WO2012124636A1 - 合成ガスとナノカーボンの製造方法および製造システム - Google Patents
合成ガスとナノカーボンの製造方法および製造システム Download PDFInfo
- Publication number
- WO2012124636A1 WO2012124636A1 PCT/JP2012/056157 JP2012056157W WO2012124636A1 WO 2012124636 A1 WO2012124636 A1 WO 2012124636A1 JP 2012056157 W JP2012056157 W JP 2012056157W WO 2012124636 A1 WO2012124636 A1 WO 2012124636A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nanocarbon
- carbon dioxide
- lower hydrocarbon
- synthesis gas
- catalyst
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/24—Stationary reactors without moving elements inside
- B01J19/2445—Stationary reactors without moving elements inside placed in parallel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/745—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/755—Nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/78—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/90—Regeneration or reactivation
- B01J23/94—Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J38/00—Regeneration or reactivation of catalysts, in general
- B01J38/04—Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J7/00—Apparatus for generating gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/22—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
- C01B3/24—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
- C01B3/26—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/40—Carbon monoxide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/15—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
- C07C29/151—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
- C07C29/1516—Multisteps
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K3/00—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
- C10K3/02—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
- C10K3/026—Increasing the carbon monoxide content, e.g. reverse water-gas shift [RWGS]
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K3/00—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
- C10K3/06—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by mixing with gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/00074—Controlling the temperature by indirect heating or cooling employing heat exchange fluids
- B01J2219/00087—Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
- B01J2219/00103—Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor in a heat exchanger separate from the reactor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/24—Stationary reactors without moving elements inside
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/80—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0266—Processes for making hydrogen or synthesis gas containing a decomposition step
- C01B2203/0277—Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/042—Purification by adsorption on solids
- C01B2203/043—Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0465—Composition of the impurity
- C01B2203/048—Composition of the impurity the impurity being an organic compound
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0811—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
- C01B2203/0827—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel at least part of the fuel being a recycle stream
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1205—Composition of the feed
- C01B2203/1211—Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
- C01B2203/1235—Hydrocarbons
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/129—Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/584—Recycling of catalysts
Definitions
- the present invention relates to a production method and a production system for producing synthesis gas that is a raw material for producing nanocarbon and various chemical products or fuel from lower hydrocarbons such as methane and carbon dioxide.
- synthesis gas production method As a conventional synthesis gas production method, there is a “synthesis gas production method” described in Patent Document 1.
- methane-rich hydrocarbon compounds are (1) dry reforming reaction to react with carbon dioxide, (2) steam reforming reaction to react with water vapor, and (3) autothermal reaction to react with oxygen.
- the synthesis gas mixed gas of carbon monoxide and hydrogen
- the above reactions (1) to (3) are specifically the reactions shown below. (1) and (2) are endothermic reactions, and (3) is an exothermic reaction.
- Reaction in patent document 2 becomes (4) Formula.
- the rare earth oxide was M n O m (M is a rare earth element).
- X is a stoichiometric coefficient.
- (4) X ⁇ CH 4 + M n O m ⁇ 2X ⁇ H 2 + X ⁇ CO + M n O m ⁇ x
- cerium when used as the rare earth, the reaction is as shown in the formula (5).
- (5) X ⁇ CH 4 + CeO 2 ⁇ 2X ⁇ H 2 + X ⁇ CO + CeO 2-x
- carbon in methane is combined with oxygen in cerium oxide to generate CO, and the remaining hydrogen in methane is generated, so that the ratio of CO and H 2 as synthesis gas is present.
- the present invention has been made to solve the above-described problems of the conventional ones, and by using lower hydrocarbons, a synthesis gas having a desired gas ratio can be easily obtained simultaneously with the production of nanocarbons. It is an object to provide a method and a manufacturing system. It is another object of the present invention to provide a manufacturing method and a manufacturing system in which hydrogen is wasted and water is prevented from being generated.
- the first present invention includes a lower hydrocarbon decomposition step of directly decomposing a lower hydrocarbon using a catalyst to produce hydrogen and nanocarbon, A carbon dioxide reduction step for producing carbon monoxide by reacting a part of the nanocarbon generated in the lower hydrocarbon decomposition step with carbon dioxide, and the hydrogen generated in the lower hydrocarbon decomposition step And mixing the carbon monoxide produced in the carbon dioxide reduction step at a predetermined ratio to obtain a synthesis gas.
- the method for producing a synthesis gas and nanocarbon according to the second aspect of the present invention is characterized in that in the first aspect of the present invention, the method further comprises a synthesis step of reacting the synthesis gas obtained in the mixing step to obtain a synthesized product. To do.
- the method for producing synthesis gas and nanocarbon of the third aspect of the present invention is the method according to the first or second aspect of the present invention, wherein the carbon dioxide reduction step is a part or all of the catalyst used in the lower hydrocarbon decomposition step. Including a catalyst regeneration step of removing a part or all of the nanocarbon produced in the lower hydrocarbon decomposition step from the top of the catalyst during the reaction.
- the method for producing synthesis gas and nanocarbon according to the fourth aspect of the present invention is characterized in that, in the third aspect of the present invention, the catalyst regenerated in the catalyst regeneration step is again subjected to the lower hydrocarbon decomposition step. .
- the fifth method of the present invention for producing a synthesis gas and nanocarbon is characterized in that, in any one of the first to fourth aspects of the present invention, the lower hydrocarbon contains methane.
- the method for producing synthesis gas and nanocarbon of the sixth aspect of the present invention is the method according to any one of the first to fifth aspects of the present invention, wherein the catalyst comprises at least one of nickel and iron, alumina, silica, magnesia, It is supported on one or more of calcia, hydrotalcite, and carbon.
- the method for producing synthesis gas and nanocarbon according to any one of the first to sixth aspects of the present invention, wherein the carbon dioxide is a combustion exhaust gas in the lower hydrocarbon decomposition step, and the carbon dioxide reduction. It is characterized by being recovered from one or more gases of combustion exhaust gas in the process, exhaust gas in various industries, and biogas.
- the method for producing synthesis gas and nanocarbon according to any one of the first to seventh aspects of the present invention, wherein at least one of lower hydrocarbons and hydrogen is reduced in the carbon dioxide reduction step. It is used as an agent.
- the method for producing synthesis gas and nanocarbon according to the ninth aspect of the present invention is the method according to any one of the first to eighth aspects of the present invention, wherein the lower hydrocarbon decomposition step and the carbon dioxide reduction step are the same catalyst. On the other hand, it is performed by switching the supply of the lower hydrocarbon and the supply of the carbon dioxide.
- the synthesis gas and nanocarbon production method of the tenth aspect of the present invention includes the recovery step of recovering the nanocarbon produced in the lower hydrocarbon decomposition step according to any one of the first to eighth aspects of the present invention.
- the nanocarbon recovered in the recovery step is supplied to the carbon dioxide reduction step.
- an eleventh aspect of the present invention there is provided a method for producing a synthesis gas and a nanocarbon.
- the nanocarbon contained in a high concentration is selected by at least one of specific gravity and magnetism, and the nanocarbon containing the catalyst in a high concentration is preferentially subjected to the carbon dioxide reduction step.
- a lower hydrocarbon supply path to which lower hydrocarbons are supplied is connected, and a catalyst is accommodated in a space that communicates with the lower hydrocarbon supply paths.
- a lower hydrocarbon cracking reactor that is a reaction space in which the lower hydrocarbon is directly cracked,
- a carbon dioxide supply path to which carbon dioxide is supplied is connected, nanocarbon is accommodated in a space where the carbon dioxide supply path communicates, and the space is a reaction space in which a reduction reaction to the carbon monoxide is performed.
- a synthesis gas and nanocarbon production system includes the heat exchanger according to the twelfth aspect of the present invention, comprising a heat exchanger that cools the hydrogen produced by the lower hydrocarbon decomposition reactor, and the heat exchanger And a waste heat supply passage for supplying the heat obtained in step (b) to the lower hydrocarbon decomposition reaction apparatus and / or the carbon dioxide reduction reaction apparatus.
- the synthesis gas and nanocarbon production system according to the twelfth or thirteenth aspect of the present invention, wherein the lower hydrocarbon decomposition reaction apparatus and the carbon dioxide reduction reaction apparatus share the respective reaction spaces, It has a switch part which switches supply of the lower hydrocarbon and carbon dioxide in the lower hydrocarbon supply channel and the carbon dioxide supply channel and selectively supplies it to the reaction space.
- a synthesis gas and nanocarbon production system according to any one of the twelfth to fourteenth aspects of the present invention, in which the nanocarbon recovery system recovers the nanocarbon produced by the lower hydrocarbon decomposition reactor. And a nanocarbon transfer path for transferring the nanocarbon recovered by the nanocarbon recovery unit to the carbon dioxide reduction reaction apparatus.
- the synthesis gas and nanocarbon production system includes a pulverization section that pulverizes nanocarbon containing the catalyst, which is recovered by the nanocarbon recovery section, and the fine powder And a sorting section that sorts into high-purity nanocarbon and nanocarbon containing the catalyst at a high concentration, and the nanocarbon transfer path has the sorted catalyst at a high concentration. It is connected to the said selection part so that the nanocarbon contained in may be transferred.
- a lower hydrocarbon is directly decomposed using a catalyst to generate hydrogen and nanocarbon, and the lower hydrocarbon decomposition step generates the lower hydrocarbon.
- Carbon dioxide is produced by reacting a part of the formed nanocarbon with carbon dioxide, and the hydrogen produced in the lower hydrocarbon decomposition step and the carbon dioxide reduction step are produced.
- it becomes easy to set the hydrogen / carbon monoxide ratio of the synthesis gas which was difficult to adjust by the conventional method, to an arbitrary value.
- the water generated as a by-product due to waste of hydrogen in the conventional method can be prevented.
- a lower hydrocarbon supply path to which lower hydrocarbons are supplied is connected, and a catalyst is accommodated in a space where the lower hydrocarbon supply paths communicate with each other.
- a lower hydrocarbon decomposition reaction apparatus which is a reaction space in which a lower hydrocarbon is directly decomposed, and a carbon dioxide supply path to which carbon dioxide is supplied are connected, and nanocarbon is introduced into the space where the carbon dioxide supply path communicates.
- a carbon dioxide reduction reaction device that is housed and the space is a reaction space in which the carbon dioxide is reduced to carbon monoxide, the lower hydrocarbon decomposition reaction device, and the carbon dioxide reduction reaction device; Since the apparatus includes a mixing unit in which hydrogen generated in the decomposition reaction apparatus and carbon monoxide generated in the carbon dioxide reduction reaction apparatus are mixed, the above manufacturing method is confirmed. It is possible to realize in.
- FIG. 1 is a schematic diagram showing an embodiment of a synthesis gas and nanocarbon production system according to the present invention.
- FIG. 2 is a schematic view showing another embodiment of the synthesis gas and nanocarbon production system in the present invention.
- FIG. 3 is a diagram showing a process flow of an example in which synthesis gas and nanocarbon are synthesized using methane as a raw material, and methanol is synthesized from this synthesis gas.
- the present invention lower hydrocarbons are decomposed, hydrogen and nanocarbon are generated by the decomposition, and synthesis gas is produced from the nanocarbon and carbon dioxide. Since hydrogen and carbon monoxide, which are components of the synthesis gas, are produced and mixed in separate steps, the gas ratio of the synthesis gas (ratio of carbon monoxide to hydrogen) can be adjusted arbitrarily and easily. Can do. Nanocarbon can be used in various applications as a functional material other than that used in the carbon dioxide reduction step. In the conventional synthesis gas production method, water is generated by the reaction of carbon dioxide and hydrogen, and hydrogen is wasted. However, the present invention does not require generation of water and can eliminate such waste. it can.
- the reaction heat required for the lower hydrocarbon decomposition process and the carbon dioxide reduction process is the exhaust heat exhausted when producing chemical raw materials or fuels based on the reaction gas produced in the present invention, and exhaust heat from various industries. This makes it possible to effectively use energy.
- Examples of the exhaust heat from various industries include exhaust heat from factories in the steel industry, chemical industry, paper and pulp industry, and exhaust heat from power generation facilities.
- the present invention it is possible to further include a synthesis step of reacting the synthesis gas obtained in the mixing step to obtain a synthesized product.
- the synthetic product is not limited as long as it can be synthesized from hydrogen and carbon monoxide, but methanol, ethanol, DME, mixed alcohol, ethylene glycol, oxalic acid, acetic acid, FT synthesis product (artificial product) (Gasoline / kerosene oil).
