム構造体のセルを通過する時の摩擦による圧力損失の上昇を抑えることができる。ハニカム構造体の端面の面積が大きく、セルの長さが短い形状の場合、セル壁の厚さを薄くしているため、ハニカム構造体の圧力損失の上昇を抑えることが可能となる。また、セル壁を通過する流速が速くてもハニカム構造体の圧力損失上昇の寄与が小さくなる。さらに、ハニカム構造体のセル全体に均一にPMが堆積する。また、このように、ハニカム構造体の直径に比べてハニカム構造体の長さを短くすることで、ハニカム構造体の圧力損失を低減できるので、ハニカム構造体の容積を小さくすることが可能である。上記ハニカム構造体を大型車両等に用いる場合、ハニカム構造体の連続再生(PMの除去)が行われるため、ハニカム構造体にPMを多量に堆積させる必要がない。
ハニカム構造体をフィルタとして用いる場合には、一定の濾過面積などの条件を満たす必要があるため、上記ハニカム構造体の直径が200mm未満であると、ハニカム構造体の長さ/ハニカム構造体の直径は、1.0を超えてしまう。そのため、ハニカム構造体の圧力損失が大きくなり易い。また、上記ハニカム構造体のハニカム構造体の長さと直径との比が1.0を超えると、ハニカム構造体の直径に比べて長さが長いので、やはりハニカム構造体の圧力損失が大きくなり易い。
本明細書において、ハニカム焼成体のセル壁とは、隣接する2つのセルの間に存在し、2つのセルを隔てている部分をいう。ハニカム焼成体の外周壁とは、セル壁が外周に露出しないようにハニカム焼成体の最外周に形成された壁の部分をいう。
請求項2に記載のハニカム構造体では、上記ハニカム構造体の中央部における長手方向に垂直な断面の開口率は、80%以下である。そのため、ハニカム構造体の単位面積あたりに存在するセルの数を適切な数(例えば、31~62個/cm)に設定することができる。従って、該セル壁がハニカム構造体を支える壁として機能し、ハニカム構造体の機械的強度を適切な範囲に保つことができる。
請求項3に記載のハニカム構造体では、上記開口率比(第一の端面の開口率/第二の端面の開口率)は、3.0以下である。そのため、ハニカム構造体の第一の端面の開口率と第二の端面の開口率との比が大きすぎることに起因するハニカム構造体の圧力損失の増大を抑制することができる。すなわち、ハニカム構造体の大容量セルと小容量セルとの容積の差が大きい場合には、両者を隔てるセル壁の面積が小さくなることに起因してハニカム構造体の内部に流入した排ガスが流出する壁の面積が小さくなり、ハニカム構造体の圧力損失が大きくなると考えられる。しかしながら、請求項3に記載のハニカム構造体では、ハニカム構造体の開口率比は3.0以下であるので、両者を隔てるセル壁の面積が小さくならず、ハニカム構造体の内部に流入した排ガスが流出する壁の面積も小さくならず、ハニカム構造体の圧力損失は大きくなりにくい。
請求項4に記載のハニカム構造体では、ハニカム構造体の長さと直径との比(ハニカム構造体の長さ/ハニカム構造体の直径)は、0.5以上である。
ハニカム構造体の長さと直径との比が0.5未満と小さすぎる場合は、ハニカム構造体に流入した排ガスが後方(排ガス流出側)に流れやすくなるため、ハニカム構造体のガス流出側にPMが編析しやすくなる。その結果、ハニカム構造体の圧力損失が上昇する。しかし、請求項4に記載のハニカム構造体では、ハニカム構造体の長さとハニカム構造体の直径との比が0.5以上であるので、ハニカム構造体に流入した排ガスが後方(排ガス流出側)に流れやすくならないので、ハニカム構造体のセル壁に均一にPMが堆積する。その結果、ハニカム構造体の圧力損失の上昇がおこりにくい。
請求項5に記載のハニカム構造体では、ハニカム焼成体の外周壁の厚さは、0.2~0.5mmである。そのため、ハニカム構造体のセル壁に比べて外周壁の厚さが厚くなるので、ハニカム焼成体のセル壁の厚さを薄くしても、ハニカム焼成体の外周壁が機械的強度を保つための強化材の役割を果たし、ハニカム焼成体の機械的特性を良好に維持することができる。
ハニカム焼成体の外周壁の厚さが0.2mm未満であると、ハニカム焼成体の外周壁が機械的強度を保つための強部材の役割を果たさず、ハニカム焼成体の強度を確保しにくくなる。一方、ハニカム焼成体の外周壁の厚さが0.5mmを超えると、ハニカム構造体の端面の面積に占める外周壁の割合が大きくなり、ハニカム構造体の中央部における長手方向に垂直な断面の開口率を65%以上に保つのが難しくなる。
請求項6に記載のハニカム構造体では、上記ハニカム焼成体の上記長手方向に垂直な断面におけるセルの単位面積あたりの数は、31~62個/cm(200~400個/inch)である。そのため、ハニカム構造体の断面における単位面積あたりに占めるセル壁の数(面積)が適切な範囲となり、セル壁がハニカム焼成体の機械的特性を維持する部位として機能し、ハニカム焼成体は機械的特性を維持することができる。
上記ハニカム焼成体の長手方向に垂直な断面におけるセルの単位面積あたりの数が、31個/cm未満では、ハニカム構造体の断面における単位面積あたりに占めるセル壁の数が少なすぎるため、ハニカム焼成体の機械的特性が劣化する。
一方、ハニカム焼成体の上記長手方向に垂直な断面におけるセルの単位面積あたりの数が62個/cmを超えると、断面における単位面積あたりに占めるセル壁の数が多すぎるため、ハニカム構造体の中央部における長手方向に垂直な断面の開口率を65%以上とすることが難しくなる。
本発明において、ハニカム焼成体の機械的特性とは、ハニカム焼成体の曲げ強度、引張強度、圧縮強度、破壊靭性等を指す。これらの機械的特性のなかでは、圧縮強度を維持することが好ましい。
請求項7に記載のハニカム構造体のように、大容量セルの長手方向に垂直な断面の形状は八角形であり、小容量セルの長手方向に垂直な断面の形状は四角形であってもよい。
請求項8に記載のハニカム構造体のように、大容量セルの長手方向に垂直な断面の形状は四角形であり、小容量セルの長手方向に垂直な断面の形状は四角形であってもよい。
請求項9に記載のハニカム構造体のように、大容量セル及び小容量セルの長手方向に垂直な断面において、大容量セル及び小容量セルの各辺が曲線により構成されていてもよい。
請求項10に記載のハニカム構造体では、セラミックブロックは、外周全体に外周壁を有するハニカム焼成体から構成されている。
セラミックブロックが、外周全体に外周壁を有する所定形状のハニカム焼成体が接着材層を介して接着されることにより構成されていると、ハニカム構造体の外周となる部分を形成するための切削加工工程が不要となり、容易にハニカム構造体を作製することができる。
請求項11に記載の排ガス浄化装置は、ハニカム構造体の側面に保持シール材が配置され、上記ハニカム構造体と上記保持シール材とが金属容器に配置された排ガス浄化装置であって、上記ハニカム構造体は、請求項1~10のいずれかに記載のハニカム構造体であり、排ガスの入り口側が、上記ハニカム構造体の第一の端面となるように、上記ハニカム構造体が配置されていることを特徴とする。
請求項11に記載の排ガス浄化装置では、該排ガス浄化装置に請求項1~10に記載のハニカム構造体が配置されており、ハニカム構造体の容量を小さくすることができるので、排ガス浄化装置自体を小型化することができる。
また、上記ハニカム構造体は、強度が高いので、長期間使用してもハニカム構造体にクラック等が発生しにくい、耐久性に優れた排ガス浄化装置とすることができる。
さらに、上記ハニカム構造体のPM堆積前(初期)の圧力損失が低いので、初期の圧力損失が低い排ガス浄化装置とすることができる。
図1(a)は、本発明の第一実施形態に係るハニカム構造体の一例を模式的に示す斜視図である。図1(b)は、図1(a)に示すハニカム構造体のA-A線断面図である。 図2(a)は、本発明の第一実施形態に係るハニカム構造体を構成する内方ハニカム焼成体の一例を模式的に示す斜視図である。図2(b)は、図2(a)に示す内方ハニカム焼成体のB-B線断面図である。 図3(a)及び図3(b)は、本発明の第一実施形態に係るハニカム構造体を構成する外方ハニカム焼成体の一例を模式的に示す側面図である。 図4は、実施例1及び比較例1における圧力損失測定装置を示す説明図である。 図5は、本発明の第二実施形態のハニカム構造体の一例を模式的に示す斜視図である。 図6(a)は、本発明の第二実施形態に係るハニカム構造体を構成するハニカム焼成体の一例を模式的に示す斜視図である。図6(b)は、図6(a)に示すハニカム焼成体のC-C線断面図である。 図7は、本発明の第二実施形態のハニカム構造体を構成する別の形状のハニカム焼成体の一例を模式的に示す斜視図である。 図8は、本発明の第二実施形態のハニカム構造体を構成する、さらに別の形状のハニカム焼成体の一例を模式的に示す斜視図である。 図9は、図5に示した本発明の第二実施形態に係るハニカム構造体の側面図である。 図10(a)及び図10(b)は、本発明の他の実施形態に係るハニカム構造体を構成する外方ハニカム焼成体の一例を模式的に示す側面図である。 図11(a)、図11(b)及び図11(c)は、本発明の他の実施形態に係るハニカム構造体を構成するハニカム焼成体の一例を模式的に示す側面図である。 図12(a)、図12(b)及び図12(c)は、本発明の他の実施形態に係るハニカム構造体を構成する別の形状のハニカム焼成体の端面の一例を模式的に示す側面図である。 図13(a)、図13(b)及び図13(c)は、本発明の他の実施形態に係るハニカム構造体を構成するさらに別の形状のハニカム焼成体の端面の一例を模式的に示す側面図である。 図14は、本発明に係る排ガス浄化装置を模式的に示す断面図である。
上述したように、従来より、ハニカムフィルタのセル壁を薄く(薄壁化)することでハニカムフィルタび圧力損失の増加を抑制し、排気ガス浄化性能を高めることが求められている。
このような要請に応えるべく、特許文献1に記載の従来のハニカム構造体が提案されたと考えられる。特許文献1に記載の従来のハニカム構造体は、セル壁の厚さが薄い場合でも、セル壁の微細構造をPMを捕集しやすい構造に制御することにより、PMの捕集効率を確保しようとするものであると考えられる。
特許文献1に開示されたハニカム構造体では、セル壁の厚さは、0.1~0.4mmを想定しており、セル壁の厚さが薄い場合でも、セル壁の微細構造をPMを捕集し易い構造に制御することにより、捕集効率を確保しようとするものであると考えられる。しかしながら、セル壁の厚さを薄くすることにより、ハニカム構造体の強度が低下すると考えられる。
また、セル壁の厚さを薄くすることにより、圧力損失を低くすることができたとしても、ハニカム構造体の強度が低下すると考えられる。そのため、一般的に、セル壁の薄いハニカム構造体は、ハニカム構造体の中央部における長手方向に垂直な断面の開口率を小さくすることによって、強度を高くすることが知られている。そうすることで、圧力損失が低く、かつ、強度が高いハニカム構造体とすることができる。一方で、大型車両に用いられる大型のハニカム構造体は、強度が高く、圧力損失も低いハニカム構造体とするのは難しいという課題がある。
また、特許文献2に開示されたハニカム構造体では、隔壁の厚さが0.12~0.15mm、ハニカム構造体の直径に対するハニカム構造体の長さの比(ハニカム構造体の長さ/ハニカム構造体の直径)が1.0以下であることを想定している。隔壁の厚さが薄く、ハニカム構造体の直径に対するハニカム構造体の長さの比が1.0以下である場合、熱交換効率が高く、圧力損失が低くなると考えられる。
しかしながら、回転蓄熱式セラミック熱交換体の流体の流入側と流出側のセル形状が同一でない(例えば、セル形状が八角形と四角形とを組み合わせたものである)場合、回転蓄熱式セラミック熱交換体にはPMが堆積しない状態で使用されるため、圧力損失は高くなると考えられる。また、回転蓄熱式セラミック熱交換体は、開口率を高くし、セル壁の面積を減らすことにより、熱交換効率が低くなると考えられる。
以下、本発明の実施形態について具体的に説明する。しかしながら、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。
(第一実施形態)
以下、本発明のハニカム構造体の一実施形態である第一実施形態について、図面を参照しながら説明する。
本発明の第一実施形態に係るハニカム構造体は、
大容量セルと小容量セルとからなり、上記大容量セルの上記長手方向に垂直な断面の面積が、上記小容量セルの上記長手方向に垂直な断面の面積よりも大きい、複数個のハニカム焼成体が接着材層を介して結束されたセラミックブロックを含み、上記大容量セルと上記小容量セルのいずれか一方の端部が封止されたハニカム構造体であって、
上記ハニカム構造体の第一の中央部における長手方向に垂直な断面の開口率は、65%以上であり、
上記ハニカム構造体の第二の端面の開口率に対する上記ハニカム構造体の第一の端面の開口率の比(第一の端面の開口率/第二の端面の開口率)は、1.4以上であり、
上記ハニカム焼成体の外周壁を除くセル壁の厚さは、0.1mm以上、0.2mm未満であり、
上記ハニカム構造体の直径は、200mm以上であり、
上記ハニカム構造体の直径に対する上記ハニカム構造体の長さの比(上記ハニカム構造体の長さ/上記ハニカム構造体の直径)は、1.0以下であることを特徴とする。
以下の説明において、セラミックブロックの外周を構成する位置にあるハニカム焼成体を「外方ハニカム焼成体」、外方ハニカム焼成体より内側に位置するハニカム焼成体を「内方ハニカム焼成体」とも表記する。なお、外方ハニカム焼成体と内方ハニカム焼成体とを特に区別する必要がない場合、単にハニカム焼成体と表記する。
また、本明細書において、単に、ハニカム構造体の断面、ハニカム焼成体の断面、又は、ハニカム成形体の断面と表記した場合、それぞれ、ハニカム構造体の長手方向に垂直な断面、ハニカム焼成体の長手方向に垂直な断面、又は、ハニカム成形体の長手方向に垂直な断面を指す。また、ハニカム構造体の中央部の断面と表記した場合は、ハニカム構造体の中央部の長手方向に垂直な断面を指す。さらに、単に、ハニカム焼成体の断面積と表記した場合、ハニカム焼成体の長手方向に垂直な断面の面積を指す。
