WO2011042976A1 - 排ガス浄化装置及び排ガス浄化方法 - Google Patents

排ガス浄化装置及び排ガス浄化方法 Download PDF

Info

Publication number
WO2011042976A1
WO2011042976A1 PCT/JP2009/067566 JP2009067566W WO2011042976A1 WO 2011042976 A1 WO2011042976 A1 WO 2011042976A1 JP 2009067566 W JP2009067566 W JP 2009067566W WO 2011042976 A1 WO2011042976 A1 WO 2011042976A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
cell
longitudinal direction
cross
honeycomb filter
Prior art date
Application number
PCT/JP2009/067566
Other languages
English (en)
French (fr)
Inventor
尾久和丈
牧野憲一
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Priority to PCT/JP2009/067566 priority Critical patent/WO2011042976A1/ja
Priority to CN200980160933.4A priority patent/CN102470310B/zh
Priority to EP10156473A priority patent/EP2312133B1/en
Priority to AT10156473T priority patent/ATE540203T1/de
Priority to US12/759,650 priority patent/US8057766B2/en
Publication of WO2011042976A1 publication Critical patent/WO2011042976A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/247Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2474Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the walls along the length of the honeycomb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2476Monolithic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2478Structures comprising honeycomb segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2482Thickness, height, width, length or diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2484Cell density, area or aspect ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/249Quadrangular e.g. square or diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/2494Octagonal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/34Honeycomb supports characterised by their structural details with flow channels of polygonal cross section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/48Honeycomb supports characterised by their structural details characterised by the number of flow passages, e.g. cell density
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/60Discontinuous, uneven properties of filter material, e.g. different material thickness along the longitudinal direction; Higher filter capacity upstream than downstream in same housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2340/00Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas purification apparatus and an exhaust gas purification method.
  • Gasoline engines have the advantage that they emit less particulates such as soot (hereinafter also referred to as PM) than diesel engines. Therefore, normally, it is not necessary to mount an exhaust gas purification device for purifying PM. On the other hand, gasoline engines have the drawback of inferior fuel consumption compared to diesel engines.
  • An exhaust gas purification device used for purification of exhaust gas discharged from a diesel engine is manufactured by housing a filter made of a material such as ceramic in a metal container (casing).
  • the exhaust gas can be purified by introducing the exhaust gas into the exhaust gas purification device from the gas inlet side of the exhaust gas purification device, passing the exhaust gas through the filter, and discharging the exhaust gas from the gas outlet side of the exhaust gas purification device.
  • Patent Document 1 discloses a honeycomb filter having a honeycomb structure in which the area of the opening on the gas inlet side is larger than the area of the opening on the gas outlet side as a ceramic filter for purifying PM contained in the exhaust gas. ing.
  • Patent Document 2 discloses a honeycomb filter in which a plurality of columnar porous ceramic members in which the area of the opening on the gas inlet side is larger than the area of the opening on the gas outlet side are combined.
  • Patent Document 3 discloses a honeycomb filter in which the area of the opening on the gas inlet side is larger than the area of the opening on the gas outlet side, and the pore diameter distribution is adjusted to a predetermined range. .
  • the honeycomb filter described in Patent Documents 1 to 3 for collecting PM contained in exhaust gas is intended to purify exhaust gas containing a large amount of PM typified by exhaust gas discharged from a diesel engine. It is said.
  • Such a honeycomb filter is designed so that a large amount of PM can be collected by making the area of the opening on the gas inlet side larger than the area of the opening on the gas outlet side.
  • An important characteristic of an exhaust gas purification apparatus using such a honeycomb filter is pressure loss.
  • a high pressure loss leads to a deterioration in fuel consumption, so a low pressure loss is desirable.
  • the relationship between the pressure loss and the amount of collected PM it is empirically known that the pressure loss increases as the amount of PM deposited on the honeycomb filter increases.
  • the present inventors have conducted an experiment for purifying exhaust gas discharged from a direct-injection gasoline engine, thereby causing a factor that affects pressure loss when exhaust gas from a direct-injection gasoline engine is purified using an exhaust gas purification device. was examined.
  • the present inventors have examined factors that affect the initial pressure loss of the exhaust gas purification apparatus. As a result, it was found that the area of the opening on the gas outlet side of the honeycomb filter affects the value of the initial pressure loss. The inventors have found that the initial pressure loss is reduced when the area of the opening on the gas outlet side of the honeycomb filter is increased. And it discovered that the exhaust gas purification apparatus provided with such a honey-comb filter was especially suitable for purification
  • the exhaust gas purifying device is: A metal container having a gas inlet side and a gas outlet side; An exhaust gas purification device comprising a honeycomb filter housed in the metal container,
  • the honeycomb filter has a large number of cells arranged in parallel in the longitudinal direction across a cell wall, a first end surface, and a second end surface,
  • the plurality of cells include a first cell in which an end on the first end face side is opened and an end on the second end face side is sealed, and an end on the second end face side is opened.
  • the second cells in which the end portion on the first end face side is sealed are alternately arranged,
  • the area of the cross section perpendicular to the longitudinal direction of the first cell is smaller than the area of the cross section perpendicular to the longitudinal direction of the second cell,
  • the first end face side of the honeycomb filter is disposed on the gas inlet side of the metal container, and the second end face side of the honeycomb filter is disposed on the gas outlet side of the metal container.
  • the exhaust gas purifying apparatus includes the honeycomb filter in which the area of the opening on the gas inlet side is smaller than the area of the opening on the gas outlet side, the initial pressure loss can be reduced.
  • Such an exhaust gas purification device with a low initial pressure loss can be suitably used for purification of exhaust gas from a direct injection gasoline engine with a small amount of PM contained in the exhaust gas.
  • the opening ratio of the first end face is 15 to 30%, and the opening ratio of the second end face is 35 to 50%. If the opening ratio of the first end face is less than 15%, exhaust gas hardly flows into the cell, resulting in high pressure loss. On the other hand, if the opening ratio of the first end face exceeds 30%, the area of the opening on the gas outlet side becomes relatively small, and the initial pressure loss becomes high.
  • the area of the cross section perpendicular to the longitudinal direction of the first cell is 60 to 85% of the area of the cross section perpendicular to the longitudinal direction of the second cell.
  • the area of the cross section perpendicular to the longitudinal direction of the first cell is less than 60% of the area of the cross section perpendicular to the longitudinal direction of the second cell, the volume of the first cell becomes too small. Thus, the pressure loss due to the resistance when the exhaust gas flows into the cell is increased.
  • the shape of the cross section perpendicular to the longitudinal direction of the first cell is substantially quadrilateral, and the shape of the cross section perpendicular to the longitudinal direction of the second cell is approximately eight. It is square.
  • the shape of a cross section perpendicular to the longitudinal direction of the first cell is substantially a square, and the shape of a cross section perpendicular to the longitudinal direction of the second cell is at least 1.
  • a portion corresponding to one corner is a substantially quadrangular shape having an arc shape.
  • each of the sides of each of the first cell and the second cell is perpendicular to the longitudinal direction of the cell.
  • the shape of a cross section perpendicular to the longitudinal direction of the first cell is substantially square, and the shape of a cross section perpendicular to the longitudinal direction of the second cell is substantially square. It is.
  • An exhaust gas purifying apparatus including a honeycomb filter having cells of these shapes can be particularly suitably used for purifying exhaust gas of a direct injection gasoline engine.
  • the honeycomb filter is formed by binding a plurality of honeycomb fired bodies through an adhesive layer.
  • the gas is exhaust gas discharged from a gasoline engine.
  • Such an exhaust gas purification device is suitable for purifying exhaust gas from a gasoline engine with a small amount of PM contained in the exhaust gas.
  • the exhaust gas purification method is an exhaust gas purification method for purifying exhaust gas discharged from an engine using an exhaust gas purification device
  • the exhaust gas purification apparatus includes a metal container having a gas inlet side and a gas outlet side, A honeycomb filter housed in the metal container, The honeycomb filter has a large number of cells arranged in parallel in the longitudinal direction across a cell wall, a first end surface, and a second end surface, The plurality of cells include a first cell in which an end on the first end face side is opened and an end on the second end face side is sealed, and an end on the second end face side is opened.
  • the second cells in which the end portion on the first end face side is sealed are alternately arranged,
  • the area of the cross section perpendicular to the longitudinal direction of the first cell is smaller than the area of the cross section perpendicular to the longitudinal direction of the second cell,
  • the first end face side of the honeycomb filter is disposed on the gas inlet side of the metal container, and the second end face side of the honeycomb filter is disposed on the gas outlet side of the metal container;
  • the exhaust gas discharged from the engine flows into the exhaust gas purification device from the gas inlet side of the metal container and flows out from the gas outlet side of the metal container.
  • exhaust gas is allowed to flow from the first cell having a small cross-sectional area perpendicular to the longitudinal direction, and the exhaust gas is discharged from the second cell having a large cross-sectional area perpendicular to the longitudinal direction.
  • the opening ratio of the first end face is 15 to 30%, and the opening ratio of the second end face is 35 to 50%.
  • the area of the cross section perpendicular to the longitudinal direction of the first cell is 60 to 85% of the area of the cross section perpendicular to the longitudinal direction of the second cell.
  • the shape of the cross section of the first cell perpendicular to the longitudinal direction is substantially a quadrangle
  • the shape of the cross section of the second cell perpendicular to the longitudinal direction is substantially eight. It is square.
  • the shape of a cross section perpendicular to the longitudinal direction of the first cell is substantially a square
  • the shape of a cross section perpendicular to the longitudinal direction of the second cell is at least 1.
  • a portion corresponding to one corner is a substantially quadrangular shape having an arc shape.
  • each side of the cell is a curve in the cross section perpendicular to the longitudinal direction of the first cell and the second cell.
  • the shape of a cross section perpendicular to the longitudinal direction of the first cell is substantially square
  • the shape of a cross section perpendicular to the longitudinal direction of the second cell is substantially square. It is.
  • the honeycomb filter is formed by binding a plurality of honeycomb fired bodies through an adhesive layer.
  • the engine is a gasoline engine.
  • the amount of PM contained in the exhaust gas from the gasoline engine is smaller than the amount of PM contained in the exhaust gas from the diesel engine. Therefore, even when exhaust gas purification is performed over a long period of time, the amount of PM deposited in the honeycomb filter is small, and the increase in pressure loss from the initial pressure loss is small. Therefore, by using an exhaust gas purification method that can reduce the initial pressure loss, the exhaust gas can be purified over a long period of time with a low pressure loss.
  • FIG. 1 is a cross-sectional view schematically showing an example of the exhaust gas purifying apparatus of the present invention.
  • FIG. 2 is a perspective view schematically showing an example of a honeycomb filter used in the exhaust gas purification apparatus of the first embodiment.
  • Fig. 3 (a) is a perspective view schematically showing an example of a honeycomb fired body constituting the honeycomb filter shown in Fig. 2, and
  • Fig. 3 (b) is a honeycomb fired body shown in Fig. 3 (a).
  • FIG. 4 is a side view schematically showing the cell structure of the honeycomb fired body manufactured in Example 1.
  • FIG. FIG. 5 is a side view schematically showing a cell structure of the honeycomb fired body manufactured in Example 2.
  • FIG. 6 is a cross-sectional view schematically showing a pressure loss measuring method.
  • FIG. 7 is a graph showing the measurement results of the initial pressure loss.
  • Fig.8 (a) is a perspective view which shows typically an example of the honey-comb filter used for the exhaust gas purification apparatus of 2nd embodiment.
  • FIG. 8B is a cross-sectional view of the honeycomb filter shown in FIG. 8A taken along line BB.
  • FIG. 9A, FIG. 9B, FIG. 9C, and FIG. 9D are side views schematically showing an example of an end face of the honeycomb fired body constituting the aggregated honeycomb filter.
  • FIG. 10 is a side view schematically showing an example of an end face of the integral honeycomb filter.
  • FIG. 11 is a side view schematically showing an example of an end face of the integrated honeycomb filter.
  • FIG. 1 is a cross-sectional view schematically showing an example of the exhaust gas purifying apparatus of the present invention.
  • An exhaust gas purification device 10 shown in FIG. 1 includes a metal container 11 having a gas inlet side 14 and a gas outlet side 15, and a honeycomb filter 100 accommodated in the metal container 11.
  • a holding sealing material 12 is disposed between the honeycomb filter 100 and the metal container 11, and the honeycomb filter 100 is held by the holding sealing material 12.
  • An inlet pipe for introducing exhaust gas discharged from an internal combustion engine such as a direct injection gasoline engine into the exhaust gas purification device 10 is connected to the gas inlet side 14 of the metal container 11.
  • a discharge pipe for discharging the exhaust gas that has passed through the exhaust gas purification device 10 to the outside is connected to the gas outlet side 15 of the metal container 11.
  • FIG. 2 is a perspective view schematically showing an example of a honeycomb filter used in the exhaust gas purification apparatus of the first embodiment.
  • Fig. 3 (a) is a perspective view schematically showing an example of a honeycomb fired body constituting the honeycomb filter shown in Fig. 2
  • Fig. 3 (b) is a honeycomb fired body shown in Fig. 3 (a).
  • FIG. 1 is a perspective view schematically showing an example of a honeycomb fired body constituting the honeycomb filter shown in Fig. 2
  • Fig. 3 (b) is a honeycomb fired body shown in Fig. 3 (a).
  • honeycomb filter 100 a plurality of honeycomb fired bodies 110 made of porous ceramic are bound together via an adhesive layer 101 to form a ceramic block 103, and exhaust gas leaks around the ceramic block 103.
  • a coating layer 102 for preventing the above is formed.
  • the coat layer should just be formed as needed.
  • Such a honeycomb filter formed by binding a plurality of honeycomb fired bodies is also referred to as a collective honeycomb filter.
  • Honeycomb filter 100 has a large number of cells arranged in parallel in the longitudinal direction across a cell wall, a first end face 104, and a second end face 105. The positional relationship between the first end surface 104 and the second end surface 105 and the plurality of cells will be described below.
  • the longitudinal direction of the honeycomb filter 100 is the direction indicated by the double arrow a in FIG.
  • a large number of cells have a relatively small cross-sectional area relative to the first cell 111a having a relatively small cross-sectional area perpendicular to the longitudinal direction.
  • Large second cells 111b are alternately arranged.
