WO2012121145A1 - 電極活物質、電極、及び二次電池 - Google Patents

電極活物質、電極、及び二次電池 Download PDF

Info

Publication number
WO2012121145A1
WO2012121145A1 PCT/JP2012/055390 JP2012055390W WO2012121145A1 WO 2012121145 A1 WO2012121145 A1 WO 2012121145A1 JP 2012055390 W JP2012055390 W JP 2012055390W WO 2012121145 A1 WO2012121145 A1 WO 2012121145A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
group
active material
electrode active
Prior art date
Application number
PCT/JP2012/055390
Other languages
English (en)
French (fr)
Inventor
佐藤 正春
慎一 中辻
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Priority to JP2013503503A priority Critical patent/JPWO2012121145A1/ja
Publication of WO2012121145A1 publication Critical patent/WO2012121145A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/606Polymers containing aromatic main chain polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/08Naphthalimide dyes; Phthalimide dyes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode active material, an electrode, and a secondary battery, and more particularly to an electrode active material that repeatedly charges and discharges using a battery electrode reaction, an electrode using the electrode active material, and a secondary battery.
  • cordless power supplies for these electronic devices have a high energy density and high output, and long-life secondary batteries are expected.
  • lithium ion secondary batteries using an alkali metal ion such as lithium ion as a charge carrier and utilizing an electrochemical reaction accompanying the charge transfer have been developed.
  • lithium ion secondary batteries have a high energy density and are becoming widespread as in-vehicle batteries.
  • the electrode active material is a substance that directly contributes to the battery electrode reaction such as the charge reaction and the discharge reaction, and has the central role of the secondary battery. That is, the battery electrode reaction is a reaction that occurs with the transfer of electrons by applying a voltage to an electrode active material that is electrically connected to an electrode disposed in the electrolyte, and proceeds during charging and discharging of the battery. To do. Therefore, as described above, the electrode active material has a central role of the secondary battery in terms of system.
  • a lithium-containing transition metal oxide is used as a positive electrode active material
  • a carbon material is used as a negative electrode active material
  • an insertion reaction and a desorption reaction of lithium ions with respect to these electrode active materials are used. Charging / discharging.
  • the lithium ion secondary battery has a problem in that the speed of charging and discharging is limited because the movement of lithium ions in the positive electrode is rate limiting. That is, in the above-described lithium ion secondary battery, the migration rate of lithium ions in the transition metal oxide of the positive electrode is slower than that of the electrolyte and the negative electrode, and therefore the battery reaction rate at the positive electrode becomes the rate-determining rate. As a result, there is a limit to increasing the output and shortening the charging time.
  • Patent Document 1 is known as a prior art document using an organic radical compound as an electrode active material.
  • Patent Document 1 discloses a secondary battery active material using a nitroxyl radical compound, an oxy radical compound, and a nitrogen radical compound having a radical on a nitrogen atom.
  • the unpaired electrons that react are localized in the radical atoms, so that the concentration of the reaction site can be increased, and thus a high-capacity secondary battery can be realized. Further, since the reaction rate of radicals is high, it is considered that the charging time can be completed in a short time by performing charging / discharging utilizing a redox reaction of a stable radical.
  • Example using a highly stable nitroxyl radical as a radical is described, for example, the electrode layer containing a nitronyl nitroxide compound is used as a positive electrode, and lithium bonding copper foil is used as a negative electrode.
  • the electrode layer containing a nitronyl nitroxide compound is used as a positive electrode
  • lithium bonding copper foil is used as a negative electrode.
  • Patent Documents 2 and 3 are known as prior art documents using an organic sulfur compound as an electrode active material.
  • Patent Document 2 discloses a novel organic sulfur compound, which is a positive electrode material, has an SS bond in a charged state, and the SS bond is cleaved during discharge of the positive electrode to form an organic sulfur metal salt having a metal ion.
  • Metal-sulfur battery cells have been proposed.
  • disulfide compound a disulfide organic compound represented by the general formula (1 ′) (hereinafter referred to as “disulfide compound”) is used as the organic sulfur compound.
  • R represents an aliphatic organic group or an aromatic organic group, and each includes the same or different cases.
  • the disulfide compound can undergo a two-electron reaction, and the S—S bond is cleaved in a reduced state (discharge state), thereby forming an organic thiolate (RS—).
  • This organic thiolate forms an S—S bond in the oxidized state (charged state) and is restored to the disulfide compound represented by the general formula (1 ′).
  • the disulfide compound forms an SS bond having a small binding energy, a reversible redox reaction occurs using the bond and cleavage by the reaction, and thus charge and discharge can be performed.
  • Patent Document 3 discloses the following formula (2 ′): -(NH-CS-CS-NH) (2 ')
  • a battery electrode containing rubeanic acid or a rubeanic acid polymer that has a structural unit represented by the formula (II) and can be bonded to lithium ions has been proposed.
  • the rubeanic acid or rubeanic acid polymer containing the dithione structure represented by the general formula (2 ′) binds to lithium ions during reduction, and releases the bound lithium ions during oxidation. Charging / discharging can be performed by utilizing such a reversible oxidation-reduction reaction of rubeanic acid or rubeanic acid polymer.
  • Patent Document 3 when rubeanic acid is used as the positive electrode active material, a two-electron reaction is possible, and a secondary battery having a capacity density of 400 Ah / kg at room temperature is obtained.
  • Patent Document 4 is known as a prior art document using a quinone compound as an electrode active material.
  • Patent Document 4 proposes an electrode active material containing a specific phenanthrenequinone compound having two quinone groups in the ortho-positional relationship.
  • the specific phenanthrenequinone compound described in Patent Document 4 can cause a two-electron reaction peculiar to the quinone compound between the mobile carrier and a reversible oxidation-reduction reaction. Furthermore, the specific phenanthrenequinone compound is oligomerized or polymerized to achieve insolubilization in an organic solvent without causing a decrease in the number of reaction electrons due to repulsion between electrons. Patent Document 4 shows that the phenanthrenequinone dimer exhibits two oxidation-reduction voltages (around 2.9 V and around 2.5 V), and the initial discharge capacity reaches 200 Ah / kg.
  • JP 2004-207249 A paragraph numbers [0278] to [0282]
  • US Pat. No. 4,833,048 (Claim 1, column 5, line 20 to column 28)
  • JP 2008-147015 A (Claim 1, paragraph number [0011], FIG. 3, FIG. 5)
  • JP 2008-222559 A (Claim 4, paragraph numbers [0027] and [0033], FIGS. 1 and 3)
  • Patent Document 1 although an organic radical compound such as a nitroxyl radical compound is used as an electrode active material, the charge / discharge reaction is limited to a one-electron reaction involving only one electron. That is, in the case of an organic radical compound, when a multi-electron reaction involving two or more electrons is caused, the radical lacks stability and decomposes, and the radical disappears and the reversibility of the charge / discharge reaction is lost. . For this reason, the organic radical compound as in Patent Document 1 must be limited to a one-electron reaction, and it is difficult to realize a multi-electron reaction that can be expected to have a high capacity.
  • an organic radical compound such as a nitroxyl radical compound
  • Patent Document 2 a low-molecular disulfide compound in which two electrons are involved is used. However, since it repeatedly binds and cleaves with other molecules along with the charge / discharge reaction, it lacks stability, and charge / discharge reaction is not performed. If it is repeated, the capacity may decrease.
  • Patent Document 3 a rubeanic acid compound containing a dithione structure is used to cause a two-electron reaction.
  • a polymer compound such as a rubeanic acid polymer
  • an intermolecular interaction in the rubeanic acid polymer is performed.
  • a sufficient reaction rate could not be obtained.
  • it took a long time to charge since the movement of ions is hindered as described above, the proportion of active materials that can be effectively used is reduced, and thus it has been difficult to realize a secondary battery having a desired high output.
  • Patent Document 4 uses a phenanthrenequinone compound having two quinone groups in the ortho-positional position as an electrode active material, and thus is excellent in stability, but is synthesized because it is a condensed ring compound. Difficult and capacity density is small.
  • the present invention has been made in view of such circumstances.
  • An electrode active material having a large energy density, high output, good cycle characteristics with little decrease in capacity even after repeated charge and discharge, and a long life.
  • An object is to provide an electrode and a secondary battery using the substance.