図1(a)は、本発明の第一実施形態に係るハニカム構造体の一例を模式的に示す斜視図である。図1(b)は、図1(a)に示すハニカム構造体のA-A線断面図である。
図1(a)及び図1(b)に示すハニカム構造体10では、ハニカム焼成体110、120及び130が複数個ずつ接着材層11を介して結束されてセラミックブロック13を構成し、さらに、このセラミックブロック13の外周に外周コート層12が形成されている。ハニカム構造体10を構成するハニカム焼成体110、120及び130については後述するが、炭化ケイ素又はケイ素結合炭化ケイ素からなる多孔質体であることが好ましい。
図1(a)及び図1(b)に示すハニカム構造体10では、セラミックブロック13の外周を構成する位置にある8個の外方ハニカム焼成体120、及び、外方ハニカム焼成体120とは別の形状の8個の外方ハニカム焼成体130と、ハニカム焼成体120及び130より内側に位置する16個の内方ハニカム焼成体110とが、セラミックブロック13(ハニカム構造体10)の断面形状が円形となるように、接着材層11を介して結束されている。
図1(b)に示すように、内方ハニカム焼成体110の断面の形状は、四角形(正方形)である。
また、図1(b)に示すように、外方ハニカム焼成体120の断面は、3つの線分と1つの円弧とで囲まれた形状をなしている。この3つの線分のうちの2つの線分よりなる2つの角は、どちらも90°である。
さらに、図1(b)に示すように、外方ハニカム焼成体130の断面は、2つの線分と1つの円弧とで囲まれた形状をなしている。この2つの線分よりなる角は、90°である。
次に、本発明の第一実施形態に係るハニカム構造体を構成するハニカム焼成体(内方ハニカム焼成体及び外方ハニカム焼成体)について図面を参照しながら説明する。
まず、本発明の第一実施形態に係るハニカム構造体を構成する内方ハニカム焼成体について説明する。
図2(a)は、本発明の第一実施形態に係るハニカム構造体を構成する内方ハニカム焼成体の一例を模式的に示す斜視図である。図2(b)は、図2(a)に示す内方ハニカム焼成体のB-B線断面図である。
図2(a)及び図2(b)に示す内方ハニカム焼成体110には、多数の大容量セル111aと小容量セル111bとがセル壁113を隔てて長手方向(図2(a)中、矢印aの方向)に並設されるとともに、その外周に外周壁114が形成されている。そして、大容量セル111aと小容量セル111bのうち、いずれかの端部は、封止材112a又は封止材112bで封止されている。
本実施形態において、排ガスの入り口側では、小容量セル111bの端部が封止材112aで封止され、排ガスの出口側では、大容量セル111aの端部が封止材112bで封止されている。
従って、排ガスの入り口側の端面が開口した大容量セル111aに流入した排ガスG(図2(b)中、排ガスをGで示し、排ガスの流れを矢印で示す)は、必ず大容量セル111aと小容量セル111bとを隔てるセル壁113を通過した後、排ガスの出口側の端面が開口した小容量セル111bから流出するようになっている。そして、排ガスGがセル壁113を通過する際に、排ガス中のPM等が捕集されるため、セル壁113は、フィルタとして機能する。
次に、本発明の第一実施形態に係るハニカム構造体を構成する外方ハニカム焼成体について説明する。
図3(a)及び図3(b)は、本発明の第一実施形態に係るハニカム構造体を構成する外方ハニカム焼成体の一例を模式的に示す側面図である。
図3(a)に示す外方ハニカム焼成体120及び図3(b)に示す外方ハニカム焼成体130の断面形状は、図2(a)、図2(b)に示す内方ハニカム焼成体110の一部を取り除いた形状を有している。
これは、後述するように、図1(a)及び図1(b)に示すハニカム構造体10を製造する際に、図2(a)、図2(b)に示す形状のハニカム焼成体110を複数個結束して角柱状のセラミックブロックを作製した後、上記角柱状のセラミックブロックの外周を切削することにより、円柱状のセラミックブロックとするためである。
従って、図3(a)に示す外方ハニカム焼成体120及び図3(b)に示す外方ハニカム焼成体130は、断面形状が異なる他は、図2(a)、図2(b)に示す内方ハニカム焼成体110と同様の構成を有している。なお、図3(a)に示す外方ハニカム焼成体120及び図3(b)に示す外方ハニカム焼成体130では、切削された部分には外周壁が存在しないので、そのままでは、大容量セル121a、131a、小容量セル121b、131bが溝として外周部分に露出する。そこで、上述したように、セラミックブロック13の外周に外周コート層12が形成され、露出する溝部が外周コート層12を構成する部材により充填されている。
本発明の実施形態に係るハニカム構造体10では、一方の端面には大容量セル111a、121a、131aが開口しており、小容量セル111b、121b、131bは封止されている。一方、ハニカム構造体10の他方の端面には、小容量セル111b、121b、131bが開口しており、大容量セル111a、121a、131aは封止されている。本実施形態では、ハニカム構造体10の大容量セル111a、121a、131aが開口している端面を第一の端面とし、小容量セル111b、121b、131bが開口している端面を第二の端面とする。
本発明の実施形態に係るハニカム構造体10では、ハニカム構造体10の濾過面積を大きくするため、ハニカム構造体10の中央部における長手方向に垂直な断面の開口率は、65%以上とし、ハニカム構造体10の第二の端面の開口率に対するハニカム構造体10の第一の端面の開口率の比(第一の端面の開口率/第二の端面の開口率)は、1.4以上としている。
ハニカム構造体10の機械的特性を維持するためには、ハニカム構造体10の中央部における長手方向に垂直な断面の開口率は、80%以下であることが望ましく、78%以下であることがより望ましい。また、圧力損失の増大を抑制するためにはハニカム構造体10の開口率比(第一の端面の開口率/第二の端面の開口率)は、3.0以下であることが望ましく、2.5以下であることがより望ましい。
本発明の実施形態に係るハニカム構造体10では、高い開口率を維持しつつ、圧力損失の増加を抑制するために、ハニカム焼成体110、120、130の外周壁を除くセル壁113の厚さは、0.1mm以上、0.2mm未満としている。ハニカム焼成体の外周壁を除く、セル壁の厚さは、0.150~0.195mmが望ましい。
外周壁とは、ハニカム焼成体110、120、130に最外周に形成された壁の部分をいい、図2(a)及び(b)、図3(a)及び(b)では、符号114、124、134で示されている。ハニカム焼成体120、130の切削された部分は、外周壁に含まない。
セル壁113、123、133としては、大容量セル111a、121a、131aと小容量セル111b、121b、131bとを隔てるセル壁113a、123a、133aと大容量セル111a、121a、131a同士を隔てるセル壁113b、123b、133bとが存在するが、セル壁113a、123a、133aとセル壁113a、123a、133aとは、同じ厚さであることが望ましい。また、セル壁113、123、133の厚さは、0.25mm以下であることがより望ましい。なお、セル壁113、123、133と記載した場合は、セル壁113a、123a、133aとセル壁113b、123b、133bの両方を含んだものとして表示している。
図1(a)には、ハニカム構造体10の長さをLで示しており、図1(b)では、ハニカム構造体10の直径(端面の直径)をDで示している。
本発明の実施形態に係るハニカム構造体10では、ハニカム構造体10の直径(D)を200mm以上と大きく設定するとともに、ハニカム構造体10の直径(D)に対するハニカム構造体10の長さ(L)の比(ハニカム構造体の長さ(L)/上記ハニカム構造体の直径(D))を1.0以下とし、ハニカム構造体10の圧力損失が低くなるようにしている。
本発明の実施形態に係るハニカム構造体10では、その形状が扁平になりすぎることによる端面の機械的強度の低下を防止するために、ハニカム構造体10の直径(D)に対するハニカム構造体の長さ(L)の比(L/D)は、0.5以上であることが望ましく、0.6以上であることがより望ましい。
本発明の実施形態に係るハニカム構造体10を構成するハニカム焼成体110、120、130の外周壁114、124、134の厚さは、0.2~0.5mmであることが望ましい。ハニカム焼成体110、120、130の外周壁114、124、134の厚さを上記した厚さとすることにより、外周壁114、124、134が補強部材の役割を果たす。
本発明の実施形態に係るハニカム構造体10では、セル壁113をハニカム焼成体110、120、130の機械的特性を維持する部位として機能させるために、ハニカム焼成体110、120、130の長手方向に垂直な断面におけるセルの単位面積あたりの数は、31~62個/cm(200~400個/inch)であることが望ましく、38~55個/cm(250~350個/inch)であることがより望ましい。
本発明の実施形態に係るハニカム構造体10では、大容量セル111aの長手方向に垂直な断面の形状は八角形であり、小容量セル111bの長手方向に垂直な断面の形状は四角形であるが、他の実施形態では、大容量セルの長手方向に垂直な断面の形状が四角形であり、小容量セルの長手方向に垂直な断面の形状が四角形であってもよい。なお、通常、大容量セル111aの長手方向に垂直な断面の形状及び小容量セル111bの長手方向に垂直な断面の形状は、大容量セル111aと小容量セル111bとが上下左右に同じパターンで繰り返されている部分の形状をいうものとする。大容量セルと小容量セルは、長手方向に垂直な断面形状が、四角形の頂点部が円弧の形状となる形状であってもよい。
次に、本発明の第一実施形態に係るハニカム構造体の製造方法について説明する。なお、原料となる湿潤混合物の主成分であるセラミック粉末として、炭化ケイ素を用いる場合について説明する。
(1)セラミック粉末とバインダとを含む湿潤混合物を押出成形することによってハニカム成形体を作製する成形工程を行う。
具体的には、まず、セラミック粉末として平均粒子径の異なる炭化ケイ素粉末と、有機バインダと、液状の可塑剤と、潤滑剤と、水とを混合することにより、ハニカム成形体製造用の湿潤混合物を調製する。
続いて、上記湿潤混合物を押出成形機に投入し、押出成形することにより所定の形状のハニカム成形体を作製する。
この際、図2に示す大容量セル111a及び小容量セル111bを有するハニカム焼成体110の断面形状が作製されるような金型を用いてハニカム成形体を作製する。
(2)次に、ハニカム成形体を所定の長さに切断し、マイクロ波乾燥機、熱風乾燥機、誘電乾燥機、減圧乾燥機、真空乾燥機、凍結乾燥機等を用いて乾燥させた後、所定のセルに封止材となる封止材ペーストを充填して上記セルを目封じする封止工程を行う。
ここで、封止材ペーストとしては、上記湿潤混合物を用いることができる。
(3)その後、ハニカム成形体を脱脂炉中で加熱し、ハニカム成形体中の有機物を除去する脱脂工程を行った後、脱脂されたハニカム成形体を焼成炉に搬送し、焼成工程を行うことにより、図2(a)及び図2(b)に示したような形状のハニカム焼成体を作製する。
なお、セルの端部に充填された封止材ペーストは、加熱により焼成され、封止材となる。
また、切断工程、乾燥工程、封止工程、脱脂工程及び焼成工程の条件は、従来からハニカム焼成体を作製する際に用いられている条件を適用することができる。
(4)続いて、各セルの所定の端部が封止されたハニカム焼成体のそれぞれの所定の側面に、接着材ペーストを塗布して接着材ペースト層を形成し、接着材ペースト層を介してハニカム焼成体同士を接着し、接着材ペースト層を加熱固化して接着材層とすることにより、複数のハニカム焼成体が接着材層を介して結束されてなるセラミックブロックを作製する結束工程を行う。
ここで、接着材ペーストとしては、例えば、無機バインダと有機バインダと無機粒子とからなるものを使用する。また、上記接着材ペーストは、さらに無機繊維及び/又はウィスカを含んでいてもよい。
(5)その後、セラミックブロックに切削加工を施す外周加工工程を行う。
具体的には、ダイヤモンドカッターを用いてセラミックブロックの外周を切削することにより、外周が円柱状に加工されたセラミックブロックを作製する。
(6)さらに、円柱状のセラミックブロックの外周面に、外周コート材ペーストを塗布し、乾燥固化して外周コート層を形成する外周コート層形成工程を行う。
ここで、外周コート材ペーストとしては、上記接着材ペーストを使用することができる。なお、外周コート材ペーストして、上記接着材ペーストと異なる組成のペーストを使用してもよい。
以上の工程によって、本発明の第一実施形態に係るハニカム構造体を製造することができる。
以下、本発明の第一実施形態に係るハニカム構造体の作用効果について列挙する。
(1)上記ハニカム構造体を大型車両等に用いる場合、ハニカム構造体の容積が大きいと、排ガス浄化装置全体の大きさが大きくなるため、ハニカム構造体の容積を小さくする必要がある。そこで、直径が200mm以上のハニカム構造体において、(a)ハニカム構造体の直径に対するハニカム構造体の長さの比(ハニカム構造体の長さ/ハニカム構造体の直径)が1.0以下、かつ、(b)ハニカム構造体の第二の端面の開口率に対するハニカム構造体の第一の端面の開口率の比(第一の端面の開口率/第二の端面の開口率)が1.4以上、かつ、(c)ハニカム焼成体の外周壁を除くセル壁の厚さが0.1mm以上、0.2mm未満、かつ、(d)ハニカム構造体の中央部における長手方向に垂直な断面の開口率が65%以上とすることで、得られたハニカム構造体の容積を小さくすることができ、さらに強度を高く、圧力損失を低くすることができる。
なお、本発明の請求項1に記載のハニカム構造体では、上記(a)~(d)の少なくとも一つの要素が欠けていると、ハニカム構造体の容量を小さくすることができない。また、ハニカム構造体の強度を高く、圧力損失を低くすることができない。