  • the first cell 111a has a substantially quadrangular shape in cross section perpendicular to the longitudinal direction (indicated by a double-headed arrow b in FIG. 3A), and the second cell 111b has a cross section perpendicular to the longitudinal direction.
  • the shape is substantially octagonal.
  • the honeycomb fired body 110 has a first end face 114 and a second end face 115.
  • first cell 111a an end portion on the first end surface 114 side of the honeycomb fired body 110 is opened, and the end portion on the second end surface 115 side is sealed with a sealing material 112a.
  • second cell 111b an end portion on the second end surface 115 side of the honeycomb fired body 110 is opened, and the end portion on the first end surface 114 side is sealed with the sealing material 112b.
  • a cell wall 113 that separates the first cell 111a and the second cell 111b functions as a filter. That is, the exhaust gas G flowing into the first cell 111a (in FIG. 3B, the exhaust gas is indicated by G and the flow of the exhaust gas is indicated by an arrow) must pass through the cell walls 113 before the second It flows out of the cell 111b.
  • the honeycomb filter 100 is formed by bundling the plurality of honeycomb fired bodies 110 so that the first end face 114 of each honeycomb fired body 110 becomes the first end face 104 of the honeycomb filter 100. At this time, the second end face 115 of each honeycomb fired body 110 becomes the second end face 105 of the honeycomb filter 100.
  • the first cell 111a is opened at the end portion on the first end face 104 side of the honeycomb filter 100 and sealed at the end portion on the second end face 105 side.
  • the second cell 112a is opened at the end portion on the second end face 105 side of the honeycomb filter 100 and sealed at the end portion on the first end face 104 side.
  • the opening ratio of the first end face 104 is 15 to 30%, and the opening ratio of the second end face 105 is 35 to 50%.
  • the area of the cross section perpendicular to the longitudinal direction of the first cell 111a is 60 to 85% of the area of the cross section perpendicular to the longitudinal direction of the second cell 111b.
  • a ratio of the cross-sectional area of the cell is also referred to as an opening ratio.
  • the opening ratio is more preferably 60 to 80%. Further, the opening ratio is more preferably 65 to 75%.
  • the first end face 104 side of the honeycomb filter 100 is disposed on the gas inlet side 14 of the metal container, and the second end face 105 side of the honeycomb filter 100 is on the gas outlet side 15 of the metal container.
  • An exhaust gas purification method of the present embodiment for purifying exhaust gas using the exhaust gas purification device 10 having the honeycomb filter 100 arranged in such a direction will be described below with reference to FIG.
  • the exhaust gas discharged from the internal combustion engine and flowing into the exhaust gas purification device 10 from the gas inlet side 14 flows into the honeycomb filter 100 from the first end face 104 side.
  • the exhaust gas G flows into the first cell 111a.
  • the exhaust gas G passes through the cell wall 113 that separates the first cell 111a and the second cell 111b. At this time, PM in the exhaust gas G is collected by the cell wall 113 and the exhaust gas G is purified.
  • the purified exhaust gas G flows into the second cell 111b having a large cell cross-sectional area, and is discharged out of the honeycomb filter 100 from the second end face 105 side of the honeycomb filter 100. Then, the exhaust gas G is discharged out of the exhaust gas purification device 10 from the gas outlet side 15 of the exhaust gas purification device 10.
  • the exhaust gas is caused to flow from the first cell 111a having a small cell cross-sectional area, and the exhaust gas is caused to flow from the second cell 111b having a large cell cross-sectional area.
  • the exhaust gas can be purified with a low initial pressure loss.
  • the exhaust gas from a gasoline engine is purified. That is, the exhaust gas purifying apparatus used in the exhaust gas purifying method of the present embodiment is suitably used as a gasoline particulate filter (Gasoline Particulate Filter).
  • a gasoline particulate filter Gasoline Particulate Filter
  • the manufacturing method of the exhaust gas purification apparatus of this embodiment is demonstrated.
  • the manufacturing method of the honey-comb filter used for an exhaust gas purification apparatus is demonstrated.
  • a silicon carbide powder having a different average particle size as a ceramic raw material, an organic binder, a liquid plasticizer, a lubricant, and water are mixed to prepare a wet mixture for forming a molded body.
  • a molding process is performed in which the wet mixture is put into an extruder and extrusion molding is performed, and a honeycomb molded body having a predetermined shape is manufactured.
  • the shape of the cross section perpendicular to the longitudinal direction is substantially quadrilateral, the first cell having a small cross sectional area, and the shape of the cross section perpendicular to the longitudinal direction is substantially octagonal, the second having a large cross sectional area.
  • a honeycomb formed body is manufactured by using a mold for manufacturing a honeycomb formed body in which the cells are alternately arranged.
  • a cutting process is performed in which both ends of the honeycomb formed body are cut using a cutting device, the honeycomb formed body is cut into a predetermined length, and the cut honeycomb formed body is dried using a dryer.
  • a predetermined amount of a sealing material paste serving as a sealing material is filled in one of the end portions of the first cell and the second cell, and the cells are sealed.
  • a cell-sealed honeycomb formed body is manufactured through such steps.
  • a degreasing step of heating the organic matter in the cell-sealed honeycomb molded body in a degreasing furnace is performed to produce a honeycomb degreased body.
  • the shape of this honeycomb degreased body is substantially the same as the shape of the honeycomb fired body shown in FIGS. 3 (a) and 3 (b).
  • the honeycomb degreased body is transported to a firing furnace and subjected to a firing step of firing at 2000 to 2300 ° C. in an argon atmosphere, thereby producing a honeycomb fired body having the shape shown in FIGS. 3 (a) and 3 (b). To do.
  • an adhesive paste layer is formed between the honeycomb fired bodies, the adhesive paste layer is heated and solidified to form an adhesive layer, and a plurality of honeycomb fired bodies are bound through the adhesive layer to form a ceramic block.
  • an adhesive paste containing inorganic fibers and / or whiskers, an inorganic binder, and an organic binder is suitably used.
  • a plurality of honeycomb fired bodies are bundled by aligning the directions of the honeycomb fired bodies so that the first end faces of the honeycomb fired bodies are in the same direction.
  • the outer periphery grinding process which grinds the outer periphery of a ceramic block using a diamond cutter to make a substantially cylindrical ceramic block is performed. Further, a coating layer forming step is performed in which a sealing material paste is applied to the outer peripheral surface of the substantially cylindrical ceramic block, and the sealing material paste is dried and solidified to form a coating layer.
  • a sealing material paste a paste similar to the adhesive paste can be used. A honeycomb filter is manufactured through the above steps.
  • an exhaust gas purification device is manufactured using this honeycomb filter.
  • the honeycomb filter is disposed in the metal container.
  • a mat having a substantially rectangular shape in plan view mainly made of inorganic fibers is prepared as a holding sealing material, and the mat is wound around the honeycomb filter. And it can be set as an exhaust gas purification apparatus by press-fitting in a cylindrical metal container.
  • the metal container is shaped so as to be separable into two parts, a first metal container and a second metal container, and a honeycomb filter around which a mat made of inorganic fibers is wound is placed on the first metal container.
  • An exhaust gas purification device can also be obtained by sealing with a second metal container later.
  • the exhaust gas purifying apparatus of the present embodiment includes the honeycomb filter in which the area of the opening on the gas inlet side is smaller than the area of the opening on the gas outlet side, the initial pressure loss can be reduced.
  • the opening ratio of the first end face is 15 to 30%, and the opening ratio of the second end face is 35 to 50%.
  • the opening ratio is within such a range, the exhaust gas easily flows into the cell, and the opening area on the gas outlet side is sufficiently large, so that the initial pressure loss can be reduced.
  • the area of the cross section perpendicular to the longitudinal direction of the first cell is 60 to 85% of the area of the cross section perpendicular to the longitudinal direction of the second cell. Since the area of the cross section perpendicular to the longitudinal direction of the first cell is 60% or more of the area of the cross section perpendicular to the longitudinal direction of the second cell, the volume of the first cell is sufficiently large, Pressure loss due to resistance when exhaust gas flows into the cell is reduced.
  • exhaust gas is caused to flow from the first cell having a small cross-sectional area perpendicular to the longitudinal direction, and the exhaust gas is discharged from the second cell having a large cross-sectional area perpendicular to the longitudinal direction. Spill.
  • initial pressure loss during exhaust gas purification can be reduced.
  • exhaust gas from a gasoline engine is purified.
  • the amount of PM contained in the exhaust gas from the gasoline engine is smaller than the amount of PM contained in the exhaust gas from the diesel engine. Therefore, even when exhaust gas purification is performed over a long period of time, the amount of PM deposited in the honeycomb filter is small, and the increase in pressure loss from the initial pressure loss is small. Therefore, by using the exhaust gas purification method of the present embodiment that can reduce the initial pressure loss, the exhaust gas can be purified with a low pressure loss over a long period of time.
  • Example 1 A mixture of 52.8% by weight of silicon carbide coarse powder having an average particle diameter of 22 ⁇ m and 22.6% by weight of fine powder of silicon carbide having an average particle diameter of 0.5 ⁇ m is obtained.
  • a raw honeycomb molded body that is kneaded to obtain a wet mixture and then subjected to an extrusion molding step for extrusion molding, and has a shape substantially similar to the shape shown in FIG. Was made.
  • the raw honeycomb molded body is dried using a microwave dryer to obtain a dried honeycomb molded body, and then a predetermined cell is filled with a paste having the same composition as that of the generated molded body. Used to dry.
  • a degreasing process of degreasing the dried honeycomb molded body at 400 ° C. is performed under a normal pressure argon atmosphere at 2200 ° C. for 3 hours.
  • the porosity is 45%
  • the average pore diameter is 15 ⁇ m
  • the size is large.
  • FIG. 4 is a side view schematically showing the cell structure of the honeycomb fired body manufactured in Example 1.
  • FIG. The cross-sectional shape of the first cell 121a of the honeycomb fired body 120 manufactured in Example 1 is a substantially quadrangle (substantially square), and the length of one side (indicated by X in FIG. 4) is 0.87 mm.
  • the cross-sectional shape of the second cell 121b is an octagon, and the length indicated by Y in FIG. 4 is 1.37 mm.
  • the thickness (indicated by Z in FIG. 4) of the cell wall 123 between the first cell 121a and the second cell 121b is 0.25 mm (10 mil).
  • the opening area of the first cell is 0.76 mm 2, the opening area of the second cell is 1.09 mm 2. Therefore, the aperture ratio is 69.4%.
  • the aperture ratio of the first end face is 20.3%, and the aperture ratio of the second end face is 46.9%.
  • alumina fibers having an average fiber length of 20 ⁇ m, 21% by weight of silicon carbide particles having an average particle diameter of 0.6 ⁇ m, 15% by weight of silica sol, 5.6% by weight of carboxymethylcellulose, and 28.4% by weight of water were added.
  • a number of honeycomb fired bodies were bundled using the heat-resistant adhesive paste contained, and the adhesive paste was dried and solidified at 120 ° C. to form an adhesive layer, thereby producing a prismatic ceramic block.
  • a substantially cylindrical ceramic block was produced by cutting the outer periphery of the prismatic ceramic block using a diamond cutter.
  • a sealing material paste having the same composition as the adhesive paste is applied to the outer peripheral surface of the ceramic block, and the sealing material paste is dried and solidified at 120 ° C. to form a sealing material layer.
  • a honeycomb filter is referred to as a honeycomb filter ⁇ .
  • the honey-comb filter (alpha) has the 1st end surface and the 2nd end surface, and the 1st cell, ie, the cell with a small cross-sectional area, has opened in the 1st end surface side.
  • a second cell On the second end face side, a second cell, that is, a cell having a large cross-sectional area is opened.
  • an exhaust gas purifying apparatus was manufactured by winding a holding sealing material around the honeycomb filter ⁇ and placing it in a metal container.
  • the honeycomb filter ⁇ is disposed in the metal container
  • the first end face side of the honeycomb filter ⁇ is disposed on the gas inlet side of the metal container
  • the second end face side of the honeycomb filter ⁇ is disposed on the gas outlet side of the metal container. Arranged.
  • Example 1 An exhaust gas purification apparatus was manufactured in the same manner as in Example 1 except that the honeycomb filter ⁇ similar to that in Example 1 was used, and the direction in which the honeycomb filter was disposed in the metal container was reversed. That is, the second end face side of the honeycomb filter ⁇ is arranged on the gas inlet side of the metal container, and the first end face side of the honeycomb filter ⁇ is arranged on the gas outlet side of the metal container.
  • Example 2 A silicon carbide coarse powder of 54.6% by weight having an average particle diameter of 22 ⁇ m and a silicon carbide fine powder of 23.4% by weight of an average particle diameter of 0.5 ⁇ m were mixed, and the resulting mixture was mixed with an organic binder. (Methylcellulose) 4.3 wt%, lubricant (Unilube made by NOF Corporation) 2.6 wt%, glycerin 1.2 wt%, and water 13.9 wt% were added and kneaded to obtain a wet mixture. Thereafter, an extrusion molding step of extrusion molding was performed, and a raw honeycomb molded body having substantially the same shape as that shown in FIG. 3A and having no cell plugged was produced.
  • honeycomb formed body was dried, degreased and fired in the same manner as in Example 1.
  • the porosity was 42%
  • the average pore diameter was 12 ⁇ m
  • the size was 34.3 mm ⁇ 34.3 mm ⁇ 150 mm
  • the number of cells was manufactured.
  • FIG. 5 is a side view schematically showing a cell structure of the honeycomb fired body manufactured in Example 2.
  • the cross-sectional shape of the first cell 131a of the honeycomb fired body 130 manufactured in Example 2 is a substantially square (substantially square), and the length of one side (indicated by X in FIG. 5) is 0.97 mm.
  • the cross-sectional shape of the second cell 131b is an octagon, and the length indicated by Y in FIG. 5 is 1.21 mm.
  • the thickness (indicated by Z in FIG. 5) of the cell wall 133 between the first cell 131a and the second cell 131b is 0.28 mm (11 mil).
  • the opening area of the first cell is 0.94 mm 2 and the opening area of the second cell is 1.12 mm 2 . Therefore, the aperture ratio is 84.0%.
  • the aperture ratio of the first end face is 25.1%, and the aperture ratio of the second end face is 38.2%.
  • honeycomb filter ⁇ a cylindrical honeycomb filter was produced in the same manner as in Example 1.
  • a honeycomb filter ⁇ has a 1st end surface and a 2nd end surface, and the 1st cell, ie, the cell with a small cross-sectional area, is opening in the 1st end surface side.
  • a second cell On the second end face side, a second cell, that is, a cell having a large cross-sectional area is opened.
  • an exhaust gas purification device was manufactured by wrapping a holding sealing material around the honeycomb filter ⁇ and placing it in a metal container.
  • the honeycomb filter ⁇ is disposed in the metal container
  • the first end face side of the honeycomb filter ⁇ is disposed on the gas inlet side of the metal container
  • the second end face side of the honeycomb filter ⁇ is disposed on the gas outlet side of the metal container. Arranged.
  • Example 2 An exhaust gas purification apparatus was manufactured in the same manner as in Example 1 except that the honeycomb filter ⁇ similar to that in Example 2 was used and the direction in which the honeycomb filter was disposed in the metal container was reversed from that in Example 2. That is, the second end face side of the honeycomb filter ⁇ is arranged on the gas inlet side of the metal container, and the first end face side of the honeycomb filter ⁇ is arranged on the gas outlet side of the metal container.
  • FIG. 6 is a cross-sectional view schematically showing a pressure loss measuring method.
  • the gas inlet side 14 of the exhaust gas purification device 10 is disposed in the exhaust gas pipe 512 of the blower 511, and a pressure gauge 514 is attached so that the pressure before and after the honeycomb filter 100 can be detected. Yes.
