WO2012124681A1 - 核酸増幅方法およびその利用 - Google Patents

核酸増幅方法およびその利用 Download PDF

Info

Publication number
WO2012124681A1
WO2012124681A1 PCT/JP2012/056381 JP2012056381W WO2012124681A1 WO 2012124681 A1 WO2012124681 A1 WO 2012124681A1 JP 2012056381 W JP2012056381 W JP 2012056381W WO 2012124681 A1 WO2012124681 A1 WO 2012124681A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
primer
seq
acid amplification
amplification method
Prior art date
Application number
PCT/JP2012/056381
Other languages
English (en)
French (fr)
Inventor
定彦 鈴木
千絵 中島
由華里 福島
Original Assignee
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学 filed Critical 国立大学法人北海道大学
Priority to JP2013504733A priority Critical patent/JP5688702B2/ja
Publication of WO2012124681A1 publication Critical patent/WO2012124681A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria

Definitions

  • the present invention relates to a nucleic acid amplification method and use thereof, and in particular, to a nucleic acid amplification method that can be performed under isothermal conditions and use thereof.
  • a LAMP (Loop-mediated isothermal amplification) method has been put to practical use as a method capable of amplifying nucleic acids under isothermal conditions and detecting amplification by visual observation (see Patent Document 1).
  • the LAMP method is intended to promote amplification by devising the primer structure.
  • four or six types of primers that recognize six or eight regions are required. Therefore, the primer DNA design method is complicated, and it is not always possible to design a primer that allows efficient gene amplification.
  • the LAMP method amplifies a very small amount of target in a short time and uses a larger amount of primer than PCR.
  • 4 or 6 primers with various sequences are used at a high dose, nonspecific binding The risk of false positive amplification due to increases. Furthermore, the cost required for primer synthesis cannot be ignored.
  • tuberculosis is still one of the most important infectious diseases in which 9 million people are registered as new patients annually and 1.8 million people are dead worldwide. Diagnosing early and initiating appropriate treatment is the best way to prevent the spread of infection, but it takes more than 4 weeks for M. tuberculosis to form colonies on the medium. Reduction of the time required is a major issue, and rapid development of a determination method is required. Therefore, in order to quickly determine infectious diseases such as tuberculosis, the reaction rate and amplification efficiency are comparable to those of the LAMP method, and it is performed under isothermal conditions that are superior in specificity, simplicity, and cost to the LAMP method. Development of a possible nucleic acid amplification method is desired.
  • An object of the present invention is to provide a nucleic acid amplification method that does not require special equipment, can be carried out quickly, simply, and at low cost, and has high amplification efficiency and high specificity.
  • a reaction solution preparation step for preparing a reaction solution containing the following (a) to (e) and a nucleic acid synthesis step for performing nucleic acid synthesis using the obtained reaction solution, and after the nucleic acid synthesis step A nucleic acid amplification method comprising no heat denaturation step of nucleic acid.
  • A Template nucleic acid having a repetitive sequence
  • C Primer 1 that binds within the repetitive sequence of the template nucleic acid
  • C Primer 2 that binds within the repetitive sequence of the complementary strand of the template nucleic acid
  • D Strand displacement type DNA synthase
  • [3] The nucleic acid amplification method according to [1] or [2], wherein the nucleic acid synthesis step is performed isothermally.
  • [4] A pathogen detection method using the nucleic acid amplification method according to any one of [1] to [3].
  • [5] A method for detecting an allergen, comprising using the nucleic acid amplification method according to any one of [1] to [3].
  • [6] A species discrimination method using the nucleic acid amplification method according to any one of [1] to [3].
  • [7] In the nucleic acid amplification method according to any one of [1] to [3], primer 1 comprising the base sequence represented by SEQ ID NO: 1 and primer 2 comprising the base sequence represented by SEQ ID NO: 2 And a method for detecting Mycobacterium tuberculosis.
  • primer 1 comprising the base sequence represented by SEQ ID NO: 3 and primer 2 comprising the base sequence represented by SEQ ID NO: 4 And a method for detecting Salmonella.
  • primer 1 comprising the base sequence represented by SEQ ID NO: 5 and the primer 2 comprising the base sequence represented by SEQ ID NO: 6 And a leishmania detection method.
  • a kit comprising primer 2 which binds within the repetitive sequence of [11] The kit for nucleic acid amplification according to [10], further including a strand displacement type DNA synthase.
  • a primer 1 comprising a base sequence represented by SEQ ID NO: 3 and a primer 2 comprising a base sequence represented by SEQ ID NO: 4 and specifically amplifying a repetitive sequence of Salmonella
  • a primer 1 comprising the base sequence represented by SEQ ID NO: 5 and a primer 2 comprising the base sequence represented by SEQ ID NO: 6 and specifically amplifying a Leishmania repetitive sequence The kit according to [10] or [11].
  • nucleic acid amplification method that does not require special equipment, can be carried out quickly, simply, and at low cost, and has high amplification efficiency and high specificity. Since the nucleic acid amplification method of the present invention has high amplification efficiency and specificity, it can be amplified even with a small amount of a target gene present in a sample. It can be used in a wide range of fields such as species discrimination.
  • tuberculosis DNA using the nucleic acid amplification method of this invention, and analyzing the amplified product by agarose gel electrophoresis.
  • the nucleic acid amplification method of the present invention comprises (a) a template nucleic acid having a repetitive sequence, (b) a primer 1 that binds within the repetitive sequence of the template nucleic acid, and (c) that binds within a repetitive sequence of a complementary strand of the template nucleic acid.
  • This is a nucleic acid amplification method that can be carried out under isothermal conditions using primer 2 and (d) a strand displacement type DNA synthase.
  • the repetitive sequence of the template nucleic acid has a repetitive structure with a spacer in between, but the repetitive sequence of the template nucleic acid may have no spacer.
  • FIG. 1 shows a state in which the primers 1 and 2 are bound in the repetitive sequence of each strand at the portion where the double-stranded template nucleic acid is unwound.
  • the primer 1 bound in the repetitive sequence of the template nucleic acid is extended by a strand displacement type DNA synthase (middle portion in FIG. 1), and the front strand is peeled off (lower portion in FIG. 1).
  • the peeled strand becomes a new single-stranded template nucleic acid, and the primer 2 is successively bound (FIG. 2).
  • Primer 2 also extends while peeling off the front strand by strand displacement type DNA synthase (FIG. 3).
  • FIGS. 4 to 6 for convenience of explanation, only one strand from which primer 1 has been extended and removed is shown.
  • the strand from which primer 2 has been extended and peeled becomes a new single-stranded template, and primer 1 is bound (FIG. 4).
  • the strand is peeled off to form a free strand, and primer 1 is bound to the free strand to extend (FIG. 5).
  • the strand that has been newly bonded and extended is also peeled off at the tip, and a new free strand is born.
  • a primer having the complementary sequence of primer 1 Since a new primer having the complementary sequence of primer 1 is generated in the same manner, when the amplification reaction proceeds, a primer having a sequence that recognizes four positions in the repetitive sequence is mixed. Since these free strands function as primers and are also templates each consisting of a repetitive sequence, the amplification reaction accelerates with time. As for the double strand formed by the last primer of each template nucleic acid, as long as the reaction temperature is maintained at a temperature sufficient for primer binding, dissociation and primer binding occur with a certain probability. The reaction up to 6 is repeated.
  • the amplification product has a size corresponding to the interval at which the primer 1 and the primer 2 face each other, and the electrophoresis image of the amplification product becomes a ladder (see FIG. 8).
  • the electrophoretic image extends to the polymer region. It becomes a smear shape.
  • the present invention comprises a reaction solution preparation step for preparing a reaction solution containing the following (a) to (e), and a nucleic acid synthesis step for performing nucleic acid synthesis using the obtained reaction solution, There is provided a nucleic acid amplification method characterized by not having a nucleic acid heat denaturation step later.
  • A Template nucleic acid having a repetitive sequence
  • B Primer 1 that binds within the repetitive sequence of the template nucleic acid
  • C Primer 2 that binds within the repetitive sequence of the complementary strand of the template nucleic acid
  • D Strand displacement type DNA synthase
  • the template nucleic acid that can be used in the nucleic acid amplification method of the present invention needs to be a nucleic acid having a repetitive sequence.
  • any nucleic acid having a repetitive sequence can be suitably used as a template nucleic acid in the nucleic acid amplification method of the present invention.
  • the template nucleic acid may be single-stranded or double-stranded.
  • the template nucleic acid may be any of DNA, RNA, and DNA / RNA hybrid. Furthermore, even if the constituent nucleotide is substituted with an artificial derivative or a natural DNA or RNA is modified, it is included in the template nucleic acid as long as it functions as a template for complementary strand synthesis.