  • the inventors of the present invention conducted intensive research to achieve the above object, and the naphthalene diimide structure is excellent in chemical stability. Since it is possible to introduce a plurality of active double bonds, it is possible to increase the capacity density of the electrode active material, thereby producing an electrode active material with high output, long life and good cycle characteristics. The knowledge that it can be obtained was obtained.
  • the electrode active material according to the present invention is an electrode active material used as an active material of a secondary battery that repeats charge and discharge by a battery electrode reaction
  • the organic compound has the general formula
  • R 1 to R 6 are a hydrogen atom, a hydroxyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group.
  • At least one kind is selected from the group represented by.
  • R 7 to R 9 are each a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, a substituted Or an unsubstituted alkoxyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aryloxy group, a substituted or unsubstituted arylamino group, a substituted or unsubstituted alkylamino group, a substituted or unsubstituted thioaryl group, Substituted or unsubstituted thioalkyl group, substituted or unsubstituted heterocyclic group, substituted or unsubstituted formyl group, substituted or unsubstituted silyl group, substituted or
  • the charge / discharge voltage can be further increased, and a suitable electrode active material can be obtained by increasing the energy density of the secondary battery.
  • TEMPO 2,2,6,6-tetramethylpiperidine-1-oxyl
  • PROXYL 5-tetramethylpiperidin-1-yloxy
  • At least one of R 5 and R 6 contains the stable radical group.
  • the stable radical group contains at least one of TEMPO and PROXYL.
  • the electrode according to the present invention is characterized by containing any of the electrode active materials described above and a conductive material.
  • any one of the electrode active materials described above is included in at least one of a reaction starting material, a product, and an intermediate product in a discharge reaction of the battery electrode reaction. It is a feature.
  • the secondary battery according to the present invention has a positive electrode, a negative electrode, and an electrolyte, and the positive electrode contains any one of the electrode active materials described above.
  • the electrode of the present invention since the electrode active material and the conductive material described in any of the above are contained, an electrode that has a stable charge / discharge reaction, a long life, and a high output can be obtained. Obtainable.
  • any one of the electrode active materials described above is included in at least one of reaction starting materials, products, and intermediate products in the discharge reaction of the battery electrode reaction. It is possible to obtain a secondary battery with a long life with high energy density, quick charge, discharge at high power, good cycle characteristics with little decrease in capacity even after repeated charge and discharge, and stable battery characteristics. It becomes.
  • the electrode active material is mainly composed of the organic compounds described above, a secondary battery with low environmental impact and safety can be obtained.
  • the electrode active material of the present invention contains an organic compound represented by the general formula (1) as a main component in the structural unit.
  • R 1 to R 6 are each a hydrogen atom, a hydroxyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, substituted or unsubstituted Unsubstituted alkoxyl group, substituted or unsubstituted alkenyl group, substituted or unsubstituted aryloxy group, substituted or unsubstituted arylamino group, substituted or unsubstituted alkylamino group, substituted or unsubstituted thioaryl group, substituted Or an unsubstituted thioalkyl group, a substituted or unsubstituted heterocyclic group, a substituted or unsubstituted formyl group, a substituted or unsubstituted silyl group
  • substituents X include the same or different cases, and R 1 to R 6 include the same case and the case where they are connected to each other to form a saturated or unsaturated ring.
  • the electrode active material is excellent in chemical stability and contains a naphthalenediimide structure in the structural unit, stability during charge and discharge can be improved.
  • an electrode active material having high reactivity with cations such as lithium ions, high charge / discharge efficiency, and high capacity density can be obtained.
  • an electrode active material having a high output, a long life and good cycle characteristics can be obtained.
  • a secondary battery using such an electrode active material has a cycle with improved stability during charge / discharge, high energy density, high power discharge, and reduced capacity even after repeated charge / discharge. It is possible to obtain a secondary battery having good characteristics and stable battery characteristics and having a long life.
  • R 7 to R 9 in the above (2i) and (2j) are each a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cyclohexane.
  • Alkyl group substituted or unsubstituted alkoxyl group, substituted or unsubstituted alkenyl group, substituted or unsubstituted aryloxy group, substituted or unsubstituted arylamino group, substituted or unsubstituted alkylamino group, substituted or unsubstituted Thioaryl group, substituted or unsubstituted thioalkyl group, substituted or unsubstituted heterocyclic group, substituted or unsubstituted formyl group, substituted or unsubstituted silyl group, substituted or unsubstituted boryl group, substituted or unsubstituted Stannyl group, substituted or unsubstituted cyano group, substituted or unsubstituted nitro group, substituted Or an unsubstituted nitroso group, a substituted or unsubstituted amino group, a substituted or unsubstituted imino group
  • R 7 to R 9 include the same case and the case where they are connected to each other to form a saturated or unsaturated ring.
  • ⁇ O represented by (2a) is particularly preferable.
  • the charge / discharge voltage can be further increased, and the secondary battery A suitable electrode active material can be obtained by increasing the energy density.
  • R 5 and R 6 are TEMPO radical, PROXYL radical, nitro. More preferably, it contains a stable radical group such as a nilnitroxyl radical.
  • organic compounds belonging to the category of general formula (1) include organic compounds represented by chemical formulas (4a) to (4g) in which one or both of R 5 and R 6 are formed by TEMPO radicals represented by chemical formula (3). It is preferable to use an organic compound represented by the chemical formula (6) containing a compound or a PROXYL radical represented by the chemical formula (5).
  • Chemical reaction formula (7) shows the charge / discharge reaction of the electrode active material containing a stable radical group in the structural unit. This electrode active material forms a complex salt with the battery electrode reaction.
  • an organic compound in which one of R 5 and R 6 is composed of a TEMPO radical and the other is composed of a methyl group is used as the electrode active material and Li is used as the cation of the electrolyte salt, the chemical reaction formula (7) It is considered that the charge / discharge reaction as shown in FIG.
  • the electrode active material of the present invention is preferably an organic compound using a stable radical group for one or both of R 5 and R 6 as described above, but may be composed of other than the stable radical group.
  • the chemical formula (8a ) To (8c) can be used.
  • the electrode active material forms a complex salt with the battery electrode reaction.
  • a charge / discharge reaction as shown in the chemical reaction formula (9) occurs. It is thought to occur.
  • the molecular weight of the organic compound constituting the electrode active material is not particularly limited, but in the case of a low molecular weight molecule having a small molecular weight, it may be easily dissolved in the electrolyte, and the molecular weight is above a certain level. Is preferred.
  • molecular weight and molecular weight distribution are not specifically limited.
  • FIG. 1 is a cross-sectional view showing a coin-type secondary battery as an embodiment of a secondary battery according to the present invention.
  • the electrode active material of the present invention is used as a positive electrode active material. ing.
  • the battery can 1 has a positive electrode case 2 and a negative electrode case 3, and both the positive electrode case 2 and the negative electrode case 3 are formed in a disk-like thin plate shape.
  • a positive electrode 4 in which a mixture containing a positive electrode active material (electrode active material) and a conductive agent (conductive material) is formed into a sheet shape is disposed.
  • the negative electrode 6 for example, a stainless steel foil or a copper foil overlaid with a lithium metal foil, or a lithium foil occlusion material such as graphite or hard carbon applied to a copper foil can be used.
  • a negative electrode current collector 7 made of metal is laminated on the negative electrode 6, and a metal spring 8 is placed on the negative electrode current collector 7.
  • the electrolyte 9 is filled in the internal space, and the negative electrode case 3 is fixed to the positive electrode case 2 against the urging force of the metal spring 8 and sealed with a gasket 10.
  • an electrode active material is formed into an electrode shape.
  • an electrode active material is mixed with a conductive agent and a binder, and a solvent is added to form a slurry.
  • the slurry is applied on the positive electrode current collector by an arbitrary coating method and dried to form a positive electrode. To do.
  • the conductive agent is not particularly limited, and examples thereof include carbonaceous fine particles such as graphite, carbon black, and acetylene black, carbon fibers such as vapor grown carbon fiber, carbon nanotube, and carbon nanohorn, polyaniline, and polypyrrole. , Conductive polymers such as polythiophene, polyacetylene, and polyacene can be used. Further, two or more kinds of conductive agents can be mixed and used.