  • the air blower 511 was operated, gas (air) was distribute
  • the pressure loss is measured by changing the flow rate of the gas (air) for the exhaust gas purifying apparatus manufactured in each example and each comparative example, and the pressure loss in a state where PM is not deposited on the honeycomb filter, that is, the initial stage The pressure loss was measured.
  • the obtained measurement results are shown in Table 1 below.
  • FIG. 7 is a graph showing the measurement results of the initial pressure loss shown in Table 1.
  • Example 1 using honeycomb filter ⁇ is compared with Comparative Example 1, it can be seen that Example 1 has a lower pressure loss regardless of the flow rate.
  • Example 2 using honeycomb filter ⁇ is compared with Comparative Example 2, it can be seen that Example 2 has a lower pressure loss regardless of the flow rate. That is, in the exhaust gas purification apparatus including the honeycomb filter in which the area of the opening on the gas inlet side is smaller than the area of the opening on the gas outlet side, the initial pressure loss can be reduced.
  • the honeycomb filter disposed in the exhaust gas purification apparatus is composed of one honeycomb fired body.
  • a honeycomb filter made of one honeycomb fired body is also called an integral honeycomb filter.
  • FIG. 8 (a) is a perspective view which shows typically an example of the honey-comb filter used for the exhaust gas purification apparatus of 2nd embodiment.
  • FIG. 8B is a cross-sectional view of the honeycomb filter shown in FIG. 8A taken along line BB.
  • a honeycomb filter 200 shown in FIG. 8A has a substantially cylindrical shape having a first end face 204 and a second end face 205, and a cross section perpendicular to the longitudinal direction (indicated by a double arrow c in FIG. 8A).
  • the first cell 211a has a small area and the second cell 211b has a large cross-sectional area perpendicular to the longitudinal direction.
  • the first cell 211a has a substantially quadrangular cross-sectional shape perpendicular to the longitudinal direction
  • the second cell 211b has a substantially octagonal cross-sectional shape perpendicular to the longitudinal direction.
  • a coat layer 202 is provided on the outer peripheral side surface of the honeycomb filter 200. Further, cordierite or aluminum titanate can be used as the main constituent material of the integral honeycomb filter.
  • first cell 211a an end portion on the first end face 204 side of the honeycomb filter 200 is opened, and the end portion on the second end face 205 side is sealed with a sealing material 212a.
  • second cell 211b an end portion on the second end face 205 side of the honeycomb filter 200 is opened, and the end portion on the first end face 204 side is sealed with a sealing material 212b.
  • a cell wall 213 that separates the first cell 211a and the second cell 211b functions as a filter. That is, the exhaust gas flowing into the first cell 211a always passes through the cell walls 213 and then flows out from the second cell 211b.
  • the exhaust gas purifying apparatus has such a honeycomb filter 200 arranged with the first end face 204 side on the gas inlet side of the metal container and the second end face 205 side on the gas outlet side of the metal container.
  • the exhaust gas purification method of the present embodiment is a method of purifying exhaust gas in the same manner as the exhaust gas purification method of the first embodiment, using the exhaust gas purification device of the present embodiment.
  • the size of the honeycomb formed body formed by extrusion is larger than the size of the honeycomb formed body described in the first embodiment, and the outer shape thereof is different. Otherwise, the honeycomb formed body is manufactured in the same manner as in the first embodiment.
  • honeycomb filter is formed of a single honeycomb fired body, it is not necessary to perform a bundling process. Further, when a columnar honeycomb formed body is produced, it is not necessary to perform the outer periphery grinding process.
  • an exhaust gas purification apparatus can be manufactured like the first embodiment using the manufactured honeycomb filter.
  • the same operational effects (1) to (5) as in the first embodiment can be exhibited.
  • FIG. 9A, FIG. 9B, FIG. 9C, and FIG. 9D are side views schematically showing an example of an end face of the honeycomb fired body constituting the aggregated honeycomb filter.
  • 10 and 11 are side views schematically showing an example of an end face of the integrated honeycomb filter.
  • Each of these drawings is a side view as seen from the first end face side of the honeycomb fired body or the honeycomb filter, that is, from the end face side where the second cells are sealed.
  • Other embodiments of the cross-sectional shapes of the first cell and the second cell of the honeycomb filter will be described with reference to these drawings.
  • the shape of the cross section perpendicular to the longitudinal direction of the first cell 311a is substantially square, and the shape of the cross section perpendicular to the longitudinal direction of the second cell 311b is The portion corresponding to the corner is a substantially quadrangular shape having an arc shape.
  • the cross section perpendicular to the longitudinal direction of the first cell 321a and the second cell 321b has a shape in which each side of the cell is a curve. That is, in FIG. 9B, the cross-sectional shape of the cell wall 323 is a curve.
  • the cross-sectional shape of the first cell 321a is a shape in which the cell wall 323 is convex from the outside to the center of the cell cross-section, while the cross-sectional shape of the second cell 321b is that of the cell wall 323 is the cross-section of the cell. The shape is convex from the center toward the outside.
  • the cell wall 323 has a “corrugated” shape that undulates in the horizontal and vertical directions of the cross section of the honeycomb fired body, and the corrugated mountain portion of the adjacent cell wall 323 (maximum of amplitude in a sine curve).
  • a first cell 321a in which the cross-sectional shape of the cell is recessed inward and a second cell 321b in which the cross-sectional shape of the cell bulges outward are formed.
  • the amplitude of the waveform may be constant or may vary, but is preferably constant.
  • the shape of the cross section perpendicular to the longitudinal direction of the first cell 331a is substantially quadrangular, and is configured to occupy diagonally opposing portions of large squares.
  • the shape of the cross section perpendicular to the longitudinal direction of the second cell 331b is a substantially pentagon, and three corners thereof are substantially perpendicular.
  • the first cell 341a and the second cell 341b have a substantially quadrangular (substantially rectangular) cross-sectional shape perpendicular to the longitudinal direction, and the two first cells When the two second cells are combined, they are configured to be substantially square.
  • a substantially rectangular first cell 411 a is formed in a portion that hits the grid, and the second cell 411 b has a shape in which the four corners of the substantially rectangular shape are chipped in a small rectangular shape.
  • Cell walls 413a and 413b are formed to separate them.
  • the shape of the cross section perpendicular to the longitudinal direction of the first cell 421a is a substantially square shape
  • the shape of the cross section perpendicular to the longitudinal direction of the second cell 421b is a substantially square shape.
  • the integral honeycomb filter may have a cell cross-sectional shape as shown in FIGS. 9A, 9B, 9C, and 9D. Further, the honeycomb fired body constituting the aggregated honeycomb structure may have a cell cross-sectional shape as shown in FIGS.
  • the distance between the centroids of the cross sections perpendicular to the longitudinal direction of the adjacent first cells is equal to the distance between the centroids of the cross sections perpendicular to the longitudinal direction of the adjacent second cells. Is desirable. “Distance between centroids of cross sections perpendicular to the longitudinal direction of adjacent first cells” means the centroid of the cross section perpendicular to the longitudinal direction of one first cell and the vertical direction of the adjacent first cells to the longitudinal direction. On the other hand, the “distance between the centroids of the cross sections perpendicular to the longitudinal direction of the adjacent second cells” refers to the cross section perpendicular to the longitudinal direction of one second cell. The minimum distance between the center of gravity and the center of gravity of the adjacent second cell.
  • the shape of the honeycomb filter is not limited to a columnar shape, and may be any columnar shape such as an elliptical column shape or a polygonal column shape.
  • the porosity of the honeycomb fired body and the integral honeycomb filter constituting the aggregated honeycomb filter is not particularly limited, but is preferably 35 to 60%. If the porosity is less than 35%, the honeycomb filter may be clogged immediately. On the other hand, if the porosity exceeds 60%, the honeycomb filter may have a reduced strength and may be easily broken. Because.
  • the average pore size of the honeycomb fired body and the integral honeycomb filter constituting the aggregated honeycomb filter is preferably 5 to 30 ⁇ m. If the average pore diameter is less than 5 ⁇ m, the particulates may easily clog. On the other hand, if the average pore diameter exceeds 30 ⁇ m, the particulates pass through the pores and collect the particulates. This is because it may not be able to function as a filter.
  • the porosity and pore diameter can be measured by a conventionally known method such as a mercury intrusion method, an Archimedes method, or a measurement using a scanning electron microscope (SEM).
  • a conventionally known method such as a mercury intrusion method, an Archimedes method, or a measurement using a scanning electron microscope (SEM).
  • the thickness of the cell wall of the honeycomb filter is not particularly limited, but is preferably 0.2 to 0.4 mm. If the cell wall thickness is less than 0.2 mm, the cell wall thickness supporting the honeycomb structure may be reduced, and the strength of the honeycomb structure may not be maintained. This is because if it exceeds .4 mm, the pressure loss may increase.
  • the cell density in the cross section perpendicular to the longitudinal direction of the honeycomb filter is not particularly limited, but the desirable lower limit is 31.0 / cm 2 (200 / in 2 ), and the desirable upper limit is 93 / cm 2 (600 Pieces / in 2 ), a more desirable lower limit is 38.8 pieces / cm 2 (250 pieces / in 2 ), and a more desirable upper limit is 77.5 pieces / cm 2 (500 pieces / in 2 ).
  • the main component of the constituent material of the honeycomb fired body is not limited to silicon carbide.
  • Other ceramic raw materials include, for example, nitride ceramics such as aluminum nitride, silicon nitride, boron nitride, and titanium nitride, zirconium carbide, and carbonized Examples thereof include ceramic powders such as carbide ceramics such as titanium, tantalum carbide, and tungsten carbide, and oxide ceramics such as alumina, zirconia, cordierite, mullite, and aluminum titanate. Of these, non-oxide ceramics are preferred, and silicon carbide is particularly preferred. It is because it is excellent in heat resistance, mechanical strength, thermal conductivity and the like.
  • ceramic raw materials such as silicon-containing ceramics in which metallic silicon is blended with the above-described ceramics, ceramics bonded with silicon or a silicate compound can be cited as constituent materials, and among these, silicon carbide is blended with silicon carbide.
  • silicon carbide is blended with silicon carbide.
  • silicon-containing silicon carbide is desirable.
  • a silicon-containing silicon carbide ceramic containing 60 wt% or more of silicon carbide is desirable.
  • the particle size of the ceramic powder is not particularly limited, but those having less shrinkage in the subsequent firing step are preferable.
  • 100 parts by weight of powder having an average particle size of 1.0 to 50 ⁇ m and 0.1 to 1.0 ⁇ m A combination of 5 to 65 parts by weight of powder having an average particle size of 5 to 65 parts by weight is preferred.
  • the pore diameter and the like of the honeycomb fired body it is necessary to adjust the firing temperature, but the pore diameter can be adjusted by adjusting the particle size of the ceramic powder.
  • the organic binder in the wet mixture is not particularly limited, and examples thereof include methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, and polyethylene glycol. Of these, methylcellulose is desirable.
  • the blending amount of the organic binder is usually preferably 1 to 10 parts by weight with respect to 100 parts by weight of the ceramic powder.
  • the plasticizer in the wet mixture is not particularly limited, and examples thereof include glycerin.
  • the lubricant is not particularly limited, and examples thereof include polyoxyalkylene compounds such as polyoxyethylene alkyl ether and polyoxypropylene alkyl ether. Specific examples of the lubricant include polyoxyethylene monobutyl ether and polyoxypropylene monobutyl ether. In some cases, the plasticizer and the lubricant may not be contained in the mixed raw material powder.
  • a dispersion medium liquid may be used.
  • the dispersion medium liquid include water, an organic solvent such as benzene, and an alcohol such as methanol.
  • a molding aid may be added to the wet mixture.
  • the molding aid is not particularly limited, and examples thereof include ethylene glycol, dextrin, fatty acid, fatty acid soap, polyalcohol and the like.
  • a pore-forming agent such as balloons that are fine hollow spheres containing oxide ceramics, spherical acrylic particles, and graphite may be added to the wet mixture as necessary.
  • the balloon is not particularly limited, and examples thereof include an alumina balloon, a glass micro balloon, a shirasu balloon, a fly ash balloon (FA balloon), and a mullite balloon. Of these, alumina balloons are desirable.
  • the sealing material paste for sealing the cell is not particularly limited, but it is desirable that the porosity of the sealing material manufactured through a subsequent process is 30 to 75%, for example, the same as the wet mixture is used. be able to.
  • Examples of the inorganic binder in the adhesive paste and the sealing material paste include silica sol and alumina sol. These may be used alone or in combination of two or more. Among inorganic binders, silica sol is desirable.
  • organic binder in the adhesive paste and the sealing material paste examples include polyvinyl alcohol, methyl cellulose, ethyl cellulose, carboxymethyl cellulose, and the like. These may be used alone or in combination of two or more. Among organic binders, carboxymethylcellulose is desirable.
  • inorganic fibers in the adhesive paste and the sealing material paste examples include ceramic fibers such as silica-alumina, mullite, alumina, and silica. These may be used alone or in combination of two or more. Among inorganic fibers, alumina fibers are desirable.
  • Examples of the inorganic particles in the adhesive paste and the sealing material paste include carbides and nitrides. Specific examples include inorganic powders made of silicon carbide, silicon nitride, and boron nitride. These may be used alone or in combination of two or more. Among the inorganic particles, silicon carbide having excellent thermal conductivity is desirable.
  • a pore-forming agent such as balloons that are fine hollow spheres containing oxide ceramics, spherical acrylic particles, and graphite may be added to the adhesive paste and the sealing material paste as necessary.
  • the balloon is not particularly limited, and examples thereof include an alumina balloon, a glass micro balloon, a shirasu balloon, a fly ash balloon (FA balloon), and a mullite balloon. Of these, alumina balloons are desirable.
  • the honeycomb filter may carry a catalyst.
  • a catalyst capable of purifying harmful gas components in exhaust gas such as CO, HC and NOx on the honeycomb filter, it is possible to sufficiently purify harmful gas components in the exhaust gas by catalytic reaction. It becomes.
  • a catalyst that helps combustion of PM it becomes possible to burn and remove PM more easily.
  • the catalyst may be supported on the honeycomb filter or on the honeycomb fired body.
  • a method for forming an alumina film on the surface of the honeycomb filter for example, a method of impregnating a honeycomb filter with a solution of a metal compound containing aluminum such as Al (NO 3 ) 3 and heating, a solution containing alumina powder is used.
  • a method of impregnating and heating a honeycomb filter can be exemplified.
  • Examples of the method for applying a promoter to the alumina film include a method in which a honeycomb filter is impregnated with a solution of a metal compound containing a rare earth element such as Ce (NO 3 ) 3 and heated.
  • a dinitrodiammine platinum nitric acid solution [Pt (NH 3 ) 2 (NO 2 ) 2 ] HNO 3 , platinum concentration of about 4.53% by weight
  • a method of impregnating and heating is used.
  • the catalyst may be applied by a method in which a catalyst is applied to alumina particles in advance and a honeycomb filter impregnated with a solution containing the alumina powder to which the catalyst is applied is heated.