  • the repeated sequence may be any sequence as long as the same sequence is present twice or more, and the number of repetitions is not limited. Further, it may be a repetitive sequence in which the same sequences are directly adjacent to each other, or a repetitive sequence in which the same sequences are adjacent to each other with a spacer in between. The orientations of adjacent arrays may be reversed. That is, the sequence to which primer 1 binds and the sequence to which primer 2 binds may be mixed on the same strand.
  • the homology between each repetitive sequence may be about 70% or more, preferably about 80% or more, more preferably about 90% or more, and further preferably about 95% or more.
  • a sequence having a length of about 10 to 500 base pairs is preferably present three or more times at intervals of 1000 base pairs or less, and about 15 to 500 bases. More preferably, the sequence having the length of the pair is present 3 times or more at intervals of 1000 base pairs or less, and the sequence having a length of about 30 to 200 base pairs is present at least 4 times at intervals of 500 base pairs or less. It is more preferable.
  • the repetitive sequences include, for example, tandem repeats (satellite DNA, minisatellite), short interspersed repetitive sequences (Short Interspersed elements: SINE), CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and the like. Since it is known that a repetitive sequence exists on the genomes of all organisms including microorganisms and animals and plants, the nucleic acid amplification method of the present invention can suitably use the genomes of all organisms as template nucleic acids.
  • Primers used in the nucleic acid amplification method of the present invention are of two types: primer 1 that binds to the repetitive sequence of the template nucleic acid and primer 2 that binds to the repetitive sequence of the complementary strand of the template nucleic acid.
  • the primer may bind to any part within the repetitive sequence, and a primer with high specificity may be appropriately designed based on the base sequence of the repetitive sequence.
  • the primer may have a chain length that can be recognized by a DNA synthase, and usually has a chain length of about 5 bases, but is preferably about 10 bases or more in order to increase specificity. More preferably, about 15 bases or more. Although an upper limit is not specifically limited, About 50 bases or less are preferable.
  • primer 1 and the primer 2 do not hybridize with each other to form a primer dimer. That is, it is preferable that a sequence complementary to the 3 'end of each primer is not included in the primer. As long as the nucleic acid synthesis and nucleic acid amplification are not hindered, the 5 'ends of primer 1 and primer 2 may overlap. In the present inventors, when both primers are designed and used so that the 5 ′ ends of primer 1 and primer 2 overlap, amplification is accelerated compared to the case of using primers 1 and 2 that do not overlap. I have confirmed that.
  • the nucleic acid amplification method of the present invention it is preferable to use two types of primers in which the 5 'ends of primer 1 and primer 2 overlap.
  • the range of the overlap at the 5 'end is not particularly limited, but is preferably about 5 to 50%, more preferably about 10 to 30%.
  • the primer can be chemically synthesized by a known nucleic acid synthesis method using a commercially available nucleic acid synthesizer.
  • the strand displacement type DNA synthase used in the nucleic acid amplification method of the present invention is not particularly limited as long as it has sequence-dependent complementary strand synthesis activity and strand displacement activity.
  • Known strand displacement DNA synthetases include, for example, Bst DNA polymerase, Bca (exo-) DNA polymerase, Klenow fragment of DNA polymerase I, Vent DNA polymerase, Vent (Exo-) DNA polymerase, Deep Vent DNA polymerase, Deep Vent (Exo-) DNA polymerase, ⁇ 29 phage DNA polymerase, MS-2 phage DNA polymerase, Z-Taq DNA polymerase (trade name), KOD DNA polymerase, and the like can be mentioned, and any of them can be suitably used for the nucleic acid amplification method of the present invention. it can.
  • Bst DNA polymerase and Bca (exo-) DNA polymerase are particularly preferable because they have a certain degree of heat resistance and high catalytic activity.
  • the reaction solution essentially contains (e) a nucleotide that serves as a substrate for the strand displacement DNA synthase.
  • a buffering agent, salts and the like are usually added to the reaction solution, and an enzyme protective agent, a melting temperature (Tm) adjusting agent, a surfactant and the like are added as necessary.
  • Tm melting temperature
  • a surfactant a surfactant and the like are added as necessary.
  • a neutral to weakly alkaline buffering agent such as Tris-HCl is used. What is necessary is just to adjust pH to optimal pH vicinity according to the DNA synthetase to be used.
  • Salts are appropriately added for maintaining enzyme activity and adjusting the melting temperature (Tm) of nucleic acids, and specifically, KCl, NaCl, MgCl 2 , MgSO 4 , (NH 4 ) 2 SO 4, etc. are used.
  • an enzyme protective agent bovine serum albumin or saccharide is used.
  • dimethyl sulfoxide (DMSO), formamide, betaine (N, N, N, -trimethylglycine) or the like is used as a regulator for the melting temperature (Tm).
  • DMSO dimethyl sulfoxide
  • betaine N, N, N, -trimethylglycine
  • Tween 20 Triton X or the like is used.
  • betaine N, N, N, -trimethylglycine
  • a tetraalkylammonium salt is used as necessary to improve the strand displacement efficiency.
  • reagents for visual confirmation of amplification and the like can be appropriately added.
  • the nucleic acid synthesis reaction proceeds and the repetitive sequence region of the template nucleic acid is amplified.
  • the temperature of the nucleic acid synthesis step is not particularly limited as long as it is a temperature at which the strand displacement type DNA synthase can maintain the activity and the primer can bind to the template nucleic acid. Therefore, the upper limit is the temperature at which the template nucleic acid is not subjected to heat denaturation. In order to improve the reaction rate and amplification efficiency, it is preferable to select a temperature in the vicinity of the optimum temperature of the strand displacement type DNA synthase to be used.
  • a temperature at which the double strand of the template nucleic acid can be unraveled moderately specifically about 50 to 70 ° C.
  • a strand displacement type DNA synthase having an optimum temperature in such a temperature range is used. It is preferable.
  • the nucleic acid amplification method of the present invention since the nucleic acid synthesis reaction can proceed under isothermal conditions throughout, there is no need to change the reaction temperature. However, it does not prevent changing the temperature in the nucleic acid synthesis step, and a method of changing the temperature in the nucleic acid synthesis step is also included in the present invention.
  • the nucleic acid amplification method of the present invention is characterized by having no nucleic acid heat denaturation step after the nucleic acid synthesis step. Due to this feature, the nucleic acid amplification method of the present invention is clearly distinguished from the PCR method in which the temperature cycle of the nucleic acid denaturation step, annealing step, and nucleic acid synthesis step is repeated.
  • the nucleic acid amplification method of the present invention does not have a nucleic acid thermal denaturation step after the nucleic acid synthesis step, but may have a nucleic acid thermal denaturation step before the nucleic acid synthesis step.
  • the primer can be easily bound to the template nucleic acid by starting the nucleic acid synthesis reaction after heat denaturation to make the template nucleic acid single-stranded before the nucleic acid synthesis step. Can be done.
  • such a denaturation step may be performed only once as a pretreatment before the start of the nucleic acid synthesis reaction.
  • an enzyme deactivation step may be provided after the nucleic acid synthesis step.
  • the nucleic acid synthesis reaction can be terminated by the enzyme deactivation process.
  • the means for inactivating the enzyme is not particularly limited. For example, a known means such as heating, addition of acid, addition of alkali may be used.
  • the reaction solution is subjected to, for example, agarose gel electrophoresis, and amplification products can be detected by detecting amplification products. Specificity of the amplification can be confirmed by detecting the amplified product in a ladder shape with the expected size, determining the base sequence of the amplified product, and the like. In systems where amplification specificity is established, only the presence or absence of amplification need be confirmed. The presence or absence of amplification may be confirmed by electrophoresis of the amplified product. For example, by adding magnesium ions to the reaction solution, it is released from deoxynucleotide triphosphate in the reaction solution along with the DNA synthesis reaction.
  • turbidity can be determined by visual observation, but can be measured over time using a commercially available turbidimeter (see Examples 1, 2, and 4).
  • calcein and manganese added to the reaction solution, it becomes easier to visually determine the presence or absence of amplification.
  • the calcein solution bound to manganese is non-fluorescent orange, but pyrophosphate released from deoxynucleotide triphosphate in the reaction solution during the DNA synthesis reaction binds to manganese, so that free calcein solution The color changes to fluorescent greenish yellow.
  • the presence or absence of amplification can be determined by visually confirming the color tone of the reaction solution. Moreover, the presence or absence of amplification can be determined by visually confirming the presence or absence of fluorescence in the reaction solution under an ultraviolet lamp. Furthermore, amplification determination can be performed by adding a pyrophosphate detection reagent.
