WO2012124255A1 - レーザ接合部品およびその製造方法 - Google Patents

レーザ接合部品およびその製造方法 Download PDF

Info

Publication number
WO2012124255A1
WO2012124255A1 PCT/JP2012/000962 JP2012000962W WO2012124255A1 WO 2012124255 A1 WO2012124255 A1 WO 2012124255A1 JP 2012000962 W JP2012000962 W JP 2012000962W WO 2012124255 A1 WO2012124255 A1 WO 2012124255A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
metal material
metal
metal member
surface layer
Prior art date
Application number
PCT/JP2012/000962
Other languages
English (en)
French (fr)
Inventor
西川 幸男
知実 田中
俊樹 糸井
義玲 古林
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to KR1020137008175A priority Critical patent/KR101435596B1/ko
Priority to CN201280003153.0A priority patent/CN103140320B/zh
Priority to JP2012530805A priority patent/JP5124056B1/ja
Priority to US13/823,388 priority patent/US9944048B2/en
Publication of WO2012124255A1 publication Critical patent/WO2012124255A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/05Interconnection of layers the layers not being connected over the whole surface, e.g. discontinuous connection or patterned connection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/211Bonding by welding with interposition of special material to facilitate connection of the parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/244Overlap seam welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • B23K26/323Bonding taking account of the properties of the material involved involving parts made of dissimilar metallic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/26Alloys of Nickel and Cobalt and Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]