  • the content of the conductive agent in the positive electrode 4 is desirably 10 to 80% by mass.
  • the binder is not particularly limited, and various resins such as polyethylene, polyvinylidene fluoride, polyhexafluoropropylene, polytetrafluoroethylene, polyethylene oxide, carboxymethylcellulose, and the like can be used.
  • the solvent is not particularly limited, and examples thereof include basic solvents such as dimethyl sulfoxide, dimethylformamide, 1-methyl-2-pyrrolidone, propylene carbonate, diethyl carbonate, dimethyl carbonate, and ⁇ -butyrolactone, acetonitrile, Nonaqueous solvents such as tetrahydrofuran, nitrobenzene, and acetone, protic solvents such as methanol and ethanol, water, and the like can be used.
  • basic solvents such as dimethyl sulfoxide, dimethylformamide, 1-methyl-2-pyrrolidone, propylene carbonate, diethyl carbonate, dimethyl carbonate, and ⁇ -butyrolactone
  • acetonitrile Nonaqueous solvents such as tetrahydrofuran, nitrobenzene, and acetone
  • protic solvents such as methanol and ethanol, water, and the like can be used.
  • the type of organic solvent, the compounding ratio of the organic compound and the organic solvent, the type of additive and the amount of the additive, and the like can be arbitrarily set in consideration of the required characteristics and productivity of the secondary battery.
  • the positive electrode 4 is impregnated into the electrolyte 9 so that the electrolyte 9 is impregnated with the positive electrode 4, and then the positive electrode 4 at the bottom center of the positive electrode case 2 constituting the positive electrode current collector is placed.
  • the separator 5 impregnated with the electrolyte 9 is laminated on the positive electrode 4, the negative electrode 6 and the negative electrode current collector 7 are sequentially laminated, and then the electrolyte 9 is injected into the internal space.
  • a metal spring 8 is placed on the negative electrode current collector 7, and a gasket 10 is arranged on the periphery, and the negative electrode case 3 is fixed to the positive electrode case 2 with a caulking machine or the like, and the outer casing is sealed.
  • a type secondary battery is produced.
  • the electrolyte 9 interposed between the negative electrode 6, which is a counter electrode of the positive electrode 4 and the positive electrode 4 performs a charge carrier transport between the electrodes, but as such a electrolyte 9, at room temperature for 10 -
  • Those having an ionic conductivity of 5 to 10 ⁇ 1 S / cm can be used.
  • an electrolytic solution in which an electrolyte salt is dissolved in an organic solvent can be used.
  • electrolyte salt for example, LiPF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 or the like can be used.
  • organic solvent ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, ⁇ -butyrolactone, tetrahydrofuran, dioxolane, sulfolane, dimethylformamide, dimethylacetamide, 1-methyl-2-pyrrolidone, etc. are used. be able to.
  • a solid electrolyte may be used as the electrolyte 9.
  • the polymer compound used in the solid electrolyte include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-monofluoroethylene copolymer, and fluoride compound.
  • Vinylidene fluoride polymers such as vinylidene-trifluoroethylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer, and acrylonitrile-methyl methacrylate copolymer Polymer, acrylonitrile-methyl acrylate copolymer, acrylonitrile-ethyl methacrylate copolymer, acrylonitrile-ethyl acrylate copolymer, acrylonitrile-methacrylic acid copolymer, acrylonitrile-acrylic Examples thereof include acrylonitrile polymers such as phosphoric acid copolymers, acrylonitrile-vinyl acetate copolymers, polyethylene oxide, ethylene oxide-propylene oxide copolymers, and polymers of these acrylates and methacrylates. it can. Further, these polymer compounds containing an electro
  • the electrode of the present invention contains the electrode active material and the conductive material described above, the charge / discharge efficiency is good, the battery can be charged in a short time, and the output can be increased.
  • the electrode active material of the secondary battery since the electrode active material of the secondary battery is reversibly oxidized or reduced by charge and discharge, it has a different structure and state in the charged state, the discharged state, or the state in the middle thereof.
  • the electrode active material is contained in at least one of a reaction starting material in a discharge reaction (a material that causes a chemical reaction in a battery electrode reaction), a product (a material resulting from a chemical reaction), and an intermediate product. .
  • a reaction starting material in a discharge reaction a material that causes a chemical reaction in a battery electrode reaction
  • a product a material resulting from a chemical reaction
  • an intermediate product a long-life secondary battery having a large energy density, capable of being charged quickly, capable of discharging at a high output, having good cycle characteristics with little decrease in capacity even after repeated charge and discharge, and having stable battery characteristics is obtained. It becomes possible.
  • the secondary battery of the present invention has at least two discharge voltages in the discharge reaction, thereby realizing a high-capacity density secondary battery across a plurality of voltages.
  • the electrode active material is mainly composed of organic compounds, it is possible to obtain a secondary battery with low environmental impact and safety.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.
  • the stability of the charge / discharge reaction is improved, the energy density is large, and the desired secondary battery having excellent stability can be obtained. It becomes.
  • the coin-type secondary battery has been described.
  • the battery shape is not particularly limited, and can be applied to a cylindrical type, a square type, a sheet type, and the like.
  • the exterior method is not particularly limited, and a metal case, mold resin, aluminum laminate film, or the like may be used.
  • the electrode active material is used as the positive electrode active material, but it is also useful to use it as the negative electrode active material.
  • Example shown below is an example and this invention is not limited to the following Example.
  • Compound 4a as a positive electrode active material (electrode active material): 300 mg, graphite powder as a conductive agent: 600 mg, and polytetrafluoroethylene as a binder: 100 mg were weighed and kneaded while mixing uniformly. Produced. Subsequently, this mixture was pressure-molded to obtain a sheet-like member having a thickness of about 150 ⁇ m. Thereafter, this sheet-like member was dried in a vacuum at 70 ° C. for 1 hour, and then punched into a circle having a diameter of 12 mm to produce a positive electrode containing Compound A.
  • electrode active material 300 mg
  • graphite powder as a conductive agent 600 mg
  • polytetrafluoroethylene as a binder 100 mg were weighed and kneaded while mixing uniformly. Produced. Subsequently, this mixture was pressure-molded to obtain a sheet-like member having a thickness of about 150 ⁇ m. Thereafter, this sheet-like member was dried in
  • the positive electrode was impregnated with the electrolytic solution, and the electrolytic solution was infiltrated into the voids in the positive electrode.
  • the electrolytic solution a mixed solution in which LiPF 6 was dissolved in an organic solvent, ethylene carbonate / diethyl carbonate, so that the molar concentration of LiPF 6 (electrolyte salt) was 1.0 mol / L was used.
  • this positive electrode was placed on a positive electrode current collector, and a separator having a thickness of 20 ⁇ m made of a polypropylene porous film impregnated with the electrolytic solution was further laminated on the positive electrode, and further a stainless steel current collector plate The negative electrode which stuck lithium on both surfaces was laminated
  • the capacity density per mass of the electrode active material was 260 Ah / kg, and it was found that the compound 4a was a high capacity density electrode active material.
  • a coin-type battery was produced in the same manner as in Example 1 except that the compound 4b was used as the positive electrode active material instead of the compound 4a in Example 1.
  • a coin-type battery was produced in the same manner as in Example 1 except that the compound 4c was used as the positive electrode active material instead of the compound 4a in Example 1.
  • a coin-type battery was produced in the same manner as in Example 1 except that the compound 4d was used as the positive electrode active material instead of the compound 4a in Example 1.
  • a coin-type battery was produced in the same manner as in Example 1, except that the compound 4e was used as the positive electrode active material instead of the compound 4a in Example 1.