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Filtering Materials (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

本発明は、圧力損失の低い排ガス浄化装置を提供することを目的とするものであり、本発明の排ガス浄化装置は、ガス入口側及びガス出口側を備えた金属容器と、上記金属容器内に収容されたハニカムフィルタとを備えた排ガス浄化装置であって、上記ハニカムフィルタは、セル壁を隔てて長手方向に並設された多数のセルと、第1の端面と、第2の端面とを有し、上記多数のセルは、上記第1の端面側の端部が開口され上記第2の端面側の端部が封止された第1のセルと、上記第2の端面側の端部が開口され上記第1の端面側の端部が封止された第2のセルとが交互に配設されてなり、上記第1のセルの上記長手方向に垂直な断面の面積は、上記第2のセルの上記長手方向に垂直な断面の面積よりも小さく、ハニカムフィルタの上記第1の端面側が上記金属容器の上記ガス入口側に配置され、ハニカムフィルタの上記第2の端面側が上記金属容器の上記ガス出口側に配置されていることを特徴とする。

Description

排ガス浄化装置及び排ガス浄化方法
本発明は、排ガス浄化装置及び排ガス浄化方法に関する。
近年、環境問題が重視されるようになり、自動車業界では燃費がよく、かつ、環境負荷の小さいエンジンが求められている。
ディーゼルエンジンは、ガソリンエンジンに比べて燃費に優れるという長所がある。一方、スス等のパティキュレート(以下、PMともいう)が発生するため、排ガス浄化装置を搭載して排ガスに含まれるPMを浄化する必要がある。
ガソリンエンジンは、ディーゼルエンジンに比べてスス等のパティキュレート(以下、PMともいう)の排出量が少ないという長所がある。そのため、通常は、PMを浄化するための排ガス浄化装置を搭載する必要がない。一方、ガソリンエンジンはディーゼルエンジンに比べて燃費が劣るという欠点がある。
近年、自動車購入者が自動車の燃費を重視する傾向があることから、ガソリンエンジンの中でも、燃費に優れた直噴ガソリンエンジン(GDI:Gasoline Direct Injection)の搭載数が増大することが予想されている。しかしながら、直噴ガソリンエンジンから排出される排ガス中には少量のPMが含まれるため、排ガス浄化装置を搭載して排ガス中のPMを浄化する必要があることが予想されている。
ディーゼルエンジンから排出される排ガスの浄化に用いられる排ガス浄化装置は、セラミック等の材料からなるフィルタを金属容器(ケーシング)内に収納することにより作製される。排ガス浄化装置のガス入口側から排ガスを排ガス浄化装置内に導入し、フィルタ内に排ガスを通過させて、排ガス浄化装置のガス出口側から排ガスを排出することによって排ガスを浄化することができる。
特許文献1には、排ガス中に含まれるPMを浄化するためのセラミックス製フィルタとして、ハニカム構造で、ガス入口側の開口の面積をガス出口側の開口の面積よりも大きくしたハニカムフィルタが開示されている。
特許文献2には、ガス入口側の開口の面積をガス出口側の開口の面積よりも大きくした柱状の多孔質セラミック部材が複数個組み合わされたハニカムフィルタが開示されている。また、特許文献3には、ガス入口側の開口の面積をガス出口側の開口の面積よりも大きくしたフィルタであって、気孔径分布が所定の範囲に調整されたハニカムフィルタが開示されている。
米国特許第4417908号明細書 国際公開第2004/024293A1号パンフレット 国際公開第2005/002709A1号パンフレット
特許文献1~3に記載された、排ガス中に含まれるPMを捕集するためのハニカムフィルタは、ディーゼルエンジンから排出される排ガスに代表される、PMが多く含まれる排ガスを浄化することを目的としている。このようなハニカムフィルタは、ガス入口側の開口の面積をガス出口側の開口の面積よりも大きくすることによって、大量のPMを捕集することができるように設計されている。
このようなハニカムフィルタを用いた排ガス浄化装置の重要な特性として、圧力損失が挙げられる。
圧力損失が高いと燃費の悪化につながるため、圧力損失が低いことが望ましいとされている。
また、圧力損失とPMの捕集量の関係については、ハニカムフィルタに堆積したPMの量が多くなると圧力損失が上昇することが経験的に知られている。
上述したように、直噴ガソリンエンジンから排出される排ガス中のPMを浄化する必要があることが予想される。その際に用いられる排ガス浄化装置においても、ディーゼルエンジンから排出される排ガス中のPMを浄化するための排ガス浄化装置の場合と同様に、圧力損失が低いことが望ましいと考えられる。そのため、直噴ガソリンエンジンから排出される排ガスの浄化に適した、圧力損失の低い排ガス浄化装置が望まれている。
本発明者らは、直噴ガソリンエンジンから排出される排ガスの浄化を試みる実験を行うことによって、排ガス浄化装置を用いて直噴ガソリンエンジンからの排ガスを浄化した場合に圧力損失に影響を与える要因について検討した。
直噴ガソリンエンジンから排出される排ガスの浄化を試みた実験において、圧力損失の経時変化を観察すると、排ガスの浄化を長期間に渡って行った場合であっても圧力損失の上昇はあまりみられなかった。
この現象は、直噴ガソリンエンジンからの排ガス中に含まれるPMの量がディーゼルエンジンからの排ガスに含まれるPMの量に比べて少ないため、排ガスの浄化を長期間に渡って行った場合であってもハニカムフィルタ内に堆積するPMの量が少ないことに起因するものと考えられる。
このことから、直噴ガソリンエンジン用の排ガス浄化装置の開発にあたっては、初期圧力損失を低くすることが重要であると考えられる。
本発明者らは、排ガス浄化装置の初期圧力損失に影響を与える要因について検討した。
その結果、初期圧力損失の値には、ハニカムフィルタのガス出口側の開口の面積が影響することを見出した。そして、ハニカムフィルタのガス出口側の開口の面積を大きくした場合に初期圧力損失が低くなることを見出した。
そして、このようなハニカムフィルタを備えた排ガス浄化装置が直噴ガソリンエンジンからの排ガスの浄化に特に適していることを見出し、本発明に想到した。
すなわち、請求項1に記載の排ガス浄化装置は、
ガス入口側及びガス出口側を備えた金属容器と、
上記金属容器内に収容されたハニカムフィルタとを備えた排ガス浄化装置であって、
上記ハニカムフィルタは、セル壁を隔てて長手方向に並設された多数のセルと、第1の端面と、第2の端面とを有し、
上記多数のセルは、上記第1の端面側の端部が開口され上記第2の端面側の端部が封止された第1のセルと、上記第2の端面側の端部が開口され上記第1の端面側の端部が封止された第2のセルとが交互に配設されてなり、
上記第1のセルの上記長手方向に垂直な断面の面積は、上記第2のセルの上記長手方向に垂直な断面の面積よりも小さく、
ハニカムフィルタの上記第1の端面側が上記金属容器の上記ガス入口側に配置され、ハニカムフィルタの上記第2の端面側が上記金属容器の上記ガス出口側に配置されていることを特徴とする。
請求項1に記載の排ガス浄化装置は、ガス入口側の開口の面積がガス出口側の開口の面積よりも小さいハニカムフィルタを備えるため、初期圧力損失を低くすることができる。
そして、このような初期圧力損失の低い排ガス浄化装置は、排ガス中に含まれるPMの量が少ない、直噴ガソリンエンジンの排ガスの浄化に好適に使用することができる。
請求項2に記載の排ガス浄化装置は、上記第1の端面の開口率が15~30%であり、上記第2の端面の開口率が35~50%である。
第1の端面の開口率が15%未満であると、排ガスがセルに流入しにくいため圧力損失が高くなってしまう。一方、第1の端面の開口率が30%を超えると、ガス出口側の開口の面積が相対的に小さくなるので初期圧力損失が高くなってしまう。
請求項3に記載の排ガス浄化装置では、上記第1のセルの上記長手方向に垂直な断面の面積は、上記第2のセルの上記長手方向に垂直な断面の面積の60~85%である。
上記第1のセルの上記長手方向に垂直な断面の面積が、上記第2のセルの上記長手方向に垂直な断面の面積の60%未満であると、第1のセルの容積が小さくなりすぎて、セルに排ガスが流入する際の抵抗に起因する圧力損失が増大してしまう。
請求項4に記載の排ガス浄化装置では、上記第1のセルの上記長手方向に垂直な断面の形状は略四角形であり、上記第2のセルの上記長手方向に垂直な断面の形状は略八角形である。
請求項5に記載の排ガス浄化装置では、上記第1のセルの上記長手方向に垂直な断面の形状は略四角形であり、上記第2のセルの上記長手方向に垂直な断面の形状は少なくとも1つの角部に相当する部分が円弧状となっている略四角形である。
請求項6に記載の排ガス浄化装置では、上記第1のセル及び上記第2のセルの上記長手方向に垂直な断面は、セルの各辺が曲線である。
請求項7に記載の排ガス浄化装置では、上記第1のセルの上記長手方向に垂直な断面の形状は略四角形であり、上記第2のセルの上記長手方向に垂直な断面の形状は略四角形である。
これらの形状のセルを有するハニカムフィルタを備えた排ガス浄化装置は、直噴ガソリンエンジンの排ガスの浄化に特に好適に使用することができる。
請求項8に記載の排ガス浄化装置では、上記ハニカムフィルタは、複数のハニカム焼成体が接着剤層を介して複数個結束されてなる。
請求項9に記載の排ガス浄化装置では、上記ガスはガソリンエンジンから排出された排ガスである。
このような排ガス浄化装置は、排ガス中に含まれるPMの量が少ないガソリンエンジンからの排ガスの浄化に適している。
請求項10に記載の排ガス浄化方法は、排ガス浄化装置を用いてエンジンから排出された排ガスを浄化する排ガス浄化方法であって、
上記排ガス浄化装置は、ガス入口側及びガス出口側を備えた金属容器と、
上記金属容器内に収容されたハニカムフィルタとを備え、
上記ハニカムフィルタは、セル壁を隔てて長手方向に並設された多数のセルと、第1の端面と、第2の端面とを有し、
上記多数のセルは、上記第1の端面側の端部が開口され上記第2の端面側の端部が封止された第1のセルと、上記第2の端面側の端部が開口され上記第1の端面側の端部が封止された第2のセルとが交互に配設されてなり、
上記第1のセルの上記長手方向に垂直な断面の面積は、上記第2のセルの上記長手方向に垂直な断面の面積よりも小さく、
ハニカムフィルタの上記第1の端面側が上記金属容器の上記ガス入口側に配置され、ハニカムフィルタの上記第2の端面側が上記金属容器の上記ガス出口側に配置されており、
エンジンから排出された排ガスを上記金属容器の上記ガス入口側から上記排ガス浄化装置に流入させ、上記金属容器の上記ガス出口側から流出させることを特徴とする。
請求項10に記載の排ガス浄化方法では、長手方向に垂直な断面の面積が小さい第1のセルから排ガスを流入させて、長手方向に垂直な断面の面積が大きい第2のセルから排ガスを流出させる。排ガス浄化装置にこのような向きで排ガスを流すと、排ガス浄化の際の初期圧力損失を低くすることができる。
請求項11に記載の排ガス浄化方法では、上記第1の端面の開口率が15~30%であり、上記第2の端面の開口率が35~50%である。
請求項12に記載の排ガス浄化方法では、上記第1のセルの上記長手方向に垂直な断面の面積は、上記第2のセルの上記長手方向に垂直な断面の面積の60~85%である。
請求項13に記載の排ガス浄化方法では、上記第1のセルの上記長手方向に垂直な断面の形状は略四角形であり、上記第2のセルの上記長手方向に垂直な断面の形状は略八角形である。
請求項14に記載の排ガス浄化方法では、上記第1のセルの上記長手方向に垂直な断面の形状は略四角形であり、上記第2のセルの上記長手方向に垂直な断面の形状は少なくとも1つの角部に相当する部分が円弧状となっている略四角形である。
請求項15に記載の排ガス浄化方法では、上記第1のセル及び上記第2のセルの上記長手方向に垂直な断面は、セルの各辺が曲線である。
請求項16に記載の排ガス浄化方法では、上記第1のセルの上記長手方向に垂直な断面の形状は略四角形であり、上記第2のセルの上記長手方向に垂直な断面の形状は略四角形である。
請求項17に記載の排ガス浄化方法では、上記ハニカムフィルタは、複数のハニカム焼成体が接着剤層を介して複数個結束されてなる。
請求項18に記載の排ガス浄化方法では、上記エンジンはガソリンエンジンである。
ガソリンエンジンからの排ガスに含まれるPMの量は、ディーゼルエンジンからの排ガスに含まれるPMの量に比べて少ない。そのため、排ガスの浄化を長期間に渡って行った場合であってもハニカムフィルタ内に堆積するPMの量が少なく、初期圧力損失からの圧力損失の上昇が少ない。そのため、初期圧力損失を低くすることのできる排ガス浄化方法を用いることによって、長期間に渡って排ガスの浄化を圧力損失が低い状態で行うことができる。
