CN101679026A - 使用微波辅助的催化剂上甲烷等离子体分解制造富氢燃料的方法和系统 - Google Patents

使用微波辅助的催化剂上甲烷等离子体分解制造富氢燃料的方法和系统 Download PDF

Info

Publication number
CN101679026A
CN101679026A CN200880006502A CN200880006502A CN101679026A CN 101679026 A CN101679026 A CN 101679026A CN 200880006502 A CN200880006502 A CN 200880006502A CN 200880006502 A CN200880006502 A CN 200880006502A CN 101679026 A CN101679026 A CN 101679026A
Authority
CN
China
Prior art keywords
methane
hydrogen
gas
catalyzer
product gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200880006502A
Other languages
English (en)
Inventor
朱中华·约翰
陈久岭
逯高清·马克斯
桂葛瑞·索罗门
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Queensland UQ
Eden Innovations Ltd
Original Assignee
University of Queensland UQ
Eden Innovations Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Queensland UQ, Eden Innovations Ltd filed Critical University of Queensland UQ
Publication of CN101679026A publication Critical patent/CN101679026A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • C01B3/503Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
    • C01B3/505Membranes containing palladium
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/1271Alkanes or cycloalkanes
    • D01F9/1272Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0869Feeding or evacuating the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0875Gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0892Materials to be treated involving catalytically active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/349Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of flames, plasmas or lasers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • C01B2203/041In-situ membrane purification during hydrogen production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/048Composition of the impurity the impurity being an organic compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0855Methods of heating the process for making hydrogen or synthesis gas by electromagnetic heating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0861Methods of heating the process for making hydrogen or synthesis gas by plasma
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1642Controlling the product
    • C01B2203/1671Controlling the composition of the product
    • C01B2203/1676Measuring the composition of the product
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/169Controlling the feed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Composite Materials (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

一种制造富氢燃料的方法,其包括以下步骤:提供选定流速的甲烷气体流,提供催化剂(56),在负压下使用微波辐射在选定微波功率下产生甲烷等离子体,将所述甲烷等离子体引导到所述催化剂(56)上,和控制所述甲烷气体流和所述微波功率从而产生具有选定组成的产物气体。一种制造富氢燃料的系统(10),其包括甲烷气体源(16)、具有含有催化剂(56)的反应室(22)的反应器(12)、经配置以形成甲烷等离子体的微波功率源(14)和经配置以将反应室(22)维持在负压下的真空泵(78)。