  • ⁇ ⁇ Realizes a stable secondary battery with high energy density, high output, good cycle characteristics with little decrease in capacity even after repeated charge and discharge.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

 電極活物質は、下記一般式で表されるナフタレンイミド構造を構成単位中に含有した有機化合物を主体としている。このナフタレンイミド構造は、二重結合で結合された複数の置換基=Xを含有している。置換基=Xとしては、=Oが好ましい。R~Rは任意の置換基を使用することができるが、R及び/又はRは安定ラジカル基が好ましい。これによりエネルギー密度が大きく高出力で、充放電を繰り返しても容量低下の少ないサイクル特性が良好で長寿命の二次電池を実現する。

Description

電極活物質、電極、及び二次電池
 本発明は電極活物質、電極、及び二次電池に関し、より詳しくは電池電極反応を利用して充放電を繰り返す電極活物質、該電極活物質を使用した電極及び二次電池に関する。
 携帯電話、ノートパソコン、デジタルカメラ等の携帯用電子機器の市場拡大に伴い、これら電子機器のコードレス電源としてエネルギー密度が大きく高出力化が可能で長寿命の二次電池が待望されている。
 そして、このような要求に応えるべく、リチウムイオン等のアルカリ金属イオンを荷電担体とし、その電荷授受に伴う電気化学反応を利用した二次電池が開発されている。特に、リチウムイオン二次電池は、エネルギー密度が大きく、車載用バッテリーとしても広く普及しつつある。
 ところで、二次電池の構成要素のうち電極活物質は、充電反応、放電反応という電池電極反応に直接寄与する物質であり、二次電池の中心的役割を有する。すなわち、電池電極反応は、電解質中に配された電極と電気的に接続された電極活物質に対し電圧を印加することにより、電子の授受を伴って生じる反応であり、電池の充放電時に進行する。したがって、上述したように電極活物質は、システム的には、二次電池の中心的役割を有する。
 そして、上記リチウムイオン二次電池では、正極活物質としてリチウム含有遷移金属酸化物、負極活物質として炭素材料を使用し、これらの電極活物質に対するリチウムイオンの挿入反応、及び脱離反応を利用して充放電を行っている。
 しかしながら、リチウムイオン二次電池は、正極におけるリチウムイオンの移動が律速となるため、充放電の速度が制限されるという問題があった。すなわち、上述したリチウムイオン二次電池では、電解質や負極に比べて正極の遷移金属酸化物中でのリチウムイオンの移動速度が遅く、このため正極での電池反応速度が律速となって充放電速度が制限され、その結果、高出力化や充電時間の短時間化には限界があった。
 そこで、このような課題を解決すべく、近年、有機ラジカル化合物や有機イオウ化合物、さらにはキノン化合物を電極活物質に使用した二次電池の研究・開発が盛んに行われている。
 例えば、有機ラジカル化合物を電極活物質に使用した先行技術文献としては、特許文献1が知られている。
 この特許文献1には、ニトロキシルラジカル化合物、オキシラジカル化合物、及び窒素原子上にラジカルを有する窒素ラジカル化合物を使用した二次電池用活物質が開示されている。
 有機ラジカル化合物は、反応する不対電子がラジカル原子に局在化して存在するため、反応部位の濃度を増大させることができ、これにより高容量の二次電池の実現を期待することができる。また、ラジカルは反応速度が速いので、安定ラジカルの酸化還元反応を利用して充放電を行うことにより、充電時間を短時間で完了させることが可能と考えられる。
 そして、この特許文献1では、ラジカルとして安定性の高いニトロキシルラジカルを使用した実施例が記載されており、例えば、ニトロニルニトロキシド化合物を含む電極層を正極とし、リチウム貼り合わせ銅箔を負極として二次電池を作製し、繰り返し充放電したところ、10サイクル以上にわたって充放電が可能であることが確認されている。
 また、有機イオウ化合物を電極活物質に使用した先行技術文献としては、特許文献2及び3が知られている。
 特許文献2には、正極材料である有機イオウ化合物が充電状態でS-S結合を有すると共に、正極の放電時にはS-S結合が開裂し、金属イオンを有する有機イオウ金属塩を形成した新規な金属-イオウ型電池セルが提案されている。
 この特許文献2では、有機イオウ化合物として、一般式(1′)で表されるジスルフィド系の有機化合物(以下、「ジスルフィド化合物」という。)を使用している。
 R-S-S-R … (1′)
 ここで、Rは脂肪族有機基又は芳香族有機基を示し、各々は同一又は異なる場合を含んでいる。
 ジスルフィド化合物は、2電子反応が可能であり、還元状態(放電状態)でS-S結合が開裂し、これにより有機チオレート(R-S-)を形成する。そして、この有機チオレートは酸化状態(充電状態)でS-S結合を形成し、一般式(1′)で示すジスルフィド化合物に復元する。つまり、ジスルフィド化合物は結合エネルギーの小さなS-S結合を形成するため、反応による結合と開裂を利用して可逆的な酸化還元反応が生じ、これにより充放電を行うことができる。
 また、特許文献3には、次式(2′):
 -(NH-CS-CS-NH)…(2′)
で示される構造単位を有し、リチウムイオンと結合可能であるルベアン酸又はルベアン酸ポリマーを含む電池用電極が提案されている。
 一般式(2′)で表されるジチオン構造を含有したルベアン酸又はルベアン酸ポリマーは、還元時にリチウムイオンと結合し、酸化時に前記結合したリチウムイオンを放出する。このようなルベアン酸又はルベアン酸ポリマーの可逆的な酸化還元反応を利用することによって充放電を行うことができる。
 この特許文献3では、正極活物質にルベアン酸を使用した場合、2電子反応が可能であり、常温で400Ah/kgの容量密度を有する二次電池を得ている。
 また、電極活物質にキノン化合物を使用した先行技術文献としては、特許文献4が知られている。
 特許文献4には、オルト位の位置関係で2つのキノン基を有する特定のフェナントレンキノン化合物を含有した電極活物質が提案されている。
 特許文献4に記載の特定のフェナントレンキノン化合物は、移動キャリアとの間で、キノン化合物に特有の2電子反応を生じ、可逆的な酸化還元反応を起こすことができる。さらに、前記特定のフェナントレンキノン化合物をオリゴマー化又はポリマー化することによって、電子同士の反発による反応電子数の減少が生じることなく、有機溶媒に対する不溶化を達成している。そして、特許文献4では、フェナントレンキノン2量体が二つの酸化還元電圧(2.9V付近及び2.5V付近)を示し、初回の放電容量が200Ah/kgに達することが示されている。
特開2004-207249号公報(段落番号〔0278〕~〔0282〕) 米国特許第4833048号公報(請求項1、第5欄第20行目~同欄第28行目) 特開2008-147015号公報(請求項1、段落番号〔0011〕、図3、図5) 特開2008-222559号公報(請求項4、段落番号〔0027〕、〔0033〕、図1、図3)
 しかしながら、特許文献1では、ニトロキシルラジカル化合物等の有機ラジカル化合物を電極活物質に使用しているものの、充放電反応は、1つの電子のみが関与する1電子反応に限定されている。すなわち、有機ラジカル化合物の場合、2電子以上の電子が関与する多電子反応を起こさせると、ラジカルが安定性を欠いて分解等が生じ、ラジカルが消失して充放電反応の可逆性が失われる。このため、特許文献1のような有機ラジカル化合物では、1電子反応に限定せざるを得ず、高容量が期待できる多電子反応を実現するのは困難である。
 また、特許文献2では、2電子が関与する低分子のジスルフィド化合物が利用されているが、充放電反応に伴って他の分子と結合、開裂を繰り返すため、安定性に欠け、充放電反応を繰り返すと容量が低下してしまうおそれがある。
 特許文献3では、ジチオン構造を含有したルベアン酸化合物を使用して2電子反応を生じさせているが、ルベアン酸ポリマーのような高分子化合物を使用した場合は、ルベアン酸ポリマー内の分子間相互作用が大きく、イオンの移動が妨げられる結果、十分な反応速度を得ることができなかった。このため充電に長時間を要していた。また、上述のようにイオンの移動が妨げられるため、有効に利用できる活物質の割合が少なくなり、このため所望の高出力を有する二次電池を実現するのは困難な状況にあった。