- the synthesis gas produced by the present invention uses high-temperature hydrogen and carbon monoxide produced in the lower hydrocarbon decomposition step and the carbon dioxide reduction step, and thus can be obtained in a high-temperature state.
- synthesis gas is obtained by being incorporated in the reaction process, and hydrogen and carbon monoxide before the synthesis reaction are relatively close to the synthesis reaction temperature.
- the amount of energy required for the reaction can be reduced.
- disassembly process is too high, you may make it use for manufacture of synthesis gas, after cooling with a heat exchanger etc. as needed.
- the heat obtained by heat exchange during this cooling can be used as a heat source for the lower hydrocarbon decomposition step and / or the carbon dioxide reduction step.
- the nanocarbon produced in the lower hydrocarbon decomposition step is subjected to a carbon dioxide reduction step in a mixed state with the catalyst, and the nanocarbon is oxidized with carbon dioxide, whereby a catalyst such as a catalyst metal and the catalyst
- the carrier carrying the carbon dioxide becomes a solid residue, which can be used again as a catalyst for lower hydrocarbon decomposition.
- the carbon dioxide reduction step includes a catalyst regeneration step including a catalyst regeneration / activation operation.
- the lower hydrocarbon used in the lower hydrocarbon decomposition step is typically methane, but is not limited thereto, and ethane, propane, butane, ethylene, propylene, butylene and the like can be used. These mixed gases may be used. Typically, methane or one containing methane as a main component can be mentioned. When methane is the main component, natural gas containing 80% by volume or more of methane can be mentioned.
- the origin of the lower hydrocarbon is not particularly limited, and for example, natural gas, city gas 13A, boil-off gas, biogas obtained, or chemical synthesis can be used.
- the catalyst used in the lower hydrocarbon decomposition step is not limited to a specific one as long as it can decompose lower hydrocarbons to generate hydrogen and nanocarbon.
- at least one of nickel and iron as catalyst materials is supported on one or more of alumina, silica, magnesia, calcia, hydrotalcite, and carbon as carriers.
- the supported amount of at least one of nickel and iron is preferably 30% by mass or more.
- the catalyst may be composed entirely of a catalyst material without using a carrier.
- the carbon dioxide used in the carbon dioxide reduction step of the present invention those recovered from the combustion gas exhaust gas in the lower hydrocarbon decomposition step and / or the carbon dioxide reduction step can be used. Thereby, the carbon dioxide amount finally discharged
- one or more of methane and hydrogen can be used as a reducing agent. Thereby, reaction of a carbon dioxide reduction process is accelerated
- the lower hydrocarbon decomposition step and the carbon dioxide reduction step can be performed by switching between the supply of the lower hydrocarbon and the supply of the carbon dioxide for the same catalyst.
- it can be realized by providing a switching unit that shares the reaction space of the lower hydrocarbon decomposition reaction apparatus and the carbon dioxide reduction reaction apparatus and selectively supplies the lower hydrocarbon and carbon dioxide to the reaction space. . Since both processes are performed in one reaction space, the equipment becomes compact.
- the switching may be performed every predetermined time, or may be switched based on the state of reaction (decrease in reaction efficiency, etc.). The switching can be performed manually, or can be automatically switched by a control unit for determining the time count or the reaction state.
- a recovery unit is provided, and the produced nanocarbon can be recovered.
- the configuration of the collection unit is not particularly limited as the present invention, and an appropriate configuration and method can be applied. For example, a method of overflowing from the reaction vessel, a method of providing an outlet at the lower portion of the reaction vessel, and extracting from this can be applied as the recovery unit.
- a pulverizing section for pulverizing the recovered nanocarbon and a screening section for selecting nanocarbon containing a high concentration of the catalyst among the pulverized nanocarbon are provided on the downstream side of the recovery step, thereby increasing the catalyst. Nanocarbon contained in the concentration may be preferentially supplied to the carbon dioxide reduction reactor.
- the sorting section for example, a specific gravity sorting section that sorts by specific gravity, a magnetic sorting section that performs sorting by magnetism, or the like can be used.
- the amount of catalyst regeneration can be increased by the above selection, and the amount of catalyst replenishment in the lower hydrocarbon cracking step can be suppressed.
- the above-mentioned micronization part and a selection part as this invention, it is not limited to a specific thing.
- Nanocarbon and synthesis gas are produced by operating a lower hydrocarbon direct cracking apparatus and a carbon dioxide reduction reaction apparatus in parallel.
- description will be made assuming that methane is used as the lower hydrocarbon.
- the type of lower hydrocarbon is not limited to methane.
- the production system of the present invention includes a lower hydrocarbon decomposition reaction apparatus 10, a carbon dioxide reduction reaction apparatus 30, and a mixing unit 50.
- the lower hydrocarbon cracking reaction apparatus 10 includes a reaction vessel 11 in which a catalyst 13 that directly decomposes methane is accommodated, and a furnace 12 that surrounds the reaction vessel 11 and heats the inside of the reaction vessel 11.
- the inside of the reaction vessel 11 becomes a reaction space for directly decomposing methane.
- the catalyst 13 one or more of nickel and iron supported on one or more of alumina, silica, magnesia, calcia, hydrotalcite, and carbon so that the supported amount is 30% by mass or more.
- carrier is illustrated.
- the reaction vessel 11 is connected to a lower hydrocarbon supply passage 20 for supplying methane as a raw material into the reaction vessel 11 and an exhaust gas transfer passage 14 for transferring the exhaust gas generated in the reaction vessel.
- the lower hydrocarbon supply path 20 has a branch part on the way to the reaction vessel 11, and a fuel supply path 21 described later is connected to the branch part.
- a part of the raw material methane is used as a fuel for heating the furnace, but a hydrocarbon other than the raw material may be used as the fuel.
- the fuel supply path is not branched from the lower hydrocarbon supply path, but a separate fuel supply path is provided.
- the exhaust gas transfer path 14 is connected to a PSA (pressure swing adsorption) 25 that recovers methane from the exhaust gas via a heat exchanger 24 that cools the exhaust gas.
- the PSA 25 is connected to a return flow path 26 through which separated and recovered methane is transferred and a hydrogen transfer path 14a through which hydrogen separated from the exhaust gas is transferred.
- the other end of the hydrogen transfer path 14 a is connected to the mixing unit 50.
- the return flow path 26 joins the fuel supply path 21 via the heat exchanger 24.
- the methane recovered by the PSA 25 is heated by the heat recovered by the heat exchanger 24.
- the heat of the exhaust gas is a heat source in the lower hydrocarbon decomposition step and / or the carbon dioxide reduction step. If it can utilize as, it will not be limited to the said structure.
- the reaction vessel 11 is provided with a nanocarbon recovery unit 42 that extracts nanocarbon in a mixed state with a catalyst.
- the configuration of the nanocarbon recovery unit 42 is not particularly limited, and the nanocarbon recovery unit 42 may be overflowed from the reaction container 11 or may be extracted by providing an extraction port at the lower part of the reaction container 11.
- a nanocarbon / catalyst transfer path 43 is connected to the nanocarbon recovery unit 42, and the nanocarbon / catalyst transfer path 43 is connected to a reaction vessel 31 described later.
- the nanocarbon / catalyst transfer path 43 corresponds to the nanocarbon transfer path of the present invention.
- the nanocarbon containing the catalyst recovered by the nanocarbon recovery unit 42 is pulverized and then sorted into high-purity nanocarbon and nanocarbon containing the catalyst at a high concentration.
- the nanocarbon contained in the concentration may be transferred to the reaction vessel 31 through the nanocarbon / catalyst transfer path 43.
- the pulverization can be performed by a pulverization unit, and the selection can be performed by a selection unit by specific gravity selection
- the furnace 12 is supplied with the fuel supply path 21 for supplying methane as fuel into the furnace 12, and the carbon dioxide in the exhaust gas generated by the combustion in the furnace 12 to the carbon dioxide reduction reaction device 30. Is connected to the carbon dioxide supply path 23.
- the carbon dioxide reduction reaction device 30 includes a reaction vessel 31 that contains nanocarbon mixed with a catalyst, and a furnace 32 that surrounds the reaction vessel 31 and heats the inside of the reaction vessel 31.
- the inside of the reaction vessel 31 corresponds to a reaction space that generates carbon monoxide by a reaction between nanocarbon and carbon dioxide.
- the carbon dioxide supply path 23 and the nanocarbon / catalyst transfer path 43 are connected to the reaction vessel 31.
- the reaction vessel 31 is connected to a carbon monoxide transfer path 34 that transfers carbon monoxide produced in the reaction vessel 31 to the mixing unit 50.
- the furnace 32 is supplied with a fuel supply path 22 for supplying methane as fuel into the furnace 32 and a carbon dioxide supply for transferring carbon dioxide in the exhaust gas generated by combustion in the furnace 32 to the carbon dioxide supply path 23.
- a path 35 is connected.
- the mixing unit 50 is connected to a hydrogen transfer path 14a and a carbon monoxide transfer path 34, and is supplied with hydrogen and carbon monoxide.
- the mixing unit 50 is connected to a synthesis gas transfer path 51 that transfers the produced synthesis gas to the outside and a surplus hydrogen transfer path 52 that transfers excess hydrogen to the outside.
- the external transfer amount of hydrogen can be adjusted by a flow control valve or the like.
- a catalyst 13 is accommodated in the reaction vessel 11 of the lower hydrocarbon decomposition reaction apparatus 10. Methane is supplied into the reaction vessel 11 through the lower hydrocarbon supply path 20. The reaction vessel 11 is heated by the furnace 12 using methane supplied through the fuel supply passage 21 as fuel. At this time, carbon dioxide in the combustion exhaust gas discharged from the furnace 12 is supplied to the reaction vessel 31 of the carbon dioxide reduction reaction device 30 through the carbon dioxide supply path 23.
- methane is supplied into the reaction vessel 11 while the reaction vessel 11 is heated to a predetermined temperature, nanocarbon and hydrogen are produced by the reaction between the catalyst 13 and methane.
- the temperature and pressure at this time are not particularly limited, and can be appropriately determined in consideration of the conversion rate of methane and the like.
- the exhaust gas generated in the reaction vessel 11 is discharged out of the reaction vessel 11 through the exhaust gas transfer path 14 and transferred to the PSA 25 via the heat exchanger 24. Further, the unreacted methane and hydrogen are separated from the exhaust gas by the PSA 25, and the recovered methane is transferred to the fuel supply path 21 via the heat exchanger 24 by the return flow path 26 and used again as fuel. be able to.
- heat exchanger 24 heat is exchanged between the exhaust gas and the recovered methane, the exhaust gas is cooled, and the recovered methane is heated. Heating the recovered methane increases energy efficiency as fuel preheating.
- the hydrogen separated by the PSA 25 is transferred to the mixing unit 50 through the hydrogen transfer path 14a.
- nanocarbon is generated by the decomposition reaction.
- the nanocarbon is taken out of the reaction vessel 11 together with the catalyst by the nanocarbon recovery unit 42.
- the required amount of nanocarbon can be separated and used as a functional material.
- Part of the nanocarbon and the catalyst are transferred to the reaction vessel 31 through the nanocarbon / catalyst transfer path 43. In the present invention, only nanocarbon may be transferred to the reaction vessel 31.
- Carbon dioxide is supplied to the reaction vessel 31 of the carbon dioxide reduction reaction apparatus 30 through the carbon dioxide supply path 23, and nanocarbon containing the catalyst is supplied through the nanocarbon / catalyst transfer path 43.
- the reaction vessel 31 is heated by the furnace 32 using methane supplied through the fuel supply path 22 as fuel.
- carbon dioxide in the combustion exhaust gas discharged from the furnace 32 is supplied to the reaction vessel 31 through the carbon dioxide supply passage 23 via the carbon dioxide supply passage 35.
- nanocarbon and carbon dioxide react with each other under a predetermined temperature and pressure to produce carbon monoxide. Further, the nanocarbon adhering to the catalyst is consumed with the progress of the reaction, and a catalyst regeneration step in which the catalyst is regenerated and activated is simultaneously performed.
- the regenerated catalyst can be used again in the lower hydrocarbon cracking reactor.
- the regenerated catalyst can be returned to the reaction vessel 11 of the lower hydrocarbon decomposition reactor 10 through the nanocarbon / catalyst transfer path 43 and the nanocarbon recovery unit 42.
- the carbon monoxide produced in the reaction vessel 31 is transferred to the mixing unit 50 through the carbon monoxide transfer path 34.
