WO2012131818A1 - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
WO2012131818A1
WO2012131818A1 PCT/JP2011/006167 JP2011006167W WO2012131818A1 WO 2012131818 A1 WO2012131818 A1 WO 2012131818A1 JP 2011006167 W JP2011006167 W JP 2011006167W WO 2012131818 A1 WO2012131818 A1 WO 2012131818A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
silicon film
active region
gate electrode
conductivity type
Prior art date
Application number
PCT/JP2011/006167
Other languages
English (en)
French (fr)
Inventor
佐藤 好弘
秀幸 新井
山田 隆順
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2012530800A priority Critical patent/JP5857225B2/ja
Publication of WO2012131818A1 publication Critical patent/WO2012131818A1/ja
Priority to US13/665,376 priority patent/US8884373B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/823842Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different gate conductor materials or different gate conductor implants, e.g. dual gate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28518Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76895Local interconnects; Local pads, as exemplified by patent document EP0896365
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • H10B10/12Static random access memory [SRAM] devices comprising a MOSFET load element
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • H10B10/18Peripheral circuit regions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S257/00Active solid-state devices, e.g. transistors, solid-state diodes
    • Y10S257/903FET configuration adapted for use as static memory cell

Definitions

  • the present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a semiconductor device having a CMIS (Complementary Metal Insulator Semiconductor) dual gate structure and a manufacturing method thereof.
  • CMIS Complementary Metal Insulator Semiconductor
  • a dual gate CMIS device generally uses a polysilicon film doped with an N-type impurity as a gate electrode of an N channel MISFET (MetalMetaInsulator Semiconductor Field Effect Transistor) (hereinafter referred to as NMISFET), and It means a device using a polysilicon film doped with a P-type impurity as a gate electrode of a P-channel MISFET (hereinafter referred to as PMISFET) (see, for example, Patent Document 1).
  • NMISFET MetalMetaInsulator Semiconductor Field Effect Transistor
  • a metal silicide layer is formed on the polysilicon gate electrode in order to connect the N-type polysilicon gate electrode and the P-type polysilicon gate electrode.
  • impurities in each region are interdiffused through the metal silicide layer or the polysilicon film, and as a result, the work function of each gate electrode changes.
  • the threshold voltage of each FET varies.
  • the boundary between the N-type region and the P-type region is set to be located on the separation between the well regions.
  • Impurity ions are implanted into the polysilicon film for the gate electrode using a mask (see, for example, Patent Document 2).
  • a conventional semiconductor device in which an N-type region and a P-type region are formed in each gate electrode of a logic (Logic) circuit transistor and an SRAM (static random access memory) transistor by using ion implantation with reference to the drawings. explain.
  • FIG. 15A is a plan view of a logic region in a conventional semiconductor device
  • FIG. 15B is a cross-sectional view taken along the line BB (gate width direction) in FIG. 15A
  • FIG. 15C is a plan view of the SRAM region in the conventional semiconductor device
  • FIG. 15D is a sectional view taken along the line DD (in the gate width direction) in FIG.
  • the side wall spacers, silicide layers, interlayer films, etc. are not shown in FIGS. 15A to 15D, and the contacts are shown in FIGS. 15B and 15D. Is omitted.
  • the logic region and the SRAM region in the conventional semiconductor device have an NMIS region and a PMIS region, respectively.
  • a P-type well region 102 a is provided on the semiconductor substrate 100 and an active region 100 a is provided so as to be surrounded by the element isolation region 101.
  • an N-type well region 102 b is provided on the semiconductor substrate 100 and an active region 100 b is provided so as to be surrounded by the element isolation region 101.
  • a P-type well region 102 c is provided on the semiconductor substrate 100 and an active region 100 c is provided so as to be surrounded by the element isolation region 101.
  • an N-type well region 102 d is provided on the semiconductor substrate 100 and an active region 100 d is provided so as to be surrounded by the element isolation region 101.
  • a gate electrode 111a having an N-type polysilicon film 104a is formed on the active region 100a with a gate insulating film 103 interposed therebetween.
  • a gate electrode 111b having a P-type polysilicon film 104b is formed on the active region 100b with a gate insulating film 103 interposed therebetween.
  • the gate electrode 111a and the gate electrode 111b are connected to each other at a PN boundary 113L located on the element isolation region 101 between the active region 100a and the active region 100b, thereby forming a dual gate electrode 112L. Yes.
  • N-type source / drain regions 105a are provided on both sides of the gate electrode 111a in the active region 100a
  • P-type source / drain regions 105b are provided on both sides of the gate electrode 111b in the active region 100b.
  • a contact 108 is formed so as to be connected to each of the dual gate electrode 112L, the N-type source / drain region 105a, and the P-type source / drain region 105b.
  • a gate electrode 111c having an N-type polysilicon film 104c is formed on the active region 100c with a gate insulating film 103 interposed therebetween.
  • a gate electrode 111d having a P-type polysilicon film 104d is formed on the active region 100d with a gate insulating film 103 interposed therebetween.
  • the gate electrode 111c and the gate electrode 111d are connected to each other at a PN boundary 113S located on the element isolation region 101 between the active region 100c and the active region 100d, thereby forming a dual gate electrode 112S. Yes.
  • N-type source / drain regions 105c are provided on both sides of the gate electrode 111c in the active region 100c, and P-type source / drain regions 105d are provided on both sides of the gate electrode 111d in the active region 100d.
  • a contact 108 is formed so as to be connected to each of the dual gate electrode 112S, the N-type source / drain region 105c, and the P-type source / drain region 105d.
  • FIGS. 16A and 16B schematically show how the P-type region and the N-type region are formed by ion-implanting impurities into the polysilicon film (before gate patterning) to be the dual gate electrodes 112L and 112S.
  • FIG. 16A and 16B the same components as those in FIGS. 15A to 15D are denoted by the same reference numerals.
  • a P-type impurity is added to the polysilicon film 104 using a mask pattern 151 that covers the NMIS region of each of the logic region and the SRAM region.
  • a mask pattern 151 that covers the NMIS region of each of the logic region and the SRAM region.
  • an N-type impurity is ion-implanted into the polysilicon film 104 using a mask pattern 152 that covers the PMIS region of each of the logic region and the SRAM region, whereby the N-type polysilicon film 104a. And 104c are formed. That is, the N-type impurity concentration in each of the N-type polysilicon films 104a and 104c is substantially the same.
  • mask patterns on the photomask for forming the resist pattern are schematically shown as mask patterns 151 and 152, not a resist pattern actually used for ion implantation. .
  • the PN boundary formed in the polysilicon film 104 is on the element isolation region 101 between the active region 100a and the active region 100b, and between the active region 100c and the active region 100d. It is set so as to be located on each element isolation region 101.
  • ion implantation for forming source / drain regions in each of the PMIS region and the NMIS region is the same as the mask patterns 151 and 152 shown in FIGS. A mask pattern is used.
  • the PN boundary formed in the polysilicon film 104 is located on the element isolation region between the active regions, the N-type region in the polysilicon gate electrode It is possible to suppress deterioration of the characteristics of each FET due to the interdiffusion of impurities between the P-type region and the P-type region.
  • the gate length is shortened with the miniaturization of the element, the difference in the etching rate of the polysilicon film due to the difference in the ion species as the implanted impurity is relatively different from the problem of the interdiffusion in the polysilicon film.
  • the problem that the finished dimension of the gate length fluctuates and the threshold voltage of the transistor fluctuates becomes obvious. Therefore, it is necessary to suppress the variation in the gate size that occurs in the vicinity of the PN boundary, particularly in an SRAM that requires a reduction in cell size.
  • the PN boundary in the polysilicon gate electrode is positioned on the element isolation region between the active regions as in the above-described prior art, as the element is further miniaturized, in particular in the SRAM or the like, the element Since the width of the isolation region becomes narrow, the influence of the interdiffusion of impurities between the N-type region and the P-type region in the polysilicon gate electrode cannot be ignored. As a result, since the work function of each gate electrode changes, deterioration of transistor characteristics such as threshold voltage fluctuation occurs, which causes a problem that circuit operation failure is likely to occur.
  • an object of the present invention is to suppress fluctuations in device characteristics due to gate dimension fluctuations and impurity interdiffusion in the vicinity of a PN boundary in a semiconductor device having a CMIS dual gate structure.
  • a semiconductor device is a semiconductor device including a first dual gate electrode and a second dual gate electrode, wherein the first dual gate electrode is a first dual gate electrode.
  • the second dual gate electrode includes a third gate electrode including a second first conductivity type silicon film formed on the third active region, and a fourth active region.
  • a fourth gate electrode including a second second-conductivity-type silicon film formed thereon, and the first active region and the second active region are separated with an element isolation region interposed therebetween. The first gate electrode and the second gate electrode are separated from each other by the element component.
  • the first conductivity type impurity concentration in at least a part of the first first conductivity type silicon film is connected to the region, and the second first conductivity type in a portion located on the third active region It is higher than the first conductivity type impurity concentration of the silicon film.
  • an isolation width between the first active region and the second active region is larger than an isolation width between the third active region and the fourth active region. It can be large.
  • the second conductivity type impurity concentration in at least a part of the first second conductivity type silicon film is a portion of the second second conductivity type in a portion located on the fourth active region. It may be substantially the same as the second conductivity type impurity concentration of the silicon film.
  • the first conductivity type impurity concentration of the first first conductivity type silicon film in the portion located on the first active region is a portion located on the third active region.
  • the first conductivity type impurity concentration of the second first conductivity type silicon film may be higher.
  • the first conductivity type impurity concentration of the first first conductivity type silicon film in the portion located on the first active region may be the portion in the portion located on the element isolation region. It may be lower than the first conductivity type impurity concentration of the first first conductivity type silicon film.
  • the first conductivity type impurity concentration of the first first conductivity type silicon film in a portion located on each of the first active region and the element isolation region is the third concentration.
  • the first conductivity type impurity concentration of the second first conductivity type silicon film in the portion located above the active region may be higher.
  • the second conductivity type impurity concentration of the first second conductivity type silicon film in the portion located on the second active region is a portion located on the fourth active region.
  • the second conductivity type impurity concentration of the second second conductivity type silicon film may be lower.
  • the second conductivity type impurity concentration of the first second conductivity type silicon film in the portion located on the second active region may be the portion in the portion located on the element isolation region. It may be lower than the second conductivity type impurity concentration of the first second conductivity type silicon film.
  • the second conductivity type impurity concentration of the first second conductivity type silicon film in the portion located on the element isolation region is set in the portion located on the fourth active region.
  • the second conductivity type impurity concentration of the second second conductivity type silicon film may be substantially the same.
  • the first conductivity type impurity concentration of the first first conductivity type silicon film in the portion located on the first active region may be the portion in the portion located on the element isolation region.
  • the first conductivity type impurity concentration of the first first conductivity type silicon film may be substantially the same.
  • the first conductivity type impurity concentration of the first first conductivity type silicon film in the portion located on the element isolation region may be the same as that in the portion located on the third active region. It may be higher than the first conductivity type impurity concentration of the second first conductivity type silicon film.
  • the first conductivity type impurity concentration of the first first conductivity type silicon film in the portion located on the first active region is a portion located on the third active region.
  • the first conductivity type impurity concentration of the second first conductivity type silicon film may be substantially the same.
  • the first conductivity type impurity concentration of the first first conductivity type silicon film in the portion located on the first active region may be the portion in the portion located on the element isolation region. It may be lower than the first conductivity type impurity concentration of the first first conductivity type silicon film.
  • the second conductivity type impurity concentration of the first second conductivity type silicon film in the portion located on the second active region is a portion located on the fourth active region.
  • the second conductivity type impurity concentration of the second second conductivity type silicon film may be substantially the same.
  • the second conductivity type impurity concentration of the first second conductivity type silicon film in the portion located on the second active region may be the portion in the portion located on the element isolation region. It may be lower than the second conductivity type impurity concentration of the first second conductivity type silicon film.
  • the second conductivity type impurity concentration of the first second conductivity type silicon film in the portion located on the element isolation region is set in the portion located on the fourth active region. It may be higher than the second conductivity type impurity concentration of the second second conductivity type silicon film.
  • the first conductivity type impurity concentration of the first first conductivity type silicon film in the portion located on the first active region is a portion located on the third active region.
  • the second conductivity type impurity of the first second conductivity type silicon film is higher than the first conductivity type impurity concentration of the second first conductivity type silicon film and located on the second active region.
  • the concentration may be higher than the second conductivity type impurity concentration of the second second conductivity type silicon film in the portion located on the fourth active region.
  • the first gate electrode is a gate electrode of a first PMIS transistor
  • the second gate electrode is a gate electrode of a first NMIS transistor
  • the gate electrode may be a gate electrode of a second PMIS transistor
  • the fourth gate electrode may be a gate electrode of a second NMIS transistor.
  • each of the first gate electrode and the second gate electrode is a gate electrode of a logic circuit transistor
  • each of the third gate electrode and the fourth gate electrode is It may be a gate electrode of an SRAM circuit transistor.
  • the method for manufacturing a semiconductor device includes a first dual electrode having a first gate electrode formed on the first active region and a second gate electrode formed on the second active region.
  • a semiconductor device comprising: a gate electrode; and a second dual gate electrode having a third gate electrode formed on the third active region and a fourth gate electrode formed on the fourth active region.
  • the first mask pattern has an opening on a portion of the silicon film located on the first active region, and the second mask pattern An opening may be formed on the silicon film in a portion located on each of the second active region, the third active region, and the fourth active region.
  • the first active region and the second active region are electrically isolated by an element isolation region, and in the step (a), the silicon film is The first mask pattern is also formed on an element isolation region, and the first mask pattern covers a portion of the silicon film located on the first active region and on the portion of the silicon film located on the element isolation region.
  • the second mask pattern covers a portion of the silicon film located on the second active region, and includes the element isolation region, the third active region, and the fourth active region. You may have an opening on the said silicon film of the part located on each.
  • the first mask pattern and the second mask pattern may not have an opening on the silicon film in a portion located on the element isolation region.
  • the first mask pattern and the second mask pattern may cover a portion of the silicon film located on the element isolation region.
  • the first active region and the second active region are electrically isolated by an element isolation region, and in the step (a), the silicon film is The first mask pattern is also formed on an element isolation region, and the first mask pattern covers a portion of the silicon film located on the first active region and on the portion of the silicon film located on the element isolation region.
  • the second mask pattern covers the silicon film in a portion located on each of the second active region, the third active region, and the fourth active region, and the element; An opening may be formed on a portion of the silicon film located on the isolation region.
  • the second mask pattern may cover a portion of the silicon film located on each of the third active region and the fourth active region.
  • the present invention in a semiconductor device having a CMIS dual gate structure, it is possible to suppress fluctuations in device characteristics due to gate dimension fluctuations and impurity interdiffusion in the vicinity of the PN boundary.
  • FIG. 1A is a plan view of a logic region in the semiconductor device according to the first embodiment
  • FIG. 1B is a cross-sectional view taken along the line II in FIG.
  • FIG. 1C is a plan view of the SRAM region in the semiconductor device according to the first embodiment
  • FIG. 1D is a cross-sectional view taken along the line II-II in FIG. 2A to 2F are cross-sectional views illustrating one step of the method of manufacturing the semiconductor device according to the first embodiment.
  • 3A to 3F are cross-sectional views illustrating one process of the method for manufacturing the semiconductor device according to the first embodiment.
  • 4A to 4F are cross-sectional views illustrating one step of the method of manufacturing the semiconductor device according to the first embodiment.
  • 5A to 5F are cross-sectional views illustrating one process of the method for manufacturing the semiconductor device according to the first embodiment.
  • 6A to 6F are cross-sectional views illustrating one process of the method for manufacturing the semiconductor device according to the first embodiment.
  • 7A to 7F are cross-sectional views illustrating one step of the method of manufacturing the semiconductor device according to the first embodiment.
  • 8A to 8F are cross-sectional views illustrating one process of the method for manufacturing the semiconductor device according to the first embodiment.
  • 9A is a plan view of a logic region in the semiconductor device according to the second embodiment
  • FIG. 9B is a cross-sectional view taken along the line II in FIG. 9A.
  • FIG. 9C is a plan view of the SRAM region in the semiconductor device according to the second embodiment, and FIG.
  • FIG. 9D is a cross-sectional view taken along the line II-II in FIG. 9C.
  • FIGS. 10A to 10F are cross-sectional views illustrating one step of the method of manufacturing the semiconductor device according to the second embodiment.
  • FIG. 11A is a plan view of a logic region in the semiconductor device according to the third embodiment
  • FIG. 11B is a cross-sectional view taken along the line II in FIG.
  • FIG. 11C is a plan view of the SRAM region in the semiconductor device according to the third embodiment
  • FIG. 11D is a cross-sectional view taken along the line II-II in FIG. 12A to 12F are cross-sectional views illustrating one step of the method of manufacturing a semiconductor device according to the third embodiment.
  • FIG. 13A is a plan view of a logic region in the semiconductor device according to the fourth embodiment
  • FIG. 13B is a cross-sectional view taken along the line II in FIG. 13A
  • FIG. 13C is a plan view of the SRAM region in the semiconductor device according to the fourth embodiment
  • FIG. 13D is a cross-sectional view taken along the line II-II in FIG. 14A to 14F are cross-sectional views illustrating one step of the method of manufacturing the semiconductor device according to the fourth embodiment.
  • 15A is a plan view of a logic region in a conventional semiconductor device
  • FIG. 15B is a cross-sectional view taken along line BB in FIG. 15A
  • FIG. FIG. 15D is a plan view of an SRAM region in a conventional semiconductor device
  • 15D is a cross-sectional view taken along the line DD in FIG. 15C.
  • 16A and 16B show that a P-type region and an N-type region are formed by ion-implanting impurities into a polysilicon film (before gate patterning) to be a dual gate electrode in a conventional method for manufacturing a semiconductor device. It is a figure which shows a mode typically.
  • FIG. 1A is a plan view of a logic region in the semiconductor device according to the first embodiment
  • FIG. 1B is a cross-sectional view taken along the line II (gate width direction) in FIG. It is.
  • FIG. 1C is a plan view of the SRAM region in the semiconductor device according to the first embodiment.
  • FIG. 1D is a cross-sectional view taken along line II-II (gate width direction) in FIG. It is sectional drawing.
  • the illustration of the sidewall spacer, silicide layer, interlayer film, etc. is omitted in FIGS. 1A to 1D, and the contacts in FIGS. 1B and 1D are omitted. Is omitted.
  • the semiconductor device of this embodiment includes a region where a logic circuit is formed (hereinafter referred to as a logic region) and a region where an SRAM circuit is formed (hereinafter referred to as an SRAM region).
  • a logic region a region where a logic circuit is formed
  • an SRAM region a region where an SRAM circuit is formed
  • Each of the logic region and the SRAM region has a region where an NMISFET is formed (hereinafter referred to as an NMIS region) and a region where a PMISFET is formed (hereinafter referred to as a PMIS region).
  • a P-type well region 12 a is provided on the semiconductor substrate 10 and an active region 10 a is provided so as to be surrounded by the element isolation region 11.
  • an N-type well region 12 b is provided on the semiconductor substrate 10 and an active region 10 b is provided so as to be surrounded by the element isolation region 11.
  • a P-type well region 12 c is provided on the semiconductor substrate 10 and an active region 10 c is provided so as to be surrounded by the element isolation region 11.
  • an N-type well region 12 d is provided on the semiconductor substrate 10 and an active region 10 d is provided so as to be surrounded by the element isolation region 11.
  • a gate electrode 30a having an N-type silicon film 14a is formed on the active region 10a with a gate insulating film 13 interposed therebetween.
  • a gate electrode 30b having a P-type silicon film 14b is formed on the active region 10b with a gate insulating film 13 therebetween.
  • the gate electrode 30a and the gate electrode 30b are connected to each other at a PN boundary 41L located on the element isolation region 11 between the active region 10a and the active region 10b, thereby forming a dual gate electrode 31L.
  • N-type source / drain regions 20a are provided on both sides of the gate electrode 30a in the active region 10a
  • P-type source / drain regions 20b are provided on both sides of the gate electrode 30b in the active region 10b.
  • Contacts 26a and 26b are formed so as to be connected to the N-type source / drain region 20a and the P-type source / drain region 20b, respectively, and a contact 26e is formed so as to be connected to the dual gate electrode 31L.
  • a gate electrode 30c having an N-type silicon film 14c is formed on the active region 10c with a gate insulating film 13 interposed therebetween.
  • a gate electrode 30d having a P-type silicon film 14d is formed on the active region 10d with a gate insulating film 13 therebetween.
  • the gate electrode 30c and the gate electrode 30d are connected to each other at a PN boundary 41S located on the element isolation region 11 between the active region 10c and the active region 10d, thereby forming a dual gate electrode 31S.
  • N-type source / drain regions 20c are provided on both sides of the gate electrode 30c in the active region 10c
  • P-type source / drain regions 20d are provided on both sides of the gate electrode 30d in the active region 10d.
  • Contacts 26c and 26d are formed so as to be connected to the N-type source / drain region 20c and the P-type source / drain region 20d, respectively, and a contact 26f is formed so as to be connected to the gate electrode 30c.
  • the P-type impurity concentration of the entire P-type silicon film 14b is higher than the P-type impurity concentration of the entire P-type silicon film 14d.
  • the N-type impurity concentration of the N-type silicon film 14a is substantially the same as the N-type impurity concentration of the N-type silicon film 14c.
  • the width of the element isolation region 11 in the logic region is, for example, about 70 nm or more, whereas the element isolation region in the SRAM region. 11 (specifically, the element isolation region 11 between the active region 10c and the active region 10d) is, for example, about 30 to 60 nm.