  • nucleic acid amplification method of the present invention a nucleic acid having a repetitive sequence is used as a template nucleic acid, and two types of primers, primer 1 that binds to the repetitive sequence and primer 2 that binds to a repetitive sequence of the complementary strand of the template nucleic acid, are used. It is a method of amplifying nucleic acid using it, and can be carried out under isothermal conditions. There are many repetitive sequence regions on the genome of an organism, many of which are known to be species-specific. Therefore, the nucleic acid amplification method of the present invention is extremely useful for the use of specific organism detection.
  • the retention status differs for each individual or strain in the same species, and therefore, it is possible to detect a specific strain or use it for each individual or strain type.
  • the nucleic acid amplification method of the present invention has a reaction rate and amplification efficiency comparable to those of the LAMP method, and is superior to the LAMP method in terms of simplicity and cost. Therefore, infectious disease diagnosis, environmental health inspection, food inspection In the field of research reagents and the like, it can be expected to be used as a nucleic acid amplification method replacing the LAMP method. Specifically, it is suitable for pathogen detection, allergen detection, detection of toxin-producing organism contamination, detection of useful microorganisms, identification of species, identification of specific strains within organisms and type of individuals. can do.
  • the nucleic acid amplification method of the present invention can be used for pathogen detection by designing a primer specific to the repetitive sequence of the target pathogen. Therefore, the present invention includes a pathogen detection method using the nucleic acid amplification method of the present invention.
  • the pathogen detection method of the present invention examples include bacteria, fungi, viruses, parasites, and protozoa.
  • the sample used in the pathogen detection method of the present invention is not particularly limited, but a biological sample can be suitably used, and it is preferable to directly apply the biological sample.
  • biological samples include body fluids such as blood, tissue fluid, lymph fluid, cerebrospinal fluid, pus, mucus, runny nose, sputum, urine, feces, ascites; skin, lung, kidney, mucous membrane, various organs, bone, etc. Tissue, nasal cavity, bronchial, skin, various organs, bone and other cleaning fluids; dialysis drainage and the like. Since the pathogen detection method of the present invention can be carried out quickly, simply and at low cost, it is very advantageous as a pathogen detection method that can be carried out at the bedside.
  • a method for detecting Mycobacterium tuberculosis is provided by using primer 1 comprising the base sequence represented by SEQ ID NO: 1 and primer 2 comprising the base sequence represented by SEQ ID NO: 2.
  • primer 1 comprising the base sequence represented by SEQ ID NO: 1
  • primer 2 comprising the base sequence represented by SEQ ID NO: 2.
  • the Salmonella detection method is provided by using the primer 1 which consists of a base sequence represented by sequence number 3, and the primer 2 which consists of a base sequence represented by sequence number 4.
  • a leishmania detection method can be provided by using the primer 1 consisting of the base sequence represented by SEQ ID NO: 5 and the primer 2 consisting of the base sequence represented by SEQ ID NO: 6 (Example 5). reference).
  • the nucleic acid amplification method of the present invention can be used for detection of allergens by designing primers specific to repetitive sequences possessed by organisms that provide allergens. Therefore, the present invention includes an allergen detection method using the nucleic acid amplification method of the present invention.
  • the allergen to be detected may be an allergen derived from a living organism and containing a nucleic acid. Specific examples include, but are not limited to, wheat, shrimp, crab, buckwheat, peanuts, apples, straw, soybeans, pork, ticks, cat hair, mold, and cedar pollen.
  • the sample used in the allergen detection method of the present invention is not particularly limited, and examples thereof include processed foods, beverages, raw materials thereof, wiping materials for living environment, and dust collected from the atmosphere. Since the allergen detection method of the present invention does not require special equipment used in general allergen detection methods such as ELISA and PCR, it can be implemented in small-scale facilities such as town factories, retail stores, and clinics. It is advantageous in that it is.
  • the nucleic acid amplification method of the present invention can be used to distinguish species by designing a primer specific for the repetitive sequence of the target organism. Therefore, the present invention includes a species discrimination method using the nucleic acid amplification method of the present invention.
  • the purpose of species identification is detection of contamination of organisms that may produce toxins, screening of useful microorganisms in the environment, and origin of specific organisms for religious reasons Examples include, but are not limited to, inspection of substance contamination, inspection of capture or use of prohibited biological materials, and inspection of consistency with food labeling and quality labeling.
  • the sample used in the method for distinguishing biological species of the present invention is not particularly limited, and examples thereof include products using biological materials such as food and leather products or materials thereof, samples collected from the environment such as soil, seawater, and lake water. It is done.
  • the biological species identification method of the present invention is advantageous in that it can be performed quickly, simply and inexpensively, so that a large amount of samples can be inspected continuously.
  • the present invention provides a kit for carrying out the nucleic acid amplification method of the present invention.
  • the kit of this invention should just contain the primer 1 couple
  • the kit of the present invention only needs to include primer 1 and primer 2, and the configuration of the kit other than primer 1 and 2 is not particularly limited, but preferably includes a strand displacement type DNA synthase.
  • kits may be appropriately selected to form a kit.
  • suitable reagents and instruments include nucleotides that serve as substrates for strand displacement DNA synthase, positive control template nucleic acids, amplification reaction solutions, reaction tubes, sample preparation reagents, instruction manuals, and the like.
  • the primer 1 and the primer 2 are the primer 1 consisting of the base sequence represented by SEQ ID NO: 1 and the primer 2 consisting of the base sequence represented by SEQ ID NO: 2, respectively. Kits that specifically amplify sequences can be provided.
  • the primer 1 and the primer 2 are respectively a primer 1 consisting of a base sequence represented by SEQ ID NO: 3 and a primer 2 consisting of a base sequence represented by SEQ ID NO: 4, respectively. Kits that specifically amplify repetitive sequences can be provided.
  • the primer 1 and the primer 2 are respectively the primer 1 consisting of the base sequence represented by SEQ ID NO: 5 and the primer 2 consisting of the base sequence represented by SEQ ID NO: 6, thereby allowing Leishmania.
  • a kit for specifically amplifying the repetitive sequence of can be provided.
  • Example 1 The test was carried out targeting a repetitive sequence called DR (Direct Repeat) existing on the Mycobacterium tuberculosis genome.
  • DR Direct Repeat
  • genomic DNA was obtained from a multidrug-resistant tuberculosis strain isolated from a Japanese patient, and a DNA sample was prepared by 10-fold serial dilution from 25 ng / ⁇ L to 25 fg / ⁇ L. Distilled water was used as a negative control.
  • the primers used are shown in Table 1.
  • FIG. 8 shows the result of analyzing the amplification product in the reaction solution by agarose gel electrophoresis. As a result, DNA fragments of about 70 base pairs were taken as one unit, and fragments of various lengths that were an integral multiple of the DNA fragment were detected.
  • Example 2 Using the reaction solution having the same composition as in Example 1, a specificity test using 21 types of atypical acid-fast bacteria shown in Table 3 (Mycobacterium other than Mycobacterium tuberculosis) was performed. In each of the atypical acid-fast strains, genomic DNA was extracted from a standard strain obtained from the Tuberculosis Prevention Association Tuberculosis Research Institute by the same method as in Example 1, and a 2.5 ng / ⁇ L solution was prepared and used. . Further, Mycobacterium bovis BCG Tokyo strain, which is a Mycobacterium tuberculosis group, was used as a positive control, and an extracted DNA solution was similarly prepared. Distilled water was used as a negative control.
  • Mycobacterium bovis BCG Tokyo strain which is a Mycobacterium tuberculosis group
  • a fluorescence visual detection / detection reagent Etheral reagent
  • Example 4 The test was carried out targeting a tandem repeat sequence (Tandem Repeat) present on the Salmonella (Salmonella enterica subsp. Enterica serovar enteritidis) genome.
  • Genomic DNA was obtained from a Salmonella (serotype Enteritidis) strain isolated from a Thai patient using a DNA extraction kit (Qiagen DNA Mini Kit), and a DNA sample diluted 10-fold from 5 ng / ⁇ L to 50 fg / ⁇ L was prepared. did. Distilled water was used as a negative control.
  • the primers used are shown in Table 4.
  • Example 5 Tests were conducted targeting tandem repeats present on the Leishmania donovani genome.
  • DNA sample obtained from a Leishmania donovani strain isolated from a Ghanaian patient using a DNA extraction kit (Qiagen DNA Mini Kit) and diluted 10-fold from 1.8 ng / ⁇ L to 180 fg / ⁇ L was prepared. Distilled water was used as a negative control.
  • the primers used are shown in Table 5.
  • the present invention is useful for diagnosis of infectious diseases, food inspection, identification of biological species, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 以下の(a)~(e)を含む反応液を調製する反応液調製工程と、得られた反応液を用いて核酸合成を行う核酸合成工程とを有し、核酸合成工程の後に核酸の熱変性工程を有しないことを特徴とする核酸増幅方法は、特殊な機器を必要とせず、迅速、簡便、低コストで実施可能であり、高い増幅効率と高い特異性を兼ね備えた核酸増幅方法である。 (a)反復配列を有する鋳型核酸 (b)前記鋳型核酸の反復配列内に結合するプライマー1 (c)前記鋳型核酸の相補鎖の反復配列内に結合するプライマー2 (d)鎖置換型DNA合成酵素 (e)前記鎖置換型DNA合成酵素の基質となるヌクレオチド