- the mixing unit 50 the hydrogen and carbon monoxide produced as described above are supplied and mixed, and a predetermined amount of hydrogen is discharged to the outside to produce a synthesis gas having a predetermined gas ratio. Moreover, it is good also as what has a desired gas ratio by adjusting the quantity of the hydrogen and carbon monoxide supplied to the mixing part 50.
- FIG. The produced synthesis gas is transferred to the outside of the mixing unit 50 through the synthesis gas transfer path 51.
- the synthesis gas transferred through the synthesis gas transfer path 51 may be supplied as it is to a synthesis process for producing methanol or the like, or may be temporarily stored in a cylinder or the like. In order to effectively use the high-temperature heat of the synthesis gas, it is desirable to use the synthesis gas as it is.
- the surplus hydrogen in the mixing unit 50 can be transferred from the mixing unit 50 through the surplus hydrogen transfer path 52 to be used as appropriate or discarded.
- the gas ratio of the synthesis gas can be set to an arbitrary value depending on the type of substance produced based on the synthesis gas, the production method, and the like. For example, when methanol is produced based on synthesis gas, the ratio of carbon monoxide and hydrogen is theoretically preferably 1: 2.
- the production system of the present invention includes a reaction device 60 and a mixing unit 50.
- the reaction apparatus 60 includes a reaction vessel 61 and a furnace 62 that surrounds the reaction vessel 61 and heats the reaction vessel 61.
- a catalyst for directly decomposing lower hydrocarbons is accommodated in the reaction vessel 61.
- the reaction vessel 61 is connected to a lower hydrocarbon supply path 20 for supplying methane as a raw material and a carbon dioxide supply path 27 for supplying carbon dioxide, and the lower hydrocarbon supply path 20 is opened and closed.
- An on-off valve 27a is interposed in the valve 20a and the carbon dioxide supply path 27, so that hydrogen and carbon dioxide can be selectively supplied to the reaction vessel 61. Therefore, in this embodiment, the on-off valves 20a and 27a correspond to the switching unit of the present invention.
- the furnace 62 is connected to a fuel supply path 21 for supplying methane as fuel into the furnace 62, and the fuel supply path 21 is branched and connected to the lower hydrocarbon supply path 20.
- the furnace 62 is connected to one end of a carbon dioxide supply path 27 that discharges carbon dioxide in exhaust gas generated by combustion in the furnace 62 to the outside of the furnace.
- a carbon storage tank 28 and the on-off valve 27a are sequentially provided and connected to the reaction vessel 61 as described above.
- reaction vessel 61 is connected to an exhaust gas transfer path 64 for transferring the exhaust gas generated in the reaction vessel 61 in the lower hydrocarbon decomposition step.
- the exhaust gas transfer path 64 is connected to the heat exchanger 24.
- the PSA 25 is connected to a return flow path 26 through which separated and recovered methane is transferred and a hydrogen transfer path 64a through which hydrogen separated from the exhaust gas is transferred.
- the other end of the hydrogen transfer path 64 a is connected to the mixing unit 50.
- the return flow path 26 joins the fuel supply path 21 via the heat exchanger 24.
- the reaction vessel 61 is connected to a carbon monoxide transfer path 65 that transfers carbon monoxide generated in the reaction vessel 61 in the carbon dioxide reduction step.
- the other end of the carbon monoxide transfer path 65 is connected to the reaction vessel 61. It is connected to the mixing unit 50.
- the on-off valve 20 a of the lower hydrocarbon supply path 20 is opened, and the on-off valve of the carbon dioxide supply path 27 is closed so that methane can be supplied into the reaction vessel 61.
- the reaction vessel 61 is heated by the furnace 62 using methane supplied through the fuel supply path 21 as fuel.
- part or all of the carbon dioxide in the combustion exhaust gas discharged from the furnace 62 is temporarily stored in a carbon dioxide storage tank 28 interposed in the carbon dioxide supply path 27. This reduces the amount of carbon dioxide discharged out of the system.
- the exhaust gas generated in the reaction vessel 61 is discharged out of the reaction vessel 61 through an exhaust gas transfer path 64 and transferred to the PSA 25 through the heat exchanger 24. Further, the unreacted methane and hydrogen are separated from the exhaust gas by the PSA 25, and the recovered methane is transferred to the fuel supply path 21 via the heat exchanger 24 by the return flow path 26 and used again as fuel. be able to.
- heat exchanger 24 heat is exchanged between the exhaust gas and the recovered methane, the exhaust gas is cooled, and the recovered methane is heated.
- the hydrogen separated by the PSA 25 is transferred to the mixing unit 50 through the hydrogen transfer path 64a.
- nanocarbon is generated by the decomposition reaction.
- the on-off valve 20 a is closed, the on-off valve 27 a is opened, and carbon dioxide is supplied into the reaction vessel 61 through the carbon dioxide supply path 29. At this time, a sufficient amount of carbon dioxide is supplied through the carbon dioxide storage tank 28. The temperature of the furnace 62 is appropriately adjusted by adjusting the fuel supply amount as necessary.
- the operations of the on-off valves 20a and 27a can be performed by control by a control unit (not shown).
- the process proceeds from the lower hydrocarbon decomposition step to the carbon dioxide reduction step, and the nanocarbon existing in the reaction vessel 61 reacts with carbon dioxide to generate carbon monoxide.
- the nanocarbon adhering to the catalyst is consumed as the reaction proceeds, and a catalyst regeneration step in which regeneration and activation of the catalyst are performed simultaneously.
- the produced carbon monoxide is transferred to the mixing unit 50 through the carbon monoxide transfer path 65.
- the hydrogen and carbon monoxide produced as described above are supplied and mixed to produce a synthesis gas having a predetermined gas ratio.
- a synthesis gas having a desired gas ratio can be obtained.
- the on-off valve 20a is opened, the on-off valve 27a is closed, and methane is supplied into the reaction vessel 61 through the lower hydrocarbon supply path 20.
- the temperature of the furnace 62 is appropriately adjusted by adjusting the fuel supply amount as necessary.
- the predetermined time can be different from the predetermined time when switching to shift from the lower hydrocarbon decomposition step to the carbon dioxide reduction step.
- the process proceeds from the carbon dioxide reduction step to the lower hydrocarbon decomposition step, in which the methane decomposition reaction by the catalyst occurs in the reaction vessel 61, and hydrogen and nanocarbon are generated. Gas production is performed.
