WO2012124676A1 - 焼付け塗装硬化性に優れたアルミニウム合金板 - Google Patents

焼付け塗装硬化性に優れたアルミニウム合金板 Download PDF

Info

Publication number
WO2012124676A1
WO2012124676A1 PCT/JP2012/056370 JP2012056370W WO2012124676A1 WO 2012124676 A1 WO2012124676 A1 WO 2012124676A1 JP 2012056370 W JP2012056370 W JP 2012056370W WO 2012124676 A1 WO2012124676 A1 WO 2012124676A1
Authority
WO
WIPO (PCT)
Prior art keywords
atoms
aluminum alloy
treatment
room temperature
alloy plate
Prior art date
Application number
PCT/JP2012/056370
Other languages
English (en)
French (fr)
Inventor
松本 克史
有賀 康博
英雅 常石
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46830743&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2012124676(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to US14/004,456 priority Critical patent/US9399808B2/en
Priority to CN201280013028.8A priority patent/CN103429772B/zh
Priority to KR1020137024019A priority patent/KR20130130828A/ko
Priority to AU2012227455A priority patent/AU2012227455A1/en
Priority to EP12757501.7A priority patent/EP2687616A4/en
Publication of WO2012124676A1 publication Critical patent/WO2012124676A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the present invention relates to an Al—Mg—Si aluminum alloy sheet.
  • the aluminum alloy plate referred to in the present invention is a rolled plate such as a hot rolled plate or a cold rolled plate, and refers to an aluminum alloy plate that has been subjected to tempering such as solution treatment and quenching treatment.
  • aluminum is also referred to as Al.
  • panels such as outer panels (outer plate) and inner panel (inner plate) ⁇ ⁇ ⁇ of panel structures such as automobile hoods, fenders, doors, roofs, trunk lids, etc.
  • panels such as outer panels (outer plate) and inner panel (inner plate) ⁇ ⁇ ⁇ of panel structures such as automobile hoods, fenders, doors, roofs, trunk lids, etc.
  • 6000 series JIS 6000 series
  • This 6000 series aluminum alloy plate contains Si and Mg as essential components.
  • the excess Si type 6000 series aluminum alloy has a composition in which these Si / Mg is 1 or more in mass ratio, and has excellent age hardening ability.
  • bake hard property BH property, bake curability
  • the 6000 series aluminum alloy plate has a relatively small amount of alloy elements as compared with other 5000 series aluminum alloys having a large amount of alloy such as Mg. For this reason, when the scraps of these 6000 series aluminum alloy plates are reused as the molten aluminum alloy material (melting raw material), the original 6000 series aluminum alloy ingot is easily obtained and the recyclability is excellent.
  • an outer panel of an automobile is manufactured by combining an aluminum alloy plate with a forming process such as press forming and bending forming.
  • a forming process such as press forming and bending forming.
  • a large outer panel such as a hood or a door
  • it is formed into a molded product shape as an outer panel by press molding such as overhang, and then the inner panel and Are joined to form a panel structure.
  • the 6000 series aluminum alloy has an advantage of having excellent BH property, but has aging property at room temperature, and after the solution quenching treatment, it is age-hardened by holding at room temperature for several months to increase the strength. As a result, there is a problem that the formability to the panel, particularly the bending workability, is lowered.
  • a 6000 series aluminum alloy plate when used for an automotive panel, it usually takes about 1 to 4 months after it is solution-quenched by an aluminum maker (after manufacture) and then molded into a panel by an automotive maker. It is left at room temperature (and left at room temperature), and during this time, it is considerably age-hardened (room temperature aging).
  • Patent Document 1 a proposal is made to suppress a change in strength after 7 days from 90 days after manufacture at room temperature after manufacturing by changing the cooling rate stepwise during solution treatment and quenching.
  • Patent Document 2 proposes to obtain BH property and shape freezing property by holding at a temperature of 50 to 150 ° C. for 10 to 300 minutes within 60 minutes after solution treatment and quenching treatment.
  • Patent Document 3 proposes to obtain BH property and shape freezing property by prescribing the first stage cooling temperature and the subsequent cooling rate during solution treatment and quenching treatment.
  • Patent Document 4 it is proposed to improve the BH property by heat treatment after solution hardening.
  • Patent Document 5 proposes an improvement in BH property by the endothermic peak regulation of the DSC (Differential Scanning calorimetry) method.
  • Patent Document 6 also proposes improvement of BH property by DSC exothermic peak definition.
  • Patent Documents 1 to 6 are merely an indirect analogy of the behavior of clusters (aggregates of atoms) that directly affect the BH properties and room temperature aging properties of 6000 series aluminum alloy plates. .
  • Patent Document 7 attempts to directly measure and define clusters (aggregates of atoms) that affect the BH property and room temperature aging of a 6000 series aluminum alloy plate. That is, the average number of clusters having a circle equivalent diameter in the range of 1 to 5 nm among the clusters (aggregates of atoms) observed when the structure of a 6000 series aluminum alloy plate is analyzed by a transmission electron microscope with a magnification of 1 million times. The density is defined in the range of 4000 to 30000 pieces / ⁇ m 2 , and is excellent in BH property and suppresses aging at room temperature.
  • the BH properties after room temperature aging of these conventional technologies still have room for improvement under the condition that the car body paint baking process is performed at a lower temperature for a shorter time in order to improve the efficiency of the production line of the car body. is there. That is, when these prior art body paint baking processes are shortened at a low temperature such as 150 ° C. ⁇ 20 minutes, the improvement in BH property after aging at room temperature is about 30 to 40 MPa at 0.2% proof stress, A higher BH property is required.
  • an object of the present invention is to provide an Al—Si—Mg-based aluminum alloy plate that can exhibit high BH properties even in the case of car body paint baking under conditions that are shortened at low temperatures after room temperature aging. Is to provide.
  • the gist of the aluminum alloy sheet of the present invention is, by mass%, Mg: 0.2-2.0%, Si: 0.3-2.0%, with the balance being Al.
  • an Al—Mg—Si aluminum alloy plate made of unavoidable impurities the atomic aggregate measured by a three-dimensional atom probe field ion microscope, whether the atomic aggregate is Mg atom or Si atom One or both of them are included in total of 30 or more, and any atom of Mg atom or Si atom contained therein is used as a reference to any one of other atoms adjacent to the reference atom.
  • the distance between each other is 0.75 nm or less, and an aggregate of atoms satisfying these conditions is included at an average number density of 1.0 ⁇ 10 5 / ⁇ m 3 or more.
  • Mg and Si form an aggregate of atoms called clusters during room temperature holding or heat treatment at 50 to 150 ° C. after solution treatment and quenching treatment.
  • the behavior of the clusters generated at room temperature and during the heat treatment at 50 to 150 ° C. is completely different.
  • the cluster formed by holding at room temperature suppresses the precipitation of the GP zone or ⁇ ′ phase that increases the strength in the subsequent artificial aging or baking coating treatment.
  • clusters (or Mg / Si clusters) formed at 50 to 150 ° C. have been shown to promote precipitation of GP zones or ⁇ ′ phases (for example, Yamada et al .: Light metal vol. 51). , Page 215).
  • the present invention clarifies this, and among the aggregates (clusters) of atoms measured by 3DAP, as described above, includes Mg atoms or Si atoms in total or more, It has been found that a specific cluster in which the distance between adjacent atoms contained in these is not more than a specific value and the BH property greatly correlate. The inventors have also found that by increasing the number density of atomic aggregates that satisfy these conditions, high BH properties can be exhibited even in a car body paint baking process under conditions that are shortened at low temperatures after room temperature aging.
  • an Al—Si—Mg system that can exhibit higher BH properties even when the body is aged at room temperature and the body coating baking process is shortened at a low temperature such as 150 ° C. ⁇ 20 minutes.
  • An aluminum alloy plate can be provided.
  • 3DAP three-dimensional atom probe
  • FIM field ion microscope
  • the local analyzer is capable of observing individual atoms on a metal surface with a field ion microscope and identifying these atoms by time-of-flight mass spectrometry.
  • 3DAP is a very effective means for structural analysis of atomic aggregates because it can simultaneously analyze the type and position of atoms emitted from a sample. For this reason, as described above, it is used as a magnetic recording film, an electronic device, or a structure analysis of a steel material as a known technique. In addition, recently, as described above, it is also used for discrimination of the cluster of the structure of the aluminum alloy plate.
  • This 3DAP uses an ionization phenomenon of sample atoms under a high electric field called field evaporation.
  • field evaporation When a high voltage necessary for the field evaporation of sample atoms is applied to the sample, the atoms are ionized from the sample surface and pass through the probe hole to reach the detector.
  • This detector is a position-sensitive detector, and it is detected by measuring the time of flight to the individual ion detector along with mass analysis of individual ions (identification of elements that are atomic species).
  • the determined position (atomic structure position) can be determined simultaneously. Therefore, 3DAP has the feature that the atomic structure at the tip of the sample can be reconstructed and observed three-dimensionally because the position and atomic species of the atom at the tip of the sample can be measured simultaneously. Further, since field evaporation occurs sequentially from the tip surface of the sample, the distribution of atoms in the depth direction from the sample tip can be examined with atomic level resolution.
  • the sample to be analyzed must be highly conductive, such as metal, and the shape of the sample is generally very fine with a tip diameter of around 100 nm ⁇ or less. Need to be needle-shaped. For this reason, a sample is taken from the central part of the thickness of the aluminum alloy plate to be measured, and this sample is cut and electropolished with a precision cutting device to obtain a sample having an ultra-fine needle tip for analysis. Make it.
  • a measuring method for example, using “LEAP3000” manufactured by Imago Scientific Instruments, a high pulse voltage of the order of 1 kV is applied to an aluminum alloy plate sample whose tip is shaped like a needle, and several millions from the sample tip.
  • the analysis of the aggregate (cluster) of atoms is further performed on this three-dimensional atom map using the Maximum Separation Method, which is a method for defining atoms belonging to precipitates and clusters.
  • the number of Mg atoms or Si atoms or both (total of 30 or more), the distance (interval) between adjacent Mg atoms or Si atoms, and the specific narrow interval is given as a parameter.
  • any atom of Mg atom or Si atom contained therein is used as a reference, and other atoms adjacent to the reference atom
  • a group of atoms having a distance of 0.75 nm or less and satisfying these conditions is defined as a group of atoms of the present invention. Then, the dispersion state of the atomic aggregates that meet this definition is evaluated, and the number density of the atomic aggregates is averaged over three or more measurement samples to obtain an average density per 1 ⁇ m 3 (number / piece Measured and quantified as ⁇ m 3 ).
  • the detection efficiency of these atoms by 3DAP is currently limited to about 50% of the ionized atoms, and the remaining atoms cannot be detected. If the detection efficiency of atoms by 3DAP is greatly changed, such as improvement in the future, the measurement result by 3DAP of the average number density (pieces / ⁇ m 3 ) of the aggregate of atoms defined by the present invention may change. There is sex. Therefore, in order to give reproducibility to the measurement of the average number density of the aggregate of atoms, it is preferable that the detection efficiency of atoms by 3DAP is substantially constant at about 50%.
  • the aluminum alloy plate of the present invention is a plate after tempering such as solution treatment and quenching after rolling, and refers to a plate before being formed into a panel by press molding or the like. .
  • tempering before leaving at room temperature is applied. It is necessary to make the textured state of the plate after being subjected to the structure defined in the present invention.
  • a structure in an arbitrary thickness center portion of the Al—Mg—Si based aluminum alloy plate after being subjected to the tempering such as solution treatment and quenching treatment before being left at room temperature is expressed as a three-dimensional atom probe electric field. It measures by an above-mentioned method with an ion microscope.
  • the aggregate of atoms present in the measured structure in the present invention, first, includes at least 30 of Mg atoms and / or Si atoms in total.
  • the number of Mg atoms and Si atoms contained in the aggregate of atoms is preferably as large as possible, and the upper limit is not particularly defined, but from the production limit, the number of Mg atoms and Si atoms contained in the aggregate of atoms The upper limit is about 10,000.
  • the mutual distance between the reference atom and any of the other atoms adjacent to each other is What is 0.75 nm or less is an aggregate of atoms defined by the present invention (satisfying the definition of the present invention).
  • This mutual distance of 0.75 nm is the number density of aggregates (clusters) of atoms that have the effect of improving the BH property in a short time at low temperature after long-term aging at room temperature because the distance between the atoms of Mg and Si is close.
  • an aggregate of atoms satisfying these conditions is included at an average number density of 1.0 ⁇ 10 5 / ⁇ m 3 or more.
  • the average number density of the atomic aggregate is preferably as large as possible, and the upper limit is not particularly defined. However, from the production limit, the average number density of the atomic aggregate is approximately 1.0 ⁇ 10 6 / ⁇ m 3. Degree.
  • the aggregate (cluster) of atoms defined in the present invention most often includes both Mg atoms and Si atoms, but includes Mg atoms but no Si atoms, or includes Si atoms but includes Mg atoms. Including the case of not including. Moreover, it is not necessarily comprised only by Mg atom or Si atom, In addition to these, Al atom is included with very high probability.
  • atoms such as Fe, Mn, Cu, Cr, Zr, V, Ti, or Zn, which are included as alloy elements and impurities, are included in the aggregate of atoms, and these other atoms. Will necessarily be counted by 3DAP analysis. However, even if these other atoms (from alloy elements and impurities) are included in the aggregate of atoms, the level is smaller than the total number of Mg atoms and Si atoms. Therefore, even when such other atoms are included in the aggregate, those satisfying the above definition (condition) are aggregates of atoms consisting only of Mg atoms and Si atoms as aggregates of atoms of the present invention. Works the same way. Therefore, the aggregate of atoms defined in the present invention may contain any other atom as long as the above-described definition is satisfied.
  • the distance between the atom serving as the reference and any one of the other atoms adjacent to the reference atom is 0.75 nm.
  • the term “below” means that all Mg atoms and Si atoms present in the aggregate of atoms have at least one Mg atom or Si atom having a distance of 0.75 nm or less around each other. Meaning.
  • the definition of the distance between atoms is based on any atom of Mg atom or Si atom contained in them, and all of the other atoms adjacent to the reference atom.
  • the distances of the atoms may not all be 0.75 nm or less, and conversely, they may all be 0.75 nm or less.
  • other Mg atoms or Si atoms having a distance exceeding 0.75 nm may be adjacent to each other, and the specified distance (interval) is satisfied around a specific (reference) Mg atom or Si atom.
  • the number of Mg atoms or Si atoms that satisfy the distance condition is specified (reference) Mg.
  • the number of Mg atoms or Si atoms that satisfy the distance condition is specified (reference) Mg.
  • the number of Mg atoms or Si atoms to be counted that satisfy the distance condition is a specific (reference) Mg
  • the number is 3 including atoms or Si atoms.
  • the cluster described above is a cluster generated by the reheating treatment after the solution treatment and the quenching treatment described above and in detail later.