Definitions

  • the present invention relates to a laser joining component for obtaining a sufficient joining strength with a small amount of laser beam irradiation energy and a method for manufacturing the same in the superposition joining of metal plates.
  • FIG. 6 is a diagram showing a conventional laser-joined component described in Patent Document 1 and a manufacturing method thereof.
  • a copper plate 12 is disposed on the clad material 11.
  • the clad material 11 is formed of a laminate of copper and a copper-molybdenum sintered body.
  • a nickel plating film 13 is formed on the surface (upper surface) of the copper plate 12.
  • the absorptivity of YAG laser light in nickel is 2.5 times that of copper and copper alloys.
  • the laser power is lower than when the copper plate 12 is irradiated with laser light and the copper plate 12 is welded to the clad material 11. And with energy, the desired weld state is obtained.
  • FIG. 7 is a view showing a conventional laser-joined component described in Patent Document 2 and a manufacturing method thereof.
  • the end surface of the clad material 22 and the end surface of the clad material 23 are in contact with each other.
  • the clad plates 22 and 23 are both configured by stacking a high melting point material 24 and a low melting point material 25.
  • the high melting point material 24 of the cladding material 22 and the high melting point material 24 ′ of the cladding material 23 are in contact
  • the low melting point material 25 of the cladding material 22 and the low melting point material 25 ′ of the cladding material 23 are in contact. is doing.
  • the contact portions 28 of the high melting point materials 24, 24 ′ are irradiated with laser light to weld the high melting point materials 24, 24 ′, thereby forming the bead portion 26.
  • the low melting point materials 25 and 25 ′ are similarly irradiated with laser light to weld the low melting point materials 25 and 25 ′, thereby forming the bead portion 27.
  • the high melting point material 24 and the low melting point material 25 do not substantially melt. For this reason, the various characteristics which the clad
  • a method of forming a first plating film and forming a second plating film on one surface or both surfaces of a second metal plate is known.
  • Each of the first plating film and the second plating film has a thickness of several ⁇ m.
  • the absorption rate of the laser beam of the first plating film is higher than the absorption rate of the laser beam of the second plating film, the laser energy can be further reduced.
  • the melting point of the first plating film is higher than the melting point of the second plating film, explosion of the first plating film due to laser light irradiation is prevented.
  • the melting point of the second plating film is higher than the melting point of the first plating film, the second metal plate is prevented from being blown off by laser light irradiation (see, for example, Patent Documents 3 to 6). ).
  • JP 2007-165690 A Japanese Patent No. 3272787 JP 2009-226420 A US Patent Application Publication No. 2009/0236321 International Publication No. 1992/000828 Pamphlet US Pat. No. 5,343,014 JP-A-62-068691 US Pat. No. 4,697,061
  • the absorption rate of the laser beam is increased by the nickel plating film on the surface.
  • the thermal conductivity of copper is high and the nickel plating film is thin, heat escapes from the laser light irradiated portion to the periphery, and the temperature around the laser light irradiated portion also rises.
  • the conventional technique has a problem that a large amount of energy is required in order to sufficiently raise the temperature of the laser light irradiation portion and perform laser bonding.
  • the present invention solves the above-described conventional problems, and an object thereof is to provide a laser-joined component that secures sufficient joining strength with a small amount of laser energy and has a small increase in peripheral temperature, and a method for manufacturing the same.
  • a metal member X made of a first metal material
  • a metal member Y made of the first metal material and disposed on the metal member X; It is formed on the upper surface of the metal member Y, can be alloyed with the first metal material, has a higher laser light absorption rate than the first metal material, and has a breaking strength higher than that of the first metal material.
  • a surface layer made of a second metal material having a high A resolidified portion formed from the surface of the surface layer to the inside of the metal member X by alloying of the first metal material and the second metal material melted by laser light irradiation from the surface layer And laser joining parts.
  • the thickness of the metal member Y is 0.1 mm or more,
  • the thickness of the said surface layer is a laser joining component as described in [1] which is 1/10 or more and 1/2 or less of the thickness of the metal member Y.
  • the present invention provides the following method for manufacturing a laser-joined component.
  • a metal member X made of a first metal material, a metal member Y made of the first metal material, and a second metal material that can be alloyed with the first metal material.
  • a second step of forming a resolidified portion reaching the inside of X The method for manufacturing a laser-joined component, wherein the second metal material has a higher laser light absorption rate than the first metal material and a higher breaking strength than the first metal material.
  • the second step is a step of irradiating the laser beam with an inclination with respect to a normal line of the surface of the surface layer.
  • the laser joining component according to [9] further including a step of scanning the surface of the surface layer with the laser light in a direction not parallel to a plane including the normal line of the surface of the surface layer and the irradiation axis of the laser light. Manufacturing method.
  • the present invention provides a battery including the laser-joined component according to any one of [1] to [8].
  • the surface layer is formed of the second metal material having a higher breaking strength than the first metal material, and the re-solidified portion is formed by laser irradiation from the surface layer side.
  • the re-solidified portion is formed by laser irradiation from the surface layer side.
  • the thickness of the surface layer is usually larger than the thickness of the plating film. Therefore, according to the laser-joined component and the manufacturing method thereof of the present invention, a sufficient joining strength can be ensured with a small amount of laser energy, and the surrounding temperature rise can be reduced.
  • Sectional drawing which shows the process of the laser joining component which concerns on Embodiment 1 of this invention, and its manufacturing method Sectional drawing which shows the process of the laser joining component which concerns on Embodiment 2 of this invention, and its manufacturing method Sectional drawing of the joining material of the laser joining component which concerns on Embodiment 2 of this invention, and its manufacturing method Sectional drawing which shows the process of the laser joining component which concerns on Embodiment 3 of this invention, and its manufacturing method Sectional drawing explaining the shape of the re-solidification part in this invention Sectional drawing which shows the welding state of the conventional laser joining components and its manufacturing method of patent document 1 Sectional drawing which shows the welding state of the conventional laser joining components described in patent document 2, and its manufacturing method
  • the laser joining member of the present invention includes a metal member X, a metal member Y disposed on the metal member X, a surface layer formed on the upper surface of the metal member Y, and the interior of the metal member X from the surface of the surface layer. And a re-solidification part formed until.
  • the metal member X and the metal member Y are both made of the first metal material.
  • the first metal material can be selected from a metal or an alloy according to the application of the laser joining member.
  • the shape of the metal member X is not particularly limited as long as the metal member Y is stacked.
  • the metal member Y is not particularly limited as long as the thickness of a position where a re-solidified portion described later is formed is within a range in which the re-solidified portion can be formed by laser bonding.
  • the thickness of the metal member Y is preferably 0.1 mm or more from the viewpoint of securing the strength as a structural material. From the viewpoint of forming the resolidified portion by laser bonding, the thickness of the portion of the metal member Y where the resolidified portion is formed is preferably 2.0 mm or less.
  • the surface layer is made of a second metal material.
  • a metal or alloy satisfying the conditions described later can be selected from metals or alloys.
  • the second metal material can form an alloy when melted with the first metal material.
  • the second metal material is preferably a material that forms a solid solution with the first metal material, but may be any metal material that can form an alloy.
  • the absorption rate of the laser beam of the second metal material is higher than the absorption rate of the laser beam of the first metal material.
  • the reflectance of the second metal material is smaller than the reflectance of the first metal material.
  • the difference in reflectance of the second metal material with respect to the reflectance of the first metal material is preferably 1% or more from the viewpoint of reducing laser energy.
  • the reflectance of the first metal material and the reflectance of the second metal material can be obtained by, for example, a spectrophotometer.
  • the breaking strength of the second metal material is greater than the breaking strength of the first metal material.
  • the breaking strength can be determined by measuring tensile strength.
  • the breaking strength of the second metal material is preferably 0.2 kg / mm 2 or more larger than the breaking strength of the first metal material from the viewpoint of obtaining sufficient bonding strength in laser bonding.
  • the melting temperature of the second metal material is preferably higher than the melting temperature of the first metal material from the viewpoint of forming the resolidified portion from the surface layer to a deeper position. It is preferable from the above viewpoint that the melting temperature of the second metal material is higher by 80 ° C. or more than the melting temperature of the first metal material.
  • the thermal conductivity of the second metal material is preferably lower than the thermal conductivity of the first metal material from the viewpoint of forming the resolidified portion with a smaller laser irradiation area.
  • the thermal conductivity of the second metal material is preferably lower than the thermal conductivity of the first metal material by 10 W / (m ⁇ K) or more from the above viewpoint.
  • the corrosion resistance of the second metal material is preferably higher than that of the first metal material from the viewpoint of obtaining a rust prevention effect.
  • the corrosion resistance is higher as the difference between the galvanic potential of the first metal material and the second galvanic potential of the second metal material is smaller.
  • the difference between the galvanic potential of the first metal material and the second metal material galvanic potential is preferably 0.2 V or less from the above viewpoint.
  • the surface layer is formed on the upper surface of the metal member Y.
  • the surface layer may be formed on the entire upper surface of the metal member Y, or may be formed only on the laser light irradiated portion and its periphery.
  • the surface layer is preferably formed on the upper surface of the metal member Y so that the surface layer is larger than a region irradiated with the focused laser beam, for example, a portion to be irradiated with the laser beam.
  • the surface layer is formed on the upper surface of the metal member Y so as to be surrounded by a region having a width of at least 0.1 to 1.0 mm or more.
  • the thickness of the surface layer at least in the laser light irradiated portion is 1/10 or more and 1/2 or less of the thickness of the metal member Y. That the thickness of the surface layer is in the above range is that the physical properties of the second metal material such as the breaking strength are sufficiently added to the resolidified portion by “alloying” in the resolidified portion described later. It is preferable from the viewpoint.
  • the thickness of the surface layer is preferably 1.0 mm or less from the viewpoint of forming a re-solidified portion that reaches the inside of the metal member X.
  • the surface layer can be formed on the upper surface of the metal member Y by, for example, a thick film forming method using powder. Moreover, a commercially available clad material can be used as the metal member Y having the surface layer.
  • the resolidified portion is an alloy of the first metal material and the second metal material.
  • the resolidified portion is integrally joined to the second metal material and the first metal material adjacent to the resolidified portion.
  • the re-solidified portion is formed from the surface layer to the inside of the metal member X by alloying the first metal material and the second metal material melted by laser light irradiation on the surface layer. Is done.
  • alloying means that the first metal material and the second metal material are alloyed so that the physical properties of the second metal material are remarkably and significantly developed. Say.
  • the physical properties of the second metal material include breaking strength.
  • “alloying” is different from laser bonding using a conventional plating film from the viewpoint of remarkably and significantly expressing desired physical properties of the second metal material in the resolidified portion.
  • a conventional plating film As described above, in laser joining of copper plates, it is known to perform the laser joining by forming a nickel plating film on the laser light irradiation surface. The thickness of the plating film is usually about several ⁇ m. For this reason, in the laser joining by irradiating the plating film with laser light, the ratio of the amount of the second metal material (nickel) to the amount of the first metal material (copper) is small in the alloy composition of the resolidified portion. .
  • the physical property (for example, breaking strength) of nickel is not fully expressed normally.
  • the content of the second metal material in the re-solidified portion is that of the second metal material. The amount is less than the amount that significantly and significantly expresses the desired physical property.
  • the re-solidified part can be confirmed by observing the cross section of the laser-joined part including the cross-section of the re-solidified part with an optical microscope. If the difference between the re-solidified part and the first metal material cannot be distinguished, the re-solidified part can be identified with a microscope by etching the cross section with acid or alkali as necessary. Is possible. Further, the composition of the metal material in the re-solidified part can be confirmed by an ordinary method for detecting the composition of the metal material, such as Auger electron spectroscopy or X-ray photoelectron spectroscopy.
  • FIG. 5A shows a re-solidified portion formed along the normal of the surface of the surface layer on the laminate composed of the metal member X (reference numeral 1), the metal member Y (reference numeral 2), and the surface layer (reference numeral 3).
  • Reference numeral 4a) is shown.
  • FIG. 5B shows a re-solidified portion (reference numeral 4b) formed in the laminate by being inclined with respect to the normal of the surface of the surface layer.
  • the inclination angle of the central axis of the resolidified portion 4b with respect to the normal of the surface of the surface layer is, for example, 5 to 45 degrees.
  • L be the length of the resolidified portion along the normal of the surface of the surface layer.
  • the length of the portion of the metal member X in the resolidified portion along the normal is Lx
  • the length of the portion of the metal member Y in the resolidified portion along the normal is Ly
  • the normal Let Ls be the length of the portion of the surface layer in the re-solidified portion along.
  • the ratio of the amount of the second metal material to the amount of the first metal material in the alloy composition of the resolidified portion is , Depending on the size of Ls. For example, when the ratio (thickness ratio) of Ls to Ly is increased, the ratio of the second metal material in the alloy composition can be increased. Thereby, the physical properties of the second metal material in the re-solidified part can be more remarkably exhibited.
  • the laser-joined component of the present invention may further include other configurations as long as the effects of the present invention are obtained.
  • the laser joining component of the present invention may further include a metal member Z made of the first metal material between the metal member X and the metal member Y.
  • the number of metal members Z used may be singular or plural.
  • FIG. 5C shows a laminate formed of a metal member X (reference numeral 1), a metal member Z (reference numeral 5), a metal member Y (reference numeral 2), and a surface layer (reference numeral 3) along the normal of the surface layer.
  • symbol 4c) made is shown.
  • the length of the portion of the metal member Z in the resolidified portion along the normal line is Lz.
  • Lz is also the thickness of the metal member Z.