Description

核酸増幅方法およびその利用
 本発明は、核酸増幅方法およびその利用に関するものであり、詳細には、等温条件下で実施可能な核酸増幅方法およびその利用に関するものである。
 感染症の診断には、迅速・正確な病原の検出が必須である。感染症の原因病原体検出の有力な手段として、目的の病原体に特異的な遺伝子配列を検出する方法がある。しかしながら、試料中に存在する目的遺伝子の量が少ない場合における検出は容易でなく、目的遺伝子そのもの、または検出シグナルを増幅することが必要である。目的遺伝子を増幅するための核酸増幅方法として、PCR(Polymerase Chain Reaction)法が知られている。PCR法は、in vitroにおける核酸の増幅技術として現在最も一般的な方法であり、その指数的な増幅効果に基づく高感度検出方法として定着している。しかしPCR法は、実施のために特別な温度調節装置が必要であるため、ベッドサイドでの病原体の迅速判定に適した方法ではない。
 核酸を等温条件下で増幅し、目視による増幅の検出が可能な方法としてLAMP(Loop-mediated isothermal Amplification)法が実用化されている(特許文献1参照)。LAMP法は、プライマーの構造を工夫することによって増幅の促進を図るものであり、等温増幅を可能とするために、6領域または8領域を認識する4種または6種のプライマーが必要となる。そのため、プライマーDNAのデザイン法が複雑であり、必ずしも効率良い遺伝子増幅が起こるプライマーがデザインできるとは限らない。また、LAMP法では微量のターゲットを短時間に増幅するためPCRに比べて多量のプライマーを使用するが、多様な配列を持った4種または6種のプライマーを高用量で使用すると、非特異結合による偽陽性増幅の危険性が高くなる。さらに、プライマー合成に要する費用も無視できない。
 感染症のなかで、結核は、現在でも世界中で年間900万人が新規患者として登録され、180万人が死亡している重要な感染症の一つである。早期に診断して適切な治療を開始することが感染の蔓延を防ぐ上で最善の策であるが、結核菌は培地上にコロニーを形成するまでに4週間以上を要することから、その診断に要する時間の短縮が大きな課題となっており、迅速な判定法の開発が求められている。そこで、結核等の感染症を迅速に判定するために、LAMP法に匹敵する反応速度および増幅効率を有し、LAMP法よりも特異性、簡便性、コストの点で優れた等温条件下で実施可能な核酸増幅方法の開発が望まれている。
国際公開第WO00/28082号
 本発明は、特殊な機器を必要とせず、迅速、簡便、低コストで実施可能であり、高い増幅効率と高い特異性を兼ね備えた核酸増幅方法を提供することを課題とする。
 本発明は、上記課題を解決するために、以下の各発明を包含する。
[1]以下の(a)~(e)を含む反応液を調製する反応液調製工程と、得られた反応液を用いて核酸合成を行う核酸合成工程とを有し、核酸合成工程の後に核酸の熱変性工程を有しないことを特徴とする核酸増幅方法。
(a)反復配列を有する鋳型核酸
(b)前記鋳型核酸の反復配列内に結合するプライマー1
(c)前記鋳型核酸の相補鎖の反復配列内に結合するプライマー2
(d)鎖置換型DNA合成酵素
(e)前記鎖置換型DNA合成酵素の基質となるヌクレオチド
[2]反復配列が、10~500塩基対の長さを有し、1000塩基対以内の間隔で3回以上存在することを特徴とする前記[1]に記載の核酸増幅方法。
[3]核酸合成工程を等温で行うことを特徴とする前記[1]または[2]に記載の核酸増幅方法。
[4]前記[1]~[3]のいずれかに記載の核酸増幅方法を用いることを特徴とする病原体検出方法。
[5]前記[1]~[3]のいずれかに記載の核酸増幅方法を用いることを特徴とするアレルゲン検出方法。
[6]前記[1]~[3]のいずれかに記載の核酸増幅方法を用いることを特徴とする生物種鑑別方法。
[7]前記[1]~[3]のいずれかに記載の核酸増幅方法において、配列番号1で表される塩基配列からなるプライマー1と、配列番号2で表される塩基配列からなるプライマー2とを用いることを特徴とする結核菌検出方法。
[8]前記[1]~[3]のいずれかに記載の核酸増幅方法において、配列番号3で表される塩基配列からなるプライマー1と、配列番号4で表される塩基配列からなるプライマー2とを用いることを特徴とするサルモネラ菌検出方法。
[9]前記[1]~[3]のいずれかに記載の核酸増幅方法において、配列番号5で表される塩基配列からなるプライマー1と、配列番号6で表される塩基配列からなるプライマー2とを用いることを特徴とするリーシュマニア検出方法。
[10]前記[1]~[3]のいずれかに記載の核酸増幅方法を実施するためのキットであって、鋳型核酸の反復配列内に結合するプライマー1、および、当該鋳型核酸の相補鎖の反復配列内に結合するプライマー2、を包含することを特徴とするキット。
[11]さらに、鎖置換型DNA合成酵素を包含することを特徴とする前記[10]に記載の核酸増幅用キット。
[12]配列番号1で表される塩基配列からなるプライマー1と、配列番号2で表される塩基配列からなるプライマー2とを包含し、結核菌の反復配列を特異的に増幅することを特徴とする前記[10]または[11]に記載のキット。
[13]配列番号3で表される塩基配列からなるプライマー1と、配列番号4で表される塩基配列からなるプライマー2とを包含し、サルモネラ菌の反復配列を特異的に増幅することを特徴とする前記[10]または[11]に記載のキット。
[14]配列番号5で表される塩基配列からなるプライマー1と、配列番号6で表される塩基配列からなるプライマー2とを包含し、リーシュマニアの反復配列を特異的に増幅することを特徴とする前記[10]または[11]に記載のキット。
 本発明により、特殊な機器を必要とせず、迅速、簡便、低コストで実施可能であり、高い増幅効率と高い特異性を兼ね備えた核酸増幅方法を提供することができる。本発明の核酸増幅方法は、増幅効率および特異性が高いので、試料中に存在する目的遺伝子が少量であっても増幅することができ、感染症のベッドサイド診断や、食品分野の検査、生物種の鑑別等、幅広い分野で利用することが可能である。
本発明の核酸増幅方法の原理を示す説明図である。 本発明の核酸増幅方法の原理を示す説明図である。 本発明の核酸増幅方法の原理を示す説明図である。 本発明の核酸増幅方法の原理を示す説明図である。 本発明の核酸増幅方法の原理を示す説明図である。 本発明の核酸増幅方法の原理を示す説明図である。 本発明の核酸増幅方法により増幅される産物のサイズを示す説明図である。 本発明の核酸増幅方法を用いて結核菌DNAを増幅し、増幅産物をアガロースゲル電気泳動により分析した結果を示す図である。 蛍光目視・検出試薬を添加した反応液を用いて本発明の核酸増幅方法を行い、増幅産物の有無を目視観察した結果を示す図である。 蛍光目視・検出試薬を添加した反応液を用いて本発明の核酸増幅方法を行い、増幅産物の有無を紫外線ランプ下で観察した結果を示す図である。
〔核酸増幅方法〕
 最初に、図1~図6を用いて本発明の核酸増幅方法の原理について説明する。本発明の核酸増幅方法は、(a)反復配列を有する鋳型核酸、(b)前記鋳型核酸の反復配列内に結合するプライマー1、(c)前記鋳型核酸の相補鎖の反復配列内に結合するプライマー2、および(d)鎖置換型DNA合成酵素を用い、等温条件で実施可能な核酸増幅方法である。図1~図6では、鋳型核酸の反復配列はスペーサーを挟む反復構造を有しているが、鋳型核酸の反復配列においてスペーサーは無くてもよい。
 図1上段は、二本鎖の鋳型核酸がほどけた部分において、プライマー1、2がそれぞれ各鎖の反復配列内に結合した状態を示している。以後は、プライマー1が結合した鎖についてのみ説明するが、プライマー2が結合した相補鎖についても同様の原理で核酸が増幅される。鋳型核酸の反復配列内に結合したプライマー1は、鎖置換型DNA合成酵素により伸長し(図1中段)、前方の鎖が剥がされる(図1下段)。剥がされた鎖は一本鎖の新たな鋳型核酸となり、プライマー2が次々と結合する(図2)。プライマー2も鎖置換型DNA合成酵素により前方の鎖を剥がしながら伸長する(図3)。