  • the GP zone or the cluster that promotes the precipitation of ⁇ ′ phase which increases the strength in the artificial aging or baking coating treatment, is the Mg / Si cluster as described above, and this cluster is 50 to 150 after solution hardening.
  • a cluster that suppresses the precipitation of GP zone or ⁇ ′ phase in artificial aging or baking coating treatment is a Si-rich cluster, whereas this cluster is kept at room temperature after solution hardening (room temperature). (For example, village: light metal vol. 56, described on page 595).
  • the structure factor contributing to the strength at the time of artificial aging treatment or baking coating treatment is It was found that it was not size (composition) but size.
  • the correspondence between the size and number density of the clusters and the strength at the time of artificial aging or bake coating heat treatment was clarified only after analyzing the definition as described above.
  • the cluster of the present invention is generated by reheating treatment after solution treatment and quenching treatment. That is, the aggregate of the atoms includes at least 30 Mg atoms or Si atoms or both in total, and any of the atoms of Mg atoms or Si atoms contained therein is the reference.
  • the cluster is a cluster having a distance of 0.75 nm or less from one of the other atoms adjacent to the atom.
  • the clusters formed by the room temperature holding are measured by a three-dimensional atom probe field ion microscope, and even if they are aggregates of atoms, the number of atoms outside the scope of the present invention It has a cluster density. Therefore, the provision of the cluster (atomic assembly) of the present invention is distinguished from the cluster formed by the room temperature retention (room temperature aging), and added or contained Mg or Si is consumed in this cluster. It is also a rule to prevent.
  • the average number density of clusters (atomic aggregates) defined in the present invention is less than 1.0 ⁇ 10 5 / ⁇ m 3 , the amount of the clusters themselves is insufficient, and the clusters formed by the room temperature aging This means that most of the added (containing) Mg and Si is consumed.
  • the coating baking treatment is performed at 150 ° C. ⁇ 20 after standing at room temperature for a long time (room temperature aging).
  • the improvement in BH property when the time is shortened at a low temperature such as minutes is only about 30 to 40 MPa as conventional with 0.2% proof stress. Therefore, higher desired BH properties cannot be obtained under such conditions.
  • the 6000 series aluminum alloy plate targeted by the present invention is required to have excellent properties such as formability, BH property, strength, weldability, and corrosion resistance as a plate for an automobile outer plate.
  • the composition of the aluminum alloy plate includes, by mass, Mg: 0.2 to 2.0%, Si: 0.3 to 2.0%, the balance being Al and inevitable It shall consist of mechanical impurities.
  • % display of content of each element means the mass% altogether.
  • the 6000 series aluminum alloy plate targeted by the present invention is an excess Si type 6000 series aluminum alloy plate having a better BH property and a Si / Mg mass ratio of Si / Mg of 1% or more. Is preferred.
  • the 6000 series aluminum alloy sheet secures formability by reducing the yield strength during press molding and bending, and is age-hardened by heating during relatively low temperature artificial aging treatment such as paint baking treatment of the panel after molding. Yield strength is improved, and it has excellent age-hardening ability (BH property) that can secure the required strength.
  • the excess Si type 6000 series aluminum alloy plate is more excellent in this BH property than the 6000 series aluminum alloy plate having a mass ratio Si / Mg of less than 1.
  • these other elements other than Mg and Si are basically impurities or elements that may be included, and the content (allowable amount) at each element level in accordance with AA or JIS standards.
  • the following elements are allowed to be contained in the range below the upper limit amount in accordance with AA to JIS standards defined below. Specifically, Mn: 1.0% or less (excluding 0%), Cu: 1.0% or less (excluding 0%), Fe: 1.0% or less (excluding 0%) %), Cr: 0.3% or less (excluding 0%), Zr: 0.3% or less (excluding 0%), V: 0.3% or less (provided that 1% or more of Ti: 0.05% or less (excluding 0%), Zn: 1.0% or less (excluding 0%), In addition to the basic composition described above, it may further be included.
  • Si 0.3 to 2.0% Si, together with Mg, is an important element for the cluster formation defined in the present invention.
  • 6000 series aluminum alloy plate of the present invention it is the most important element for combining various properties such as total elongation that affect the press formability.
  • Si / Mg is made to be 1.0 or more in mass ratio, and generally said excess It is preferable to have a 6000 series aluminum alloy composition in which Si is further contained in excess of Mg rather than Si type.
  • Si is set in the range of 0.3 to 2.0%.
  • Mg 0.2-2.0% Mg is also an important element for cluster formation as defined in the present invention together with Si.
  • it is essential to form aging precipitates that contribute to strength improvement together with Si, exhibit age hardening ability, and obtain the necessary proof strength as a panel Elements.
  • the Mg content is in the range of 0.2 to 2.0%, and the Si / Mg content is 1.0% or more by mass ratio.
  • the aluminum alloy sheet of the present invention is a conventional process or a publicly known process.
  • the aluminum alloy ingot having the above-described 6000 series component composition is subjected to homogenization heat treatment after casting, and is subjected to hot rolling and cold rolling to be predetermined. It is manufactured by being subjected to a tempering treatment such as solution hardening and quenching.
  • an ordinary molten casting method such as a continuous casting method and a semi-continuous casting method (DC casting method) is appropriately selected for the molten aluminum alloy adjusted to be dissolved within the above-mentioned 6000 series component composition range.
  • the average cooling rate at the time of casting is as large as possible (fast) from the liquidus temperature to the solidus temperature of 30 ° C./min. Is preferred.
  • homogenization heat treatment Next, the cast aluminum alloy ingot is subjected to a homogenization heat treatment prior to hot rolling.
  • the purpose of this homogenization heat treatment (soaking) is to homogenize the structure, that is, to eliminate segregation in crystal grains in the ingot structure.
  • the conditions are not particularly limited as long as the object is achieved, and normal one-time or one-stage processing may be performed.
  • the homogenization heat treatment temperature is appropriately selected from the range of 500 ° C. or more and less than the melting point, and the homogenization time is 4 hours or more.
  • this homogenization temperature is low, segregation within the crystal grains cannot be sufficiently eliminated, and this acts as a starting point of fracture, so that stretch flangeability and bending workability are deteriorated. Thereafter, even if the hot rolling is started immediately or the hot rolling is started after cooling to an appropriate temperature, the number density of clusters defined in the present invention can be controlled.
  • Hot rolling is composed of an ingot (slab) rough rolling process and a finish rolling process, depending on the thickness of the rolled sheet.
  • a reverse or tandem rolling mill is appropriately used.
  • the predetermined Mg—Si compound defined in the present invention cannot be obtained under the condition that the hot rolling (rough rolling) start temperature exceeds 450 ° C. Moreover, if the hot rolling start temperature is less than 350 ° C., the hot rolling itself becomes difficult. Therefore, the hot rolling start temperature is set to 350 to 580 ° C., more preferably 350 to 450 ° C.
  • Hot rolled sheet annealing (Hot rolled sheet annealing) Annealing (roughening) of the hot-rolled sheet before cold rolling is not always necessary, but it can be performed to further improve properties such as formability by refining crystal grains and optimizing the texture. good.
  • Cold rolling In cold rolling, the hot-rolled sheet is rolled to produce a cold-rolled sheet (including a coil) having a desired final thickness.
  • the cold rolling rate is desirably 60% or more, and intermediate annealing may be performed between the cold rolling passes for the same purpose as the roughening. .
  • the solution treatment and quenching treatment may be heating and cooling by a normal continuous heat treatment line, and is not particularly limited. However, since it is desirable to obtain a sufficient solid solution amount of each element and, as described above, it is desirable that the crystal grains are finer, a solution treatment temperature of 520 ° C. or higher is applied at a heating rate of 5 ° C./second or higher. It is desirable to carry out the heating and maintaining for 0 to 10 seconds.
  • the cooling rate during quenching is 10 ° C./second or more.
  • Si, Mg 2 Si and the like are likely to precipitate on the grain boundaries, which tends to be the starting point of cracks during press molding and bending, and these formability is reduced.
  • the quenching treatment is performed by selecting water cooling means and conditions such as air cooling such as a fan, mist, spray, and immersion, respectively.
  • reheating treatment After quenching and cooling to this room temperature, the cold-rolled sheet is reheated within one hour.
  • reheating is performed in a temperature range of 70 to 130 ° C. at an average heating rate (temperature increase rate) of 1 ° C./second (S) or more, and held at the ultimate reheating temperature for 0.2 to 1 hour. Allow to cool to room temperature with an average cooling rate in the range of 1-20 ° C./hr.
  • the room temperature holding (standing) time from the end of quenching cooling to the reheating treatment exceeds 1 hour, or the average heating rate (heating rate) is less than 1 ° C./second (S)
  • the room temperature is maintained ( Clusters formed by room temperature aging) are generated first, and the number density of the predetermined clusters defined in the present invention cannot be obtained, and bake hardenability in a low temperature and short time after the room temperature aging cannot be obtained.
  • the room temperature holding (standing) time from the end of quenching cooling to the reheating treatment is shorter.
  • the average heating rate (temperature increase rate) is preferably fast, and is preferably 1 ° C./second (S) or higher, preferably 5 ° C./second (S) or higher, by high-speed heating means such as high-frequency heating.
  • the reheating temperature is less than 70 ° C.
  • the predetermined cluster density defined in the present invention cannot be obtained, and the bake hardenability in a short time after the room temperature aging cannot be obtained.
  • the heating temperature exceeds 130 ° C., it is formed exceeding the predetermined cluster density defined in the present invention, or an intermetallic compound phase such as ⁇ ′ different from the cluster is formed, and formability and bending work are performed. Reduce sex.
  • the average heating rate temperature increase rate
  • the holding time of the ultimate reheating temperature and the subsequent average cooling rate, as well as the reheating temperature
  • the predetermined cluster density defined in the present invention cannot be obtained, and in a low temperature and short time after the room temperature aging.
  • the bake hardenability cannot be obtained. Further, if held for an excessively long time, it is formed exceeding the predetermined cluster density defined in the present invention, or forms an intermetallic compound phase such as ⁇ different from the cluster, and formability and bending workability May be reduced.
  • the 6000 series aluminum alloy plate shown in Table 1 was produced by changing the reheating treatment conditions after solution treatment and quenching.
  • the display which has made the numerical value in each element blank shows that content is below a detection limit.
  • the concrete production conditions of the aluminum alloy plate are as follows. Ingots having respective compositions shown in Table 1 were commonly melted by DC casting. At this time, in common with each example, the average cooling rate during casting was set to 50 ° C./min from the liquidus temperature to the solidus temperature.
  • the ingot was subjected to soaking treatment at 560 ° C. for 4 hours in common with each example, and then hot rough rolling was started. And in each example, it hot-rolled to thickness 3.5mm by the subsequent finish rolling, and was set as the hot rolled sheet (coil).
  • the aluminum alloy sheet after hot rolling is common to each example, and is cold-rolled without rough annealing after hot rolling and intermediate annealing in the middle of cold, and in common with each example, a thickness of 1.0 mm A cold rolled plate (coil) was used.
  • each cold-rolled plate is heated to a solution treatment temperature of 550 ° C. with an average heating rate of up to 500 ° C. at an average heating rate of up to 500 ° C., and immediately, A solution-quenching treatment was performed to cool to room temperature at an average cooling rate of 50 ° C./second. Thereafter, a reheating treatment for heating and cooling was performed under the conditions shown in Table 2 which are different from the examples.
  • test plate ⁇ ⁇ ⁇ ⁇ (blank) was cut out from each final product plate after being left at room temperature for 2 months, and the structure of each test plate was measured and evaluated. These results are shown in Table 2.
  • JISZ2201 No. 5 test piece 25 mm ⁇ 50 mmGL ⁇ plate thickness
  • the tensile direction of the test piece at this time was the direction perpendicular to the rolling direction.
  • the tensile speed was 5 mm / min up to 0.2% proof stress and 20 mm / min after proof stress.
  • the N number for the measurement of mechanical properties was 5, and each was calculated as an average value.
  • Hem workability Hem workability was measured only for each test plate after standing at room temperature for 2 months after the tempering treatment.
  • a strip-shaped test piece with a width of 30 mm was used, and after bending 90 ° with an internal bend R of 1.0 mm by a down flange, a 1.0 mm thick inner was sandwiched, and the bent portion was further bent inwardly to about 130 degrees.
  • Pre-hem processing was performed, and flat hem processing was performed in which the end was closely attached to the inner by bending 180 degrees.
  • the surface state of the flat hem bent portion (edge curved portion) such as rough skin, minute cracks, and large cracks was visually observed and visually evaluated according to the following criteria. 0: No cracking, rough skin, 1: Mild rough skin, 2; Deep rough skin, 3: Small surface crack, 4; Continuous surface crack, 5: Break
  • each of the inventive examples is manufactured and tempered within the composition range of the present invention and in a preferable condition range. For this reason, each invention example satisfies the cluster conditions defined in the present invention, as shown in Table 2.
  • each invention example is excellent in BH property even after long-term aging at room temperature after the tempering treatment, and even when the coating baking and curing is performed at a low temperature in a short time. Further, even after long-term aging at room temperature after the tempering treatment, the hem workability is excellent.
  • Comparative Examples 14 to 20 in Table 2 use Invention Alloy Example 2 in Table 1.
  • the solution treatment conditions and the reheat treatment conditions are out of the preferred ranges.
  • these comparative examples are inferior in the BH property because the cluster conditions defined in the present invention are not met.
  • Comparative Examples 21, 22, 23, and 27 in Table 2 are manufactured within a preferable range including reheating treatment conditions, the contents of the essential elements Mg or Si are out of the scope of the present invention. For this reason, as shown in Table 2, the condition of the cluster defined in the present invention is removed, and the BH property is inferior.
  • Comparative Examples 24, 25, 26, and 28 in Table 2 also have inferior BH properties because the cluster conditions defined in the present invention are not met.
  • the critical significance and effect for sharing are supported.
  • the present invention it is possible to provide a 6000 series aluminum alloy sheet having both BH properties under low temperature and short time conditions after long-term room temperature aging and formability after long-term room temperature aging.
  • the application of the 6000 series aluminum alloy plate can be expanded for transporting devices such as automobiles, ships or vehicles, home appliances, buildings, structural members and parts, and particularly for transporting devices such as automobiles. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)
  • Body Structure For Vehicles (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