  • FIGS. 8A to 8F are cross-sectional views showing respective steps of the method for manufacturing the semiconductor device according to the first embodiment. 2A, FIG. 3A, FIG. 4A, FIG. 5A, FIG. 6A, FIG. 7A, and FIG. 8A are shown in FIG. FIG. 2B shows a cross-sectional structure taken along line III-III (in the gate length direction) in each step, and FIG. 2B, FIG. 3B, FIG. 4B, FIG. 5B, FIG. FIGS.
  • FIG. 7B and 8B show the cross-sectional configuration of the IV-IV line (in the gate length direction) in FIG. 1A for each step, and FIG. ), FIG. 3 (c), FIG. 4 (c), FIG. 5 (c), FIG. 6 (c), FIG. 7 (c) and FIG. FIG. 2 (d), FIG. 3 (d), FIG. 4 (d), FIG. 5 (d), FIG. 6 (d), FIG. (D) and FIG. 8 (d) show the cross-sectional configuration of the VI-VI line (gate length direction) in FIG. 1 (c) for each step. Those were. 2 (e), 3 (e), 4 (e), 5 (e), 6 (e), 7 (e) and 8 (e) are shown in FIG. 1 (a).
  • FIG. 6 shows the cross-sectional configuration along the II line (gate width direction) in FIG. (F)
  • FIG. 7 (f) and FIG. 8 (f) show the cross-sectional structure taken along line II-II (gate width direction) in FIG. 1 (c) for each step.
  • an insulating film is formed in an upper portion of a semiconductor substrate 10 made of, for example, p-type silicon by, for example, a buried element isolation (Shallow Trench Isolation (STI)) method.
  • a buried element isolation region 11 is selectively formed.
  • an active region 10a made of the semiconductor substrate 10 surrounded by the element isolation region 11 is formed, and in the PMIS region of the logic region, the semiconductor substrate 10 surrounded by the element isolation region 11 is formed.
  • An active region 10b is formed.
  • an active region 10c made of the semiconductor substrate 10 surrounded by the element isolation region 11 is formed.
  • the element isolation region 11 is formed.
  • An active region 10d made of the enclosed semiconductor substrate 10 is formed.
  • a P-type impurity such as B (boron) is implanted into each NMIS region in the semiconductor substrate 10 by lithography and ion implantation.
  • an N-type impurity such as P (phosphorus) is implanted into each PMIS region in the semiconductor substrate 10 by, for example, lithography and ion implantation.
  • a heat treatment is performed on the semiconductor substrate 10 at, for example, 850 ° C.
  • a P-type well region 12a on the semiconductor substrate 10 in the NMIS region in the logic region, and in the PMIS region in the logic region.
  • Forms an N-type well region 12b on the semiconductor substrate 10 forms a P-type well region 12c on the semiconductor substrate 10 in the NMIS region of the SRAM region, and forms on the semiconductor substrate 10 in the PMIS region of the SRAM region.
  • an N-type well region 12d is formed.
  • the active region 10a is obtained by, for example, ISSG (In-Situ Steam Steam Generation) oxidation method.
  • a gate insulating film 13 made of, for example, a silicon oxide film having a thickness of about 2 nm is formed on each of 10b, 10c, and 10d.
  • nitrogen plasma treatment is performed on the semiconductor substrate 10 to nitride the surface of the gate insulating film 13 to form a nitride layer (not shown).
  • annealing is performed to remove weakly bonded nitrogen from the nitride layer.
  • a silicon film 14 made of, for example, polysilicon and having a thickness of about 100 nm is deposited on the gate insulating film 13 by, eg, CVD (chemical vapor deposition).
  • the entire NMIS region and the entire SRAM region in the logic region and the entire SRAM region are covered and an opening is formed on the entire PMIS region in the logic region.
  • a P-type silicon film 14P is formed by ion-implanting a P-type impurity such as B (boron) at a dose of 4 ⁇ 10 15 cm ⁇ 2 into the silicon film 14.
  • a mask pattern 52A covering the entire PMIS region of the logic region and having an opening on each of the entire NMIS region and the entire SRAM region (the entire NMIS region and the entire PMIS region) of the logic region is formed on the silicon film 14.
  • an N-type silicon film 14N is formed by ion-implanting an N-type impurity such as P (phosphorus) at a dose of 3 ⁇ 10 15 cm ⁇ 2 . That is, as a feature of the present embodiment, N-type impurity ions are implanted in the gate implantation of the PMIS region of the SRAM region.
  • N-type impurity ions are implanted in the gate implantation of the PMIS region of the SRAM region.
  • the mask patterns 51A and 52A are not resist patterns formed on the semiconductor substrate 10 by photolithography, but the resist patterns.
  • the mask pattern on the photomask for forming is typically shown.
  • the mask patterns 51A and 52A are set so that the PN boundary 41L between the P-type silicon film 14P and the N-type silicon film 14N is located on the element isolation region 11 between the active region 10a and the active region 10b. ing.
  • the semiconductor substrate 10 is subjected to a heat treatment, for example, at 850 ° C. for 30 seconds, whereby ions are respectively applied to the P-type silicon film 14P and the N-type silicon film 14N.
  • the profile of the implanted impurities (specifically, a profile in a direction perpendicular to the main surface of the substrate (hereinafter referred to as a vertical profile)) is made uniform.
  • the silicon film 14 is patterned by dry etching using the resist pattern as a mask.
  • the gate electrode 30a including the N-type silicon film 14a is formed on the active region 10a via the gate insulating film 13a, and the gate insulation is formed on the active region 10b.
  • a gate electrode 30b including a P-type silicon film 14b is formed through the film 13b, a gate electrode 30c including an N-type silicon film 14c is formed through the gate insulating film 13c on the active region 10c, and over the active region 10d.
  • a gate electrode 30d including an N-type silicon film 14d ′ is formed through the gate insulating film 13d.
  • the gate electrode 30a and the gate electrode 30b are connected to each other at a PN boundary 41L located on the element isolation region 11 between the active region 10a and the active region 10b. It is configured.
  • the gate electrode 30c and the gate electrode 30d are connected to each other on the element isolation region 11 between the active region 10c and the active region 10d, thereby forming a dual gate electrode 31S.
  • no PN boundary is formed in the dual gate electrode 31S at the end of the steps shown in FIGS.
  • an offset spacer insulating film made of, for example, a silicon oxide film having a thickness of, for example, 8 nm is deposited on the entire surface of the semiconductor substrate 10 by, eg, CVD, and then anisotropic etching is performed on the offset spacer insulating film. Do. As a result, as shown in FIGS. 5A to 5F, offset spacers 15a are formed on the side surfaces of the gate insulating film 13a and the gate electrode 30a, and on the side surfaces of the gate insulating film 13b and the gate electrode 30b.
  • An offset spacer 15b is formed, an offset spacer 15c is formed on each side surface of the gate insulating film 13c and the gate electrode 30c, and an offset spacer 15d is formed on each side surface of the gate insulating film 13d and the gate electrode 30d.
  • N-type source / drain regions for example, LDD (lightly doped drain) regions or extension regions
  • 16a and 16c having a relatively shallow junction depth are formed in a self-aligned manner under the sides.
  • N-type source / drain regions 16a and 16c and the P-type source / drain regions 16b and 16d may be formed first.
  • a first insulating film made of, for example, a silicon oxide film having a thickness of about 10 nm and a second insulating film made of, for example, a silicon nitride film having a thickness of about 30 nm are sequentially formed on the entire surface of the semiconductor substrate 10 by, eg, CVD.
  • anisotropic etching is performed on the first insulating film and the second insulating film.
  • sidewall spacers 19a are formed on the side surfaces of the gate electrode 30a via the offset spacers 15a, and on the side surfaces of the gate electrode 30b via the offset spacers 15b.
  • the sidewall spacer 19b is formed, the sidewall spacer 19c is formed on the side surface of the gate electrode 30c via the offset spacer 15c, and the sidewall spacer 19d is formed on the side surface of the gate electrode 30d via the offset spacer 15d.
  • the sidewall spacer 19a has an L-shaped cross-sectional shape and is formed of an inner sidewall 17a made of the first insulating film, and an outer side wall formed on the inner sidewall 17a and made of the second insulating film. And a wall 18a.
  • the sidewall spacer 19b has an L-shaped cross-sectional shape and is formed of an inner sidewall 17b made of the first insulating film and an outer sidewall formed on the inner sidewall 17b and made of the second insulating film.
  • the sidewall spacer 19c has an L-shaped cross-sectional shape and is formed of an inner sidewall 17c made of the first insulating film, and an outer sidewall formed on the inner sidewall 17c and made of the second insulating film. 18c. Further, the sidewall spacer 19d has an L-shaped cross-sectional shape and is composed of an inner sidewall 17d made of the first insulating film, and an outer sidewall formed on the inner sidewall 17d and made of the second insulating film. 18d.
  • a mask pattern 53 covering the entire NMIS region of the logic region and the entire NMIS region of the SRAM region, the gate electrode 30b in the active region 10b, the offset spacer 15b, and the sidewalls Using the spacer 19b and the gate electrode 30d, the offset spacer 15d, and the side wall spacer 19d in the active region 10d as a mask, the active region 10b and the active region 10d are doped with a P-type impurity such as B (boron) at a dose of 5 ⁇ 10 15 cm. -2 ion implantation.
  • a P-type impurity such as B (boron)
  • a P-type source / drain region 20b having a junction depth deeper than that of the shallow P-type source / drain region 16b and connected to the P-type source / drain region 16b is formed outside the sidewall spacer 19b in the active region 10b.
  • a type source / drain region 20d is formed in a self-aligned manner.
  • the P-type impurity concentration of the P-type silicon film 14b is on the other hand, the N-type silicon film 14d ′ becomes a P-type silicon film 14d.
  • a PN boundary 41S between the N-type silicon film 14c (gate electrode 30c) and the P-type silicon film 14d (gate electrode 30d) is formed in the dual gate electrode 31S.
  • the P-type impurity concentration of the P-type silicon film 14b is higher than the P-type impurity concentration of the P-type silicon film 14d.
  • a mask pattern 54 covering the entire PMIS region of the logic region and the entire PMIS region of the SRAM region, the gate electrode 30a in the active region 10a, the offset spacer 15a, and the sidewalls
  • an N-type impurity such as As (arsenic) is dosed to the active region 10a and the active region 10c at a dose amount of 4 ⁇ 10 15 .
  • Ion implantation is performed at 5 ⁇ 10 15 cm ⁇ 2 .
  • an N-type source / drain region 20a that has a junction depth deeper than the shallow N-type source / drain region 16a and is connected to the N-type source / drain region 16a below the sidewall spacer 19a in the active region 10a.
  • the junction depth is deeper than the shallow N-type source / drain region 16c and connected to the N-type source / drain region 16c outside the sidewall spacer 19c in the active region 10c.
  • a type source / drain region 20c is formed in a self-aligned manner.
  • the mask patterns 53 and 54 are not resist patterns formed on the semiconductor substrate 10 by photolithography, but the resist patterns. The mask pattern on the photomask for forming is typically shown. Further, the mask patterns 53 and 54 are elements at the position of the PN boundary 41L between the P-type silicon film 14a (gate electrode 30a) and the N-type silicon film 14b (gate electrode 30b) (an element between the active region 10a and the active region 10b).
  • the PN boundary 41S between the P-type silicon film 14c (gate electrode 30c) and the N-type silicon film 14d (gate electrode 30d) does not change between the active region 10c and the active region 10d. It is set so as to be located on the element isolation region 11 therebetween.
  • the semiconductor substrate 10 is subjected to a heat treatment to thereby form the N-type source / drain regions 20a and 20c and the P-type source / drain regions.
  • the impurity ion-implanted in each of the regions 20b and 20d is activated.
  • a metal film (not shown) made of nickel, for example, having a thickness of about 10 nm is deposited on the entire surface of the semiconductor substrate 10.
  • the semiconductor substrate 10 is subjected to a first RTA (Rapid Annealing) process at a temperature of 320 ° C., for example, to thereby form deep N-type source / drain regions 20a and 20c and deep P-type.
  • RTA Rapid Annealing
  • Ni nickel
  • FIGS. 7A to 7F a metal silicide made of nickel silicide is formed on each of the deep N-type source / drain regions 20a and 20c and the deep P-type source / drain regions 20b and 20d. Layers 21a to 21d are formed.
  • N-type silicon films 14a and 14c constituting the gate electrodes 30a and 30c and P-type silicon films 14b and 14d constituting the gate electrodes 30b and 30d also react with Si and Ni of the metal film.
  • metal silicide layers 22a to 22d made of nickel silicide are formed on each of the gate electrodes 30a to 30d.
  • the semiconductor substrate 10 is immersed in an etching solution made of a mixed solution of sulfuric acid and hydrogen peroxide solution, thereby remaining on the element isolation region 11, the offset spacers 15a to 15d, the side wall spacers 19a to 19d, and the like.
  • the metal silicide layers 21a to 21d and the metal silicide layers 22a to 22d are subjected to the second RTA treatment at a temperature (for example, 550 ° C.) higher than the first RTA treatment. Each silicide composition ratio is stabilized.
  • an insulating film 23 made of, for example, a silicon nitride film having a thickness of about 20 nm is deposited on the entire surface of the semiconductor substrate 10 by, eg, plasma CVD.
  • an interlayer insulating film 24 made of, for example, a silicon oxide film is deposited on the insulating film 23 by a CVD method, and then the surface of the interlayer insulating film 24 is planarized by, for example, a CMP (Chemical Mechanical Polishing) method.
  • CMP Chemical Mechanical Polishing
  • a resist film (not shown) having a contact hole pattern is formed on the interlayer insulating film 24, and then dry etching is performed using the resist film as a mask, in the same manner as in the method of manufacturing a semiconductor device having a normal MIS transistor.
  • the contact holes 25a to 25d reaching the upper surfaces of the metal silicide layers 21a to 21d are formed in the insulating film 23 and the interlayer insulating film 24 by the method.
  • the etching is interrupted once when the insulating film 23 is exposed, the amount of overetching for the metal silicide layers 21a to 21d can be reduced.
  • a barrier metal film (not shown) in which, for example, a titanium film and a titanium nitride film are sequentially deposited is formed on the bottoms and side walls of the contact holes 25a to 25d, for example, by sputtering or CVD.
  • a tungsten film is deposited on the interlayer insulating film 24 by, for example, CVD so as to bury the contact holes 25a to 25d, and then the tungsten formed outside the contact holes 25a to 25d by, for example, CMP. Remove the membrane.
  • contacts 26a to 26d in which the tungsten film is embedded in the contact holes 25a to 25d through the barrier metal film are formed.
  • metal wiring (not shown) that is electrically connected to the contacts 26 a to 26 d is formed on the interlayer insulating film 24.
  • the semiconductor device according to the present embodiment that is, the NMISFET in the logic region having the gate electrode 30a including the N-type silicon film 14a and the logic region having the gate electrode 30b including the P-type silicon film 14b.
  • Manufacturing a semiconductor device comprising a PMISFET, an NMISFET in an SRAM region having a gate electrode 30c including an N-type silicon film 14c, and a PMISFET in an SRAM region having a gate electrode 30d including a P-type silicon film 14d Can do.
  • the element isolation region 11 (specifically, between the active region 10c and the active region 10d) is formed. Only the N-type impurity exists in the silicon film 14 constituting the gate electrodes 30c and 30d of the SRAM region which is easily affected by the mutual diffusion of the impurities because the width of the element isolation region 11) is narrow. Therefore, it is possible to avoid a situation in which the etching rate of the silicon film 14 is different due to the difference in the ion species that are the implanted impurities, so that a gate size difference occurs between the gate electrode 30c of the NMISFET and the gate electrode 30d of the PMISFET.
  • the vertical profile of the impurities implanted in the silicon film 14 needs to be uniformed by annealing in advance. Since the impurities in the silicon film 14 in the SRAM region are substantially only N-type impurities at the time of etching the film 14, the mutual diffusion of impurities caused by the annealing process (specifically, with respect to the main surface of the substrate). The effect of diffusion in the parallel direction is virtually negligible. Therefore, the variation in transistor characteristics can be further suppressed.
  • an N-type impurity is implanted into the silicon film 14 constituting the gate electrode 30d of the PMIS region in the SRAM region at the time of gate implantation, while at the time of source / drain implantation.
  • P-type impurities are implanted. Therefore, in order to make the PMISFET in the SRAM region a surface channel type, it is desirable to set the N-type impurity concentration at the time of gate implantation smaller than the P-type impurity concentration at the time of source / drain implantation.
  • the P-type impurity concentration in the P-type silicon film 14b constituting the gate electrode 30b in the PMIS region in the logic region is set to P which constitutes the gate electrode 30d in the PMIS region in the SRAM region. Higher than the P-type impurity concentration in the silicon film 14d.
  • the gate electrode 30d of the PMIS region in the SRAM region is implanted by source / drain implantation of P-type impurities.
  • the conductivity type of the silicon film 14 constituting the film was inverted to the P type.
  • the source / drain implantation of the N-type impurity causes the gate electrode 30c of the NMIS region in the SRAM region.
  • the conductivity type of the silicon film 14 that constitutes may be inverted to the N type.
  • FIG. 9A is a plan view of a logic region in the semiconductor device according to the second embodiment
  • FIG. 9B is a cross-sectional view taken along line II (gate width direction) in FIG. 9A.
  • FIG. 9C is a plan view of the SRAM region in the semiconductor device according to the second embodiment
  • FIG. 9D is a cross-sectional view taken along the line II-II (gate width direction) in FIG. It is sectional drawing.
  • the side wall spacers, silicide layers, interlayer films and the like are not shown in FIGS. 9A to 9D, and the contacts are shown in FIGS. 9B and 9D. Is omitted.
  • FIGS. 9A the side wall spacers, silicide layers, interlayer films and the like
  • This embodiment is different from the first embodiment in that, as shown in FIGS. 9A and 9B, the dual gate electrode 31L in the logic region has the active region 10a and the element isolation region 11 in the vicinity thereof.
  • a gate electrode 30a in the NMIS region including the N-type silicon film 14a1 positioned on the N-type and the N-type silicon film 14a2 positioned on the element isolation regions 11 on both sides thereof, the active region 10b and the element isolation region 11 in the vicinity thereof.
  • a PMIS region gate electrode 30b including a P-type silicon film 14b1 positioned on the upper surface and a P-type silicon film 14b2 positioned on the element isolation regions 11 on both sides thereof.
  • the configuration of the SRAM region shown in FIGS. 9C and 9D includes the configuration of the SRAM region of the first embodiment shown in FIGS. 1C and 1D, including the configuration of the dual gate electrode 31S. Is the same. That is, the dual gate electrode 31S includes the gate electrode 30c in the NMIS region including the N-type silicon film 14c and the gate electrode 30d in the PMIS region including the P-type silicon film 14d, as in the first embodiment. Yes.
  • the P-type impurity concentration of the P-type silicon film 14b1 is lower than the P-type impurity concentration of the P-type silicon film 14b2.
  • the P-type impurity concentration of each of the P-type silicon film 14b1 and the P-type silicon film 14b2 is higher than the P-type impurity concentration of the P-type silicon film 14d.
  • the N-type impurity concentration of the N-type silicon film 14a1 is lower than the N-type impurity concentrations of the N-type silicon film 14a2 and the N-type silicon film 14c.
  • the N-type impurity concentration of the N-type silicon film 14a2 is substantially the same as the N-type impurity concentration of the N-type silicon film 14c.
  • the semiconductor device manufacturing method according to the present embodiment is different from the first embodiment only in the gate implantation location in the logic region (see FIGS. 10A to 10F).
  • FIGS. 10A to 10F are cross-sectional views illustrating one process of the method for manufacturing a semiconductor device according to the second embodiment.
  • FIG. 10 (a) shows a cross-sectional configuration of the III-III line (gate length direction) in FIG. 9 (a) in one step
  • FIG. 10 (b) shows FIG. 9 (a).
  • FIG. 10C shows a cross-sectional configuration in one step of the IV-IV line (gate length direction) in FIG. 9, and FIG. 10C shows the VV line (gate length direction) in FIG. 9C in one step.
  • FIG. 10D shows a cross-sectional configuration of the VI-VI line (gate length direction) in FIG. 9C in one step.
  • FIG. 10 (a) shows a cross-sectional configuration of the III-III line (gate length direction) in FIG. 9 (a) in one step
  • FIG. 10 (b) shows FIG. 9 (a).
  • FIG. 10C shows a cross-sectional configuration in one step of the IV-IV line (gate length direction
  • FIG. 10 (e) shows a cross-sectional configuration of the II line (gate width direction) in FIG. 9 (a) in one step
  • FIG. 10 (f) shows FIG. 9 (c). 2 shows a cross-sectional configuration of the II-II line (in the gate width direction) in one step.
  • steps similar to those shown in FIGS. 2A to 2F in the first embodiment are performed, and then, as shown in FIGS. 10A to 10F, for example,
  • the surface of the semiconductor substrate 10 is cleaned by dilute hydrofluoric acid treatment, and then a gate made of, for example, a silicon oxide film having a thickness of about 2 nm on each of the active regions 10a, 10b, 10c, and 10d by, for example, ISSG oxidation.
  • An insulating film 13 is deposited.
  • nitrogen plasma treatment is performed on the semiconductor substrate 10 to nitride the surface of the gate insulating film 13 to form a nitride layer (not shown).
  • a silicon film 14 made of, for example, polysilicon and having a thickness of about 100 nm is deposited on the gate insulating film 13 by, eg, CVD.
  • the entire NMIS region in the logic region and the active region 10b of the PMIS region and the entire SRAM region are covered and the logic region is covered.
  • a P-type impurity such as B (boron) is ion-implanted into the silicon film 14 at a dose of 4 ⁇ 10 15 cm ⁇ 2 using a mask pattern 51B having an opening on the element isolation region 11 in the PMIS region. .
  • the P-type silicon film 14P is formed on the element isolation region 11 in the PMIS region of the logic region.
  • the mask pattern 51B covers the element isolation region 11 in the vicinity of the active region 10b in the PMIS region of the logic region by a dimension (for example, about 50 nm) in consideration of the effect of impurity interdiffusion.
  • a dimension for example, about 50 nm
  • the entire PMIS region in the logic region and the active region 10a in the NMIS region are covered, and the element isolation region 11 and the entire SRAM region (the entire NMIS region and the entire PMIS region) in the NMIS region in the logic region are respectively covered.
  • An N-type impurity such as P (phosphorus), for example, is ion-implanted into the silicon film 14 at a dose of 3 ⁇ 10 15 cm ⁇ 2 using the mask pattern 52B having an opening.
  • the N-type silicon film 14N is formed on the element isolation region 11 in the NMIS region of the logic region, and the N-type silicon film 14N is formed over the entire SRAM region.
  • the mask pattern 52B covers the element isolation region 11 in the vicinity of the active region 10a in the NMIS region of the logic region by a dimension (for example, about 50 nm) in consideration of the effect of impurity interdiffusion. That is, also in this embodiment, as in the first embodiment, ion implantation of N-type impurities is performed in the gate implantation of the PMIS region of the SRAM region.
  • the mask patterns 51B and 52B are not resist patterns formed on the semiconductor substrate 10 by photolithography, but the resist patterns.
  • the mask pattern on the photomask for forming is typically shown.
  • the mask patterns 51B and 52B are set so that the PN boundary 41L between the P-type silicon film 14P and the N-type silicon film 14N is located on the element isolation region 11 between the active region 10a and the active region 10b. ing.
  • the semiconductor substrate 10 is subjected to a heat treatment, for example, at 850 ° C. for 30 seconds, whereby ions are respectively applied to the P-type silicon film 14P and the N-type silicon film 14N.
  • a heat treatment for example, at 850 ° C. for 30 seconds, whereby ions are respectively applied to the P-type silicon film 14P and the N-type silicon film 14N.
  • the vertical profile of the implanted impurities is made uniform.
  • FIGS. 4A to 4F in the first embodiment gate patterning
  • steps shown in FIGS. 5A to 5F offset spacer and shallow source / drain region formation
  • steps shown in FIGS. 6A to 6F formation of sidewall spacers and deep source / drain regions
  • steps shown in FIGS. 7A to 7F formation of silicide layers
  • FIG. 8A Steps similar to the steps (formation of interlayer insulating film and contact) shown in FIGS.
  • the semiconductor device according to the present embodiment that is, the NMISFET in the logic region having the gate electrode 30a including the N-type silicon films 14a1 and 14a2, and the gate electrode 30b including the P-type silicon films 14b1 and 14b2 are formed.
  • a semiconductor device including a PMISFET in a logic region having an NMISFET in an SRAM region having a gate electrode 30c including an N-type silicon film 14c, and a PMISFET in an SRAM region having a gate electrode 30d including a P-type silicon film 14d Can be manufactured.
  • the element isolation region 11 (specifically, between the active region 10c and the active region 10d) is formed. Only the N-type impurity exists in the silicon film 14 constituting the gate electrodes 30c and 30d of the SRAM region which is easily affected by the mutual diffusion of the impurities because the width of the element isolation region 11) is narrow. Therefore, it is possible to avoid a situation in which the etching rate of the silicon film 14 is different due to the difference in the ion species that are the implanted impurities, so that a gate size difference occurs between the gate electrode 30c of the NMISFET and the gate electrode 30d of the PMISFET.