Description

使用微波辅助的催化剂上甲烷等离子体分解制造富氢燃料的方法和系统
技术领域
本发明总体来说涉及氢燃料的制造,并且具体来说涉及制造适合用作替代燃料的富氢燃料的方法和系统。
背景技术
例如氢气和天然气等气体替代燃料,因其在汽车发动机中清洁燃烧的特征而具有价值。已开发出多种用于制造氢气的方法。这些方法包括电解、外来水裂解(exotic water splitting)和从工业废水流中分离。
也可以通过天然气重整来制造氢气。通常使用多步法将例如甲烷、丙烷或天然气等烃燃料转化成高纯度氢气流。这一方法的步骤通常包括(1)合成气的产生,(2)水煤气变换反应,和(3)气体净化(例如,CO和CO2的去除)。氢气流随后可用于多种用途,包括与其它气体混合制造替代燃料。
例如,一种称为HYTHANE的特别清洁燃烧的气体替代燃料包含氢气与天然气的混合物。HYTHANE中的前缀“Hy”取自氢气(hydrogen)。HYTHANE中的后缀“thane”取自甲烷(methane),甲烷是天然气的主要成分。HYTHANE是Brehon Energy PLC的注册商标。HYTHANE通常含有以能量计约5%到7%的氢气,对应于以体积计15%至20%的氢气。
为制造氢气,一类称为“蒸汽重整器(steam reformer)”的重整器使用烃燃料和蒸汽(H2O)。在蒸汽重整器中,烃燃料在含有蒸汽(H2O)和一种或多种催化剂的加热反应管中反应。通过重整制造高纯度氢气通常需要高温(800-900℃)。蒸汽重整同时产生杂质,特别是CO和CO2,如果不加以去除,那么最终会释放到大气中。
通过重整制造高纯度氢气还需要大量设备资金成本和大量生产成本,特别是电力成本。除这些缺点外,还很难制造蒸汽重整器的小型实施方案。氢气制造系统具有相对较小的体积将会很有利,如此替代燃料可在加油站规模的设施中而不是在炼油厂规模的设施中制造。
另一种从天然气制造氢气的方法包括甲烷热分解。例如,甲烷通过如下反应分解成氢气:
CH4=C+2H2
例如,产生碳黑和氢气的“热炭黑法”中已使用天然气的热分解。使用热分解,产生每摩尔氢气的能量需求(37.8kJ/mol H2)显着小于蒸汽重整法的能量需求(63.3kJ/mol H2)。然而,这一方法仍需要高温(例如,1400℃)、高设备成本和高能耗。
最近,已结合各种催化剂研究了天然气的热分解,这些催化剂允许反应在较低温度下进行。例如,Wang等人的美国专利第7,001,586B2号揭示一种热分解方法,其中使用两种分别具有式NixMgyO和式NixMgyCuzO的催化剂将甲烷分解成碳和氢气。前者需要约425℃到625℃的较低温度,但寿命较短且活性较低。后者的寿命较长且活性较高,但所需的反应温度高得多,约600℃到775℃。不过更重要的是,这些方法需要高能耗来加热反应器的器壁、气体和催化剂。
已使用甲烷等离子体将甲烷转化成C2(例如C2H2、C2H4、C2H6)和氢气。当微波等离子体与金属催化剂组合时,通过微波能加热金属催化剂。迄今为止如文献所报导,甲烷微波等离子体与金属催化剂的组合可有效地将甲烷转化成C2H2、C2H4和C2H6且H2是副产物。但产物气体包含成化学计量关系的C2和H2,并且因C2的浓度较高而不能直接用作HYTHANE。另外,现有技术的催化剂对碳沉积敏感,碳沉积会使催化剂失活并同时减少C2与H2的产生。
对氢气制造系统来说将有利的是,能够在较低温度下和较低能耗下执行、多种催化剂长时间内具有活性,以及极低的碳排放(例如,CO、CO2)和微量的高级烃。另外,氢气制造系统具有适合制造含有氢气的替代燃料的体积和结构将会很有利。本发明针对一种制造富氢燃料的方法和系统,这种系统克服现有技术的氢气制造系统的许多缺点。
相关技术的上述实例和与此相关的局限性打算为说明性的而非排他性的。在阅读本说明书和研究图式后,相关技术的其它局限性对所属领域的技术人员来说将变得显而易见。类似地,结合一种系统和方法描述和说明下列实施方案和其方面,这些实施方案和方面打算为例证性的和说明性的,而不限制范围。
发明内容
一种制造富氢燃料的方法,其包括以下步骤:提供选定流速的甲烷气体流,提供催化剂,在负压下使用微波辐射在选定微波功率下产生甲烷等离子体,将甲烷等离子体引导到催化剂上,和控制甲烷气体流和微波功率从而产生具有选定组成的产物气体。
所述方法可在具有微波可穿透器壁的反应器中执行。另外,催化剂可包含金属,例如通过共沉淀制备的以Ni为主的化合物。方法执行期间,微波能选择性加热金属催化剂,而甲烷气体和微波可穿透反应器器壁维持低温。在催化剂的热表面上,烃、CH4、C2H2、C2H4、C2H6和自由基CH3_、CH2_、CH_、H_反应产生氢气(H2)和呈固体纤维形式的碳(C)。另外,一些甲烷气体未能反应(甲烷逃逸(methane slip))以致产物气体包含甲烷、氢气和微量的高级烃。
可控制甲烷气体流和微波功率以使产物气体的组成近似于HYTHANE的化学组成。例如,产物气体可包含以体积计约10%到30%的氢气和以体积计约70%到90%的甲烷。有利地,产物气体几乎不含一氧化碳和二氧化碳,因为转化甲烷中所含的碳主要以固体碳纤维形式去除,所述固体碳纤维作为有用的副产物脱离。另外,选择和调配催化剂以在操作条件(例如,气体流速、微波功率、催化剂量)下保持稳定和活性,如此使成本最小。
一种制造富氢燃料的系统,其包括:甲烷气体源,其经配置以提供甲烷气体流;反应器,其具有与甲烷气体源和真空泵流通的反应室;微波功率源,其经配置以在反应室中在负压下形成甲烷等离子体;和催化剂,在反应室中,其经配置以接触甲烷等离子体并引发产物气体具有选定体积百分比的氢气和甲烷的反应。
在方法的一个替代实施方案中,进一步处理产物气体以回收呈实质上纯形式的氢气。为回收实质上纯的氢气,使产物气体在真空下流经涂在多孔金属或陶瓷衬底上的Pd/Ag膜。
附图说明
在图式中提及的图中说明例证性实施方案。希望将本文中所揭示的实施方案和图视为说明性的而非限制性的。
图1是说明制造富氢燃料的方法的步骤流程图;
图2是制造富氢燃料的系统的示意图;
图3A和3B是显示不同催化剂和无催化剂的方法实施期间,y轴氢气含量(CH2(%))与x轴正向瓦特(W)的关系图;
图4A-4C是显示催化剂Ni81Al的催化剂预处理对CH4转化率和出口气体(产物气体)中H2含量的作用的图,表示为y轴“XCH4或CH2”对x轴反应时间(h);和
图5A-5B是比较80瓦和110瓦下催化剂Ni81Al稳定性的图,表示为y轴“XCH4或CH2”对x轴反应时间(h)。
具体实施方式
本发明中使用下列定义。HYTHANE意指由氢气和甲烷以及氢气和天然气中所包括的杂质构成的富氢替代燃料。