 本発明のアルミニウム合金板は、Mg、Siを特定量含む6000系アルミニウム合金板の、3次元アトムプローブ電界イオン顕微鏡により測定された、Mg原子かSi原子かのいずれかを含み、互いの原子同士の距離が一定以下である、BH性に効果が大きい特定の原子の集合体を一定の数密度で含ませることによって、長期室温時効後の低温短時間条件でのBH性を向上させる。

Description

焼付け塗装硬化性に優れたアルミニウム合金板
 本発明はAl-Mg-Si系アルミニウム合金板に関するものである。本発明で言うアルミニウム合金板とは、熱間圧延板や冷間圧延板などの圧延板であって、溶体化処理および焼入れ処理などの調質が施されたアルミニウム合金板を言う。また、以下、アルミニウムをAlとも言う。
 近年、地球環境などへの配慮から、自動車等の車両の軽量化の社会的要求はますます高まってきている。かかる要求に答えるべく、自動車パネル、特にフード、ドア、ルーフなどの大型ボディパネル(アウタパネル、インナパネル)の材料として、鋼板等の鉄鋼材料に代えて、成形性や焼付け塗装硬化性に優れた、より軽量なアルミニウム合金材の適用が増加しつつある。
 この内、自動車のフード、フェンダー、ドア、ルーフ、トランクリッドなどのパネル構造体の、アウタパネル (外板) やインナパネル( 内板) 等のパネルには、薄肉でかつ高強度アルミニウム合金板として、Al-Mg-Si系のAA乃至JIS 6000系 (以下、単に6000系とも言う) アルミニウム合金板の使用が検討されている。
 この6000系アルミニウム合金板は、Si、Mgを必須として含み、特に過剰Si型の6000系アルミニウム合金は、これらSi/Mgが質量比で1以上である組成を有し、優れた時効硬化能を有している。このため、プレス成形や曲げ加工時には低耐力化により成形性を確保するとともに、成形後のパネルの塗装焼付処理などの、比較的低温の人工時効(硬化)処理時の加熱により時効硬化して耐力が向上し、パネルとしての必要な強度を確保できる焼付け塗装硬化性(以下、ベークハード性=BH性、焼付硬化性とも言う) がある。
 また、6000系アルミニウム合金板は、Mg量などの合金量が多い他の5000系アルミニウム合金などに比して、合金元素量が比較的少ない。このため、これら6000系アルミニウム合金板のスクラップを、アルミニウム合金溶解材 (溶解原料) として再利用する際に、元の6000系アルミニウム合金鋳塊が得やすく、リサイクル性にも優れている。
 一方、自動車のアウタパネルは、周知の通り、アルミニウム合金板に対し、プレス成形における張出成形時や曲げ成形などの成形加工が複合して行われて製作される。例えば、フードやドアなどの大型のアウタパネルでは、張出などのプレス成形によって、アウタパネルとしての成形品形状となされ、次いで、このアウタパネル周縁部のフラットヘムなどのヘム (ヘミング) 加工によって、インナパネルとの接合が行われ、パネル構造体とされる。
 ここで、6000系アルミニウム合金は、優れたBH性を有するという利点がある反面で、室温時効性を有し、溶体化焼入れ処理後、数ヶ月間の室温保持で時効硬化して強度が増加することにより、パネルへの成形性、特に曲げ加工性が低下する課題があった。例えば、6000系アルミニウム合金板を自動車パネル用途に用いる場合、アルミメーカーで溶体化焼入れ処理された後(製造後)、自動車メーカーでパネルに成形加工されるまでに、通常は1~4ヶ月間程度室温におかれ(室温放置され)、この間で、かなり時効硬化(室温時効)することとなる。特に、厳しい曲げ加工が入るアウタパネルにおいては、製造後1ヵ月経過後では、問題無く成形可能であっても、3ヶ月経過後では、ヘム加工時に割れが生じるなどの問題が有った。したがって、自動車パネル用、特にアウタパネル用の6000系アルミニウム合金板では、1~4ヶ月間程度の比較的長期に亙る室温時効を抑制する必要がある。
 更に、このような室温時効が大きい場合には、BH性が低下して、前記した成形後のパネルの塗装焼付処理などの、比較的低温の人工時効( 硬化) 処理時の加熱によっては、パネルとしての必要な強度までに、耐力が向上しなくなるという問題も生じる。
 このため、従来から、6000系アルミニウム合金のBH性の向上および室温時効の抑制については、種々の提案がなされている。例えば、特許文献1では、溶体化および焼入れ処理時に、冷却速度を段階的に変化させることにより、製造後の室温での経過7日後から90日後の強度変化を抑制する提案がなされている。また、特許文献2では、溶体化および焼入れ処理後、60分以内に、50~150℃の温度に10~300分保持することにより、BH性と形状凍結性を得る提案がなされている。また、特許文献3には、溶体化および焼入れ処理の際に、1段目の冷却温度とその後の冷却速度を規定することで、BH性と形状凍結性を得る提案がなされている。
 また、特許文献4では溶体化焼入れ後の熱処理でBH性を向上させることが提案されている。特許文献5ではDSC(Differential scanning calorimetry、示差走査熱量測定)法の吸熱ピーク規定によるBH性向上が提案されている。特許文献6では同じくDSCの発熱ピーク規定によるBH性向上が提案されている。
 しかし、これら特許文献1~6は、6000系アルミニウム合金板のBH性や室温時効性に直接影響するクラスタ(原子の集合体)については、あくまでその挙動を間接的に類推するものに過ぎなかった。
 これに対して、特許文献7では、6000系アルミニウム合金板のBH性や室温時効性に影響するクラスタ(原子の集合体)を直接測定して、規定する試みがなされている。すなわち、6000系アルミニウム合金板の組織を100万倍の透過型電子顕微鏡によって分析した際に観察されるクラスタ(原子の集合体)の内、円等価直径が1~5nmの範囲のクラスタの平均数密度を4000~30000個/μmの範囲で規定して、BH性に優れ、室温時効を抑制したものとしている。
日本国特開2000-160310号公報 日本国特許第3207413号公報 日本国特許第2614686号公報 日本国特開平4-210456号公報 日本国特開平10-219382号公報 日本国特開2005-139537号公報 日本国特開2009-242904号公報
 ただ、これら従来技術の室温時効後のBH性は、自動車車体の製造ラインの効率化のために、その車体塗装焼付け処理がより低温で短時間化された条件の下では、未だ改善の余地がある。すなわち、これら従来技術の車体塗装焼付け処理が150℃×20分などの低温で短時間化された場合の、室温時効後のBH性の向上は0.2%耐力で30~40MPa程度であり、より高いBH性が求められる。
 このような課題に鑑み、本発明の目的は、室温時効後に低温で短時間化された条件の車体塗装焼付け処理であっても、高いBH性が発揮できるAl―Si―Mg系アルミニウム合金板を提供することである。
 この目的を達成するために、本発明のアルミニウム合金板の要旨は、質量%で、Mg:0.2~2.0%、Si:0.3~2.0%、を含み、残部がAlおよび不可避的不純物からなるAl-Mg-Si系アルミニウム合金板であって、3次元アトムプローブ電界イオン顕微鏡により測定された原子の集合体として、その原子の集合体が、Mg原子かSi原子かのいずれか又は両方を合計で30個以上含み、これらに含まれるMg原子かSi原子のいずれの原子を基準としても、その基準となる原子と隣り合う他の原子のうちのいずれかの原子との互いの距離が0.75nm以下であり、これらの条件を満たす原子の集合体を1.0×10個/μm以上の平均数密度で含むことである。
 6000系アルミニウム合金においては、溶体化および焼入れ処理後に、室温保持、あるいは50~150℃の熱処理中に、Mg、Siがクラスタと呼ばれる原子の集合体を形成することが知られている。但し、室温保持と50~150℃の熱処理中とで生成するクラスタは、全くその挙動(性質)が異なる。
 室温保持で形成されるクラスタは、その後の人工時効又は焼付塗装処理において強度を上昇させるGPゾーン或いはβ’相の析出を抑制する。一方、50~150℃で形成されるクラスタ(或いはMg/Siクラスタ)は、逆に、GPゾーン或いはβ’相の析出を促進することが示されている(例えば、山田ら:軽金属vol.51、第215頁に記載)。
 ちなみに、前記特許文献7では、その段落0021~0025にかけて、これらのクラスタが、従来では、比熱測定や3DAP(3次元アトムプローブ)等によって解析されていると記載されている。そして、同時に、3DAPによるクラスタの解析では、観察されることによって、クラスタ自体の存在は裏付けられても、本発明で規定する前記クラスタのサイズや数密度までは不明或いは限定的にしか測定できなかったと記載されている。
 確かに、6000系アルミニウム合金において、前記クラスタを3DAP(3次元アトムプローブ)によって解析する試みは従来からされている。しかし、前記特許文献7の記載する通り、クラスタ自体の存在は裏付けられても、そのクラスタのサイズや数密度までは不明であった。
 これは、3DAPにより測定される原子の集合体(クラスタ)のうちの、どのクラスタとBH性とが大きく相関するのか不明であり、BH性に大きく関わる原子の集合体がどれであるのか不明であったことによる。
 これに対して、本発明は、これを明確にしたもので、3DAPにより測定される原子の集合体(クラスタ)のうち、前記規定の通り、Mg原子かSi原子かを合計で特定以上含み、これらに含まれる隣り合う原子同士の互いの距離が特定以下であるような特定のクラスタと、BH性とが大きく相関することを知見した。そして、これらの条件を満たす原子の集合体の数密度を増すことによって、室温時効後に低温で短時間化された条件の車体塗装焼付け処理であっても、高いBH性が発揮できることを知見した。
 したがって、本発明によれば、室温時効し、車体塗装焼付け処理が150℃×20分などの低温で短時間化された場合であっても、より高いBH性が発揮できるAl-Si-Mg系アルミニウム合金板を提供できる。