  • the silicon film 14 is etched by the dry etching method, the vertical profile of the impurity implanted into the silicon film 14 needs to be uniformed by annealing in advance.
  • the impurities in the silicon film 14 in the SRAM region are substantially only N-type impurities. (In other words, the influence of diffusion in a direction parallel to the main surface of the substrate) can be substantially ignored. Therefore, the variation in transistor characteristics can be further suppressed.
  • the silicon film 14 when the silicon film 14 is etched by dry etching to form the gate electrodes 30a to 30d, impurities are contained in the silicon film 14 on at least the active regions 10a and 10b in the logic region. Has not been injected. Therefore, it is possible to avoid a situation in which the etching rate of the silicon film 14 is different due to the difference in the ion species that are the implanted impurities, so that a gate size difference occurs between the gate electrode 30a of the NMISFET and the gate electrode 30b of the PMISFET. Therefore, variations in transistor characteristics due to variations in gate length can be suppressed.
  • an N-type impurity is implanted into the silicon film 14 constituting the gate electrode 30d of the PMIS region in the SRAM region at the time of gate implantation, while at the time of source / drain implantation.
  • P-type impurities are implanted. Therefore, in order to make the PMISFET in the SRAM region the surface channel type, the N-type impurity concentration at the time of gate implantation is set to be higher than the P-type impurity concentration at the time of source / drain implantation, as in the first embodiment. It is desirable to set it small.
  • the P-type impurity concentration in the P-type silicon films 14b1 and 14b2 constituting the gate electrode 30b in the PMIS region in the logic region constitutes the gate electrode 30d in the PMIS region in the SRAM region. It becomes higher than the P-type impurity concentration in the P-type silicon film 14d.
  • the N-type impurity concentration of the N-type silicon film 14a1 on the active region 10a formed in the logic region is the same as that of the N-type silicon film 14a2 on the element isolation region 11 formed in the logic region.
  • the P-type impurity concentration of the P-type silicon film 14b1 on the active region 10b formed in the logic region is smaller than the N-type impurity concentration, and the P-type silicon film on the element isolation region 11 formed in the logic region. It is smaller than the P-type impurity concentration of 14b2.
  • the resistance of the gate electrodes 30a and 30b on the active regions 10a and 10b formed in the logic region is high, the metal silicide layers 22a and 22b are formed on the gate electrodes 30a and 30b, and
  • the impurity concentration in the gate electrodes 30a and 30b (that is, the gate wiring) on the element isolation region 11 formed in the logic region is set to a high concentration as in the first embodiment. Accordingly, it is possible to suppress a delay in circuit speed due to the increase in resistance of the gate electrodes 30a and 30b on the active regions 10a and 10b.
  • no impurities are introduced into the silicon film 14 constituting the gate electrodes 30a and 30b on the active regions 10a and 10b at the time of gate implantation.
  • the gate electrode 30d of the PMIS region in the SRAM region is implanted by source / drain implantation of P-type impurities.
  • the conductivity type of the silicon film 14 constituting the film was inverted to the P type.
  • the source / drain implantation of the N-type impurity causes the gate electrode 30c of the NMIS region in the SRAM region.
  • the conductivity type of the silicon film 14 that constitutes may be inverted to the N type.
  • FIG. 11A is a plan view of a logic region in the semiconductor device according to the third embodiment
  • FIG. 11B is a cross-sectional view taken along the line II (gate width direction) in FIG. It is.
  • FIG. 11C is a plan view of the SRAM region in the semiconductor device according to the third embodiment.
  • FIG. 11D is a cross-sectional view taken along line II-II (gate width direction) in FIG. It is sectional drawing.
  • the side wall spacers, silicide layers, interlayer films, etc. are not shown in FIGS. 11A to 11D, and the contacts in FIGS. 11B and 11D are also shown. Is omitted.
  • FIGS. 11A to 11D the same components as those in the first embodiment shown in FIGS. 1A to 1D are denoted by the same reference numerals.
  • the first embodiment will be described. Description of points that are common to the first embodiment will be omitted as appropriate, and differences from the first embodiment will be mainly described.
  • the dual gate electrode 31L in the logic region includes an N-type silicon film 14a1 positioned on the active region 10a and the element isolation region 11 in the vicinity thereof, and an N-type silicon film 14a2 positioned on the element isolation regions 11 on both sides thereof.
  • a gate electrode 30b in the PMIS region is an N-type silicon film 14a1 positioned on the active region 10a and the element isolation region 11 in the vicinity thereof.
  • the configuration of the SRAM region shown in FIGS. 11C and 11D includes the configuration of the SRAM region of the first embodiment shown in FIGS. 1C and 1D, including the configuration of the dual gate electrode 31S. And basically the same. That is, the dual gate electrode 31S includes the gate electrode 30c in the NMIS region including the N-type silicon film 14c and the gate electrode 30d in the PMIS region including the P-type silicon film 14d, as in the first embodiment. Yes. However, in the present embodiment, the N-type impurity concentration of the N-type silicon film 14c and the P-type impurity concentration of the P-type silicon film 14d are set smaller than those in the first embodiment.
  • the P-type impurity concentration of the P-type silicon film 14b2 is higher than the P-type impurity concentration of the P-type silicon film 14d.
  • the P-type impurity concentration of the P-type silicon film 14b1 is substantially the same as the P-type impurity concentration of the P-type silicon film 14d. That is, the P-type impurity concentration of the P-type silicon film 14b1 is lower than the P-type impurity concentration of the P-type silicon film 14b2.
  • the N-type impurity concentration of the N-type silicon film 14a1 is substantially the same as the N-type impurity concentration of the N-type silicon film 14c.
  • the N-type impurity concentration of the N-type silicon film 14a1 is lower than the N-type impurity concentration of the N-type silicon film 14a2. That is, the N-type impurity concentration of the N-type silicon film 14a2 is higher than the N-type impurity concentration of the N-type silicon film 14c.
  • FIG. 12 (a) to 12 (f) are cross-sectional views illustrating one step of the method of manufacturing a semiconductor device according to the third embodiment.
  • FIG. 12 (a) shows a cross-sectional structure of the III-III line (gate length direction) in FIG. 11 (a) in one step
  • FIG. 12 (b) shows FIG. 11 (a).
  • FIG. 12C shows a cross-sectional configuration in one step of the IV-IV line (gate length direction) in FIG. 11, and FIG. 12C shows the VV line (gate length direction) in FIG.
  • FIG. 12D shows a cross-sectional configuration of the VI-VI line (gate length direction) in FIG. 11C in one step.
  • FIG. 12 (e) shows a cross-sectional configuration of the II line (gate width direction) in FIG. 11 (a) in one step
  • steps similar to those shown in FIGS. 2A to 2F in the first embodiment are performed, and then, as shown in FIGS. 12A to 12F, for example,
  • the surface of the semiconductor substrate 10 is cleaned by dilute hydrofluoric acid treatment, and then a gate made of, for example, a silicon oxide film having a thickness of about 2 nm on each of the active regions 10a, 10b, 10c, and 10d by, for example, ISSG oxidation.
  • An insulating film 13 is deposited.
  • nitrogen plasma treatment is performed on the semiconductor substrate 10 to nitride the surface of the gate insulating film 13 to form a nitride layer (not shown).
  • a silicon film 14 made of, for example, polysilicon and having a thickness of about 100 nm is deposited on the gate insulating film 13 by, eg, CVD.
  • the entire NMIS region in the logic region and the active region 10b of the PMIS region and the entire SRAM region are covered and the logic region is covered.
  • a P-type impurity such as B (boron), for example, is ion-implanted into the silicon film 14 at a dose of 4 ⁇ 10 15 cm ⁇ 2 using a mask pattern 51C having an opening on the element isolation region 11 in the PMIS region. .
  • the P-type silicon film 14P is formed on the element isolation region 11 in the PMIS region of the logic region.
  • the mask pattern 51C covers the element isolation region 11 in the vicinity of the active region 10b in the PMIS region of the logic region by a dimension (for example, about 50 nm) in consideration of the influence of impurity interdiffusion.
  • a dimension for example, about 50 nm
  • the entire PMIS region in the logic region and the active region 10a in the NMIS region and the entire SRAM region are covered, and an opening is formed on the element isolation region 11 in the NMIS region in the logic region.
  • an N-type impurity such as P (phosphorus) is ion-implanted into the silicon film 14 at a dose of 3 ⁇ 10 15 cm ⁇ 2 .
  • an N-type silicon film 14N is formed on the element isolation region 11 in the NMIS region of the logic region.
  • the mask pattern 52C covers the element isolation region 11 in the vicinity of the active region 10a in the NMIS region of the logic region by a dimension (for example, about 50 nm) in consideration of the influence of impurity interdiffusion. That is, in the present embodiment, unlike the first and second embodiments, no gate implantation is performed in either the NMIS region or the PMIS region of the SRAM region.
  • the mask patterns 51C and 52C are not resist patterns formed on the semiconductor substrate 10 by photolithography, but the resist patterns.
  • the mask pattern on the photomask for forming is typically shown.
  • the mask patterns 51C and 52C are set so that the PN boundary 41L between the P-type silicon film 14P and the N-type silicon film 14N is positioned on the element isolation region 11 between the active region 10a and the active region 10b. ing.
  • the semiconductor substrate 10 is subjected to a heat treatment, for example, at 850 ° C. for 30 seconds, whereby ions are respectively applied to the P-type silicon film 14P and the N-type silicon film 14N.
  • a heat treatment for example, at 850 ° C. for 30 seconds, whereby ions are respectively applied to the P-type silicon film 14P and the N-type silicon film 14N.
  • the vertical profile of the implanted impurities is made uniform.
  • FIGS. 4A to 4F in the first embodiment gate patterning
  • steps shown in FIGS. 5A to 5F offset spacer and shallow source / drain region formation
  • steps shown in FIGS. 6A to 6F formation of sidewall spacers and deep source / drain regions
  • steps shown in FIGS. 7A to 7F formation of silicide layers
  • FIG. 8A Steps similar to the steps (formation of interlayer insulating film and contact) shown in FIGS.
  • the semiconductor device according to the present embodiment that is, the NMISFET in the logic region having the gate electrode 30a including the N-type silicon films 14a1 and 14a2, and the gate electrode 30b including the P-type silicon films 14b1 and 14b2 are formed.
  • a semiconductor device including a PMISFET in a logic region having an NMISFET in an SRAM region having a gate electrode 30c including an N-type silicon film 14c, and a PMISFET in an SRAM region having a gate electrode 30d including a P-type silicon film 14d Can be manufactured.
  • the element isolation region 11 (specifically, between the active region 10c and the active region 10d) is formed. Impurities are not implanted into the silicon film 14 constituting the gate electrodes 30c and 30d of the SRAM region, which is narrow in the element isolation region 11) and easily affected by the mutual diffusion of impurities. Therefore, it is possible to avoid a situation in which the etching rate of the silicon film 14 is different due to the difference in the ion species that are the implanted impurities, so that a gate size difference occurs between the gate electrode 30c of the NMISFET and the gate electrode 30d of the PMISFET.
  • the vertical profile of the impurities implanted in the silicon film 14 needs to be uniformed by annealing in advance.
  • the mutual diffusion of impurities caused by the annealing process is virtually negligible. Therefore, the variation in transistor characteristics can be further suppressed.
  • the gate electrode 30a of the NMISFET and the gate electrode 30b of the PMISFET No difference in gate size occurs between the transistor characteristics and the transistor characteristics.
  • the N-type impurity concentration of the N-type silicon film 14a1 on the active region 10a formed in the logic region is the same as that of the N-type silicon film 14a2 on the element isolation region 11 formed in the logic region.
  • the P-type impurity concentration of the P-type silicon film 14b1 on the active region 10b formed in the logic region is smaller than the N-type impurity concentration, and the P-type silicon film on the element isolation region 11 formed in the logic region. It is smaller than the P-type impurity concentration of 14b2.
  • the resistance of the gate electrodes 30a and 30b on the active regions 10a and 10b formed in the logic region is high, the metal silicide layers 22a and 22b are formed on the gate electrodes 30a and 30b, and
  • the impurity concentration in the gate electrodes 30a and 30b (that is, the gate wiring) on the element isolation region 11 formed in the logic region is set to a high concentration as in the first embodiment. Accordingly, it is possible to suppress a delay in circuit speed due to the increase in resistance of the gate electrodes 30a and 30b on the active regions 10a and 10b.
  • no impurities are introduced into the silicon film 14 constituting the gate electrodes 30a and 30b on the active regions 10a and 10b at the time of gate implantation.
  • the silicon film 14 constituting the gate electrodes 30c and 30d formed in the SRAM region at the time of gate implantation is introduced only during source / drain implantation. Since impurities are introduced only during source / drain implantation, the resistance of the gate electrodes 30c and 30d is higher than the resistance of the gate electrodes 30a and 30b formed in the logic region. However, since the high speed operation is not required for the operation of the SRAM circuit transistor unlike the logic circuit transistor, the influence of the delay of the circuit speed due to the high resistance of the gate electrodes 30c and 30d is small. .
  • FIG. 13A is a plan view of a logic region in the semiconductor device according to the fourth embodiment
  • FIG. 13B is a cross-sectional view taken along the line II (gate width direction) in FIG. It is.
  • FIG. 13C is a plan view of the SRAM region in the semiconductor device according to the fourth embodiment
  • FIG. 13D is a cross-sectional view taken along the line II-II (gate width direction) in FIG. It is sectional drawing.
  • the side wall spacers, silicide layers, interlayer films, and the like are not shown in FIGS. 13A to 13D, and the contacts in FIGS. 13B and 13D are omitted. Is omitted.
  • FIGS. 13A is a plan view of a logic region in the semiconductor device according to the fourth embodiment
  • FIG. 13B is a cross-sectional view taken along the line II (gate width direction) in FIG. It is sectional drawing.
  • the side wall spacers, silicide layers, interlayer films, and the like are not shown
  • the configuration of the logic region shown in FIGS. 13A and 13B includes the configuration of the dual gate electrode 31L, and the configuration of the logic region of the first embodiment shown in FIGS. 1A and 1B. Is the same. That is, the dual gate electrode 31L includes the gate electrode 30a in the NMIS region including the N-type silicon film 14a and the gate electrode 30b in the PMIS region including the P-type silicon film 14b, as in the first embodiment. Yes.
  • the configuration of the SRAM region shown in FIGS. 13C and 13D also includes the configuration of the SRAM region of the first embodiment shown in FIGS. 1C and 1D, including the configuration of the dual gate electrode 31S.
  • the dual gate electrode 31S includes the gate electrode 30c in the NMIS region including the N-type silicon film 14c and the gate electrode 30d in the PMIS region including the P-type silicon film 14d, as in the first embodiment. Yes.
  • the N-type impurity concentration of the N-type silicon film 14c and the P-type impurity concentration of the P-type silicon film 14d are set smaller than those in the first embodiment.
  • the P-type impurity concentration of the P-type silicon film 14b is higher than the P-type impurity concentration of the P-type silicon film 14d
  • the N-type impurity concentration of the N-type silicon film 14a is N-type silicon film 14c. Higher than the N-type impurity concentration.
  • FIGS. 14A to 14F are cross-sectional views showing one process of a method for manufacturing a semiconductor device according to the fourth embodiment.
  • FIG. 14A shows a cross-sectional structure of the III-III line (in the gate length direction) in FIG. 13A in one step
  • FIG. 14B shows FIG. 13A.
  • 14C shows a cross-sectional configuration in one step in the IV-IV line (gate length direction) in FIG. 14, and
  • FIG. 14C shows the VV line in the gate length direction in FIG. 13C in one step.
  • FIG. 14D shows a cross-sectional configuration of the VI-VI line (gate length direction) in FIG. 13C in one step.
  • FIG. 14 (e) shows a cross-sectional configuration of the II line (gate width direction) in FIG. 13 (a) in one step
  • steps similar to those shown in FIGS. 2A to 2F in the first embodiment are performed, and then, as shown in FIGS. 14A to 14F, for example,
  • the surface of the semiconductor substrate 10 is cleaned by dilute hydrofluoric acid treatment, and then a gate made of a silicon oxide film having a thickness of, for example, about 2 nm is formed on each of the active regions 10a, 10b, 10c, and 10d by, for example, an ISSG oxidation method.
  • An insulating film 13 is deposited. Thereafter, for example, nitrogen plasma treatment is performed on the semiconductor substrate 10 to nitride the surface of the gate insulating film 13 to form a nitride layer (not shown).
  • a silicon film 14 made of, for example, polysilicon and having a thickness of about 100 nm is deposited on the gate insulating film 13 by, eg, CVD.
  • the entire NMIS area and the entire SRAM area in the logic area and the entire SRAM area are covered, and an opening is formed on the entire PMIS area in the logic area.
  • a P-type impurity such as B (boron) is ion-implanted into the silicon film 14 at a dose of 4 ⁇ 10 15 cm ⁇ 2 .
  • the P-type silicon film 14P is formed in the entire PMIS region of the logic region.
  • a mask pattern 52D that covers the entire PMIS region and the entire SRAM region (the entire NMIS region and the entire PMIS region) in the logic region and has an opening on the entire NMIS region in the logic region is used to form, for example, P ( N-type impurities such as phosphorus) are ion-implanted at a dose of 3 ⁇ 10 15 cm ⁇ 2 .
  • P N-type impurities such as phosphorus
  • the N-type silicon film 14N is formed in the entire NMIS region of the logic region. That is, in this embodiment, as in the third embodiment, no gate implantation is performed in any of the NMIS region and the PMIS region of the SRAM region.
  • the mask patterns 51D and 52D are not resist patterns formed on the semiconductor substrate 10 by photolithography, but the resist patterns.
  • the mask pattern on the photomask for forming is typically shown.
  • the mask patterns 51D and 52D are set so that the PN boundary 41L between the P-type silicon film 14P and the N-type silicon film 14N is positioned on the element isolation region 11 between the active region 10a and the active region 10b. ing.
  • the semiconductor substrate 10 is subjected to a heat treatment, for example, at 850 ° C. for 30 seconds, whereby ions are respectively applied to the P-type silicon film 14P and the N-type silicon film 14N.
  • a heat treatment for example, at 850 ° C. for 30 seconds, whereby ions are respectively applied to the P-type silicon film 14P and the N-type silicon film 14N.
  • the vertical profile of the implanted impurities is made uniform.
  • FIGS. 4A to 4F in the first embodiment gate patterning
  • steps shown in FIGS. 5A to 5F offset spacer and shallow source / drain region formation
  • steps shown in FIGS. 6A to 6F formation of sidewall spacers and deep source / drain regions
  • steps shown in FIGS. 7A to 7F formation of silicide layers
  • FIG. 8A Steps similar to the steps (formation of interlayer insulating film and contact) shown in FIGS.
  • the semiconductor device according to the present embodiment that is, the NMISFET in the logic region having the gate electrode 30a including the N-type silicon film 14a and the logic region having the gate electrode 30b including the P-type silicon film 14b.
  • Manufacturing a semiconductor device comprising a PMISFET, an NMISFET in an SRAM region having a gate electrode 30c including an N-type silicon film 14c, and a PMISFET in an SRAM region having a gate electrode 30d including a P-type silicon film 14d Can do.
  • the element isolation region 11 (specifically, between the active region 10c and the active region 10d) is formed. Impurities are not implanted into the silicon film 14 constituting the gate electrodes 30c and 30d of the SRAM region, which is narrow in the element isolation region 11) and easily affected by the mutual diffusion of impurities. Therefore, it is possible to avoid a situation in which the etching rate of the silicon film 14 is different due to the difference in the ion species that are the implanted impurities, so that a gate size difference occurs between the gate electrode 30c of the NMISFET and the gate electrode 30d of the PMISFET.
  • the vertical profile of the impurity implanted into the silicon film 14 needs to be uniformed by annealing in advance.
  • the interdiffusion of impurities caused by the annealing process specifically, the main substrate
  • the effect of diffusion in a direction parallel to the surface is virtually negligible. Therefore, the variation in transistor characteristics can be further suppressed.
  • no impurities are introduced into the silicon film 14 constituting the gate electrodes 30c and 30d formed in the SRAM region at the time of gate implantation.
  • the silicon film 14 constituting the gate electrodes 30c and 30d Since impurities are introduced only during source / drain implantation, the resistance of the gate electrodes 30c and 30d is higher than the resistance of the gate electrodes 30a and 30b formed in the logic region.
  • the high speed operation is not required for the operation of the SRAM circuit transistor unlike the logic circuit transistor, the influence of the delay of the circuit speed due to the high resistance of the gate electrodes 30c and 30d is small. .
  • the silicon oxynitride film is used as the gate insulating film and the polysilicon electrode is used as the gate electrode.
  • the present invention is not limited to this.
  • a gate insulating film material a high dielectric constant material represented by a metal oxide such as alumina (Al 2 O 3 ), hafnia (HfO 2 ), or hafnium silicate (HfSiO x ) (for example, a relative dielectric constant of 8 or more) MIPS (insulating material) and a gate electrode structure having a metal film such as titanium nitride (TiN) or tantalum nitride (TaN) between the gate insulating film and the polysilicon film in addition to the polysilicon film.
  • a metal oxide such as alumina (Al 2 O 3 ), hafnia (HfO 2 ), or hafnium silicate (HfSiO x )
  • MIPS insulating material
  • a gate electrode structure having
  • the threshold voltage of the transistor is adjusted mainly by a work function.
  • the adjustment is determined by a combination of a high dielectric constant gate insulating film material and a metal film material.
  • adjustment of the threshold voltage between the NMISFET and the PMISFET may be performed by changing the metal film material with the same high dielectric constant gate insulating film material or the same metal film material.
  • the high dielectric constant gate insulating film material may be changed.
  • the impurity concentration in the polysilicon film is determined according to the gate resistance (bulk portion resistance, silicide / polysilicon interface resistance, polysilicon / metal interface resistance). ) To set. If each interface resistance is sufficiently small, the gate resistance is small in the MIPS structure using the metal film.
  • the N-type impurity concentration at the time of gate implantation is set higher than the P-type impurity concentration at the time of source / drain implantation.
  • the N-type impurity concentration at the time of gate implantation is set at the time of source / drain implantation. You may set larger than a P-type impurity density
  • only the N-type impurity gate implantation may be performed on each silicon film constituting the gate electrode in the SRAM region.
  • all the silicon films constituting the gate electrode of the CMISFET in the SRAM region become N-type silicon films.
  • source / drain implantation may not be performed on each silicon film constituting the gate electrode in the logic region, but only N-type impurity gate implantation may be performed.
  • all the silicon films constituting the gate electrode of the CMISFET in the logic region are also N-type silicon films.
  • gate implantation is not performed for each silicon film constituting the gate electrode in the SRAM region.
  • each in the SRAM region and in the logic region There is no need to perform gate implantation for each silicon film constituting the gate electrode. In other words, only source / drain implantation may be performed on each silicon film constituting the gate electrodes in the SRAM region and the logic region.
  • the semiconductor device having the logic circuit and the SRAM circuit has been described.
  • the present invention is not limited to this.
  • the dual gate electrode for the logic circuit of each embodiment can be applied. That is, the two types of dual gate electrodes in each embodiment can be selectively used according to the width of the element isolation region between the pair of active regions in which the CMISFET is formed.
  • the dual gate electrode for the logic circuit of each embodiment is applied to the CMISFET having a relatively wide element isolation region, and each implementation is applied to the CMISFET having a relatively narrow element isolation region. It is possible to apply the dual gate electrode for the SRAM circuit of the form.
  • the present invention is a semiconductor device having a CMIS dual gate structure, and can suppress variations in gate characteristics near the PN boundary and variations in element characteristics due to interdiffusion of impurities, and a semiconductor device having a CMIS dual gate structure and a manufacturing method thereof It is suitable for.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 デュアルゲート電極(31L)は、活性領域(10b)上に形成された第1導電型シリコン膜(14b)を含むゲート電極(30b)と、活性領域(10a)上に形成された第2導電型シリコン膜(14a)を含むゲート電極(30a)とを有する。デュアルゲート電極(31S)は、活性領域(10d)上に形成された第1導電型シリコン膜(14d)を含むゲート電極(30d)と、活性領域(10c)上に形成された第2導電型シリコン膜(14c)を含むゲート電極(30c)とを有する。第1導電型シリコン膜(14b)の少なくとも一部分における第1導電型不純物濃度は、活性領域(10d)上に位置する部分の第1導電型シリコン膜(14d)の第1導電型不純物濃度よりも高い。