ハニカム構造体の直径に対する上記ハニカム構造体の長さの比(ハニカム構造体の長さ/ハニカム構造体の直径)が1.0以下の場合、排ガスがセル壁を通過するときの摩擦による圧力損失の上昇を抑えることができる。また、ハニカム焼成体の外周壁を除くセル壁の厚さを0.1mm以上、0.2mm未満とすることにより、セル壁を通過する排ガスの流速が早くてもハニカム構造体の圧力損失の上昇の寄与を小さくすることができる。
また、ハニカム構造体の第二の端面の開口率に対するハニカム構造体の第一の端面の開口率の比を1.4以上、かつ、セル壁の厚さを0.1mm以上、0.2mm未満とすることにより、ハニカム構造体の中央部における長手方向に垂直な断面の開口率を65%以上とすることができる。一般的に、ハニカム構造体の中央部における長手方向に垂直な断面の開口率を高くすると濾過面積は小さくなる。しかし、セル壁の厚さを薄くしているため、ハニカム構造体の中央部における長手方向に垂直な断面の開口率が65%以上と高い場合であっても、濾過面積を大きくすることができるため、ハニカム構造体の圧力損失を低くすることができる。従って、請求項1に記載のハニカム構造体は、大型車両等に用いる場合に、ハニカム構造体の容積を小さくすることが可能であり、強度が高く、圧力損失を低くすることができる。
本実施形態のハニカム構造体では、上記ハニカム構造体の中央部における長手方向に垂直な断面の開口率は、65%以上と高いので、PM堆積前(初期)の圧力損失を低くすることができる。
上記ハニカム構造体をハニカムフィルタとして大型車両等に用いる場合、大型車両は連続運転が多いため、排ガスの排気温度は高い傾向にある。そのため、排出された排ガス中のPMは、ハニカム構造体中で強制的に多量に堆積させた後に燃焼させる必要がなく、連続的に燃焼させることができる。そのため、このようなハニカム構造体において、PM堆積後の圧力損失よりもPM堆積前(初期)の圧力損失を低くすることができすることが重要となるが、上述のように、請求項1に記載のハニカム構造体では、PM堆積前(初期)の圧力損失を低くすることができる。
(2)本実施形態のハニカム構造体では、開口率比(第一の端面の開口率/第二の端面の開口率)を1.4以上とし、セル壁の厚さを0.1mm以上、0.2mm未満と薄くしているので、濾過面積を大きくしつつ、上記した65%以上の高い開口率とすることができる。
(3)本実施形態のハニカム構造体では、ハニカム構造体の直径は、200mm以上であり、ハニカム構造体の長さと直径との比(ハニカム構造体の長さ/ハニカム構造体の直径)は、1.0以下である。すなわち、ハニカム構造体は大型車両等に用いることができるように大型のハニカム構造体であり、ハニカム構造体の直径が大きく、ハニカム構造体の直径に比べてハニカム構造体の長さが短くなっている。従って、ハニカム構造体の端面の面積が大きく、セルの長さが短くなる。その結果、排ガスがハニカム構造体のセルを通過する時の摩擦による圧力損失の上昇を抑えることができる。ハニカム構造体の端面の面積が大きく、セルの長さが短い形状の場合、セル壁の厚さを薄くしているため、ハニカム構造体の圧力損失の上昇を抑えることが可能となる。また、セル壁を通過する流速が速くてもハニカム構造体の圧力損失上昇の寄与が小さくなる。さらに、ハニカム構造体のセル全体に均一にPMが堆積する。また、このように、ハニカム構造体の直径に比べてハニカム構造体の長さを短くすることで、ハニカム構造体の圧力損失を低減できるので、ハニカム構造体の容積を小さくすることが可能である。大型車両等にハニカム構造体を用いる場合、ハニカム構造体の連続再生(PMの除去)が行われるため、ハニカム構造体にPMを多量に堆積させる必要がない。
(4)本実施形態のハニカム構造体では、上記ハニカム構造体の中央部における長手方向に垂直な断面の開口率は、80%以下であることが望ましい。ハニカム構造体の中央部における長手方向に垂直な断面の開口率が80%以下であると、ハニカム構造体の単位面積あたりに存在するセルの数を適切な数(例えば、31~62個/cm)に設定することができる。従って、該セル壁がハニカム構造体を支える壁として機能し、ハニカム構造体の機械的強度を適切な範囲に保つことができる。
(5)本実施形態のハニカム構造体では、上記開口率比(第一の端面の開口率/第二の端面の開口率)は、3.0以下であることが望ましい。上記開口率比(第一の端面の開口率/第二の端面の開口率)は、3.0以下であると、ハニカム構造体の第一の端面の開口率と第二の端面の開口率との比が大きすぎることに起因するハニカム構造体の圧力損失の増大を抑制することができる。すなわち、ハニカム構造体の大容量セルと小容量セルとの容積の差が大きい場合には、両者を隔てるセル壁の面積が小さくなることに起因してハニカム構造体の内部に流入した排ガスが流出する壁の面積が小さくなり、ハニカム構造体の圧力損失が大きくなると考えられる。しかしながら、請求項3に記載のハニカム構造体では、ハニカム構造体の開口率比は3.0以下であるので、両者を隔てるセル壁の面積が小さくならず、ハニカム構造体の内部に流入した排ガスが流出する壁の面積も小さくならず、ハニカム構造体の圧力損失は大きくなりにくい。
(6)本実施形態のハニカム構造体では、ハニカム構造体の長さと直径との比(ハニカム構造体の長さ/ハニカム構造体の直径)は、0.5以上であることが望ましい。
ハニカム構造体の長さと直径との比が0.5未満と小さすぎる場合は、ハニカム構造体の長さと直径との比が小さすぎると、ハニカム構造体に流入した排ガスが後方(排ガス流出側)に流れやすくなるため、ハニカム構造体のガス流出側にPMが編析しやすくなる。その結果、ハニカム構造体の圧力損失が上昇する。しかし、ハニカム構造体の長さと直径との比が0.5以上であると、ハニカム構造体に流入した排ガスが後方(排ガス流出側)に流れやすくならないので、ハニカム構造体のセル壁に均一にPMが堆積する。その結果、ハニカム構造体の圧力損失の上昇がおこりにくい。
(7)本実施形態のハニカム構造体では、ハニカム焼成体の外周壁の厚さは、0.2~0.5mmであることが望ましい。ハニカム焼成体の外周壁の厚さは、0.2~0.5mmであると、ハニカム構造体のセル壁に比べて外周壁の厚さが厚くなるので、ハニカム焼成体のセル壁の厚さを薄くしても、ハニカム焼成体の外周壁が機械的強度を保つための強化材の役割を果たし、ハニカム焼成体の機械的特性を良好に維持することができる。
(8)本実施形態のハニカム構造体では、上記ハニカム焼成体の長手方向に垂直な断面におけるセルの単位面積あたりの数が31~62個/cmであることが望ましい。ハニカム焼成体の長手方向に垂直な断面におけるセルの単位面積あたりの数が31~62個/cmであると、ハニカム構造体の断面における単位面積あたりに占めるセル壁の数(面積)が適切な範囲となり、セル壁がハニカム焼成体の機械的特性を維持する部位として機能し、ハニカム焼成体は機械的特性を維持することができる。
(9)本実施形態のハニカム構造体では、大容量セルの長手方向に垂直な断面の形状は八角形であり、小容量セルの長手方向に垂直な断面の形状は四角形である。ハニカム構造体のセルの断面形状が八角形と四角形であると、形状的に組み合わせ易いので、大容量セルと小容量セルとがバランスよく組み合わされたハニカム構造体とすることができる。そのため、ハニカム構造体の機械的特性を向上させることができ易くなる。
(実施例)
以下、本発明の第一実施形態をより具体的に開示した実施例を示す。なお、本発明はこれらの実施例のみに限定されるものではない。
(実施例1)
(1)ハニカム焼成体の製造
まず、平均粒子径22μmを有する炭化ケイ素の粗粉末54.6重量%と、平均粒子径0.5μmの炭化ケイ素の微粉末23.4重量%とを混合し、得られた混合物に対して、有機バインダ(メチルセルロース)4.3重量%、潤滑剤(日油社製 ユニルーブ)2.6重量%、グリセリン1.2重量%、及び、水13.9重量%を加えて混練して湿潤混合物を得た。この後、得られた湿潤混合物を用いて押出成形する成形工程を行い、ハニカム成形体を得た。
本工程では、図2(a)及び図2(b)に示した内方ハニカム焼成体110と同様の形状であって、セルの目封じをしていない生のハニカム成形体を作製した。
次いで、マイクロ波乾燥機を用いて上記生のハニカム成形体を乾燥させることにより、ハニカム成形体の乾燥体を作製した。その後、ハニカム成形体の乾燥体の所定のセルに封止材ペーストを充填してセルの封止を行った。なお、上記湿潤混合物を封止材ペーストとして使用した。セルの封止を行った後、封止材ペーストを充填したハニカム成形体の乾燥体を再び乾燥機を用いて乾燥させた。
続いて、セル封止を行った後、乾燥させたハニカム成形体を400℃で脱脂する脱脂処理を行い、さらに、常圧のアルゴン雰囲気下2200℃、3時間の条件で焼成処理を行った。
これにより、ハニカム焼成体110(ハニカムユニットともいう)を製造した。
得られたハニカム焼成体は、多孔質炭化ケイ素焼結体からなり、図2に示したように、断面形状が八角形の大容量セルと断面形状が四角形の小容量セルとを有し、気孔率が42%、平均気孔径が9μm、大きさが34.3mm×34.3mm×200mm、セルの数(セル密度)が46.5個/cm(300個/inch)、セル壁の厚さが0.175mm、外周壁の厚さが0.3mmである。
(2)ハニカム構造体の作製
上記工程により得られたハニカム焼成体を用いて、ハニカム構造体を作製した。
ハニカム焼成体1の所定の側面に接着材ペーストを塗布し、この接着材ペーストを介して36個(縦6個×横6個)のハニカム焼成体1を接着させることにより、ハニカム焼成体の集合体を作製した。
さらに、ハニカム焼成体の集合体を180℃、20分で接着材ペーストを乾燥固化させることにより、接着材層の厚さが1mmの角柱状のセラミックブロックを作製した。
ここで、接着材ペーストとしては、平均粒径0.6μmの炭化ケイ素30.0重量%、シリカゾル(固形分30重量%)21.4重量%、カルボキシメチルセルロース8.0重量%、及び、水40.6重量%からなる接着材ペーストを使用した。
その後、ダイヤモンドカッターを用いて、角柱状のセラミックブロックの外周を研削することにより、直径198mmの円柱状のセラミックブロックを作製した。
次に、円柱状のセラミックブロックの外周部に外周コート材ペーストを塗布し、外周コート材ペーストを120℃で加熱固化することにより、セラミックブロックの外周部に厚さ1.0mmの外周コート層を形成した。なお、上記接着材ペーストを外周コート材ペーストとして使用した。
以上の工程によって、直径200mm×長さ200mmでその容積が6.28Lの円柱状のハニカム構造体を作製した。
得られたハニカム構造体の中央部における長手方向に垂直な断面の開口率は、71.1%であり、第二の端面(小容量セルが開口した端面)の開口率に対するハニカム構造体の第一の端面(大容量セルが開口した端面)の開口率の比(第一の端面の開口率/第二の端面の開口率)は、1.46である。また、ハニカム構造体の直径に対する上記ハニカム構造体の長さの比(ハニカム構造体の長さ/ハニカム構造体の直径)は、1.00である。
なお、上記した開口率は、ハニカム構造体の中央部における長手方向に垂直な断面、ハニカム構造体の第一の端面及びハニカム構造体の第二の端面の写真撮影を行い、得られた写真からそれぞれの総面積と開口が形成されている部分の面積を求め、開口率を算出した。
以下では、ハニカム構造体の中央部における長手方向に垂直な断面の開口率を、中央部開口率といい、開口率の比(第一の端面の開口率/第二の端面の開口率)を、単に開口率比ともいい、ハニカム構造体の直径に対する上記ハニカム構造体の長さの比(ハニカム構造体の長さ/ハニカム構造体の直径)を直径と長さの比(長さ/直径)ともいう。
上記したハニカム構造体の直径、ハニカム構造体の長さ、直径と長さの比(長さ/直径)、ハニカム構造体の容積、ハニカム構造体を構成するハニカム焼成体のセル壁の厚さ、セル密度(個/cm)、中央部開口率、開口率比を表1に表示する。
(実施例2~7及び比較例1~6)
製造するハニカム焼成体のセル壁の厚さ、セル密度(個/cm)を表1の実施例2~7及び比較例1~6に示す値にするため必要に応じて金型を変え、ハニカム焼成体の長さを表1の実施例2~7及び比較例1~6に示す値にするために切断条件を必要に応じて変更したほかは、実施例1と同様にしてハニカム焼成体を製造した。
次に、作製するハニカム構造体の中央部開口率、開口率比、ハニカム構造体の直径、長さ、直径と長さの比(長さ/直径)、中央部開口率、開口率比を、表1の実施例2~7及び比較例1~6に示す値になるようにするために、組み合わせるハニカム焼成体の数を変更し、接着材層や外周コート層の厚さを変更したほかは、実施例1と同様にしてハニカム構造体を作製した。
得られた実施例2のハニカム構造体のセル壁の厚さ:0.175mm、セル密度:46.5個/cm(300個/inch)、中央部開口率:71.1%、開口率比:1.46、直径:225mm、長さ:158mm、直径と長さの比(長さ/直径):0.70、容積:6.28Lであった。
得られた実施例3のハニカム構造体のセル壁の厚さ:0.175mm、セル密度:46.5個/cm(300個/inch)、中央部開口率:71.1%、開口率比:1.46、直径:250mm、長さ:128mm、直径と長さの比(長さ/直径):0.51、容積:6.28Lであった。
得られた実施例4のハニカム構造体のセル壁の厚さ:0.150mm、セル密度:46.5個/cm(300個/inch)、中央部開口率:73.7%、開口率比:1.46、直径:225mm、長さ:158mm、直径と長さの比(長さ/直径):0.70、容積:6.28Lであった。
得られた実施例5のハニカム構造体のセル壁の厚さ:0.100mm、セル密度:62個/cm(400個/inch)、中央部開口率:79.1%、開口率比:1.46、直径:225mm、長さ:158mm、直径と長さの比(長さ/直径):0.70、容積:6.28Lであった。
得られた実施例6のハニカム構造体のセル壁の厚さ:0.195mm、セル密度:46.5個/cm(300個/inch)、中央部開口率:68.5%、開口率比:1.46、直径:225mm、長さ:158mm、直径と長さの比(長さ/直径):0.70、容積:6.28Lであった。