 以下に、本発明の実施の形態につき、要件ごとに具体的に説明する。
(3DAPの測定原理と測定方法)
 3DAP(3次元アトムプローブ)は、電界イオン顕微鏡(FIM)に、飛行時間型質量分析器を取り付けたものである。このような構成により、電界イオン顕微鏡で金属表面の個々の原子を観察し、飛行時間質量分析により、これらの原子を同定することのできる局所分析装置である。また、3DAPは、試料から放出される原子の種類と位置とを同時に分析可能であるため、原子の集合体の構造解析上、非常に有効な手段となる。このため、公知技術として、前記した通り、磁気記録膜や電子デバイスあるいは鋼材の組織分析などに使用されている。また、最近では、前記した通り、アルミニウム合金板の組織のクラスターの判別などにも使用されている。
 この3DAPでは、電界蒸発とよばれる高電界下における試料原子そのもののイオン化現象を利用する。試料原子が電界蒸発するために必要な高電圧を試料に印加すると、試料表面から原子がイオン化されこれがプローブホールを通りぬけて検出器に到達する。
 この検出器は、位置敏感型検出器であり、個々のイオンの質量分析(原子種である元素の同定)とともに、個々のイオンの検出器に至るまでの飛行時間を測定することによって、その検出された位置(原子構造位置)を同時に決定できるようにしたものである。したがって、3DAPは、試料先端の原子の位置及び原子種を同時に測定できるため、試料先端の原子構造を、3次元的に再構成、観察できる特長を有する。また、電界蒸発は、試料の先端面から順次起こっていくため、試料先端からの原子の深さ方向分布を原子レベルの分解能で調べることができる。
 この3DAPは高電界を利用するため、分析する試料は、金属等の導電性が高いことが必要で、しかも、試料の形状は、一般的には、先端径が100nmφ前後あるいはそれ以下の極細の針状にする必要がある。このため、測定対象となるアルミニウム合金板の板厚中央部などから試料を採取して、この試料を精密切削装置で切削および電解研磨して、分析用の極細の針状先端部を有する試料を作製する。測定方法としては、例えば、Imago Scientific Instruments社製の「LEAP3000」を用いて、この先端を針状に成形したアルミニウム合金板試料に、1kVオーダーの高パルス電圧を印加し、試料先端から数百万個の原子を継続的にイオン化して行う。イオンは、位置敏感型検出器によって検出し、パルス電圧を印加されて、試料先端から個々のイオンが飛び出してから、検出器に到達するまでの飛行時間から、イオンの質量分析(原子種である元素の同定)を行う。
 更に、電界蒸発が、試料の先端面から順次規則的に起こっていく性質を利用して、イオンの到達場所を示す、2次元マップに適宜深さ方向の座標を与え、解析ソフトウエア「IVAS」を用いて、3次元マッピング(3次元での原子構造:アトムマップの構築)を行う。これによって、試料先端の3次元アトムマップが得られる。
 この3次元アトムマップを、更に、析出物やクラスタに属する原子を定義する方法であるMaximum Separation Methodを用いて、原子の集合体(クラスタ)の解析を行う。この解析に際しては、Mg原子かSi原子かのいずれか又は両方の数(合計で30個以上)と、互いに隣り合うMg原子かSi原子か同士の距離(間隔)、そして、前記特定の狭い間隔(0.75nm以下)を有するMg原子かSi原子かの数をパラメータとして与える。
 そして、Mg原子かSi原子かのいずれか又は両方を合計で30個以上含み、これらに含まれるMg原子かSi原子のいずれの原子を基準としても、その基準となる原子と隣り合う他の原子のうちのいずれかの原子との互いの距離が0.75nm以下であり、これらの条件を満たす原子の集合体を、本発明の原子の集合体と定義する。その上で、この定義に当てはまる原子の集合体の分散状態を評価して、原子の集合体の数密度を、測定試料数が3個以上で平均化して、1μm当たりの平均密度(個/μm)として計測し、定量化する。
(3DAPによる原子の検出効率)
 但し、これら3DAPによる原子の検出効率は、現在のところ、イオン化した原子のうちの50%程度が限界であり、残りの原子は検出できない。この3DAPによる原子の検出効率が、将来的に向上するなど、大きく変動すると、本発明が規定する原子の集合体の平均個数密度(個/μm)の3DAPによる測定結果が変動してくる可能性がある。したがって、この原子の集合体の平均個数密度の測定に再現性を持たせるためには、3DAPによる原子の検出効率は約50%と略一定にすることが好ましい。
(板のクラスタ測定)
 これら3DAPによるクラスタの測定は、調質が施された後のAl-Mg-Si系アルミニウム合金板の任意の板厚中央部の部位10箇所について行い、これらの数密度の各測定値を平均化して、本発明で規定する平均数密度とする。
(アルミニウム合金板組織)
 前記した通り、本発明アルミニウム合金板は、圧延後に溶体化および焼入れ処理などの調質が施された後の板であって、プレス成形などによってパネルに成形加工される前の板のことを言う。プレス成形される前の0.5~4ヶ月間程度の比較的長期に亙る室温放置された際の室温時効を抑制するためには、当然ながら、この室温放置される前の、調質が施された後の板の組織状態を本発明で規定する組織とする必要がある。
(本発明のクラスタの規定)
 先ず、室温放置される前の、前記溶体化および焼入れ処理などの調質が施された後のAl-Mg-Si系アルミニウム合金板の任意の板厚中央部における組織を、3次元アトムプローブ電界イオン顕微鏡により、前記した方法で測定する。この測定された組織に存在する原子の集合体として、本発明では、先ず、その原子の集合体が、Mg原子かSi原子かのいずれか又は両方を合計で30個以上含むものとする。なお、この原子の集合体に含まれるMg原子やSi原子の個数は多いほどよく、その上限は特に規定しないが、製造限界からすると、この原子の集合体に含まれるMg原子やSi原子の個数の上限は概ね10000個程度である。
 そして、さらに、これら原子の集合体に含まれるMg原子かSi原子のいずれの原子を基準としても、その基準となる原子と隣り合う他の原子のうちのいずれかの原子との互いの距離が0.75nm以下であるものを、本発明で規定する(本発明の規定を満たす)原子の集合体とする。この互いの距離0.75nmは、MgやSiの互いの原子間の距離が近接し、長期の室温時効後の低温短時間でのBH性向上効果がある原子の集合体(クラスタ)の数密度を保障するために定めた数値である。本発明者らは、これまでに低温で短時間化された条件の車体塗装焼付け処理でも高いBH性を発揮できるアルミ合金板と原子レベルの集合体の関係を詳細に検討した結果、上記定義で規定される原子集合体の数密度が大きいことが、高いBH性を発揮する組織形態であることを実験的に見出した。従って、原子間の距離0.75nmの技術的意味合いは十分に明らかになっていないが、高いBH性を発揮する原子集合体の数密度を厳密に保証するために必要であり、そのために定めた数値である。
 その上で、本発明では、これらの条件を満たす(本発明で規定する)原子の集合体を1.0×10個/μm以上の平均数密度で含むものとする。なお、この原子の集合体の平均数密度は多いほどよく、その上限は特に規定しないが、製造限界からすると、この原子の集合体の平均数密度は概ね1.0×10個/μm程度である。
 本発明で規定する原子の集合体(クラスタ)は、Mg原子とSi原子とを両方含む場合が最も多いものの、Mg原子を含むがSi原子を含まない場合や、Si原子を含むがMg原子を含まない場合を含む。また、Mg原子やSi原子だけで構成されるとは限らず、これらに加えて、非常に高い確率でAl原子を含む。
 更に、アルミニウム合金板の成分組成によっては、合金元素や不純物として含む、Fe、Mn、Cu、Cr、Zr、V、TiあるいはZnなどの原子が原子の集合体中に含まれ、これらその他の原子が3DAP分析によりカウントされる場合が必然的に生じる。しかし、これらその他の原子(合金元素や不純物由来)が原子の集合体に含まれるとしても、Mg原子やSi原子の総数に比べると少ないレベルである。それゆえ、このような、その他の原子を集合体中に含む場合でも、前記規定(条件)を満たすものは、本発明の原子の集合体として、Mg原子やSi原子のみからなる原子の集合体と同様に機能する。したがって、本発明で規定する前記原子の集合体は、前記した規定さえ満足すれば、他にどんな原子を含んでも良い。
 また、本発明の「これらに含まれるMg原子かSi原子のいずれの原子を基準としてもその基準となる原子と隣り合う他の原子のうちのいずれかの原子との互いの距離が0.75nm以下である」とは、原子の集合体に存在する全てのMg原子やSi原子が、その周囲に互いの距離が0.75nm以下であるMg原子やSi原子を少なくとも1つ有しているという意味である。
 本発明の原子の集合体における、原子同士の距離の規定は、これらに含まれるMg原子かSi原子のいずれの原子を基準としても、その基準となる原子と隣り合う他の原子のうちの全ての原子の距離が各々全て0.75nm以下にならなくてもよく、反対に、各々全て0.75nm以下になっていてもよい。言い換えると、距離が0.75nmを超える他のMg原子やSi原子が隣り合っていても良く、特定の(基準となる)Mg原子かSi原子の周りに、この規定距離(間隔)を満たす、他のMg原子かSi原子が最低1個あればいい。
 そして、この規定距離を満たす隣り合う他のMg原子かSi原子が1個ある場合には、距離の条件を満たす、カウントすべきMg原子かSi原子の数は、特定の(基準となる)Mg原子かSi原子を含めて2個となる。また、この規定距離を満たす隣り合う他のMg原子かSi原子が2個ある場合には、距離の条件を満たす、カウントすべきMg原子かSi原子の数は、特定の(基準となる)Mg原子かSi原子を含めて3個となる。