Description

半導体装置及びその製造方法
 本発明は、半導体装置及びその製造方法に関し、特に、CMIS(Complementary Metal Insulator Semiconductor )デュアルゲート構造を有する半導体装置及びその製造方法に関する。
 半導体集積回路の高集積化は、デュアルゲート構造を有するCMISデバイスの微細化によって実現されてきた。デュアルゲート構造のCMISデバイスとは、一般的には、NチャネルMISFET(Metal Insulator Semiconductor Field Effect Transistor )(以下、NMISFETと称する)のゲート電極としてN型不純物がドープされたポリシリコン膜を用い、且つPチャネルMISFET(以下、PMISFETと称する)のゲート電極としてP型不純物がドープされたポリシリコン膜を用いたデバイスを意味する(例えば特許文献1参照)。デュアルゲート構造のCMISデバイスでは、N型のポリシリコンゲート電極とP型のポリシリコンゲート電極とを接続する為に、ポリシリコンゲート電極上に金属シリサイド層が形成される。その場合、ポリシリコンゲート電極におけるN型領域とP型領域との境界では各領域中の不純物が金属シリサイド層又はポリシリコン膜を通じて相互拡散し、その結果、各ゲート電極の仕事関数が変化して各FETの閾値電圧が変動する。
 ゲート電極用のポリシリコン膜にN型領域及びP型領域を形成する方法として、従来、N型領域とP型領域との境界がウェル領域同士の間の分離上に位置するように設定されたマスクを用いて、ゲート電極用のポリシリコン膜に不純物のイオン注入を行っている(例えば特許文献2参照)。
 ロジック(Logic)回路用トランジスタ及びSRAM(static random access memory )回路用トランジスタのそれぞれのゲート電極にイオン注入を用いてN型領域及びP型領域を形成した従来の半導体装置について、図面を参照しながら説明する。
 図15(a)は、従来の半導体装置におけるロジック領域の平面図であり、図15(b)は、図15(a)におけるB-B線(ゲート幅方向)の断面図である。また、図15(c)は、従来の半導体装置におけるSRAM領域の平面図であり、図15(d)は、図15(c)におけるD-D線(ゲート幅方向)の断面図である。尚、説明を簡単にするために、図15(a)~(d)においてサイドウォールスペーサ、シリサイド層及び層間膜等の図示を省略していると共に、図15(b)及び(d)においてコンタクトの図示を省略している。
 図15(a)~(d)に示すように、従来の半導体装置におけるロジック領域及びSRAM領域はそれぞれ、NMIS領域及びPMIS領域を有している。ロジック領域のNMIS領域においては、半導体基板100上にP型ウェル領域102aが設けられていると共に素子分離領域101に囲まれるように活性領域100aが設けられている。ロジック領域のPMIS領域においては、半導体基板100上にN型ウェル領域102bが設けられていると共に素子分離領域101に囲まれるように活性領域100bが設けられている。SRAM領域のNMIS領域においては、半導体基板100上にP型ウェル領域102cが設けられていると共に素子分離領域101に囲まれるように活性領域100cが設けられている。SRAM領域のPMIS領域においては、半導体基板100上にN型ウェル領域102dが設けられていると共に素子分離領域101に囲まれるように活性領域100dが設けられている。
 活性領域100a上にはゲート絶縁膜103を介してN型ポリシリコン膜104aを有するゲート電極111aが形成されている。活性領域100b上にはゲート絶縁膜103を介してP型ポリシリコン膜104bを有するゲート電極111bが形成されている。ゲート電極111aとゲート電極111bとは、活性領域100aと活性領域100bとの間の素子分離領域101上に位置するPN境界113Lで互いに接続されており、これにより、デュアルゲート電極112Lが構成されている。活性領域100aにおけるゲート電極111aの両側にはN型ソース/ドレイン領域105aが設けられていると共に、活性領域100bにおけるゲート電極111bの両側にはP型ソース/ドレイン領域105bが設けられている。デュアルゲート電極112L、N型ソース/ドレイン領域105a及びP型ソース/ドレイン領域105bのそれぞれと接続するようにコンタクト108が形成されている。
 活性領域100c上にはゲート絶縁膜103を介してN型ポリシリコン膜104cを有するゲート電極111cが形成されている。活性領域100d上にはゲート絶縁膜103を介してP型ポリシリコン膜104dを有するゲート電極111dが形成されている。ゲート電極111cとゲート電極111dとは、活性領域100cと活性領域100dとの間の素子分離領域101上に位置するPN境界113Sで互いに接続されており、これにより、デュアルゲート電極112Sが構成されている。活性領域100cにおけるゲート電極111cの両側にはN型ソース/ドレイン領域105cが設けられていると共に、活性領域100dにおけるゲート電極111dの両側にはP型ソース/ドレイン領域105dが設けられている。デュアルゲート電極112S、N型ソース/ドレイン領域105c及びP型ソース/ドレイン領域105dのそれぞれと接続するようにコンタクト108が形成されている。
 図16(a)及び(b)は、デュアルゲート電極112L及び112Sとなるポリシリコン膜(ゲートパターニング前)に不純物をイオン注入することによってP型領域及びN型領域を形成する様子を模式的に示す図である。尚、図16(a)及び(b)において、図15(a)~(d)と同じ構成要素には同じ符号を付している。
 図16(a)及び(b)に示すように、PMIS領域のゲート注入の際には、ロジック領域及びSRAM領域のそれぞれのNMIS領域を覆うマスクパターン151を用いてポリシリコン膜104にP型不純物をイオン注入することによってP型ポリシリコン膜104b及び104dを形成する。すなわち、P型ポリシリコン膜104b及び104dのそれぞれにおけるP型不純物濃度は実質的に同じである。また、NMIS領域のゲート注入の際には、ロジック領域及びSRAM領域のそれぞれのPMIS領域を覆うマスクパターン152を用いてポリシリコン膜104にN型不純物をイオン注入することによってN型ポリシリコン膜104a及び104cを形成する。すなわち、N型ポリシリコン膜104a及び104cのそれぞれにおけるN型不純物濃度は実質的に同じである。尚、説明を分かりやすくするために、マスクパターン151及び152として、イオン注入に実際に用いられるレジストパターンではなく、当該レジストパターンを形成するためのフォトマスク上のマスクパターンを模式的に示している。また、マスクパターン151及び152は、ポリシリコン膜104中に形成されるPN境界が、活性領域100aと活性領域100bとの間の素子分離領域101上、及び活性領域100cと活性領域100dとの間の素子分離領域101上にそれぞれ位置するように設定されている。
 尚、図示はしていないが、PMIS領域及びNMIS領域のそれぞれにおいてソース/ドレイン領域を形成するためのイオン注入においても、図16(a)及び(b)に示すマスクパターン151及び152と同様のマスクパターンを用いる。
 図16(a)及び(b)に示すゲート注入によると、ポリシリコン膜104に形成されるPN境界が活性領域同士の間の素子分離領域上に位置するため、ポリシリコンゲート電極におけるN型領域とP型領域との間の不純物の相互拡散に起因する各FETの特性劣化を抑制することができる。
特開平6-275788号公報 特開平8-17934号公報
 しかしながら、素子の微細化に伴ってゲート長が短くなると、ポリシリコン膜中での相互拡散の問題とは別に、注入不純物であるイオン種の違いに起因するポリシリコン膜のエッチング速度の差が相対的に大きくなり、その結果、ゲート長の仕上がり寸法が変動してトランジスタの閾値電圧が変動するという問題が顕在化してくる。従って、特にセルサイズの縮小を要求されるSRAM等においてはPN境界近傍で発生するゲート寸法の変動を抑制する必要がある。
 また、前述の従来技術のように、ポリシリコンゲート電極中のPN境界を活性領域同士の間の素子分離領域上に位置させたとしても、素子の微細化が進むにつれて、特にSRAM等においては素子分離領域の幅が狭くなるので、ポリシリコンゲート電極におけるN型領域とP型領域との間の不純物の相互拡散の影響が無視できなくなる。その結果、各ゲート電極の仕事関数が変化するため、閾値電圧の変動等のトランジスタ特性の劣化が起こるので、回路動作不良が発生し易くなるという問題が生じてしまう。
 前記に鑑み、本発明は、CMISデュアルゲート構造を有する半導体装置において、PN境界近傍でのゲート寸法変動や不純物の相互拡散に起因する素子特性の変動を抑制できるようにすることを目的とする。
 前記の目的を達成するために、本発明に係る半導体装置は、第1のデュアルゲート電極と第2のデュアルゲート電極とを備えた半導体装置であって、前記第1のデュアルゲート電極は、第1の活性領域上に形成された第1の第1導電型シリコン膜を含む第1のゲート電極と、第2の活性領域上に形成された第1の第2導電型シリコン膜を含む第2のゲート電極とを有し、前記第2のデュアルゲート電極は、第3の活性領域上に形成された第2の第1導電型シリコン膜を含む第3のゲート電極と、第4の活性領域上に形成された第2の第2導電型シリコン膜を含む第4のゲート電極とを有し、前記第1の活性領域と前記第2の活性領域とは素子分離領域を挟んで分離されており、前記第1のゲート電極と前記第2のゲート電極とは前記素子分離領域上で接続しており、前記第1の第1導電型シリコン膜の少なくとも一部分における第1導電型不純物濃度は、前記第3の活性領域上に位置する部分の前記第2の第1導電型シリコン膜の第1導電型不純物濃度よりも高い。
 本発明に係る半導体装置において、前記第1の活性領域と前記第2の活性領域との間の分離幅は、前記第3の活性領域と前記第4の活性領域との間の分離幅よりも大きくてもよい。
 本発明に係る半導体装置において、前記第1の第2導電型シリコン膜の少なくとも一部分における第2導電型不純物濃度は、前記第4の活性領域上に位置する部分の前記第2の第2導電型シリコン膜の第2導電型不純物濃度と実質的に同じであってもよい。
 本発明に係る半導体装置において、前記第1の活性領域上に位置する部分の前記第1の第1導電型シリコン膜の第1導電型不純物濃度は、前記第3の活性領域上に位置する部分の前記第2の第1導電型シリコン膜の第1導電型不純物濃度よりも高くてもよい。
 本発明に係る半導体装置において、前記第1の活性領域上に位置する部分の前記第1の第1導電型シリコン膜の第1導電型不純物濃度は、前記素子分離領域上に位置する部分の前記第1の第1導電型シリコン膜の第1導電型不純物濃度よりも低くてもよい。
 本発明に係る半導体装置において、前記第1の活性領域及び前記素子分離領域のそれぞれの上に位置する部分の前記第1の第1導電型シリコン膜の第1導電型不純物濃度は、前記第3の活性領域の上に位置する部分の前記第2の第1導電型シリコン膜の第1導電型不純物濃度よりも高くてもよい。
 本発明に係る半導体装置において、前記第2の活性領域上に位置する部分の前記第1の第2導電型シリコン膜の第2導電型不純物濃度は、前記第4の活性領域上に位置する部分の前記第2の第2導電型シリコン膜の第2導電型不純物濃度よりも低くてもよい。
 本発明に係る半導体装置において、前記第2の活性領域上に位置する部分の前記第1の第2導電型シリコン膜の第2導電型不純物濃度は、前記素子分離領域上に位置する部分の前記第1の第2導電型シリコン膜の第2導電型不純物濃度よりも低くてもよい。
 本発明に係る半導体装置において、前記素子分離領域上に位置する部分の前記第1の第2導電型シリコン膜の第2導電型不純物濃度は、前記第4の活性領域上に位置する部分の前記第2の第2導電型シリコン膜の第2導電型不純物濃度と実質的に同じであってもよい。
 本発明に係る半導体装置において、前記第1の活性領域上に位置する部分の前記第1の第1導電型シリコン膜の第1導電型不純物濃度は、前記素子分離領域上に位置する部分の前記第1の第1導電型シリコン膜の第1導電型不純物濃度と実質的に同じであってもよい。
 本発明に係る半導体装置において、前記素子分離領域上に位置する部分の前記第1の第1導電型シリコン膜の第1導電型不純物濃度は、前記第3の活性領域上に位置する部分の前記第2の第1導電型シリコン膜の第1導電型不純物濃度よりも高くてもよい。
 本発明に係る半導体装置において、前記第1の活性領域上に位置する部分の前記第1の第1導電型シリコン膜の第1導電型不純物濃度は、前記第3の活性領域上に位置する部分の前記第2の第1導電型シリコン膜の第1導電型不純物濃度と実質的に同じであってもよい。
 本発明に係る半導体装置において、前記第1の活性領域上に位置する部分の前記第1の第1導電型シリコン膜の第1導電型不純物濃度は、前記素子分離領域上に位置する部分の前記第1の第1導電型シリコン膜の第1導電型不純物濃度よりも低くてもよい。
 本発明に係る半導体装置において、前記第2の活性領域上に位置する部分の前記第1の第2導電型シリコン膜の第2導電型不純物濃度は、前記第4の活性領域上に位置する部分の前記第2の第2導電型シリコン膜の第2導電型不純物濃度と実質的に同じであってもよい。
 本発明に係る半導体装置において、前記第2の活性領域上に位置する部分の前記第1の第2導電型シリコン膜の第2導電型不純物濃度は、前記素子分離領域上に位置する部分の前記第1の第2導電型シリコン膜の第2導電型不純物濃度よりも低くてもよい。
 本発明に係る半導体装置において、前記素子分離領域上に位置する部分の前記第1の第2導電型シリコン膜の第2導電型不純物濃度は、前記第4の活性領域上に位置する部分の前記第2の第2導電型シリコン膜の第2導電型不純物濃度よりも高くてもよい。
 本発明に係る半導体装置において、前記第1の活性領域上に位置する部分の前記第1の第1導電型シリコン膜の第1導電型不純物濃度は、前記第3の活性領域上に位置する部分の前記第2の第1導電型シリコン膜の第1導電型不純物濃度よりも高く、前記第2の活性領域上に位置する部分の前記第1の第2導電型シリコン膜の第2導電型不純物濃度は、前記第4の活性領域上に位置する部分の前記第2の第2導電型シリコン膜の第2導電型不純物濃度よりも高くてもよい。
 本発明に係る半導体装置において、前記第1のゲート電極は、第1のPMISトランジスタのゲート電極であり、前記第2のゲート電極は、第1のNMISトランジスタのゲート電極であり、前記第3のゲート電極は、第2のPMISトランジスタのゲート電極であり、前記第4のゲート電極は、第2のNMISトランジスタのゲート電極であってもよい。
 本発明に係る半導体装置において、前記第1のゲート電極及び前記第2のゲート電極はそれぞれ、ロジック回路用トランジスタのゲート電極であり、前記第3のゲート電極及び前記第4のゲート電極はそれぞれ、SRAM回路用トランジスタのゲート電極であってもよい。
 また、本発明に係る半導体装置の製造方法は、第1の活性領域上に形成された第1のゲート電極及び第2の活性領域上に形成された第2のゲート電極を有する第1のデュアルゲート電極と、第3の活性領域上に形成された第3のゲート電極及び第4の活性領域上に形成された第4のゲート電極を有する第2のデュアルゲート電極とを備えた半導体装置の製造方法であって、前記第1の活性領域、前記第2の活性領域、前記第3の活性領域及び前記第4の活性領域のそれぞれの上にシリコン膜を形成する工程(a)と、前記第2の活性領域、前記第3の活性領域及び前記第4の活性領域のそれぞれの上に位置する部分の前記シリコン膜を第1のマスクパターンによって覆いながら、前記シリコン膜に第1導電型不純物を導入する工程(b)と、前記第1の活性領域上に位置する部分の前記シリコン膜を第2のマスクパターンによって覆いながら、前記シリコン膜に第2導電型不純物を導入する工程(c)と、前記工程(b)及び前記工程(c)よりも後に、前記シリコン膜をパターニングし、それにより、前記第1の活性領域、前記第2の活性領域、前記第3の活性領域及び前記第4の活性領域のそれぞれの上に、前記シリコン膜をそれぞれ含む前記第1のゲート電極、前記第2のゲート電極、前記第3のゲート電極及び前記第4のゲート電極を形成する工程(d)とを備えている。尚、本発明に係る半導体装置の製造方法において、前記工程(b)及び前記工程(c)のいずれを先に実施してもよい。
 本発明に係る半導体装置の製造方法において、前記第1のマスクパターンは、前記第1の活性領域上に位置する部分の前記シリコン膜上に開口を有し、前記第2のマスクパターンは、前記第2の活性領域、前記第3の活性領域及び前記第4の活性領域のそれぞれの上に位置する部分の前記シリコン膜上に開口を有していてもよい。
 本発明に係る半導体装置の製造方法において、前記第1の活性領域と前記第2の活性領域とは素子分離領域によって電気的に分離されており、前記工程(a)において、前記シリコン膜は前記素子分離領域上にも形成され、前記第1のマスクパターンは、前記第1の活性領域上に位置する部分の前記シリコン膜を覆うと共に前記素子分離領域上に位置する部分の前記シリコン膜上に開口を有し、前記第2のマスクパターンは、前記第2の活性領域上に位置する部分の前記シリコン膜を覆うと共に前記素子分離領域、前記第3の活性領域及び前記第4の活性領域のそれぞれの上に位置する部分の前記シリコン膜上に開口を有していてもよい。ここで、前記第1のマスクパターン及び前記第2のマスクパターンは、前記素子分離領域上に位置する部分の前記シリコン膜上に開口を有していなくてもよい。言い換えると、前記第1のマスクパターン及び前記第2のマスクパターンは、前記素子分離領域上に位置する部分の前記シリコン膜を覆っていてもよい。
 本発明に係る半導体装置の製造方法において、前記第1の活性領域と前記第2の活性領域とは素子分離領域によって電気的に分離されており、前記工程(a)において、前記シリコン膜は前記素子分離領域上にも形成され、前記第1のマスクパターンは、前記第1の活性領域上に位置する部分の前記シリコン膜を覆うと共に前記素子分離領域上に位置する部分の前記シリコン膜上に開口を有し、前記第2のマスクパターンは、前記第2の活性領域、前記第3の活性領域及び前記第4の活性領域のそれぞれの上に位置する部分の前記シリコン膜を覆うと共に前記素子分離領域上に位置する部分の前記シリコン膜上に開口を有していてもよい。
 本発明に係る半導体装置の製造方法において、前記第2のマスクパターンは、前記第3の活性領域及び前記第4の活性領域のそれぞれの上に位置する部分の前記シリコン膜を覆っていてもよい。
 本発明によると、CMISデュアルゲート構造を有する半導体装置において、PN境界近傍でのゲート寸法変動や不純物の相互拡散に起因する素子特性の変動を抑制することができる。
図1(a)は、第1の実施形態に係る半導体装置におけるロジック領域の平面図であり、図1(b)は、図1(a)におけるI-I線の断面図であり、図1(c)は、第1の実施形態に係る半導体装置におけるSRAM領域の平面図であり、図1(d)は、図1(c)におけるII-II線の断面図である。 図2(a)~(f)は、第1の実施形態に係る半導体装置の製造方法の一工程を示す断面図である。 図3(a)~(f)は、第1の実施形態に係る半導体装置の製造方法の一工程を示す断面図である。 図4(a)~(f)は、第1の実施形態に係る半導体装置の製造方法の一工程を示す断面図である。 図5(a)~(f)は、第1の実施形態に係る半導体装置の製造方法の一工程を示す断面図である。 図6(a)~(f)は、第1の実施形態に係る半導体装置の製造方法の一工程を示す断面図である。 図7(a)~(f)は、第1の実施形態に係る半導体装置の製造方法の一工程を示す断面図である。 図8(a)~(f)は、第1の実施形態に係る半導体装置の製造方法の一工程を示す断面図である。 図9(a)は、第2の実施形態に係る半導体装置におけるロジック領域の平面図であり、図9(b)は、図9(a)におけるI-I線の断面図であり、図9(c)は、第2の実施形態に係る半導体装置におけるSRAM領域の平面図であり、図9(d)は、図9(c)におけるII-II線の断面図である。 図10(a)~(f)は、第2の実施形態に係る半導体装置の製造方法の一工程を示す断面図である。 図11(a)は、第3の実施形態に係る半導体装置におけるロジック領域の平面図であり、図11(b)は、図11(a)におけるI-I線の断面図であり、図11(c)は、第3の実施形態に係る半導体装置におけるSRAM領域の平面図であり、図11(d)は、図11(c)におけるII-II線の断面図である。 図12(a)~(f)は、第3の実施形態に係る半導体装置の製造方法の一工程を示す断面図である。 図13(a)は、第4の実施形態に係る半導体装置におけるロジック領域の平面図であり、図13(b)は、図13(a)におけるI-I線の断面図であり、図13(c)は、第4の実施形態に係る半導体装置におけるSRAM領域の平面図であり、図13(d)は、図13(c)におけるII-II線の断面図である。 図14(a)~(f)は、第4の実施形態に係る半導体装置の製造方法の一工程を示す断面図である。 図15(a)は、従来の半導体装置におけるロジック領域の平面図であり、図15(b)は、図15(a)におけるB-B線の断面図であり、図15(c)は、従来の半導体装置におけるSRAM領域の平面図であり、図15(d)は、図15(c)におけるD-D線の断面図である。 図16(a)及び(b)は、従来の半導体装置の製造方法においてデュアルゲート電極となるポリシリコン膜(ゲートパターニング前)に不純物をイオン注入することによってP型領域及びN型領域を形成する様子を模式的に示す図である。
 (第1の実施形態)
 以下、本発明の第1の実施形態に係る半導体装置について、図面を参照しながら説明する。