甲烷逃逸意指穿过系统而未反应的未反应甲烷。
微波辐射意指0.3GHz到300GHz范围内的电磁辐射。
负压意指小于大气压的压力(即,小于1atm)。
方法
参看图1,说明制造富氢燃料的方法的步骤。第一步包含“提供选定流速的甲烷气体流”。例如,甲烷气体可呈纯甲烷气体形式。或者,甲烷气体可呈从“化石燃料”沉积物中获得的天然气形式。天然气通常是约90+%的甲烷,连同少量的乙烷、丙烷、高级烃和如二氧化碳或氮气的“惰性气体”。另外,甲烷气体可在选定温度和压力下从储槽(或管道)中供应。甲烷气体优选在约室温(20℃到25℃)下和在约大气压(1大气压)下提供。另外,甲烷气体可在选定流速下提供。在后续实施例中,甲烷气体的选定流速为约120毫升/分钟(STP)。
如图1中还显示,方法包括“提供催化剂”的步骤。催化剂优选以直径为74μm到140μm的粒子形式提供。另外,催化剂优选含于支撑物上,支撑物使得甲烷气体沿催化剂粒子表面自由流动。另外,可使用H2预处理呈金属氧化物形式的催化剂以将金属氧化物还原成金属。
催化剂的优选金属包含Ni或含Ni合金。例如,金属可包含Ni Al或掺杂有Cu、Pd、Fe、Co或例如MgO、ZnO、Mo2O3或SiO2等氧化物的Ni。特定催化剂包括Ni100、Ni81Al、Ni93Al、Ni77Cu16Al、Ni54Cu27Al和Ni83Mg6Al。另外,可通过从硝酸盐与碳酸钠的混合水溶液共沉淀而制备以镍为主的催化剂前体。
下表1提供关于用于以上催化剂的以镍为主的前体的催化剂制备的信息。这些催化剂是通过从硝酸盐与碳酸钠的混合水溶液共沉淀而制备。
表1:催化剂制备
催化剂组成
Figure G2008800065028D00051
然而,催化剂可包含另一金属而非Ni或其合金,例如选自周期表第VIII族的金属,包括Fe、Co、Ru、Pd和P t。在任何状况下,选择和调配催化剂以在反应条件下长时间保持稳定。在后续实施例中,即使在11小时的反应时间后也无迹象表明催化剂将失活。
如图1中还显示,方法包括“在负压下在选定微波功率下产生甲烷等离子体”的步骤。这一步骤可使用常规微波发生器和微波循环器执行。
在后续实施例中,微波发生器在约70-140瓦的功率下操作。然而,应了解所述方法可在经选择以获得期望的产物气体组成的微波功率下实施。例如,微波功率的代表性范围可为50瓦到300瓦。同样在后续实施例中,微波发生器在2.45GHz的频率下操作。
可使用例如真空泵等合适机构对甲烷等离子体施加负压。在后续实施例中,对甲烷气体的负压为约60mmHg。然而,应了解,本发明方法可使用20mmHg到200mmHg的负压实施。
如图1中还显示,方法包括“将甲烷气体流引导到催化剂上”的步骤。这一步骤可通过将催化剂放置在具有与真空泵流通的反应室的微波可穿透反应器中来执行,所述反应室经配置以含有催化剂并将甲烷气体流引导到催化剂上。H2和呈固体碳纤维形式的固体碳在催化剂的表面上形成。
如图1中还显示,方法包括“控制甲烷气体流和微波功率以产生具有选定组成的产物气体”的步骤。这一步骤可使用具有可变功率控制的微波发生器执行。
系统
参看图2,说明根据先前描述的方法制造富氢燃料的系统10。系统10包括反应器12和微波发生器14。系统还包括与反应器12流通的甲烷供应16、氢气供应18和惰性气体供应20。
反应器12(图2)可包含由例如石英等微波可穿透材料制成的常规管式反应器。另外,反应器12包括具有与供应管道24流通的入口26的密封工艺室22。
供应管道24(图2)通过接头30与甲烷管道28流通,甲烷管道28又与甲烷供应16流通。另外,甲烷管道28包括经配置以远程控制进入反应室22的甲烷气体流的甲烷质量流量控制器32,和甲烷质量流量控制器32两侧的断流阀34、36。在所述说明性实施方案中,甲烷供应16经配置以提供纯甲烷。然而,应了解系统10可包括例如天然气等另一甲烷源,并且所述方法可使用例如天然气等另一甲烷源实施。
供应管道24(图2)还通过接头40与氢气管道38流通,氢气管道38又与氢气供应18流通。氢气管道38包括经配置以手动调节进入反应室22的氢气流的针形阀42,和经配置以测量氢气流的转子流量计44。
供应管道24(图2)还与惰性气体管道46流通,惰性气体管道46又与惰性气体供应20流通。惰性气体可包含氩气或例如氦气或氖气等另一惰性气体。惰性气体管道46还包括经配置以远程控制进入反应室22的惰性气体流的惰性气体质量流量控制器48,和惰性气体质量流量控制器48两侧的断流阀50、52。惰性气体管道46可用于冲洗反应室22。
除反应室22(图2)外,反应器12还包括经配置以在反应室22中支撑催化剂56的支撑物54。如同反应器12和反应室22的器壁一样,支撑物54由微波可穿透材料制成。另外,支撑物54具有杯形结构,其具有开口允许气体穿过支撑物54和围绕催化剂56流动。支撑物54还包括经配置以允许从反应室22移出支撑物54和催化剂56的手柄58。
反应器12(图2)还包括与反应室22流通的出口60。反应器12的出口60经配置以排放反应室22中形成的产物气体。反应器12的出口60与经配置以在反应室22中维持负压的真空泵78流通。还提供压力计80用于测量反应室22内的压力。反应器12的出口60还与经配置以分析离开反应室22的产物气体的化学组成的气相色谱仪62流通。另外,气相色谱仪62与经配置以将经过分析的产物气体排放到大气中的排气口64流通。反应器12的出口60还可与经配置以贮存产物气体以备将来使用的产物气体贮存容器66流通。
系统10的微波发生器14(图2)经配置以引导微波辐射穿过微波循环器68并穿过三短截线调谐器70,来辐射反应室22中的甲烷气体从而形成甲烷等离子体。微波循环器68还包括冷却系统72。另外,微波调整旋塞74经配置以远程调整微波发生器14的反射功率和等离子体球的位置。
系统10(图2)还包括经配置以测量催化剂56的温度的红外温度传感器76。
实施例
使用先前描述的方法(图1)和先前描述的系统10(图2),在下列条件下制造包含CH4和H2的富氢燃料。
A.经由甲烷供应管道28将纯甲烷气体(纯度99.7%)供应给反应器12(图2)。
B.甲烷流速(即,图1中的选定流速):120毫升/分钟。
C.催化剂:Ni81Al、Ni93Al、Ni100、Ni77Cu16Al、Ni54Cu27Al或Ni83MgAl。
D.催化剂56的量(图2):200mg。
E1.催化剂56(图2)不经还原或经还原;
E2.在160W的微波功率下在H2等离子体中还原催化剂56(图2)数分钟的时间。为还原催化剂56(图2),经由氢气供应管道38(图2)将氢气流供应给反应室22(图2),并用微波发生器14(图2)的微波能辐射以形成甲烷等离子体。