 以上説明したクラスタは、前記し、また詳しくは後述する、溶体化および焼入れ処理後の再加熱処理によって生成させるクラスタである。これまで、人工時効又は焼付塗装処理において強度を上昇させるGPゾーン或いはβ’相の析出を促進するクラスタは、前述したようにMg/Siクラスタであり、このクラスタは溶体化焼入後に50~150℃の熱処理で形成されるのに対して、人工時効又は焼付塗装処理においてGPゾーン或いはβ’相の析出を抑制するクラスタはSiリッチクラスタであり、このクラスタは溶体化焼入後に室温保持(室温時効)で形成されることが報告されている(例えば、里:軽金属vol.56、第595頁に記載)。しかしながら、本発明者らが人工時効処理時又は焼付塗装処理時の強度とクラスタの関係を詳細に解析した結果、人工時効処理時又は焼付塗装処理時の強度に寄与している組織因子は、クラスタの種類(組成)ではなく、サイズであることを見出した。また、そのクラスタのサイズや数密度も、前述したような定義で解析して初めて、人工時効又は焼付塗装熱処理時の強度との対応が明確化になった。
 これら両クラスタ(原子集合体)の内、溶体化および焼入れ処理後の再加熱処理によって生成させるのが、本発明のクラスタである。すなわち、その原子の集合体が、Mg原子かSi原子かのいずれか又は両方を合計で30個以上含み、これらに含まれるMg原子かSi原子のいずれの原子を基準としても、その基準となる原子と隣り合う他の原子のうちのいずれかの原子との互いの距離が0.75nm以下のクラスタである。
 これに対して、前記室温保持(室温時効)で形成されるクラスタは、3次元アトムプローブ電界イオン顕微鏡による測定で、原子の集合体ではあっても、前記本発明の規定を外れる原子の個数やクラスタの数密度を有する。したがって、本発明のクラスタ(原子集合体)の規定は、前記室温保持(室温時効)で形成されるクラスタと区別するとともに、このクラスタに、添加した(含有する)MgやSiが消費されるのを防ぐ規定でもある。
 前記本発明で規定するクラスタ(原子集合体)の平均数密度が1.0×10個/μm未満では、このクラスタ自体の形成量が不十分となり、前記室温時効で形成されるクラスタに、添加した(含有する)MgやSiの多くが消費されていることを意味する。
 このため、GPゾーン或いはβ’相の析出を促進し、BH性を向上する効果が例え有ったとしても、長期に亙る室温放置(室温時効)後では、前記塗装焼付け処理が150℃×20分などの低温で短時間化された場合のBH性の向上は0.2%耐力で従来の30~40MPa程度にとどまる。したがって、このような条件下で、より高い所望のBH性を得ることができなくなる。
(化学成分組成)
 次に、6000系アルミニウム合金板の化学成分組成について、以下に説明する。本発明が対象とする6000系アルミニウム合金板は、前記した自動車の外板用の板などとして、優れた成形性やBH性、強度、溶接性、耐食性などの諸特性が要求される。
 このような要求を満足するために、アルミニウム合金板の組成は、質量%で、Mg:0.2~2.0%、Si:0.3~2.0%を含み、残部がAlおよび不可避的不純物からなるものとする。なお、各元素の含有量の%表示は全て質量%の意味である。
 本発明が対象とする6000系アルミニウム合金板は、BH性がより優れた、SiとMgとの質量比Si/Mgが1 以上であるような過剰Si型の6000系アルミニウム合金板とされるのが好ましい。6000系アルミニウム合金板は、プレス成形や曲げ加工時には低耐力化により成形性を確保するとともに、成形後のパネルの塗装焼付処理などの、比較的低温の人工時効処理時の加熱により時効硬化して耐力が向上し、必要な強度を確保できる優れた時効硬化能(BH性)を有している。この中でも、過剰Si型の6000系アルミニウム合金板は、質量比Si/Mgが1未満の6000系アルミニウム合金板に比して、このBH性がより優れている。
 本発明では、これらMg、Si以外のその他の元素は基本的には不純物あるいは含まれても良い元素であり、AA乃至JIS規格などに沿った各元素レベルの含有量 (許容量) とする。
 すなわち、資源リサイクルの観点から、本発明でも、合金の溶解原料として、高純度Al地金だけではなく、Mg、Si以外のその他の元素を添加元素(合金元素)として多く含む6000系合金やその他のアルミニウム合金スクラップ材、低純度Al地金などを多量に使用した場合には、下記のような他の元素が必然的に実質量混入される。そして、これらの元素を敢えて低減する精錬自体がコストアップとなり、ある程度含有する許容が必要となる。また、実質量含有しても、本発明目的や効果を阻害しない含有範囲がある。
 したがって、本発明では、このような下記元素を各々以下に規定するAA乃至JIS規格などに沿った上限量以下の範囲での含有を許容する。具体的には、Mn:1.0%以下(但し、0%を含まず)、Cu:1.0%以下(但し、0%を含まず)、Fe:1.0%以下(但し、0%を含まず)、Cr:0.3%以下(但し、0%を含まず)、Zr:0.3%以下(但し、0%を含まず)、V:0.3%以下(但し、0%を含まず)、Ti:0.05%以下(但し、0%を含まず)、Zn:1.0%以下(但し、0%を含まず)の1種または2種以上を、この範囲で、上記した基本組成に加えて、更に含んでも良い。
 上記6000系アルミニウム合金における、各元素の含有範囲と意義、あるいは許容量について以下に説明する。
Si:0.3~2.0%
 SiはMgとともに、本発明で規定する前記クラスタ形成の重要元素である。また、固溶強化と、塗装焼き付け処理などの前記低温での人工時効処理時に、強度向上に寄与する時効析出物を形成して、時効硬化能を発揮し、自動車のアウタパネルとして必要な強度(耐力)を得るための必須の元素である。更に、本発明6000系アルミニウム合金板にあって、プレス成形性に影響する全伸びなどの諸特性を兼備させるための最重要元素である。
 また、パネルへの成形後の、より低温、短時間での塗装焼き付け処理での優れた時効硬化能を発揮させるためには、Si/Mgを質量比で1.0以上とし、一般に言われる過剰Si型よりも更にSiをMgに対し過剰に含有させた6000系アルミニウム合金組成とすることが好ましい。
 Si含有量が少なすぎると、Siの絶対量が不足するため、本発明で規定する前記クラスタを規定する数密度だけ形成させることができず、塗装焼付け硬化性が著しく低下する。更には、各用途に要求される全伸びなどの諸特性を兼備することができない。一方、Si含有量が多すぎると、粗大な晶出物および析出物が形成されて、曲げ加工性や全伸び等が著しく低下する。更に、溶接性も著しく阻害される。したがって、Siは0.3~2.0%の範囲とする。
Mg:0.2~2.0%
 Mgも、Siとともに本発明で規定する前記クラスタ形成の重要元素である。また、固溶強化と、塗装焼き付け処理などの前記人工時効処理時に、Siとともに強度向上に寄与する時効析出物を形成して、時効硬化能を発揮し、パネルとしての必要耐力を得るための必須の元素である。
 Mg含有量が少なすぎると、Mgの絶対量が不足するため、本発明で規定する前記クラスタを規定する数密度だけ形成させることができず、塗装焼付け硬化性が著しく低下する。このためパネルとして必要な耐力が得られない。一方、Mg含有量が多すぎると、粗大な晶出物および析出物が形成されて、曲げ加工性や全伸び等が著しく低下する。したがって、Mgの含有量は0.2~2.0%の範囲で、Si/Mgが質量比で1.0以上となるような量とする。
(製造方法)
 次ぎに、本発明アルミニウム合金板の製造方法について以下に説明する。本発明アルミニウム合金板は、製造工程自体は常法あるいは公知の方法であり、上記6000系成分組成のアルミニウム合金鋳塊を鋳造後に均質化熱処理し、熱間圧延、冷間圧延が施されて所定の板厚とされ、更に溶体化焼入れなどの調質処理が施されて製造される。
 但し、これらの製造工程中で、BH性を向上させるために本発明のクラスタを制御するためには、後述する通り、溶体化および焼入れ処理後の再加熱処理条件をより適正に制御する必要がある。また、他の工程においても、本発明の規定範囲内に前記クラスタを制御するための好ましい条件もある。
(溶解、鋳造冷却速度)
 先ず、溶解、鋳造工程では、上記6000系成分組成範囲内に溶解調整されたアルミニウム合金溶湯を、連続鋳造法、半連続鋳造法(DC鋳造法)等の通常の溶解鋳造法を適宜選択して鋳造する。ここで、本発明の規定範囲内にクラスタを制御するために、鋳造時の平均冷却速度について、液相線温度から固相線温度までを30℃/分以上と、できるだけ大きく(速く)することが好ましい。
 このような、鋳造時の高温領域での温度(冷却速度)制御を行わない場合、この高温領域での冷却速度は必然的に遅くなる。このように高温領域での平均冷却速度が遅くなった場合、この高温領域での温度範囲で粗大に生成する晶出物の量が多くなって、鋳塊の板幅方向,厚さ方向での晶出物のサイズや量のばらつきも大きくなる。この結果、本発明の範囲に前記規定クラスタを制御することができなくなる可能性が高くなる。
(均質化熱処理)
 次いで、前記鋳造されたアルミニウム合金鋳塊に、熱間圧延に先立って、均質化熱処理を施す。この均質化熱処理(均熱処理)は、組織の均質化、すなわち、鋳塊組織中の結晶粒内の偏析をなくすことを目的とする。この目的を達成する条件であれば、特に限定されるものではなく、通常の1回または1段の処理でも良い。
 均質化熱処理温度は、500℃以上で融点未満、均質化時間は4時間以上の範囲から適宜選択される。この均質化温度が低いと結晶粒内の偏析を十分に無くすことができず、これが破壊の起点として作用するために、伸びフランジ性や曲げ加工性が低下する。この後、直ちに熱間圧延を開始又は、適当な温度まで冷却保持した後に熱間圧延を開始しても、本発明で規定するクラスタの数密度に制御することはできる。
 この均質化熱処理を行った後、300℃~500℃の間を20~100℃/hrの平均冷却速度で室温まで冷却し、次いで20~100℃/hrの平均加熱速度で350℃~450℃まで再加熱し、この温度域で熱間圧延を開始することもできる。