- the lower hydrocarbon decomposition reaction and the carbon dioxide reduction reaction are performed in one reaction vessel, and finally synthesis gas and nanocarbon are produced. Can do.
- the interval for switching between the supply of the lower hydrocarbon and the supply of carbon dioxide can be appropriately determined according to the amount of hydrogen and carbon monoxide required, reaction conditions, and the like.
- a catalyst having 30% by mass of iron supported on alumina is used in the lower hydrocarbon decomposition step, and a catalyst using copper oxide (CuO) as an active metal is used in the methanol synthesis reaction step.
- CuO copper oxide
- a catalyst using Cu, Zn, or an alloy containing at least one of Cu and Zn as an active metal can be used.
- the exhaust heat obtained by the heat exchanger is used as a heat source for the carbon dioxide reduction process.
- 30 mol of the nanocarbon produced above and 30 mol of carbon dioxide are supplied to the reaction vessel of the carbon dioxide reduction device and the furnace is heated to 650 ° C. with combustion methane, 60 mol of carbon monoxide is produced by the following reaction. (B. Carbon dioxide reduction).
- C + CO 2 ⁇ 2CO + Q2 (Q2 172.37 kJ / mol)
- reaction When 60 mol of the produced carbon monoxide and 120 mol of hydrogen are mixed in the mixing section, 180 mol of synthesis gas having a carbon monoxide to hydrogen ratio of 1: 2 is produced.
- the methanol just produced is 300 ° C., and this is removed to 20 ° C. (E. Removal of methanol).
- the heat obtained by heat removal can be used as a heat source in other processes.
- the material balance in the present embodiment will be described based on Table 1. As shown in Table 1, when methane is used as the fuel and the efficiency of the furnace is assumed to be 50%, theoretically, the amount of carbon dioxide emitted by the combustion of the fuel is about 30 mol. When a synthesis gas is produced using all of the carbon dioxide discharged, and methanol is synthesized from this synthesis gas, the amount of carbon dioxide finally discharged in this embodiment can be made zero.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Combustion & Propulsion (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Carbon And Carbon Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
低級炭化水素を分解し水素とナノカーボンを生成する低級炭化水素分解工程と、生成されたナノカーボンの一部と二酸化炭素とを反応させて一酸化炭素を製造する二酸化炭素還元工程と、生成された水素と一酸化炭素とを所定の比率で混合して合成ガスを得る混合工程と、を有することで、ナノカーボンと所望のガス比の合成ガスを同時に容易に製造できる。
Description
本発明はメタンなどの低級炭化水素と二酸化炭素から、ナノカーボンと各種化学製品あるいは燃料の製造原料となる合成ガスを製造する製造方法および製造システムに関するものである。
従来の合成ガス製造方法としては特許文献1に記載される「合成ガスの製造方法」がある。この製造方法では、主にメタンリッチな炭化水素化合物を、(1)二酸化炭素と反応させるドライリフォーミング反応、(2)水蒸気と反応させるスチームリフォーミング反応、(3)酸素と反応させるオートサーマル反応の3つの反応を最適に組み合わせることで、反応に必要なエネルギーを最小限に抑えて合成ガス(一酸化炭素と水素との混合ガス)を製造する。
上記した(1)~(3)の反応は具体的には下記に示す反応である。(1)、(2)は吸熱反応で、(3)は発熱反応である。
(1)CH4+CO2→2CO+H2+284kJ/mol
(2)CH4+H2O→CO+3H2+206kJ/mol
(3)CH4+1/2O2→CO+2H2-35.6kJ/mol
上記した(1)~(3)の反応は具体的には下記に示す反応である。(1)、(2)は吸熱反応で、(3)は発熱反応である。
(1)CH4+CO2→2CO+H2+284kJ/mol
(2)CH4+H2O→CO+3H2+206kJ/mol
(3)CH4+1/2O2→CO+2H2-35.6kJ/mol
化学製品の原料としては、合成ガスの一酸化炭素と水素は1対2(モル比)の割合で存在することが好ましい。特許文献1では、合成ガス比が最適になるように、かつ、反応に必要なエネルギーが最小になるように上記した(1)~(3)の反応を組合せ、かつ、エネルギーの足りない分については、太陽光熱などの自然エネルギーを利用して補うことで、最適化された製造方法を示している。
また、特許文献2に記載の「メタンを原料とする水素、一酸化炭素の製造方法」では、200~1000℃においてメタンを含む天然ガスを、まず希土類を含む金属酸化物に接触させることで格子酸素と反応させて金属酸化物を還元し、次に還元された反応媒体を水蒸気または二酸化炭素と反応させ水素または一酸化炭素を連続的に生成する方法が開示されている。
特許文献2における反応は(4)式となる。ここで、希土類酸化物をMnOm(Mが希土類元素)とした。Xは化学量論係数である。
(4)X・CH4+MnOm→2X・H2+X・CO+MnOm-x
また、希土類としてセリウムを用いた場合は(5)式のような反応となる。
(5)X・CH4+CeO2→2X・H2+X・CO+CeO2-x
(5)の反応では、メタン中の炭素が酸化セリウム中の酸素と結合し、COが発生すると共に、メタン中の残った水素が発生することで、合成ガスであるCOとH2がある比率で生成する。 次に、酸素を還元された酸化セリウムをCO2やH2Oと反応させると(6)、(7)式の様に初めの状態に再生する事ができ、同時にCOまたはH2を製造することが可能となる。
(6)CeO2-x+X・CO2→CeO2+X・CO
(7)CeO2-x+X・H2O→CeO2+X・H2
(4)X・CH4+MnOm→2X・H2+X・CO+MnOm-x
また、希土類としてセリウムを用いた場合は(5)式のような反応となる。
(5)X・CH4+CeO2→2X・H2+X・CO+CeO2-x
(5)の反応では、メタン中の炭素が酸化セリウム中の酸素と結合し、COが発生すると共に、メタン中の残った水素が発生することで、合成ガスであるCOとH2がある比率で生成する。 次に、酸素を還元された酸化セリウムをCO2やH2Oと反応させると(6)、(7)式の様に初めの状態に再生する事ができ、同時にCOまたはH2を製造することが可能となる。
(6)CeO2-x+X・CO2→CeO2+X・CO
(7)CeO2-x+X・H2O→CeO2+X・H2
従来の低級炭化水素分解反応は上記したようなプロセスであり、合成ガスである水素と一酸化炭素は同時に生成されるため、化学原料製造に最適なガス比(一酸化炭素と水素のモル比)にするためには、温度や圧力、空塔速度など反応条件の細かい設定による最適化が必要で、かつ水素や一酸化炭素の分離精製などが必要であり、操作が煩雑である。その上、副生物や未反応ガスである水や一酸化炭素、酸素などを除去する必要がある。さらに、二酸化炭素と水素の反応によって水を生成し水素が必要以上に使用されることで、システム効率が低下するなどの欠点がある。
本発明は上記のような従来のものの課題を解決するためになされたもので、低級炭化水素を用いて、ナノカーボンの生成と同時に、所望のガス比の合成ガスを容易に得ることができる製造方法および製造システムを提供することを目的とする。また、水素が無駄に使用されて水が生成することを抑制した製造方法および製造システムを提供することを目的とする。
すなわち、本発明の合成ガスとナノカーボンの製造方法のうち、第1の本発明は、低級炭化水素を触媒を使用して直接分解し、水素とナノカーボンを生成する低級炭化水素分解工程と、前記低級炭化水素分解工程で生成された前記ナノカーボンの一部と二酸化炭素とを反応させて、一酸化炭素を製造する二酸化炭素還元工程と、前記低級炭化水素分解工程で生成された前記水素と前記二酸化炭素還元工程で生成された前記一酸化炭素とを所定の比率で混合して合成ガスを得る混合工程と、を有することを特徴とする。
第2の本発明の合成ガスとナノカーボンの製造方法は、前記第1の本発明において、前記混合工程で得られた合成ガスを反応させて合成物を得る合成工程をさらに有することを特徴とする。
第3の本発明の合成ガスとナノカーボンの製造方法は、前記第1または第2の本発明において、前記二酸化炭素還元工程は、前記低級炭化水素分解工程で使用された触媒の一部または全部を前記ナノカーボンと前記二酸化炭素との反応に供し、前記反応に際し、前記触媒上から、前記低級炭化水素分解工程で生成されたナノカーボンの一部または全部を除去する触媒再生工程を含むことを特徴とする。
第4の本発明の合成ガスとナノカーボンの製造方法は、前記第3の本発明において、前記触媒再生工程で再生された前記触媒を再度、前記低級炭化水素分解工程に供することを特徴とする。
第5の本発明の合成ガスとナノカーボンの製造方法は、前記第1~第4の本発明のいずれか1において、前記低級炭化水素が、メタンを含むことを特徴とする。
第6の本発明の合成ガスとナノカーボンの製造方法は、前記第1~第5の本発明のいずれか1において、前記触媒は、ニッケル及び鉄のうち少なくとも一方を、アルミナ、シリカ、マグネシア、カルシア、ハイドロタルサイト、及び炭素のうち1種類以上に担持したものであることを特徴とする。
第7の本発明の合成ガスとナノカーボンの製造方法は、前記第1~第6の本発明のいずれか1において、前記二酸化炭素は、前記低級炭化水素分解工程における燃焼排ガス、前記二酸化炭素還元工程における燃焼排ガス、各種産業における排出ガス、及びバイオガスのいずれか1以上のガスから回収したものであることを特徴とする。
第8の本発明の合成ガスとナノカーボンの製造方法は、前記第1~第7の本発明のいずれか1において、前記二酸化炭素還元工程において、低級炭化水素、水素のうち1種類以上を還元剤として使用することを特徴とする。
第9の本発明の合成ガスとナノカーボンの製造方法は、前記第1~第8の本発明のいずれか1において、前記低級炭化水素分解工程と前記二酸化炭素還元工程とは、同一の前記触媒に対し前記低級炭化水素の供給と前記二酸化炭素の供給とを切り替えることによって行われることを特徴とする。
第10の本発明の合成ガスとナノカーボンの製造方法は、前記第1~第8の本発明のいずれか1において、前記低級炭化水素分解工程で製造されたナノカーボンを回収する回収工程を有し、前記回収工程で回収されたナノカーボンを前記二酸化炭素還元工程に供給することを特徴とする。
第11の本発明の合成ガスとナノカーボンの製造方法は、前記第10の本発明において、前記回収工程で触媒とともに回収されたナノカーボンを微粉化した後、高純度ナノカーボンと、前記触媒を高濃度に含有するナノカーボンとを、比重及び磁気のうち少なくとも一方により選別し、前記触媒を高濃度に含有する前記ナノカーボンを優先的に前記二酸化炭素還元工程に供することを特徴とする。
第12の本発明の合成ガスとナノカーボンの製造システムは、低級炭化水素が供給される低級炭化水素供給路が接続され、前記低級炭化水素供給路が連通する空間に触媒が収容されて前記空間が低級炭化水素の直接分解がなされる反応空間である低級炭化水素分解反応装置と、
二酸化炭素が供給される二酸化炭素供給路が接続され、前記二酸化炭素供給路が連通する空間にナノカーボンが収容されて前記空間が前記二酸化炭素の一酸化炭素への還元反応がなされる反応空間である二酸化炭素還元反応装置と、
前記低級炭化水素分解反応装置および前記二酸化炭素還元反応装置に接続され、前記低級炭化水素分解反応装置で生成された水素と前記二酸化炭素還元反応装置で生成された一酸化炭素とが混合される混合部と、を備えることを特徴とする。
二酸化炭素が供給される二酸化炭素供給路が接続され、前記二酸化炭素供給路が連通する空間にナノカーボンが収容されて前記空間が前記二酸化炭素の一酸化炭素への還元反応がなされる反応空間である二酸化炭素還元反応装置と、
前記低級炭化水素分解反応装置および前記二酸化炭素還元反応装置に接続され、前記低級炭化水素分解反応装置で生成された水素と前記二酸化炭素還元反応装置で生成された一酸化炭素とが混合される混合部と、を備えることを特徴とする。
第13の本発明の合成ガスとナノカーボンの製造システムは、前記第12の本発明において、前記低級炭化水素分解反応装置で製造された前記水素を冷却する熱交換器を備え、前記熱交換器で得られた熱を前記低級炭化水素分解反応装置および/または前記二酸化炭素還元反応装置に供給する排熱供給路を有することを特徴とする。
第14の本発明の合成ガスとナノカーボンの製造システムは、前記第12または第13本発明において、前記低級炭化水素分解反応装置と前記二酸化炭素還元反応装置は、前記各反応空間を共通とし、前記低級炭化水素供給路および前記二酸化炭素供給路における低級炭化水素および二酸化炭素との供給を切り替えて前記反応空間に選択的に供給する切替部を有することを特徴とする。
第15の本発明の合成ガスとナノカーボンの製造システムは、前記第12~第14の本発明のいずれか1において、前記低級炭化水素分解反応装置で生成されたナノカーボンを回収するナノカーボン回収部と、前記ナノカーボン回収部で回収した後のナノカーボンを前記二酸化炭素還元反応装置に移送するナノカーボン移送路を備えることを特徴とする。