  • the thickness of the metal member Z can be appropriately determined as long as the re-solidified portion can reach the inside of the metal member X from the surface layer via the metal member Y and the metal member Z. .
  • the laser-joined component of the present invention may further include an intermediate layer formed on the upper surface of the metal member X or the lower surface of the metal member Y.
  • the intermediate layer is made of the second metal material.
  • the intermediate layer may be formed on the entire upper surface of the metal member X or the lower surface of the metal member Y, or may be formed only at a position corresponding to the laser irradiation portion.
  • FIG. 5D shows a laminate composed of a metal member X (reference numeral 1), an intermediate layer (reference numeral 6), a metal member Y (reference numeral 2), and a surface layer (reference numeral 3) along the surface normal of the surface layer.
  • the formed resolidified part (reference numeral 4d) is shown.
  • the length of the intermediate layer portion in the resolidified portion along the normal is Li. Li is also the thickness of the intermediate layer.
  • the width of the upper surface of the metal member X is W1
  • the width of the upper surface of the metal member Y is W2.
  • W1 is also the width of the resolidified portion at the intersection of the interface between the metal member X and the metal member Y (metal member Z in FIG. 5C) and the central axis Ax of the resolidified portion.
  • W2 is also the width of the resolidified portion at the intersection of the interface between the metal member Y and the surface layer and the central axis Ax of the resolidified portion.
  • the surface layer side in the said re-solidification part is made into a base end side
  • the metal member X side is made into the front end side.
  • the re-solidified portion usually has a shape having a constant width at the base end portion and gradually reducing the width at the tip end portion. Therefore, W1 is usually smaller than W2.
  • the laser-joined component of the present invention can be manufactured by the following method.
  • the method of manufacturing a laser-joined component according to the present invention includes a first step of preparing a laminate in which a metal member X, a metal member Y, and the surface layer are stacked in this order from below, and the laminate is laser-treated.
  • the second metal material constituting the surface layer and the first metal material constituting the metal member X and the metal member Y are alloyed while being melted by laser light irradiation.
  • the first step can be performed by forming the surface layer on the upper surface of the metal member Y and placing the metal member Y on the metal member X.
  • the first step can be performed by placing a clad material on the metal member X.
  • the “cladding material” includes a member of the first metal material and the surface layer of the second metal material formed on an upper surface of the member, and the second metal material is the first metal material. It is in pressure contact with the metal material.
  • the metal member Y or the clad material may be temporarily fixed to the metal member X for positioning.
  • the laser beam irradiated in the second step can be selected according to the types of the first metal material and the second metal material.
  • a laser beam having a wavelength at which the difference in the reflectance of light on the mirror surface of the first metal material with respect to the reflectance of light on the mirror surface of the second metal material is 1% or more is suitable. You can choose to.
  • the wavelength of the laser beam is preferably 0.8 to 2.0 ⁇ m.
  • the laser beam is a laser beam that is deeply absorbed by the metal member with a small irradiation area, so that the cross-sectional area in the axial direction of the re-solidified portion is reduced and the re-solidified portion that is longer along the axial direction From the viewpoint of forming An example of such a laser light source is a fiber laser.
  • the second step is a step of irradiating the laser beam with an inclination with respect to the normal of the surface of the surface layer
  • the resolidified portion oblique to the normal can be obtained.
  • the oblique resolidified portion is preferable from the viewpoint of further increasing the bonding strength along the normal direction.
  • the tilt angle of the laser beam irradiation axis with respect to the normal is preferably 5 to 45 degrees from the viewpoint of stabilizing the laser irradiation and obtaining the re-solidified portion having a sufficient depth (FIG. 4). ).
  • the method for manufacturing a laser-joined component according to the present invention may further include other steps as long as the effects of the present invention are obtained.
  • Examples of such other steps include a step of scanning the surface of the surface layer with the laser beam.
  • the scanning direction of the laser beam is inclined with respect to the normal line, and from the viewpoint of obtaining higher bonding strength by irradiating the laser beam, the normal line and the irradiation axis
  • the direction is not parallel to the plane including
  • the scanning direction of the laser light is preferably perpendicular to the plane including the normal and the irradiation axis from the above viewpoint (Embodiment 3).
  • the battery of the present invention includes the above-described laser bonding component of the present invention.
  • the laser joining component is suitable for an electrode member in a single cell or a battery pack.
  • the said laser joining component can be used also for the structural material of the said battery pack.
  • FIG. 1 is a cross-sectional view showing steps of a laser-joined component and a manufacturing method thereof according to Embodiment 1 of the present invention.
  • a clad material 31 is stacked on a copper plate 34 having a thickness of 0.4 mm.
  • the clad material 31 is formed by forming a nickel layer 33 having a thickness of 0.1 mm on a copper plate 32 having a thickness of 0.2 mm.
  • the clad material 31 is overlaid at a desired position on the copper plate 34 with the nickel layer 33 facing upward.
  • the copper plate 34 corresponds to the metal member X.
  • the copper plate 32 corresponds to the metal member Y.
  • the nickel layer 33 corresponds to the surface layer. Copper corresponds to the first metal material.
  • Nickel corresponds to the second metal material.
  • a laminate of the clad material 31 on the copper plate 32 corresponds to the laminate.
  • the laser light 35 irradiated from above the nickel layer 33 is condensed by the condenser lens 36 and irradiated onto the nickel layer 33.
  • the laser beam 35 is a fiber laser with a wavelength of 1.08 ⁇ m irradiated with an output of 260 W. Then, the upper surface of the nickel layer 33 is scanned with a laser beam 35 in a direction perpendicular to the paper surface in FIG.
  • the reflectivity at the copper mirror surface and the reflectivity at the nickel mirror surface of light having a wavelength of 0.5 ⁇ m corresponding to the second harmonic YAG laser are both 62%.
  • the reflectance at the copper mirror surface and the reflectance at the nickel mirror surface of light having a wavelength of 10.6 ⁇ m corresponding to the carbon dioxide laser are both 97% or more.
  • the reflectance of the copper mirror surface of light having a wavelength of 1.06 ⁇ m, which is close to that of a YAG laser, fiber laser, or semiconductor laser, is 98%, while the reflectance of nickel mirror surface is 67%. Therefore, the absorption efficiency of nickel of the YAG laser, fiber laser, and semiconductor laser is considerably higher than that of copper. For this reason, it is preferable to efficiently absorb the laser into the nickel layer using a laser having a wavelength of 0.8 to 2.0 ⁇ m, such as a YAG laser, a fiber laser, or a semiconductor laser.
  • the melting temperature of copper is 1,083 ° C.
  • the melting temperature of nickel is 1,453 ° C.
  • the density of copper and the density of nickel are both 8.93 g / cm 2 .
  • the thermal conductivity of copper is 398 W / (m ⁇ K)
  • the thermal conductivity of nickel is 90.5 W / (m ⁇ K).
  • the laser bonding of this embodiment is suitable for laser bonding performed near an electronic component or the like that may be damaged by exposure to high temperatures.
  • the fiber laser has particularly good light condensing performance, and can narrow the condensing spot diameter to several tens of ⁇ m. Therefore, as shown in FIG. 1C, a melted portion having a small area on the surface of the nickel layer 33 is formed, and the laser energy reaches deep inside the laminate. Therefore, a thin and deep melted part can be formed by keyhole processing.
  • the melted portion flows into the perforated portion by the laser to form a nickel melted region 37 having a long depth and a narrow width, and a copper melted region 38 is formed around the nickel melted region 37 by heat propagation.
  • the nickel melting region 37 and the copper melting region 38 are agitated by laser energy, convection in the melting region, or the like.
  • both metals are all solid solutions. For this reason, as shown in FIG. 1D, both metals are easily alloyed at an arbitrary composition ratio while melting, and the alloying proceeds in the depth direction. As a result, a resolidified portion 39 by alloying is formed from the surface of the nickel layer 33 to the inside of the copper plate 34, and connects the clad material 31 and the copper plate 34. The resolidified portion 39 is also alloyed at the interface between the clad material 31 and the copper plate 34. Since the re-solidification part 39 is solidified while being stirred as described above, there are few structures characteristic of static solidification such as a columnar structure, and the composition varies depending on the location and is not constant.
  • the tensile strength of copper which is an index of breaking strength, is 21.7 kgf / mm 2 (212.8 N / mm 2 ), and the tensile strength of nickel is 32.2 kgf / mm 2 (315.8 N / mm 2 ).
  • the hardness of the resolidified portion 39 is higher than the hardness of the resolidified portion of the single copper.
  • the strength of the resolidified portion 39 is higher than the strength of the resolidified portion of the single copper depending on the nickel content. Therefore, the welding area in the present embodiment necessary for obtaining the same breaking strength may be smaller than the welding area in the welded part of the laser joining of copper.
  • the fracture strength of the welded part obtained is 2 N / mm.
  • the breaking strength of the resolidified portion 39 is 12 N / mm.
  • the combination of the first metal material and the second metal material in the present invention is not limited to the combination of copper and nickel.
  • the second metal material forming the surface layer has a lower laser beam reflectivity and higher breaking strength than the first metal material, the combination of the first metal material and the second metal material The same effect can be obtained with a combination of metals that are easily alloyed. For example, if a copper alloy containing copper as a main component, such as brass or bronze, is used as the first metal material instead of copper, the same effect can be obtained.
  • binary alloys of iron and copper are all solid solutions, and the same effect can be obtained by forming an iron layer having a low reflectance on the surface of the copper plate as the surface layer.
  • the binary alloy of iron and chromium is also a solid solution, and the same effect can be obtained by forming an iron layer having a low reflectance on the surface of the chromium plate as the surface layer.
  • a chromium layer as the surface layer is formed on the aluminum plate surface, an aluminum layer as the surface layer is formed on the copper plate surface, Or the same effect is acquired by forming the iron layer as said surface layer in the aluminum plate surface.
  • the thickness of the copper plate 32 is, for example, 0.1 mm or more from the viewpoint of securing the strength as a structural material.
  • the absorption depth of a metal material of light having a wavelength of 0.5 to 10.6 ⁇ m which many processing lasers have is 0.007 to 0.037 ⁇ m. Therefore, if the purpose is only to improve the absorption rate of laser light, the thickness of the nickel layer 33 may be 0.04% of the thickness of the copper plate 32 of 0.1 mm.
  • the thickness of the nickel plating layer having a thickness of several ⁇ m is several percent of the thickness of 0.1 mm in the copper plate 32.
  • the alloy of the metal of the surface layer (nickel in this embodiment) and the metal of the metal material
  • a smaller amount of the metal component of the surface layer than the metal component of the metal material significantly and significantly expresses the physical properties of the metal of the surface layer.
  • the metal component of the surface layer is contained in the alloy in an amount of at least 10% and not more than 50%.
  • the thickness of the nickel layer 33 is not less than 1/10 and not more than 1/2 of the thickness of the copper plate 32.
  • FIG. 2 is a cross-sectional view showing the steps of the laser-joined component and the manufacturing method thereof according to Embodiment 2 of the present invention.
  • FIG. 2 (e) is an optical micrograph (halftone image displayed on the display) of a cross section including the re-solidified portion of the laser-joined component in the second embodiment.
  • FIG. 2 the same components as those in FIG.
  • FIG. 2 differs from FIG. 1 in that, as shown in FIG. 2 (a), a clad material 31 is added to the copper plate 32 and the nickel layer 33, and a thickness of 0.05 mm is formed under the copper plate 32 (lower surface). That is, the clad material 42 further includes the nickel layer 40.
  • the nickel layer 40 corresponds to the intermediate layer.
  • the nickel melting region 37b having a long depth and a narrow width is formed by keyhole processing. Also, a copper melting region 38b is formed around the nickel melting region 37b by the propagation of heat. When the nickel melting region 37b reaches the nickel layer 40, nickel is newly melted. Therefore, not only the nickel melting region 37 b extends in the depth direction, but also a wide copper melting region 38 c is formed in the copper plate 34.
  • the resolidified portion 39b has a slightly larger diameter at the interface between the nickel layer 40 and the copper plate 34 ( W1> W2). Further, the nickel concentration in the portion where the diameter is increased in the resolidified portion 39b is increased. This not only increases the bonding area, but also increases the amount of nickel, thereby further improving the bonding strength.
  • the same result can be obtained by using a clad material 44 made of a copper plate 34 and a nickel layer 45 formed on the upper surface thereof instead of the copper plate 34. .
  • FIG. 4 is a cross-sectional view showing the steps of the laser-joined component and the manufacturing method thereof according to Embodiment 3 of the present invention.
  • FIG. 4C is an optical micrograph (halftone image displayed on the display) of a cross section including the re-solidified portion of the laser-joined component in the third embodiment.
  • FIG. 4 differs from FIG. 2 in that, as shown in FIG. 4A, the condensing lens 36b is inclined so that the laser beam 35b can be irradiated obliquely, and is perpendicular to the paper surface of FIG. 4A. That is, the surface of the nickel layer 33 was scanned with a laser beam in the direction. Scanning direction, as shown in FIG. 4 (a), is the direction perpendicular to the plane including the normal to Ns of the surface of the nickel layer 33, an irradiation axis A L of the laser beam crossing the. Further, the angle and the illumination axis A L that intersects a normal Ns thereto formed on the surface of the nickel layer 33 and the inclination angle I A.
  • the scanning direction is not necessarily a direction perpendicular to the paper surface in FIG.
  • the laser beam 35b is partially reflected on the surface of the nickel layer 33 and returned to the laser oscillator, thereby preventing the oscillation state in the laser oscillator from becoming unstable. it can.
  • the alloyed re-solidified portion 39c is oblique to the normal line Ns inside the clad material 42 and the copper plate 34. Formed.
  • the resolidified portion 39c is formed obliquely with respect to each copper plate, the resolidified portion 39c is not easily destroyed by the peeling stress in the plate thickness direction. For this reason, the resistance force to the peeling stress can be further increased as compared with the case where the resolidified portion is formed perpendicular to the surface of each copper plate.
  • the angle (tilt angle) at which the laser beam 35b is tilted is 5 degrees or more from the normal line of the surface of the nickel layer 33, return of the irradiated laser beam to the laser oscillator can be avoided.
  • the inclination angle is large, the reflectance of the laser light 35 b at the surface layer increases, and the irradiation energy may be difficult to be absorbed by the clad material 42. Moreover, the depth of the resolidification part 39c may become shallow. From these viewpoints, the inclination angle is preferably 45 degrees or less.
  • the laser-joined component and the manufacturing method thereof according to the present invention can secure a sufficient joining strength with a small amount of laser energy, and can reduce the surrounding temperature rise. For this reason, it can be applied not only to mechanical parts but also to applications such as ensuring the strength of battery electrode materials and the like and ensuring conductivity such as electricity and heat.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