 この均質化熱処理後の平均冷却速度および、その後の再加熱速度の条件を外れると、粗大なMg-Si化合物が形成される可能性が高くなる。
(熱間圧延)
 熱間圧延は、圧延する板厚に応じて、鋳塊 (スラブ) の粗圧延工程と、仕上げ圧延工程とから構成される。これら粗圧延工程や仕上げ圧延工程では、リバース式あるいはタンデム式などの圧延機が適宜用いられる。
 この際、熱延(粗圧延)開始温度が450℃を超える条件では、本発明で規定する所定のMg-Si化合物が得られない。また、熱延開始温度が350℃未満では熱延自体が困難となる。したがって、熱延開始温度は350~580℃、更に好ましくは350~450℃の範囲とする。
(熱延板の焼鈍)
 この熱延板の冷間圧延前の焼鈍 (荒鈍) は必ずしも必要ではないが、結晶粒の微細化や集合組織の適正化によって、成形性などの特性を更に向上させる為に実施しても良い。
(冷間圧延)
 冷間圧延では、上記熱延板を圧延して、所望の最終板厚の冷延板 (コイルも含む) に製作する。但し、結晶粒をより微細化させるためには、冷間圧延率は60%以上であることが望ましく、また前記荒鈍と同様の目的で、冷間圧延パス間で中間焼鈍を行っても良い。
(溶体化および焼入れ処理)
 冷間圧延後、溶体化焼入れ処理を行う。溶体化処理焼入れ処理については、通常の連続熱処理ラインによる加熱,冷却でよく、特に限定はされない。ただ、各元素の十分な固溶量を得ること、および前記した通り、結晶粒はより微細であることが望ましいことから、520℃以上の溶体化処理温度に、加熱速度5℃/秒以上で加熱して、0~10秒保持する条件で行うことが望ましい。
 また、成形性やヘム加工性を低下させる粗大な粒界化合物形成を抑制する観点から、焼入れ時の冷却速度は10℃/秒以上で行うことが望ましい。冷却速度が遅いと、粒界上にSi、MgSiなどが析出しやすくなり、プレス成形や曲げ加工時の割れの起点となり易く、これら成形性が低下する。この冷却速度を確保するために、焼入れ処理は、ファンなどの空冷、ミスト、スプレー、浸漬等の水冷手段や条件を各々選択して用いる。
(再加熱処理)
 この室温まで焼入れ冷却した後、1時間以内に冷延板を再加熱処理する。この再加熱処理は70~130℃の温度域に、平均加熱速度(昇温速度)1℃/秒(S)以上で再加熱し、到達再加熱温度で0.2~1時間保持し、その後平均冷却速度を1~20℃/hrの範囲として室温まで放冷する。
 この条件を満足させることによって、本発明で規定する所定のクラスタの数密度を有する組織を得ることができる。すなわち、例え、この温度で再加熱処理を施しても、前記規定する、再加熱までの所用時間、加熱速度(昇温速度)、保持時間、平均冷却速度の条件がひとつでも適正でないと、前記クラスタは、本発明で規定する平均数密度とはならない可能性が高くなる。
 ここで、焼入れ冷却終了後から再加熱処理までの室温保持(放置)時間が1時間を超えたり、平均加熱速度(昇温速度)1℃/秒(S)未満となっては、室温保持(室温時効)で形成されるクラスタが先に生成して、本発明で規定する所定のクラスタの数密度が得られず、前記室温時効後の低温短時間での焼付硬化性が得られない。このうち、焼入れ冷却終了後から再加熱処理までの室温保持(放置)時間はより短い方が好ましい。また、平均加熱速度(昇温速度)は速い方が好ましく、高周波加熱などの高速加熱手段によって、1℃/秒(S)以上、好ましくは5℃/秒(S)以上とすることが好ましい。
 前記再加熱温度が70℃未満でも、本発明で規定する所定のクラスタ密度が得られず、前記室温時効後の低温短時間での焼付硬化性が得られない。また、加熱温度が130℃を超える条件では、本発明で規定する所定のクラスタ密度を超過して形成され、又はクラスタとは異なるβ’などの金属間化合物相を形成し、成形性や曲げ加工性を低下させる。
 この再加熱処理においては、再加熱温度と共に、平均加熱速度(昇温速度)、到達再加熱温度の保持時間、その後の平均冷却速度も本発明で規定する所定のクラスタの数密度生成に大きく影響する。平均加熱速度が遅すぎる、保持時間が短すぎる、あるいは再加熱後の平均冷却速度が速すぎては、本発明で規定する所定のクラスタ密度が得られず、前記室温時効後の低温短時間での焼付硬化性が得られない。また、過剰に長時間保持されると、本発明で規定する所定のクラスタ密度を超過して形成されるか又はクラスタとは異なるβなどの金属間化合物相を形成し、成形性や曲げ加工性を低下させる可能性がある。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。
 次に本発明の実施例を説明する。本発明で規定のクラスタ条件が異なる6000系アルミニウム合金板を作り分けて、長期室温時効後の、低温短時間でのBH性(塗装焼付け硬化性)を各々評価した。合わせて、プレス成形性や曲げ加工性としてのヘム加工性も評価した。
 具体的には、表1に示す6000系アルミニウム合金板を、表2に示すように、溶体化および焼入れ処理後の再加熱処理条件を種々変えて製造した。なお、表1中の各元素の含有量の表示において、各元素における数値をブランクとしている表示は、含有量が検出限界以下であることを示す。
 アルミニウム合金板の具体的な製造条件は以下の通りである。表1に示す各組成の鋳塊を、DC鋳造法により共通して溶製した。この際、各例とも共通して、鋳造時の平均冷却速度について、液相線温度から固相線温度までを50℃/分とした。
 続いて、鋳塊を、各例とも共通して、560℃×4時間均熱処理した後、熱間粗圧延を開始した。そして、各例とも共通して、続く仕上げ圧延にて、厚さ3.5mmまで熱延し、熱間圧延板(コイル)とした。熱間圧延後のアルミニウム合金板を、各例とも共通して、熱延後の荒焼鈍および冷間途中の中間焼鈍無しで冷間圧延し、各例とも共通して、厚さ1.0mmの冷延板(コイル)とした。 
 更に、この各冷延板を、各例とも共通して、連続式の熱処理設備で、500℃までの平均加熱速度を10℃/秒として、550℃の溶体化処理温度まで加熱し、直ちに、平均50℃/秒の冷却速度で、室温まで冷却する、溶体化焼入れ処理を行った。この後、各例とも異なる表2に示す各条件で、加熱、冷却する再加熱処理を行った。
 これら調質処理後2ヶ月室温放置した後の各最終製品板から供試板 (ブランク) を切り出し、各供試板の組織を測定、評価した。これらの結果を表2に示す。
(クラスタ)
 前記調質処理後2ヶ月室温放置した後の供試板の板厚中央部における組織を、前記した3DAP法により分析し、本発明で規定するクラスタの平均数密度(個/μm)を求めた。
(塗装焼付硬化性)
 前記調質処理後2ヶ月室温放置した後の各供試板と、これらを各々共通して150℃20分の低温、短時間の人工時効硬化処理(ベーク後)した後の供試板との0.2%耐力を比較して、その差(耐力の増加量)からBH性を評価した。
 この引張試験法は、各供試板から、各々JISZ2201の5号試験片(25mm×50mmGL×板厚)を採取し、室温引張り試験を行った。このときの試験片の引張り方向を圧延方向の直角方向とした。引張り速度は、0.2%耐力までは5mm/分、耐力以降は20mm/分とした。機械的特性測定のN数は5とし、各々平均値で算出した。
(ヘム加工性)
 ヘム加工性は、前記調質処理後2ヶ月室温放置後の各供試板についてのみ行った。試験は、30mm幅の短冊状試験片を用い、ダウンフランジによる内曲げR1.0mmの90°曲げ加工後、1.0mm厚のインナを挟み、折り曲げ部を更に内側に、順に約130度に折り曲げるプリヘム加工、180度折り曲げて端部をインナに密着させるフラットヘム加工を行った。
 このフラットヘムの曲げ部(縁曲部)の、肌荒れ、微小な割れ、大きな割れの発生などの表面状態を目視観察し、以下の基準にて目視評価した。
 0;割れ、肌荒れ無し、1;軽度の肌荒れ、2;深い肌荒れ、3;微小表面割れ、4;線状に連続した表面割れ、5;破断
 表1~2に示す通り、各発明例は、本発明成分組成範囲内で、かつ好ましい条件範囲で製造、調質処理を行なっている。このため、各発明例は、表2に示す通り、本発明で規定するクラスタ条件を満たしている。
 この結果、各発明例は、前記調質処理後の長期の室温時効後であって、かつ低温短時間での塗装焼付け硬化であっても、BH性に優れている。また、前記調質処理後の長期の室温時効後であっても、ヘム加工性に優れている。
 これに対して、表2の比較例14~20は、表1の発明合金例2を用いている。しかし、これら各比較例は、表2に示す通り、溶体化条件及び再加熱処理条件が好ましい範囲を外れている。この結果、これらの比較例は本発明で規定するクラスタの条件が外れ、BH性が劣っている。
 表2の比較例21、22、23、27は、再加熱処理条件を含めて、好ましい範囲で製造しているものの、必須元素のMgあるいはSiの含有量が各々本発明範囲を外れている。このため、表2に示す通り、本発明で規定するクラスタの条件が外れ、BH性が劣っている。
 また、表2の比較例24、25、26、28も、本発明で規定するクラスタの条件が外れ、BH性が劣っている。
 したがって、以上の実施例の結果から、本発明における成分や組織の各要件、あるいは好ましい製造条件の、長期室温時効後の低温短時間条件でのBH性や、長期室温時効後の成形性をも兼備するための臨界的な意義乃至効果が裏付けられる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2011年3月15日出願の日本特許出願(特願2011-056960)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明によれば、長期室温時効後の低温短時間条件でのBH性や、長期室温時効後の成形性をも兼備する6000系アルミニウム合金板を提供できる。この結果、自動車、船舶あるいは車両などの輸送機、家電製品、建築、構造物の部材や部品用として、また、特に、自動車などの輸送機の部材に、6000系アルミニウム合金板の適用を拡大できる。