得られた実施例7のハニカム構造体のセル壁の厚さ:0.175mm、セル密度:46.5個/cm(300個/inch)、中央部開口率:71.1%、開口率比:2.29、直径:225mm、長さ:158mm、直径と長さの比(長さ/直径):0.70、容積:6.28Lであった。
得られた比較例1のハニカム構造体のセル壁の厚さ:0.175mm、セル密度:46.5個/cm(300個/inch)、中央部開口率:71.1%、開口率比:1.46、直径:180mm、長さ:247mm、直径と長さの比(長さ/直径):1.37、容積:6.29Lであり、ハニカム構造体の直径及び直径と長さの比(長さ/直径)が本発明の請求項1に記載の要件を満たしていない。
得られた比較例2のハニカム構造体のセル壁の厚さ:0.300mm、セル密度:46.5個/cm(300個/inch)、中央部開口率:58.6%、開口率比:1.46、直径:225mm、長さ:158mm、直径と長さの比(長さ/直径):0.70、容積:6.28Lであり、ハニカム構造体のセル壁の厚さ及び中央部開口率が本発明の請求項1に記載の要件を満たしていない。
得られた比較例3のハニカム構造体のセル壁の厚さ:0.150mm、セル密度:46.5個/cm(300個/inch)、中央部開口率:73.7%、開口率比:1.46、直径:180mm、長さ:247mm、直径と長さの比(長さ/直径):1.37、容積:6.29Lであり、ハニカム構造体の直径及び直径と長さの比(長さ/直径)が本発明の請求項1に記載の要件を満たしていない。
得られた比較例4のハニカム構造体のセル壁の厚さ:0.100mm、セル密度:62個/cm(400個/inch)、中央部開口率:79.1%、開口率比:1.46、直径:180mm、長さ:247mm、直径と長さの比(長さ/直径):1.37、容積:6.29Lであり、ハニカム構造体の直径及び直径と長さの比(長さ/直径)が本発明の請求項1に記載の要件を満たしていない。
得られた比較例5のハニカム構造体のセル壁の厚さ:0.200mm、セル密度:46.5個/cm(300個/inch)、中央部開口率:68.5%、開口率比:1.46、直径:180mm、長さ:247mm、直径と長さの比(長さ/直径):1.37、容積:6.29Lあり、ハニカム構造体のセル壁の厚さ、直径及び直径と長さの比(長さ/直径)が本発明の請求項1に記載の要件を満たしていない。
得られた比較例6のハニカム構造体のセル壁の厚さ:0.175mm、セル密度:46.5個/cm(300個/inch)、中央部開口率:71.1%、開口率比:1.46、直径:200mm、長さ:225mm、直径と長さの比(長さ/直径):1.13、容積:7.07Lあり、直径と長さの比(長さ/直径)が請求項1に記載の要件を満たしていない。
実施例1~7及び比較例1~6における圧力損失の値の測定を以下のようにして行った。
[圧力損失測定]
図4は、実施例1及び比較例1における圧力損失測定装置170を示す説明図である。
図4に示すように、圧力損失測定装置170では、6.4Lのコモンレール式のディーゼルエンジン176の排気管177に金属ケーシング174が取り付けられており、金属ケーシング174の内部にアルミナマット(保持シール材)を巻いたハニカム構造体1が配置されている。そして、ハニカム構造体1の前後に圧力計178が取り付けられている。
図4に示す圧力損失測定装置170を用い、エンジン回転数を3000rpm、トルク50Nmに設定して、PMをハニカム構造体に25g堆積させ、そのときの圧力差を測定し、圧力損失とした。
Figure JPOXMLDOC01-appb-T000001
ハニカム構造体を構成するハニカム焼成体のセル壁の厚さ、中央部開口率、開口率比、ハニカム構造体の直径、長さ、直径と長さの比(長さ/直径)が、本発明の請求項1に記載された条件を満たす実施例1~7に係るハニカム構造体は、実施例1の圧力損失が2.8kPa、実施例2の圧力損失が2.6kPa、実施例3の圧力損失が2.8kPa、実施例4の圧力損失が2.4kPa、実施例5の圧力損失が2.3kPa、実施例6の圧力損失が2.8kPa、実施例7の圧力損失が2.7kPaと、圧力損失が2.3~2.8kPaの範囲と良好な値であった。
一方、本発明の請求項1に記載された条件を満たさない比較例1~6に係るハニカム構造体は、比較例1の圧力損失が3.4kPa、比較例2の圧力損失が4.2kPa、比較例3の圧力損失が3.1kPa、比較例4の圧力損失が3.0kPa、比較例5の圧力損失が3.2kPa、比較例6の圧力損失が2.8kPaと、圧力損失が2.8~4.2kPaの範囲であり、実施例に比べて比較例の圧力損失が高かった。
また、比較例1~5に係るハニカム構造体は、実施例に係るハニカム構造体と同容積であるが、圧力損失が3.0~4.2kPaと高い。比較例6では、圧力損失は、実施例と同程度の2.8kPaであるが、容積が実施例よりも大きくなっている。
(第二実施形態)
次に、本発明の一実施形態である第二実施形態について図面を参照しながら説明する。
図5は、本発明の第二実施形態のハニカム構造体の一例を模式的に示す斜視図である。
図6(a)は、本発明の第二実施形態に係るハニカム構造体を構成するハニカム焼成体の一例を模式的に示す斜視図である。図6(b)は、図6(a)に示すハニカム焼成体のC-C線断面図である。
図7は、本発明の第二実施形態のハニカム構造体を構成する別の形状のハニカム焼成体の一例を模式的に示す斜視図である。
図8は、本発明の第二実施形態のハニカム構造体を構成する、さらに別の形状のハニカム焼成体の一例を模式的に示す斜視図である。
図9は、図5に示した本発明の第二実施形態に係るハニカム構造体の側面図である。
図5に示すハニカム構造体20では、多孔質炭化ケイ素からなる、図6(a)、図6(b)、図7、及び、図8に示す形状のハニカム焼成体210、220及び230が複数個ずつ接着材層21を介して結束されてセラミックブロック23を構成し、さらに、このセラミックブロック23の外周に外周コート層22が形成されている。
図5に示すハニカム構造体20では、セラミックブロック23の外周を構成する位置にある8個のハニカム焼成体220及びハニカム焼成体220とは別の形状の4個のハニカム焼成体230と、ハニカム焼成体220及び230より内側に位置する32個のハニカム焼成体210とが、接着材層21を介して結束され、さらに外周部分に外周コート層22が形成されることにより、ハニカム構造体全体の長手方向に垂直な断面形状が円形となっている。
図6(a)及び図6(b)に示すハニカム焼成体210には、第一実施形態に係るハニカム焼成体110と同様に、多数の大容量セル211aと小容量セル211bとがセル壁213を隔てて長手方向(図6(a)中、aの方向)に並設されており、大容量セル211aと小容量セル211bのうち、いずれかの端部は、封止材212a及び封止材212bで封止されている。
本実施形態では、排ガスの入り口側では、小容量セル211bの端部が封止材212aで封止され、排ガスの出口側では、大容量セル211aの端部が封止材212bで封止されている。
従って、排ガスの入り口側の端面が開口した大容量セル211aに流入した排ガスGは、必ず大容量セル211aと小容量セル211bとを隔てるセル壁213を通過した後、排ガスの出口側の端面が開口した小容量セル211bから流出するようになっている。そして、排ガスGがセル壁213を通過する際に、排ガス中のPM等が捕集されるため、セル壁213は、フィルタとして機能する。
32個のハニカム焼成体210の長手方向に垂直な断面の形状は四角形であり、このハニカム焼成体210は、断面四角形のハニカム焼成体である。
また、上記四角形の外周を構成する四つの辺214の長さは同一であり、ハニカム焼成体210の長手方向に垂直な断面の形状は正方形となっている。
ハニカム構造体20の外周付近に位置する図7に示すハニカム焼成体220にも、ハニカム焼成体210と同様に多数の大容量セル221a、小容量セル221b、封止材222a(図示せず)、封止材222b、セル壁223(セル壁223a、セル壁223b)が設けられている。従って、ハニカム焼成体220はPM等を捕集するためのフィルタとして機能する。
また、ハニカム焼成体220の外周部には外周壁228が設けられている。
ハニカム焼成体220の長手方向に垂直な断面における形状は、第1の辺224と、第2の辺225と、第3の辺227と、傾斜辺226とが結合された形状である。
第1の辺224と第2の辺225の形成する角度は直角であり、傾斜辺226はその直角に対向して設けられている。傾斜辺226は円弧からなる。
なお、本明細書において「直角に対向する」とは、「直角に向かい合って」という意味であり、直角を形成する2辺とは異なる辺であることを意味する。
第3の辺227は傾斜辺226と第1の辺224を接続している辺であり、第3の辺227は第2の辺225と平行になっている。
すなわち、ハニカム焼成体220は1つの円弧及び3つの直線部からなる断面扇形のハニカム焼成体である。
また、図8に示すハニカム焼成体230にも、ハニカム焼成体210と同様に多数の大容量セル231a、小容量セル231b、封止材232a(図示せず)、封止材232b、セル壁233(セル壁233a、セル壁233b)が設けられている。従って、ハニカム焼成体230はPM等を捕集するためのフィルタとして機能する。
ハニカム焼成体230の長手方向に垂直な断面の形状は三角形であり、ハニカム焼成体230は、断面三角形のハニカム焼成体である。
また、ハニカム焼成体230の長手方向に垂直な断面の形状は、第1の辺234及び第2の辺235で形成される直角を有し、上記直角に対向する斜辺236を有する直角二等辺三角形となっている。また、ハニカム焼成体230の外周部には外周壁238が設けられている。
なお、本明細書においては、各ハニカム焼成体の形状やセルの形状を三角形、四角形等の名称で表現しているが、本明細書における三角形、四角形とは、完全な直線のみからなる厳密な図形を意味するものではなく、その角(頂点)が直線や曲線で面取りされていて三角形、四角形と実質的に同視し得る形状を包含する。また、本明細書において「直角」、「平行」、「直角二等辺三角形」等の語は数学的に厳密な形状を意味するものではなく、「直角」、「平行」、「直角二等辺三角形」等の形状と実質的に同視し得る形状を包含する。
図9は、図5に示すハニカム構造体20の側面図である。
以下、図9を参照してハニカム構造体20におけるハニカム焼成体210、ハニカム焼成体220及びハニカム焼成体230の配置について説明する。
ハニカム構造体20では、その断面の中央部にハニカム焼成体210(断面四角形のハニカム焼成体)が配置されている。ハニカム焼成体210の数は32個である。
ハニカム焼成体210の周囲にハニカム焼成体220(断面扇形のハニカム焼成体)が8個配置されている。ハニカム焼成体220は、第2の辺225がハニカム焼成体210と隣接するように配置されている。傾斜辺226は、セラミックブロックの外周面となるように配置されている。ハニカム焼成体220は、各ハニカム焼成体220の第1の辺224同士が隣接するように配置されている。
ハニカム焼成体220の第2の辺225の長さは、ハニカム焼成体210の外周を構成する辺214の長さよりも長くなっている。
特に、ハニカム焼成体220の第2の辺225の長さがハニカム焼成体210の外周を構成する辺214の長さの1.5~2.5倍となっていることが望ましい。
ハニカム焼成体210の周囲であってハニカム焼成体220が配置されていない部位にはハニカム焼成体230(断面三角形のハニカム焼成体)が4個配置されている。
ハニカム焼成体230は、その第1の辺234及び第2の辺235がハニカム焼成体210と隣接するように配置されている。また、斜辺236がセラミックブロックの外周面となるように配置されている。
このハニカム構造体20においては、ハニカム焼成体の数は合計で44個である。その内訳はハニカム焼成体210が32個、ハニカム焼成体220が8個、ハニカム焼成体230が4個である。
そして、44個のハニカム焼成体210、220、230が接着材層21を介して結束されてセラミックブロック23を形成している。
さらに、セラミックブロック23の外周面にはシール材層22が形成されており、ハニカム構造体20の長手方向に垂直な断面の形状は円形になっている。
本発明の第二実施形態に係るハニカム構造体20でも、ハニカム構造体20の中央部における長手方向に垂直な断面の開口率は、65%以上とし、、ハニカム構造体20の第二の端面(小容量セルが開口した端面)の開口率に対するハニカム構造体20の第一の端面の開口率の比(第一の端面の開口率/第二の端面の開口率)は、1.4以上としている。
ハニカム構造体20の中央部における長手方向に垂直な断面の開口率は、80%以下であることが望ましく、78%以下であることがより望ましい。また、ハニカム構造体10の開口率比(第一の端面の開口率/第二の端面の開口率)は、3.0以下であることが望ましく、2.5以下であることがより望ましい。
本発明の実施形態に係るハニカム構造体20では、ハニカム焼成体210、220、230の外周壁を除くセル壁213、223、233の厚さは、0.1mm以上、0.2mm未満としている。ハニカム焼成体の外周壁を除く、セル壁の厚さは、0.150~0.195mmが望ましい。
セル壁213、223、233としては、大容量セル211a、221a、231aと小容量セル211b、221b、231bとを隔てるセル壁213a、223a、233aと大容量セル211a、221a、231a同士を隔てるセル壁213b、223b、233bとが存在するが、セル壁213a、223a、233aとセル壁213b、223b、233bとは、同じ厚さであることが望ましい。また、セル壁213、223、233の厚さは、0.25mm以下であることがより望ましい。
本発明の第二実施形態に係るハニカム構造体20では、ハニカム構造体20の直径を200mm以上と大きく設定するとともに、ハニカム構造体20の直径に対するハニカム構造体20の長さの比(ハニカム構造体の長さ/上記ハニカム構造体の直径)を1.0以下としている。