 図4~図6では、説明の便宜上、プライマー1が伸長して剥がされた鎖を1本だけ示す。プライマー2が伸長して剥がされた鎖は、さらに新たな一本鎖の鋳型となり、プライマー1が結合する(図4)。同時に、一本鎖の先端では鎖が剥がされて遊離鎖が誕生し、遊離鎖にもプライマー1が結合して伸長する(図5)。新たにプライマー1が結合して伸長した鎖も、同様に先端で剥がされて新たな遊離鎖が誕生する。これらの遊離鎖は、プライマーが多量に存在するときは鋳型核酸として利用されるが、急激な増幅によりプライマーが枯渇してくると、新たなプライマーとして機能することができる(図6)。各反復配列から伸長した鎖は次々と剥がされ、最終的に最も遠方にプライマーが結合した鎖(後ろから剥がされない鎖)以外はすべて遊離鎖となる。ただし、プライマー1とプライマー2を図1に示すような位置関係で配置した場合、新たに生じたプライマーの3’末の配列は図7から判るようにプライマー2の相補的配列であるため、最後方に結合しているプライマー1のさらに後方に結合し、この鎖を剥がすことができる。プライマー1の相補的配列を持った新たなプライマーも同様に生じるため、増幅反応が進むと反復配列内の4箇所を認識する配列を持ったプライマーが混在することになる。これらの遊離鎖はプライマーとして機能すると同時に各々が反復配列からなる鋳型でもあるため、時間と共に増幅反応は加速する。各鋳型核酸の最後方のプライマーにより形成された二本鎖も、反応温度がプライマーの結合に十分な温度に保たれている限り、ある確率で解離およびプライマーの結合が起こるため、図1から図6までの反応が繰り返される。
 以上の原理により、反復配列を有する鋳型核酸を用いて、鎖置換型DNA合成酵素の至適温度付近の等温条件で、極めて短時間に大量の核酸を高い特異性で増幅することができる。増幅産物は、図7に示すように、プライマー1とプライマー2とが向き合った間隔に応じたサイズとなり、増幅産物の電気泳動像はラダー状になる(図8参照)。新たに生じた遊離鎖がプライマーとなって伸長した場合は、元の鋳型反復領域の長さを超えたものも含めた様々な長さの鎖が生じるため、電気泳動像は高分子領域へ伸びたスメア状となる。
 本発明は、以下の(a)~(e)を含む反応液を調製する反応液調製工程と、得られた反応液を用いて核酸合成を行う核酸合成工程とを有し、核酸合成工程の後に核酸の熱変性工程を有しないことを特徴とする核酸増幅方法を提供する。
(a)反復配列を有する鋳型核酸
(b)前記鋳型核酸の反復配列内に結合するプライマー1
(c)前記鋳型核酸の相補鎖の反復配列内に結合するプライマー2
(d)鎖置換型DNA合成酵素
(e)前記鎖置換型DNA合成酵素の基質となるヌクレオチド
 本発明の核酸増幅方法に使用できる鋳型核酸は、反復配列を有する核酸であることを要する。逆に、反復配列を有する核酸であれば、いずれも本発明の核酸増幅方法の鋳型核酸として好適に用いることができる。鋳型核酸は、一本鎖でもよく二本鎖でもよい。また、鋳型核酸は、DNA、RNA、DNA/RNAハイブリッドのいずれでもよい。さらに、構成ヌクレオチドが人工的な誘導体に置換されているものや、天然のDNAまたはRNAが修飾されているものであっても、相補鎖合成の鋳型として機能する限り鋳型核酸に含まれる。反復配列は、同じ配列が2回以上存在しているものであればよく、繰り返し回数は限定されない。また、同じ配列が直接隣り合って並んでいる反復配列でもよく、同じ配列がスペーサーを挟んで隣り合っている反復配列でもよい。隣り合っている配列の向きは逆向きでもよい。すなわち同一鎖上にプライマー1が結合する配列とプライマー2が結合する配列が混在していても差し支えない。各反復配列間の相同性は約70%以上あればよく、好ましくは約80%以上、より好ましくは約90%以上、さらに好ましくは約95%以上である。本発明の核酸増幅方法に用いる鋳型核酸の反復配列としては、約10~500塩基対の長さを有する配列が1000塩基対以内の間隔で3回以上存在することが好ましく、約15~500塩基対の長さを有する配列が1000塩基対以内の間隔で3回以上存在することがより好ましく、約30~200塩基対の長さを有する配列が500塩基対以内の間隔で4回以上存在することがより好ましい。反復配列には、例えば、タンデムリピート(サテライトDNA、ミニサテライト)、短鎖散在反復配列(Short Interspersed elements:SINE)、CRISPR(Clustered Regularly Interspaced Short Palindromic Repeats)などが含まれる。微生物や動植物を含むすべての生物のゲノム上に反復配列が存在することが知られているので、本発明の核酸増幅方法は、すべての生物のゲノムを鋳型核酸として好適に用いることができる。
 本発明の核酸増幅方法に使用するプライマーは、鋳型核酸の反復配列内に結合するプライマー1と、鋳型核酸の相補鎖の反復配列内に結合するプライマー2の2種類である。プライマーは、反復配列内であればどの部分に結合するものでもよく、反復配列の塩基配列に基づいて、特異性の高いプライマーを適宜デザインすればよい。プライマーの鎖長は、DNA合成酵素が認識できる鎖長であればよく、通常5塩基前後の鎖長があればよいが、特異性を高めるためには約10塩基以上の長さとすることが好ましく、約15塩基以上がより好ましい。上限は特に限定されないが、約50塩基以下が好ましい。プライマー1とプライマー2とは相互にハイブリダイズしてプライマーダイマーを形成しないことが好ましい。すなわち、各プライマーの3’末端と相補的な配列がプライマー内に含まれないことが好ましい。核酸合成および核酸増幅に支障を来たさない限りにおいて、プライマー1およびプライマー2の5’末端はオーバーラップしてもよい。本発明者らは、プライマー1およびプライマー2の5’末端がオーバーラップするように両プライマーをデザインして用いた場合に、オーバーラップがないプライマー1、2を用いた場合より増幅が加速されることを確認している。したがって、本発明の核酸増幅方法において、プライマー1およびプライマー2の5’末端がオーバーラップする2種類のプライマーを用いることが好ましい。5’末端のオーバーラップの範囲は特に限定されないが、約5~50%が好ましく、約10~30%がより好ましい。プライマーは、市販の核酸合成機を用いて公知の核酸合成方法により化学合成することができる。
 本発明の核酸増幅方法に使用する鎖置換型DNA合成酵素は、配列依存型の相補鎖合成活性と鎖置換活性を有するものであれば特に限定されない。公知の鎖置換型DNA合成酵素としては、例えば、Bst DNAポリメラーゼ、Bca(exo-)DNAポリメラーゼ、DNAポリメラーゼIのクレノウフラグメント、Vent DNAポリメラーゼ、Vent(Exo-)DNAポリメラーゼ、DeepVent DNAポリメラーゼ、DeepVent(Exo-)DNAポリメラーゼ、Φ29ファージDNAポリメラーゼ、MS-2ファージDNAポリメラーゼ、Z-TaqDNAポリメラーゼ(商品名)、KOD DNAポリメラーゼなどが挙げられ、いずれも本発明の核酸増幅方法に好適に用いることができる。中でも、Bst DNAポリメラーゼ、Bca(exo-)DNAポリメラーゼは、ある程度の耐熱性を持ち、触媒活性も高いことから特に好ましい。
 反応液には、上記(a)~(d)の他に(e)前記鎖置換型DNA合成酵素の基質となるヌクレオチドが必須に含まれる。さらに、反応液には、通常、緩衝剤、塩類等が添加され、必要に応じて、酵素の保護剤、融解温度(Tm)の調整剤、界面活性剤等が添加される。緩衝剤としては、Tris-HCl等の中性から弱アルカリ性に緩衝作用を持つものが用いられる。pHは使用するDNA合成酵素に応じて至適pH付近に調整すればよい。塩類は、酵素の活性維持や核酸の融解温度(Tm)調整のために適宜添加され、具体的には、KCl、NaCl、MgCl、MgSO、(NHSO等が用いられる。酵素の保護剤としては、ウシ血清アルブミンや糖類が使用される。さらに、融解温度(Tm)の調整剤には、ジメチルスルホキシド(DMSO)、ホルムアミド、ベタイン(N,N,N,-trimethylglycine)等が使用される。界面活性剤には、Tween20、TritonX等が使用される。さらに、鎖置換効率の向上のために、必要に応じてベタイン(N,N,N,-trimethylglycine)やテトラアルキルアンモニウム塩が使用される。これら以外に、増幅の目視確認用の試薬等を適宜添加することができる。
 調製された反応液を、鎖置換型DNA合成酵素が活性を維持し得る温度で保持することにより、核酸合成反応が進行し、鋳型核酸の反復配列領域が増幅される。核酸合成工程の温度は、鎖置換型DNA合成酵素が活性を維持し得る温度であって、プライマーが鋳型核酸に結合可能な温度であれば特に限定されない。したがって、鋳型核酸が熱変性を受けない温度が上限となる。反応速度および増幅効率向上のために、用いる鎖置換型DNA合成酵素の至適温度付近の温度を選択することが好ましい。また、鋳型核酸の二本鎖が適度にほどけやすい温度、具体的には約50~70℃を選択することが好ましく、このような温度範囲に至適温度を有する鎖置換型DNA合成酵素を用いることが好ましい。
 本発明の核酸増幅方法の核酸合成工程においては、終始等温条件下で核酸合成反応を進行させることが可能であるので、反応温度を変化させる必要はない。しかし、核酸合成工程において温度を変化させることを妨げるものではなく、核酸合成工程において温度を変化させる方法も本発明に含まれる。ただし、本発明の核酸増幅方法は、核酸合成工程の後に核酸の熱変性工程を有しないことを特徴とする。この特徴により、本発明の核酸増幅方法は、核酸変性工程、アニーリング工程、核酸合成工程の温度サイクルを繰り返すPCR法とは明確に区別される。