 本発明は、少ないレーザエネルギーで十分な接合強度を確保し、周辺の温度上昇も小さいレーザ接合部品およびその製造方法を提供する。重ね合わされた2枚以上の銅板のうち、最上位の銅板の上面に表面層であるニッケル層を十分な厚さで形成し、ニッケル層の上方からレーザを照射して、前記銅板の銅と前記ニッケル層のニッケルとが溶融、合金化してなる再凝固部を最下位の銅板内まで形成し、前記銅板同士を接合する。ニッケルが銅と合金化することにより、高い破断強度の再凝固部が形成される。よって、小さい溶接面積で、少ないレーザエネルギーで、銅板を接合することができる。

Description

レーザ接合部品およびその製造方法
 本発明は、金属板の重ね合わせ接合において、レーザ光の少ない照射エネルギーで十分な接合強度を得るためのレーザ接合部品およびその製造方法に関する。
 従来のレーザ接合部品およびその製造方法としては、銅板と銅板との重ね合わせ接合において、レーザ光が照射される銅板の表面にニッケルめっき膜を形成し、このめっき膜にレーザ光を照射して、重ね合わされている銅板同士を接合する方法がある(例えば、特許文献1参照。)。図6は、特許文献1に記載された従来のレーザ接合部品およびその製造方法を示す図である。
 図6に示されるように、クラッド材11上に銅板12が配置される。クラッド材11は、銅と銅-モリブデン焼結体の積層体で形成されている。銅板12の表面(上面)には、ニッケルめっき膜13が形成されている。ニッケルにおけるYAGレーザ光の吸収率は、銅および銅合金のYAGレーザ光の吸収率の2.5倍である。ニッケルめっき膜13にレーザ光を照射して銅板12をクラッド材11に溶接する場合では、銅板12にレーザ光を照射して銅板12をクラッド材11に溶接する場合に比べて、より低いレーザパワーおよびエネルギーで、所望の溶接状態が得られる。
 また、図7は、特許文献2に記載された従来のレーザ接合部品およびその製造方法を示す図である。図7に示すように、クラッド材22の端面とクラッド材23の端面とが接触している。クラッド板22、23は共に、高融点材料24と、低融点材料25とが積み重ねられて構成されている。前記端面において、クラッド材22の高融点材料24とクラッド材23の高融点材料24’とが接触しており、クラッド材22の低融点材料25とクラッド材23の低融点材料25’とが接触している。高融点材料24、24’の接触部28にレーザ光を照射して高融点材料24、24’を溶接し、ビード部26を形成する。次に低融点材料25、25’の接触部29に同様にレーザ光を照射して低融点材料25、25’を溶接し、ビード部27を形成する。この方法では、高融点材料24と低融点材料25との溶け込みが実質的に生じない。このため、クラッド材22、23が有する諸特性が、レーザ接合で得られたレーザ接合部品において保持される。(例えば、特許文献2参照)。
 また、第一の金属板と第二の金属板とを重ね合わせ、第一の金属板からレーザ光を照射して両金属板を接合する方法において、第一の金属板の一表面又は両面に第一のめっき膜を形成し、第二の金属板の一表面又は両面に第二のめっき膜を形成する方法が知られている。第一のめっき膜及び第二のめっき膜は、いずれも厚さが数μmである。第一のめっき膜のレーザ光の吸収率が第二のめっき膜のレーザ光の吸収率よりも高い場合では、レーザエネルギーをより小さくすることができる。また、第一のめっき膜の融点が第二のめっき膜の融点よりも高い場合では、レーザ光の照射による第一のめっき膜の爆飛が防止される。また、第二のめっき膜の融点が第一のめっき膜の融点よりも高い場合では、レーザ光の照射による第二の金属板の爆飛が防止される(例えば、特許文献3~6参照。)。
 また、はんだの被膜を有する銅合金のベース板に、はんだの被膜を有する銅又は銅合金のカバーを重ね、カバーにレーザ光を照射して両部材を接合する方法が知られている(例えば、特許文献7及び8参照。)。
特開2007-165690号公報 特許第3272787号公報 特開2009-226420号公報 米国特許出願公開第2009/0236321号明細書 国際公開第1992/000828号パンフレット 米国特許第5343014号明細書 特開昭62-068691号公報 米国特許第4697061号明細書
 上記従来技術において、金属板の材料に銅を用い、めっき膜の材料にニッケルを用いる場合では、表面のニッケルめっき膜によりレーザ光の吸収率は上がる。しかしながら、銅の熱伝導性は高く、ニッケルめっき膜は薄いため、レーザ光の照射部分から熱が周辺へ逃げ、レーザ光の照射部分の周辺の温度も上昇する。そのため、従来技術は、レーザ光の照射部分の温度を十分に高くし、レーザ接合するためには、大きなエネルギーを必要とするという課題を有している。
 本発明は、上記従来の課題を解決するものであり、少ないレーザエネルギーで十分な接合強度を確保すると共に、周辺の温度上昇が小さいレーザ接合部品およびその製造方法を提供することを目的とする。
 上記目的を達成するために、本発明は、以下のレーザ接合部品を提供する。
[1] 第一の金属材料からなる金属部材Xと、
 前記第一の金属材料からなり、金属部材X上に配置される金属部材Yと、
 金属部材Yの上面に形成され、前記第一の金属材料と合金化することができ、前記第一の金属材料よりもレーザ光の吸収率が高く、かつ前記第一の金属材料よりも破断強度が高い第二の金属材料からなる表面層と、
 前記表面層上からのレーザ光の照射によって溶融した前記第一の金属材料と前記第二の金属材料の合金化によって、前記表面層の表面から金属部材Xの内部まで形成されている再凝固部と、を含む、レーザ接合部品。
[2] 金属部材Yの厚さは0.1mm以上であり、
 前記表面層の厚さは金属部材Yの厚さの10分の1以上2分の1以下である、[1]に記載のレーザ接合部品。
[3] 前記第二の金属材料の溶融温度は、前記第一の金属材料の溶融温度よりも高い、[1]又は[2]に記載のレーザ接合部品。
[4] 金属部材Xの上面における前記再凝固部の幅は、金属部材Yの上面における前記再凝固部の幅よりも大きい、[1]~[3]のいずれか一項に記載のレーザ接合部品。
[5] 前記第二の金属材料は、前記第一の金属材料よりも耐食性が高い、[1]~[4]のいずれか一項に記載のレーザ接合部品。
[6] 前記第一の金属材料はCuであり、前記第二の金属材料はNiである、[1]~[5]のいずれか一項に記載のレーザ接合部品。
[7] 金属部材Xの上面又は金属部材Yの下面に形成される、前記第二の金属材料からなる中間層をさらに含む、[1]~[6]のいずれか一項に記載のレーザ接合部品。
[8] 前記表面層の表面の法線に対する前記再凝固部の中心軸線の傾斜角が5~45度である[1]~[7]のいずれか一項に記載のレーザ接合部品。
 また本発明は、上記の目的を達成するために、以下のレーザ接合部品の製造方法を提供する。
[9] 第一の金属材料からなる金属部材Xと、前記第一の金属材料からなる金属部材Yと、前記第一の金属材料と合金化することができる第二の金属材料からなり、金属部材Yの上面に形成される表面層と、を下からこの順で重ねた積層体を準備する第一の工程と、
 前記表面層にレーザ光を照射して、前記表面層の前記第二の金属材料と金属部材X及び金属部材Yの前記第一の金属材料との合金化によって、前記表面層の表面から金属部材Xの内部に達する再凝固部を形成する第二の工程と、を含み、
 前記第二の金属材料は、前記第一の金属材料よりもレーザ光の吸収率が高く、かつ前記第一の金属材料よりも破断強度が高い、レーザ接合部品の製造方法。
[10] 前記第二の工程は、前記レーザ光を前記表面層の表面の法線に対して傾斜させて照射する工程であり、
 前記表面層の表面の法線と前記レーザ光の照射軸とを含む面に平行でない方向に前記レーザ光で前記表面層の表面を走査する工程をさらに含む、[9]に記載のレーザ接合部品の製造方法。
[11] 前記法線に対する前記照射軸の傾斜角が5~45度である、[10]に記載のレーザ接合部品の製造方法。
[12] 前記レーザ光の波長は、0.8~2.0μmである、[9]~[11]のいずれか一項に記載のレーザ接合部品の製造方法。
[13] 前記レーザ光を照射するレーザ発振器は、ファイバーレーザ発振器である、[9]~[12]のいずれか一項に記載のレーザ接合部品の製造方法。
 さらに本発明は、[1]~[8]のいずれか一項に記載のレーザ接合部品を含む電池を提供する。
 本発明によれば、第一の金属材料に比べて破断強度がより高い第二の金属材料で前記表面層を形成し、表面層側からレーザ照射による再凝固部が形成されることから、金属部材X及び金属部材Yのレーザ接合において、より小さな接合面積で十分な接合強度を得ることができる。また、表面層の厚さは、通常、めっき膜の厚さよりも大きくなる。よって、本発明のレーザ接合部品およびその製造方法によれば、少ないレーザエネルギーで十分な接合強度を確保することができ、周辺の温度上昇も小さくすることができる。
本発明の実施の形態1に係るレーザ接合部品およびその製造方法の工程を示す断面図 本発明の実施の形態2に係るレーザ接合部品およびその製造方法の工程を示す断面図 本発明の実施の形態2に係るレーザ接合部品およびその製造方法の接合用材料の断面図 本発明の実施の形態3に係るレーザ接合部品およびその製造方法の工程を示す断面図 本発明における再凝固部の形状を説明する断面図 特許文献1に記載の従来のレーザ接合部品およびその製造方法の溶接状態を示す断面図 特許文献2に記載の従来のレーザ接合部品およびその製造方法の溶接状態を示す断面図
 本発明のレーザ接合部材は、金属部材Xと、金属部材X上に配置される金属部材Yと、金属部材Yの上面に形成される表面層と、前記表面層の表面から金属部材Xの内部まで形成されている再凝固部と、を含む。
 金属部材X及び金属部材Yは、共に、第一の金属材料から作られている。前記第一の金属材料は、金属又は合金の中から、レーザ接合部材の用途に応じて選ぶことができる。金属部材Xの形状は、金属部材Yを重ねられれば、特に限定されない。
 金属部材Yは、後述する再凝固部が形成される位置の厚さが、レーザ接合によって前記再凝固部を形成することができる範囲の厚さであれば、特に限定されない。金属部材Yの厚さは、構造材としての強度を確保する観点から、0.1mm以上であることが好ましい。また、前記再凝固部をレーザ接合によって形成する観点から、金属部材Yの前記再凝固部が形成される部分の厚さは、2.0mm以下であることが好ましい。
 前記表面層は、第二の金属材料で作られる。前記第二の金属材料は、金属又は合金の中から、後述する条件を満足する金属又は合金を選ぶことができる。まず、前記第二の金属材料は、前記第一の金属材料と溶融したときに合金を形成することができる。前記第二の金属材料は、前記第一の金属材料と全率固溶体を構成する材料であることが好ましいが、合金を形成することができる金属材料であればよい。
 また前記第二の金属材料のレーザ光の吸収率は、前記第一の金属材料のレーザ光の吸収率よりも高い。或いは、前記第二の金属材料の反射率は、前記第一の金属材料の反射率に比べて小さい。前記第一の金属材料の前記反射率に対する前記第二の金属材料の前記反射率の差が1%以上であることが、レーザエネルギーの削減の観点から好ましい。前記第一の金属材料の前記反射率、及び前記第二の金属材料の前記反射率は、例えば分光光度計によって求めることができる。
 さらに前記第二の金属材料の破断強度は、前記第一の金属材料の破断強度よりも大きい。前記破断強度は、引張強度の測定によって求めることができる。前記第二の金属材料の破断強度は、前記第一の金属材料の破断強度に比べて、0.2kg/mm以上大きいことが、レーザ接合における十分な接合強度を得る観点から好ましい。
 また前記第二の金属材料の溶融温度は、前記第一の金属材料の溶融温度よりも高いことが、前記表面層の表面からより深い位置まで前記再凝固部を形成する観点から好ましい。前記第二の金属材料の溶融温度は、前記第一の金属材料の溶融温度に比べて、80℃以上高いことが、上記の観点から好ましい。