第16の本発明の合成ガスとナノカーボンの製造システムは、前記第15の本発明において、前記ナノカーボン回収部で回収した、前記触媒を含むナノカーボンを微粉化する微粉化部と、前記微粉化部の後段にあって、高純度のナノカーボンと、触媒を高濃度で含有するナノカーボンとに選別する選別部と、を備え、前記ナノカーボン移送路は、選別された、触媒を高濃度に含有するナノカーボンを移送するように前記選別部に接続されていることを特徴とする。
本発明の合成ガスとナノカーボンの製造方法によれば、低級炭化水素を触媒を使用して直接分解し、水素とナノカーボンを生成する低級炭化水素分解工程と、前記低級炭化水素分解工程で生成された前記ナノカーボンの一部と二酸化炭素とを反応させて、一酸化炭素を製造する二酸化炭素還元工程と、前記低級炭化水素分解工程で生成された前記水素と前記二酸化炭素還元工程で生成された前記一酸化炭素とを所定の比率で混合して合成ガスを得る混合工程と、を有するので、低級炭化水素と二酸化炭素からナノカーボンと合成ガスを製造することができる。また、従来方法では調整が難しかった合成ガスの水素/一酸化炭素比を任意の値にすることが容易になる。さらに、従来方法において水素の無駄遣いにより副生されていた水を生成しないものにすることができる。
また、本発明の合成ガスとナノカーボンの製造システムによれば、低級炭化水素が供給される低級炭化水素供給路が接続され、該低級炭化水素供給路が連通する空間に触媒が収容されて前記空間が低級炭化水素の直接分解がなされる反応空間である低級炭化水素分解反応装置と、二酸化炭素が供給される二酸化炭素供給路が接続され、該二酸化炭素供給路が連通する空間にナノカーボンが収容されて前記空間が前記二酸化炭素が一酸化炭素に還元される反応空間である二酸化炭素還元反応装置と、前記低級炭化水素分解反応装置および前記二酸化炭素還元反応装置に接続され、前記低級炭化水素分解反応装置で生成された水素と前記二酸化炭素還元反応装置で生成された一酸化炭素とが混合される混合部とを備えるので、上記製造方法を確実に実現することができる。
本発明によれば、低級炭化水素が分解され、該分解によって水素とナノカーボンが生成され、前記ナノカーボンと二酸化炭素とから合成ガスが製造される。そして、合成ガスの成分となる水素と一酸化炭素は、それぞれ別々の工程で生成されて混合されるため、合成ガスのガス比(一酸化炭素と水素の比)は任意かつ容易に調整することができる。ナノカーボンは、前記二酸化炭素還元工程で使用するもの以外は、機能性材料として様々な用途で使用することができる。
なお、従来の合成ガス製造方法においては、二酸化炭素と水素の反応により水が生成し、水素が無駄遣いされていたが、本発明では水の生成を必要とせず、このような無駄を省くことができる。
なお、従来の合成ガス製造方法においては、二酸化炭素と水素の反応により水が生成し、水素が無駄遣いされていたが、本発明では水の生成を必要とせず、このような無駄を省くことができる。
低級炭化水素分解工程および二酸化炭素還元工程に必要な反応熱は、本発明で生成された反応ガスを元に化学原料あるいは燃料を製造する際に排出される排熱や、各種産業からの排熱を利用することができ、これにより、エネルギーの有効活用ができる。上記各種産業からの排熱とは、例えば、鉄鋼業、化学工業、製紙・パルプ業等における工場からの排熱や、発電設備からの排熱が挙げられる。
また、本発明によれば、前記混合工程で得られた合成ガスを反応させて合成物を得る合成工程をさらに有することも可能である。合成物としては、水素と一酸化炭素とから合成可能な物質であれば限定されるものではないが、メタノール、エタノール、DME、混合アルコール、エチレングリコール、シュウ酸、酢酸、FT合成生成物(人造ガソリン・灯軽油)などを例示できる。
本発明によって製造される合成ガスは、低級炭化水素分解工程および二酸化炭素還元工程で生成された高温の状態の水素と一酸化炭素を用いるので、高温の状態で得ることができる。本発明では反応プロセス中に組み込まれて合成ガスが得られており、合成反応前の水素と一酸化炭素は比較的合成反応温度に近い。この高温の合成ガスを用いてメタノールなどの製造をすることにより、反応に必要なエネルギーの投入量を減らすことができる。
なお、低級炭化水素分解工程で生成された水素の温度が高すぎる場合、必要に応じて熱交換器などによって冷却した後、合成ガスの製造に供するようにしてもよい。この冷却に際し熱交換によって得た熱は、低級炭化水素分解工程および/または二酸化炭素還元工程の熱源などとして利用することができる。
なお、低級炭化水素分解工程で生成された水素の温度が高すぎる場合、必要に応じて熱交換器などによって冷却した後、合成ガスの製造に供するようにしてもよい。この冷却に際し熱交換によって得た熱は、低級炭化水素分解工程および/または二酸化炭素還元工程の熱源などとして利用することができる。
また、本発明によれば、低級炭化水素分解工程で生成したナノカーボンを触媒との混合状態で二酸化炭素還元工程に供し、二酸化炭素によりナノカーボンを酸化することで、触媒、例えば触媒金属およびこれを担持している担体が固形残渣となり、これを再度低級炭化水素分解用触媒として使用することができる。すなわちこの場合には、二酸化炭素還元工程には触媒の再生・賦活操作からなる触媒再生工程を含むことになる。
低級炭化水素分解工程で用いられる低級炭化水素は、メタンが代表的であるが、これに限定されるものではなく、エタン、プロパン、ブタン、エチレン、プロピレン、ブチレン等を用いることができる。これらの混合ガスであってもよい。代表的にはメタンまたはメタンを主成分とするものが挙げられる。メタンを主成分とする場合、メタンを80体積%以上含む天然ガスが挙げられる。
低級炭化水素の由来は特に限定されるものではなく、例えば、天然ガス、都市ガス13A、ボイルオフガス、バイオガスとして得られるものや、化学合成により得られるものを用いることができる。
低級炭化水素の由来は特に限定されるものではなく、例えば、天然ガス、都市ガス13A、ボイルオフガス、バイオガスとして得られるものや、化学合成により得られるものを用いることができる。
低級炭化水素分解工程で用いられる触媒は、低級炭化水素を分解して水素とナノカーボンを生成できるものであればよく、本発明としては特定のものに限定されるものではない。特に、触媒材料であるニッケル及び鉄のうち少なくとも一方を、担体であるアルミナ、シリカ、マグネシア、カルシア、ハイドロタルサイト、及び炭素のうち1種類以上に担持したものが挙げられる。なお、この場合、ニッケル及び鉄のうち少なくとも一方の担持量は30質量%以上とするのが望ましい。
また、触媒は、担体を用いることなく全量を触媒材料で構成するものであってもよい。
また、触媒は、担体を用いることなく全量を触媒材料で構成するものであってもよい。
本発明の二酸化炭素還元工程で使用する二酸化炭素には、低級炭化水素分解工程および/または二酸化炭素還元工程における燃焼ガス排ガス中から回収したものを使用することができる。これにより、最終的に排出される二酸化炭素量を低減することができる。また、各種産業における排出ガス中、または、バイオガス中から回収して、該二酸化炭素を有効活用することができる。
また、二酸化炭素還元工程では、メタン、水素のうち1種類以上を還元剤として使用することもできる。これにより、二酸化炭素還元工程の反応が促進される。
なお、低級炭化水素分解工程と二酸化炭素還元工程とは、同一の前記触媒に対し前記低級炭化水素の供給と前記二酸化炭素の供給とを切り替えることによって行うことも可能である。例えば、低級炭化水素分解反応装置と二酸化炭素還元反応装置の反応空間を共通とし、低級炭化水素および二酸化炭素との供給を切り替えて前記反応空間に選択的に供給する切り替え部を設けることにより実現できる。一つの反応空間内で両工程を行うので、設備がコンパクトになる。
なお、上記切り替えは、所定の時間毎に行うようにしてもよく、また反応の状態(反応効率の低下など)などに基づいて切り替えるようにしてもよい。切り替えは、手動で行うこともでき、また、時間のカウントや反応状態を判定する制御部などによって自動的に切り替えるようにしてもよい。
なお、上記切り替えは、所定の時間毎に行うようにしてもよく、また反応の状態(反応効率の低下など)などに基づいて切り替えるようにしてもよい。切り替えは、手動で行うこともでき、また、時間のカウントや反応状態を判定する制御部などによって自動的に切り替えるようにしてもよい。
低級炭化水素分解工程で製造されたナノカーボンの一部を二酸化炭素還元工程に供給する際には、回収部を設け、これにより製造されたナノカーボンを回収することができる。回収部の構成は、本発明としては特に限定されるものでなく、適宜の構成、方法を適用することができる。例えば、反応容器からのオーバーフローによる方法、反応容器下部に取出口を設け、ここから抜き出す方法などを回収部として適用することができる。
さらに、上記回収工程の下流側に、回収したナノカーボンを微粉化する微粉化部と、微粉化したナノカーボンのうち触媒を高濃度に含有するナノカーボンを選別する選別部を設け、触媒を高濃度に含有するナノカーボンを優先的に二酸化炭素還元反応器に供給するようにしてもよい。選別部としては、例えば、比重により選別する比重選別部、磁気による選別を行う磁気選別部などを用いることができる。上記選別により触媒再生量を増加して、低級炭化水素分解工程における触媒補充量を抑制することができる。なお、上記した微粉化部、選別部については本発明としては特定の物に限定されるものではない。
さらに、上記回収工程の下流側に、回収したナノカーボンを微粉化する微粉化部と、微粉化したナノカーボンのうち触媒を高濃度に含有するナノカーボンを選別する選別部を設け、触媒を高濃度に含有するナノカーボンを優先的に二酸化炭素還元反応器に供給するようにしてもよい。選別部としては、例えば、比重により選別する比重選別部、磁気による選別を行う磁気選別部などを用いることができる。上記選別により触媒再生量を増加して、低級炭化水素分解工程における触媒補充量を抑制することができる。なお、上記した微粉化部、選別部については本発明としては特定の物に限定されるものではない。
(実施形態1)
以下、本発明における合成ガスとナノカーボンの製造システムの一実施形態について図1に基づいて説明する。本実施形態は、低級炭化水素直接分解装置と二酸化炭素還元反応装置を並列運転して、ナノカーボンおよび合成ガスを製造するものである。なお、この実施形態では、低級炭化水素としてメタンを用いるものとして説明する。なお、本発明としては低級炭化水素の種別がメタンに限定されるものではない。
以下、本発明における合成ガスとナノカーボンの製造システムの一実施形態について図1に基づいて説明する。本実施形態は、低級炭化水素直接分解装置と二酸化炭素還元反応装置を並列運転して、ナノカーボンおよび合成ガスを製造するものである。なお、この実施形態では、低級炭化水素としてメタンを用いるものとして説明する。なお、本発明としては低級炭化水素の種別がメタンに限定されるものではない。
本発明の製造システムは、低級炭化水素分解反応装置10と、二酸化炭素還元反応装置30と、混合部50を備える。
低級炭化水素分解反応装置10は、メタンを直接分解する触媒13が収容される反応容器11と該反応容器11の周囲を囲んで該反応容器11内部を加熱する炉12とを備えている。反応容器11内がメタンを直接分解する反応空間となる。触媒13としては、ニッケル、鉄のうち1種類以上を、アルミナ、シリカ、マグネシア、カルシア、ハイドロタルサイト、炭素のうち1種類以上に、担持量が30質量%以上となるように担持したものや担体を用いることなく全量をニッケル、鉄のうち1種類以上などの触媒材料で構成したものが例示される。
低級炭化水素分解反応装置10は、メタンを直接分解する触媒13が収容される反応容器11と該反応容器11の周囲を囲んで該反応容器11内部を加熱する炉12とを備えている。反応容器11内がメタンを直接分解する反応空間となる。触媒13としては、ニッケル、鉄のうち1種類以上を、アルミナ、シリカ、マグネシア、カルシア、ハイドロタルサイト、炭素のうち1種類以上に、担持量が30質量%以上となるように担持したものや担体を用いることなく全量をニッケル、鉄のうち1種類以上などの触媒材料で構成したものが例示される。
反応容器11には、原料となるメタンを反応容器11内に供給する低級炭化水素供給路20と、反応容器内で生成された排出ガスを移送する排出ガス移送路14が接続されている。低級炭化水素供給路20は反応容器11に至る途中に分岐部を有し、該分岐部に後述する燃料供給路21が接続されている。なお、本実施形態では、原料メタンの一部を炉加熱用の燃料としても用いるものとしたが、燃料には、原料とは異なる炭化水素などを用いるものであってもよい。その場合には、燃料供給路を低級炭化水素供給路から分岐させるのではなく、別途燃料供給路を設けるようにする。
排出ガス移送路14は、排出ガスを冷却する熱交換器24を介して排出ガス中からメタンを回収するPSA(pressure swing adsorption)25が接続されている。PSA25には、分離、回収されたメタンが移送される返流路26と排出ガス中から分離した水素を移送する水素移送路14aとが接続されている。水素移送路14aの他端は、混合部50に接続されている。上記返流路26は熱交換器24を介して燃料供給路21に合流している。
本実施形態では、熱交換器24で回収した熱で、PSA25で回収したメタンを加熱するものとしたが、排出ガスの熱は、低級炭化水素分解工程および/または二酸化炭素還元工程での熱源などとして利用できれば、上記構成に限定されるものではない。
本実施形態では、熱交換器24で回収した熱で、PSA25で回収したメタンを加熱するものとしたが、排出ガスの熱は、低級炭化水素分解工程および/または二酸化炭素還元工程での熱源などとして利用できれば、上記構成に限定されるものではない。
また、反応容器11には、ナノカーボンを触媒との混合状態で取出すナノカーボン回収部42が設けられている。ナノカーボン回収部42の構成は特に限定されるものではなく、反応容器11からオーバーフローさせたり、反応容器11下部に抜き出し口を設けて取出すものであってもよい。ナノカーボン回収部42には、ナノカーボン・触媒移送路43が接続されており、該ナノカーボン・触媒移送路43は、後述する反応容器31に接続されている。該ナノカーボン・触媒移送路43は、本発明のナノカーボン移送路に相当する。
なお、ナノカーボン回収部42で回収した、触媒を含むナノカーボンは、微粉化した後、高純度のナノカーボンと、触媒を高濃度で含有するナノカーボンとに選別し、選別した、触媒を高濃度で含有するナノカーボンをナノカーボン・触媒移送路43によって反応容器31に移送するようにしてもよい。上記微粉化は微粉化部で行い、上記選別は、比重選別や磁気選別による選別部で行うことができる。
なお、ナノカーボン回収部42で回収した、触媒を含むナノカーボンは、微粉化した後、高純度のナノカーボンと、触媒を高濃度で含有するナノカーボンとに選別し、選別した、触媒を高濃度で含有するナノカーボンをナノカーボン・触媒移送路43によって反応容器31に移送するようにしてもよい。上記微粉化は微粉化部で行い、上記選別は、比重選別や磁気選別による選別部で行うことができる。
また、炉12には、前記したように、メタンを燃料として炉12内に供給する燃料供給路21と、炉12内での燃焼により発生した排ガス中の二酸化炭素を二酸化炭素還元反応装置30へと供給する二酸化炭素供給路23が接続されている。
二酸化炭素還元反応装置30は、ナノカーボンが触媒と混合した状態で収容される反応容器31と、該反応容器31の周囲を囲んで該反応容器31内部を加熱する炉32とを備えている。前記反応容器31内は、ナノカーボンと二酸化炭素との反応によって一酸化炭素を生成する反応空間に相当する。反応容器31には、上記した二酸化炭素供給路23とナノカーボン・触媒移送路43が接続されている。また、反応容器31には、反応容器31内で製造された一酸化炭素を混合部50へ移送する一酸化炭素移送路34が接続されている。