 本発明の核酸増幅方法は、核酸合成工程の後に核酸の熱変性工程を有しないが、核酸合成工程の前に核酸の熱変性工程を有していてもよい。例えば鋳型核酸が二本鎖の場合、核酸合成工程の前に熱変性を行って鋳型核酸を一本鎖とした後に、核酸合成反応を開始することにより、プライマーの鋳型核酸への結合を容易に行わせることができる。本発明の核酸増幅方法においては、このような変性工程は、核酸合成反応開始前の前処理として1度だけ行えばよい。
 本発明の核酸増幅方法において、核酸合成工程の後に酵素失活工程を設けてもよい。酵素失活工程により、核酸合成反応を終了させることができる。酵素を失活さえる手段は特に限定されない。例えば、加熱、酸の添加、アルカリの添加等の公知の手段を用いればよい。
 核酸合成工程終了後に、反応液を、例えばアガロースゲル電気泳動に供し、増幅産物を検出することにより、核酸の増幅を確認することができる。増幅が特異的であることは、増幅産物が予想通りのサイズでラダー状に検出されること、増幅産物の塩基配列を決定することなどにより確認することができる。増幅の特異性が確立された系では、増幅の有無のみを確認すればよい。増幅の有無は、増幅産物を電気泳動で確認してもよいが、例えば、反応液にマグネシウムイオンを添加しておくことにより、DNA合成反応に伴って反応液中のデオキシヌクレオチド3リン酸より放出されるピロリン酸とマグネシウムイオンが結合して生じる白沈の生成を、濁度を指標として判定することが可能である。濁度は目視によっても判定可能であるが、市販の濁度計を用いれば経時的に測定することができる(実施例1、2、4参照)。また、反応液にカルセインとマンガンを添加することにより、増幅の有無を目視で判定することがより容易となる。マンガンと結合したカルセイン溶液は非蛍光の橙色であるが、DNA合成反応に伴って反応液中のデオキシヌクレオチド3リン酸より放出されるピロリン酸がマンガンと結合することにより、フリーになったカルセインの色調は蛍光の緑黄色に変化する。したがって、反応液の色調を目視確認することにより増幅の有無を判定することができる。また、紫外線ランプ下で反応液の蛍光の有無を目視確認することにより増幅の有無を判定することができる。さらに、ピロリン酸の検出試薬を添加して増幅判定することも可能である。
〔核酸増幅方法の利用〕
 本発明の核酸増幅方法は、反復配列を有する核酸を鋳型核酸とし、当該反復配列内に結合するプライマー1と、鋳型核酸の相補鎖の反復配列内に結合するプライマー2との2種類のプライマーを用いて核酸を増幅する方法であり、等温条件下で実施可能な方法である。生物のゲノム上には、多数の反復配列領域が存在し、その配列の多くは種特異的であることが知られている。したがって、本発明の核酸増幅方法は、特定生物検出の用途に極めて有用である。また、反復配列の種類によっては同一種内の個体あるいは系統ごとにその保持状況が異なるため、特定の系統の検出や個体もしくは株の型別に使用することも可能である。さらに、本発明の核酸増幅方法は、LAMP法に匹敵する反応速度および増幅効率を有し、LAMP法よりも簡便性、コストの点で優れているので、感染症診断、環境衛生検査、食品検査、研究用試薬等の分野で、LAMP法に代わる核酸増幅方法として使用されることが期待できる。具体的には、病原体の検出、アレルゲンの検出、毒素産生生物の混入の検出、有用微生物の検出、生物種の鑑別、生物種内における特定の系統の識別や個体の型別などに好適に利用することができる。
 本発明の核酸増幅方法は、目的の病原体が有する反復配列に特異的なプライマーをデザインすることにより、病原体の検出に用いることができる。したがって、本発明には、上記本発明の核酸増幅方法を用いる病原体検出方法が含まれる。本発明の病原体検出方法において、検出対象の病原体としては、例えば、細菌、真菌、ウイルス、寄生虫、原虫等が挙げられる。具体的には、結核菌、サルモネラ、ライ菌、レジオネラ、レプトスピラ、黄色ブドウ球菌、赤痢菌、コレラ菌、腸炎ビブリオ、クラミジア、アスペルギルス、クリプトコッカス、カンジダ、マラリア原虫、赤痢アメーバー、リーシュマニアなどが挙げられるが、これらに限定されない。本発明の病原体検出方法に用いる試料は、特に限定されないが、生体由来の試料を好適に用いることができ、生体由来の試料を直接適用することが好ましい。生体由来の試料としては、例えば、血液、組織液、リンパ液、脳脊髄液、膿、粘液、鼻水、喀痰、尿、糞便、腹水等の体液類;皮膚、肺、腎、粘膜、各種臓器、骨等の組織;鼻腔、気管支、皮膚、各種臓器、骨等の洗浄液;透析排液等が挙げられる。本発明の病原体検出方法は、迅速、簡便に、低コストで実施できるため、ベッドサイドで実施可能な病原体検出方法として非常に有利である。
 本発明の病原体検出方法において、配列番号1で表される塩基配列からなるプライマー1と、配列番号2で表される塩基配列からなるプライマー2とを用いることにより、結核菌検出方法を提供することができる(実施例1、2、3参照)。また、本発明の病原体検出方法において、配列番号3で表される塩基配列からなるプライマー1と、配列番号4で表される塩基配列からなるプライマー2とを用いることにより、サルモネラ菌検出方法を提供することができる(実施例4参照)。また、配列番号5で表される塩基配列からなるプライマー1と、配列番号6で表される塩基配列からなるプライマー2とを用いることにより、リーシュマニア検出方法を提供することができる(実施例5参照)。
 本発明の核酸増幅方法は、アレルゲンを提供する生物が有する反復配列に特異的なプライマーをデザインすることにより、アレルゲンの検出に用いることができる。したがって、本発明には、上記本発明の核酸増幅方法を用いるアレルゲン検出方法が含まれる。本発明のアレルゲン検出方法において、検出対象のアレルゲンは、生物由来であって核酸を含有するアレルゲンであればよい。具体的には、例えば、小麦、海老、カニ、蕎麦、ピーナッツ、リンゴ、鯖、大豆、豚肉、ダニ、猫の毛、カビ、スギ花粉などが挙げられるが、これらに限定されない。本発明のアレルゲン検出方法に用いる試料は、特に限定されないが、加工食品、飲料、それらの原材料、住環境の拭い取り材料、大気中より回収された粉塵などが挙げられる。本発明のアレルゲン検出方法は、ELISAやPCRといった一般的なアレルゲン検出法において使用されるような特殊な機器を必要としないため、町工場や小売店、診療所といった小規模な施設においても実施可能であるという点で有利である。
 本発明の核酸増幅方法は、目的の生物が有する反復配列に特異的なプライマーをデザインすることにより、生物種の鑑別に用いることができる。したがって、本発明には、上記本発明の核酸増幅方法を用いる生物種鑑別方法が含まれる。生物種鑑別の目的としては、病原体の検出、アレルゲンの検出の他に、毒素等を産生する恐れのある生物の混入の検出、有用微生物の環境中からのスクリーニング、宗教上の理由による特定生物由来物質の混入の検査、捕獲あるいは輸入禁止生物由来材料の使用の検査、食品表示や品質表示との整合性の検査などが挙げられるが、これらに限定されない。本発明の、生物種鑑別方法に用いる試料は、特に限定されないが、例えば、食品や革製品といった生物由来材料を使用した製品あるいはその材料、土壌や海水・湖水といった環境中から採集した試料などが挙げられる。本発明の生物種鑑別方法は、迅速、簡便かつ安価に行えるため、大量の試料を継続的に検査することができるという点で有利である。
〔キット〕
 本発明は、上記本発明の核酸増幅方法を実施するためのキットを提供する。本発明のキットは、少なくとも鋳型核酸の反復配列内に結合するプライマー1、および、当該鋳型核酸の相補鎖の反復配列内に結合するプライマー2を包含するものであればよい。特定の生物のゲノム上に存在する反復配列を特異的に増幅可能なプライマー1およびプライマー2をキットに包含させることにより、特定生物(病原体、アレルゲン等を含む)検出用のキットを提供することが可能となる。本発明のキットは、プライマー1およびプライマー2を必須に包含するものであればよく、プライマー1および2以外のキットの構成は特に限定されないが、鎖置換型DNA合成酵素を包含することが好ましい。これら以外にも、必要な試薬や器具等を適宜選択してキットの構成とすればよい。例えば、鎖置換型DNA合成酵素の基質となるヌクレオチド、陽性対照用鋳型核酸、増幅用反応液、反応用チューブ、試料調製用試薬類、取扱説明書等が挙げられる。