図1は、本発明の排ガス浄化装置の一例を模式的に示す断面図である。 図2は、第一実施形態の排ガス浄化装置に用いられるハニカムフィルタの一例を模式的に示す斜視図である。 図3(a)は、図2に示したハニカムフィルタを構成するハニカム焼成体の一例を模式的に示す斜視図であり、図3(b)は、図3(a)に示したハニカム焼成体のA-A線断面図である。 図4は、実施例1で製造したハニカム焼成体のセル構造を模式的に示す側面図である。 図5は、実施例2で製造したハニカム焼成体のセル構造を模式的に示す側面図である。 図6は、圧力損失測定方法を模式的に示す断面図である。 図7は、初期圧力損失の測定結果を示すグラフである。 図8(a)は、第二実施形態の排ガス浄化装置に用いられるハニカムフィルタの一例を模式的に示す斜視図である。図8(b)は、図8(a)に示すハニカムフィルタのB-B線断面図である。 図9(a)、図9(b)、図9(c)及び図9(d)は、集合型ハニカムフィルタを構成するハニカム焼成体の端面の一例を模式的に示した側面図である。 図10は、一体型ハニカムフィルタの端面の一例を模式的に示した側面図である。 図11は、一体型ハニカムフィルタの端面の一例を模式的に示した側面図である。
(第一実施形態)
以下、本発明の排ガス浄化装置及び排ガス浄化方法の一実施形態である第一実施形態について図面を参照しながら説明する。
まず、本実施形態の排ガス浄化装置について説明する。
図1は、本発明の排ガス浄化装置の一例を模式的に示す断面図である。
図1に示す排ガス浄化装置10は、ガス入口側14とガス出口側15を備えた金属容器11と、金属容器11内に収容されたハニカムフィルタ100とを備えている。ハニカムフィルタ100と金属容器11の間には保持シール材12が配設されており、保持シール材12でハニカムフィルタ100が保持されている。
金属容器11のガス入口側14には、直噴ガソリンエンジン等の内燃機関から排出された排ガスを排ガス浄化装置10内に導入するための導入管が接続される。一方、金属容器11のガス出口側15には、排ガス浄化装置10内を通過した排ガスを外部に排出する排出管が接続される。
このような排ガス浄化装置に用いられるハニカムフィルタの一例について以下に説明する。
図2は、第一実施形態の排ガス浄化装置に用いられるハニカムフィルタの一例を模式的に示す斜視図である。
図3(a)は、図2に示したハニカムフィルタを構成するハニカム焼成体の一例を模式的に示す斜視図であり、図3(b)は、図3(a)に示したハニカム焼成体のA-A線断面図である。
図2に示すハニカムフィルタ100では、多孔質セラミックからなるハニカム焼成体110が接着剤層101を介して複数個結束されてセラミックブロック103を構成し、このセラミックブロック103の周囲には、排ガスの漏れを防止するためのコート層102が形成されている。なお、コート層は、必要に応じて形成されていればよい。
このような、ハニカム焼成体が複数個結束されてなるハニカムフィルタは、集合型ハニカムフィルタともいう。
ハニカムフィルタ100は、セル壁を隔てて長手方向に並設された多数のセルと、第1の端面104と、第2の端面105とを有する。第1の端面104及び第2の端面105と上記多数のセルの位置関係につき、以下に説明する。
なお、ハニカムフィルタ100の長手方向は、図2において両矢印aで示す向きである。
図3(a)及び図3(b)に示すハニカム焼成体110において、多数のセルは、長手方向に垂直な断面の面積が相対的に小さい第1のセル111aと、上記断面の面積が相対的に大きい第2のセル111bが交互に配設されてなる。
第1のセル111aは、その長手方向(図3(a)において両矢印bで示す)に垂直な断面の形状が略四角形であり、第2のセル111bは、その長手方向に垂直な断面の形状が略八角形である。
また、ハニカム焼成体110は第1の端面114と第2の端面115を有する。
第1のセル111aは、ハニカム焼成体110の第1の端面114側の端部が開口され、第2の端面115側の端部で封止材112aにより封止される。一方、第2のセル111bは、ハニカム焼成体110の第2の端面115側の端部が開口され、第1の端面114側の端部で封止材112bにより封止される。そして、第1のセル111a及び第2のセル111bを隔てるセル壁113がフィルタとして機能するようになっている。
即ち、第1のセル111aに流入した排ガスG(図3(b)中、排ガスをGで示し、排ガスの流れを矢印で示す)は、必ずこれらのセル壁113を通過した後、第2のセル111bから流出するようになっている。
ハニカムフィルタ100は、各ハニカム焼成体110の第1の端面114がハニカムフィルタ100の第1の端面104となるように、複数のハニカム焼成体110の向きを揃えて結束されてなる。この際、各ハニカム焼成体110の第2の端面115はハニカムフィルタ100の第2の端面105となる。
従って、ハニカムフィルタ100において、第1のセル111aは、ハニカムフィルタ100の第1の端面104側の端部で開口され、第2の端面105側の端部で封止されている。一方、第2のセル112aは、ハニカムフィルタ100の第2の端面105側の端部で開口され、第1の端面104側の端部で封止されている。
本実施形態のハニカムフィルタ100では、第1の端面104の開口率は、15~30%であり、第2の端面105の開口率は35~50%となっている。
第1の端面の開口率は、「第1の端面の開口率(%)=(第1のセルの開口面積の合計/第1の端面の面積)×100」として求められる。第2の端面の開口率も「第2の端面の開口率(%)=(第2のセルの開口面積の合計/第2の端面の面積)×100」としてして求められる。
本実施形態のハニカムフィルタ100では、第1のセル111aの長手方向に垂直な断面の面積は、第2のセル111bの長手方向に垂直な断面の面積の60~85%となっている。
本明細書においては、このようなセルの断面の面積の比率を開口比率ともいう。
上記開口比率は、60~80%がより好ましい。さらに、上記開口比率は、65~75%がより一層好ましい。
本実施形態の排ガス浄化装置10においては、ハニカムフィルタ100の第1の端面104側が金属容器のガス入口側14に配置され、ハニカムフィルタ100の第2の端面105側が金属容器のガス出口側15に配置されている。
このような向きに配置されたハニカムフィルタ100を備えた排ガス浄化装置10を用いて排ガスを浄化する本実施形態の排ガス浄化方法について図1を用いて以下に説明する。
図1に示したように、内燃機関から排出され、排ガス浄化装置10にガス入口側14から流入した排ガス(図1中、排ガスをGで示し、排ガスの流れを矢印で示す)は、ハニカムフィルタ100の第1の端面104側からハニカムフィルタ100に流入する。ハニカムフィルタ100の第1の端面104側では、セルの断面の面積が小さい第1のセル111aが開口しているため、排ガスGは第1のセル111aに流入する。
そして、排ガスGは第1のセル111aと第2のセル111bを隔てるセル壁113を通過する。この際、排ガスG中のPMがセル壁113で捕集され、排ガスGが浄化される。
浄化された排ガスGは、セルの断面の面積が大きい第2のセル111bに流入し、ハニカムフィルタ100の第2の端面105側からハニカムフィルタ100の外に排出される。そして、排ガスGは排ガス浄化装置10のガス出口側15から排ガス浄化装置10の外に排出される。
上述した排ガス浄化方法では、セルの断面の面積が小さい第1のセル111aから排ガスを流入させ、セルの断面の面積が大きい第2のセル111bから排ガスを流出させる。このように排ガスをハニカムフィルタ100に流入させ、ハニカムフィルタ100から流出させた場合、初期圧力損失が低い状態で排ガスの浄化を行うことができる。
また、本実施形態の排ガス浄化方法においては、ガソリンエンジンからの排ガスを浄化する。
すなわち、本実施形態の排ガス浄化方法に用いられる排ガス浄化装置は、ガソリンパティキュレートフィルタ(Gasoline Particulate Filter)として好適に用いられる。
続いて、本実施形態の排ガス浄化装置の製造方法について説明する。
最初に、排ガス浄化装置に用いられるハニカムフィルタの製造方法について説明する。
まず、セラミック原料としての平均粒子径の異なる炭化ケイ素粉末と、有機バインダと液状の可塑剤と潤滑剤と水とを混合して、成形体製造用の湿潤混合物を調製する。
続いて、上記湿潤混合物を押出成形機に投入して押出成形する成形工程を行い、所定の形状のハニカム成形体を作製する。
この際、長手方向に垂直な断面の形状が略四角形であり、断面の面積が小さい第1のセルと、長手方向に垂直な断面の形状が略八角形であり、断面の面積が大きい第2のセルとが交互に配設されたハニカム成形体が作製されるような金型を用いてハニカム形成体を作製する。
次に、ハニカム成形体の両端を切断装置を用いて切断する切断工程を行い、ハニカム成形体を所定の長さに切断し、切断したハニカム成形体を乾燥機を用いて乾燥する。
次いで、第1のセル及び第2のセルのいずれか一方の端部に、封止材となる封止材ペーストを所定量充填し、セルを目封じする。このような工程を経て、セル封止ハニカム成形体を作製する。
次に、セル封止ハニカム成形体中の有機物を脱脂炉中で加熱する脱脂工程を行い、ハニカム脱脂体を作製する。このハニカム脱脂体の形状は図3(a)及び図3(b)に示すハニカム焼成体の形状とほぼ同様である。
そして、ハニカム脱脂体を焼成炉に搬送し、アルゴン雰囲気下、2000~2300℃で焼成する焼成工程を行うことによって、図3(a)及び図3(b)に示す形状のハニカム焼成体を作製する。
続いて、ハニカム焼成体間に接着剤ペースト層を形成し、接着剤ペースト層を加熱固化して接着剤層とし、接着剤層を介して複数のハニカム焼成体を結束させてセラミックブロックとする結束工程を行う。
接着剤ペーストとしては、無機繊維及び/又はウィスカ、無機バインダ、並びに、有機バインダを含む接着剤ペーストが好適に用いられる。
この結束工程においては、各ハニカム焼成体の第1の端面同士が同じ向きになるように各ハニカム焼成体の向きを揃えて複数のハニカム焼成体を結束させる。
その後、ダイヤモンドカッターを用いてセラミックブロックの外周を研削して略円柱状のセラミックブロックとする外周研削工程を行う。
さらに、略円柱状のセラミックブロックの外周面にシール材ペーストを塗布し、シール材ペーストを乾燥固化させてコート層を形成するコート層形成工程を行う。
なお、上記シール材ペーストとしては、上記接着剤ペーストと同様のペーストを使用することができる。以上の工程によって、ハニカムフィルタを製造する。
続いて、このハニカムフィルタを用いて排ガス浄化装置を製造する。
排ガス浄化装置を製造する際には、ハニカムフィルタの第1の端面が金属容器のガス入口側になるように、ハニカムフィルタの第2の端面が金属容器のガス出口側になるように向きを確認してハニカムフィルタを金属容器内に配置する。
具体的には、保持シール材として、主に無機繊維からなる平面視略矩形状のマットを準備し、このマットをハニカムフィルタに巻き付ける。そして、円筒状の金属容器に圧入することによって排ガス浄化装置とすることができる。
また、金属容器を、第1の金属容器及び第2の金属容器の2つの部品に分離可能な形状としておき、無機繊維からなるマットを巻き付けたハニカムフィルタを第1の金属容器上に載置した後に第2の金属容器を被せて密封することによって排ガス浄化装置とすることもできる。
以下、本実施形態の排ガス浄化装置及び排ガス浄化方法の作用効果について列挙する。
(1)本実施形態の排ガス浄化装置は、ガス入口側の開口の面積がガス出口側の開口の面積よりも小さいハニカムフィルタを備えるため、初期圧力損失を低くすることができる。
(2)本実施形態の排ガス浄化装置では、第1の端面の開口率が15~30%であり、第2の端面の開口率が35~50%である。
開口率がこのような範囲内であると、排ガスがセルに流入しやすく、かつ、ガス出口側の開口面積が充分に大きいために初期圧力損失を低くすることができる。
(3)本実施形態の排ガス浄化装置では、第1のセルの上記長手方向に垂直な断面の面積は、第2のセルの上記長手方向に垂直な断面の面積の60~85%である。
第1のセルの上記長手方向に垂直な断面の面積が、上記第2のセルの上記長手方向に垂直な断面の面積の60%以上であるため、第1のセルの容積が充分に大きく、セルに排ガスが流入する際の抵抗に起因する圧力損失が低くなる。