炉32には、メタンを燃料として炉32内に供給する燃料供給路22と、炉32内での燃焼により発生した排ガス中の二酸化炭素を二酸化炭素供給路23へと移送するための二酸化炭素供給路35が接続されている。
炉32には、メタンを燃料として炉32内に供給する燃料供給路22と、炉32内での燃焼により発生した排ガス中の二酸化炭素を二酸化炭素供給路23へと移送するための二酸化炭素供給路35が接続されている。
混合部50には、水素移送路14aと、一酸化炭素移送路34が接続されており、水素および一酸化炭素が供給される。また、混合部50には、製造された合成ガスを外部へ移送する合成ガス移送路51と、余剰の水素を外部へ移送する余剰水素移送路52が接続されている。水素の外部移送量を調整することで、混合部50において水素と一酸化炭素の混合比を任意に調整することができる。水素の外部移送量は流量調整弁などによって調整することができる。
次に、本実施形態の動作について説明する。
低級炭化水素分解反応装置10の反応容器11には、触媒13が収容される。反応容器11内には、メタンが低級炭化水素供給路20を通して供給される。
反応容器11は、燃料供給路21を通じて供給されたメタンを燃料として、炉12によって加熱される。このとき、炉12から排出される燃焼排ガス中の二酸化炭素は、二酸化炭素供給路23により二酸化炭素還元反応装置30の反応容器31へと供給される。
反応容器11が所定の温度に加熱された状態で、メタンが反応容器11内に供給されると、触媒13とメタンとの反応によって、ナノカーボンと水素が製造される。このときの温度、圧力は特に限定されるものではなく、メタンの転化率等を考慮して適宜定めることができる。
低級炭化水素分解反応装置10の反応容器11には、触媒13が収容される。反応容器11内には、メタンが低級炭化水素供給路20を通して供給される。
反応容器11は、燃料供給路21を通じて供給されたメタンを燃料として、炉12によって加熱される。このとき、炉12から排出される燃焼排ガス中の二酸化炭素は、二酸化炭素供給路23により二酸化炭素還元反応装置30の反応容器31へと供給される。
反応容器11が所定の温度に加熱された状態で、メタンが反応容器11内に供給されると、触媒13とメタンとの反応によって、ナノカーボンと水素が製造される。このときの温度、圧力は特に限定されるものではなく、メタンの転化率等を考慮して適宜定めることができる。
反応容器11内で生成された排出ガスは、排出ガス移送路14により反応容器11外へ排出され、熱交換器24を介してPSA25に移送される。
また、排出ガスは、PSA25によって未反応のメタンと水素とが分離され、回収されメタンは、返流路26により熱交換器24を介して燃料供給路21へと移送され、再度燃料として使用することができる。熱交換器24では、排出ガスと回収メタンとの間で熱交換され、排出ガスが冷却されるとともに、回収メタンが加熱される。回収メタンの加熱は、燃料の予熱としてエネルギー効率を高める。
一方、PSA25で分離された水素は水素移送路14aを通して混合部50に移送される。
また、排出ガスは、PSA25によって未反応のメタンと水素とが分離され、回収されメタンは、返流路26により熱交換器24を介して燃料供給路21へと移送され、再度燃料として使用することができる。熱交換器24では、排出ガスと回収メタンとの間で熱交換され、排出ガスが冷却されるとともに、回収メタンが加熱される。回収メタンの加熱は、燃料の予熱としてエネルギー効率を高める。
一方、PSA25で分離された水素は水素移送路14aを通して混合部50に移送される。
また、反応容器11内では、前記分解反応によってナノカーボンが生成される。このナノカーボンは、触媒とともにナノカーボン回収部42により反応容器11外へと取出される。必要量のナノカーボンは分離して機能性材料などとして使用することができる。また、ナノカーボンの一部および触媒は、ナノカーボン・触媒移送路43を通して反応容器31へと移送される。なお、本発明としては、ナノカーボンのみを反応容器31に移送するものであってもよい。
二酸化炭素還元反応装置30の反応容器31には、二酸化炭素供給路23によって二酸化炭素が供給され、ナノカーボン・触媒移送路43によって触媒を含むナノカーボンが供給される。また、反応容器31は、燃料供給路22を通じて供給されたメタンを燃料として、炉32によって加熱される。このとき、炉32から排出される燃焼排ガス中の二酸化炭素は、二酸化炭素供給路35を経由して、二酸化炭素供給路23を通して反応容器31に供給される。
反応容器31では、所定の温度、圧力の下で、ナノカーボンと二酸化炭素が反応し、一酸化炭素が製造される。また、反応の進行とともに触媒に付着したナノカーボンが消費され、触媒の再生・賦活がなされる触媒再生工程が同時に行われる。再生された触媒は、再び低級炭化水素分解反応装置で使用することができる。再生された触媒は、ナノカーボン・触媒移送路43およびナノカーボン回収部42を通して低級炭化水素分解反応装置10の反応容器11に返流させることができる。反応容器31で製造された一酸化炭素は、一酸化炭素移送路34を通して混合部50へと移送される。
反応容器31では、所定の温度、圧力の下で、ナノカーボンと二酸化炭素が反応し、一酸化炭素が製造される。また、反応の進行とともに触媒に付着したナノカーボンが消費され、触媒の再生・賦活がなされる触媒再生工程が同時に行われる。再生された触媒は、再び低級炭化水素分解反応装置で使用することができる。再生された触媒は、ナノカーボン・触媒移送路43およびナノカーボン回収部42を通して低級炭化水素分解反応装置10の反応容器11に返流させることができる。反応容器31で製造された一酸化炭素は、一酸化炭素移送路34を通して混合部50へと移送される。
混合部50では、上記のようにして製造された水素および一酸化炭素が供給されて混合され、所定量の水素を外部に排出することで、所定のガス比を有する合成ガスが製造される。また、混合部50に供給される水素および一酸化炭素の量を調整することで、所望のガス比を有するものとしてもよい。製造された合成ガスは、合成ガス移送路51を通って混合部50外部へと移送される。合成ガス移送路51で移送された合成ガスは、そのままメタノール等を製造する合成工程に供給してもよいし、一旦ボンベ等に貯蔵されてもよい。なお、合成ガスの高温の熱を有効利用するために、そのまま合成工程に供するのが望ましい。
混合部50において余剰となった水素は、混合部50より余剰水素移送路52を通って移送して適宜利用したり、廃棄したりすることができる。
合成ガスのガス比は、合成ガスを元に製造する物質の種類、製造方法等によって、任意の値とすることができる。例えば、合成ガスをもとにメタノールを製造する場合、理論的には、一酸化炭素と水素の比を1対2とするのがよい。
混合部50において余剰となった水素は、混合部50より余剰水素移送路52を通って移送して適宜利用したり、廃棄したりすることができる。
合成ガスのガス比は、合成ガスを元に製造する物質の種類、製造方法等によって、任意の値とすることができる。例えば、合成ガスをもとにメタノールを製造する場合、理論的には、一酸化炭素と水素の比を1対2とするのがよい。
(実施形態2)
次に、他の実施形態について図2に基づいて説明する。
本実施形態2は、低級炭化水素分解を行う反応空間と二酸化炭素還元反応を行う反応空間を共通とするべく、一つの反応容器で低級炭化水素分解と二酸化炭素還元を行うものである。なお、この実施形態2において前記実施形態1と同様の構成については同一の符号を付して、その説明を省略または簡略にする。
次に、他の実施形態について図2に基づいて説明する。
本実施形態2は、低級炭化水素分解を行う反応空間と二酸化炭素還元反応を行う反応空間を共通とするべく、一つの反応容器で低級炭化水素分解と二酸化炭素還元を行うものである。なお、この実施形態2において前記実施形態1と同様の構成については同一の符号を付して、その説明を省略または簡略にする。
本発明の製造システムは、反応装置60と、混合部50を備える。
反応装置60は、反応容器61と反応容器61の周囲を囲んで該反応容器61を加熱する炉62を備える。反応容器61内には、低級炭化水素を直接分解する触媒が収容される。また、反応容器61には、原料となるメタンを供給する低級炭化水素供給路20と、二酸化炭素を供給する二酸化炭素供給路27とがそれぞれ接続されており、低級炭化水素供給路20には開閉弁20a、二酸化炭素供給路27には開閉弁27aが介設されており、反応容器61に水素と二酸化炭素とを選択的に供給することが可能になっている。したがって、この実施形態では、開閉弁20a、27aが本発明の切替部に相当する。
反応装置60は、反応容器61と反応容器61の周囲を囲んで該反応容器61を加熱する炉62を備える。反応容器61内には、低級炭化水素を直接分解する触媒が収容される。また、反応容器61には、原料となるメタンを供給する低級炭化水素供給路20と、二酸化炭素を供給する二酸化炭素供給路27とがそれぞれ接続されており、低級炭化水素供給路20には開閉弁20a、二酸化炭素供給路27には開閉弁27aが介設されており、反応容器61に水素と二酸化炭素とを選択的に供給することが可能になっている。したがって、この実施形態では、開閉弁20a、27aが本発明の切替部に相当する。
上記炉62には、メタンを燃料として炉62内に供給する燃料供給路21が接続されており、該燃料供給路21は、前記低級炭化水素供給路20に分岐接続されている。また、炉62には、炉62内での燃焼により発生した排ガス中の二酸化炭素を炉外へと排出する二酸化炭素供給路27の一端が接続されており、該二酸化炭素供給路27には二酸化炭素貯留タンク28、前記開閉弁27aが順次介設されて、前記したように反応容器61に接続されている。
さらに反応容器61には、低級炭化水素分解工程において反応容器61内で生成された排出ガスを移送する排出ガス移送路64が接続されており、該排出ガス移送路64は、熱交換器24を介してPSA25に接続されている。PSA25には、分離、回収されたメタンが移送される返流路26と排出ガス中から分離した水素を移送する水素移送路64aとが接続されている。水素移送路64aの他端は、混合部50に接続されている。上記返流路26は熱交換器24を介して燃料供給路21に合流している。
また、反応容器61には、二酸化炭素還元工程において反応容器61内で生成された一酸化炭素を移送する一酸化炭素移送路65が接続されており、該一酸化炭素移送路65の他端は混合部50に接続されている。
次に、本実施形態の動作について説明する。
初期状態では、低級炭化水素供給路20の開閉弁20aを開け、二酸化炭素供給路27の開閉弁を閉じて、反応容器61内にメタンを供給可能にする。
また、反応容器61は、燃料供給路21を通じて供給されたメタンを燃料として、炉62によって加熱される。このとき、炉62から排出される燃焼排ガス中の二酸化炭素の一部または全部は、二酸化炭素供給路27に介設した二酸化炭素貯留タンク28に一時的に貯留される。これにより系外に排出される二酸化炭素の量を軽減する。
初期状態では、低級炭化水素供給路20の開閉弁20aを開け、二酸化炭素供給路27の開閉弁を閉じて、反応容器61内にメタンを供給可能にする。
また、反応容器61は、燃料供給路21を通じて供給されたメタンを燃料として、炉62によって加熱される。このとき、炉62から排出される燃焼排ガス中の二酸化炭素の一部または全部は、二酸化炭素供給路27に介設した二酸化炭素貯留タンク28に一時的に貯留される。これにより系外に排出される二酸化炭素の量を軽減する。
反応容器61内で生成された排出ガスは、排出ガス移送路64により反応容器61外へ排出され、熱交換器24を介してPSA25に移送される。
また、排出ガスは、PSA25によって未反応のメタンと水素とが分離され、回収されメタンは、返流路26により熱交換器24を介して燃料供給路21へと移送され、再度燃料として使用することができる。熱交換器24では、排出ガスと回収メタンとの間で熱交換され、排出ガスが冷却されるとともに、回収メタンが加熱される。PSA25で分離された水素は水素移送路64aを通して混合部50に移送される。
また、反応容器61内では、前記分解反応によってナノカーボンが生成される。
また、排出ガスは、PSA25によって未反応のメタンと水素とが分離され、回収されメタンは、返流路26により熱交換器24を介して燃料供給路21へと移送され、再度燃料として使用することができる。熱交換器24では、排出ガスと回収メタンとの間で熱交換され、排出ガスが冷却されるとともに、回収メタンが加熱される。PSA25で分離された水素は水素移送路64aを通して混合部50に移送される。
また、反応容器61内では、前記分解反応によってナノカーボンが生成される。
予め定めた所定時間の経過後、開閉弁20aを閉じ、開閉弁27aを開けて二酸化炭素供給路29を通して反応容器61内に二酸化炭素を供給する。この際に、二酸化炭素貯留タンク28を通して十分な量の二酸化炭素が供給される。必要に応じて燃料供給量を調整するなどして、炉62の温度を適宜調整する。上記開閉弁20a、27aの動作は、図示しない制御部による制御によって行うことができる。
反応容器61内では、低級炭化水素分解工程から二酸化炭素還元工程に移行し、反応容器61内に存在しているナノカーボンと二酸化炭素とが反応し、一酸化炭素が生成される。このとき、反応の進行とともに触媒に付着しているナノカーボンが消費され、触媒の再生・賦活がなされる触媒再生工程が同時に行われる。
なお、二酸化炭素還元反応を始める前に、反応前のナノカーボンを一部取出してもよい。
製造された一酸化炭素は、一酸化炭素移送路65を通して混合部50へと移送される。
なお、二酸化炭素還元反応を始める前に、反応前のナノカーボンを一部取出してもよい。
製造された一酸化炭素は、一酸化炭素移送路65を通して混合部50へと移送される。
混合部50では、上記のようにして製造された水素および一酸化炭素が供給されて混合され、所定のガス比を有する合成ガスが製造される。混合部50に供給される水素および一酸化炭素の量を調整することで、所望のガス比を有する合成ガスを得ることができる。
予め定めた所定時間の経過後、開閉弁20aを開き、開閉弁27aを閉じて低級炭化水素供給路20を通して反応容器61内にメタンを供給する。必要に応じて燃料供給量を調整するなどして、炉62の温度を適宜調整する。なお、この所定時間は、低級炭化水素分解工程から二酸化炭素還元工程に移行するべく切り替える際の所定の時間とは異なるものにすることができる。
反応容器61内では、二酸化炭素還元工程から低級炭化水素分解工程に移行し、反応容器61内で触媒によるメタンの分解反応が生じ、水素とナノカーボンが生成され、ナノカーボンの製造とともに前記した合成ガスの製造が行われる。
このように、低級炭化水素の供給と二酸化炭素の供給を切り替えることで、一つの反応容器で低級炭化水素分解反応と二酸化炭素還元反応とを行い、最終的に合成ガスとナノカーボンを製造することができる。
なお、低級炭化水素の供給と二酸化炭素の供給を切り替える間隔は、必要とされる水素、一酸化炭素の量や、反応条件等に応じて適宜定めることができる。
このように、低級炭化水素の供給と二酸化炭素の供給を切り替えることで、一つの反応容器で低級炭化水素分解反応と二酸化炭素還元反応とを行い、最終的に合成ガスとナノカーボンを製造することができる。
なお、低級炭化水素の供給と二酸化炭素の供給を切り替える間隔は、必要とされる水素、一酸化炭素の量や、反応条件等に応じて適宜定めることができる。
以上本発明について上記各実施形態に基づいて説明を行ったが、本発明は上記実施形態の内容に限定されるものではなく、本発明の範囲を逸脱しない限りは適宜の変更が可能である。
図1に示す製造システムを用いて、メタンと二酸化炭素から合成ガスとナノカーボンを製造し、この合成ガスを元にメタノールを製造する工程の一例を、図3のプロセスフローに基づいて説明する。