 特許文献4は、オルト位の位置関係で2つのキノン基を有するフェナントレンキノン化合物を電極活物質に使用しているため、安定性には優れているものの、縮環系化合物であるために合成が難しく、容量密度も小さい。
 このように従来では、有機ラジカル化合物やジスルフィド化合物、ルベアン酸などの有機化合物を電極活物質に使用したとしても、多電子反応と充放電サイクルに対する安定性を両立させることは難しく、したがって、未だ十分に大きなエネルギー密度を有し、高出力でサイクル特性が良好で長寿命の電極活物質を実現できていないのが現状である。
 本発明はこのような事情に鑑みてなされたものであって、エネルギー密度が大きく高出力で、充放電を繰り返しても容量低下の少ないサイクル特性が良好で長寿命の電極活物質、この電極活物質を使用した電極及び二次電池を提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意研究を行ったところ、ナフタレンジイミド構造は、化学的安定性に優れていることから、充放電時の安定性向上に寄与し、また電気化学的に活性な二重結合を複数導入することが可能であることから、電極活物質の高容量密度化が可能であり、これにより、高出力かつ長寿命でサイクル特性の良好な電極活物質を得ることができるという知見を得た。
 本発明はこのような知見に基づきなされたものであって、本発明に係る電極活物質は、電池電極反応によって充放電を繰り返す二次電池の活物質として使用される電極活物質であって、ナフタレンジイミド構造を構成単位中に含有した有機化合物を主体とし、かつ、前記ナフタレンジイミド構造は、二重結合で結合された複数の置換基=Xを含有していることを特徴としている。
 また、本発明の電極活物質は、前記有機化合物が、一般式
Figure JPOXMLDOC01-appb-C000003
 で表わされるのが好ましい。
 ここで、式中、R~Rは、水素原子、水酸基、置換若しくは無置換のアルキル基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルコキシル基、置換若しくは無置換のアルケニル基、置換若しくは無置換のアリールオキシ基、置換若しくは無置換のアリールアミノ基、置換若しくは無置換のアルキルアミノ基、置換若しくは無置換のチオアリール基、置換若しくは無置換のチオアルキル基、置換若しくは無置換の複素環基、置換若しくは無置換のホルミル基、置換若しくは無置換のシリル基、置換若しくは無置換のボリル基、置換若しくは無置換のスタンニル基、置換若しくは無置換のシアノ基、置換若しくは無置換のニトロ基、置換若しくは無置換のニトロソ基、置換若しくは無置換のアミノ基、置換若しくは無置換のイミノ基、置換若しくは無置換のカルボキシル基、置換若しくは無置換のアルコキシカルボニル基、ハロゲン原子、安定ラジカル基、置換若しくは無置換のエステル基、置換若しくは無置換のチオエステル基、置換若しくは無置換のエーテル基、置換若しくは無置換のチオエーテル基、置換若しくは無置換のアミン、置換若しくは無置換のアミド基、置換若しくは無置換のスルホニル基、置換若しくは無置換のスルホ基、置換若しくは無置換のチオスルホニル基、置換若しくは無置換のスルホンアミド基、置換若しくは無置換のイミン、置換若しくは無置換のアゾ基、置換若しくは無置換のアルキレン基、及び置換若しくは無置換のアリーレン基の中から選択された少なくともいずれか1種を示し、置換基=Xは同一又は異なる場合を含み、R~Rは同一の場合及び互いに連結して飽和若しくは不飽和の環を形成する場合を含んでいる。
 また、本発明の電極活物質は、前記置換基=Xが、
Figure JPOXMLDOC01-appb-C000004
 で表わされるグループの中から少なくとも1種以上が選択されるのが好ましい。
 ここで、式中、R~Rは、水素原子、置換若しくは無置換のアルキル基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルコキシル基、置換若しくは無置換のアルケニル基、置換若しくは無置換のアリールオキシ基、置換若しくは無置換のアリールアミノ基、置換若しくは無置換のアルキルアミノ基、置換若しくは無置換のチオアリール基、置換若しくは無置換のチオアルキル基、置換若しくは無置換の複素環基、置換若しくは無置換のホルミル基、置換若しくは無置換のシリル基、置換若しくは無置換のボリル基、置換若しくは無置換のスタンニル基、置換若しくは無置換のシアノ基、置換若しくは無置換のニトロ基、置換若しくは無置換のニトロソ基、置換若しくは無置換のアミノ基、置換若しくは無置換のイミノ基、置換若しくは無置換のカルボキシル基、置換若しくは無置換のアルコキシカルボニル基、及びハロゲン原子の少なくともいずれか1種を示し、R~Rは同一の場合及び互いに連結して飽和若しくは不飽和の環を形成する場合を含んでいる。
 また、本発明の電極活物質は、前記置換基=Xが、=Oであるのがより好ましい。
 このように置換基=Xを=Oで形成した場合は、充放電電圧をより高くすることができ、二次電池の高エネルギー密度化により好適な電極活物質を得ることができる。
 また、本発明者らの鋭意研究の結果、ナフタレンジイミド構造のN原子に2,2,6,6-テトラメチルピペリジン-1-オキシル(以下、「TEMPO」という。)や2,2,5,5-テトラメチルピペリジン-1-イルオキシ(以下、「PROXYL」という。)等の安定ラジカル基を含有した化合物を結合させることにより、より一層充放電電流が増大し、繰り返して充放電する最に充放電の更なる安定性向上を図ることができることが分かった。
 すなわち、本発明の電極活物質は、前記R及びRのうちの少なくとも一方は、前記安定ラジカル基を含有しているのが好ましい。
 また、本発明の電極活物質は、前記安定ラジカル基が、TEMPO及びPROXYLのうちの少なくとも一方を含んでいるのが好ましい。
 このようにナフタレンジイミド構造のNに安定ラジカル基(例えば、TEMPO、PROXYL)を含有した化合物を結合させることにより、より一層充放電電流が増大し、繰り返して充放電する最に充放電の更なる安定性向上を図ることができる。
 また、本発明に係る電極は、上記いずれかに記載の電極活物質と導電性物質とを含有していることを特徴としている。
 また、本発明に係る二次電池は、上記いずれかに記載の電極活物質が、電池電極反応の少なくとも放電反応における反応出発物、生成物及び中間生成物のうちのいずれかに含まれることを特徴としている。
 さらに、本発明に係る二次電池は、正極、負極、及び電解質を有し、前記正極が、上記いずれかに記載の電極活物質を含有していることを特徴としている。
 本発明の電極活物質によれば、ナフタレンジイミド構造を構成単位中に含有した有機化合物を主体とし、かつ、前記ナフタレンジイミド構造は、二重結合で結合された複数の置換基=Xを含有しているので、化学的安定性に優れてナフタレンジイミド構造により充放電時の安定性向上に寄与し、また電気化学的に活性な二重結合を複数導入していることから、電極活物質の高容量密度化が可能であり、これにより、高出力かつ長寿命でサイクル特性の良好な電極活物質を得ることができる。
 また、本発明の電極によれば、上記いずれかに記載の電極活物質と導電性物質とを含有しているので、充放電反応が安定し、かつ長寿命で高出力化が可能な電極を得ることができる。
 さらに、本発明の二次電池によれば、上記いずれかに記載の電極活物質が、電池電極反応の少なくとも放電反応における反応出発物、生成物及び中間生成物のうちのいずれかに含まれるので、エネルギー密度が大きく、迅速に充電でき、高出力での放電が可能で充放電を繰り返しても容量低下の少ないサイクル特性が良好で電池特性が安定した長寿命の二次電池を得ることが可能となる。
 しかも、電極活物質が上述した有機化合物を主体としているため、環境負荷も低く安全性にも配慮した二次電池を得ることができる。
本発明に係る二次電池としてのコイン型電池の一実施の形態を示す断面図である。
 次に、本発明の実施の形態を詳説する。
 本発明の電極活物質は、一般式(1)で表わされる有機化合物を構成単位中に主体として含有している。
Figure JPOXMLDOC01-appb-C000005