F.反应压力:60mmHg。
G.施加用以形成甲烷等离子体的微波功率(正向瓦特):70-140W。
H.除非另外说明,否则在160W下通过H2预处理催化剂20分钟。
I.产物(富氢燃料):H2、C2H2、C2H4、C3H8、C3H6、C3H4和C4
J.产物中的H2含量,以体积计:约10%到30%。
K.未反应甲烷:约70%到90%。
图3A和图3B显示不同催化剂56(图2)和“无催化剂”下,“正向瓦特”(即,用于形成甲烷等离子体的微波功率)对H2制造的影响。在图3A和图3B中,x轴表示“正向瓦特”,而y轴表示H2的百分比含量,以“CH2%”表示。在图3A中,催化剂Ni81Al上产物气体中的氢气含量由正方形表示,催化剂Ni93Al上的由圆形表示,催化剂Ni100上的由三角形表示,而无催化剂的氢气含量由倒三角形表示。在图3B中,催化剂Ni77Cu16Al上产物气体中的氢气含量由正方形表示,催化剂Ni54Cu27Al上的由圆形表示,催化剂Ni83Mg6Al上的由三角形表示,而无催化剂的氢气含量由倒三角形表示。较大的正向瓦特在产物气体中产生较高的氢气含量。这些图证明使用催化剂在约90W以下时增加产物气体中的氢气含量,但在约90W以上时降低氢气含量。在这些催化剂之中,催化剂Ni81Al的性能最佳。
表2显示无催化剂的方法执行期间,正向瓦特(用于形成甲烷等离子体的微波功率)对产物气体组成的影响。可见,虽然产物气体中的氢气含量随着正向瓦特的增加而增加,但所产生的高级烃也增加,只是C2H2的含量几乎保持恒定。所产生的主要烃是C2H4和C2H2
表2:无催化剂下正向瓦特对产物气体组成的影响
        (2小时时进行测量)
            组成(%)
        70W    80W    90W    100W    110W
H2      6.28   10.42  16.15  22.18   29.24
CH4     90.49  84.85  77.58  70.65   62.01
C2H4    0.71   1.57   2.86   4.14    5.88
C2H2    2.21   2.72   2.77   2.40    2.04
C3H6    0.06   0.12   0.18   0.21    0.22
C3H8    0.21   0.25   0.30   0.22    0.27
C3H4    0.04   0.07   0.16   0.21    0.33
表3显示催化剂Ni 81Al的方法执行期间,正向瓦特(用于形成甲烷等离子体的微波功率)对产物气体组成的影响。可见与无催化剂(表2中所示)的状况类似,由这一方法产生的氢气和高级烃随着正向瓦特的增加而增加,只是C2H2含量几乎保持恒定。然而,Ni81Al上所产生的C2H4与无催化剂(表2)相比显着减少。这一结果对呈“HYTHANE”形式的替代燃料特别有利。
表3:Ni81Al催化剂下正向瓦特对产物气体组成的影响
           (2小时时进行测量)
              组成(%)
         70W    80W    90W    100W   110W   120W   140W
H2       11.55  16.11  19.71  21.72  23.06  24.59  29.52
CH4      85.67  80.39  76.48  74.07  72.33  70.25  62.95
C2H4     0.249  0.435  0.560  0.739  1.033  1.615  4.017
C2H2     2.341  2.695  2.817  2.982  3.014  2.969  2.766
C3H6     0.015  0.041  0.055  0.067  0.094  0.117  0.201
C3H8     0.131  0.233  0.270  0.314  0.339  0.338  0.342
C3H4     0.013  0.043  0.048  0.049  0.060  0.040  0.098
图4A-4C是显示催化剂Ni81Al的催化剂预处理对出口气体(产物气体)中CH4和H2转化率的作用的图,表示为y轴“XCH4或CH2”对x轴反应时间(h)。在图4A中,不经预处理而执行方法。在图4B中,通过在160W下用H2预处理催化剂20分钟而执行方法。在图4C中,通过在120W下用CH4预处理催化剂20分钟执行方法。在图4A-4C中,CH4转化率由正方形表示,而H2转化率由圆形表示。经确定用氢气预处理开始时增加催化剂的活性,但在催化剂达到稳定阶段后,有或无预处理下催化剂的活性几乎相同。
图5A-5B是比较80瓦和110瓦下催化剂Ni81Al稳定性的图,表示为y轴“XCH4或CH2”对x轴反应时间(h)。在图5A-5B中,CH4转化率由正方形表示,而H2转化率由圆形表示。经确定Ni81Al在110W下的稳定性较差,但在80W下良好。另外,甲烷在110W下的转化率在4.5小时内从约21%降低到约11%,而在80W下恒定在12%下11小时。
从前述实施例得出以下结论。
(1)虽然催化剂可用氢气预处理(例如,在160W下20分钟),但预处理并不是实施方法所必需的。预处理仅在初始阶段对催化剂有帮助,而在数小时后,有或无预处理下催化剂的活性几乎相同。这对实际操作来说很重要。
(2)Ni81Al是优选催化剂,因为它起作用将产物气体的氢气含量从无催化剂下的约10%增加到有Ni81Al催化剂下的约15%(即,提高50%)。催化剂Ni 81Al的存在还在80W下显着降低产物气体中高级烃(特别是C2H4)的含量。低百分比的高级烃对“HYTHANE”来说很重要。
(3)在催化剂存在下,优选约80W的微波功率来维持催化剂的稳定性,较高的正向瓦特显着降低催化剂的稳定性。
制造纯氢气的替代实施方案
方法的一个替代实施方案包括进一步处理产物气体以回收呈实质上纯形式的氢气的额外步骤。一种回收纯氢气的方法是使产物气体在真空下流经涂在多孔金属或陶瓷衬底上的Pd/Ag膜。Willms等人的美国专利第6,165,438号(以引用的方式并入本文中)揭示从含烃气体中回收氢气的装置和方法。
因此,本发明描述制造富氢燃料的改进方法和系统。虽然已参考某些优选实施例进行描述,但对所属领域的技术人员来说将显而易见,在不脱离附加权利要求书的范围下可进行某些改变和修改。