図3中のA.低級炭化水素分解、B.二酸化炭素還元、C.熱交換器による冷却、D.メタノール合成反応、および、E.メタノールの除熱の各段階における反応条件と物質収支(マテリアルバランス)を表1に示す。なお、本実施例では、製造された合成ガスを元にメタノールを製造する際の排熱、および、このメタノールを除熱する際の排熱を反応工程内で再利用するものとする。また、触媒としては、低級炭化水素分解工程ではアルミナに鉄を30質量%担持した触媒を用い、メタノール合成反応工程では酸化銅(CuO)を活性金属とした触媒を用いる。なおメタノール合成には、Cu、Zn、またはCu及びZnの少なくとも一方を含む合金を活性金属とした触媒を用いることができる。
図3中のA.低級炭化水素分解、B.二酸化炭素還元、C.熱交換器による冷却、D.メタノール合成反応、および、E.メタノールの除熱の各段階における反応条件と物質収支(マテリアルバランス)を表1に示す。なお、本実施例では、製造された合成ガスを元にメタノールを製造する際の排熱、および、このメタノールを除熱する際の排熱を反応工程内で再利用するものとする。また、触媒としては、低級炭化水素分解工程ではアルミナに鉄を30質量%担持した触媒を用い、メタノール合成反応工程では酸化銅(CuO)を活性金属とした触媒を用いる。なおメタノール合成には、Cu、Zn、またはCu及びZnの少なくとも一方を含む合金を活性金属とした触媒を用いることができる。
原料メタン60molを低級炭化水素分解反応装置10の反応容器11に供給し、燃料メタンにより炉12を750℃に加熱すると、以下の反応によって水素120molとナノカーボン60molが製造される(A.低級炭化水素分解)。
CH4→2H2+C+Q1 (Q1=74.5kJ/mol)
また、燃焼排ガスとして二酸化炭素が排出される。このときの低級炭化水素分解反応における反応熱は、二酸化炭素還元工程の熱源として利用できる。上記反応で製造される水素は750℃と高温であり、これを熱交換器により冷却して300℃にする(C.熱交換器による冷却)。
CH4→2H2+C+Q1 (Q1=74.5kJ/mol)
また、燃焼排ガスとして二酸化炭素が排出される。このときの低級炭化水素分解反応における反応熱は、二酸化炭素還元工程の熱源として利用できる。上記反応で製造される水素は750℃と高温であり、これを熱交換器により冷却して300℃にする(C.熱交換器による冷却)。
熱交換器で得られた排熱は二酸化炭素還元工程の熱源として利用される。
上記で製造されたナノカーボンのうち30molと、上記二酸化炭素30molを二酸化炭素還元装置の反応容器に供給し、燃焼メタンにより炉を650℃に加熱すると、下記反応によって一酸化炭素60molが製造される(B.二酸化炭素還元)。
C+CO2→2CO+Q2 (Q2=172.37kJ/mol)
上記で製造されたナノカーボンのうち30molと、上記二酸化炭素30molを二酸化炭素還元装置の反応容器に供給し、燃焼メタンにより炉を650℃に加熱すると、下記反応によって一酸化炭素60molが製造される(B.二酸化炭素還元)。
C+CO2→2CO+Q2 (Q2=172.37kJ/mol)
製造された一酸化炭素60molと水素120molを混合部で混合すると、一酸化炭素と水素の比が1対2である合成ガスが180mol製造される。この合成ガス180molを用いて反応温度300℃で反応させると、下記反応によって、メタノール60molを製造することができる(D.メタノール合成反応)。なお、合成ガスからメタノールを製造する反応は発熱反応であるので、反応熱を熱源として利用できる。
CO+2H2→CH3OH+Q3 (Q3=-30.75kJ/mol)
製造したばかりのメタノールは300℃であり、これを除熱して20℃とする(E.メタノールの除熱)。除熱で得られた熱は、他の工程における熱源として利用できる。
CO+2H2→CH3OH+Q3 (Q3=-30.75kJ/mol)
製造したばかりのメタノールは300℃であり、これを除熱して20℃とする(E.メタノールの除熱)。除熱で得られた熱は、他の工程における熱源として利用できる。
本実施例におけるマテリアルバランスについて表1に基づいて説明する。表1に示したように、燃料としてメタンを使用し、炉の効率を50%と仮定した場合、理論上、燃料の燃焼により排出される二酸化炭素量が約30molとなる。排出される二酸化炭素を全て用いて合成ガスを製造し、この合成ガスからメタノールを合成すると、本実施例で最終的に排出される二酸化炭素の量をゼロとする事が可能となる。
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2011年3月11日出願の日本特許出願(特願2011-053865)に基づくものであり、その内容はここに参照として取り込まれる。
10 低級炭化水素分解反応装置
11 反応容器
12 炉
14 排出ガス移送路
14a 水素移送路
20 低級炭化水素供給路
20a 開閉弁
21 燃料供給路
22 燃料供給路
23 二酸化炭素供給路
24 熱交換器
27 二酸化炭素供給路
27a 開閉弁
28 二酸化炭素貯留タンク
29 二酸化炭素供給路
30 二酸化炭素還元反応装置
31 反応容器
32 炉
34 一酸化炭素移送路
35 二酸化炭素供給路
42 ナノカーボン回収部
43 ナノカーボン・触媒移送路
50 混合部
60 反応装置
61 反応容器
62 炉
64 排出ガス移送路
64a 水素移送路
65 一酸化炭素移送路
11 反応容器
12 炉
14 排出ガス移送路
14a 水素移送路
20 低級炭化水素供給路
20a 開閉弁
21 燃料供給路
22 燃料供給路
23 二酸化炭素供給路
24 熱交換器
27 二酸化炭素供給路
27a 開閉弁
28 二酸化炭素貯留タンク
29 二酸化炭素供給路
30 二酸化炭素還元反応装置
31 反応容器
32 炉
34 一酸化炭素移送路
35 二酸化炭素供給路
42 ナノカーボン回収部
43 ナノカーボン・触媒移送路
50 混合部
60 反応装置
61 反応容器
62 炉
64 排出ガス移送路
64a 水素移送路
65 一酸化炭素移送路
Claims (16)
- 低級炭化水素を、触媒を使用して直接分解し、水素とナノカーボンを生成する低級炭化水素分解工程と、
前記低級炭化水素分解工程で生成された前記ナノカーボンの一部と二酸化炭素とを反応させて、一酸化炭素を製造する二酸化炭素還元工程と、
前記低級炭化水素分解工程で生成された前記水素と前記二酸化炭素還元工程で生成された前記一酸化炭素とを所定の比率で混合して合成ガスを得る混合工程と、を有する合成ガスとナノカーボンの製造方法。 - 前記混合工程で得られた合成ガスを反応させて合成物を得る合成工程をさらに有する請求項1記載の合成ガスとナノカーボンの製造方法。
- 前記二酸化炭素還元工程は、前記低級炭化水素分解工程で使用された触媒の一部または全部を前記ナノカーボンと前記二酸化炭素との反応に供し、前記反応に際し、前記触媒上から、前記低級炭化水素分解工程で生成されたナノカーボンの一部または全部を除去する触媒再生工程を含む請求項1または2に記載の合成ガスとナノカーボンの製造方法。
- 前記触媒再生工程で再生された前記触媒を再度、前記低級炭化水素分解工程に供する請求項3記載の合成ガスとナノカーボンの製造方法。
- 前記低級炭化水素が、メタンを含む請求項1~4のいずれか1項に記載の合成ガスとナノカーボンの製造方法。
- 前記触媒は、ニッケル及び鉄のうち少なくとも一方を、アルミナ、シリカ、マグネシア、カルシア、ハイドロタルサイト、及び炭素のうち1種類以上に担持したものである請求項1~5のいずれか1項に記載の合成ガスとナノカーボンの製造方法。
- 前記二酸化炭素は、前記低級炭化水素分解工程における燃焼排ガス、前記二酸化炭素還元工程における燃焼排ガス、各種産業における排出ガス、及びバイオガスのいずれか1以上のガスから回収したものである請求項1~6のいずれか1項に記載の合成ガスとナノカーボンの製造方法。
- 前記二酸化炭素還元工程において、低級炭化水素及び水素のうち少なくとも一方を還元剤として使用する請求項1~7のいずれか1項に記載の合成ガスとナノカーボンの製造方法。
- 前記低級炭化水素分解工程と前記二酸化炭素還元工程とは、同一の前記触媒に対し前記低級炭化水素の供給と前記二酸化炭素の供給とを切り替えることによって行われる請求項1~8のいずれか1項に記載の合成ガスとナノカーボンの製造方法。
- 前記低級炭化水素分解工程で製造されたナノカーボンを回収する回収工程を有し、
前記回収工程で回収されたナノカーボンを前記二酸化炭素還元工程に供給する請求項1~9のいずれか1項に記載の合成ガスとナノカーボンの製造方法。 - 前記回収工程で触媒とともに回収されたナノカーボンを微粉化した後、高純度ナノカーボンと、前記触媒を高濃度に含有するナノカーボンとを、比重及び磁気のうち少なくとも一方により選別し、前記触媒を高濃度に含有する前記ナノカーボンを優先的に前記二酸化炭素還元工程に供する請求項10に記載の合成ガスとナノカーボンの製造方法。
- 低級炭化水素が供給される低級炭化水素供給路が接続され、前記低級炭化水素供給路が連通する空間に触媒が収容されて前記空間が低級炭化水素の直接分解がなされる反応空間である低級炭化水素分解反応装置と、
二酸化炭素が供給される二酸化炭素供給路が接続され、前記二酸化炭素供給路が連通する空間にナノカーボンが収容されて前記空間が前記二酸化炭素の一酸化炭素への還元反応がなされる反応空間である二酸化炭素還元反応装置と、
前記低級炭化水素分解反応装置および前記二酸化炭素還元反応装置に接続され、前記低級炭化水素分解反応装置で生成された水素と前記二酸化炭素還元反応装置で生成された一酸化炭素とが混合される混合部と、を備える、合成ガスとナノカーボンの製造システム。 - 前記低級炭化水素分解反応装置で製造された前記水素を冷却する熱交換器を備え、前記熱交換器で得られた熱を前記低級炭化水素分解反応装置及び前記二酸化炭素還元反応装置の少なくとも一方に供給する排熱供給路を有する請求項12に記載の合成ガスとナノカーボンの製造システム。
- 前記低級炭化水素分解反応装置と前記二酸化炭素還元反応装置は、前記各反応容器を共通とし、前記低級炭化水素供給路および前記二酸化炭素供給路における低級炭化水素および二酸化炭素との供給を切り替えて前記反応空間に選択的に供給する切替部を有する請求項12または13に記載の合成ガスとナノカーボンの製造システム。
- 前記低級炭化水素分解反応装置で生成されたナノカーボンを回収するナノカーボン回収部と、前記ナノカーボン回収部で回収した後のナノカーボンを前記二酸化炭素還元反応装置に移送するナノカーボン移送路を備える請求項12~14のいずれか1項に記載の合成ガスとナノカーボンの製造システム。
- 前記ナノカーボン回収部で回収した、前記触媒を含むナノカーボンを微粉化する微粉化部と、前記微粉化部の後段にあって、高純度のナノカーボンと、触媒を高濃度で含有するナノカーボンとに選別する選別部と、を備え、前記ナノカーボン移送路は、選別された、触媒を高濃度に含有するナノカーボンを移送するように前記選別部に接続されている請求項15に記載の合成ガスとナノカーボンの製造システム。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12758046.2A EP2684842B1 (en) | 2011-03-11 | 2012-03-09 | Synthetic gas and nanocarbon production method and production system |
US14/004,321 US9327970B2 (en) | 2011-03-11 | 2012-03-09 | Synthesis gas and nanocarbon production method and production system |
CN201280012913.4A CN103429527B (zh) | 2011-03-11 | 2012-03-09 | 合成气体与纳米碳制造方法和制造系统 |
CA2829552A CA2829552C (en) | 2011-03-11 | 2012-03-09 | Synthesis gas and nanocarbon production method and production system |
US15/078,745 US9498764B2 (en) | 2011-03-11 | 2016-03-23 | Synthesis gas and nanocarbon production method and production system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011053865A JP5489004B2 (ja) | 2011-03-11 | 2011-03-11 | 合成ガスとナノカーボンの製造方法および製造システム |
JP2011-053865 | 2011-03-11 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/004,321 A-371-Of-International US9327970B2 (en) | 2011-03-11 | 2012-03-09 | Synthesis gas and nanocarbon production method and production system |
US15/078,745 Division US9498764B2 (en) | 2011-03-11 | 2016-03-23 | Synthesis gas and nanocarbon production method and production system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012124636A1 true WO2012124636A1 (ja) | 2012-09-20 |
Family
ID=46830707
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/056157 WO2012124636A1 (ja) | 2011-03-11 | 2012-03-09 | 合成ガスとナノカーボンの製造方法および製造システム |
Country Status (6)
Country | Link |
---|---|
US (2) | US9327970B2 (ja) |
EP (1) | EP2684842B1 (ja) |
JP (1) | JP5489004B2 (ja) |
CN (1) | CN103429527B (ja) |
CA (1) | CA2829552C (ja) |
WO (1) | WO2012124636A1 (ja) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012010542A1 (de) | 2011-12-20 | 2013-06-20 | CCP Technology GmbH | Verfahren und anlage zur erzeugung von synthesegas |
TWI638770B (zh) * | 2012-09-18 | 2018-10-21 | 美商艾克頌美孚上游研究公司 | 用於製造碳同素異形體之反應器系統 |
WO2014151138A1 (en) | 2013-03-15 | 2014-09-25 | Seerstone Llc | Reactors, systems, and methods for forming solid products |
US9586823B2 (en) | 2013-03-15 | 2017-03-07 | Seerstone Llc | Systems for producing solid carbon by reducing carbon oxides |
EP3129321B1 (en) | 2013-03-15 | 2021-09-29 | Seerstone LLC | Electrodes comprising nanostructured carbon |