 図1(a)は、第1の実施形態に係る半導体装置におけるロジック領域の平面図であり、図1(b)は、図1(a)におけるI-I線(ゲート幅方向)の断面図である。また、図1(c)は、第1の実施形態に係る半導体装置におけるSRAM領域の平面図であり、図1(d)は、図1(c)におけるII-II線(ゲート幅方向)の断面図である。尚、説明を簡単にするために、図1(a)~(d)においてサイドウォールスペーサ、シリサイド層及び層間膜等の図示を省略していると共に、図1(b)及び(d)においてコンタクトの図示を省略している。
 図1(a)~(d)に示すように、本実施形態の半導体装置は、ロジック回路が形成される領域(以下、ロジック領域と称する)及びSRAM回路が形成される領域(以下、SRAM領域と称する)を有しており、ロジック領域及びSRAM領域はそれぞれ、NMISFETが形成される領域(以下、NMIS領域と称する)及びPMISFETが形成される領域(以下、PMIS領域と称する)を有している。ロジック領域のNMIS領域においては、半導体基板10上にP型ウェル領域12aが設けられていると共に素子分離領域11に囲まれるように活性領域10aが設けられている。ロジック領域のPMIS領域においては、半導体基板10上にN型ウェル領域12bが設けられていると共に素子分離領域11に囲まれるように活性領域10bが設けられている。SRAM領域のNMIS領域においては、半導体基板10上にP型ウェル領域12cが設けられていると共に素子分離領域11に囲まれるように活性領域10cが設けられている。SRAM領域のPMIS領域においては、半導体基板10上にN型ウェル領域12dが設けられていると共に素子分離領域11に囲まれるように活性領域10dが設けられている。
 活性領域10a上にはゲート絶縁膜13を介してN型シリコン膜14aを有するゲート電極30aが形成されている。活性領域10b上にはゲート絶縁膜13を介してP型シリコン膜14bを有するゲート電極30bが形成されている。ゲート電極30aとゲート電極30bとは、活性領域10aと活性領域10bとの間の素子分離領域11上に位置するPN境界41Lで互いに接続されており、これにより、デュアルゲート電極31Lが構成されている。活性領域10aにおけるゲート電極30aの両側にはN型ソース/ドレイン領域20aが設けられていると共に、活性領域10bにおけるゲート電極30bの両側にはP型ソース/ドレイン領域20bが設けられている。N型ソース/ドレイン領域20a及びP型ソース/ドレイン領域20bのそれぞれと接続するようにコンタクト26a及び26bが形成されていると共に、デュアルゲート電極31Lと接続するようにコンタクト26eが形成されている。
 活性領域10c上にはゲート絶縁膜13を介してN型シリコン膜14cを有するゲート電極30cが形成されている。活性領域10d上にはゲート絶縁膜13を介してP型シリコン膜14dを有するゲート電極30dが形成されている。ゲート電極30cとゲート電極30dとは、活性領域10cと活性領域10dとの間の素子分離領域11上に位置するPN境界41Sで互いに接続されており、これにより、デュアルゲート電極31Sが構成されている。活性領域10cにおけるゲート電極30cの両側にはN型ソース/ドレイン領域20cが設けられていると共に、活性領域10dにおけるゲート電極30dの両側にはP型ソース/ドレイン領域20dが設けられている。N型ソース/ドレイン領域20c及びP型ソース/ドレイン領域20dのそれぞれと接続するようにコンタクト26c及び26dが形成されていると共に、ゲート電極30cと接続するようにコンタクト26fが形成されている。
 本実施形態の特徴として、P型シリコン膜14b全体のP型不純物濃度は、P型シリコン膜14d全体のP型不純物濃度よりも高い。
 尚、N型シリコン膜14aのN型不純物濃度は、N型シリコン膜14cのN型不純物濃度と実質的に同じである。また、ロジック領域の素子分離領域11(具体的には活性領域10aと活性領域10bとの間の素子分離領域11)の幅が例えば70nm程度以上であるのに対して、SRAM領域の素子分離領域11(具体的には活性領域10cと活性領域10dとの間の素子分離領域11)の幅は例えば30~60nm程度である。
 以下、本発明の第1の実施形態に係る半導体装置の製造方法について、図面を参照しながら説明する。
 図2(a)~(f)、図3(a)~(f)、図4(a)~(f)、図5(a)~(f)、図6(a)~(f)、図7(a)~(f)及び図8(a)~(f)は、第1の実施形態に係る半導体装置の製造方法の各工程を示す断面図である。尚、図2(a)、図3(a)、図4(a)、図5(a)、図6(a)、図7(a)及び図8(a)は、図1(a)におけるIII-III線(ゲート長方向)の断面構成を各工程毎に示したものであり、図2(b)、図3(b)、図4(b)、図5(b)、図6(b)、図7(b)及び図8(b)は、図1(a)におけるIV-IV線(ゲート長方向)の断面構成を各工程毎に示したものであり、図2(c)、図3(c)、図4(c)、図5(c)、図6(c)、図7(c)及び図8(c)は、図1(c)におけるV-V線(ゲート長方向)の断面構成を各工程毎に示したものであり、図2(d)、図3(d)、図4(d)、図5(d)、図6(d)、図7(d)及び図8(d)は、図1(c)におけるVI-VI線(ゲート長方向)の断面構成を各工程毎に示したものである。また、図2(e)、図3(e)、図4(e)、図5(e)、図6(e)、図7(e)及び図8(e)は、図1(a)におけるI-I線(ゲート幅方向)の断面構成を各工程毎に示したものであり、図2(f)、図3(f)、図4(f)、図5(f)、図6(f)、図7(f)及び図8(f)は、図1(c)におけるII-II線(ゲート幅方向)の断面構成を各工程毎に示したものである。
 まず、図2(a)~(f)に示すように、例えば埋め込み素子分離(Shallow Trench Isolation(STI))法により、例えばp型シリコンからなる半導体基板10の上部に、トレンチ内に絶縁膜が埋め込まれてなる素子分離領域11を選択的に形成する。これにより、ロジック領域のNMIS領域においては、素子分離領域11に囲まれた半導体基板10からなる活性領域10aが形成され、ロジック領域のPMIS領域においては、素子分離領域11に囲まれた半導体基板10からなる活性領域10bが形成され、SRAM領域のNMIS領域においては、素子分離領域11に囲まれた半導体基板10からなる活性領域10cが形成され、SRAM領域のPMIS領域においては、素子分離領域11に囲まれた半導体基板10からなる活性領域10dが形成される。その後、例えばリソグラフィ法及びイオン注入法により、半導体基板10における各NMIS領域に、例えばB(ホウ素)等のP型不純物を注入する。続いて、例えばリソグラフィ法及びイオン注入法により、半導体基板10における各PMIS領域に、例えばP(リン)等のN型不純物を注入する。その後、半導体基板10に対して、例えば850℃、30秒間の熱処理を施すことにより、ロジック領域のNMIS領域においては、半導体基板10上にP型ウェル領域12aを形成し、ロジック領域のPMIS領域においては、半導体基板10上にN型ウェル領域12bを形成し、SRAM領域のNMIS領域においては、半導体基板10上にP型ウェル領域12cを形成し、SRAM領域のPMIS領域においては、半導体基板10上にN型ウェル領域12dを形成する。
 次に、図3(a)~(f)に示すように、例えば希釈フッ酸処理により、半導体基板10の表面を洗浄した後、例えばISSG(In-Situ Steam Generation)酸化法により、活性領域10a、10b、10c及び10dのそれぞれの上に、例えば厚さ2nm程度のシリコン酸化膜からなるゲート絶縁膜13を形成する。その後、半導体基板10に対して、例えば窒素プラズマ処理を行うことにより、ゲート絶縁膜13の表面を窒化して窒化層(図示省略)を形成する。その後、アニール処理を実施することにより、前記窒化層から、結合の弱い窒素を除去する。続いて、ゲート絶縁膜13上に、例えばCVD(chemical vapor deposition )法により、例えばポリシリコンからなる厚さ100nm程度のシリコン膜14を堆積する。
 続いて、図3(a)~(f)に示すように、ロジック領域のNMIS領域全体及びSRAM領域全体(NMIS領域全体及びPMIS領域全体)を覆い且つロジック領域のPMIS領域全体上に開口を有するマスクパターン51Aを用いて、シリコン膜14に例えばB(ホウ素)等のP型不純物をドーズ量4×1015cm-2でイオン注入することによってP型シリコン膜14Pを形成する。次に、ロジック領域のPMIS領域全体を覆い且つロジック領域のNMIS領域全体及びSRAM領域全体(NMIS領域全体及びPMIS領域全体)のそれぞれの上に開口を有するマスクパターン52Aを用いて、シリコン膜14に例えばP(リン)等のN型不純物をドーズ量3×1015cm-2でイオン注入することによってN型シリコン膜14Nを形成する。すなわち、本実施形態の特徴として、SRAM領域のPMIS領域のゲート注入においてN型不純物のイオン注入を行っている。
 尚、P型シリコン膜14Pの形成とN型シリコン膜14Nの形成とは、いずれを先に実施してもよい。また、図3(a)~(f)においては、説明を分かりやすくするために、マスクパターン51A及び52Aとして、フォトリソグラフィ法により半導体基板10上に形成されるレジストパターンではなく、当該レジストパターンを形成するためのフォトマスク上のマスクパターンを模式的に示している。また、マスクパターン51A及び52Aは、P型シリコン膜14PとN型シリコン膜14NとのPN境界41Lが、活性領域10aと活性領域10bとの間の素子分離領域11上に位置するように設定されている。
 P型シリコン膜14P及びN型シリコン膜14Nの形成後、半導体基板10に対して、例えば850℃、30秒間の熱処理を施すことにより、P型シリコン膜14P及びN型シリコン膜14Nのそれぞれにイオン注入された不純物のプロファイル(具体的には基板主面に対して垂直な方向のプロファイル(以下、垂直方向プロファイルと称する))の均一化を行う。
 次に、フォトリソグラフィ法により、シリコン膜14上に、ゲート形状を有するレジストパターン(図示省略)を形成した後、当該レジストパターンをマスクとして、ドライエッチング法により、シリコン膜14をパターニングする。これにより、図4(a)~(f)に示すように、活性領域10a上にゲート絶縁膜13aを介してN型シリコン膜14aを含むゲート電極30aが形成され、活性領域10b上にゲート絶縁膜13bを介してP型シリコン膜14bを含むゲート電極30bが形成され、活性領域10c上にゲート絶縁膜13cを介してN型シリコン膜14cを含むゲート電極30cが形成され、活性領域10d上にゲート絶縁膜13dを介してN型シリコン膜14d’を含むゲート電極30dが形成される。ここで、ゲート電極30aとゲート電極30bとは、活性領域10aと活性領域10bとの間の素子分離領域11上に位置するPN境界41Lで互いに接続されており、これにより、デュアルゲート電極31Lが構成されている。また、ゲート電極30cとゲート電極30dとは、活性領域10cと活性領域10dとの間の素子分離領域11上で互いに接続されており、これにより、デュアルゲート電極31Sが構成されている。但し、図4(a)~(f)に示す工程の終了時点でデュアルゲート電極31S中にPN境界は形成されていない。
 次に、例えばCVD法により、半導体基板10上の全面に、例えば厚さ8nmのシリコン酸化膜からなるオフセットスペーサ用絶縁膜を堆積した後、当該オフセットスペーサ用絶縁膜に対して異方性エッチングを行う。これにより、図5(a)~(f)に示すように、ゲート絶縁膜13a及びゲート電極30aの各側面上にオフセットスペーサ15aが形成され、ゲート絶縁膜13b及びゲート電極30bの各側面上にオフセットスペーサ15bが形成され、ゲート絶縁膜13c及びゲート電極30cの各側面上にオフセットスペーサ15cが形成され、ゲート絶縁膜13d及びゲート電極30dの各側面上にオフセットスペーサ15dが形成される。
 次に、半導体基板10上に、各NMIS領域上に開口を有し且つ各PMIS領域を覆うレジストパターン(図示省略)を形成した後、当該レジストパターン並びにゲート電極30a及び30cをマスクとして、例えばAs(ヒ素)等のn型不純物のイオン注入を行うことにより、図5(a)~(d)に示すように、活性領域10aにおけるゲート電極30aの側方下及び活性領域10cにおけるゲート電極30cの側方下に、接合深さが比較的浅いN型ソース/ドレイン領域(例えばLDD(lightly doped drain )領域又はエクステンション領域)16a及び16cをそれぞれ自己整合的に形成する。続いて、半導体基板10上に、各NMIS領域を覆い且つ各PMIS領域上に開口を有するレジストパターン(図示省略)を形成した後、当該レジストパターン並びにゲート電極30b及び30dをマスクとして、例えばBF等のp型不純物のイオン注入を行うことにより、図5(a)~(d)に示すように、活性領域10bにおけるゲート電極30bの側方下及び活性領域10dにおけるゲート電極30dの側方下に、接合深さが比較的浅いP型ソース/ドレイン領域(例えばLDD領域又はエクステンション領域)16b及び16dをそれぞれ自己整合的に形成する。
 尚、N型ソース/ドレイン領域16a及び16cの形成とP型ソース/ドレイン領域16b及び16dの形成とは、いずれを先に実施してもよい。
 次に、例えばCVD法により、半導体基板10上の全面に、例えば厚さ10nm程度のシリコン酸化膜からなる第1絶縁膜、及び例えば厚さ30nm程度のシリコン窒化膜からなる第2絶縁膜を順次堆積した後、当該第1絶縁膜及び当該第2絶縁膜に対して異方性エッチングを行う。これにより、図6(a)~(f)に示すように、ゲート電極30aの側面上にオフセットスペーサ15aを介してサイドウォールスペーサ19aが形成され、ゲート電極30bの側面上にオフセットスペーサ15bを介してサイドウォールスペーサ19bが形成され、ゲート電極30cの側面上にオフセットスペーサ15cを介してサイドウォールスペーサ19cが形成され、ゲート電極30dの側面上にオフセットスペーサ15dを介してサイドウォールスペーサ19dが形成される。ここで、サイドウォールスペーサ19aは、L字状の断面形状を有し且つ前記第1絶縁膜からなる内側サイドウォール17aと、内側サイドウォール17a上に形成され且つ前記第2絶縁膜からなる外側サイドウォール18aとを有する。また、サイドウォールスペーサ19bは、L字状の断面形状を有し且つ前記第1絶縁膜からなる内側サイドウォール17bと、内側サイドウォール17b上に形成され且つ前記第2絶縁膜からなる外側サイドウォール18bとを有する。また、サイドウォールスペーサ19cは、L字状の断面形状を有し且つ前記第1絶縁膜からなる内側サイドウォール17cと、内側サイドウォール17c上に形成され且つ前記第2絶縁膜からなる外側サイドウォール18cとを有する。また、サイドウォールスペーサ19dは、L字状の断面形状を有し且つ前記第1絶縁膜からなる内側サイドウォール17dと、内側サイドウォール17d上に形成され且つ前記第2絶縁膜からなる外側サイドウォール18dとを有する。
 続いて、図6(a)~(f)に示すように、ロジック領域のNMIS領域全体及びSRAM領域のNMIS領域全体を覆うマスクパターン53、活性領域10bにおけるゲート電極30b、オフセットスペーサ15b及びサイドウォールスペーサ19b、並びに活性領域10dにおけるゲート電極30d、オフセットスペーサ15d及びサイドウォールスペーサ19dをマスクとして、活性領域10b及び活性領域10dに例えばB(ボロン)等のP型不純物をドーズ量5×1015cm-2でイオン注入する。これにより、活性領域10bにおけるサイドウォールスペーサ19bの外側方下に、浅いP型ソース/ドレイン領域16bよりも接合深さが深く且つP型ソース/ドレイン領域16bと接続するP型ソース/ドレイン領域20bを自己整合的に形成すると共に、活性領域10dにおけるサイドウォールスペーサ19dの外側方下に、浅いP型ソース/ドレイン領域16dよりも接合深さが深く且つP型ソース/ドレイン領域16dと接続するP型ソース/ドレイン領域20dを自己整合的に形成する。このとき、ゲート電極30bを構成するP型シリコン膜14b及びゲート電極30dを構成するN型シリコン膜14d’にも前記P型不純物が注入される結果、P型シリコン膜14bのP型不純物濃度はより高くなる一方、N型シリコン膜14d’はP型シリコン膜14dとなる。これにより、デュアルゲート電極31S中にN型シリコン膜14c(ゲート電極30c)とP型シリコン膜14d(ゲート電極30d)とのPN境界41Sが形成される。ここで、P型シリコン膜14bのP型不純物濃度は、P型シリコン膜14dのP型不純物濃度よりも高くなる。
 続いて、図6(a)~(f)に示すように、ロジック領域のPMIS領域全体及びSRAM領域のPMIS領域全体を覆うマスクパターン54、活性領域10aにおけるゲート電極30a、オフセットスペーサ15a及びサイドウォールスペーサ19a、並びに活性領域10cにおけるゲート電極30c、オフセットスペーサ15c及びサイドウォールスペーサ19cをマスクとして、活性領域10a及び活性領域10cに例えばAs(ヒ素)等のN型不純物をドーズ量4×1015~5×1015cm-2でイオン注入する。これにより、活性領域10aにおけるサイドウォールスペーサ19aの外側方下に、浅いN型ソース/ドレイン領域16aよりも接合深さが深く且つN型ソース/ドレイン領域16aと接続するN型ソース/ドレイン領域20aを自己整合的に形成すると共に、活性領域10cにおけるサイドウォールスペーサ19cの外側方下に、浅いN型ソース/ドレイン領域16cよりも接合深さが深く且つN型ソース/ドレイン領域16cと接続するN型ソース/ドレイン領域20cを自己整合的に形成する。
 尚、P型ソース/ドレイン領域20b及び20dの形成とN型ソース/ドレイン領域20a及び20cの形成とは、いずれを先に実施してもよい。また、図6(a)~(f)においては、説明を分かりやすくするために、マスクパターン53及び54として、フォトリソグラフィ法により半導体基板10上に形成されるレジストパターンではなく、当該レジストパターンを形成するためのフォトマスク上のマスクパターンを模式的に示している。また、マスクパターン53及び54は、P型シリコン膜14a(ゲート電極30a)とN型シリコン膜14b(ゲート電極30b)とのPN境界41Lの位置(活性領域10aと活性領域10bとの間の素子分離領域11上)が変わらないように、且つ、P型シリコン膜14c(ゲート電極30c)とN型シリコン膜14d(ゲート電極30d)とのPN境界41Sが、活性領域10cと活性領域10dとの間の素子分離領域11上に位置するように設定されている。
 N型ソース/ドレイン領域20a及び20c並びにP型ソース/ドレイン領域20b及び20dの形成後、半導体基板10に対して熱処理を施すことにより、N型ソース/ドレイン領域20a及び20c並びにP型ソース/ドレイン領域20b及び20dのそれぞれにイオン注入された不純物を活性化させる。
 次に、深いN型ソース/ドレイン領域20a及び20c並びに深いP型ソース/ドレイン領域20b及び20dのそれぞれの表面に形成されている自然酸化膜(図示省略)を除去した後、例えばスパッタ法により、半導体基板10上の全面に、例えばニッケルからなる厚さ10nm程度の金属膜(図示省略)を堆積する。その後、例えば窒素雰囲気中において、半導体基板10に対して、例えば320℃の温度で1回目のRTA(Rapid Thermal Annealing )処理を行うことにより、深いN型ソース/ドレイン領域20a及び20c並びに深いP型ソース/ドレイン領域20b及び20dのそれぞれの表面部のシリコン(Si)と前記金属膜のニッケル(Ni)とを反応させる。これにより、図7(a)~(f)に示すように、深いN型ソース/ドレイン領域20a及び20c並びに深いP型ソース/ドレイン領域20b及び20dのそれぞれの上に、ニッケルシリサイドからなる金属シリサイド層21a~21dが形成される。このとき、ゲート電極30a及び30cを構成するN型シリコン膜14a及び14c並びにゲート電極30b及び30dを構成するP型シリコン膜14b及び14dのそれぞれの表面部のSiと前記金属膜のNiとも反応する結果、ゲート電極30a~30dのそれぞれの上に、ニッケルシリサイドからなる金属シリサイド層22a~22dが形成される。その後、例えば硫酸と過酸化水素水との混合液からなるエッチング液中に半導体基板10を浸漬することにより、素子分離領域11、オフセットスペーサ15a~15d及びサイドウォールスペーサ19a~19d等の上に残存する未反応の前記金属膜を除去した後、1回目のRTA処理よりも高い温度(例えば550℃)で2回目のRTA処理を行うことにより、金属シリサイド層21a~21d及び金属シリサイド層22a~22dのそれぞれのシリサイド組成比を安定化させる。
 次に、図8(a)~(f)に示すように、例えばプラズマCVD法により、半導体基板10上の全面に、例えば厚さ20nm程度のシリコン窒化膜からなる絶縁膜23を堆積した後、例えばCVD法により、絶縁膜23上に、例えばシリコン酸化膜からなる層間絶縁膜24を堆積し、その後、例えばCMP(Chemical Mechanical Polishing )法により、層間絶縁膜24の表面を平坦化する。次に、通常のMISトランジスタを有する半導体装置の製造方法と同様に、層間絶縁膜24上に、コンタクトホールパターンを有するレジスト膜(図示省略)を形成した後、当該レジスト膜をマスクとして、ドライエッチング法により、絶縁膜23及び層間絶縁膜24に、金属シリサイド層21a~21dのそれぞれの上面に到達するコンタクトホール25a~25dを形成する。このとき、絶縁膜23が露出した時点で一度エッチングを中断する2ステップのエッチング法を用いることにより、金属シリサイド層21a~21dに対するオーバーエッチング量を減らすことができる。その後、例えばスパッタ法又はCVD法により、コンタクトホール25a~25dの底部及び側壁のそれぞれの上に、例えばチタン膜と窒化チタン膜とが順次堆積されてなるバリアメタル膜(図示省略)を形成する。その後、例えばCVD法により、層間絶縁膜24上に、コンタクトホール25a~25dを埋め込むように例えばタングステン膜を堆積した後、例えばCMP法により、コンタクトホール25a~25dの外に形成されている前記タングステン膜を除去する。このようにして、コンタクトホール25a~25dに、前記バリアメタル膜を介して前記タングステン膜が埋め込まれてなるコンタクト26a~26dを形成する。その後、層間絶縁膜24上に、コンタクト26a~26dと電気的に接続する金属配線(図示省略)を形成する。