(4)本実施形態の排ガス浄化方法では、長手方向に垂直な断面の面積が小さい第1のセルから排ガスを流入させて、長手方向に垂直な断面の面積が大きい第2のセルから排ガスを流出させる。排ガス浄化装置にこのような向きで排ガスを流すと、排ガス浄化の際の初期圧力損失を低くすることができる。
(5)本実施形態の排ガス浄化方法では、ガソリンエンジンからの排ガスを浄化する。
ガソリンエンジンからの排ガスに含まれるPMの量は、ディーゼルエンジンからの排ガスに含まれるPMの量に比べて少ない。そのため、排ガスの浄化を長期間に渡って行った場合であってもハニカムフィルタ内に堆積するPMの量が少なく、初期圧力損失からの圧力損失の上昇が少ない。そのため、初期圧力損失を低くすることのできる本実施形態の排ガス浄化方法を用いることによって、長期間に渡って排ガスの浄化を圧力損失が低い状態で行うことができる。
(実施例)
以下、本発明の第一実施形態をより具体的に開示した実施例を示すが、本発明はこれらの実施例のみに限定されるものではない。
(実施例1)
平均粒子径22μmを有する炭化ケイ素の粗粉末52.8重量%と、平均粒子径0.5μmの炭化ケイ素の微粉末22.6重量%とを混合し、得られた混合物に対して、アクリル樹脂2.1重量%、有機バインダ(メチルセルロース)4.6重量%、潤滑剤(日油社製 ユニルーブ)2.8重量%、グリセリン1.3重量%、及び、水13.8重量%を加えて混練して湿潤混合物を得た後、押出成形する押出成形工程を行い、図3(a)に示した形状と略同様の形状であって、セルの目封じをしていない生のハニカム成形体を作製した。
次いで、マイクロ波乾燥機を用いて上記生のハニカム成形体を乾燥させ、ハニカム成形体の乾燥体とした後、上記生成形体と同様の組成のペーストを所定のセルに充填し、再び乾燥機を用いて乾燥させた。
ハニカム成形体の乾燥体を400℃で脱脂する脱脂工程を行い、常圧のアルゴン雰囲気下2200℃、3時間の条件で焼成工程を行い、気孔率が45%、平均気孔径が15μm、大きさが34.3mm×34.3mm×150mm、セルの数(セル密度)が300個/inch、セル壁の厚さが0.25mm(10mil)の炭化ケイ素焼結体からなるハニカム焼成体を製造した。
図4は、実施例1で製造したハニカム焼成体のセル構造を模式的に示す側面図である。
実施例1で製造したハニカム焼成体120の第1のセル121aの断面形状は略四角形(略正方形)であり、その一辺の長さ(図4でXで示す)は0.87mmである。また、第2のセル121bの断面形状は八角形であり、図4でYで示す長さが1.37mmである。そして、第1のセル121aと第2のセル121bの間のセル壁123の厚さ(図4でZで示す)が0.25mm(10mil)である。
第1のセルの開口面積は0.76mmであり、第2のセルの開口面積は1.09mmである。従って、開口比率は69.4%である。
また、第1の端面の開口率は20.3%、第2の端面の開口率は46.9%である。
続いて、平均繊維長20μmのアルミナファイバ30重量%、平均粒子径0.6μmの炭化ケイ素粒子21重量%、シリカゾル15重量%、カルボキシメチルセルロース5.6重量%、及び、水28.4重量%を含む耐熱性の接着剤ペーストを用いてハニカム焼成体を多数結束させ、さらに、接着剤ペーストを120℃で乾燥固化させて接着材層を形成して角柱状のセラミックブロックを作製した。
続いて、角柱状のセラミックブロックの外周をダイヤモンドカッターを用いて切断することにより略円柱状のセラミックブロックを作製した。
続いて、接着剤ペーストと同様の組成からなるシール材ペーストをセラミックブロックの外周面に塗布し、シール材ペーストを120℃で乾燥固化させてシール材層を形成して、円柱状のハニカムフィルタを製造した。
以下、このようなハニカムフィルタを、ハニカムフィルタαとする。
ハニカムフィルタαは、第1の端面と第2の端面を有し、第1の端面側では第1のセル、すなわち断面の面積が小さいセルが開口している。また、第2の端面側では第2のセル、すなわち断面の面積が大きいセルが開口している。
続いて、ハニカムフィルタαに保持シール材を巻き付け、金属容器内に配置することによって排ガス浄化装置を製造した。ハニカムフィルタαを金属容器内に配置する際に、金属容器のガス入口側にハニカムフィルタαの第1の端面側を配置し、金属容器のガス出口側にハニカムフィルタαの第2の端面側を配置した。
(比較例1)
実施例1と同様のハニカムフィルタαを用いて、ハニカムフィルタを金属容器に配置する向きを実施例1と反対にした他は実施例1と同様にして排ガス浄化装置を製造した。
すなわち、金属容器のガス入口側にハニカムフィルタαの第2の端面側を配置し、金属容器のガス出口側にハニカムフィルタαの第1の端面側を配置した。
(実施例2)
平均粒子径22μmを有する炭化ケイ素の粗粉末54.6重量%と、平均粒子径0.5μmの炭化ケイ素の微粉末23.4重量%とを混合し、得られた混合物に対して、有機バインダ(メチルセルロース)4.3重量%、潤滑剤(日油社製 ユニルーブ)2.6重量%、グリセリン1.2重量%、及び、水13.9重量%を加えて混練して湿潤混合物を得た後、押出成形する押出成形工程を行い、図3(a)に示した形状と略同様の形状であって、セルの目封じをしていない生のハニカム成形体を作製した。
以下、実施例1と同様にしてハニカム成形体の乾燥、脱脂、焼成工程を行い、気孔率が42%、平均気孔径が12μm、大きさが34.3mm×34.3mm×150mm、セルの数(セル密度)が350個/inch、セル壁の厚さが0.28mm(11mil)の炭化ケイ素焼結体からなるハニカム焼成体を製造した。
図5は、実施例2で製造したハニカム焼成体のセル構造を模式的に示す側面図である。
実施例2で製造したハニカム焼成体130の第1のセル131aの断面形状は略四角形(略正方形)であり、その一辺の長さ(図5でXで示す)は0.97mmである。また、第2のセル131bの断面形状は八角形であり、図5でYで示す長さが1.21mmである。そして、第1のセル131aと第2のセル131bの間のセル壁133の厚さ(図5でZで示す)が0.28mm(11mil)である。
第1のセルの開口面積は0.94mmであり、第2のセルの開口面積は1.12mmである。従って、開口比率は84.0%である。
また、第1の端面の開口率は25.1%、第2の端面の開口率は38.2%である。
このようなハニカム焼成体を用いて、実施例1と同様にして円柱状のハニカムフィルタを製造した。
以下、このようなハニカムフィルタを、ハニカムフィルタβとする。
ハニカムフィルタβは、第1の端面と第2の端面を有し、第1の端面側では第1のセル、すなわち断面の面積が小さいセルが開口している。また、第2の端面側では第2のセル、すなわち断面の面積が大きいセルが開口している。
続いて、ハニカムフィルタβに保持シール材を巻き付け、金属容器内に配置することによって排ガス浄化装置を製造した。ハニカムフィルタβを金属容器内に配置する際に、金属容器のガス入口側にハニカムフィルタβの第1の端面側を配置し、金属容器のガス出口側にハニカムフィルタβの第2の端面側を配置した。
(比較例2)
実施例2と同様のハニカムフィルタβを用いて、ハニカムフィルタを金属容器に配置する向きを実施例2と反対にした他は実施例1と同様にして排ガス浄化装置を製造した。
すなわち、金属容器のガス入口側にハニカムフィルタβの第2の端面側を配置し、金属容器のガス出口側にハニカムフィルタβの第1の端面側を配置した。
(圧力損失測定)
各実施例及び各比較例で製造した排ガス浄化装置について、図6に示したような圧力損失測定装置を用いて圧力損失を測定した。
図6は、圧力損失測定方法を模式的に示す断面図である。
この圧力損失測定装置510は、送風機511の排ガス管512に、排ガス浄化装置10のガス入口側14を配置し、ハニカムフィルタ100の前後の圧力を検出可能になるように圧力計514が取り付けられている。
そして、送風機511を運転してガス(空気)をハニカムフィルタ内に流通させ、運転開始から5分後の差圧(圧力損失)を測定した。
そして、各実施例及び各比較例で製造した排ガス浄化装置についてガス(空気)の流速を変化させて圧力損失の測定を行い、ハニカムフィルタにPMが堆積していない状態での圧力損失、すなわち初期圧力損失を測定した。得られた測定結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
図7は、表1に示す初期圧力損失の測定結果を示すグラフである。
ハニカムフィルタαを用いた実施例1と比較例1を比べると、実施例1の方が流速によらず圧力損失が低いことが判る。また、ハニカムフィルタβを用いた実施例2と比較例2を比べても、実施例2の方が流速によらず圧力損失が低いことが判る。
すなわち、ガス入口側の開口の面積がガス出口側の開口の面積よりも小さいハニカムフィルタを備える排ガス浄化装置では、初期圧力損失を低くすることができた。
(第二実施形態)
以下、本発明の一実施形態である第二実施形態について説明する。
本実施形態では、排ガス浄化装置内に配置されるハニカムフィルタが一つのハニカム焼成体からなる。このような、一つのハニカム焼成体からなるハニカムフィルタは、一体型ハニカムフィルタともいう。
図8(a)は、第二実施形態の排ガス浄化装置に用いられるハニカムフィルタの一例を模式的に示す斜視図である。図8(b)は、図8(a)に示すハニカムフィルタのB-B線断面図である。
図8(a)に示すハニカムフィルタ200は、第1の端面204及び第2の端面205を有する略円柱状であり、長手方向(図8(a)において両矢印cで示す)に垂直な断面の面積が小さい第1のセル211a及び長手方向に垂直な断面の面積が大きい第2のセル211bを有する。
第1のセル211aは、その長手方向に垂直な断面の形状が略四角形であり、第2のセル211bは、その長手方向に垂直な断面の形状が略八角形である。
ハニカムフィルタ200の外周側面にはコート層202が設けられている。
また、一体型ハニカムフィルタの主な構成材料としては、コージェライトやチタン酸アルミニウムを用いることができる。
第1のセル211aは、ハニカムフィルタ200の第1の端面204側の端部が開口され、第2の端面205側の端部で封止材212aにより封止される。一方、第2のセル211bは、ハニカムフィルタ200の第2の端面205側の端部が開口され、第1の端面204側の端部で封止材212bにより封止される。そして、第1のセル211a及び第2のセル211bを隔てるセル壁213がフィルタとして機能するようになっている。
即ち、第1のセル211aに流入した排気ガスは、必ずこれらのセル壁213を通過した後、第2のセル211bから流出するようになっている。
本実施形態の排ガス浄化装置は、このようなハニカムフィルタ200を、第1の端面204側を金属容器のガス入口側に、第2の端面205側を金属容器のガス出口側に配置してなる排ガス浄化装置である。また、本実施形態の排ガス浄化方法は、本実施形態の排ガス浄化装置を用いて、第一実施形態の排ガス浄化方法と同様にして排ガスを浄化する方法である。
本実施形態において使用するハニカムフィルタを製造する場合には、押出成形により成形するハニカム成形体の大きさが、第一実施形態において説明したハニカム成形体の大きさに比べて大きく、その外形が異なる他は、第一実施形態と同様にしてハニカム成形体を作製する。
その他の工程は第一実施形態におけるハニカムフィルタの製造工程とほぼ同様である。但し、本実施形態ではハニカムフィルタが一つのハニカム焼成体からなるため、結束工程を行う必要はない。また、円柱状のハニカム成形体を作製した場合には、外周研削工程を行う必要はない。
そして、作製したハニカムフィルタを用いて、第一実施形態と同様にして排ガス浄化装置を製造することができる。
本実施形態の排ガス浄化装置及び排ガス浄化方法においても、第一実施形態と同様の作用効果(1)~(5)を発揮することができる。
(その他の実施形態)
本発明の排ガス浄化装置に用いられるハニカムフィルタにおいて、第1のセル及び第2のセルの形態は、これまでの実施形態において説明した形態に限定されるものではない。
図9(a)、図9(b)、図9(c)及び図9(d)は、集合型ハニカムフィルタを構成するハニカム焼成体の端面の一例を模式的に示した側面図である。
図10及び図11は、一体型ハニカムフィルタの端面の一例を模式的に示した側面図である。
これらの図面は、いずれもハニカム焼成体又はハニカムフィルタの第1の端面側、すなわち第2のセルが封止された端面側から見た側面図である。
これらの図を用いてハニカムフィルタの第1のセル及び第2のセルの断面形状のその他の実施形態を説明する。
図9(a)に示すハニカム焼成体310においては、第1のセル311aの長手方向に垂直な断面の形状が略四角形であり、第2のセル311bの長手方向に垂直な断面の形状は、角部に相当する部分が円弧状になっている略四角形となっている。