 また前記第二の金属材料の熱伝導率は、前記第一の金属材料の熱伝導率より低いことが、より小さなレーザ照射面積で前記再凝固部を形成する観点から好ましい。前記第二の金属材料の熱伝導率は、前記第一の金属材料の熱伝導率に比べて、10W/(m・K)以上低いことが、上記の観点から好ましい。
 また前記第二の金属材料の耐食性は、前記第一の金属材料の耐食性よりも高いことが、防錆効果を得る観点から好ましい。前記耐食性は、前記第一の金属材料のガルバニ電位と前記第二の金属材料ガルバニ電位との差が小さい程高い。前記第一の金属材料のガルバニ電位と前記第二の金属材料ガルバニ電位との差は、0.2V以下であることが、上記の観点から好ましい。
 前記表面層は、金属部材Yの上面に形成される。前記表面層は、金属部材Yの上面の全面に形成されていてもよいし、レーザ光の照射部分及びその周辺のみに形成されていてもよい。例えば前記表面層は、集光されたレーザ光で照射される領域よりも前記表面層が大きくなるように、金属部材Yの上面に形成されることが望ましく、例えばレーザ光が照射されるべき部分を、少なくとも0.1~1.0mmかそれ以上の幅の領域で囲むように、金属部材Yの上面に前記表面層が形成されることが望ましい。
 少なくともレーザ光の照射部分における前記表面層の厚さは、金属部材Yの厚さの10分の1以上2分の1以下であることが好ましい。前記表面層の厚さが上記の範囲であることは、後述する再凝固部における「合金化」によって、破断強度等の前記第二の金属材料の物性が、再凝固部に十分に付加される観点から好ましい。また、前記表面層の厚さは、金属部材Xの内部に達する再凝固部を形成する観点から、1.0mm以下であることが好ましい。
 前記表面層は、例えば、粉末を用いた厚膜形成法によって、金属部材Yの上面に成膜することができる。また、市販のクラッド材を、前記表面層を有する金属部材Yとして用いることができる。
 前記再凝固部は、前記第一の金属材料と前記第二の金属材料との合金である。前記再凝固部は、前記再凝固部に隣接する前記第二の金属材料及び前記第一の金属材料とは一体的に接合している。
 前記再凝固部は、前記表面層上へのレーザ光の照射によって溶融した前記第一の金属材料と前記第二の金属材料の合金化によって、前記表面層の表面から金属部材Xの内部まで形成される。ここで「合金化」とは、前記第二の金属材料の物性が、顕著に、かつ有意に発現するように、前記第一の金属材料と前記第二の金属材料とが合金化すること、を言う。前記第二の金属材料の物性は、破断強度を含む。
 本発明における「合金化」は、前記再凝固部において、第二の金属材料の所望の物性を顕著かつ有意に発現させる観点で、従来のめっき膜を用いるレーザ接合と異なる。前述したように、銅板同士のレーザ接合では、レーザ光の照射面にニッケルのめっき膜を形成して前記レーザ接合を行うことが知られている。めっき膜の厚さは、通常、数μm程度である。このため、めっき膜へのレーザ光の照射によるレーザ接合では、再凝固部の合金組成において、第一の金属材料(銅)の量に対する第二の金属材料(ニッケル)の量の割合が小さくなる。このため、このような再凝固部では、通常、ニッケルの物性(例えば破断強度)が十分には発現されない。このように、従来の、第二の金属材料のめっき膜を形成する金属部材X及び金属部材Yのレーザ接合では、再凝固部における第二の金属材料の含有量は、第二の金属材料の所望の物性を顕著かつ有意に発現させる量よりも少ない。
 前記再凝固部は、前記再凝固部の断面を含む前記レーザ接合部品の断面を、光学顕微鏡で観察することによって確認することができる。前記再凝固部と前記第一の金属材料との違いが区別できない場合には、必要に応じて前記断面を酸又はアルカリによってエッチングすることによって、前記再凝固部を顕微鏡で識別可能に示すことが可能である。また前記再凝固部の金属材料の組成は、オージェ電子分光法やX線光電子分光等の、金属材料の組成を検出する通常の方法によって確認することが可能である。
 図5Aは、金属部材X(符号1)、金属部材Y(符号2)、及び表面層(符号3)からなる積層体に、表面層の表面の法線に沿って形成された再凝固部(符号4a)を示す。図5Bは、前記表面層の表面の法線に対して傾斜させて前記積層体に形成された再凝固部(符号4b)を示す。前記表面層の表面の法線に対する再凝固部4bの中心軸線の傾斜角は、例えば5~45度である。前記表面層の表面の法線に沿う前記再凝固部の長さをLとする。また、前記法線に沿う前記再凝固部中の金属部材Xの部分の長さをLx、前記法線に沿う前記再凝固部中の金属部材Yの部分の長さをLy、前記法線に沿う前記再凝固部中の表面層の部分の長さをLs、とする。
 図5A及び図5Bにおいて、前記再凝固部の合金組成における第一の金属材料の量に対する第二の金属材料の量の比率(第二の金属材料の量/第一の金属材料の量)は、Lsの大きさによって異なる。例えば、Lyに対するLsの比率(厚み比)を大きくすると、前記合金組成における第二の金属材料の比率を大きくすることができる。それによって、前記再凝固部での第二の金属材料の物性をより顕著に発現させることができる。
 本発明のレーザ接合部品は、本発明の効果が得られる範囲において、他の構成をさらに含んでいてもよい。例えば、本発明のレーザ接合部品は、金属部材Xと金属部材Yとの間に、前記第一の金属材料からなる金属部材Zをさらに有していてもよい。用いる金属部材Zの数は、単数でも複数でもよい。
 図5Cは、金属部材X(符号1)、金属部材Z(符号5)、金属部材Y(符号2)、及び表面層(符号3)からなる積層体に、表面層の法線に沿って形成された再凝固部(符号4c)を示す。前記法線に沿う前記再凝固部中の金属部材Zの部分の長さをLzとする。Lzは金属部材Zの厚さでもある。金属部材Zの厚さは、前記再凝固部が、前記表面層から、金属部材Y及び金属部材Zを介して、金属部材Xの内部まで届くことが可能な範囲で、適宜に決めることができる。
 また、本発明のレーザ接合部品は、金属部材Xの上面又は金属部材Yの下面に形成される中間層をさらに含んでいてもよい。前記中間層は、前記第二の金属材料からなる。前記中間層は、前記表面層と同様に、金属部材Xの上面又は金属部材Yの下面の全体に形成されていてもよいし、レーザ照射部分に対応する位置にのみ形成されていてもよい。
 図5Dは、金属部材X(符号1)、中間層(符号6)、金属部材Y(符号2)、及び表面層(符号3)からなる積層体に、表面層の表面の法線に沿って形成された再凝固部(符号4d)を示す。前記法線に沿う前記再凝固部中の前記中間層の部分の長さをLiとする。Liは中間層の厚さでもある。
 ここで、図5A~図5Dに示すように、金属部材Xの上面における幅をW1とし、金属部材Yの上面における幅をW2とする。W1は、金属部材Xと金属部材Y(図5Cでは金属部材Z)との界面と、前記再凝固部の中心軸線Axとの交点における前記再凝固部の幅でもある。W2は、金属部材Yと表面層との界面と、前記再凝固部の中心軸線Axとの交点における前記再凝固部の幅でもある。また、前記再凝固部における表面層側を基端側とし、金属部材X側を先端側とする。前記再凝固部は、通常、基端部では一定の幅を有し、先端部では漸次幅が縮む形状を有する。よって、W1はW2よりも、通常は小さい。
 本発明のレーザ接合部品は、以下の方法で製造することができる。
 本発明におけるレーザ接合部品の製造方法は、金属部材Xと、金属部材Yと、前記表面層と、を下からこの順で重ねた積層体を準備する第一の工程と、前記積層体をレーザ光で照射して前記表面層の表面から金属部材Xの内部に達する再凝固部を形成する第二の工程と、を含む。前記第二の工程では、前記表面層を構成する前記第二の金属材料と金属部材X及び金属部材Yを構成する前記第一の金属材料とを、レーザ光の照射によって溶かしながら合金化する。
 前記第一の工程は、金属部材Yの上面に前記表面層を形成し、この金属部材Yを金属部材Xに載せることによって行うことができる。或いは前記第一の工程は、金属部材Xにクラッド材を載せることによって行うことができる。前記「クラッド材」は、前記第一の金属材料の部材と、この部材の上面に形成される前記第二の金属材料の前記表面層とを有し、前記第二の金属材料が前記第一の金属材料と圧接してなる。金属部材Y又は前記クラッド材は、金属部材Xに、位置決めのために仮止めされてもよい。
 前記第二の工程において照射するレーザ光は、前記第一の金属材料及び前記第二の金属材料の種類に応じて選ぶこともできる。前記レーザ光には、例えば、前記第二の金属材料の鏡面における光の反射率に対する前記第一の金属材料の鏡面における光の反射率の差が1%以上になる波長を有するレーザ光を好適に選ぶことができる。例えば、電子機器における電極部材や構造材に通常使用される金属部材を本発明の方法でレーザ接合する場合には、前記レーザ光の波長は、好ましくは0.8~2.0μmである。
 前記レーザ光は、小さな照射面積で金属部材により深く吸収されるレーザ光であることが、前記再凝固部の軸方向の断面積を小さくし、かつ前記軸方向に沿ってより長い前記再凝固部を形成する観点から好ましい。このようなレーザ光源としては、例えばファイバーレーザが挙げられる。
 前記第二の工程は、前記レーザ光を前記表面層の表面の法線に対して傾斜させて照射する工程であると、前記法線に対して斜めの前記再凝固部が得られる。斜めの前記再凝固部は、前記法線方向に沿った接合強度をより高める観点から好ましい。前記法線に対する前記レーザ光の照射軸の傾斜角は、レーザ照射の安定化の観点、及び十分な深さの前記再凝固部を得る観点から、5~45度であることが好ましい(図4)。
 本発明におけるレーザ接合部品の製造方法は、本発明の効果が得られる範囲で、他の工程をさらに含んでいてもよい。このような他の工程としては、例えば、前記レーザ光で前記表面層の表面を走査する工程が挙げられる。このようなレーザ光走査工程において、レーザ光を走査する方向は、前記法線に対して傾斜させてレーザ光を照射することによるより高い前記接合強度を得る観点から、前記法線と前記照射軸とを含む面に平行でない方向である。レーザ光を走査する方向は、上記の観点から、前記法線と前記照射軸とを含む面に対して垂直であることが好ましい(実施の形態3)。
 本発明の電池は、前述した本発明のレーザ接合部品を含む。本発明の電池において、前記レーザ接合部品は、単電池又は電池パックにおける電極部材に好適である。また前記レーザ接合部品は、前記電池パックの構造材にも用いることができる。
 以下、本発明の実施の形態について、図面を参照しながら説明する。
[実施の形態1]
 図1は、本発明の実施の形態1におけるレーザ接合部品およびその製造方法の工程を示す断面図である。
 図1(a)に示すように、厚さ0.4mmの銅板34の上にクラッド材31を重ねる。クラッド材31は、厚さ0.2mmの銅板32の上に厚さ0.1mmのニッケル層33を形成してなる。クラッド材31は、ニッケル層33を上方にして、銅板34上の所望の位置に重ねられる。銅板34は金属部材Xに相当する。銅板32は金属部材Yに相当する。ニッケル層33は前記表面層に相当する。銅は前記第一の金属材料に相当する。ニッケルは前記第二の金属材料に相当する。銅板32にクラッド材31を重ねたものは前記積層体に相当する。
 図1(b)に示すように、ニッケル層33の上方から照射されたレーザ光35を集光レンズ36で集光し、ニッケル層33に照射する。レーザ光35は、出力260Wで照射された波長1.08μmのファイバーレーザである。そして、速度70mm/秒で、図1(b)における紙面に垂直な方向に、レーザ光35でニッケル層33の上面を走査する。