 以上のようにして、本実施形態に係る半導体装置、つまり、N型シリコン膜14aを含むゲート電極30aを有するロジック領域内のNMISFETと、P型シリコン膜14bを含むゲート電極30bを有するロジック領域内のPMISFETと、N型シリコン膜14cを含むゲート電極30cを有するSRAM領域内のNMISFETと、P型シリコン膜14dを含むゲート電極30dを有するSRAM領域内のPMISFETとを備えた半導体装置を製造することができる。
 本実施形態によると、ドライエッチング法により、シリコン膜14をエッチングして、ゲート電極30a~30dを形成する際に、素子分離領域11(具体的には活性領域10cと活性領域10dとの間の素子分離領域11)の幅が狭くて不純物の相互拡散の影響を受けやすいSRAM領域のゲート電極30c及び30dを構成するシリコン膜14中には実質的にN型不純物のみが存在している。従って、注入不純物であるイオン種の違いに起因してシリコン膜14のエッチング速度に差が生じる事態を回避できるため、NMISFETのゲート電極30cとPMISFETのゲート電極30dとの間でゲート寸法差が生じることがないので、ゲート長変動に起因するトランジスタ特性の変動を抑制することができる。また、ドライエッチング法により、シリコン膜14をエッチングする際には、シリコン膜14中に注入された不純物の垂直方向プロファイルを予めアニール処理によって均一化しておく必要があるが、本実施形態では、シリコン膜14をエッチングする時点でSRAM領域内のシリコン膜14中の不純物は実質的にN型不純物のみであるため、前記アニール処理に起因する不純物の相互拡散(具体的には基板主面に対して平行な方向への拡散)の影響は実質的に無視できる。従って、トランジスタ特性の変動をより一層抑制することができる。
 また、本実施形態では、SRAM領域内のPMIS領域のゲート電極30dを構成するシリコン膜14中には、ゲート注入の際にはN型不純物が注入される一方、ソース/ドレイン注入の際にはP型不純物が注入される。従って、SRAM領域内のPMISFETを表面チャネル型にするためには、ゲート注入の際のN型不純物濃度を、ソース/ドレイン注入の際のP型不純物濃度よりも小さく設定しておくことが望ましい。この場合、本実施形態の特徴として、ロジック領域内のPMIS領域のゲート電極30bを構成するP型シリコン膜14b中のP型不純物濃度は、SRAM領域内のPMIS領域のゲート電極30dを構成するP型シリコン膜14d中のP型不純物濃度よりも大きくなる。
 尚、本実施形態では、SRAM領域内のNMIS領域及びPMIS領域に対してN型不純物のゲート注入を行った後、P型不純物のソース/ドレイン注入によって、SRAM領域内のPMIS領域のゲート電極30dを構成するシリコン膜14の導電型をP型に反転させた。しかし、これに代えて、SRAM領域内のNMIS領域及びPMIS領域に対してP型不純物のゲート注入を行った後、N型不純物のソース/ドレイン注入によって、SRAM領域内のNMIS領域のゲート電極30cを構成するシリコン膜14の導電型をN型に反転させてもよい。
 (第2の実施形態)
 以下、本発明の第2の実施形態に係る半導体装置について、図面を参照しながら説明する。
 図9(a)は、第2の実施形態に係る半導体装置におけるロジック領域の平面図であり、図9(b)は、図9(a)におけるI-I線(ゲート幅方向)の断面図である。また、図9(c)は、第2の実施形態に係る半導体装置におけるSRAM領域の平面図であり、図9(d)は、図9(c)におけるII-II線(ゲート幅方向)の断面図である。尚、説明を簡単にするために、図9(a)~(d)においてサイドウォールスペーサ、シリサイド層及び層間膜等の図示を省略していると共に、図9(b)及び(d)においてコンタクトの図示を省略している。また、図9(a)~(d)において、図1(a)~(d)に示す第1の実施形態と同じ構成要素には同じ符号を付しており、以下、第1の実施形態と共通する点については適宜説明を省略し、第1の実施形態と相違する点について主として説明する。
 本実施形態が第1の実施形態と異なっている点は、図9(a)及び(b)に示すように、ロジック領域のデュアルゲート電極31Lが、活性領域10a及びその近傍の素子分離領域11の上に位置するN型シリコン膜14a1とその両側の素子分離領域11の上に位置するN型シリコン膜14a2とを含むNMIS領域のゲート電極30aと、活性領域10b及びその近傍の素子分離領域11の上に位置するP型シリコン膜14b1とその両側の素子分離領域11の上に位置するP型シリコン膜14b2とを含むPMIS領域のゲート電極30bとを有していることである。
 尚、図9(c)及び(d)に示すSRAM領域の構成は、デュアルゲート電極31Sの構成を含めて、図1(c)及び(d)に示す第1の実施形態のSRAM領域の構成と同じである。すなわち、デュアルゲート電極31Sは、第1の実施形態と同様に、N型シリコン膜14cを含むNMIS領域のゲート電極30cと、P型シリコン膜14dを含むPMIS領域のゲート電極30dとを有している。
 本実施形態の特徴として、P型シリコン膜14b1のP型不純物濃度は、P型シリコン膜14b2のP型不純物濃度よりも低い。また、P型シリコン膜14b1及びP型シリコン膜14b2のそれぞれのP型不純物濃度は、P型シリコン膜14dのP型不純物濃度よりも高い。また、N型シリコン膜14a1のN型不純物濃度は、N型シリコン膜14a2及びN型シリコン膜14cのそれぞれのN型不純物濃度よりも低い。また、N型シリコン膜14a2のN型不純物濃度は、N型シリコン膜14cのN型不純物濃度と実質的に同じである。
 以下、本発明の第2の実施形態に係る半導体装置の製造方法について、図面を参照しながら説明する。尚、本実施形態に係る半導体装置の製造方法が第1の実施形態と相違している点は、ロジック領域におけるゲート注入箇所のみである(図10(a)~(f)参照)。
 図10(a)~(f)は、第2の実施形態に係る半導体装置の製造方法の一工程を示す断面図である。尚、図10(a)は、図9(a)におけるIII-III線(ゲート長方向)の一工程での断面構成を示したものであり、図10(b)は、図9(a)におけるIV-IV線(ゲート長方向)の一工程での断面構成を示したものであり、図10(c)は、図9(c)におけるV-V線(ゲート長方向)の一工程での断面構成を示したものであり、図10(d)は、図9(c)におけるVI-VI線(ゲート長方向)の一工程での断面構成を示したものである。また、図10(e)は、図9(a)におけるI-I線(ゲート幅方向)の一工程での断面構成を示したものであり、図10(f)は、図9(c)におけるII-II線(ゲート幅方向)の一工程での断面構成を示したものである。
 本実施形態においては、まず、第1の実施形態における図2(a)~(f)に示す工程と同様の工程を実施した後、図10(a)~(f)に示すように、例えば希釈フッ酸処理により、半導体基板10の表面を洗浄し、その後、例えばISSG酸化法により、活性領域10a、10b、10c及び10dのそれぞれの上に、例えば厚さ2nm程度のシリコン酸化膜からなるゲート絶縁膜13を堆積する。その後、半導体基板10に対して、例えば窒素プラズマ処理を行うことにより、ゲート絶縁膜13の表面を窒化して窒化層(図示省略)を形成する。その後、アニール処理を実施することにより、前記窒化層から、結合の弱い窒素を除去する。続いて、ゲート絶縁膜13上に、例えばCVD法により、例えばポリシリコンからなる厚さ100nm程度のシリコン膜14を堆積する。
 続いて、図10(a)~(f)に示すように、ロジック領域におけるNMIS領域全体及びPMIS領域のうちの活性領域10b並びにSRAM領域全体(NMIS領域全体及びPMIS領域全体)を覆い且つロジック領域におけるPMIS領域のうちの素子分離領域11上に開口を有するマスクパターン51Bを用いて、シリコン膜14に例えばB(ホウ素)等のP型不純物をドーズ量4×1015cm-2でイオン注入する。これにより、ロジック領域のPMIS領域のうちの素子分離領域11上にP型シリコン膜14Pが形成される。ここで、マスクパターン51Bは、ロジック領域のPMIS領域における活性領域10b近傍の素子分離領域11を不純物の相互拡散の影響を考慮した寸法(例えば50nm程度)だけ覆っている。次に、ロジック領域におけるPMIS領域全体及びNMIS領域のうちの活性領域10aを覆い且つロジック領域におけるNMIS領域のうちの素子分離領域11及びSRAM領域全体(NMIS領域全体及びPMIS領域全体)のそれぞれの上に開口を有するマスクパターン52Bを用いて、シリコン膜14に例えばP(リン)等のN型不純物をドーズ量3×1015cm-2でイオン注入する。これにより、ロジック領域のNMIS領域のうちの素子分離領域11上にN型シリコン膜14Nが形成されると共に、SRAM領域全体に亘ってN型シリコン膜14Nが形成される。ここで、マスクパターン52Bは、ロジック領域のNMIS領域における活性領域10a近傍の素子分離領域11を不純物の相互拡散の影響を考慮した寸法(例えば50nm程度)だけ覆っている。すなわち、本実施形態においても、第1の実施形態と同様に、SRAM領域のPMIS領域のゲート注入においてN型不純物のイオン注入を行っている。
 尚、P型シリコン膜14Pの形成とN型シリコン膜14Nの形成とは、いずれを先に実施してもよい。また、図10(a)~(f)においては、説明を分かりやすくするために、マスクパターン51B及び52Bとして、フォトリソグラフィ法により半導体基板10上に形成されるレジストパターンではなく、当該レジストパターンを形成するためのフォトマスク上のマスクパターンを模式的に示している。また、マスクパターン51B及び52Bは、P型シリコン膜14PとN型シリコン膜14NとのPN境界41Lが、活性領域10aと活性領域10bとの間の素子分離領域11上に位置するように設定されている。
 P型シリコン膜14P及びN型シリコン膜14Nの形成後、半導体基板10に対して、例えば850℃、30秒間の熱処理を施すことにより、P型シリコン膜14P及びN型シリコン膜14Nのそれぞれにイオン注入された不純物の垂直方向プロファイルの均一化を行う。
 その後、第1の実施形態における図4(a)~(f)に示す工程(ゲートパターニング)、図5(a)~(f)に示す工程(オフセットスペーサ及び浅いソース/ドレイン領域の形成)、図6(a)~(f)に示す工程(サイドウォールスペーサ及び深いソース/ドレイン領域の形成)、図7(a)~(f)に示す工程(シリサイド層の形成)及び図8(a)~(f)に示す工程(層間絶縁膜及びコンタクトの形成)のそれぞれと同様の工程を順次実施する。
 以上のようにして、本実施形態に係る半導体装置、つまり、N型シリコン膜14a1及び14a2を含むゲート電極30aを有するロジック領域内のNMISFETと、P型シリコン膜14b1及び14b2を含むゲート電極30bを有するロジック領域内のPMISFETと、N型シリコン膜14cを含むゲート電極30cを有するSRAM領域内のNMISFETと、P型シリコン膜14dを含むゲート電極30dを有するSRAM領域内のPMISFETとを備えた半導体装置を製造することができる。
 本実施形態によると、ドライエッチング法により、シリコン膜14をエッチングして、ゲート電極30a~30dを形成する際に、素子分離領域11(具体的には活性領域10cと活性領域10dとの間の素子分離領域11)の幅が狭くて不純物の相互拡散の影響を受けやすいSRAM領域のゲート電極30c及び30dを構成するシリコン膜14中には実質的にN型不純物のみが存在している。従って、注入不純物であるイオン種の違いに起因してシリコン膜14のエッチング速度に差が生じる事態を回避できるため、NMISFETのゲート電極30cとPMISFETのゲート電極30dとの間でゲート寸法差が生じることがないので、ゲート長変動に起因するトランジスタ特性の変動を抑制することができる。また、ドライエッチング法により、シリコン膜14をエッチングする際には、シリコン膜14中に注入された不純物の垂直方向プロファイルを予めアニール処理によって均一化しておく必要があるが、本実施形態では、第1の実施形態と同様に、シリコン膜14をエッチングする時点でSRAM領域内のシリコン膜14中の不純物は実質的にN型不純物のみであるため、前記アニール処理に起因する不純物の相互拡散(具体的には基板主面に対して平行な方向への拡散)の影響は実質的に無視できる。従って、トランジスタ特性の変動をより一層抑制することができる。
 また、本実施形態によると、ドライエッチング法により、シリコン膜14をエッチングして、ゲート電極30a~30dを形成する際に、ロジック領域における少なくとも活性領域10a及び10b上のシリコン膜14中には不純物が注入されていない。従って、注入不純物であるイオン種の違いに起因してシリコン膜14のエッチング速度に差が生じる事態を回避できるため、NMISFETのゲート電極30aとPMISFETのゲート電極30bとの間でゲート寸法差が生じることがないので、ゲート長変動に起因するトランジスタ特性の変動を抑制することができる。
 また、本実施形態では、SRAM領域内のPMIS領域のゲート電極30dを構成するシリコン膜14中には、ゲート注入の際にはN型不純物が注入される一方、ソース/ドレイン注入の際にはP型不純物が注入される。従って、SRAM領域内のPMISFETを表面チャネル型にするためには、第1の実施形態と同様に、ゲート注入の際のN型不純物濃度を、ソース/ドレイン注入の際のP型不純物濃度よりも小さく設定しておくことが望ましい。この場合、本実施形態の特徴として、ロジック領域内のPMIS領域のゲート電極30bを構成するP型シリコン膜14b1及び14b2中のP型不純物濃度は、SRAM領域内のPMIS領域のゲート電極30dを構成するP型シリコン膜14d中のP型不純物濃度よりも大きくなる。
 さらに、本実施形態では、ロジック領域内に形成された活性領域10a上のN型シリコン膜14a1のN型不純物濃度は、ロジック領域内に形成された素子分離領域11上のN型シリコン膜14a2のN型不純物濃度よりも小さいと共に、ロジック領域内に形成された活性領域10b上のP型シリコン膜14b1のP型不純物濃度は、ロジック領域内に形成された素子分離領域11上のP型シリコン膜14b2のP型不純物濃度よりも小さい。このため、ロジック領域内に形成された活性領域10a及び10b上のゲート電極30a及び30bの抵抗は高くなるものの、ゲート電極30a及び30b上には金属シリサイド層22a及び22bが形成されていると共に、ロジック領域内に形成された素子分離領域11上のゲート電極30a及び30b(つまりゲート配線)中の不純物濃度は第1の実施形態と同様に高濃度に設定されている。従って、活性領域10a及び10b上のゲート電極30a及び30bの高抵抗化に起因する回路速度の遅延を抑制することができる。尚、本実施形態では、活性領域10a及び10b上のゲート電極30a及び30bを構成するシリコン膜14にはゲート注入時に不純物が導入されないので、当該シリコン膜14にはソース/ドレイン注入時に、最終的に空乏化が発生しない程度の不純物量を注入しておく必要がある。また、活性領域10a及び10b上のゲート電極30a及び30bの高抵抗化に起因する回路速度の遅延の影響が小さい場合には、ロジック領域内に形成された素子分離領域11上のゲート電極30a及び30bを構成するシリコン膜14にもゲート注入時に不純物を導入しなくてもよい。
 尚、本実施形態では、SRAM領域内のNMIS領域及びPMIS領域に対してN型不純物のゲート注入を行った後、P型不純物のソース/ドレイン注入によって、SRAM領域内のPMIS領域のゲート電極30dを構成するシリコン膜14の導電型をP型に反転させた。しかし、これに代えて、SRAM領域内のNMIS領域及びPMIS領域に対してP型不純物のゲート注入を行った後、N型不純物のソース/ドレイン注入によって、SRAM領域内のNMIS領域のゲート電極30cを構成するシリコン膜14の導電型をN型に反転させてもよい。
 (第3の実施形態)
 以下、本発明の第3の実施形態に係る半導体装置について、図面を参照しながら説明する。
 図11(a)は、第3の実施形態に係る半導体装置におけるロジック領域の平面図であり、図11(b)は、図11(a)におけるI-I線(ゲート幅方向)の断面図である。また、図11(c)は、第3の実施形態に係る半導体装置におけるSRAM領域の平面図であり、図11(d)は、図11(c)におけるII-II線(ゲート幅方向)の断面図である。尚、説明を簡単にするために、図11(a)~(d)においてサイドウォールスペーサ、シリサイド層及び層間膜等の図示を省略していると共に、図11(b)及び(d)においてコンタクトの図示を省略している。また、図11(a)~(d)において、図1(a)~(d)に示す第1の実施形態と同じ構成要素には同じ符号を付しており、以下、第1の実施形態と共通する点については適宜説明を省略し、第1の実施形態と相違する点について主として説明する。
 本実施形態が第1の実施形態と異なっている点は、図9(a)及び(b)に示す第2の実施形態と同様に、図11(a)及び(b)に示すように、ロジック領域のデュアルゲート電極31Lが、活性領域10a及びその近傍の素子分離領域11の上に位置するN型シリコン膜14a1とその両側の素子分離領域11の上に位置するN型シリコン膜14a2とを含むNMIS領域のゲート電極30aと、活性領域10b及びその近傍の素子分離領域11の上に位置するP型シリコン膜14b1とその両側の素子分離領域11の上に位置するP型シリコン膜14b2とを含むPMIS領域のゲート電極30bとを有していることである。
 尚、図11(c)及び(d)に示すSRAM領域の構成は、デュアルゲート電極31Sの構成を含めて、図1(c)及び(d)に示す第1の実施形態のSRAM領域の構成と基本的に同じである。すなわち、デュアルゲート電極31Sは、第1の実施形態と同様に、N型シリコン膜14cを含むNMIS領域のゲート電極30cと、P型シリコン膜14dを含むPMIS領域のゲート電極30dとを有している。但し、本実施形態においては、N型シリコン膜14cのN型不純物濃度及びP型シリコン膜14dのP型不純物濃度はそれぞれ、第1の実施形態と比較して小さく設定されている。
 本実施形態の特徴として、P型シリコン膜14b2のP型不純物濃度は、P型シリコン膜14dのP型不純物濃度よりも高い。また、P型シリコン膜14b1のP型不純物濃度は、P型シリコン膜14dのP型不純物濃度と実質的に同じである。すなわち、P型シリコン膜14b1のP型不純物濃度は、P型シリコン膜14b2のP型不純物濃度よりも低い。また、N型シリコン膜14a1のN型不純物濃度は、N型シリコン膜14cのN型不純物濃度と実質的に同じである。また、N型シリコン膜14a1のN型不純物濃度は、N型シリコン膜14a2のN型不純物濃度よりも低い。すなわち、N型シリコン膜14a2のN型不純物濃度は、N型シリコン膜14cのN型不純物濃度よりも高い。
 以下、本発明の第3の実施形態に係る半導体装置の製造方法について、図面を参照しながら説明する。尚、本実施形態に係る半導体装置の製造方法が第1の実施形態と相違している点は、ロジック領域及びSRAM領域のそれぞれにおけるゲート注入箇所のみである(図12(a)~(f)参照)。
 図12(a)~(f)は、第3の実施形態に係る半導体装置の製造方法の一工程を示す断面図である。尚、図12(a)は、図11(a)におけるIII-III線(ゲート長方向)の一工程での断面構成を示したものであり、図12(b)は、図11(a)におけるIV-IV線(ゲート長方向)の一工程での断面構成を示したものであり、図12(c)は、図11(c)におけるV-V線(ゲート長方向)の一工程での断面構成を示したものであり、図12(d)は、図11(c)におけるVI-VI線(ゲート長方向)の一工程での断面構成を示したものである。また、図12(e)は、図11(a)におけるI-I線(ゲート幅方向)の一工程での断面構成を示したものであり、図12(f)は、図11(c)におけるII-II線(ゲート幅方向)の一工程での断面構成を示したものである。
 本実施形態においては、まず、第1の実施形態における図2(a)~(f)に示す工程と同様の工程を実施した後、図12(a)~(f)に示すように、例えば希釈フッ酸処理により、半導体基板10の表面を洗浄し、その後、例えばISSG酸化法により、活性領域10a、10b、10c及び10dのそれぞれの上に、例えば厚さ2nm程度のシリコン酸化膜からなるゲート絶縁膜13を堆積する。その後、半導体基板10に対して、例えば窒素プラズマ処理を行うことにより、ゲート絶縁膜13の表面を窒化して窒化層(図示省略)を形成する。その後、アニール処理を実施することにより、前記窒化層から、結合の弱い窒素を除去する。続いて、ゲート絶縁膜13上に、例えばCVD法により、例えばポリシリコンからなる厚さ100nm程度のシリコン膜14を堆積する。