図9(b)に示すハニカム焼成体320において、第1のセル321a及び第2のセル321bの長手方向に垂直な断面は、セルの各辺が曲線である形状である。
すなわち、図9(b)ではセル壁323の断面形状が曲線である。
第1のセル321aの断面形状は、セル壁323がセルの断面の外側から中心に向かって凸の形状であり、一方、第2のセル321bの断面形状は、セル壁323がセルの断面の中心から外側に向かって凸の形状である。
セル壁323はハニカム焼成体の断面の水平方向及び垂直方向に対して起伏する「波形」の形状を有しており、隣り合うセル壁323の波形の山の部分(正弦曲線でいう振幅の極大値の部分)が互いに最近接することで、セルの断面形状が内側に凹んだ第1のセル321aとセルの断面形状が外側に膨らんだ第2のセル321bとが形成される。なお、波形の振幅は一定でもよくまた変化しても良いが、一定であることが好ましい。
図9(c)に示すハニカム焼成体330では、第1のセル331aの長手方向に垂直な断面の形状は略四角形であり、それぞれ大きな四角形の斜めに対向する部分を占めるように構成されている。
第2のセル331bの長手方向に垂直な断面の形状は略五角形であり、そのうちの3つの角がほぼ直角となっている。
図9(d)に示すハニカム焼成体340では、第1のセル341a及び第2のセル341bの長手方向に垂直な断面の形状はともに略四角形(略長方形)であり、2つの第1のセルと2つの第2のセルを組み合わせると、ほぼ正方形となるように構成されている。
図10に示す一体型ハニカムフィルタ410では、碁盤の目に当たる部分に略四角形の第1のセル411aが形成され、第2のセル411bは、略四角形の四隅が小さな略四角形状に欠けた形状となっており、これらを隔てるセル壁413a、413bが形成されている。
図11に示す一体型ハニカムフィルタ420では、第1のセル421aの長手方向に垂直な断面の形状は略四角形であり、第2のセル421bの長手方向に垂直な断面の形状は略四角形である。
なお、一体型ハニカムフィルタが図9(a)、図9(b)、図9(c)及び図9(d)に示すようなセルの断面形状を有していてもよい。また、集合型ハニカム構造体を構成するハニカム焼成体が図10及び図11に示すようなセルの断面形状を有していてもよい。
本発明の各実施形態においては、隣り合う第1のセルの長手方向に垂直な断面の重心間距離と、隣り合う第2のセルの長手方向に垂直な断面の重心間距離とは、等しいことが望ましい。
「隣り合う第1のセルの長手方向に垂直な断面の重心間距離」とは、一の第1のセルの長手方向に垂直な断面における重心と、隣り合う第1のセルの長手方向に垂直な断面における重心との最小の距離をいい、一方、「隣り合う第2のセルの長手方向に垂直な断面の重心間距離」とは、一の第2のセルの長手方向に垂直な断面における重心と、隣り合う第2のセルの重心との最小の距離のことをいう。
上記2つの重心間距離が等しいとき、再生時に熱が均一に拡散することで、ハニカムフィルタ内部の局所的な温度の偏りがなくなり、長期間繰り返し使用しても、熱応力に起因するクラック等が発生することのない耐久性に優れたフィルタとなるからである。
ハニカムフィルタの形状は、円柱状に限定されるものではなく、楕円柱状、多角柱状等の任意の柱の形状であればよい。
集合型ハニカムフィルタを構成するハニカム焼成体及び一体型ハニカムフィルタの気孔率は特に限定されないが、35~60%であることが望ましい。
気孔率が35%未満であると、ハニカムフィルタがすぐに目詰まりを起こすことがあり、一方、気孔率が60%を超えると、ハニカムフィルタの強度が低下して容易に破壊されることがあるからである。
集合型ハニカムフィルタを構成するハニカム焼成体及び一体型ハニカムフィルタの平均気孔径は5~30μmであることが望ましい。
平均気孔径が5μm未満であると、パティキュレートが容易に目詰まりを起こすことがあり、一方、平均気孔径が30μmを超えると、パティキュレートが気孔を通り抜けてしまい、該パティキュレートを捕集することができず、フィルタとして機能することができないことがあるからである。
なお、上記気孔率及び気孔径は、例えば、水銀圧入法、アルキメデス法、走査型電子顕微鏡(SEM)による測定等の従来公知の方法により測定することができる。
ハニカムフィルタのセル壁の厚さは、特に限定されないが、0.2~0.4mmが望ましい。
セル壁の厚さが0.2mm未満であると、ハニカム構造を支持するセル壁の厚さが薄くなり、ハニカム構造体の強度を保つことができなくなるおそれがあり、一方、上記厚さが0.4mmを超えると、圧力損失の上昇を引き起こす場合があるからである。
また、ハニカムフィルタの長手方向に垂直な断面におけるセル密度は特に限定されないが、望ましい下限は、31.0個/cm(200個/in)、望ましい上限は、93個/cm(600個/in)、より望ましい下限は、38.8個/cm(250個/in)、より望ましい上限は、77.5個/cm(500個/in)である。
ハニカム焼成体の構成材料の主成分は、炭化ケイ素に限定されるわけではなく、他のセラミック原料として、例えば、窒化アルミニウム、窒化ケイ素、窒化ホウ素、窒化チタン等の窒化物セラミック、炭化ジルコニウム、炭化チタン、炭化タンタル、炭化タングステン等の炭化物セラミック、アルミナ、ジルコニア、コージェライト、ムライト、チタン酸アルミニウム等の酸化物セラミック等のセラミック粉末が挙げられる。
これらのなかでは、非酸化物セラミックが好ましく、炭化ケイ素が特に好ましい。耐熱性、機械強度、熱伝導率等に優れるからである。なお、上述したセラミックに金属ケイ素を配合したケイ素含有セラミック、ケイ素やケイ酸塩化合物で結合されたセラミック等のセラミック原料も構成材料として挙げられ、これらのなかでは、炭化ケイ素に金属ケイ素が配合されたもの(ケイ素含有炭化ケイ素)が望ましい。
特に、炭化ケイ素を60wt%以上含むケイ素含有炭化ケイ素質セラミックが望ましい。
また、セラミック粉末の粒径は特に限定されないが、後の焼成工程で収縮の少ないものが好ましく、例えば、1.0~50μmの平均粒径を有する粉末100重量部と0.1~1.0μmの平均粒径を有する粉末5~65重量部とを組み合わせたものが好ましい。
ハニカム焼成体の気孔径等を調節するためには、焼成温度を調節する必要があるが、セラミック粉末の粒径を調節することにより、気孔径を調節することができる。
湿潤混合物における有機バインダとしては特に限定されず、例えば、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリエチレングリコール等が挙げられる。これらのなかでは、メチルセルロースが望ましい。有機バインダの配合量は、通常、セラミック粉末100重量部に対して、1~10重量部が望ましい。
湿潤混合物における可塑剤は、特に限定されず、例えば、グリセリン等が挙げられる。また、潤滑剤は特に限定されず、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシプロピレンアルキルエーテル等のポリオキシアルキレン系化合物等が挙げられる。
潤滑剤の具体例としては、例えば、ポリオキシエチレンモノブチルエーテル、ポリオキシプロピレンモノブチルエーテル等が挙げられる。
なお、可塑剤、潤滑剤は、場合によっては、混合原料粉末に含まれていなくてもよい。
また、湿潤混合物を調製する際には、分散媒液を使用してもよく、分散媒液としては、例えば、水、ベンゼン等の有機溶媒、メタノール等のアルコール等が挙げられる。
さらに、湿潤混合物中には、成形助剤が添加されていてもよい。
成形助剤としては特に限定されず、例えば、エチレングリコール、デキストリン、脂肪酸、脂肪酸石鹸、ポリアルコール等が挙げられる。
さらに、湿潤混合物には、必要に応じて酸化物系セラミックを成分とする微小中空球体であるバルーンや、球状アクリル粒子、グラファイト等の造孔剤を添加してもよい。
バルーンとしては特に限定されず、例えば、アルミナバルーン、ガラスマイクロバルーン、シラスバルーン、フライアッシュバルーン(FAバルーン)、ムライトバルーン等が挙げられる。これらのなかでは、アルミナバルーンが望ましい。
セルを封止する封止材ペーストとしては特に限定されないが、後工程を経て製造される封止材の気孔率が30~75%となるものが望ましく、例えば、湿潤混合物と同様のものを用いることができる。
接着剤ペースト及びシール材ペーストにおける無機バインダとしては、例えば、シリカゾル、アルミナゾル等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。無機バインダのなかでは、シリカゾルが望ましい。
接着剤ペースト及びシール材ペーストにおける有機バインダとしては、例えば、ポリビニルアルコール、メチルセルロース、エチルセルロース、カルボキシメチルセルロース等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。有機バインダのなかでは、カルボキシメチルセルロースが望ましい。
接着剤ペースト及びシール材ペーストにおける無機繊維としては、例えば、シリカ-アルミナ、ムライト、アルミナ、シリカ等のセラミックファイバー等を挙げることができる。これらは、単独で用いてもよく、2種以上を併用してもよい。無機繊維のなかでは、アルミナファイバが望ましい。
接着剤ペースト及びシール材ペーストにおける無機粒子としては、例えば、炭化物、窒化物等が挙げられる。具体的には、炭化ケイ素、窒化ケイ素、窒化ホウ素からなる無機粉末等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。無機粒子のなかでは、熱伝導性に優れる炭化ケイ素が望ましい。
さらに、接着剤ペースト及びシール材ペーストには、必要に応じて酸化物系セラミックを成分とする微小中空球体であるバルーンや、球状アクリル粒子、グラファイト等の造孔剤を添加してもよい。バルーンとしては特に限定されず、例えば、アルミナバルーン、ガラスマイクロバルーン、シラスバルーン、フライアッシュバルーン(FAバルーン)、ムライトバルーン等が挙げられる。これらのなかでは、アルミナバルーンが望ましい。
また、ハニカムフィルタには、触媒が担持されていてもよい。
ハニカムフィルタにCO、HC及びNOx等の排ガス中の有害なガス成分を浄化することが可能となる触媒を担持させることにより、触媒反応により排ガス中の有害なガス成分を充分に浄化することが可能となる。また、PMの燃焼を助ける触媒を担持させることにより、PMをより容易に燃焼除去することが可能となる。
上記触媒の担持は、ハニカムフィルタに対して行ってもよく、ハニカム焼成体に行ってもよい。
触媒を担持させる場合には、ハニカムフィルタ又はハニカム焼成体の表面に高い比表面積のアルミナ膜を形成し、このアルミナ膜の表面に助触媒、及び、白金等の触媒を付与することが望ましい。
ハニカムフィルタの表面にアルミナ膜を形成する方法としては、例えば、Al(NO等のアルミニウムを含有する金属化合物の溶液をハニカムフィルタに含浸させて加熱する方法、アルミナ粉末を含有する溶液をハニカムフィルタに含浸させて加熱する方法等を挙げることができる。
上記アルミナ膜に助触媒を付与する方法としては、例えば、Ce(NO等の希土類元素等を含有する金属化合物の溶液をハニカムフィルタに含浸させて加熱する方法等を挙げることができる。
上記アルミナ膜に触媒を付与する方法としては、例えば、ジニトロジアンミン白金硝酸溶液([Pt(NH(NO]HNO、白金濃度約4.53重量%)等をハニカム構造体に含浸させて加熱する方法等を挙げることができる。
また、予め、アルミナ粒子に触媒を付与して、触媒が付与されたアルミナ粉末を含有する溶液をハニカムフィルタに含浸させて加熱する方法で触媒を付与してもよい。
10 排ガス浄化装置
11 金属容器
14 ガス入口側
15 ガス出口側
100、200、410、420 ハニカムフィルタ
101 接着剤層
104、204 第1の端面(ハニカムフィルタの第1の端面)
105、205 第2の端面(ハニカムフィルタの第2の端面)
110、120、130、310、320、330、340 ハニカム焼成体
111a、121a、131a、311a、321a、331a、341a、411a、421a 第1のセル
111b、121b、131b、311b、321b、331b、341b、411b、421b 第2のセル
114 第1の端面(ハニカム焼成体の第1の端面)
115 第2の端面(ハニカム焼成体の第2の端面)
113、123、133、213、323、413a、413b セル壁
G 排ガス