本発明の実施形態に係るハニカム構造体20では、ハニカム構造体10の直径に対するハニカム構造体の長さの比は、0.5以上であることが望ましく、0.6以上であることがより望ましい。
また、ハニカム構造体20の直径は、450mm以下であることが望ましく、400mm以下であることがより望ましい。
本発明の実施形態に係るハニカム構造体20を構成するハニカム焼成体210、220、230の外周壁214、228、238の厚さは、0.2~0.5mmであることが望ましい。
本発明の実施形態に係るハニカム構造体20では、ハニカム焼成体210、220、230の長手方向に垂直な断面におけるセルの単位面積あたりの数は、31~62個/cm(200~400個/inch)であることが望ましく、38~55個/cm(250~350個/inch)であることがより望ましい。
次に、本発明の第二実施形態に係るハニカム構造体の製造方法について説明する。
(1)まず、ハニカム成形体を作成する。この際、ハニカム焼成体220、230を作製するための金型が本発明の第一実施形態の場合と異なるほかは、本発明の第一実施形態の場合と同様にしてハニカム成形体を作製する。
次に、本発明の第一実施形態のハニカム構造体の製造方法の(2)及び(3)に記載された方法と同様にして、ハニカム成形体の切断工程、乾燥工程、封止工程を行い、続いて脱脂工程、焼成工程を行うことにより、ハニカム焼成体を製造する。
(4)続いて、ハニカム焼成体210、220、230の側面のうち、必要な部分に接着剤ペースト層を形成し、接着材ペースト層を介してハニカム焼成体同士を接着し、接着剤ペースト層を加熱固化して接着材層とし、接着材層を介して複数のハニカム焼成体を結束させてセラミックブロックとする結束工程を行う。
接着剤ペーストとしては、無機繊維及び/又はウィスカ、無機粒子、無機バインダ、並びに、有機バインダを含む接着剤ペーストが好適に用いられる。
この結束工程においては、中央部にハニカム焼成体210を配置し、その周囲にハニカム焼成体220及びハニカム焼成体230を配置して、図9に示すような断面形状を有するセラミックブロック23を作製する。
特に、ハニカム焼成体220を、その第2の辺225がハニカム焼成体210と隣接するように、かつ、その傾斜辺226がセラミックブロック23の最外周になるように配置する。
また、ハニカム焼成体230を、その第1の辺234及び第2の辺235がハニカム焼成体210と隣接するように、かつ、その斜辺236がセラミックブロック23の最外周になるように配置する。
本発明の第二の実施形態に係るハニカム構造体20では、ハニカム焼成体210、220、230の全ての外周部分に外周壁214、228、238が形成されており、セラミックブロック23が作製された時点で、円柱形状となっているので、切削加工の必要はない。
(5)続いて、第一実施形態の場合と同様に、セラミックブロック23の外周面に、外周コート材ペーストを塗布し、乾燥固化して外周コート層を形成する外周コート層形成工程を行うことにより、本発明の第二実施形態に係るハニカム構造体を製造することができる。
本発明の第二実施形態に係るハニカム構造体は、本発明の第一実施形態に係るハニカム構造体の場合と同様に、本発明の第一実施形態に記載された(1)~(9)と同様の作用効果を奏する。
(排ガス浄化装置の実施形態)
本発明の実施形態に係る排ガス浄化装置は、
ハニカム構造体の側面に保持シール材が配置され、上記ハニカム構造体と上記保持シール材とが金属容器に配置された排ガス浄化装置であって、
上記ハニカム構造体は、上述した構成を有する本発明のハニカム構造体であり、
排ガスの入り口側が、上記ハニカム構造体の第一端面となるように、上記ハニカム構造体が配置されていることを特徴とする。
図14は、本発明に係る排ガス浄化装置を模式的に示す断面図である。
図14に示すように、実施形態に係る排ガス浄化装置720は、ハニカム構造体10、ハニカム構造体10の外方を覆う金属容器721、ハニカム構造体10と金属容器721との間に配置された保持シール材722から構成されており、金属容器721の排ガスが導入される側の端部には、エンジン等の内燃機関に連結された導入管724が接続されており、金属容器721の他端部には、外部に連結された排出管725が接続されている。なお、図14中、矢印は排ガスの流れを示している。
すなわち、この排ガス浄化装置720では、ハニカム構造体10の側面に保持シール材722が配置され、ハニカム構造体10と保持シール材722とが金属容器721に配置されている。
また、ハニカム構造体10は、本発明の第一実施形態に係るハニカム構造体10であり、排ガス浄化装置720の導入管724が接続されている排ガスの入り口側にハニカム構造体10の第1の端面(大容量セルが開口している端面)が配置され、排出管725が接続されている排ガスの出口側に第2の端面(小容量セルが開口している端面)が配置されるように配置されている。
保持シール材722は、アルミナ-シリカ等の無機繊維から構成されるマット状のものであり、自動車の走行等により生じる振動又は衝撃等により、ハニカム構造体10が金属容器721と接触して破損するのを防止し、ハニカム構造体10と金属容器721との間から排ガスが漏れることを防止するためにハニカム構造体10と金属容器721との間に介挿されている。
本実施形態に係るハニカム構造体は、本発明の第二実施形態に係るハニカム構造体20であってもよい。
実施形態に係る排ガス浄化装置720では、上記した態様でハニカム構造体10が排ガス浄化装置720に配設されているので、以下に記載する効果を奏することができる。
以下、本発明の実施形態に係る排ガス浄化装置の作用効果について列挙する。
(1)本実施形態の排ガス浄化装置では、該排ガス浄化装置を構成するハニカム構造体の中央部における長手方向に垂直な断面の開口率が65%以上と高いので、PM堆積前(初期)の圧力損失が低い排ガス浄化装置とすることができる。
(2)本実施形態の排ガス浄化装置では、該排ガス浄化装置を構成するハニカム構造体の開口率比(第一の端面の開口率/第二の端面の開口率)は、1.4以上であり、セル壁の厚さは0.1mm以上、0.2mm未満と薄くなっているので、ハニカム構造体の濾過面積が大きくなる。そのため、流入排ガスに対してハニカム構造体のセル壁の濾過面積が相対的に大きくなる。このため、本実施形態の排ガス浄化装置では、初期の圧力損失を小さくすることができる。
(3)本実施形態の排ガス浄化装置では、該排ガス浄化装置を構成するハニカム構造体の直径は、200mm以上であり、ハニカム構造体の長さと直径との比(ハニカム構造体の長さ/ハニカム構造体の直径)は、1.0以下である。すなわち、ハニカム構造体は大型車両等に用いることができるように大型のハニカム構造体であり、ハニカム構造体の直径が大きく、ハニカム構造体の直径に比べてハニカム構造体の長さが短くなっている。従って、ハニカム構造体の端面の面積が大きく、セルの長さが短くなる。その結果、排ガスがハニカム構造体のセルを通過する時の摩擦によるハニカム構造体の圧力損失の上昇を抑えることができる。ハニカム構造体の端面の面積が大きく、セルの長さが短い形状の場合、セル壁の厚さを薄くしているため、ハニカム構造体の圧力損失の上昇を抑えることが可能となる。また、セル壁を通過する流速が速くても、ハニカム構造体の圧力損失上昇の寄与が小さくなる。さらに、ハニカム構造体のセル全体に均一にPMが堆積する。このように、ハニカム構造体の直径に比べてハニカム構造体の長さを短くすることで、ハニカム構造体の圧力損失を低減できるので、排ガス浄化装置に配設するハニカム構造体の容積を小さくすることが可能である。大型車両等に用いる場合、ハニカム構造体の連続再生(PMの除去)が行われるため、ハニカム構造体にPMを多量に堆積させる必要がない。
(4)本実施形態の排ガス浄化装置では、該排ガス浄化装置を構成するハニカム構造体の中央部における長手方向に垂直な断面の開口率は、80%以下であることが望ましい。ハニカム構造体の中央部における長手方向に垂直な断面の開口率が80%以下であると、ハニカム構造体の単位面積あたりに存在するセルの数を適切な数(例えば、31~62個/cm)とすることができる。従って、該セル壁がハニカム構造体を支える壁として機能し、ハニカム構造体の機械的強度を適切な範囲に保つことができる。従って、長期間使用してもハニカム構造体にクラック等が発生しにくい、耐久性に優れた排ガス浄化装置とすることができる。
(5)本実施形態の排ガス浄化装置では、該排ガス浄化装置を構成するハニカム構造体の開口率比(第一の端面の開口率/第二の端面の開口率)は、3.0以下であることが望ましい。上記開口率比(第一の端面の開口率/第二の端面の開口率)は、3.0以下であると、ハニカム構造体の第一の端面の開口率と第二の端面の開口率との比が大きすぎることに起因する排ガス浄化装置の圧力損失の増大を抑制することができる。
(6)本実施形態の排ガス浄化装置では、該排ガス浄化装置を構成するハニカム構造体の長さと直径との比(ハニカム構造体の長さ/ハニカム構造体の直径)は、0.5以上であることが望ましい。
ハニカム構造体の長さと直径との比が0.5未満と小さすぎる場合は、ハニカム構造体に流入した排ガスが後方に流れやすくなるため、ハニカム構造体の排ガス流出側にPMが編析しやすくなる。その結果、ハニカム構造体の圧力損失が上昇する。しかし、ハニカム構造体の長さと直径との比が0.5以上であると、ハニカム構造体に流入した排ガスが流出側に流れやすくならないので、ハニカム構造体のセル壁に均一にPMが堆積する。その結果、圧力損失の上昇がおこりにくい排ガス浄化装置とすることができる。
(7)本実施形態の排ガス浄化装置では、該排ガス浄化装置に配設されたハニカム構造体を構成するハニカム焼成体の外周壁の厚さは、0.2~0.5mmであることが望ましい。ハニカム焼成体の外周壁の厚さは、0.2~0.5mmであると、ハニカム構造体のセル壁に比べて外周壁の厚さが厚くなるので、ハニカム焼成体のセル壁の厚さを薄くしても、ハニカム焼成体の外周壁が機械的強度を保つための強化材の役割を果たし、排ガス浄化装置に配設されたハニカム焼成体の機械的特性を良好に維持することができる。従って、長期間使用してもハニカム構造体にクラック等が発生しにくい、耐久性に優れた排ガス浄化装置とすることができる。
(8)本実施形態の排ガス浄化装置では、該排ガス浄化装置に配設されたハニカム構造体を構成するハニカム焼成体の長手方向に垂直な断面におけるセルの単位面積あたりの数が31~62個/cmであることが望ましい。ハニカム焼成体の長手方向に垂直な断面におけるセルの単位面積あたりの数が31~62個/cmであると、ハニカム構造体の断面における単位面積あたりに占めるセル壁の数(面積)が適切な範囲となり、セル壁がハニカム焼成体の機械的特性を維持する部位として機能し、ハニカム構造体は機械的特性を維持することができる。従って、長期間使用してもハニカム構造体にクラック等が発生しにくい、耐久性に優れた排ガス浄化装置とすることができる。
(その他の実施形態)
本発明の第一実施形態に係るハニカム構造体では、外方ハニカム焼成体120及び130は、切削された部分には外周壁が存在しないので、そのままでは、大容量セル111aと小容量セル111bが溝として外周部分に露出する形状となっている。しかし、外方ハニカム焼成体は、外周すべてに外周壁が形成された態様となっていてもよい。
具体的には、本発明の実施形態に係るハニカム構造体は、図2(a)、図2(b)に示す内方ハニカム焼成体110と、図10(a)に示す外方ハニカム焼成体310と、図10(b)に示す外方ハニカム焼成体320とから構成されてもよい。
図10(a)及び図10(b)は、本発明の他の実施形態に係るハニカム構造体を構成する外方ハニカム焼成体の一例を模式的に示す側面図である。
図10(a)に示す外方ハニカム焼成体310及び図10(b)に示す外方ハニカム焼成体320は、図3(a)に示す外方ハニカム焼成体120及び図3(b)に示す外方ハニカム焼成体130の変形例である。
図10(a)に示す外方ハニカム焼成体310及び図10(b)に示す外方ハニカム焼成体320では、外形が図3に示したハニカム焼成体120、130と同様であり、大容量セル311a、321aと小容量セル311b、321bの形状は、図3(a)及び(b)に示したハニカム焼成体120の形状と同様である。
そして、円弧形状なる辺の部分にも所定の厚さの外周壁314、324が形成されており、外周壁314、324に近い大容量セル311a、321aと小容量セル311b、321bは、外周壁314、324に合わせて変形されている。
このようなハニカム焼成体310、320を有するハニカム構造体は、本発明の第二実施形態に係るハニカム構造体20と同様に、セラミックブロックが作製された時点で、円柱形状となっているので、切削加工の必要がなく、ハニカム構造体の製造工程を簡略化することができる。
上記の構成を有するハニカム構造体を製造するためには、図2に示す内方ハニカム焼成体110、図10(a)に示す外方ハニカム焼成体310及び図10(b)に示す外方ハニカム焼成体320に対応する金型を用いてハニカム成形体を作製すればよい。
本発明の実施形態に係るハニカム構造体を構成するハニカム焼成体では、セルは、大容量セルと小容量セルとで構成されているが、大容量セル及び小容量セルの形態は、これまでの実施形態において説明した形態に限定されるものではない。
以下においては、本発明の第二実施形態に係るハニカム構造体を構成する複数のハニカム焼成体と同様の形状を有するハニカム焼成体について、大容量セル及び小容量セルの形状が異なる場合を説明するが、ハニカム構造体やハニカム構造体を構成するハニカム焼成体の形状は、本発明の第二実施形態に係るハニカム構造体又はハニカム構造体を構成するハニカム焼成体の形状に限定されない。
図11(a)、図11(b)及び図11(c)は、本発明の他の実施形態に係るハニカム構造体を構成するハニカム焼成体の一例を模式的に示す側面図である。