 本発明のキットにおいて、プライマー1およびプライマー2を、それぞれ配列番号1で表される塩基配列からなるプライマー1および配列番号2で表される塩基配列からなるプライマー2とすることにより、結核菌の反復配列を特異的に増幅するキットを提供することができる。また、本発明のキットにおいて、プライマー1およびプライマー2を、それぞれ配列番号3で表される塩基配列からなるプライマー1および配列番号4で表される塩基配列からなるプライマー2とすることにより、サルモネラ菌の反復配列を特異的に増幅するキットを提供することができる。また、本発明のキットにおいて、プライマー1およびプライマー2を、それぞれ配列番号5で表される塩基配列からなるプライマー1および配列番号6で表される塩基配列からなるプライマー2とすることにより、リーシュマニアの反復配列を特異的に増幅するキットを提供することができる。
 以下、実施例により本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
〔実施例1〕
 結核菌ゲノム上に存在するDR(Direct Repeat)と呼ばれる反復配列をターゲットとして試験を実施した。文献(Mutations in rpoB gene of rifampicin resistant clinical isolates of Mycobacterium tuberculosis in Japan. Suzuki Y, Katsukawa C, Inoue K, Yin Y, Tasaka H, Ueba N, Makino M. Kansenshogaku Zasshi. 1995 69:413-9.)に記載の方法に従い、日本人の患者から分離された多剤耐性結核菌株からゲノムDNAを取得し、25ng/μLから25fg/μLまで10倍段階希釈したDNA試料を調製した。陰性対照として蒸留水を用いた。使用したプライマーを表1に示した。
Figure JPOXMLDOC01-appb-T000001
 20mMトリス緩衝液(pH8.8)、10mM塩化カリウム、10mM硫酸アンモニウム、0.1%ツイーン20、0.9Mベタイン、0.8mMデオキシヌクレオチド3リン酸、6mM硫酸マグネシウム、8ユニットのBst DNA polymerase、2μMのプライマーを含む組成の反応液を用いた。この反応液にDNA試料を2μL添加し、68℃で反応させた。
 DNA合成反応に伴って反応液中のデオキシヌクレオチド3リン酸より放出されるピロリン酸とマグネシウムイオンが結合してピロリン酸マグネシウムの白沈が生じることから、濁度を指標として遺伝子増幅反応の進行を評価した。濁度はテラメックス株式会社製リアルタイム濁度測定装置(LA-200)を用いて経時的に測定した。
 結果を表2に示した。表2の時間が短いほど反応が早く進んでいることを示している。表2から明らかなように、最少量の50fgの結核菌DNAを添加した場合でも、44分42秒で濁度が0.1に達した。この結果から、本発明の方法を用いれば、約10個の結核菌の存在を1時間以内に検出可能であることが明らかとなった。
 反応液中の増幅産物をアガロースゲル電気泳動により分析した結果を図8に示した。その結果70塩基対前後のDNA断片を1単位として、その整数倍の様々な長さの断片が検出された。
Figure JPOXMLDOC01-appb-T000002
〔実施例2〕
 実施例1と同じ組成の反応液を用いて、表3に示した21種の非定型抗酸菌(結核菌群菌以外のマイコバクテリウム属菌)による特異性試験を行った。非定型抗酸菌株は、いずれも(公財)結核予防会結核研究所から入手した標準菌株より実施例1と同じ方法によってゲノムDNAを抽出し、2.5ng/μL液を調製して用いた。また、陽性対照として結核菌群菌であるMycobacterium bovis BCG Tokyo株を使用し、同様に抽出DNA溶液を調製した。陰性対照としては蒸留水を用いた。これらの試料液を反応液に2μLずつ添加し、68℃で反応させた。遺伝子増幅反応の進行は実施例1に同じく濁度を指標とし、テラメックス株式会社製リアルタイム濁度測定装置(LA-200)を用いて90分間観察を行った。
 結果を表3に示した。表3から明らかなように、菌数約100万個に相当する5ngの非定型抗酸菌DNAを反応液に添加した場合、いずれの試料においても90分間の反応時間内に濁度は0.1に達しなかった。実施例1および2の結果から、本発明の方法を用いれば、結核菌群菌を特異的に検出することができ、他のマイコバクテリウム属菌と識別可能であることが示された。
Figure JPOXMLDOC01-appb-T000003
〔実施例3〕
 実施例1と同じ組成の反応液に、1μLの蛍光目視・検出試薬(栄研化学)を加えて用いた。反応液にDNA試料を2μL添加し、68℃で1時間反応させた。陰性対照として蒸留水2μL添加し、同様に反応させた。
 反応終了時の目視観察の結果を図9に示し、紫外線ランプ下での観察結果を図10に示した。図9では、結核菌DNAを含む全てのチューブにおいて溶液は緑黄色を示したが、陰性対象(NC)では溶液の色は橙色であり、50fg(=約10個の結核菌)までの視認による検出が可能であることが示された。また、図10では、結核菌DNAを含む全てのチューブにおいて溶液は蛍光を発しており、50fg(=約10個の結核菌)までの紫外線ランプ下での視認による検出が可能であることが示された。
〔実施例4〕
 サルモネラ(Salmonella enterica subsp. enterica serovar enteritidis)ゲノム上に存在する直列型反復配列(Tandem Repeat)をターゲットとして試験を実施した。DNA抽出キット(Qiagen DNA Mini Kit)により、タイ人の患者から分離されたサルモネラ(血清型 Enteritidis)株よりゲノムDNAを取得し、5ng/μLから50fg/μLまで10倍段階希釈したDNA試料を調製した。陰性対照として蒸留水を用いた。使用したプライマーを表4に示した。
Figure JPOXMLDOC01-appb-T000004
 20mMトリス緩衝液(pH8.8)、10mM塩化カリウム、10mM硫酸アンモニウム、0.1%ツイーン20、0.9Mベタイン、0.6mMデオキシヌクレオチド3リン酸、6mM硫酸マグネシウム、8ユニットのBst DNA polymerase、1.6μMのプライマーを含む組成の反応液を用いた。この反応液にDNA試料を2μL添加し、67℃で反応させた。遺伝子増幅反応の進行は実施例1と同じく濁度を指標とし、テラメックス株式会社製リアルタイム濁度測定装置(LA-200)を用いて経時的に測定した。
 結果を表5に示した。表5の時間が短いほど反応が早く進んでいることを示している。表5から明らかなように、1pgのサルモネラDNAを添加した場合でも、35分48秒で濁度が0.1に達した。この結果から、本発明の方法を用いれば、約200個のサルモネラの存在を1時間以内に検出可能であることが明らかとなった。
Figure JPOXMLDOC01-appb-T000005
〔実施例5〕
 リーシュマニア(Leishmania donovani)ゲノム上に存在する直列型反復配列(Tandem Repeat)をターゲットとして試験を実施した。DNA抽出キット(Qiagen DNA Mini Kit)により、ガーナ人の患者から分離されたリーシュマニア(Leishmania donovani)株よりゲノムDNAを取得し、1.8ng/μLから180fg/μLまで10倍段階希釈したDNA試料を調製した。陰性対照として蒸留水を用いた。使用したプライマーを表5に示した。
Figure JPOXMLDOC01-appb-T000006
 20mMトリス緩衝液(pH8.8)、10mM塩化カリウム、10mM硫酸アンモニウム、0.1%ツイーン20、0.9Mベタイン、0.8mMデオキシヌクレオチド3リン酸、6mM硫酸マグネシウム、8ユニットのBst DNA polymerase、2μMのプライマーを含む組成の反応液を用いた。この反応液にDNA試料を2μL添加し、68℃で反応させた。遺伝子増幅反応の進行は実施例1と同じく濁度を指標とし、テラメックス株式会社製リアルタイム濁度測定装置(LA-200)を用いて経時的に測定した。
 結果を表6に示した。表6の時間が短いほど反応が早く進んでいることを示している。表6から明らかなように、360fgのリーシュマニアDNAを添加した場合でも、32分12秒で濁度が0.1に達した。この結果から、本発明の方法を用いれば、約10個のリーシュマニアの存在を1時間以内に検出可能であることが明らかとなった。
Figure JPOXMLDOC01-appb-T000007
 なお本発明は上述した各実施形態および実施例に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された学術文献および特許文献の全てが、本明細書中において参考として援用される。
 本発明は、感染症診断、食品検査、生物種の鑑別等に有用である。