 続いて、図12(a)~(f)に示すように、ロジック領域におけるNMIS領域全体及びPMIS領域のうちの活性領域10b並びにSRAM領域全体(NMIS領域全体及びPMIS領域全体)を覆い且つロジック領域におけるPMIS領域のうちの素子分離領域11上に開口を有するマスクパターン51Cを用いて、シリコン膜14に例えばB(ホウ素)等のP型不純物をドーズ量4×1015cm-2でイオン注入する。これにより、ロジック領域のPMIS領域のうちの素子分離領域11上にP型シリコン膜14Pが形成される。ここで、マスクパターン51Cは、ロジック領域のPMIS領域における活性領域10b近傍の素子分離領域11を不純物の相互拡散の影響を考慮した寸法(例えば50nm程度)だけ覆っている。次に、ロジック領域におけるPMIS領域全体及びNMIS領域のうちの活性領域10a並びにSRAM領域全体(NMIS領域全体及びPMIS領域全体)を覆い且つロジック領域におけるNMIS領域のうちの素子分離領域11上に開口を有するマスクパターン52Cを用いて、シリコン膜14に例えばP(リン)等のN型不純物をドーズ量3×1015cm-2でイオン注入する。これにより、ロジック領域のNMIS領域のうちの素子分離領域11上にN型シリコン膜14Nが形成される。ここで、マスクパターン52Cは、ロジック領域のNMIS領域における活性領域10a近傍の素子分離領域11を不純物の相互拡散の影響を考慮した寸法(例えば50nm程度)だけ覆っている。すなわち、本実施形態においては、第1及び第2の実施形態と異なり、SRAM領域のNMIS領域及びPMIS領域のいずれにもゲート注入を行っていない。
 尚、P型シリコン膜14Pの形成とN型シリコン膜14Nの形成とは、いずれを先に実施してもよい。また、図12(a)~(f)においては、説明を分かりやすくするために、マスクパターン51C及び52Cとして、フォトリソグラフィ法により半導体基板10上に形成されるレジストパターンではなく、当該レジストパターンを形成するためのフォトマスク上のマスクパターンを模式的に示している。また、マスクパターン51C及び52Cは、P型シリコン膜14PとN型シリコン膜14NとのPN境界41Lが、活性領域10aと活性領域10bとの間の素子分離領域11上に位置するように設定されている。
 P型シリコン膜14P及びN型シリコン膜14Nの形成後、半導体基板10に対して、例えば850℃、30秒間の熱処理を施すことにより、P型シリコン膜14P及びN型シリコン膜14Nのそれぞれにイオン注入された不純物の垂直方向プロファイルの均一化を行う。
 その後、第1の実施形態における図4(a)~(f)に示す工程(ゲートパターニング)、図5(a)~(f)に示す工程(オフセットスペーサ及び浅いソース/ドレイン領域の形成)、図6(a)~(f)に示す工程(サイドウォールスペーサ及び深いソース/ドレイン領域の形成)、図7(a)~(f)に示す工程(シリサイド層の形成)及び図8(a)~(f)に示す工程(層間絶縁膜及びコンタクトの形成)のそれぞれと同様の工程を順次実施する。
 以上のようにして、本実施形態に係る半導体装置、つまり、N型シリコン膜14a1及び14a2を含むゲート電極30aを有するロジック領域内のNMISFETと、P型シリコン膜14b1及び14b2を含むゲート電極30bを有するロジック領域内のPMISFETと、N型シリコン膜14cを含むゲート電極30cを有するSRAM領域内のNMISFETと、P型シリコン膜14dを含むゲート電極30dを有するSRAM領域内のPMISFETとを備えた半導体装置を製造することができる。
 本実施形態によると、ドライエッチング法により、シリコン膜14をエッチングして、ゲート電極30a~30dを形成する際に、素子分離領域11(具体的には活性領域10cと活性領域10dとの間の素子分離領域11)の幅が狭くて不純物の相互拡散の影響を受けやすいSRAM領域のゲート電極30c及び30dを構成するシリコン膜14中には不純物が注入されていない。従って、注入不純物であるイオン種の違いに起因してシリコン膜14のエッチング速度に差が生じる事態を回避できるため、NMISFETのゲート電極30cとPMISFETのゲート電極30dとの間でゲート寸法差が生じることがないので、ゲート長変動に起因するトランジスタ特性の変動を抑制することができる。また、ドライエッチング法により、シリコン膜14をエッチングする際には、シリコン膜14中に注入された不純物の垂直方向プロファイルを予めアニール処理によって均一化しておく必要があるが、本実施形態では、シリコン膜14をエッチングする時点ではSRAM領域内のシリコン膜14中に不純物が注入されていないため、前記アニール処理に起因する不純物の相互拡散(具体的には基板主面に対して平行な方向への拡散)の影響は実質的に無視できる。従って、トランジスタ特性の変動をより一層抑制することができる。
 また、本実施形態によると、ドライエッチング法により、シリコン膜14をエッチングして、ゲート電極30a~30dを形成する際に、ロジック領域における少なくとも活性領域10a及び10b上のシリコン膜14中には不純物が注入されていない。従って、第2の実施形態と同様に、注入不純物であるイオン種の違いに起因してシリコン膜14のエッチング速度に差が生じる事態を回避できるため、NMISFETのゲート電極30aとPMISFETのゲート電極30bとの間でゲート寸法差が生じることがないので、ゲート長変動に起因するトランジスタ特性の変動を抑制することができる。
 また、本実施形態では、ロジック領域内に形成された活性領域10a上のN型シリコン膜14a1のN型不純物濃度は、ロジック領域内に形成された素子分離領域11上のN型シリコン膜14a2のN型不純物濃度よりも小さいと共に、ロジック領域内に形成された活性領域10b上のP型シリコン膜14b1のP型不純物濃度は、ロジック領域内に形成された素子分離領域11上のP型シリコン膜14b2のP型不純物濃度よりも小さい。このため、ロジック領域内に形成された活性領域10a及び10b上のゲート電極30a及び30bの抵抗は高くなるものの、ゲート電極30a及び30b上には金属シリサイド層22a及び22bが形成されていると共に、ロジック領域内に形成された素子分離領域11上のゲート電極30a及び30b(つまりゲート配線)中の不純物濃度は第1の実施形態と同様に高濃度に設定されている。従って、活性領域10a及び10b上のゲート電極30a及び30bの高抵抗化に起因する回路速度の遅延を抑制することができる。尚、本実施形態では、活性領域10a及び10b上のゲート電極30a及び30bを構成するシリコン膜14にはゲート注入時に不純物が導入されないので、当該シリコン膜14にはソース/ドレイン注入時に、最終的に空乏化が発生しない程度の不純物量を注入しておく必要がある。また、活性領域10a及び10b上のゲート電極30a及び30bの高抵抗化に起因する回路速度の遅延の影響が小さい場合には、ロジック領域内に形成された素子分離領域11上のゲート電極30a及び30bを構成するシリコン膜14にもゲート注入時に不純物を導入しなくてもよい。
 さらに、本実施形態では、SRAM領域内に形成されたゲート電極30c及び30dを構成するシリコン膜14にはゲート注入時に不純物が導入されないので、言い換えると、ゲート電極30c及び30dを構成するシリコン膜14にはソース/ドレイン注入時のみに不純物が導入されるので、ゲート電極30c及び30dの抵抗は、ロジック領域内に形成されたゲート電極30a及び30bの抵抗よりも高くなる。しかし、SRAM回路用のトランジスタの動作に対しては、ロジック回路用のトランジスタのように高速動作が要求されないため、ゲート電極30c及び30dの高抵抗化に起因する回路速度の遅延等の影響は小さい。
 (第4の実施形態)
 以下、本発明の第4の実施形態に係る半導体装置について、図面を参照しながら説明する。
 図13(a)は、第4の実施形態に係る半導体装置におけるロジック領域の平面図であり、図13(b)は、図13(a)におけるI-I線(ゲート幅方向)の断面図である。また、図13(c)は、第4の実施形態に係る半導体装置におけるSRAM領域の平面図であり、図13(d)は、図13(c)におけるII-II線(ゲート幅方向)の断面図である。尚、説明を簡単にするために、図13(a)~(d)においてサイドウォールスペーサ、シリサイド層及び層間膜等の図示を省略していると共に、図13(b)及び(d)においてコンタクトの図示を省略している。また、図13(a)~(d)において、図1(a)~(d)に示す第1の実施形態と同じ構成要素には同じ符号を付しており、以下、第1の実施形態と共通する点については適宜説明を省略し、第1の実施形態と相違する点について主として説明する。
 まず、図13(a)及び(b)に示すロジック領域の構成は、デュアルゲート電極31Lの構成を含めて、図1(a)及び(b)に示す第1の実施形態のロジック領域の構成と同じである。すなわち、デュアルゲート電極31Lは、第1の実施形態と同様に、N型シリコン膜14aを含むNMIS領域のゲート電極30aと、P型シリコン膜14bを含むPMIS領域のゲート電極30bとを有している。
 一方、図13(c)及び(d)に示すSRAM領域の構成も、デュアルゲート電極31Sの構成を含めて、図1(c)及び(d)に示す第1の実施形態のSRAM領域の構成と基本的に同じである。すなわち、デュアルゲート電極31Sは、第1の実施形態と同様に、N型シリコン膜14cを含むNMIS領域のゲート電極30cと、P型シリコン膜14dを含むPMIS領域のゲート電極30dとを有している。但し、本実施形態においては、N型シリコン膜14cのN型不純物濃度及びP型シリコン膜14dのP型不純物濃度はそれぞれ、第1の実施形態と比較して小さく設定されている。
 本実施形態の特徴として、P型シリコン膜14bのP型不純物濃度は、P型シリコン膜14dのP型不純物濃度よりも高く、N型シリコン膜14aのN型不純物濃度は、N型シリコン膜14cのN型不純物濃度よりも高い。
 以下、本発明の第4の実施形態に係る半導体装置の製造方法について、図面を参照しながら説明する。尚、本実施形態に係る半導体装置の製造方法が第1の実施形態と相違している点は、SRAM領域におけるゲート注入箇所のみである(図14(a)~(f)参照)。
 図14(a)~(f)は、第4の実施形態に係る半導体装置の製造方法の一工程を示す断面図である。尚、図14(a)は、図13(a)におけるIII-III線(ゲート長方向)の一工程での断面構成を示したものであり、図14(b)は、図13(a)におけるIV-IV線(ゲート長方向)の一工程での断面構成を示したものであり、図14(c)は、図13(c)におけるV-V線(ゲート長方向)の一工程での断面構成を示したものであり、図14(d)は、図13(c)におけるVI-VI線(ゲート長方向)の一工程での断面構成を示したものである。また、図14(e)は、図13(a)におけるI-I線(ゲート幅方向)の一工程での断面構成を示したものであり、図14(f)は、図13(c)におけるII-II線(ゲート幅方向)の一工程での断面構成を示したものである。
 本実施形態においては、まず、第1の実施形態における図2(a)~(f)に示す工程と同様の工程を実施した後、図14(a)~(f)に示すように、例えば希釈フッ酸処理により、半導体基板10の表面を洗浄し、その後、例えばISSG酸化法により、活性領域10a、10b、10c及び10dのそれぞれの上に、例えば厚さ2nm程度のシリコン酸化膜からなるゲート絶縁膜13を堆積する。その後、半導体基板10に対して、例えば窒素プラズマ処理を行うことにより、ゲート絶縁膜13の表面を窒化して窒化層(図示省略)を形成する。その後、アニール処理を実施することにより、前記窒化層から、結合の弱い窒素を除去する。続いて、ゲート絶縁膜13上に、例えばCVD法により、例えばポリシリコンからなる厚さ100nm程度のシリコン膜14を堆積する。
 続いて、図14(a)~(f)に示すように、ロジック領域におけるNMIS領域全体及びSRAM領域全体(NMIS領域全体及びPMIS領域全体)を覆い且つロジック領域におけるPMIS領域全体上に開口を有するマスクパターン51Dを用いて、シリコン膜14に例えばB(ホウ素)等のP型不純物をドーズ量4×1015cm-2でイオン注入する。これにより、ロジック領域のPMIS領域全体にP型シリコン膜14Pが形成される。次に、ロジック領域におけるPMIS領域全体及びSRAM領域全体(NMIS領域全体及びPMIS領域全体)を覆い且つロジック領域におけるNMIS領域全体上に開口を有するマスクパターン52Dを用いて、シリコン膜14に例えばP(リン)等のN型不純物をドーズ量3×1015cm-2でイオン注入する。これにより、ロジック領域のNMIS領域全体にN型シリコン膜14Nが形成される。すなわち、本実施形態においては、第3の実施形態と同様に、SRAM領域のNMIS領域及びPMIS領域のいずれにもゲート注入を行っていない。
 尚、P型シリコン膜14Pの形成とN型シリコン膜14Nの形成とは、いずれを先に実施してもよい。また、図14(a)~(f)においては、説明を分かりやすくするために、マスクパターン51D及び52Dとして、フォトリソグラフィ法により半導体基板10上に形成されるレジストパターンではなく、当該レジストパターンを形成するためのフォトマスク上のマスクパターンを模式的に示している。また、マスクパターン51D及び52Dは、P型シリコン膜14PとN型シリコン膜14NとのPN境界41Lが、活性領域10aと活性領域10bとの間の素子分離領域11上に位置するように設定されている。
 P型シリコン膜14P及びN型シリコン膜14Nの形成後、半導体基板10に対して、例えば850℃、30秒間の熱処理を施すことにより、P型シリコン膜14P及びN型シリコン膜14Nのそれぞれにイオン注入された不純物の垂直方向プロファイルの均一化を行う。
 その後、第1の実施形態における図4(a)~(f)に示す工程(ゲートパターニング)、図5(a)~(f)に示す工程(オフセットスペーサ及び浅いソース/ドレイン領域の形成)、図6(a)~(f)に示す工程(サイドウォールスペーサ及び深いソース/ドレイン領域の形成)、図7(a)~(f)に示す工程(シリサイド層の形成)及び図8(a)~(f)に示す工程(層間絶縁膜及びコンタクトの形成)のそれぞれと同様の工程を順次実施する。
 以上のようにして、本実施形態に係る半導体装置、つまり、N型シリコン膜14aを含むゲート電極30aを有するロジック領域内のNMISFETと、P型シリコン膜14bを含むゲート電極30bを有するロジック領域内のPMISFETと、N型シリコン膜14cを含むゲート電極30cを有するSRAM領域内のNMISFETと、P型シリコン膜14dを含むゲート電極30dを有するSRAM領域内のPMISFETとを備えた半導体装置を製造することができる。
 本実施形態によると、ドライエッチング法により、シリコン膜14をエッチングして、ゲート電極30a~30dを形成する際に、素子分離領域11(具体的には活性領域10cと活性領域10dとの間の素子分離領域11)の幅が狭くて不純物の相互拡散の影響を受けやすいSRAM領域のゲート電極30c及び30dを構成するシリコン膜14中には不純物が注入されていない。従って、注入不純物であるイオン種の違いに起因してシリコン膜14のエッチング速度に差が生じる事態を回避できるため、NMISFETのゲート電極30cとPMISFETのゲート電極30dとの間でゲート寸法差が生じることがないので、ゲート長変動に起因するトランジスタ特性の変動を抑制することができる。また、ドライエッチング法により、シリコン膜14をエッチングする際には、シリコン膜14中に注入された不純物の垂直方向プロファイルを予めアニール処理によって均一化しておく必要があるが、本実施形態では、第3の実施形態と同様に、シリコン膜14をエッチングする時点ではSRAM領域内のシリコン膜14中に不純物が注入されていないため、前記アニール処理に起因する不純物の相互拡散(具体的には基板主面に対して平行な方向への拡散)の影響は実質的に無視できる。従って、トランジスタ特性の変動をより一層抑制することができる。
 また、本実施形態では、SRAM領域内に形成されたゲート電極30c及び30dを構成するシリコン膜14にはゲート注入時に不純物が導入されないので、言い換えると、ゲート電極30c及び30dを構成するシリコン膜14にはソース/ドレイン注入時のみに不純物が導入されるので、ゲート電極30c及び30dの抵抗は、ロジック領域内に形成されたゲート電極30a及び30bの抵抗よりも高くなる。しかし、SRAM回路用のトランジスタの動作に対しては、ロジック回路用のトランジスタのように高速動作が要求されないため、ゲート電極30c及び30dの高抵抗化に起因する回路速度の遅延等の影響は小さい。
 尚、第1~第4の実施形態では、ゲート絶縁膜としてシリコン酸窒化膜、ゲート電極としてポリシリコン電極を用いた場合について説明したが、本発明はこれに限定されるものではない。例えば、ゲート絶縁膜材料として、アルミナ(Al)、ハフニア(HfO)又はハフニウムシリケート(HfSiO)等の金属酸化物に代表される高誘電率材料(例えば比誘電率が8以上の絶縁材料)を用いると共に、ゲート電極構造として、ポリシリコン膜に加えて、ゲート絶縁膜とポリシリコン膜との間に、窒化チタン(TiN)又は窒化タンタル(TaN)等の金属膜を有するMIPS(Metal-Inserted Poly-silicon Stack )構造を用いる場合にも、各実施形態と同様の効果を実現することができる。MIPS構造では、主に仕事関数によってトランジスタの閾値電圧の調整が行われる。当該調整は、高誘電率ゲート絶縁膜材料と金属膜材料との組み合わせで決まる。具体的には、NMISFETとPMISFETとの間での閾値電圧の調整を、高誘電率ゲート絶縁膜材料を同じにして金属膜材料を変えることによって行ってもよいし、又は金属膜材料を同じにして高誘電率ゲート絶縁膜材料を変えることによって行ってもよい。また、MIPS構造では、ゲート電極の空乏化が抑制されるため、ポリシリコン膜中の不純物濃度については、ゲート抵抗(バルク部分の抵抗、シリサイド/ポリシリコン界面の抵抗、ポリシリコン/金属界面の抵抗)を考慮して設定すればよい。尚、各界面抵抗が十分に小さければ、金属膜を用いているMIPS構造ではゲート抵抗は小さくなる。
 また、第1及び第2の実施形態では、SRAM領域内のPMISFETを表面チャネル型にするために、ゲート注入の際のN型不純物濃度を、ソース/ドレイン注入の際のP型不純物濃度よりも小さく設定することが望ましいとしたが、MIPS構造を用いる場合、シリコン膜の抵抗及び前記各界面抵抗を小さくするという観点から、ゲート注入の際のN型不純物濃度を、ソース/ドレイン注入の際のP型不純物濃度よりも大きく設定してもよい。或いは、SRAM領域内のゲート電極を構成するシリコン膜に対してはソース/ドレイン注入を行わなくてもよい。言い換えると、SRAM領域内のゲート電極を構成する各シリコン膜に対してはN型不純物のゲート注入のみを行ってもよい。これにより、SRAM領域内のCMISFETのゲート電極を構成する全てのシリコン膜はN型シリコン膜となる。この場合、ロジック領域内のゲート電極を構成する各シリコン膜に対しても、ソース/ドレイン注入を行わず、N型不純物のゲート注入のみを行ってもよい。これにより、ロジック領域内のCMISFETのゲート電極を構成する全てのシリコン膜もN型シリコン膜となる。
 また、第3及び第4の実施形態では、SRAM領域内のゲート電極を構成する各シリコン膜に対して、ゲート注入を行わなかったが、MIPS構造を用いる場合、SRAM領域内及びロジック領域内それぞれのゲート電極を構成する各シリコン膜に対して、ゲート注入を行わなくてもよい。言い換えると、SRAM領域内及びロジック領域内それぞれのゲート電極を構成する各シリコン膜に対して、ソース/ドレイン注入のみを行ってもよい。
 また、第1~第4の実施形態では、ロジック回路及びSRAM回路を有する半導体装置について説明したが、本発明はこれに限定されるものではない。例えば、ロジック回路に代えて、入出力回路を有する場合にも、各実施形態のロジック回路用のデュアルゲート電極を適用可能である。すなわち、各実施形態における2種類のデュアルゲート電極は、CMISFETが形成される一対の活性領域同士の間の素子分離領域の幅に応じて使い分けることが可能である。具体的には、素子分離領域の幅が相対的に広いCMISFETには、各実施形態のロジック回路用のデュアルゲート電極を適用し、素子分離領域の幅が相対的に狭いCMISFETには、各実施形態のSRAM回路用のデュアルゲート電極を適用することが可能である。
 本発明は、CMISデュアルゲート構造を有する半導体装置において、PN境界近傍でのゲート寸法変動や不純物の相互拡散に起因する素子特性の変動を抑制でき、CMISデュアルゲート構造を有する半導体装置及びその製造方法に好適である。
  10  半導体基板
  10a、10b、10c、10d  活性領域
  11  素子分離領域
  12a、12c  P型ウェル領域
  12b、12d  N型ウェル領域
  13、13a、13b、13c、13d  ゲート絶縁膜
  14  シリコン膜
  14a、14a1、14a2、14c、14d’、14N  N型シリコン膜
  14b、14b1、14b2、14d、14P  P型シリコン膜
  15a、15b、15c、15d  オフセットスペーサ
  16a、16c  浅いN型ソース/ドレイン領域
  16b、16d  浅いP型ソース/ドレイン領域
  17a、17b、17c、17d  内側サイドウォール
  18a、18b、18c、18d  外側サイドウォール
  19a、19b、19c、19d  サイドウォールスペーサ
  20a、20c  深いN型ソース/ドレイン領域
  20b、20d  深いP型ソース/ドレイン領域
  21a、21b、21c、21d  金属シリサイド層
  22a、22b、22c、22d  金属シリサイド層
  23  絶縁膜
  24  層間絶縁膜
  25a、25b、25c、25d  コンタクトホール
  26a、26b、26c、26d、26e、26f  コンタクト
  30a、30b、30c、30d  ゲート電極
  31L、31S  デュアルゲート電極
  41L、41S  PN境界
  51A、51B、51C、51D  マスクパターン
  52A、52B、52C、52D  マスクパターン
  53、54  マスクパターン