Claims (2)

  1.  質量%で、Mg:0.2~2.0%、Si:0.3~2.0%、を含み、残部がAlおよび不可避的不純物からなるAl-Mg-Si系アルミニウム合金板であって、3次元アトムプローブ電界イオン顕微鏡により測定された原子の集合体として、その原子の集合体が、Mg原子かSi原子かのいずれか又は両方を合計で30個以上含み、これらに含まれるMg原子かSi原子のいずれの原子を基準としても、その基準となる原子と隣り合う他の原子のうちのいずれかの原子との互いの距離が0.75nm以下であり、これらの条件を満たす原子の集合体を1.0×10個/μm以上の平均数密度で含むことを特徴とする焼付け塗装硬化性に優れたアルミニウム合金板。
  2.  前記アルミニウム合金板が、更に、Mn:1.0%以下(但し、0%を含まず)、Cu:1.0%以下(但し、0%を含まず)、Fe:1.0%以下(但し、0%を含まず)、Cr:0.3%以下(但し、0%を含まず)、Zr:0.3%以下(但し、0%を含まず)、V:0.3%以下(但し、0%を含まず)、Ti:0.05%以下(但し、0%を含まず)、Zn:1.0%以下(但し、0%を含まず)の1種または2種以上を含む請求項1に記載の焼付け塗装硬化性に優れたアルミニウム合金板。
     
PCT/JP2012/056370 2011-03-15 2012-03-13 焼付け塗装硬化性に優れたアルミニウム合金板 WO2012124676A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/004,456 US9399808B2 (en) 2011-03-15 2012-03-13 Aluminum alloy sheet excellent in baking finish hardenability
CN201280013028.8A CN103429772B (zh) 2011-03-15 2012-03-13 烤漆硬化性优异的铝合金板
KR1020137024019A KR20130130828A (ko) 2011-03-15 2012-03-13 베이킹 도장 경화성이 우수한 알루미늄 합금판
AU2012227455A AU2012227455A1 (en) 2011-03-15 2012-03-13 Aluminum alloy plate having superior baking finish hardening
EP12757501.7A EP2687616A4 (en) 2011-03-15 2012-03-13 ALUMINUM ALLOY PLATE WITH OUTSTANDING FINAL CURE THROUGH BAKING

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-056960 2011-03-15
JP2011056960A JP5746528B2 (ja) 2011-03-15 2011-03-15 焼付け塗装硬化性に優れたアルミニウム合金板

Publications (1)

Publication Number Publication Date
WO2012124676A1 true WO2012124676A1 (ja) 2012-09-20

Family

ID=46830743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056370 WO2012124676A1 (ja) 2011-03-15 2012-03-13 焼付け塗装硬化性に優れたアルミニウム合金板

Country Status (7)

Country Link
US (1) US9399808B2 (ja)
EP (1) EP2687616A4 (ja)
JP (1) JP5746528B2 (ja)
KR (1) KR20130130828A (ja)
CN (1) CN103429772B (ja)
AU (1) AU2012227455A1 (ja)
WO (1) WO2012124676A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013060627A (ja) * 2011-09-13 2013-04-04 Kobe Steel Ltd 焼付け塗装硬化性に優れたアルミニウム合金板
WO2014046010A1 (ja) * 2012-09-19 2014-03-27 株式会社神戸製鋼所 焼付け塗装硬化性に優れたアルミニウム合金板
WO2014126073A1 (ja) * 2013-02-13 2014-08-21 株式会社神戸製鋼所 焼付け塗装硬化性に優れたアルミニウム合金板
CN105518168A (zh) * 2013-09-06 2016-04-20 株式会社神户制钢所 烘烤涂装硬化性优异的铝合金板