 第2高調波YAGレーザに対応する波長0.5μmの光の、銅の鏡面における反射率とニッケルの鏡面における反射率は、いずれも62%である。炭酸ガスレーザに対応する波長10.6μmの光の、銅の鏡面における反射率とニッケルの鏡面における反射率は、いずれも97%以上である。YAGレーザ、ファイバーレーザや半導体レーザに近い波長1.06μmの光の、銅の鏡面における反射率は98%であるのに対して、ニッケルの鏡面における反射率は67%である。よって、YAGレーザ、ファイバーレーザや半導体レーザの、ニッケルの吸収効率は、銅の吸収効率に比べてかなり高い。このため、YAGレーザ、ファイバーレーザ、半導体レーザなどの、波長が0.8~2.0μmであるレーザを用いてニッケル層にレーザを効率的に吸収させることが好ましい。
 また、銅の溶融温度は1,083℃で、ニッケルの溶融温度は1,453℃ある。銅の密度とニッケルの密度はいずれも8.93g/cmである。このため、レーザ光35を照射すると、銅の溶融温度を超えて加熱された溶融ニッケルが、ニッケル層33に接する銅板32を加熱する。このため、レーザ光による銅の加熱に加え、溶融ニッケルも銅を加熱し、銅は一層溶融しやすくなる。また、銅の熱伝導率は398W/(m・K)であり、ニッケルの熱伝導率は90.5W/(m・K)である。このため、レーザ光35の照射部分の近傍における平面方向への熱拡散を抑えることができる。そのため、クラッド材31と銅板34との接合が効率的なだけでなく、周辺への熱拡散も低減できる。このため、本実施の形態のレーザ接合は、高温にさらされて損傷するおそれがある電子部品等の近くで行うレーザ接合に好適である。
 ファイバーレーザは、特に集光性が良く、集光スポット径を数10μmまで絞れる。このため、図1(c)に示すように、ニッケル層33の表面での面積が小さな溶融部が形成され、かつ、前記積層体内部の深くまでレーザエネルギーが到達する。よって、キーホール加工により細く深い溶融部を形成できる。この溶融部が、レーザによる穿孔部に流れ込むことで、深さが長く幅が細いニッケル溶融領域37を形成し、その周囲に、熱の伝播により銅溶融領域38を形成する。そして、ニッケル溶融領域37と銅溶融領域38は、レーザエネルギーや溶融領域での対流などにより相互に攪拌される。
 両金属の合金は、全率固溶体である。このため、図1(d)に示すように、両金属は溶けながら任意の組成比で容易に合金化し、合金化は深さ方向に進行する。その結果、合金化による再凝固部39が、ニッケル層33の表面から銅板34の内部まで形成され、クラッド材31と銅板34とを連結する。再凝固部39は、クラッド材31と銅板34との界面においても合金化している。この再凝固部39は、上述のように攪拌されながら凝固したため、柱状組織のような静的な凝固に特徴的な組織は少なく、組成も場所によって変動し一定しない。破断強度の一指標である、銅の引張強度は21.7kgf/mm(212.8N/mm)、ニッケルの引張強度は32.2kgf/mm(315.8N/mm)である。銅よりも高い強度を有するニッケルと銅とが合金化することによって、銅単体の再凝固部の硬度よりも再凝固部39の硬度がより高まる。このため、ニッケルの含有量に応じて、再凝固部39の強度は、銅単体の再凝固部の強度よりも高くなる。そのため、同じ破断強度を得るのに必要な本実施形態における溶接面積は、銅同士のレーザ接合の溶接部における溶接面積に比べて小さくて済む。
 例えば、走査速度20mm/秒でファイバーレーザを250Wで照射して銅と銅を接合する場合、得られる溶接部の破断強度は2N/mmである。一方、本実施形態の場合、走査速度120mm/秒でファイバーレーザを250Wで照射して再凝固部39を形成した場合、再凝固部39の破断強度は12N/mmである。このように本実施形態のレーザ接合では、銅同士のレーザ接合に比べて、生産性及び強度がともに大きく向上する。従って、同じ接合強度を得るのに、ニッケル層33を設けることで、少ないレーザエネルギーで済むことになる。また、ニッケルは銅よりも耐食性が高いため、防錆効果を得ることもできる。異種金属が接すると電食が起こるが、3%塩化ナトリウム溶液中のガルバニ電位は、銅が+0.04V、ニッケルが-0.03Vである。このように、これらの金属の組み合わせによる電位差は非常に小さい。よって、これらの金属からなる再凝固部39では、電食は発生しにくい。
 なお、本実施の形態において、銅板32上にニッケル層33を設ける構成としたが、本発明における第一の金属材料と第二の金属材料との組み合わせは、銅とニッケルとの組み合わせに限定されない。表面層を形成する第二の金属材料が、第一の金属材料に比べ、レーザ光の反射率が低く、かつ破断強度が高ければ、また第一の金属材料と第二の金属材料の組み合わせが容易に合金化する金属の組み合わせであれば、同様の効果を得ることができる。例えば、第一の金属材料として、銅の代わりに黄銅、青銅など銅を主成分とする銅合金を用いれば、同様の効果が得られる。
 また、他の成分系として、鉄と銅の2元系合金も全率固溶体であり、反射率の低い鉄層を前記表面層として銅板表面に形成することでも、同様の効果が得られる。鉄とクロムの2元系合金も全率固溶体であり、反射率の低い鉄層を前記表面層としてクロム板表面に形成することで同様の効果が得られる。
 その他、全率固溶体ではない合金からなる再凝固部を形成する系として、前記表面層としてのクロム層をアルミニウム板表面に形成したり、前記表面層としてのアルミニウム層を銅板表面に形成したり、或いは、前記表面層としての鉄層をアルミニウム板表面に形成することで、同様の効果が得られる。
 また、鉄の代わりに鉄を主成分とする鋼、或いは、ニッケルやクロムを含むステンレス鋼などの鋼を用いることでも、同様の効果が得られる。
 本実施の形態では、銅板32の厚さは、構造材としての強度を確保する観点から、例えば0.1mm以上である。多くの加工用レーザが有する波長0.5~10.6μmの光の金属材料の吸収深さは0.007~0.037μmである。従って、レーザ光の吸収率向上だけを目的にするのであれば、ニッケル層33の厚さは、銅板32の厚さ0.1mmの0.04%あればよい。厚さが数μmとなるニッケルめっき層の厚さは、銅板32における0.1mmの板厚の数%となる。しかし、表面層の金属(本実施形態ではニッケル)と金属材料の金属との合金において、金属材料の金属成分より少量の表面層の金属成分が、表面層の金属の物性を顕著かつ有意に発現するためには、合金中に、表面層の金属成分が、少なくとも10%以上で50%以下の量で含有されることが必要と考えられる。このような観点から、ニッケル層33の厚さは、銅板32に厚さに対して10分の1以上2分の1以下とすることが好ましい。
[実施の形態2]
 図2は、本発明の実施の形態2に係る、レーザ接合部品およびその製造方法の工程を示す断面図である。図2(e)は、実施の形態の2におけるレーザ接合部品の再凝固部を含む断面の光学顕微鏡写真(ディスプレイ上に表示した中間調画像)である。図2において、図1と同じ構成要素については同じ符号を用い、説明を省略する。
 図2において、図1と異なる点は、図2(a)に示すように、クラッド材31を、銅板32及びニッケル層33に加えて、銅板32の下(下面)に厚さ0.05mmのニッケル層40をさらに有するクラッド材42としたことである。ニッケル層40は、前記中間層に相当する。
 図2(b)におけるレーザ光35の照射の手順は、図1と同様である。図2(c)において、図1と同様に、キーホール加工により、深さが長く、幅が細いニッケル溶融領域37bが形成される。またニッケル溶融領域37bの周囲には、熱の伝播により、銅の溶融領域38bが形成される。ニッケル溶融領域37bが、ニッケル層40に達すると、新たにニッケルが溶融する。このため、深さ方向にニッケル溶融領域37bが伸びるだけでなく、幅の広い銅溶融領域38cが、銅板34内で形成される。
 その結果、図2(d)の模式図と図2(e)の断面写真に示すように、再凝固部39bの形状は、ニッケル層40と銅板34との界面で径が僅かに大きくなる(W1>W2)。さらに再凝固部39bにおける径の大きくなった部分のニッケル濃度が高くなる。これにより接合面積が大きくなるだけでなく、ニッケル量が増えたために、接合強度がより向上する。
 なお、本実施の形態において、図3に示されるように、銅板34に代えて、銅板34とその上面に形成されたニッケル層45とからなるクラッド材44を用いても同様の結果が得られる。
[実施の形態3]
 図4は、本発明の実施の形態3に係る、レーザ接合部品およびその製造方法の工程を示す断面図である。図4(c)は、実施の形態の3におけるレーザ接合部品の再凝固部を含む断面の光学顕微鏡写真(ディスプレイ上に表示した中間調画像)である。
 図4において、図2と異なる点は、図4(a)に示すように、レーザ光35bを斜めから照射できるように集光レンズ36bを傾けて設け、図4(a)の紙面に垂直な方向に、レーザ光でニッケル層33の表面を走査したことである。走査方向は、図4(a)に示すように、ニッケル層33の表面の法線Nsと、これに交差するレーザ光の照射軸Aとを含む面に対して垂直な方向である。また、法線Nsとこれに交差する照射軸Aとがニッケル層33の表面上で形成する角を傾斜角Iとする。
 走査方向は、必ずしも図4(a)における紙面に直角な方向でなくともよい。このようにレーザ光35bを斜めから照射することで、レーザ光35bが、ニッケル層33の表面で一部反射してレーザ発振器に戻り、レーザ発振器における発振状態が不安定になることを防ぐことができる。さらには、図4(b)の模式図と図4(c)の断面写真に示すように、合金化した再凝固部39cがクラッド材42と銅板34の内部に、法線Nsに対して斜めに形成される。
 レーザ接合部材において、板厚方向(法線Nsに沿う方向)に剥離応力が発生すると、再凝固部と第一の金属材料との界面での破壊が起きやすくなる。しかしながら、再凝固部39cは、各銅板に対して斜めに形成されているため、板厚方向の剥離応力に対して破壊されにくい。このため、前記剥離応力に対する抵抗力を、各銅板の表面に対して垂直に再凝固部が形成される場合に比べて、より高めることができる。レーザ光35bを傾ける角度(傾斜角)は、ニッケル層33の表面の法線から5度以上であれば、照射されたレーザ光のレーザ発振器への戻りを回避できる。傾斜角が大きいとレーザ光35bの表面層での反射率が大きくなり、照射エネルギーがクラッド材42に吸収されにくくなることがある。また再凝固部39cの深さが浅くなることがある。これらの観点から、傾斜角は45度以下であることが好ましい。
 本出願は、2011年3月14日出願の特願2011-055113に基づく優先権を主張する。当該出願明細書に記載された内容は、すべて本願明細書に援用される。
 本発明のレーザ接合部品およびその製造方法は、少ないレーザエネルギーで十分な接合強度を確保し、周辺の温度上昇も小さくすることができる。このため、機構部品だけでなく、電池の電極材料等の強度確保や電気および熱等の伝導性確保の用途にも適用できる。
 1 金属部材X
 2 金属部材Y
 3 表面層
 4a~4d、39、39b、39c 再凝固部
 5 金属部材Z
 6 中間層
 11、31、42、44 クラッド材
 12、32、34 銅板
 13 ニッケルめっき膜
 22、23 クラッド板
 24、24’ 高融点材料
 25、25’ 低融点材料
 26、27 ビート部
 28、29 接触部
 33、40、45 ニッケル層
 35、35b レーザ光
 36、36b 集光レンズ
 37、37b ニッケル溶融領域
 38、38c 銅溶融領域
 A レーザ光35bの照射軸
 Ax 再凝固部4a~4dの中心軸線
 I 傾斜角
 L 再凝固部4a~4dの長さ
 Li 再凝固部4a~4d中の中間層6の長さ
 Ls 再凝固部4a~4d中の表面層3の長さ
 Lx 再凝固部4a~4d中の金属部材Xの長さ
 Ly 再凝固部4a~4d中の金属部材Yの長さ
 Lz 再凝固部4a~4d中の金属部材Zの長さ
 Ns ニッケル層33の上面の法線
 W1 金属部材Xの上面における再凝固部4a~4dの幅
 W2 金属部材Yの上面における再凝固部4a~4dの幅
 