Claims (14)

  1.  以下の(a)~(e)を含む反応液を調製する反応液調製工程と、得られた反応液を用いて核酸合成を行う核酸合成工程とを有し、核酸合成工程の後に核酸の熱変性工程を有しないことを特徴とする核酸増幅方法。
    (a)反復配列を有する鋳型核酸
    (b)前記鋳型核酸の反復配列内に結合するプライマー1
    (c)前記鋳型核酸の相補鎖の反復配列内に結合するプライマー2
    (d)鎖置換型DNA合成酵素
    (e)前記鎖置換型DNA合成酵素の基質となるヌクレオチド
  2.  反復配列が、10~500塩基対の長さを有し、1000塩基対以内の間隔で3回以上存在することを特徴とする請求項1に記載の核酸増幅方法。
  3.  核酸合成工程を等温で行うことを特徴とする請求項1または2に記載の核酸増幅方法。
  4.  請求項1~3のいずれかに記載の核酸増幅方法を用いることを特徴とする病原体検出方法。
  5.  請求項1~3のいずれかに記載の核酸増幅方法を用いることを特徴とするアレルゲン検出方法。
  6.  請求項1~3のいずれかに記載の核酸増幅方法を用いることを特徴とする生物種鑑別方法。
  7.  請求項1~3のいずれかに記載の核酸増幅方法において、配列番号1で表される塩基配列からなるプライマー1と、配列番号2で表される塩基配列からなるプライマー2とを用いることを特徴とする結核菌検出方法。
  8.  請求項1~3のいずれかに記載の核酸増幅方法において、配列番号3で表される塩基配列からなるプライマー1と、配列番号4で表される塩基配列からなるプライマー2とを用いることを特徴とするサルモネラ菌検出方法。
  9.  請求項1~3のいずれかに記載の核酸増幅方法において、配列番号5で表される塩基配列からなるプライマー1と、配列番号6で表される塩基配列からなるプライマー2とを用いることを特徴とするリーシュマニア検出方法。
  10.  請求項1~3のいずれかに記載の核酸増幅方法を実施するためのキットであって、
     鋳型核酸の反復配列内に結合するプライマー1、および、当該鋳型核酸の相補鎖の反復配列内に結合するプライマー2、を包含することを特徴とするキット。
  11.  さらに、鎖置換型DNA合成酵素を包含することを特徴とする請求項10に記載のキット。
  12.  配列番号1で表される塩基配列からなるプライマー1と、配列番号2で表される塩基配列からなるプライマー2とを包含し、結核菌の反復配列を特異的に増幅することを特徴とする請求項10または11に記載のキット。
  13.  配列番号3で表される塩基配列からなるプライマー1と、配列番号4で表される塩基配列からなるプライマー2とを包含し、サルモネラ菌の反復配列を特異的に増幅することを特徴とする請求項10または11に記載のキット。
  14.  配列番号5で表される塩基配列からなるプライマー1と、配列番号6で表される塩基配列からなるプライマー2とを包含し、リーシュマニアの反復配列を特異的に増幅することを特徴とする請求項10または11に記載のキット。
PCT/JP2012/056381 2011-03-14 2012-03-13 核酸増幅方法およびその利用 WO2012124681A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013504733A JP5688702B2 (ja) 2011-03-14 2012-03-13 核酸増幅方法およびその利用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-055327 2011-03-14
JP2011055327 2011-03-14

Publications (1)

Publication Number Publication Date
WO2012124681A1 true WO2012124681A1 (ja) 2012-09-20

Family

ID=46830748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056381 WO2012124681A1 (ja) 2011-03-14 2012-03-13 核酸増幅方法およびその利用

Country Status (2)

Country Link
JP (1) JP5688702B2 (ja)
WO (1) WO2012124681A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114045330A (zh) * 2021-12-23 2022-02-15 川北医学院附属医院 一种基于滑动复制的核酸等温扩增方法
CN115701839A (zh) * 2023-01-05 2023-02-14 深圳无微华斯生物科技有限公司 一种恒温扩增试剂盒及常温保存方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114901817A (zh) 2019-12-27 2022-08-12 株式会社钟化 引物组及使用其检测目标核酸的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6124120A (en) * 1997-10-08 2000-09-26 Yale University Multiple displacement amplification
WO2004058987A2 (en) * 2002-12-20 2004-07-15 Qiagen Gmbh Nucleic acid amplification
US9149473B2 (en) * 2006-09-14 2015-10-06 Ibis Biosciences, Inc. Targeted whole genome amplification method for identification of pathogens

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
COLE, S. T. ET AL.: "Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence.", NATURE, vol. 393, no. 6685, 1998, pages 537 - 544 *
GELANEW, TESFAYE ET AL.: "Multilocus microsatellite typing revealed high genetic variability of Leishmania donovani strains isolated during and after a Kala-azar epidemic in Libo Kemkem district, northwest Ethiopia.", MICROBES AND INFECTION, vol. 13, no. 6, June 2011 (2011-06-01), pages 595 - 601 *
IZUMIYA HIDEMASA ET AL.: "Whole-genome analysis of Salmonella enterica serovar Typhimurium T000240 reveals the acquisition of a genomic island involved in multidrug resistance via IS1 derivatives on the chromosome.", ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, vol. 55, no. 2, February 2011 (2011-02-01), pages 623 - 630 *
LOVMAR, LOVISA ET AL.: "Multiple displacement amplification to create a long-lasting source of DNA for genetic studies.", HUMAN MUTATION, vol. 27, no. 7, 2006, pages 603 - 614 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114045330A (zh) * 2021-12-23 2022-02-15 川北医学院附属医院 一种基于滑动复制的核酸等温扩增方法
CN114045330B (zh) * 2021-12-23 2024-02-09 川北医学院附属医院 一种基于滑动复制的核酸等温扩增方法
CN115701839A (zh) * 2023-01-05 2023-02-14 深圳无微华斯生物科技有限公司 一种恒温扩增试剂盒及常温保存方法

Also Published As

Publication number Publication date
JP5688702B2 (ja) 2015-03-25
JPWO2012124681A1 (ja) 2014-07-24

Similar Documents

Publication Publication Date Title
CN101638685B (zh) 交叉引物扩增靶核酸序列的方法及用于扩增靶核酸序列的试剂盒及其应用
CN101341249B (zh) 用于检测微生物的方法和用于检测微生物的试剂盒
CN107385040A (zh) 用于扩增多个靶标的扩增子拯救多重聚合酶链式反应
CN114085896A (zh) 使用非干扰性噪音消除性多核苷酸鉴定标签的多重焦磷酸测序
CN113249499B (zh) 一种伤寒沙门氏菌的检测试剂盒、其制备方法及其应用
CN112831580B (zh) 一种用于检测副溶血性弧菌dna的反应体系、试剂盒及其应用
JP2022535584A (ja) 核酸増幅及び/又は検出用方法及び試薬
CA2692633A1 (en) Method for the simultaneous detection of multiple nucleic acid sequences in a sample
JP5019431B2 (ja) インフルエンザ菌の検出方法、インフルエンザ菌検出用プライマーセット及びインフルエンザ菌検出用キット
WO2021216868A1 (en) Methods for detecting and sequencing a target nucleic acid
JP5688702B2 (ja) 核酸増幅方法およびその利用
JP5916740B2 (ja) 核酸標的の定量的多重同定
JP2022513696A (ja) カンジダ・アウリス(candida auris)の検出のための組成物および方法
JP5548357B2 (ja) アスペルギルスフミガタス(Aspergillusfumigatus)類縁菌の検出方法
JP2006061134A (ja) 結核菌検出のためのプライマーおよび検出同定法
JP2015139434A5 (ja)
CN107937584B (zh) 一种肉品沙门氏菌分子检测试剂盒及其非诊断性检测方法
JP7176682B2 (ja) 白癬菌の遺伝子をlamp法により検出するためのプライマーセット及びそれを含むキット並びにそれらを用いて白癬菌を検出する方法
JP2007189980A (ja) 黄色ブドウ球菌検出のためのプライマーおよびそれを用いた検出法
JP2008072951A (ja) Lamp法を用いたサルモネラo4群の血清型迅速検出法
JP2007075017A (ja) Campylobacterjejuniの検出法
JP6728657B2 (ja) 核酸増幅法
JP2007000040A (ja) B型肝炎ウイルスの検出方法
JP2007135499A (ja) サルモネラo9群の検出法
RU2743861C1 (ru) Система CRISPR-Cas для выявления гена антибиотикоустойчивости blaVIM-2 (металло-бета-лактамаза класс B VIM-2) Pseudomonas aeruginosa в ультранизких концентрациях

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12757267

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013504733

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12757267

Country of ref document: EP

Kind code of ref document: A1