Claims (32)

1.一种制造富氢燃料的方法,其包含:
提供选定流速的甲烷气体流;
提供催化剂;
在负压下使用微波辐射在选定微波功率下辐射所述甲烷气体以形成甲烷等离子体;
将所述甲烷等离子体引导到所述催化剂上;和
控制所述甲烷气体流和所述微波功率以产生具有选定组成的产物气体。
2.根据权利要求1所述的方法,其中所述产物气体包含以体积计约10%到30%的氢气和以体积计约70%到90%的甲烷。
3.根据权利要求1所述的方法,其中所述催化剂包含Ni或通过共沉淀制备的具有高活性和稳定性的Ni合金。
4.根据权利要求1所述的方法,其中所述负压为约20mmHg到200mmHg并且所述微波功率为约70W到140W。
5.根据权利要求1所述的方法,其进一步包含在所述引导步骤之前用氢气预处理所述催化剂。
6.根据权利要求1所述的方法,其中所述引导步骤在由微波可穿透材料制成的管式反应器中执行。
7.根据权利要求1所述的方法,其中所述引导步骤在放置在微波可穿透支撑物上的所述催化剂下执行,所述微波可穿透支撑物经配置以允许所述甲烷等离子体穿过所述催化剂。
8.根据权利要求1所述的方法,其中所述甲烷气体包含纯甲烷或天然气。
9.一种制造富氢燃料的方法,其包含:
在负压下并在选定微波功率下使用甲烷气体的微波辐射形成甲烷等离子体;
将所述甲烷等离子体引导到催化剂上;和
控制所述甲烷等离子体流和所述微波功率,以产生包含选定体积百分比的甲烷和氢气的产物气体并从所述产物气体中去除呈固体碳纤维形式的固体碳。
10.根据权利要求9所述的方法,其中所述控制步骤经执行产生具有以体积计约10%到30%氢气的所述产物气体。
11.根据权利要求9所述的方法,其中所述控制步骤经执行产生具有以体积计约70%到90%甲烷的所述产物气体。
12.根据权利要求9所述的方法,其进一步包含处理所述产物气体以回收实质上纯的氢气。
13.根据权利要求9所述的方法,其中进一步包含使所述产物气体在真空压力下流经Pd/Ag膜以回收实质上纯的氢气。
14.根据权利要求9所述的方法,其中所述微波功率小于120W并且所述产物气体包含2%到3%的C2H2和微量的C2H4、C3H6、C3H8和C3H4
15.根据权利要求9所述的方法,其中所述负压为约20mmHg到约200mmHg并且所述微波功率为约70W到160W。
16.根据权利要求9所述的方法,其中所述催化剂包含选自由Ni100、Ni81Al、Ni93Al、Ni77Cu16Al、Ni54Cu27Al和Ni83Mg6Al组成的群组的金属。
17.一种制造富氢燃料的方法,其包含:
提供与甲烷源流通的具有微波可穿透器壁的管式反应器,所述甲烷源经配置以提供穿过所述管式反应器的甲烷流;
使用微波辐射在选定微波功率下辐射所述甲烷以产生甲烷等离子体流;
将催化剂放置在所述管式反应器中的所述甲烷等离子体流中;和
通过使所述甲烷等离子体与所述催化剂接触反应使选定体积百分比的所述甲烷转化成氢气,形成产物气体,所述产物气体包含约10-30%的氢气、约70-90%的甲烷。
18.根据权利要求17所述的方法,其进一步包含在所述放置步骤之前用氢气预处理所述催化剂。
19.根据权利要求17所述的方法,其中所述形成所述产物气体的步骤从所述产物气体去除固体碳纤维作为有用副产物。
20.根据权利要求17所述的方法,其中所述甲烷等离子体包含CH4、CH3、CH2、CH、C2H2、C2H4、C2H6、H2和(e-)。
21.根据权利要求17所述的方法,其中所述形成所述产物气体的步骤包括所述催化剂表面上CH3_、CH2_、CH_或H_与CH4、C2H2或C2H4和C2H6反应产生固体碳纤维和氢气。
22.根据权利要求17所述的方法,其中所述微波功率小于120W并且所述产物气体包含2%到3%的C2H2和微量的C2H4、C3H6、C3H8和C3H4
23.根据权利要求17所述的方法,其进一步包含使所述产物气体在真空压力下流经Pd/Ag膜以回收实质上纯的氢气。
24.一种制造富氢燃料的系统,其包含:
甲烷气体源,其经配置以提供甲烷气体流;
反应器,其具有与所述甲烷气体源和真空泵流通的具有微波可穿透器壁的反应室;
微波功率源,其经配置以在负压下在所述反应室中形成甲烷等离子体;和
催化剂,在所述反应室中,其经配置以接触所述甲烷等离子体并引发产物气体具有选定体积百分比的氢气和甲烷的反应。
25.根据权利要求24所述的系统,其中所述反应器包括微波可穿透支撑物,所述微波可穿透支撑物经配置以支撑所述催化剂与所述甲烷等离子体接触。
26.根据权利要求24所述的系统,其中所述反应器包含管式反应器。
27.根据权利要求24所述的系统,其进一步包含与所述反应器流通的氢气源,所述氢气源经配置以提供用于预处理所述催化剂的氢气流。
28.根据权利要求24所述的系统,其进一步包含与所述反应器流通的惰性气体源,所述惰性气体源经配置以提供用于冲洗所述反应室的惰性气体流。
29.根据权利要求24所述的系统,其中所述催化剂包含Ni或通过共沉淀制备的具有高活性和稳定性的Ni合金。
30.根据权利要求24所述的系统,其中所述产物气体包含以体积计约10%到30%的氢气和以体积计约70%到90%的甲烷。
31.根据权利要求24所述的系统,其进一步包含红外传感器,所述红外传感器经配置以测量所述甲烷等离子体的温度。
32.根据权利要求24所述的系统,其进一步包含气相色谱仪,所述气相色谱仪经配置以分析所述产物气体的化学组成。
CN200880006502A 2007-01-25 2008-01-13 使用微波辅助的催化剂上甲烷等离子体分解制造富氢燃料的方法和系统 Pending CN101679026A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/657,299 US8021448B2 (en) 2007-01-25 2007-01-25 Method and system for producing a hydrogen enriched fuel using microwave assisted methane plasma decomposition on catalyst
US11/657,299 2007-01-25
PCT/IB2008/000508 WO2008090466A2 (en) 2007-01-25 2008-01-13 Method and system for producing a hydrogen enriched fuel using microwave assisted methane plasma decomposition on catalyst