 ここで、R~Rは、水素原子、水酸基、置換若しくは無置換のアルキル基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルコキシル基、置換若しくは無置換のアルケニル基、置換若しくは無置換のアリールオキシ基、置換若しくは無置換のアリールアミノ基、置換若しくは無置換のアルキルアミノ基、置換若しくは無置換のチオアリール基、置換若しくは無置換のチオアルキル基、置換若しくは無置換の複素環基、置換若しくは無置換のホルミル基、置換若しくは無置換のシリル基、置換若しくは無置換のボリル基、置換若しくは無置換のスタンニル基、置換若しくは無置換のシアノ基、置換若しくは無置換のニトロ基、置換若しくは無置換のニトロソ基、置換若しくは無置換のアミノ基、置換若しくは無置換のイミノ基、置換若しくは無置換のカルボキシル基、置換若しくは無置換のアルコキシカルボニル基、ハロゲン原子、安定ラジカル基、置換若しくは無置換のエステル基、置換若しくは無置換のチオエステル基、置換若しくは無置換のエーテル基、置換若しくは無置換のチオエーテル基、置換若しくは無置換のアミン、置換若しくは無置換のアミド基、置換若しくは無置換のスルホニル基、置換若しくは無置換のスルホ基、置換若しくは無置換のチオスルホニル基、置換若しくは無置換のスルホンアミド基、置換若しくは無置換のイミン、置換若しくは無置換のアゾ基、置換若しくは無置換のアルキレン基、及び置換若しくは無置換のアリーレン基の中から選択された少なくともいずれか1種を示している。
 また、置換基=Xは同一又は異なる場合を含み、R~Rは同一の場合及び互いに連結して飽和若しくは不飽和の環を形成する場合を含んでいる。
 すなわち、本発明の電極活物質は、ナフタレンジイミド構造を構成単位中に含有した有機化合物を主体とし、かつ、前記ナフタレンジイミド構造は、二重結合で結合された複数の置換基=Xを含有している。
 このように上記電極活物質は、化学的安定性に優れてナフタレンジイミド構造を構成単位中に含有しているので、充放電時の安定性向上を図ることができる。しかも、電気化学的に活性な二重結合を複数導入しているので、リチウムイオン等のカチオンとの反応性に富み、充放電効率が高くて高容量密度の電極活物質を得ることができる。そして、これにより高出力かつ長寿命でサイクル特性の良好な電極活物質を得ることができる。
 したがって、このような電極活物質を使用した二次電池は、充放電時の安定性が向上し、エネルギー密度が大きく、高出力での放電が可能で充放電を繰り返しても容量低下の少ないサイクル特性が良好で電池特性の安定した長寿命の二次電池を得ることが可能となる。
 本発明の電極活物質は、上述したようにナフタレンジイミド構造に二重結合で結合された複数の置換基=Xを構成単位中に含有することにより、高容量密度を得ている。したがって、この条件を満たすのであれば、置換基=Xの種類は、特に限定されるものではないが、好ましくは下記(2a)~(2j)で表わされるグループの中から少なくとも1種以上から選択される。
Figure JPOXMLDOC01-appb-C000006
 上記(2i)、(2j)中のR~Rは、水素原子、置換若しくは無置換のアルキル基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルコキシル基、置換若しくは無置換のアルケニル基、置換若しくは無置換のアリールオキシ基、置換若しくは無置換のアリールアミノ基、置換若しくは無置換のアルキルアミノ基、置換若しくは無置換のチオアリール基、置換若しくは無置換のチオアルキル基、置換若しくは無置換の複素環基、置換若しくは無置換のホルミル基、置換若しくは無置換のシリル基、置換若しくは無置換のボリル基、置換若しくは無置換のスタンニル基、置換若しくは無置換のシアノ基、置換若しくは無置換のニトロ基、置換若しくは無置換のニトロソ基、置換若しくは無置換のアミノ基、置換若しくは無置換のイミノ基、置換若しくは無置換のカルボキシル基、置換若しくは無置換のアルコキシカルボニル基、及びハロゲン原子の少なくともいずれか1種を使用することができる。
 また、R~Rは同一の場合及び互いに連結して飽和若しくは不飽和の環を形成する場合を含んでいる。
 また、上記した置換基=Xの中では、(2a)で示す=Oが特に好ましく、置換基=Xとして=Oを使用することにより、充放電電圧をより高くすることができ、二次電池の高エネルギー密度化により好適な電極活物質を得ることができる。
 さらに、一般式(1)の範疇に属する有機化合物としては、上述の範囲内のものが好ましいが、特に、R及びRのいずれか一方又は双方が、TEMPO系ラジカル、PROXYL系ラジカル、ニトロニルニトロキシルラジカル等の安定ラジカル基を含有しているのがより好ましい。
 すなわち、一般式(1)の範疇に属する有機化合物としては、R及びRの一方又は双方を化学式(3)に示すTEMPO系ラジカルで形成した化学式(4a)~(4g)で表わされる有機化合物や化学式(5)示すPROXYL系ラジカルを含有した化学式(6)で表わされる有機化合物を使用するのが好ましい。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 化学反応式(7)は、構成単位中に安定ラジカル基を含有した上記電極活物質の充放電反応を示している。この電極活物質は、電池電極反応に伴って錯塩を形成する。そして、R及びRの一方をTEMPOラジカルで構成し、他方をメチル基で構成した有機化合物を電極活物質に使用し、Liを電解質塩のカチオンに使用した場合、化学反応式(7)に示すような充放電反応が生じると考えられる。
Figure JPOXMLDOC01-appb-C000012
 すなわち、電極活物質中にTEMPO系ラジカルのような安定ラジカル基がナフタレンジイミド構造のN原子に結合されている場合、カチオンを生成する酸化反応(I→II)とアニオンを生成する還元反応(I→III)が存在する。そして、酸化反応では1電子が反応に関与し、還元反応では4電子が反応に関与することから、充放電時には5電子が反応に関与することとなり、これにより充放電容量が増大し、繰り返し充放電に対するより一層の安定性向上を図ることが可能となる。
 本発明の電極活物質は、上述のようにR及びRの一方又は双方に安定ラジカル基を使用した有機化合物が好ましいが、安定ラジカル基以外で構成してもよく、例えば、化学式(8a)~(8c)で示す有機化合物を使用することができる。
Figure JPOXMLDOC01-appb-C000013
 この場合も上記電極活物質は、電池電極反応に伴って錯塩を形成する。例えば、R及びRの双方をメチル基で構成した有機化合物を電極活物質に使用し、Liを電解質塩のカチオンに使用した場合、化学反応式(9)に示すような充放電反応が生じると考えられる。
Figure JPOXMLDOC01-appb-C000014
 この場合であっても、化合物(IV)と化合物(V)との間で4電子が関与する充放電反応が生じると考えられ、これにより充放電容量が増大し、繰り返し充放電に対する安定性向上を図ることが可能となる。
 尚、上記電極活物質を構成する有機化合物の分子量は、特に限定されるものではないが、分子量が小さい低分子の場合は、電解質に容易に溶解するおそれがあり、一定以上の分子量であるのが好ましい。ただし、本発明が所望する効果の出現は、複数の置換基=Xの反応性に依存しており、したがってこれら置換基=X以外の部分が大きくなると単位質量あたりに蓄電できる容量、すなわち容量密度が小さくなる。
 尚、上述した有機化合物の重合体として利用する場合には分子量や分子量分布は特に限定されない。
 次に、上記電極活物質を使用した二次電池について詳述する。
 図1は、本発明に係る二次電池の一実施の形態としてのコイン型二次電池を示す断面図であって、本実施の形態では、本発明の電極活物質を正極活物質に使用している。
 電池缶1は、正極ケース2と負極ケース3とを有し、該正極ケース2及び負極ケース3は、いずれも円盤状の薄板形状に形成されている。正極集電体を構成する正極ケース2の底部中央には、正極活物質(電極活物質)及び導電剤(導電性物質)を含有した混合物をシート状に成形した正極4が配されている。そして、正極4上には微多孔膜、織布、不織布などの多孔性のシートまたはフィルムで形成されたセパレータ5が積層され、さらにセパレータ5には負極6が積層されている。負極6としては、例えば、ステンレス箔や銅箔にリチウムの金属箔を重ね合わせたものや、黒鉛やハードカーボン等のリチウム吸蔵材料を銅箔に塗布したものを使用することができる。負極6には金属からなる負極集電体7が積層されるとともに、該負極集電体7には金属製ばね8が載置されている。そして、電解質9が内部空間に充填されると共に、負極ケース3は金属製ばね8の付勢力に抗して正極ケース2に固着され、ガスケット10を介して封止されている。
 次に、上記二次電池の製造方法の一例を詳述する。
 まず、電極活物質を電極形状に形成する。例えば、電極活物質を導電剤、及び結着剤と共に混合し、溶媒を加えてスラリーとし、該スラリーを正極集電体上に任意の塗工方法で塗工し、乾燥することにより正極を形成する。