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2770071B9 (de) * 2013-02-21 2020-08-12 Hydro Aluminium Rolled Products GmbH Aluminiumlegierung zur Herstellung von Halbzeugen oder Bauteilen für Kraftfahrzeuge, Verfahren zur Herstellung eines Aluminiumlegierungsbands aus dieser Aluminiumlegierung sowie Aluminiumlegierungsband und Verwendungen dafür
CN103815388B (zh) * 2014-01-08 2016-03-02 浙江正味食品有限公司 一种麻辣酥脆鸡骨酱的制作方法
KR101850234B1 (ko) 2014-03-31 2018-04-18 가부시키가이샤 고베 세이코쇼 성형성과 베이킹 도장 경화성이 우수한 알루미늄 합금판
JP6190307B2 (ja) * 2014-03-31 2017-08-30 株式会社神戸製鋼所 成形性と焼付け塗装硬化性とに優れたアルミニウム合金板
CN104975209A (zh) * 2015-03-13 2015-10-14 宝山钢铁股份有限公司 一种高自然时效稳定性6000系铝合金材料、铝合金板及其制造方法
JP6513449B2 (ja) * 2015-03-25 2019-05-15 株式会社神戸製鋼所 アルミニウム合金クラッド板およびアルミニウム合金クラッド構造部材
MX2017012112A (es) 2015-12-18 2018-02-15 Novelis Inc Aleaciones de aluminio 6xxx de alta resistencia y metodos para fabricarlas.
AU2016369546B2 (en) 2015-12-18 2019-06-13 Novelis Inc. High strength 6xxx aluminum alloys and methods of making the same
CA2958723A1 (en) * 2016-02-26 2017-08-26 Uacj Corporation Aluminum alloy plate for hot forming production and method therefor
CN108118206A (zh) * 2016-11-30 2018-06-05 宝山钢铁股份有限公司 具有高自然时效稳定性和高烘烤硬化性的铝合金板材及其制造方法
CN107254646B (zh) * 2017-06-13 2019-07-02 山东南山铝业股份有限公司 提高6000系铝合金自然时效稳定性的热处理方法及铝合金板材
US10030295B1 (en) 2017-06-29 2018-07-24 Arconic Inc. 6xxx aluminum alloy sheet products and methods for making the same
CA3069499C (en) * 2017-07-10 2022-03-08 Novelis Inc. High-strength corrosion-resistant aluminum alloy and method of making the same
US10704128B2 (en) 2017-07-10 2020-07-07 Novelis Inc. High-strength corrosion-resistant aluminum alloys and methods of making the same
US11932928B2 (en) 2018-05-15 2024-03-19 Novelis Inc. High strength 6xxx and 7xxx aluminum alloys and methods of making the same
CN111057980B (zh) * 2019-12-17 2021-04-16 北京科技大学 一种汽车用高成形性铝合金异构组织的过程调控方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04210456A (ja) 1990-12-13 1992-07-31 Kobe Steel Ltd 高強度かつ焼付硬化性に優れた成形加工用アルミニウム合金板の製造法
JP2614686B2 (ja) 1992-06-30 1997-05-28 住友軽金属工業株式会社 形状凍結性及び塗装焼付硬化性に優れた成形加工用アルミニウム合金の製造方法
JPH10219382A (ja) 1997-02-04 1998-08-18 Nippon Steel Corp 成形加工性および塗装焼付け硬化性に優れたアルミニウム合金板およびその製造方法
JP2000160310A (ja) 1998-11-25 2000-06-13 Shinko Arukoa Yuso Kizai Kk 常温時効性を抑制したアルミニウム合金板の製造方法
JP3207413B2 (ja) 1990-10-09 2001-09-10 住友軽金属工業株式会社 成形性、形状凍結性及び塗装焼付硬化性に優れた成形加工用アルミニウム合金材の製造法
JP2005139537A (ja) 2003-11-10 2005-06-02 Kobe Steel Ltd 焼付け塗装硬化性に優れたアルミニウム合金板
JP2006009140A (ja) * 2004-01-07 2006-01-12 Nippon Steel Corp 塗装焼付け硬化性に優れた6000系アルミニウム合金板およびその製造方法
JP2007169740A (ja) * 2005-12-22 2007-07-05 Kobe Steel Ltd 成形性に優れたアルミニウム合金板およびその製造方法
JP2009242904A (ja) 2008-03-31 2009-10-22 Kobe Steel Ltd 塗装焼付け硬化性に優れ、室温時効を抑制したアルミニウム合金板およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125504A (ja) * 1991-10-31 1993-05-21 Furukawa Alum Co Ltd 焼付け硬化性成形用アルミニウム合金板の製造方法
JPH083702A (ja) * 1994-06-17 1996-01-09 Furukawa Electric Co Ltd:The 成形性と加熱硬化性に優れたアルミニウム合金板材の製造方法
US5718780A (en) * 1995-12-18 1998-02-17 Reynolds Metals Company Process and apparatus to enhance the paintbake response and aging stability of aluminum sheet materials and product therefrom
JP4939093B2 (ja) * 2006-03-28 2012-05-23 株式会社神戸製鋼所 ヘム曲げ性およびベークハード性に優れる自動車パネル用6000系アルミニウム合金板の製造方法
KR101159410B1 (ko) 2008-03-31 2012-06-28 가부시키가이샤 고베 세이코쇼 도장 베이킹 경화성이 우수하고, 실온 시효를 억제한 알루미늄 합금판 및 그 제조 방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3207413B2 (ja) 1990-10-09 2001-09-10 住友軽金属工業株式会社 成形性、形状凍結性及び塗装焼付硬化性に優れた成形加工用アルミニウム合金材の製造法
JPH04210456A (ja) 1990-12-13 1992-07-31 Kobe Steel Ltd 高強度かつ焼付硬化性に優れた成形加工用アルミニウム合金板の製造法
JP2614686B2 (ja) 1992-06-30 1997-05-28 住友軽金属工業株式会社 形状凍結性及び塗装焼付硬化性に優れた成形加工用アルミニウム合金の製造方法
JPH10219382A (ja) 1997-02-04 1998-08-18 Nippon Steel Corp 成形加工性および塗装焼付け硬化性に優れたアルミニウム合金板およびその製造方法
JP2000160310A (ja) 1998-11-25 2000-06-13 Shinko Arukoa Yuso Kizai Kk 常温時効性を抑制したアルミニウム合金板の製造方法
JP2005139537A (ja) 2003-11-10 2005-06-02 Kobe Steel Ltd 焼付け塗装硬化性に優れたアルミニウム合金板
JP2006009140A (ja) * 2004-01-07 2006-01-12 Nippon Steel Corp 塗装焼付け硬化性に優れた6000系アルミニウム合金板およびその製造方法
JP2007169740A (ja) * 2005-12-22 2007-07-05 Kobe Steel Ltd 成形性に優れたアルミニウム合金板およびその製造方法
JP2009242904A (ja) 2008-03-31 2009-10-22 Kobe Steel Ltd 塗装焼付け硬化性に優れ、室温時効を抑制したアルミニウム合金板およびその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SATO, KEIKINZOKU (LIGHT METAL, vol. 56, pages 595
See also references of EP2687616A4 *
YAMADA ET AL., KEIKINZOKU (LIGHT METAL, vol. 51, pages 215

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013060627A (ja) * 2011-09-13 2013-04-04 Kobe Steel Ltd 焼付け塗装硬化性に優れたアルミニウム合金板
WO2014046010A1 (ja) * 2012-09-19 2014-03-27 株式会社神戸製鋼所 焼付け塗装硬化性に優れたアルミニウム合金板
JP2014058733A (ja) * 2012-09-19 2014-04-03 Kobe Steel Ltd 焼付け塗装硬化性に優れたアルミニウム合金板
WO2014126073A1 (ja) * 2013-02-13 2014-08-21 株式会社神戸製鋼所 焼付け塗装硬化性に優れたアルミニウム合金板
JP2014152381A (ja) * 2013-02-13 2014-08-25 Kobe Steel Ltd 焼付け塗装硬化性に優れたアルミニウム合金板
CN104981555B (zh) * 2013-02-13 2017-07-14 株式会社神户制钢所 烘烤涂装硬化性优异的铝合金板
US10544492B2 (en) 2013-02-13 2020-01-28 Kobe Steel, Ltd. Aluminum alloy sheet with excellent baking paint hardenability
CN105518168A (zh) * 2013-09-06 2016-04-20 株式会社神户制钢所 烘烤涂装硬化性优异的铝合金板

Also Published As

Publication number Publication date
CN103429772A (zh) 2013-12-04
AU2012227455A1 (en) 2013-09-05
US20140003993A1 (en) 2014-01-02
JP2012193399A (ja) 2012-10-11
CN103429772B (zh) 2015-08-26
JP5746528B2 (ja) 2015-07-08
KR20130130828A (ko) 2013-12-02
EP2687616A1 (en) 2014-01-22
US9399808B2 (en) 2016-07-26
EP2687616A4 (en) 2014-10-22

Similar Documents

Publication Publication Date Title
JP5746528B2 (ja) 焼付け塗装硬化性に優れたアルミニウム合金板
JP6005544B2 (ja) 焼付け塗装硬化性に優れたアルミニウム合金板
JP5852534B2 (ja) 焼付け塗装硬化性に優れたアルミニウム合金板
JP5985165B2 (ja) 焼付け塗装硬化性に優れたアルミニウム合金板
JP5203772B2 (ja) 塗装焼付け硬化性に優れ、室温時効を抑制したアルミニウム合金板およびその製造方法
JP5820315B2 (ja) 室温時効後のヘム加工性と焼付け塗装硬化性に優れたアルミニウム合金板
KR101802677B1 (ko) 베이킹 도장 경화성이 우수한 알루미늄 합금판
JP5918158B2 (ja) 室温時効後の特性に優れたアルミニウム合金板
KR101850234B1 (ko) 성형성과 베이킹 도장 경화성이 우수한 알루미늄 합금판
JP2017078211A (ja) 高成形性アルミニウム合金板
JP2018070947A (ja) アルミニウム合金板
JP2016047947A (ja) 耐糸錆性に優れたアルミニウム合金板
JP6190308B2 (ja) 成形性と焼付け塗装硬化性とに優れたアルミニウム合金板
US20170349978A1 (en) Aluminum alloy sheet
JP2018154869A (ja) プレス成形性、リジングマーク性、bh性に優れたアルミニウム合金板
JP5918187B2 (ja) 焼付け塗装硬化性に優れたアルミニウム合金板
JP6005613B2 (ja) 焼付け塗装硬化性に優れたアルミニウム合金板
JP5918186B2 (ja) 焼付け塗装硬化性に優れたアルミニウム合金板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12757501

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012227455

Country of ref document: AU

Date of ref document: 20120313

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137024019

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14004456

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012757501

Country of ref document: EP