Publications (1)

Publication Number Publication Date
CN101679026A true CN101679026A (zh) 2010-03-24

Family

ID=39523611

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200880006502A Pending CN101679026A (zh) 2007-01-25 2008-01-13 使用微波辅助的催化剂上甲烷等离子体分解制造富氢燃料的方法和系统

Country Status (14)

Country Link
US (1) US8021448B2 (zh)
EP (1) EP2106385B1 (zh)
JP (1) JP2010516609A (zh)
KR (1) KR20090118940A (zh)
CN (1) CN101679026A (zh)
AU (1) AU2008208613B2 (zh)
BR (1) BRPI0806409A2 (zh)
CA (1) CA2676186C (zh)
MX (1) MX2009007795A (zh)
MY (1) MY147169A (zh)
NZ (1) NZ578552A (zh)
RU (1) RU2427527C2 (zh)
WO (1) WO2008090466A2 (zh)
ZA (1) ZA200905725B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108037236A (zh) * 2017-11-21 2018-05-15 中国科学院地质与地球物理研究所兰州油气资源研究中心 火炬排放中甲烷转化率定量分析气体收集实验装置
CN108722327A (zh) * 2018-04-19 2018-11-02 山东科技大学 一种生物质膜式微波反应器及其应用于甲烷重整的实验装置和方法
CN108745362A (zh) * 2018-06-26 2018-11-06 山东科技大学 特征碳膜包覆的微波放电金属催化剂的制备方法及应用
CN112619565A (zh) * 2019-10-09 2021-04-09 中国科学院大连化学物理研究所 低温等离子体结合催化剂诱导甲烷/天然气直接制低碳烃类的装置及方法
CN114502505A (zh) * 2019-07-23 2022-05-13 牛津大学创新有限公司 方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8092778B2 (en) * 2007-01-24 2012-01-10 Eden Energy Ltd. Method for producing a hydrogen enriched fuel and carbon nanotubes using microwave assisted methane decomposition on catalyst
US8075869B2 (en) 2007-01-24 2011-12-13 Eden Energy Ltd. Method and system for producing a hydrogen enriched fuel using microwave assisted methane decomposition on catalyst
US8021448B2 (en) 2007-01-25 2011-09-20 Eden Energy Ltd. Method and system for producing a hydrogen enriched fuel using microwave assisted methane plasma decomposition on catalyst
US20090205254A1 (en) * 2008-02-14 2009-08-20 Zhonghua John Zhu Method And System For Converting A Methane Gas To A Liquid Fuel
JP5489004B2 (ja) * 2011-03-11 2014-05-14 株式会社日本製鋼所 合成ガスとナノカーボンの製造方法および製造システム
US8733543B2 (en) * 2011-05-12 2014-05-27 Pro-Cyl, Llc Environmentally friendly fuel gas within a refillable and non-corrosive gas cylinder
GB2531233A (en) * 2014-02-27 2016-04-20 C Tech Innovation Ltd Plasma enhanced catalytic conversion method and apparatus
US20160096161A1 (en) * 2014-10-03 2016-04-07 William Curtis Conner, JR. Method of conversion of alkanes to alkylenes and device for accomplishing the same
EP3930779A4 (en) * 2019-02-28 2022-11-30 Aatru Medical, LLC HOUSING OF A CHEMICAL PUMP FOR A VACUUM SYSTEM
CN113710610B (zh) * 2019-04-23 2024-04-09 三菱电机株式会社 气体制造系统和气体制造方法
RU2755267C1 (ru) * 2020-04-28 2021-09-14 Общество с ограниченной ответственностью "Газпром трансгаз Томск" (ООО "Газпром трансгаз Томск") Устройство для получения метано-водородного топлива из углеводородного газа
CN113772628A (zh) * 2021-08-13 2021-12-10 中国石油大学(北京) 一种利用沼气制取氢气的方法
WO2023242335A2 (en) 2022-06-16 2023-12-21 Fundación Centro De Investigación Cooperativa De Energías Alternativas Cic Energigune Fundazioa Catalytic system containing ionic liquids and a process for producing hydrogen from plastic materials using said catalytic system