 ここで、導電剤としては、特に限定されるものでなく、例えば、グラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子、気相成長炭素繊維、カーボンナノチューブ、カーボンナノホーン等の炭素繊維、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリアセン等の導電性高分子などを使用することができる。また、導電剤を2種類以上混合して用いることもできる。尚、導電剤の正極4中の含有率は10~80質量%が望ましい。
 また、結着剤も特に限定されるものではなく、ポリエチレン、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン、ポリテトラフルオロエチレン、ポリエチレンオキサイド、カルボキシメチルセルロース等の各種樹脂を使用することができる。
 さらに、溶媒についても、特に限定されるものではなく、例えば、ジメチルスルホキシド、ジメチルホルムアミド、1-メチル-2-ピロリドン、プロピレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、γ-ブチロラクトン等の塩基性溶媒、アセトニトリル、テトラヒドロフラン、ニトロベンゼン、アセトン等の非水溶媒、メタノール、エタノール等のプロトン性溶媒、さらには水等を使用することができる。
 また、有機溶剤の種類、有機化合物と有機溶剤との配合比、添加剤の種類とその添加量等は、二次電池の要求特性や生産性等を考慮し、任意に設定することができる。次いで、この正極4を電解質9に含浸させて該正極4に前記電解質9を染み込ませ、その後、正極集電体を構成する正極ケース2の底部中央の正極4を載置する。次いで、前記電解質9を含浸させたセパレータ5を正極4上に積層し、さらに負極6及び負極集電体7を順次積層し、その後内部空間に電解質9を注入する。そして、負極集電体7上に金属製ばね8を載置すると共に、ガスケット10を周縁に配し、かしめ機等で負極ケース3を正極ケース2に固着して外装封止し、これによりコイン型二次電池が作製される。
 尚、上記電解質9は、正極4と該正極4の対向電極である負極6との間に介在して両電極間の荷電担体輸送を行うが、このような電解質9としては、室温で10-5~10-1S/cmのイオン伝導度を有するものを使用することができ、例えば、電解質塩を有機溶剤に溶解させた電解液を使用することができる。
 ここで、電解質塩としては、例えば、LiPF、LiClO、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiC(CFSO、LiC(CSO等を使用することができる。
 また、有機溶剤としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ-ブチロラクトン、テトラヒドロフラン、ジオキソラン、スルホラン、ジメチルホルムアミド、ジメチルアセトアミド、1-メチル-2-ピロリドン等を使用することができる。
 また、電解質9には、固体電解質を使用してもよい。固体電解質に用いられる高分子化合物としては、例えば、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-エチレン共重合体、フッ化ビニリデン-モノフルオロエチレン共重合体、フッ化ビニリデン-トリフルオロエチレン共重合体、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン三元共重合体等のフッ化ビニリデン系重合体、アクリロニトリル-メチルメタクリレート共重合体、アクリロニトリル-メチルアクリレート共重合体、アクリロニトリル-エチルメタクリレート共重合体、アクリロニトリル-エチルアクリレート共重合体、アクリロニトリル-メタクリル酸共重合体、アクリロニトリル-アクリル酸共重合体、アクリロニトリル-ビニルアセテート共重合体等のアクリロニトリル系重合体、さらにはポリエチレンオキサイド、エチレンオキサイド-プロピレンオキサイド共重合体、及びこれらのアクリレート体やメタクリレート体の重合体等を挙げることができる。また、これらの高分子化合物に電解液を含ませてゲル状にしたものを電解質9として使用したり、或いは電解質塩を含有させた高分子化合物のみをそのまま電解質9に使用してもよい。
 このように本発明の電極は、上述した電極活物質と導電性物質とを含有しているので、充放電効率が良好であって短時間で充電ができ、かつ高出力化が可能となる。
 また、二次電池の電極活物質は、充放電により可逆的に酸化又は還元されるため、充電状態、放電状態、あるいはその途中の状態で異なる構造、状態を有するが、本実施の形態では、前記電極活物質は、少なくとも放電反応における反応出発物(電池電極反応で化学反応を起こす物質)、生成物(化学反応の結果生じる物質)、及び中間生成物のうちのいずれかに含まれている。そしてその結果、エネルギー密度が大きく、迅速に充電でき、高出力での放電が可能で充放電を繰り返しても容量低下の少ないサイクル特性が良好で電池特性の安定した長寿命の二次電池を得ることが可能となる。
 また、本発明の二次電池は、放電反応が少なくとも2つ以上の放電電圧を有しており、これにより複数の電圧に跨る高容量密度の二次電池を実現することができる。
 しかも、電極活物質が有機化合物を主体としているため、環境負荷も低く安全性にも配慮した二次電池を得ることができる。
 尚、本発明は上記実施の形態に限定されるものではなく、要旨を逸脱しない範囲において種々の変形が可能である。例えば、電極活物質の主体となる有機化合物についても、上記列挙した化学式(4a)~(4g)、(6)、(8a)~(8c)はその一例であって、これらに限定されるものではない。すなわち、ナフタレンジイミド構造を構成単位中に含有した有機化合物を主体とし、かつ、前記ナフタレンジイミド構造が、二重結合で結合された複数の置換基=Xを含有しているのであれば、上記化学反応式(7)又は(9)と同様、電池電極反応が進行するので、充放電反応の安定性が向上し、エネルギー密度が大きく、安定性に優れた所望の二次電池を得ることが可能となる。
 また、本実施の形態では、コイン型二次電池について説明したが、電池形状は特に限定されるものでないのはいうまでもなく、円筒型、角型、シート型等にも適用できる。また、外装方法も特に限定されず、金属ケースや、モールド樹脂、アルミラミネートフィルム等を使用してもよい。
 また、本実施の形態では、電極活物質を正極活物質に使用したが、負極活物質に使用するのも有用である。
 次に、本発明の実施例を具体的に説明する。
 尚、以下に示す実施例は一例であり、本発明は下記の実施例に限定されるものではない。
 [有機化合物の合成]
 下記の合成スキーム(A)に従い、ナフタレンジイミドを構成単位中に含む化合物4aを合成した。
Figure JPOXMLDOC01-appb-C000015
 まず、1.77mmolのナフタレン-1,4,5,8-テトラカルボン酸二無水物(4a)と1.77mmolの4-アミノTEMPO(4a)及び3.57mmolの4-フルオロアニリン(4a)を10mLのジメチルアセトアミド(以下、「DMA」という。)に溶解し、酸を加えて、100℃で3時間撹拌した。この溶液を減圧下に濃縮し、得られる沈殿物をろ過した。このようにして得られた粗生成物をシリカゲルクロマトグラフィーで分離し、主な画分より得られる固体をジクロロメタン/メタノールの混合溶媒より再結晶して、オレンジ色の針状結晶を得た。
 そして、この針状結晶を赤外吸収スペクトルで測定したところ、その測定結果からこの針状結晶は化合物4aであることが確認された。
[二次電池の作製]
 正極活物質(電極活物質)としての化合物4a:300mg、導電剤としてのグラファイト粉末:600mg、結着剤としてのポリテトラフルオロエチレン:100mgをそれぞれ秤量し、均一に混合しながら混練し、混合物を作製した。次いで、この混合物を加圧成形し、厚さ約150μmのシート状部材を得た。この後、このシート状部材を真空中70℃で1時間乾燥した後、直径12mmの円形に打ち抜き、化合物Aを含有した正極を作製した。次に、正極を電解液に含浸させ、正極中の空隙に電解液を染み込ませた。ここで、電解液としては、LiPF(電解質塩)のモル濃度が1.0mol/LとなるようにLiPFを有機溶剤であるエチレンカーボネート/ジエチルカーボネートに溶解させた混合溶液を使用した。尚、エチレンカーボネートとジエチルカーボネートの混合比率は、体積%でエチレンカーボネート:ジエチルカーボネート=30:70とした。