Claims (18)

  1. ガス入口側及びガス出口側を備えた金属容器と、
    前記金属容器内に収容されたハニカムフィルタとを備えた排ガス浄化装置であって、
    前記ハニカムフィルタは、セル壁を隔てて長手方向に並設された多数のセルと、第1の端面と、第2の端面とを有し、
    前記多数のセルは、前記第1の端面側の端部が開口され前記第2の端面側の端部が封止された第1のセルと、前記第2の端面側の端部が開口され前記第1の端面側の端部が封止された第2のセルとが交互に配設されてなり、
    前記第1のセルの前記長手方向に垂直な断面の面積は、前記第2のセルの前記長手方向に垂直な断面の面積よりも小さく、
    ハニカムフィルタの前記第1の端面側が前記金属容器の前記ガス入口側に配置され、ハニカムフィルタの前記第2の端面側が前記金属容器の前記ガス出口側に配置されていることを特徴とする排ガス浄化装置。
  2. 前記第1の端面の開口率が15~30%であり、前記第2の端面の開口率が35~50%である請求項1に記載の排ガス浄化装置。
  3. 前記第1のセルの前記長手方向に垂直な断面の面積は、前記第2のセルの前記長手方向に垂直な断面の面積の60~85%である請求項1又は2に記載の排ガス浄化装置。
  4. 前記第1のセルの前記長手方向に垂直な断面の形状は略四角形であり、前記第2のセルの前記長手方向に垂直な断面の形状は略八角形である請求項1~3のいずれかに記載の排ガス浄化装置。
  5. 前記第1のセルの前記長手方向に垂直な断面の形状は略四角形であり、前記第2のセルの前記長手方向に垂直な断面の形状は少なくとも1つの角部に相当する部分が円弧状となっている略四角形である請求項1~3のいずれかに記載の排ガス浄化装置。
  6. 前記第1のセル及び前記第2のセルの前記長手方向に垂直な断面は、セルの各辺が曲線である請求項1~3のいずれかに記載の排ガス浄化装置。
  7. 前記第1のセルの前記長手方向に垂直な断面の形状は略四角形であり、前記第2のセルの前記長手方向に垂直な断面の形状は略四角形である請求項1~3のいずれかに記載の排ガス浄化装置。
  8. 前記ハニカムフィルタは、複数のハニカム焼成体が接着剤層を介して複数個結束されてなる請求項1~7のいずれかに記載の排ガス浄化装置。
  9. 前記ガスはガソリンエンジンから排出された排ガスである請求項1~8のいずれかに記載の排ガス浄化装置。
  10. 排ガス浄化装置を用いてエンジンから排出された排ガスを浄化する排ガス浄化方法であって、
    前記排ガス浄化装置は、ガス入口側及びガス出口側を備えた金属容器と、
    前記金属容器内に収容されたハニカムフィルタとを備え、
    前記ハニカムフィルタは、セル壁を隔てて長手方向に並設された多数のセルと、第1の端面と、第2の端面とを有し、
    前記多数のセルは、前記第1の端面側の端部が開口され前記第2の端面側の端部が封止された第1のセルと、前記第2の端面側の端部が開口され前記第1の端面側の端部が封止された第2のセルとが交互に配設されてなり、
    前記第1のセルの前記長手方向に垂直な断面の面積は、前記第2のセルの前記長手方向に垂直な断面の面積よりも小さく、
    ハニカムフィルタの前記第1の端面側が前記金属容器の前記ガス入口側に配置され、ハニカムフィルタの前記第2の端面側が前記金属容器の前記ガス出口側に配置されており、
    エンジンから排出された排ガスを前記金属容器の前記ガス入口側から前記排ガス浄化装置に流入させ、前記金属容器の前記ガス出口側から流出させることを特徴とする排ガス浄化方法。
  11. 前記第1の端面の開口率が15~30%であり、前記第2の端面の開口率が35~50%である請求項10に記載の排ガス浄化方法。
  12. 前記第1のセルの前記長手方向に垂直な断面の面積は、前記第2のセルの前記長手方向に垂直な断面の面積の60~85%である請求項10又は11に記載の排ガス浄化方法。
  13. 前記第1のセルの前記長手方向に垂直な断面の形状は略四角形であり、前記第2のセルの前記長手方向に垂直な断面の形状は略八角形である請求項10~12のいずれかに記載の排ガス浄化方法。
  14. 前記第1のセルの前記長手方向に垂直な断面の形状は略四角形であり、前記第2のセルの前記長手方向に垂直な断面の形状は少なくとも1つの角部に相当する部分が円弧状となっている略四角形である請求項10~12のいずれかに記載の排ガス浄化方法。
  15. 前記第1のセル及び前記第2のセルの前記長手方向に垂直な断面は、セルの各辺が曲線である請求項10~12のいずれかに記載の排ガス浄化方法。
  16. 前記第1のセルの前記長手方向に垂直な断面の形状は略四角形であり、前記第2のセルの前記長手方向に垂直な断面の形状は略四角形である請求項10~12のいずれかに記載の排ガス浄化方法。
  17. 前記ハニカムフィルタは、複数のハニカム焼成体が接着剤層を介して複数個結束されてなる請求項10~16のいずれかに記載の排ガス浄化方法。
  18. 前記エンジンはガソリンエンジンである請求項10~17のいずれかに記載の排ガス浄化方法。
PCT/JP2009/067566 2009-10-08 2009-10-08 排ガス浄化装置及び排ガス浄化方法 WO2011042976A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2009/067566 WO2011042976A1 (ja) 2009-10-08 2009-10-08 排ガス浄化装置及び排ガス浄化方法
CN200980160933.4A CN102470310B (zh) 2009-10-08 2009-10-08 废气净化装置和废气净化方法
EP10156473A EP2312133B1 (en) 2009-10-08 2010-03-15 Exhaust gas purifying apparatus and method for purifying exhaust gas
AT10156473T ATE540203T1 (de) 2009-10-08 2010-03-15 Appareil de purification de gaz d'echappement et procede de purification de gaz d'echappement
US12/759,650 US8057766B2 (en) 2009-10-08 2010-04-13 Exhaust gas purifying apparatus and method for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/067566 WO2011042976A1 (ja) 2009-10-08 2009-10-08 排ガス浄化装置及び排ガス浄化方法

Publications (1)

Publication Number Publication Date
WO2011042976A1 true WO2011042976A1 (ja) 2011-04-14

Family

ID=42110335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067566 WO2011042976A1 (ja) 2009-10-08 2009-10-08 排ガス浄化装置及び排ガス浄化方法

Country Status (5)

Country Link
US (1) US8057766B2 (ja)
EP (1) EP2312133B1 (ja)
CN (1) CN102470310B (ja)
AT (1) ATE540203T1 (ja)
WO (1) WO2011042976A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043350A1 (ja) * 2016-09-05 2018-03-08 株式会社デンソー 排ガス浄化フィルタ

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2925355B1 (fr) * 2007-12-20 2009-12-11 Saint Gobain Ct Recherches Structure de filtration d'un gaz a canaux hexagonaux concaves ou convexes.
EP2368619B1 (en) * 2010-03-26 2014-06-25 Imerys Ceramic honeycomb structures
WO2012067156A1 (ja) 2010-11-18 2012-05-24 日本碍子株式会社 熱伝導部材
US8511072B2 (en) * 2011-03-24 2013-08-20 Ut-Battelle, Llc Reclamation of potable water from mixed gas streams
CN103458991B (zh) 2011-03-31 2016-10-12 现代自动车株式会社 封孔蜂窝结构体及废气净化装置
JP5894577B2 (ja) 2011-03-31 2016-03-30 日本碍子株式会社 目封止ハニカム構造体
WO2012133846A1 (ja) * 2011-03-31 2012-10-04 日本碍子株式会社 目封止ハニカム構造体
JP5869887B2 (ja) * 2012-01-10 2016-02-24 日本碍子株式会社 ハニカムフィルタ
WO2013186923A1 (ja) 2012-06-15 2013-12-19 イビデン株式会社 ハニカムフィルタ
WO2013186922A1 (ja) 2012-06-15 2013-12-19 イビデン株式会社 ハニカムフィルタ
WO2014054159A1 (ja) * 2012-10-04 2014-04-10 イビデン株式会社 ハニカムフィルタ
JP6239303B2 (ja) * 2013-07-31 2017-11-29 イビデン株式会社 ハニカムフィルタ
JP6239305B2 (ja) * 2013-07-31 2017-11-29 イビデン株式会社 ハニカムフィルタ
JP6239307B2 (ja) 2013-07-31 2017-11-29 イビデン株式会社 ハニカムフィルタ
JP6239304B2 (ja) 2013-07-31 2017-11-29 イビデン株式会社 ハニカムフィルタ
JP6239306B2 (ja) * 2013-07-31 2017-11-29 イビデン株式会社 ハニカムフィルタ
CN104667636B (zh) * 2015-03-05 2016-08-24 北京绿洁美科技有限公司 一种高温环境使用的多孔合金过滤元件及其制备方法
MX2018012815A (es) 2016-04-22 2019-09-04 Corning Inc Estructuras de panal de salida rectangular, filtros de material particulado, dados de extrusión y método de fabricación de los mismos.
JP6940787B2 (ja) * 2019-07-31 2021-09-29 株式会社デンソー 排ガス浄化フィルタ
KR20230106853A (ko) 2022-01-07 2023-07-14 한국기계연구원 금속섬유로 형성된 dpf를 갖는 선박용 디젤 엔진의 배기가스 여과 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161608A (ja) * 1984-08-31 1986-03-29 Nippon Denso Co Ltd 排気ガス微粒子捕集用フイルタ−
WO2004024294A1 (ja) * 2002-09-13 2004-03-25 Ibiden Co., Ltd. フィルタ
JP2005125182A (ja) * 2003-10-22 2005-05-19 Ngk Insulators Ltd ハニカム構造体、その製造方法及びキャニング構造体
JP2008237969A (ja) * 2007-03-26 2008-10-09 Ngk Insulators Ltd 浄化装置
JP2009095827A (ja) * 2007-09-26 2009-05-07 Denso Corp 排ガス浄化フィルタ
JP2009178705A (ja) * 2008-02-01 2009-08-13 Ngk Insulators Ltd 目封止ハニカム構造体

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4417908A (en) * 1982-02-22 1983-11-29 Corning Glass Works Honeycomb filter and method of making it
DE3663839D1 (en) * 1985-03-08 1989-07-13 Matsushita Electric Ind Co Ltd Exhaust gas filter for diesel engine
US6508852B1 (en) * 2000-10-13 2003-01-21 Corning Incorporated Honeycomb particulate filters
JP4222588B2 (ja) * 2000-11-24 2009-02-12 日本碍子株式会社 ハニカムフィルター及びその製造方法
US6544310B2 (en) * 2001-05-24 2003-04-08 Fleetguard, Inc. Exhaust aftertreatment filter with particulate distribution pattern
DE10130338A1 (de) * 2001-06-26 2003-04-24 Forschungszentrum Juelich Gmbh Dieselrussfilter mit einem feindispers verteiltem Dieselrusskatalysator
DE60218538T2 (de) * 2001-12-03 2007-11-08 Hitachi Metals, Ltd. Keramischer Wabenfilter
US7107763B2 (en) * 2002-03-29 2006-09-19 Hitachi Metals, Ltd. Ceramic honeycomb filter and exhaust gas-cleaning method
JPWO2005002709A1 (ja) * 2003-06-23 2006-08-10 イビデン株式会社 ハニカム構造体
DE602004005107T2 (de) * 2003-07-02 2007-06-28 Haldor Topsoe A/S Verfahren und Filter zur katalytischen Behandlung von Dieselabgasen
EP1676621A4 (en) * 2003-10-20 2006-07-05 Ibiden Co Ltd hONEYCOMB STRUCTURE
JP4439236B2 (ja) * 2003-10-23 2010-03-24 イビデン株式会社 ハニカム構造体
JP4698585B2 (ja) * 2004-02-23 2011-06-08 イビデン株式会社 ハニカム構造体及び排気ガス浄化装置
US7393377B2 (en) * 2004-02-26 2008-07-01 Ngk Insulators, Ltd. Honeycomb filter and exhaust gas treatment apparatus
DE102004024519A1 (de) * 2004-05-18 2005-12-15 Adam Opel Ag Minimierung von PAK-Emissionen bei der Regeneration von Partikelfiltern
US7722829B2 (en) * 2004-09-14 2010-05-25 Basf Catalysts Llc Pressure-balanced, catalyzed soot filter
WO2007010643A1 (ja) * 2005-07-21 2007-01-25 Ibiden Co., Ltd. ハニカム構造体及び排ガス浄化装置
WO2008044269A1 (fr) * 2006-10-05 2008-04-17 Ibiden Co., Ltd. Structure en nid d'abeilles
WO2008129671A1 (ja) * 2007-04-17 2008-10-30 Ibiden Co., Ltd. 触媒担持ハニカムおよびその製造方法
JP2009243274A (ja) * 2008-03-28 2009-10-22 Mazda Motor Corp パティキュレートフィルタ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161608A (ja) * 1984-08-31 1986-03-29 Nippon Denso Co Ltd 排気ガス微粒子捕集用フイルタ−
WO2004024294A1 (ja) * 2002-09-13 2004-03-25 Ibiden Co., Ltd. フィルタ
JP2005125182A (ja) * 2003-10-22 2005-05-19 Ngk Insulators Ltd ハニカム構造体、その製造方法及びキャニング構造体
JP2008237969A (ja) * 2007-03-26 2008-10-09 Ngk Insulators Ltd 浄化装置
JP2009095827A (ja) * 2007-09-26 2009-05-07 Denso Corp 排ガス浄化フィルタ
JP2009178705A (ja) * 2008-02-01 2009-08-13 Ngk Insulators Ltd 目封止ハニカム構造体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043350A1 (ja) * 2016-09-05 2018-03-08 株式会社デンソー 排ガス浄化フィルタ
JP2018038941A (ja) * 2016-09-05 2018-03-15 株式会社デンソー 排ガス浄化フィルタ

Also Published As

Publication number Publication date
EP2312133B1 (en) 2012-01-04
EP2312133A1 (en) 2011-04-20
US20110085953A1 (en) 2011-04-14
CN102470310B (zh) 2014-07-23
ATE540203T1 (de) 2012-01-15
US8057766B2 (en) 2011-11-15
CN102470310A (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
WO2011042976A1 (ja) 排ガス浄化装置及び排ガス浄化方法
KR100882401B1 (ko) 벌집형 구조체
KR100855167B1 (ko) 벌집형 구조체
JP5202693B2 (ja) フィルタ
JP5142529B2 (ja) ハニカム構造体
KR100680078B1 (ko) 벌집형 구조체
JP4516017B2 (ja) セラミックハニカム構造体
US7449427B2 (en) Honeycomb structured body
US7972566B2 (en) Honeycomb filter and exhaust gas purifying apparatus
US20070204580A1 (en) Ceramic honeycomb structural body
JP2006223983A (ja) ハニカム構造体
US20080247918A1 (en) Honeycomb filter, exhaust gas purifying apparatus, and method for manufacturing honeycomb filter
WO2012132004A1 (ja) ハニカム構造体及び排ガス浄化装置
JPWO2005108328A1 (ja) ハニカム構造体及びその製造方法
KR20080096759A (ko) 허니컴 구조체
JP2011098335A (ja) 排ガス浄化装置及び排ガス浄化方法
JP5096978B2 (ja) ハニカム触媒体
JP2008212917A (ja) ハニカム構造体および排気ガス処理装置
WO2011042992A1 (ja) ハニカムフィルタ
WO2009101691A1 (ja) ハニカム構造体
JP2012250901A (ja) ハニカム構造体及び排ガス浄化装置
WO2011067823A1 (ja) ハニカムフィルタ及び排ガス浄化装置
EP1787702B1 (en) Honeycomb structured body
JP2011224538A (ja) ハニカムフィルタ及び排ガス浄化装置
WO2005079165A2 (ja) ハニカム構造体及び排気ガス浄化装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980160933.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09850247

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12/KOLNP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09850247

Country of ref document: EP

Kind code of ref document: A1