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4435376A (en) 1982-03-26 1984-03-06 Phillips Petroleum Company Fibrous carbon production
US4574038A (en) 1985-08-01 1986-03-04 Alberta Oil Sands Technology And Research Authority Microwave induced catalytic conversion of methane to ethylene and hydrogen
US5131993A (en) 1988-12-23 1992-07-21 The Univeristy Of Connecticut Low power density plasma excitation microwave energy induced chemical reactions
US5015349A (en) 1988-12-23 1991-05-14 University Of Connecticut Low power density microwave discharge plasma excitation energy induced chemical reactions
CA2031959A1 (en) 1989-12-27 1991-06-28 William J. Murphy Conversion of methane using microwave radiation
US5277773A (en) 1989-12-27 1994-01-11 Exxon Research & Engineering Co. Conversion of hydrocarbons using microwave radiation
EP0435591A3 (en) 1989-12-27 1991-11-06 Exxon Research And Engineering Company Conversion of methane using microwave radiation
US5205915A (en) 1989-12-27 1993-04-27 Exxon Research & Engineering Company Conversion of methane using continuous microwave radiation (OP-3690)
US5205912A (en) 1989-12-27 1993-04-27 Exxon Research & Engineering Company Conversion of methane using pulsed microwave radiation
CA2039422A1 (en) * 1990-04-16 1991-10-17 William J. Murphy Regenerating a plasma initiator using molecular hydrogen
US5266175A (en) 1990-07-31 1993-11-30 Exxon Research & Engineering Company Conversion of methane, carbon dioxide and water using microwave radiation
WO1992002448A1 (en) 1990-07-31 1992-02-20 Exxon Research And Engineering Company Conversion of methane and carbon dioxide using microwave radiation
US5139002A (en) 1990-10-30 1992-08-18 Hydrogen Consultants, Inc. Special purpose blends of hydrogen and natural gas
IT1254304B (it) 1992-02-07 1995-09-14 Enea Reattore a membrana ceramica catalitica per la separazione di idrogenoe/o suoi isotopi da correnti fluide.
US5372617A (en) 1993-05-28 1994-12-13 The Charles Stark Draper Laboratory, Inc. Hydrogen generation by hydrolysis of hydrides for undersea vehicle fuel cell energy systems
EP0634211A1 (en) * 1993-07-16 1995-01-18 Texaco Development Corporation Oxidative coupling of methane on manganese oxide octahedral molecular sieve catalyst
US5525322A (en) 1994-10-12 1996-06-11 The Regents Of The University Of California Method for simultaneous recovery of hydrogen from water and from hydrocarbons
US5516967A (en) 1995-01-30 1996-05-14 Chemisar Laboratories Inc. Direct conversion of methane to hythane
AU2221599A (en) 1998-01-06 1999-07-26 Stephen A. Birdsell Apparatus and method for simultaneous recovery of hydrogen from water and from hydrocarbons
JPH11278802A (ja) * 1998-03-31 1999-10-12 Fujitsu Ltd 水素ガス生成方法及び燃料電池
JPH11322638A (ja) * 1998-05-12 1999-11-24 Tatsuaki Yamaguchi C2 炭化水素、一酸化炭素および/または水素の製造法
US5972175A (en) 1998-07-24 1999-10-26 Governors Of The University Of Alberta Catalytic microwave conversion of gaseous hydrocarbons
US6602920B2 (en) 1998-11-25 2003-08-05 The Texas A&M University System Method for converting natural gas to liquid hydrocarbons
US6333016B1 (en) 1999-06-02 2001-12-25 The Board Of Regents Of The University Of Oklahoma Method of producing carbon nanotubes
US6746508B1 (en) 1999-10-22 2004-06-08 Chrysalis Technologies Incorporated Nanosized intermetallic powders
CA2405176C (en) 2000-05-11 2009-02-03 Her Majesty The Queen In Right Of Canada, As Represented By The Ministerof National Defence Process for preparing carbon nanotubes
JP3654820B2 (ja) * 2000-06-20 2005-06-02 大日本塗料株式会社 水性塗料用樹脂組成物
US6509000B1 (en) 2000-08-31 2003-01-21 Council Of Scientific And Industrial Research Low temperature process for the production of hydrogen
KR100382879B1 (ko) 2000-09-22 2003-05-09 일진나노텍 주식회사 탄소 나노튜브 합성 방법 및 이에 이용되는 탄소 나노튜브합성장치.
JP4721525B2 (ja) * 2001-01-19 2011-07-13 東京瓦斯株式会社 都市ガス供給方法及び装置
JP2002226873A (ja) 2001-01-29 2002-08-14 Takeshi Hatanaka 液体燃料油の製造法およびその装置
US6592723B2 (en) 2001-01-31 2003-07-15 Chang Yul Cha Process for efficient microwave hydrogen production
JP2002338203A (ja) * 2001-05-22 2002-11-27 National Institute Of Advanced Industrial & Technology 低温プラズマによる水素の製造方法
FR2827591B1 (fr) 2001-07-17 2004-09-10 Cie D Etudes Des Technologies Procede et dispositif de production d'un gaz riche en hydrogene par pyrolyse thermique d'hydrocarbures
US6875417B1 (en) 2001-10-24 2005-04-05 University Of Kentucky Research Foundation Catalytic conversion of hydrocarbons to hydrogen and high-value carbon
US6752389B2 (en) * 2001-10-30 2004-06-22 Lord Corporation Mount having integrated damper and load carrying spring
SG126710A1 (en) * 2001-10-31 2006-11-29 Univ Singapore Carbon nanotubes fabrication and hydrogen production
JP2003212502A (ja) * 2002-01-21 2003-07-30 Daido Steel Co Ltd 水素発生方法及び水素発生装置
US7011768B2 (en) 2002-07-10 2006-03-14 Fuelsell Technologies, Inc. Methods for hydrogen storage using doped alanate compositions
DE50303853D1 (de) * 2002-07-23 2006-07-27 Iplas Gmbh Plasmareaktor zur durchführung von gasreaktionen und verfahren zur plasmagestützten umsetzung von gasen
US6998103B1 (en) 2002-11-15 2006-02-14 The Regents Of The University Of California Method for producing carbon nanotubes
US7094679B1 (en) 2003-03-11 2006-08-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Carbon nanotube interconnect
JP2004315305A (ja) * 2003-04-17 2004-11-11 Toyota Motor Corp 水素ガス生成装置
JP2004324004A (ja) 2003-04-23 2004-11-18 Kansai Electric Power Co Inc:The カーボン繊維及びその製造方法
US20080262103A1 (en) 2003-05-16 2008-10-23 Anja Stork Clear Oil-In-Water Emulsions
US7001586B2 (en) * 2003-09-23 2006-02-21 Catalytic Materials, Llc CO-free hydrogen from decomposition of methane
US7183451B2 (en) 2003-09-23 2007-02-27 Synfuels International, Inc. Process for the conversion of natural gas to hydrocarbon liquids
WO2005063615A1 (en) 2003-12-29 2005-07-14 Council Of Scientific & Industrial Research Process for continuous production of carbon monoxide-free hydrogen from methane-rich hydrocarbons
WO2006135378A2 (en) 2004-07-27 2006-12-21 University Of North Texas Method and apparatus for hydrogen production from greenhouse gas saturated carbon nanotubes and synthesis of carbon nanostructures therefrom
ATE458146T1 (de) * 2004-12-20 2010-03-15 Peroni Pompe S P A Pumpe mit einer vorrichtung zum anziehen der stopfbuchsenmutter
US20060130400A1 (en) 2004-12-21 2006-06-22 World Hydrogen, Inc. Device and method for producing hydrogen without the formation of carbon dioxide
US20080115660A1 (en) * 2004-12-30 2008-05-22 Edward Hensel Remotely Controlled Marker For Hunting Games
KR100664545B1 (ko) 2005-03-08 2007-01-03 (주)씨엔티 탄소나노튜브 대량합성장치 및 대량합성방법
CN100376477C (zh) 2005-03-18 2008-03-26 清华大学 一种碳纳米管阵列生长装置及多壁碳纳米管阵列的生长方法
CN100376478C (zh) 2005-04-22 2008-03-26 清华大学 碳纳米管阵列结构的制备装置
KR100810620B1 (ko) 2005-05-17 2008-03-06 한국기초과학지원연구원 마이크로웨이브 플라즈마 방전에 의한 수소기체 제조방법
JP5343297B2 (ja) 2005-06-23 2013-11-13 株式会社豊田中央研究所 触媒反応装置、触媒加熱方法、及び燃料改質方法
EP1797950A1 (en) 2005-12-14 2007-06-20 Nanocyl S.A. Catalyst for a multi-walled carbon nanotube production process
CN1935637B (zh) 2005-09-23 2010-05-05 清华大学 碳纳米管制备方法
US7601294B2 (en) 2006-05-02 2009-10-13 Babcock & Wilcox Technical Services Y-12, Llc High volume production of nanostructured materials
US20070277438A1 (en) 2006-05-30 2007-12-06 Brehon Energy Plc System and method for producing a hydrogen enriched fuel
AU2007351434A1 (en) 2006-10-20 2008-10-23 Semgreen, L.P. Methods and systems of producing molecular hydrogen using a plasma system
US8092778B2 (en) 2007-01-24 2012-01-10 Eden Energy Ltd. Method for producing a hydrogen enriched fuel and carbon nanotubes using microwave assisted methane decomposition on catalyst
US8075869B2 (en) 2007-01-24 2011-12-13 Eden Energy Ltd. Method and system for producing a hydrogen enriched fuel using microwave assisted methane decomposition on catalyst
US8021448B2 (en) 2007-01-25 2011-09-20 Eden Energy Ltd. Method and system for producing a hydrogen enriched fuel using microwave assisted methane plasma decomposition on catalyst
US20090205254A1 (en) 2008-02-14 2009-08-20 Zhonghua John Zhu Method And System For Converting A Methane Gas To A Liquid Fuel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108037236A (zh) * 2017-11-21 2018-05-15 中国科学院地质与地球物理研究所兰州油气资源研究中心 火炬排放中甲烷转化率定量分析气体收集实验装置
CN108037236B (zh) * 2017-11-21 2023-03-03 中国科学院西北生态环境资源研究院 火炬排放中甲烷转化率定量分析气体收集实验装置
CN108722327A (zh) * 2018-04-19 2018-11-02 山东科技大学 一种生物质膜式微波反应器及其应用于甲烷重整的实验装置和方法
CN108745362A (zh) * 2018-06-26 2018-11-06 山东科技大学 特征碳膜包覆的微波放电金属催化剂的制备方法及应用
CN108745362B (zh) * 2018-06-26 2021-11-26 山东科技大学 特征碳膜包覆的微波放电金属催化剂的制备方法及应用
CN114502505A (zh) * 2019-07-23 2022-05-13 牛津大学创新有限公司 方法
CN112619565A (zh) * 2019-10-09 2021-04-09 中国科学院大连化学物理研究所 低温等离子体结合催化剂诱导甲烷/天然气直接制低碳烃类的装置及方法