Claims (14)

  1.  第一の金属材料からなる金属部材Xと、
     前記第一の金属材料からなり、金属部材X上に配置される金属部材Yと、
     金属部材Yの上面に形成され、前記第一の金属材料と合金化することができ、前記第一の金属材料よりもレーザ光の吸収率が高く、かつ前記第一の金属材料よりも破断強度が高い第二の金属材料からなる表面層と、
     前記表面層上からのレーザ光の照射によって溶融した前記第一の金属材料と前記第二の金属材料の合金化によって、前記表面層の表面から金属部材Xの内部まで形成されている再凝固部と、を含む、レーザ接合部品。
  2.  金属部材Yの厚さは0.1mm以上であり、
     前記表面層の厚さは金属部材Yの厚さの10分の1以上2分の1以下である、請求項1に記載のレーザ接合部品。
  3.  前記第二の金属材料の溶融温度は、前記第一の金属材料の溶融温度よりも高い、請求項1に記載のレーザ接合部品。
  4.  金属部材Xの上面における前記再凝固部の幅は、金属部材Yの上面における前記再凝固部の幅よりも大きい、請求項1に記載のレーザ接合部品。
  5.  前記第二の金属材料は、前記第一の金属材料よりも耐食性が高い、請求項1に記載のレーザ接合部品。
  6.  前記第一の金属材料はCuであり、前記第二の金属材料はNiである、請求項1に記載のレーザ接合部品。
  7.  金属部材Xの上面又は金属部材Yの下面に形成される、前記第二の金属材料からなる中間層をさらに含む、請求項1に記載のレーザ接合部品。
  8.  前記表面層の表面の法線に対する前記再凝固部の中心軸線の傾斜角が5~45度である請求項1に記載のレーザ接合部品。
  9.  第一の金属材料からなる金属部材Xと、前記第一の金属材料からなる金属部材Yと、前記第一の金属材料と合金化することができる第二の金属材料からなり、金属部材Yの上面に形成される表面層と、を下からこの順で重ねた積層体を準備する第一の工程と、
     前記表面層にレーザ光を照射して、前記表面層の前記第二の金属材料と金属部材X及び金属部材Yの前記第一の金属材料との合金化によって、前記表面層の表面から金属部材Xの内部に達する再凝固部を形成する第二の工程と、を含み、
     前記第二の金属材料は、前記第一の金属材料よりもレーザ光の吸収率が高く、かつ前記第一の金属材料よりも破断強度が高い、レーザ接合部品の製造方法。
  10.  前記第二の工程は、前記レーザ光を前記表面層の表面の法線に対して傾斜させて照射する工程であり、
     前記表面層の表面の法線と前記レーザ光の照射軸とを含む面に平行でない方向に前記レーザ光で前記表面層の表面を走査する工程をさらに含む、請求項9に記載のレーザ接合部品の製造方法。
  11.  前記法線に対する前記照射軸の傾斜角が5~45度である、請求項10に記載のレーザ接合部品の製造方法。
  12.  前記レーザ光の波長は、0.8~2.0μmである、請求項9に記載のレーザ接合部品の製造方法。
  13.  前記レーザ光を照射するレーザ発振器は、ファイバーレーザ発振器である、請求項9に記載のレーザ接合部品の製造方法。
  14.  請求項1に記載のレーザ接合部品を含む電池。
     