Claims (20)

  1.  第1のデュアルゲート電極と第2のデュアルゲート電極とを備えた半導体装置であって、
     前記第1のデュアルゲート電極は、第1の活性領域上に形成された第1の第1導電型シリコン膜を含む第1のゲート電極と、第2の活性領域上に形成された第1の第2導電型シリコン膜を含む第2のゲート電極とを有し、
     前記第2のデュアルゲート電極は、第3の活性領域上に形成された第2の第1導電型シリコン膜を含む第3のゲート電極と、第4の活性領域上に形成された第2の第2導電型シリコン膜を含む第4のゲート電極とを有し、
     前記第1の活性領域と前記第2の活性領域とは素子分離領域を挟んで分離されており、
     前記第1のゲート電極と前記第2のゲート電極とは前記素子分離領域上で接続しており、
     前記第1の第1導電型シリコン膜の少なくとも一部分における第1導電型不純物濃度は、前記第3の活性領域上に位置する部分の前記第2の第1導電型シリコン膜の第1導電型不純物濃度よりも高いことを特徴とする半導体装置。
  2.  請求項1に記載の半導体装置において、
     前記第1の活性領域と前記第2の活性領域との間の分離幅は、前記第3の活性領域と前記第4の活性領域との間の分離幅よりも大きいことを特徴とする半導体装置。
  3.  請求項1又は2に記載の半導体装置において、
     前記第1の第2導電型シリコン膜の少なくとも一部分における第2導電型不純物濃度は、前記第4の活性領域上に位置する部分の前記第2の第2導電型シリコン膜の第2導電型不純物濃度と実質的に同じであることを特徴とする半導体装置。
  4.  請求項1~3のいずれか1項に記載の半導体装置において、
     前記第1の活性領域上に位置する部分の前記第1の第1導電型シリコン膜の第1導電型不純物濃度は、前記第3の活性領域上に位置する部分の前記第2の第1導電型シリコン膜の第1導電型不純物濃度よりも高いことを特徴とする半導体装置。
  5.  請求項1~4のいずれか1項に記載の半導体装置において、
     前記第1の活性領域上に位置する部分の前記第1の第1導電型シリコン膜の第1導電型不純物濃度は、前記素子分離領域上に位置する部分の前記第1の第1導電型シリコン膜の第1導電型不純物濃度よりも低いことを特徴とする半導体装置。
  6.  請求項1~5のいずれか1項に記載の半導体装置において、
     前記第2の活性領域上に位置する部分の前記第1の第2導電型シリコン膜の第2導電型不純物濃度は、前記第4の活性領域上に位置する部分の前記第2の第2導電型シリコン膜の第2導電型不純物濃度よりも低いことを特徴とする半導体装置。
  7.  請求項1~6のいずれか1項に記載の半導体装置において、
     前記第2の活性領域上に位置する部分の前記第1の第2導電型シリコン膜の第2導電型不純物濃度は、前記素子分離領域上に位置する部分の前記第1の第2導電型シリコン膜の第2導電型不純物濃度よりも低いことを特徴とする半導体装置。
  8.  請求項1~4のいずれか1項に記載の半導体装置において、
     前記第1の活性領域上に位置する部分の前記第1の第1導電型シリコン膜の第1導電型不純物濃度は、前記素子分離領域上に位置する部分の前記第1の第1導電型シリコン膜の第1導電型不純物濃度と実質的に同じであることを特徴とする半導体装置。
  9.  請求項1~3のいずれか1項に記載の半導体装置において、
     前記素子分離領域上に位置する部分の前記第1の第1導電型シリコン膜の第1導電型不純物濃度は、前記第3の活性領域上に位置する部分の前記第2の第1導電型シリコン膜の第1導電型不純物濃度よりも高いことを特徴とする半導体装置。
  10.  請求項1~3、9のいずれか1項に記載の半導体装置において、
     前記第1の活性領域上に位置する部分の前記第1の第1導電型シリコン膜の第1導電型不純物濃度は、前記第3の活性領域上に位置する部分の前記第2の第1導電型シリコン膜の第1導電型不純物濃度と実質的に同じであることを特徴とする半導体装置。
  11.  請求項1~3、9、10のいずれか1項に記載の半導体装置において、
     前記第1の活性領域上に位置する部分の前記第1の第1導電型シリコン膜の第1導電型不純物濃度は、前記素子分離領域上に位置する部分の前記第1の第1導電型シリコン膜の第1導電型不純物濃度よりも低いことを特徴とする半導体装置。
  12.  請求項1~3、9~11のいずれか1項に記載の半導体装置において、
     前記第2の活性領域上に位置する部分の前記第1の第2導電型シリコン膜の第2導電型不純物濃度は、前記第4の活性領域上に位置する部分の前記第2の第2導電型シリコン膜の第2導電型不純物濃度と実質的に同じであることを特徴とする半導体装置。
  13.  請求項1~3、9~12のいずれか1項に記載の半導体装置において、
     前記第2の活性領域上に位置する部分の前記第1の第2導電型シリコン膜の第2導電型不純物濃度は、前記素子分離領域上に位置する部分の前記第1の第2導電型シリコン膜の第2導電型不純物濃度よりも低いことを特徴とする半導体装置。
  14.  請求項1又は2に記載の半導体装置において、
     前記第1の活性領域上に位置する部分の前記第1の第1導電型シリコン膜の第1導電型不純物濃度は、前記第3の活性領域上に位置する部分の前記第2の第1導電型シリコン膜の第1導電型不純物濃度よりも高く、
     前記第2の活性領域上に位置する部分の前記第1の第2導電型シリコン膜の第2導電型不純物濃度は、前記第4の活性領域上に位置する部分の前記第2の第2導電型シリコン膜の第2導電型不純物濃度よりも高いことを特徴とする半導体装置。
  15.  請求項1~14のいずれか1項に記載の半導体装置において、
     前記第1のゲート電極は、第1のPMISトランジスタのゲート電極であり、
     前記第2のゲート電極は、第1のNMISトランジスタのゲート電極であり、
     前記第3のゲート電極は、第2のPMISトランジスタのゲート電極であり、
     前記第4のゲート電極は、第2のNMISトランジスタのゲート電極であることを特徴とする半導体装置。
  16.  請求項1~15のいずれか1項に記載の半導体装置において、
     前記第1のゲート電極及び前記第2のゲート電極はそれぞれ、ロジック回路用トランジスタのゲート電極であり、
     前記第3のゲート電極及び前記第4のゲート電極はそれぞれ、SRAM回路用トランジスタのゲート電極であることを特徴とする半導体装置。
  17.  第1の活性領域上に形成された第1のゲート電極及び第2の活性領域上に形成された第2のゲート電極を有する第1のデュアルゲート電極と、第3の活性領域上に形成された第3のゲート電極及び4の活性領域上に形成された第4のゲート電極とを有する第2のデュアルゲート電極とを備えた半導体装置の製造方法であって、
     前記第1の活性領域、前記第2の活性領域、前記第3の活性領域及び前記第4の活性領域のそれぞれの上にシリコン膜を形成する工程(a)と、
     前記第2の活性領域、前記第3の活性領域及び前記第4の活性領域のそれぞれの上に位置する部分の前記シリコン膜を第1のマスクパターンによって覆いながら、前記シリコン膜に第1導電型不純物を導入する工程(b)と、
     前記第1の活性領域上に位置する部分の前記シリコン膜を第2のマスクパターンによって覆いながら、前記シリコン膜に第2導電型不純物を導入する工程(c)と、
     前記工程(b)及び前記工程(c)よりも後に、前記シリコン膜をパターニングし、それにより、前記第1の活性領域、前記第2の活性領域、前記第3の活性領域及び前記第4の活性領域のそれぞれの上に、前記シリコン膜をそれぞれ含む前記第1のゲート電極、前記第2のゲート電極、前記第3のゲート電極及び前記第4のゲート電極を形成する工程(d)とを備えていることを特徴とする半導体装置の製造方法。
  18.  請求項17に記載の半導体装置の製造方法において、
     前記第1のマスクパターンは、前記第1の活性領域上に位置する部分の前記シリコン膜上に開口を有し、
     前記第2のマスクパターンは、前記第2の活性領域、前記第3の活性領域及び前記第4の活性領域のそれぞれの上に位置する部分の前記シリコン膜上に開口を有することを特徴とする半導体装置の製造方法。
  19.  請求項17に記載の半導体装置の製造方法において、
     前記第1の活性領域と前記第2の活性領域とは素子分離領域によって電気的に分離されており、
     前記工程(a)において、前記シリコン膜は前記素子分離領域上にも形成され、
     前記第1のマスクパターンは、前記第1の活性領域上に位置する部分の前記シリコン膜を覆うと共に前記素子分離領域上に位置する部分の前記シリコン膜上に開口を有し、
     前記第2のマスクパターンは、前記第2の活性領域上に位置する部分の前記シリコン膜を覆うと共に前記素子分離領域、前記第3の活性領域及び前記第4の活性領域のそれぞれの上に位置する部分の前記シリコン膜上に開口を有することを特徴とする半導体装置の製造方法。
  20.  請求項17に記載の半導体装置の製造方法において、
     前記第1の活性領域と前記第2の活性領域とは素子分離領域によって電気的に分離されており、
     前記工程(a)において、前記シリコン膜は前記素子分離領域上にも形成され、
     前記第1のマスクパターンは、前記第1の活性領域上に位置する部分の前記シリコン膜を覆うと共に前記素子分離領域上に位置する部分の前記シリコン膜上に開口を有し、
     前記第2のマスクパターンは、前記第2の活性領域、前記第3の活性領域及び前記第4の活性領域のそれぞれの上に位置する部分の前記シリコン膜を覆うと共に前記素子分離領域上に位置する部分の前記シリコン膜上に開口を有することを特徴とする半導体装置の製造方法。
PCT/JP2011/006167 2011-03-25 2011-11-04 半導体装置及びその製造方法 WO2012131818A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012530800A JP5857225B2 (ja) 2011-03-25 2011-11-04 半導体装置
US13/665,376 US8884373B2 (en) 2011-03-25 2012-10-31 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011068131 2011-03-25
JP2011-068131 2011-03-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/665,376 Continuation US8884373B2 (en) 2011-03-25 2012-10-31 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2012131818A1 true WO2012131818A1 (ja) 2012-10-04

Family

ID=46929661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006167 WO2012131818A1 (ja) 2011-03-25 2011-11-04 半導体装置及びその製造方法

Country Status (3)

Country Link
US (1) US8884373B2 (ja)
JP (1) JP5857225B2 (ja)
WO (1) WO2012131818A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140049356A (ko) * 2012-10-17 2014-04-25 삼성전자주식회사 반도체 소자
US20150179640A1 (en) * 2013-12-19 2015-06-25 Globalfoundries Inc. Common fabrication of different semiconductor devices with different threshold voltages
US10424368B2 (en) * 2017-12-07 2019-09-24 Micron Technology, Inc. Apparatuses and methods for concentrated arrangement of transistors of multiple amplifier circuits
JP2020057639A (ja) * 2018-09-28 2020-04-09 ソニーセミコンダクタソリューションズ株式会社 半導体装置及び半導体装置の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003179056A (ja) * 2001-12-11 2003-06-27 Fujitsu Ltd 半導体装置及びその製造方法
JP2008042092A (ja) * 2006-08-09 2008-02-21 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
JP2010067912A (ja) * 2008-09-12 2010-03-25 Panasonic Corp 半導体装置及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275788A (ja) 1993-03-22 1994-09-30 Ricoh Co Ltd デュアルゲートcmos型半導体装置の製造方法
JPH0817934A (ja) 1994-07-01 1996-01-19 Ricoh Co Ltd デュアルゲートcmos半導体装置とその製造方法
JP2004079705A (ja) * 2002-08-14 2004-03-11 Renesas Technology Corp 半導体集積回路装置およびその製造方法
KR100500581B1 (ko) * 2003-02-20 2005-07-18 삼성전자주식회사 반도체 장치에서 게이트 전극 형성 방법
JP2005317736A (ja) * 2004-04-28 2005-11-10 Elpida Memory Inc 半導体装置の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003179056A (ja) * 2001-12-11 2003-06-27 Fujitsu Ltd 半導体装置及びその製造方法
JP2008042092A (ja) * 2006-08-09 2008-02-21 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
JP2010067912A (ja) * 2008-09-12 2010-03-25 Panasonic Corp 半導体装置及びその製造方法

Also Published As

Publication number Publication date
US20130056832A1 (en) 2013-03-07
US8884373B2 (en) 2014-11-11
JP5857225B2 (ja) 2016-02-10
JPWO2012131818A1 (ja) 2014-07-24

Similar Documents

Publication Publication Date Title
US20150102418A1 (en) Semiconductor device and method for manufacturing the device
JP4591827B2 (ja) リセスチャネル構造を有するセルトランジスタを含む半導体装置およびその製造方法
KR100701697B1 (ko) 듀얼 폴리사이드 게이트를 갖는 씨모스 소자의 제조방법
JP5627165B2 (ja) 半導体装置及び半導体装置の製造方法
KR100761354B1 (ko) 다면채널을 갖는 반도체소자의 듀얼폴리게이트 및 그의형성 방법
JP5857225B2 (ja) 半導体装置
WO2010146641A1 (ja) 半導体装置及びその製造方法
JP5436362B2 (ja) 半導体装置
US8471341B2 (en) Semiconductor device and method for fabricating the same
JP5064289B2 (ja) 半導体装置およびその製造方法
US20080135973A1 (en) Semiconductor device comprising high-withstand voltage mosfet and its manufacturing method
US20080224223A1 (en) Semiconductor device and method for fabricating the same
JP3744438B2 (ja) 半導体装置
US9012285B2 (en) Semiconductor device and method of manufacturing same
JP5324849B2 (ja) 半導体装置およびその製造方法
US7271414B2 (en) Semiconductor device and method for fabricating the same
KR100431324B1 (ko) 반도체장치의 제조방법
JP2009277909A (ja) 半導体装置の製造方法
US20130344690A1 (en) Method of manufacturing semiconductor device
JP2001035929A (ja) 半導体集積回路装置およびその製造方法
WO2015083273A1 (ja) 半導体装置およびその製造方法
JP2008091683A (ja) 半導体記憶装置およびその製造方法
KR20010056122A (ko) 펀치 쓰루 특성을 개선시키기 위한 반도체 소자의 제조 방법
JP2012043861A (ja) 半導体装置の製造方法
JP2010232215A (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012530800

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862488

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11862488

Country of ref document: EP

Kind code of ref document: A1