図11(a)に示すハニカム焼成体410では、大容量セル411aと、小容量セル411bが交互に配設されてなる。
図11(a)に示すハニカム焼成体410では、大容量セル411aの長手方向に垂直な断面の形状は四角形であり、小容量セル411bの長手方向に垂直な断面の形状は四角形である。
図11(b)に示すハニカム焼成体420は、大容量セル421aと、小容量セル421bが交互に配設されてなる。
図11(b)に示すハニカム焼成体420では、大容量セル421aの長手方向に垂直な断面の形状は四角形の角部に相当する部分が円弧状である形状であり、小容量セル421bの長手方向に垂直な断面の形状は四角形の角部に相当する部分が円弧状である形状である。
図11(c)に示すハニカム焼成体430は、大容量セル431aと、小容量セル431bが交互に配設されている。大容量セル431a及び小容量セル431bの長手方向に垂直な断面は、セルの各辺が曲線である形状である。すなわち、図11(c)ではセル壁433の断面形状が曲線である。
大容量セル431aの断面形状は、セル壁433がセルの断面の中心から外側に向かって凸の形状である。一方、小容量セル431bの断面形状は、セル壁433がセルの断面の外側から中心に向かって凸の形状である。
セル壁433はハニカム焼成体の断面の水平方向及び垂直方向に対して起伏する「波形」の形状を有しており、隣り合うセル壁433の波形の山の部分(正弦曲線でいう振幅の極大値の部分)が互いに最近接することで、セルの断面形状が外側に膨らんだ大容量セル431aとセルの断面形状が内側に凹んだ小容量セル431bとが形成される。なお、波形の振幅は一定でもよくまた変化しても良いが、一定であることが好ましい。
なお、上記大容量セルと小容量セルの形状は、上記した以外の形状であってもよい。
ハニカム焼成体が大容量セルと小容量セルを有する場合、隣り合う大容量セルの長手方向に垂直な断面の重心間距離と、隣り合う小容量セルの長手方向に垂直な断面の重心間距離とは、等しいことが望ましい。
「隣り合う大容量セルの長手方向に垂直な断面の重心間距離」とは、一の大容量セルの長手方向に垂直な断面における重心と、隣り合う大容量セルの長手方向に垂直な断面における重心との最小の距離をいい、一方、「隣り合う小容量セルの長手方向に垂直な断面の重心間距離」とは、一の小容量セルの長手方向に垂直な断面における重心と、隣り合う小容量セルの重心との最小の距離のことをいう。
上記2つの重心間距離が等しいとき、再生時に熱が均一に拡散することで、ハニカムフィルタ内部の局所的な温度の偏りがなくなり、長期間繰り返し使用しても、熱応力に起因するクラック等が発生することのない耐久性に優れたフィルタとなるからである。
大容量セルと小容量セルからなるハニカム焼成体について、図2に示した長手方向に垂直な断面の形状が四角形のハニカム焼成体を例にして説明したが、図7に示したハニカム焼成体220又は図8に示したハニカム焼成体230が、図6~図8に示した形状と異なる形状の大容量セルと小容量セルを備えていても良い。
図12(a)、図12(b)及び図12(c)は、本発明の他の実施形態に係るハニカム構造体を構成する別の形状のハニカム焼成体の端面の一例を模式的に示す側面図である。なお、図12(a)、図12(b)及び図12(c)に示すハニカム焼成体の形状は、図7に示したハニカム焼成体220の形状と同様である。
これらの図面に示すハニカム焼成体510、520、530、は、それぞれ大容量セル511a、521a、531a及び小容量セル511b、521b、531bが交互に配設されてなる。大容量セル及び小容量セルの形状は、上述したハニカム焼成体410、420、430の場合と同様であるので、その詳細な説明は省略する。
図13(a)、図13(b)及び図13(c)は、本発明の他の実施形態に係るハニカム構造体を構成するさらに別の形状のハニカム焼成体の端面の一例を模式的に示す側面図である。なお、図13(a)、図13(b)及び図13(c)に示すハニカム焼成体の形状は、図8に示したハニカム焼成体230の形状と同様である。
これらの図面に示すハニカム焼成体610、620、630は、それぞれ大容量セル611a、621a、631a及び小容量セル611b、621b、631bが交互に配設されてなる。大容量セル及び小容量セルの形状は、上述したハニカム焼成体410、420、430の場合と同様である。
本発明の実施形態に係るハニカム構造体の形状は、円柱状に限定されるものでなく、楕円柱状、長円形状、多角柱状、断面三角形の頂点部分が円弧である柱状体等の任意の柱形状であればよい。
本発明の実施形態に係るハニカム構造体において、セルに封止材が設けられずに、セルの端部が封止されていなくてもよい。この場合、ハニカム構造体は、セル壁に触媒を担持させることによって、排ガス中に含まれるCO、HC又はNOx等の有害なガス成分を浄化する触媒担体として機能する。
本発明の実施形態に係るハニカム構造体において、ハニカム構造体をフィルタとして使用する場合には、ハニカム構造体を構成するハニカム焼成体の気孔率は、特に限定されないが、35~60%であることが望ましい。
ハニカム焼成体の気孔率が35%未満であると、ハニカム焼成体が目詰まりを起こしやすくなる。一方、ハニカム焼成体の気孔率が60%を超えると、ハニカム焼成体の強度が低下するため、ハニカム焼成体が破壊されやすくなる。
また、本発明の実施形態に係るハニカム構造体において、ハニカム構造体をフィルタとして使用する場合には、ハニカム構造体を構成するハニカム焼成体の平均気孔径は、5~30μmであることが望ましい。
ハニカム焼成体の平均気孔径が5μm未満であると、ハニカム焼成体が目詰まりを起こしやすくなる。一方、ハニカム焼成体の平均気孔径が30μmを超えると、パティキュレートがハニカム焼成体の気孔を通り抜けてしまい、ハニカム焼成体がパティキュレートを捕集することができず、ハニカム焼成体がフィルタとして機能することができない。
なお、上記気孔率及び気孔径は、従来公知の方法である水銀圧入法により測定することができる。
本発明の実施形態に係るハニカム構造体において、ハニカム焼成体の各セルのハニカム焼成体の長手方向に垂直な断面の形状は、特に限定されるものではなく、例えば、四角形、六角形等の任意の形状であればよい。また、種々の形状を混在させてもよい。
本発明の実施形態に係るハニカム構造体を構成するハニカム焼成体の材料としては、炭化ケイ素又はケイ素結合炭化ケイ素に限定されるわけではなく、例えば、窒化アルミニウム、窒化ケイ素、窒化ホウ素、窒化チタン等の窒化物セラミック、炭化ジルコニウム、炭化チタン、炭化タンタル、炭化タングステン等の炭化物セラミック、コージェライト、チタン酸アルミニウム等の酸化物セラミック等が挙げられる。
これらの中では、非酸化物セラミックが好ましく、耐熱性、機械強度、熱伝導率等に優れるという観点から炭化ケイ素又はケイ素結合炭化ケイ素が特に好ましい。
本発明の実施形態に係るハニカム構造体を構成するハニカム焼成体を作製する際に用いられる湿潤混合物に含まれる有機バインダとしては、特に限定されず、例えば、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリエチレングリコール等が挙げられる。これらの中では、メチルセルロースが望ましい。有機バインダの配合量は、上記セラミック粉末100重量部に対して、1~10重量部が望ましい。
上記湿潤混合物に含まれる可塑剤としては、特に限定されず、例えば、グリセリン等が挙げられる。
また、上記湿潤混合物に含まれる潤滑剤としては、特に限定されず、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシプロピレンアルキルエーテル等のポリオキシアルキレン系化合物等が挙げられる。
潤滑剤の具体例としては、例えば、ポリオキシエチレンモノブチルエーテル、ポリオキシプロピレンモノブチルエーテル等が挙げられる。
なお、可塑剤、潤滑剤は、場合によっては、上記湿潤混合物に含まれていなくてもよい。
また、上記湿潤混合物を調製する際には、分散媒液を使用してもよく、分散媒液としては、例えば、水、ベンゼン等の有機溶媒、メタノール等のアルコール等が挙げられる。
さらに、上記湿潤混合物中には、成形助剤が添加されていてもよい。
成形助剤としては特に限定されず、例えば、エチレングリコール、デキストリン、脂肪酸、脂肪酸石鹸、ポリアルコール等が挙げられる。
さらに、上記湿潤混合物には、必要に応じて酸化物系セラミックを成分とする微小中空球体であるバルーンや、球状アクリル粒子、グラファイト等の造孔剤を添加してもよい。
バルーンとしては特に限定されず、例えば、アルミナバルーン、ガラスマイクロバルーン、シラスバルーン、フライアッシュバルーン(FAバルーン)、ムライトバルーン等が挙げられる。これらの中では、アルミナバルーンが望ましい。
上記接着材ペースト及び上記外周コート材ペーストに含まれる無機バインダとしては、例えば、シリカゾル、アルミナゾル等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。無機バインダの中では、シリカゾルが望ましい。
上記接着材ペースト及び上記外周コート材ペーストに含まれる有機バインダとしては、例えば、ポリビニルアルコール、メチルセルロース、エチルセルロース、カルボキシメチルセルロース等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。有機バインダの中では、カルボキシメチルセルロースが望ましい。
上記接着材ペースト及び上記外周コート材ペーストに含まれる無機粒子としては、例えば、炭化物粒子、窒化物粒子等が挙げられる。具体的には、炭化ケイ素粒子、窒化ケイ素粒子、窒化ホウ素粒子等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。無機粒子の中では、熱伝導性に優れる炭化ケイ素粒子が望ましい。
上記接着材ペースト及び上記外周コート材ペーストに含まれる無機繊維及び/又はウィスカとしては、例えば、シリカ-アルミナ、ムライト、アルミナ、シリカ等からなる無機繊維及び/又はウィスカ等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。無機繊維の中では、アルミナファイバが望ましい。また、無機繊維は、生体溶解性ファイバであってもよい。
さらに、上記接着材ペースト及び上記外周コート材ペーストには、必要に応じて酸化物系セラミックを成分とする微小中空球体であるバルーンや、球状アクリル粒子、グラファイト等の造孔剤を添加してもよい。バルーンとしては特に限定されず、例えば、アルミナバルーン、ガラスマイクロバルーン、シラスバルーン、フライアッシュバルーン(FAバルーン)、ムライトバルーン等が挙げられる。これらの中では、アルミナバルーンが好ましい。
本発明の実施形態に係るハニカム構造体において、ハニカム焼成体のセル壁には、排ガスを浄化するための触媒を担持させてもよい。担持させる触媒としては、例えば、白金、パラジウム、ロジウム等の貴金属が望ましい。また、その他の触媒として、例えば、カリウム、ナトリウム等のアルカリ金属、バリウム等のアルカリ土類金属、ゼオライトを用いることもできる。これらの触媒は、単独で用いてもよいし、2種以上併用してもよい。
本発明のハニカム構造体は、大容量セルと小容量セルとからなり、上記大容量セルの上記長手方向に垂直な断面の面積が、上記小容量セルの上記長手方向に垂直な断面の面積よりも大きい複数個のハニカム焼成体が接着材層を介して結束されたセラミックブロックを含み、大容量セルと小容量セルのいずれか一方の端部が封止されたハニカム構造体であって、上記ハニカム構造体の中央部における長手方向に垂直な断面の開口率は、65%以上であり、上記ハニカム構造体の第二の端面の開口率に対する上記ハニカム構造体の第一の端面の開口率の比(第一の端面の開口率/第二の端面の開口率)は、1.4以上であり、上記ハニカム焼成体の外周壁を除くセル壁の厚さは、0.1mm以上、0.2mm未満であり、上記ハニカム構造体の直径は、200mm以上であり、上記ハニカム構造体の直径に対する上記ハニカム構造体の長さの比(上記ハニカム構造体の長さ/上記ハニカム構造体の直径)は、1.0以下であることことを必須の構成要素としている。
係る必須の構成要素に、本発明の第一実施形態~第二実施形態、及び、その他の実施形態で詳述した種々の構成(例えば、ハニカム構造体を構成するハニカム焼成体の形状、ハニカム焼成体のセル壁の形状、ハニカム焼成体のセル構造、ハニカム構造体の製造工程等)を適宜組み合わせることにより所望の効果を得ることができる。
10、20 ハニカム構造体
11、21 接着材層
13、23 セラミックブロック
110、120、130、210、220、230、310、320、410、420、430、510、520、530、610、620、630 ハニカム焼成体
111a、121a、131a、211a、221a、231a、311a、321a、331a、411a、421a、431a、511a、521a、531a、611a、621a、631a 大容量セル
111b、121b、131b、211b、221b、231b、311b、321b、331b、411b、421b、431b、511b、521b、531b、611b、621b、631b 小容量セル
112a、112b、122a、122b、132a、132b、212a、212b、222a、222b、232a、232b、312a、312b、322a、322b、412a、412b、422a、422b、432a、432b、512a、512b、522a、522b、532a、532b、612a、612b、622a、622b、632a、632b 封止材
113(113a、113b)、123(123a、123b)、133(133a、133b)、213(213a、213b)、223(223a、223b)、233(233a、233b)、313(313a、313b)、323(323a、323b)、413(413a、413b)、423(423a、423b)、433(433a、433b) セル壁