PCT/JP2012/000962 2011-03-14 2012-02-14 レーザ接合部品およびその製造方法 WO2012124255A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137008175A KR101435596B1 (ko) 2011-03-14 2012-02-14 레이저 접합 부품 및 그 제조 방법
CN201280003153.0A CN103140320B (zh) 2011-03-14 2012-02-14 激光接合部件及其制造方法
JP2012530805A JP5124056B1 (ja) 2011-03-14 2012-02-14 レーザ接合部品
US13/823,388 US9944048B2 (en) 2011-03-14 2012-02-14 Laser-bonded component and production method for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-055113 2011-03-14
JP2011055113 2011-03-14

Publications (1)

Publication Number Publication Date
WO2012124255A1 true WO2012124255A1 (ja) 2012-09-20

Family

ID=46830349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000962 WO2012124255A1 (ja) 2011-03-14 2012-02-14 レーザ接合部品およびその製造方法

Country Status (5)

Country Link
US (1) US9944048B2 (ja)
JP (1) JP5124056B1 (ja)
KR (1) KR101435596B1 (ja)
CN (1) CN103140320B (ja)
WO (1) WO2012124255A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016207412A (ja) * 2015-04-21 2016-12-08 パナソニックIpマネジメント株式会社 レーザ溶接物及び電池のレーザ溶接良否判定方法
JP2017199552A (ja) * 2016-04-27 2017-11-02 三洋電機株式会社 非水電解質二次電池
JP2019188436A (ja) * 2018-04-25 2019-10-31 トヨタ自動車株式会社 レーザ溶接方法
JP2022118812A (ja) * 2021-02-03 2022-08-16 プライムアースEvエナジー株式会社 二次電池の製造方法及び端子部品の製造方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103878484B (zh) * 2014-03-25 2015-08-26 西安交通大学 一种层状双金属复合材料高效对接激光焊接方法
WO2015186169A1 (ja) * 2014-06-02 2015-12-10 日産自動車株式会社 タブ溶接方法
EP2990597A1 (en) * 2014-08-28 2016-03-02 Siemens Aktiengesellschaft Method for manufacturing a turbine assembly
KR102362093B1 (ko) 2015-03-23 2022-02-11 삼성디스플레이 주식회사 표시 장치
DE102016008344A1 (de) * 2016-04-18 2017-10-19 Schmöle GmbH Verfahren zur Herstellung eines Rippenrohres und Rippenrohr
DE112016006963T5 (de) * 2016-07-14 2019-02-21 GM Global Technology Operations LLC LASERPUNKTSCHWEIßEN VON BESCHICHTETEN STÄHLEN MIT MEHREREN LASERSTRAHLEN
WO2018227382A1 (en) * 2017-06-13 2018-12-20 GM Global Technology Operations LLC Method for laser welding metal workpieces using a combination of weld paths
JP6904081B2 (ja) * 2017-06-15 2021-07-14 トヨタ自動車株式会社 レーザ溶接方法およびレーザ溶接装置
CN111565906B (zh) * 2017-12-28 2022-08-23 株式会社电装 树脂成形体及其制造方法
WO2021039155A1 (ja) * 2019-08-27 2021-03-04 株式会社神戸製鋼所 異材接合構造体の製造方法及び異材接合構造体
JP7392387B2 (ja) * 2019-10-23 2023-12-06 株式会社デンソー 接合構造体
CN114178696A (zh) * 2022-02-17 2022-03-15 武汉逸飞激光股份有限公司 一种电池微米级金属箔材的激光焊接方法
WO2023159463A1 (zh) * 2022-02-25 2023-08-31 宁德时代新能源科技股份有限公司 电池单体及其制造方法和制造系统、电池以及用电装置
CN116526077A (zh) * 2022-12-02 2023-08-01 广州安费诺诚信软性电路有限公司 一种软性电路板铜箔与铝排的直接焊接方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010069489A (ja) * 2008-09-16 2010-04-02 Aisin Aw Co Ltd 銅部材のレーザ溶接方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4023005A (en) * 1975-04-21 1977-05-10 Raytheon Company Laser welding high reflectivity metals
EP0218069A1 (de) 1985-09-19 1987-04-15 Siemens Aktiengesellschaft Verfahren zum Verschweissen mittels Laserlicht
JPH03106582A (ja) * 1989-09-14 1991-05-07 Fujitsu Ltd 溶接方法
US5343014A (en) 1990-07-12 1994-08-30 Nippondenso Co., Ltd. Method of welding metals of different kind by laser
JP3272787B2 (ja) 1992-10-27 2002-04-08 住友特殊金属株式会社 接合クラッド板の製造方法
US6221505B1 (en) 1997-10-03 2001-04-24 Denso, Corporation Lap joint welding arrangement and a related welding method for forming the same
JPH11197519A (ja) * 1998-01-08 1999-07-27 Honda Motor Co Ltd 排気ガス浄化触媒用金属担体
US6479168B2 (en) 2001-04-03 2002-11-12 The Regents Of The University Of Michigan Alloy based laser welding
US20070138234A1 (en) * 2005-05-13 2007-06-21 Waskey Dave E Technique for stress redistribution
JP4976688B2 (ja) 2005-12-15 2012-07-18 富士電機株式会社 ヒートスプレッダと金属板との接合方法
JP4539743B2 (ja) 2008-03-20 2010-09-08 株式会社デンソー レーザ溶接方法
DE102009013110B4 (de) * 2008-03-20 2018-02-08 Denso Corporation Laserschweissstruktur und Laserschweissverfahren

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010069489A (ja) * 2008-09-16 2010-04-02 Aisin Aw Co Ltd 銅部材のレーザ溶接方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016207412A (ja) * 2015-04-21 2016-12-08 パナソニックIpマネジメント株式会社 レーザ溶接物及び電池のレーザ溶接良否判定方法
JP2017199552A (ja) * 2016-04-27 2017-11-02 三洋電機株式会社 非水電解質二次電池
JP2019188436A (ja) * 2018-04-25 2019-10-31 トヨタ自動車株式会社 レーザ溶接方法
JP7063083B2 (ja) 2018-04-25 2022-05-09 トヨタ自動車株式会社 レーザ溶接方法
US11660705B2 (en) 2018-04-25 2023-05-30 Toyota Jidosha Kabushiki Kaisha Laser welding method
JP2022118812A (ja) * 2021-02-03 2022-08-16 プライムアースEvエナジー株式会社 二次電池の製造方法及び端子部品の製造方法
JP7333356B2 (ja) 2021-02-03 2023-08-24 プライムアースEvエナジー株式会社 二次電池の製造方法及び端子部品の製造方法

Also Published As

Publication number Publication date
CN103140320B (zh) 2015-07-22
KR101435596B1 (ko) 2014-08-28
JPWO2012124255A1 (ja) 2014-07-17
JP5124056B1 (ja) 2013-01-23
CN103140320A (zh) 2013-06-05
KR20130063536A (ko) 2013-06-14
US20130171467A1 (en) 2013-07-04
US9944048B2 (en) 2018-04-17

Similar Documents

Publication Publication Date Title
JP5124056B1 (ja) レーザ接合部品
JP5479024B2 (ja) 接合方法および接合装置
JP6071010B2 (ja) 溶接方法
CN106392327B (zh) 金属板激光焊接夹具
TWI680551B (zh) 蒸氣室
JP5656802B2 (ja) 二次電池用アルミニウム缶体及びその製造方法
JP2010135651A (ja) 金属箔の接続構造及びその接続方法及びコンデンサ
JP2010075967A (ja) 異種金属の溶接方法
JP2012045570A (ja) アルミニウム接合体の製造方法
WO2019026614A1 (ja) 異種金属の接合方法およびレーザ溶接装置
JP2011005499A (ja) アルミニウム部材と銅部材との突き合わせレーザ溶接方法
JP6729192B2 (ja) 溶接継手及びその製造方法
JP2020097039A (ja) 異種金属部材の重ね溶接方法
JP4539743B2 (ja) レーザ溶接方法
JP2007222937A (ja) レーザ接合方法
JP7110907B2 (ja) 異種金属部材の重ね溶接方法
JP6512382B1 (ja) 金属接合構造体および金属接合構造体の製造方法
Trinh et al. Welding of thin tab and battery case for lithium-ion battery cylindrical cell using nanosecond pulsed fiber laser
JP4566091B2 (ja) 異材接合方法
JP2010247200A (ja) 金属部材の接合方法
JP2006088175A (ja) 異材接合方法
JP6420994B2 (ja) レーザ溶接方法
JP2017094382A (ja) レーザ溶接継手
JP2001150155A (ja) アルミニウム又はアルミニウム合金材の電子ビーム溶接方法
JP2013154398A (ja) 異種金属の突合せ接合方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280003153.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012530805

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12757220

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13823388

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137008175

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12757220

Country of ref document: EP

Kind code of ref document: A1