WO2014150944A1 (en) | 2013-03-15 | 2014-09-25 | Seerstone Llc | Methods of producing hydrogen and solid carbon |
JP6299347B2 (ja) * | 2014-04-01 | 2018-03-28 | 株式会社Ihi | 二酸化炭素固定システム |
WO2018022999A1 (en) | 2016-07-28 | 2018-02-01 | Seerstone Llc. | Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same |
WO2019016765A1 (en) * | 2017-07-21 | 2019-01-24 | Sabic Global Technologies B.V. | THERMOCATALYTIC PROCESS FOR GENERATING HYDROGEN AND CARBON MONOXIDE FROM HYDROCARBONS |
WO2019234992A1 (ja) * | 2018-06-05 | 2019-12-12 | 株式会社Ihi | 水素製造装置および水素製造方法 |
WO2020175426A1 (ja) * | 2019-02-27 | 2020-09-03 | 国立大学法人東北大学 | 炭化水素低温改質システム、並びに水素及び/又は合成ガスの低温での製造方法 |
JP6954564B2 (ja) * | 2019-03-29 | 2021-10-27 | 東京ガスケミカル株式会社 | ナノカーボンの製造方法およびナノカーボン製造システム |
CN110255532A (zh) * | 2019-07-06 | 2019-09-20 | 金雪莉 | 一种宏量制备碳硅纳米材料的方法及装置 |
JP7349146B2 (ja) * | 2020-03-25 | 2023-09-22 | 国立研究開発法人産業技術総合研究所 | 触媒担体と固体炭素の分離及び担体の回収方法 |
JP7463174B2 (ja) * | 2020-04-06 | 2024-04-08 | 三菱重工業株式会社 | 固体炭素生成装置および固体炭素生成方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0769603A (ja) | 1993-09-02 | 1995-03-14 | Sekiyu Shigen Kaihatsu Kk | メタンを原料とする水素,一酸化炭素の製造方法 |
US5767165A (en) * | 1995-03-16 | 1998-06-16 | Steinberg; Meyer | Method for converting natural gas and carbon dioxide to methanol and reducing CO2 emissions |
JP2000281304A (ja) * | 1999-03-10 | 2000-10-10 | L'air Liquide | 炭化水素の熱接触分解による水素の製造方法およびその装置 |
JP2001220103A (ja) * | 2000-02-10 | 2001-08-14 | Yusaku Takita | 炭化水素分解による水素製造方法 |
JP2006096590A (ja) * | 2004-09-28 | 2006-04-13 | Asao Tada | 低級炭化水素の直接分解装置 |
WO2006040788A1 (en) * | 2004-10-13 | 2006-04-20 | Università degli Studi di Roma 'La Sapienza' | Simultaneous production of carbon nanotubes and molecular hydrogen |
JP2006315891A (ja) * | 2005-05-11 | 2006-11-24 | Japan Steel Works Ltd:The | 低級炭化水素の直接分解による機能性ナノ炭素及び水素の製造方法 |
JP2007254180A (ja) * | 2006-03-22 | 2007-10-04 | Japan Steel Works Ltd:The | 自立型低級炭化水素直接分解プロセスおよび該プロセスシステム |
JP2010516609A (ja) * | 2007-01-25 | 2010-05-20 | エデン イノベーションズ リミテッド | 触媒に対してマイクロ波誘起メタンプラズマ分解を使用する水素富化燃料を生成するための方法及びシステム |
JP2010526759A (ja) | 2007-05-11 | 2010-08-05 | ビーエーエスエフ ソシエタス・ヨーロピア | 合成ガスの製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7001586B2 (en) * | 2003-09-23 | 2006-02-21 | Catalytic Materials, Llc | CO-free hydrogen from decomposition of methane |
AT502478B1 (de) | 2005-10-31 | 2007-04-15 | Electrovac Ag | Verwendung eines verfahrens zur wasserstoffproduktion |
AT502901B1 (de) | 2005-10-31 | 2009-08-15 | Electrovac Ag | Vorrichtung zur wasserstoffherstellung |
WO2009079681A1 (en) * | 2007-12-20 | 2009-07-02 | James Donnelly | A process for the conversion of carbon dioxide to carbon monoxide using modified high capacity by-product coke ovens |
US7935245B2 (en) | 2007-12-21 | 2011-05-03 | Uop Llc | System and method of increasing synthesis gas yield in a fluid catalytic cracking unit |
-
2011
- 2011-03-11 JP JP2011053865A patent/JP5489004B2/ja active Active
-
2012
- 2012-03-09 WO PCT/JP2012/056157 patent/WO2012124636A1/ja active Application Filing
- 2012-03-09 CA CA2829552A patent/CA2829552C/en active Active
- 2012-03-09 US US14/004,321 patent/US9327970B2/en active Active
- 2012-03-09 CN CN201280012913.4A patent/CN103429527B/zh active Active
- 2012-03-09 EP EP12758046.2A patent/EP2684842B1/en active Active
-
2016
- 2016-03-23 US US15/078,745 patent/US9498764B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0769603A (ja) | 1993-09-02 | 1995-03-14 | Sekiyu Shigen Kaihatsu Kk | メタンを原料とする水素,一酸化炭素の製造方法 |
US5767165A (en) * | 1995-03-16 | 1998-06-16 | Steinberg; Meyer | Method for converting natural gas and carbon dioxide to methanol and reducing CO2 emissions |
JP2000281304A (ja) * | 1999-03-10 | 2000-10-10 | L'air Liquide | 炭化水素の熱接触分解による水素の製造方法およびその装置 |
JP2001220103A (ja) * | 2000-02-10 | 2001-08-14 | Yusaku Takita | 炭化水素分解による水素製造方法 |
JP2006096590A (ja) * | 2004-09-28 | 2006-04-13 | Asao Tada | 低級炭化水素の直接分解装置 |
WO2006040788A1 (en) * | 2004-10-13 | 2006-04-20 | Università degli Studi di Roma 'La Sapienza' | Simultaneous production of carbon nanotubes and molecular hydrogen |
JP2006315891A (ja) * | 2005-05-11 | 2006-11-24 | Japan Steel Works Ltd:The | 低級炭化水素の直接分解による機能性ナノ炭素及び水素の製造方法 |
JP2007254180A (ja) * | 2006-03-22 | 2007-10-04 | Japan Steel Works Ltd:The | 自立型低級炭化水素直接分解プロセスおよび該プロセスシステム |
JP2010516609A (ja) * | 2007-01-25 | 2010-05-20 | エデン イノベーションズ リミテッド | 触媒に対してマイクロ波誘起メタンプラズマ分解を使用する水素富化燃料を生成するための方法及びシステム |
JP2010526759A (ja) | 2007-05-11 | 2010-08-05 | ビーエーエスエフ ソシエタス・ヨーロピア | 合成ガスの製造方法 |
Non-Patent Citations (2)
Title |
---|
SAKAE TAKENAKA ET AL.: "Tanji Nickel Shokubaijo ni Methane Bunkai de Sekishutsu shita Carbon Fiber no CO ni yoru Gas-ka", DAI 31 KAI SEKIYU - SEKIYUKAGAKU TORONKAI KOEN YOSHI, 1 November 2001 (2001-11-01), pages 73 - 74, XP008170744 * |
See also references of EP2684842A4 |
Also Published As
Publication number | Publication date |
---|---|
EP2684842A1 (en) | 2014-01-15 |
CN103429527B (zh) | 2016-09-14 |
EP2684842A4 (en) | 2014-09-17 |
CA2829552A1 (en) | 2012-09-20 |
US9498764B2 (en) | 2016-11-22 |
EP2684842B1 (en) | 2020-02-26 |
CN103429527A (zh) | 2013-12-04 |
US9327970B2 (en) | 2016-05-03 |
CA2829552C (en) | 2016-07-12 |
US20160199807A1 (en) | 2016-07-14 |
JP2012188321A (ja) | 2012-10-04 |
JP5489004B2 (ja) | 2014-05-14 |
US20140005283A1 (en) | 2014-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5489004B2 (ja) | 合成ガスとナノカーボンの製造方法および製造システム | |
TWI633049B (zh) | 平行製造氫、一氧化碳及含碳產物的方法 | |
AU2008208614B2 (en) | Method and system for producing a hydrogen enriched fuel using microwave assisted methane decomposition on catalyst | |
US6790430B1 (en) | Hydrogen production from carbonaceous material | |
EP2543743B1 (en) | Blast furnace operation method, iron mill operation method, and method for utilizing a gas containing carbon oxides | |
CA2842122C (en) | Process and system for conversion of carbon dioxide to carbon monoxide | |
JP6097828B2 (ja) | 炭素低排出のフィッシャートロプシュ合成排ガス総合利用方法 | |
US6929668B2 (en) | Process for production of hydrogen by partial oxidation of hydrocarbons | |
CN107428650A (zh) | 用于生产甲醛的方法 | |
CN101679026A (zh) | 使用微波辅助的催化剂上甲烷等离子体分解制造富氢燃料的方法和系统 | |
MX2012011675A (es) | Tecnologia gas a liquido. | |
EP1162170B2 (en) | Method of manufacturing a synthesis gas to be employed for the synthesis of gasoline, kerosene and gas oil | |
US20190084833A1 (en) | Production of liquid hydrocarbons, biofuels and uncontaminated co2 from gaseous feedstock | |
CN116133982A (zh) | 低碳氢燃料 | |
JP2004137149A (ja) | 燃料の蒸気改質用装置ならびにシステム、および燃料を改質する方法 | |
US20170051210A1 (en) | Method and device for producing synthetic hydrocarbons | |
CN106414313A (zh) | 通过反向水煤气变换提高合成气中的co/co2比率 | |
JP2008266079A (ja) | 水素製造装置、水素製造システムおよび水素製造方法 | |
JP3947266B2 (ja) | 水素製造方法およびそれに用いる装置 | |
JP2018118890A (ja) | 化成品合成システム | |
JPH10291802A (ja) | 水素製造方法およびそれに用いる装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12758046 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2829552 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14004321 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012758046 Country of ref document: EP |