Claims (11)

  1. 大容量セルと小容量セルとからなり、前記大容量セルの前記長手方向に垂直な断面の面積が、前記小容量セルの前記長手方向に垂直な断面の面積よりも大きい、複数個のハニカム焼成体が接着材層を介して結束されたセラミックブロックを含み、前記大容量セルと前記小容量セルのいずれか一方の端部が封止されたハニカム構造体であって、
    前記ハニカム構造体の中央部における長手方向に垂直な断面の開口率は、65%以上であり、
    前記ハニカム構造体の第二の端面の開口率に対する前記ハニカム構造体の第一の端面の開口率の比(第一の端面の開口率/第二の端面の開口率)は、1.4以上であり、
    前記ハニカム焼成体の外周壁を除くセル壁の厚さは、0.1mm以上、0.2mm未満であり、
    前記ハニカム構造体の直径は、200mm以上であり、
    前記ハニカム構造体の直径に対する前記ハニカム構造体の長さの比(前記ハニカム構造体の長さ/前記ハニカム構造体の直径)は、1.0以下であることを特徴とするハニカム構造体。
  2. 前記ハニカム構造体の中央部における長手方向に垂直な断面の開口率は、80%以下である請求項1に記載のハニカム構造体。
  3. 前記ハニカム構造体の第二の端面の開口率に対する前記ハニカム構造体の第一の端面の開口率の比(第一の端面の開口率/第二の端面の開口率)は、3.0以下である請求項1又は2に記載のハニカム構造体。
  4. 前記ハニカム構造体の直径に対する前記ハニカム構造体の長さの比(前記ハニカム構造体の長さ/前記ハニカム構造体の直径)は、0.5以上である請求項1~3のいずれかに記載のハニカム構造体。
  5. 前記ハニカム焼成体の前記外周壁の厚さは、0.2~0.5mmである請求項1~4のいずれかに記載のハニカム構造体。
  6. 前記ハニカム焼成体の前記長手方向に垂直な断面におけるセルの単位面積あたりの数は、31~62個/cmである請求項1~5のいずれかに記載のハニカム構造体。
  7. 前記大容量セルの前記長手方向に垂直な断面の形状は八角形であり、
    前記小容量セルの前記長手方向に垂直な断面の形状は四角形である請求項1~6のいずれかに記載のハニカム構造体。
  8. 前記大容量セルの前記長手方向に垂直な断面の形状は四角形であり、
    前記小容量セルの前記長手方向に垂直な断面の形状は四角形である請求項1~6のいずれかに記載のハニカム構造体。
  9. 前記大容量セル及び前記小容量セルの前記長手方向に垂直な断面においては、前記大容量セル及び前記小容量セルの各辺が曲線により構成されている請求項1~6のいずれかに記載のハニカム構造体。
  10. 前記セラミックブロックは、外周全体に外周壁を有するハニカム焼成体から構成されている請求項1~9のいずれかに記載のハニカム構造体。
  11. ハニカム構造体の側面に保持シール材が配置され、前記ハニカム構造体と前記保持シール材とが金属容器に配置された排ガス浄化装置であって、
    前記ハニカム構造体は、請求項1~10のいずれかに記載のハニカム構造体であり、
    排ガスの入り口側が、前記ハニカム構造体の第一の端面となるように、前記ハニカム構造体が配置されていることを特徴とする排ガス浄化装置。
PCT/JP2011/058333 2011-03-31 2011-03-31 ハニカム構造体及び排ガス浄化装置 WO2012132004A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2011/058333 WO2012132004A1 (ja) 2011-03-31 2011-03-31 ハニカム構造体及び排ガス浄化装置
EP11181031A EP2505248B1 (en) 2011-03-31 2011-09-13 Honeycomb structured body and exhaust gas purifying apparatus
US13/343,235 US8721979B2 (en) 2011-03-31 2012-01-04 Honeycomb structure and exhaust gas purifying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/058333 WO2012132004A1 (ja) 2011-03-31 2011-03-31 ハニカム構造体及び排ガス浄化装置