Also Published As

Publication number Publication date
NZ578552A (en) 2011-05-27
WO2008090466A2 (en) 2008-07-31
US8021448B2 (en) 2011-09-20
WO2008090466A8 (en) 2009-07-23
KR20090118940A (ko) 2009-11-18
US20080181845A1 (en) 2008-07-31
EP2106385B1 (en) 2020-07-08
CA2676186A1 (en) 2008-07-31
EP2106385A2 (en) 2009-10-07
CA2676186C (en) 2012-11-13
BRPI0806409A2 (pt) 2011-09-06
JP2010516609A (ja) 2010-05-20
AU2008208613B2 (en) 2013-04-11
AU2008208613A1 (en) 2008-07-31
RU2009128364A (ru) 2011-02-27
MX2009007795A (es) 2009-10-12
WO2008090466A3 (en) 2008-09-12
ZA200905725B (en) 2010-04-28
MY147169A (en) 2012-11-14
RU2427527C2 (ru) 2011-08-27

Similar Documents

Publication Publication Date Title
CN101679026A (zh) 使用微波辅助的催化剂上甲烷等离子体分解制造富氢燃料的方法和系统
CN101646488A (zh) 使用微波辅助的催化剂上甲烷分解制造富氢燃料的方法和系统
US5525322A (en) Method for simultaneous recovery of hydrogen from water and from hydrocarbons
US8092778B2 (en) Method for producing a hydrogen enriched fuel and carbon nanotubes using microwave assisted methane decomposition on catalyst
CA2829552C (en) Synthesis gas and nanocarbon production method and production system
KR101882813B1 (ko) 플라즈마 삼중 개질 반응기
US20040265227A1 (en) Hydrogen generation with efficient byproduct recycle
UA119697C2 (uk) Спосіб одержання аміаку
KR20190059638A (ko) 국부 가열을 위한 고함수율 연료용 촉매연소기
JP2003238113A (ja) 燃料改質方法および燃料改質装置
CN112142003B (zh) 一种一氧化碳变换工艺
CN113955742A (zh) 一种二氧化碳-甲烷重整技术制备碳纳米管的工艺
Lapin et al. The preparation of hydrogen by the catalytic pyrolysis of ethanol on a nickel catalyst
JP3741877B2 (ja) 触媒及び化学反応装置
JP2002284502A (ja) 水素製造方法
JPS62237948A (ja) メタノ−ル分解・改質触媒の還元方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20100324