Publications (1)

Publication Number Publication Date
WO2012132004A1 true WO2012132004A1 (ja) 2012-10-04

Family

ID=44785365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058333 WO2012132004A1 (ja) 2011-03-31 2011-03-31 ハニカム構造体及び排ガス浄化装置

Country Status (3)

Country Link
US (1) US8721979B2 (ja)
EP (1) EP2505248B1 (ja)
WO (1) WO2012132004A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158420A1 (ja) * 2015-03-31 2016-10-06 株式会社小松製作所 ハニカムフィルタ

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009015420A1 (de) * 2009-03-27 2010-09-30 Emitec Gesellschaft Für Emissionstechnologie Mbh Wabenkörper für ein Abgasreinigungssystem
WO2013186923A1 (ja) 2012-06-15 2013-12-19 イビデン株式会社 ハニカムフィルタ
WO2013186922A1 (ja) 2012-06-15 2013-12-19 イビデン株式会社 ハニカムフィルタ
WO2014054159A1 (ja) 2012-10-04 2014-04-10 イビデン株式会社 ハニカムフィルタ
JP6239305B2 (ja) 2013-07-31 2017-11-29 イビデン株式会社 ハニカムフィルタ
JP6239306B2 (ja) * 2013-07-31 2017-11-29 イビデン株式会社 ハニカムフィルタ
JP6239304B2 (ja) 2013-07-31 2017-11-29 イビデン株式会社 ハニカムフィルタ
JP6239303B2 (ja) * 2013-07-31 2017-11-29 イビデン株式会社 ハニカムフィルタ
JP6239307B2 (ja) 2013-07-31 2017-11-29 イビデン株式会社 ハニカムフィルタ
JP6231908B2 (ja) * 2014-03-14 2017-11-15 日本碍子株式会社 目封止ハニカム構造体
JP6081951B2 (ja) * 2014-03-26 2017-02-15 日本碍子株式会社 ハニカム構造体の製造方法
JP6545962B2 (ja) * 2015-01-22 2019-07-17 株式会社キャタラー 排ガス浄化用触媒
CA2928459A1 (en) * 2016-05-02 2017-11-02 Nova Chemicals Corporation Transfer line for steam cracker with selective gas removal
JP6691811B2 (ja) * 2016-05-02 2020-05-13 日本碍子株式会社 目封止ハニカム構造体、及び目封止ハニカム構造体の形成方法
US11035616B2 (en) 2019-03-29 2021-06-15 Hamilton Sundstrand Corporation Fuel heat exchanger with a barrier

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09125931A (ja) * 1995-10-31 1997-05-13 Toyota Motor Corp ディーゼルパーティキュレートフィルター
JP2002201933A (ja) * 2001-01-09 2002-07-19 Ibiden Co Ltd 触媒コンバータ用保持シール材、セラミック繊維集合体、セラミック繊維、セラミック繊維の製造方法
JP2003515023A (ja) * 1999-10-15 2003-04-22 コーニング インコーポレイテッド 低アスペクトレシオディーゼル排気フィルタ
JP2004000896A (ja) * 2002-03-25 2004-01-08 Ngk Insulators Ltd ハニカムフィルター

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60141667A (ja) 1983-12-28 1985-07-26 日本碍子株式会社 セラミックハニカム構造体を接合若しくはコーティングまたは封着するためのセラミック材料組成物
US20030041730A1 (en) * 2001-08-30 2003-03-06 Beall Douglas M. Honeycomb with varying channel size
ES2302042T5 (es) * 2003-10-20 2012-10-11 Ibiden Co., Ltd. Estructura de panal
JP4631331B2 (ja) 2004-07-09 2011-02-16 カシオ計算機株式会社 電源回路
WO2006126278A1 (ja) * 2005-05-27 2006-11-30 Ibiden Co., Ltd. ハニカム構造体
JP5604046B2 (ja) * 2008-03-28 2014-10-08 日本碍子株式会社 ハニカム構造体
JP4920752B2 (ja) * 2010-01-05 2012-04-18 日本碍子株式会社 ハニカム構造体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09125931A (ja) * 1995-10-31 1997-05-13 Toyota Motor Corp ディーゼルパーティキュレートフィルター
JP2003515023A (ja) * 1999-10-15 2003-04-22 コーニング インコーポレイテッド 低アスペクトレシオディーゼル排気フィルタ
JP2002201933A (ja) * 2001-01-09 2002-07-19 Ibiden Co Ltd 触媒コンバータ用保持シール材、セラミック繊維集合体、セラミック繊維、セラミック繊維の製造方法
JP2004000896A (ja) * 2002-03-25 2004-01-08 Ngk Insulators Ltd ハニカムフィルター

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158420A1 (ja) * 2015-03-31 2016-10-06 株式会社小松製作所 ハニカムフィルタ

Also Published As

Publication number Publication date
US20120251402A1 (en) 2012-10-04
EP2505248A1 (en) 2012-10-03
EP2505248B1 (en) 2012-12-26
US8721979B2 (en) 2014-05-13

Similar Documents

Publication Publication Date Title
WO2012132004A1 (ja) ハニカム構造体及び排ガス浄化装置
JP5202693B2 (ja) フィルタ
JP4969103B2 (ja) ハニカム構造体
JP4516017B2 (ja) セラミックハニカム構造体
JP4698585B2 (ja) ハニカム構造体及び排気ガス浄化装置
WO2011042976A1 (ja) 排ガス浄化装置及び排ガス浄化方法
US7666240B2 (en) Honeycomb filter
JP5231305B2 (ja) ハニカム構造体及び接合型ハニカム構造体
JP5757880B2 (ja) ハニカム構造体
WO2009101682A1 (ja) ハニカム構造体、排ガス浄化装置、及び、ハニカム構造体の製造方法
JP5188433B2 (ja) ハニカムフィルタ
JP2006223983A (ja) ハニカム構造体
WO2013187444A1 (ja) ハニカムフィルタ
JPWO2006106785A1 (ja) ハニカム構造体
JP2011179501A (ja) ハニカム構造体
WO2014054159A1 (ja) ハニカムフィルタ
WO2011114506A1 (ja) ハニカム構造体
JP2008212917A (ja) ハニカム構造体および排気ガス処理装置
JP2011098335A (ja) 排ガス浄化装置及び排ガス浄化方法
WO2016013516A1 (ja) ハニカムフィルタ
JP6110750B2 (ja) 目封止ハニカム構造体
JP2012250901A (ja) ハニカム構造体及び排ガス浄化装置
JP5378842B2 (ja) ハニカム構造体
US8883286B2 (en) Honeycomb structure
JP5234970B2 (ja) ハニカム構造体、排ガス浄化装置、及び、ハニカム構造体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11862202

Country of ref document: EP

Kind code of ref document: A1