 次に、この正極を、正極集電体上に載置し、さらに前記電解液を含浸させたポリプロピレン多孔質フィルムからなる厚さ20μmのセパレータを前記正極上に積層し、さらにステンレス製集電板の両面にリチウムを貼付した負極をセパレータ上に積層した。そして、集電体上に金属製ばねを載置すると共に、周縁にガスケットを配した状態で負極ケースを正極ケースに接合し、かしめ機によって外装封止して、正極活物質として化合物4a、負極活物質として金属リチウムを有する密閉型のコイン型電池を作製した。
[二次電池の動作確認]
 以上のように作製したコイン型電池を、0.1mAの定電流で電圧が4.0Vになるまで充電し、その後、0.1mAの定電流で1.5Vになるまで放電を行った。その結果、この電池は、充放電電圧1.5~3.2Vに複数の電圧平坦部を有する放電容量0.33mAhの二次電池であることが確認された。
 放電容量を計算したところ、電極活物質の質量当たりの容量密度は、260 Ah/kgとなり、化合物4aは、高容量密度の電極活物質であることが分かった。
 その後、1.5~3.8Vの範囲で充放電を10サイクル繰り返した。その結果、10サイクル後においても初期の50%以上となり、充放電を繰り返しても容量低下が少ない長サイクル寿命の二次電池であることが分かった。
[有機化合物の合成]
 下記の合成スキーム(B)に従い、ナフタレンジイミドを構成単位中に含む化合物4bを合成した。
Figure JPOXMLDOC01-appb-C000016
 まず、1.77mmolのナフタレン-1,4,5,8-テトラカルボン酸二無水物(4b)と1.77mmolの4-アミノTEMPO(4b)及び3.57mmolの2,4,6-フルオロアニリン(4b)を10mLのDMAに溶解し、その後は実施例1と同様の方法・手順で化合物4bを作製した。
[二次電池の作製]
 実施例1の化合物4aに代えて、上記化合物4bを正極活物質に使用した以外は、実施例1と同様の方法でコイン型電池を作製した。
 [二次電池の動作確認]
 上記コイン型電池を、0.1mAの定電流で電圧が3.8Vになるまで充電し、その後、0.1mAの定電流で1.5Vまで放電を行った。その結果、この電池は充放電電圧2.0~2.8Vに複数の電圧平坦部を有する放電容量0.25mAhの二次電池であることが確認された。
 その後、1.5~3.8Vの範囲で充放電を10サイクル繰り返した。その結果、10サイクル後においても初期の50%以上となり、充放電を繰り返しても容量低下が少ない長サイクル寿命の二次電池であることが分かった。
[有機化合物の合成]
 下記の合成スキーム(C)に従い、ナフタレンジイミドを構成単位中に含む化合物4cを合成した。
Figure JPOXMLDOC01-appb-C000017
 まず、1.77mmolのナフタレン-1,4,5,8-テトラカルボン酸二無水物(4c)と1.77mmolの4-アミノTEMPO(4c)及び3.57mmolの(E)-4-(2-フェニルアゼニル)ベンゼンアミン(4c)を10mLのDMAに溶解し、その後は実施例1と同様の方法・手順で化合物4cを作製した。
 [二次電池の作製]
 実施例1の化合物4aに代えて、上記化合物4cを正極活物質に使用した以外は、実施例1と同様の方法でコイン型電池を作製した。
[二次電池の動作確認]
 上記コイン型電池を、0.1mAの定電流で電圧が3.8Vになるまで充電し、その後、0.1mAの定電流で1.5Vまで放電を行った。その結果、この電池は充放電電圧2.0~2.8Vに複数の電圧平坦部を有する放電容量0.25mAhの二次電池であることが確認された。
 その後、1.5~3.8Vの範囲で充放電を10サイクル繰り返した。その結果、10サイクル後においても初期の50%以上となり、充放電を繰り返しても容量低下が少ない長サイクル寿命の二次電池であることがわかった。
[有機化合物の合成]
 下記の合成スキーム(D)に従い、ナフタレンジイミドを構成単位中に含む化合物4dを合成した。
Figure JPOXMLDOC01-appb-C000018
 まず、1.77mmolのナフタレン-1,4,5,8-テトラカルボン酸二無水物(4d)と1.77mmolの4-アミノTEMPO(4d)及び3.57mmolの2-アミノ酢酸(4d)を10mLのDMAに溶解し、その後は実施例1と同様の方法・手順で化合物4dを作製した。
[二次電池の作製]
 実施例1の化合物4aに代えて、上記化合物4dを正極活物質に使用した以外は、実施例1と同様の方法でコイン型電池を作製した。
 [二次電池の動作確認]
 上記コイン型電池を、0.1mAの定電流で電圧が3.8Vになるまで充電し、その後、0.1mAの定電流で1.5 Vまで放電を行った。その結果、この電池は充放電電圧2.0~2.8Vに複数の電圧平坦部を有する放電容量0.25mAhの二次電池であることが確認された。
 その後、1.5~3.8Vの範囲で充放電を10サイクル繰り返した。その結果、10サイクル後においても初期の50%以上となり、充放電を繰り返しても容量低下が少ない長サイクル寿命の二次電池であることが分かった。
[有機化合物の合成]
 下記の合成スキーム(E)に従い、ナフタレンジイミドを構成単位中に含む化合物4eを合成した。
Figure JPOXMLDOC01-appb-C000019
 まず、1.77mmolのナフタレン-1,4,5,8-テトラカルボン酸二無水物(4e)と1.77mmolの4-アミノTEMPO(4e)及び3.57mmolの3-アミノプロパン酸(4e)を10mLのDMAに溶解し、その後は実施例1と同様の方法・手順で化合物4eを作製した。
[二次電池の作製]
 実施例1の化合物4aに代えて、上記化合物4eを正極活物質に使用した以外は、実施例1と同様の方法でコイン型電池を作製した。
[二次電池の動作確認]
 上記コイン型電池を、0.1mAの定電流で電圧が3.8Vになるまで充電し、その後、0.1mAの定電流で1.5Vまで放電を行った。その結果、この電池は充放電電圧2.0~2.8Vに複数の電圧平坦部を有する放電容量0.24mAhの二次電池であることが確認された。
 その後、1.5~3.8Vの範囲で充放電を10サイクル繰り返した。その結果、10サイクル後においても初期の50%以上となり、充放電を繰り返しても容量低下が少ない長サイクル寿命の二次電池であることがわかった。
 エネルギー密度が大きく高出力で、充放電を繰り返しても容量低下の少ないサイクル特性が良好で安定した二次電池を実現する。
4 正極
6 負極
9 電解質

Claims (9)

  1.  電池電極反応によって充放電を繰り返す二次電池の活物質として使用される電極活物質であって、
     ナフタレンジイミド構造を構成単位中に含有した有機化合物を主体とし、かつ、前記ナフタレンジイミド構造は、二重結合で結合された複数の置換基=Xを含有していることを特徴とする電極活物質。
  2.  前記有機化合物は、一般式
    Figure JPOXMLDOC01-appb-C000001
    [ただし、式中、R~Rは、水素原子、水酸基、置換若しくは無置換のアルキル基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルコキシル基、置換若しくは無置換のアルケニル基、置換若しくは無置換のアリールオキシ基、置換若しくは無置換のアリールアミノ基、置換若しくは無置換のアルキルアミノ基、置換若しくは無置換のチオアリール基、置換若しくは無置換のチオアルキル基、置換若しくは無置換の複素環基、置換若しくは無置換のホルミル基、置換若しくは無置換のシリル基、置換若しくは無置換のボリル基、置換若しくは無置換のスタンニル基、置換若しくは無置換のシアノ基、置換若しくは無置換のニトロ基、置換若しくは無置換のニトロソ基、置換若しくは無置換のアミノ基、置換若しくは無置換のイミノ基、置換若しくは無置換のカルボキシル基、置換若しくは無置換のアルコキシカルボニル基、ハロゲン原子、安定ラジカル基、置換若しくは無置換のエステル基、置換若しくは無置換のチオエステル基、置換若しくは無置換のエーテル基、置換若しくは無置換のチオエーテル、置換若しくは無置換のアミン、置換若しくは無置換のアミド基、置換若しくは無置換のスルホニル基、置換若しくは無置換のスルホ基、置換若しくは無置換のチオスルホニル基、置換若しくは無置換のスルホンアミド基、置換若しくは無置換のイミン、置換若しくは無置換のアゾ基、置換若しくは無置換のアルキレン基、及び置換若しくは無置換のアリーレン基の中から選択された少なくともいずれか1種を示し、置換基=Xは同一又は異なる場合を含み、R~Rは同一の場合及び互いに連結して飽和若しくは不飽和の環を形成する場合を含む。]
     で表わされることを特徴とする請求項1記載の電極活物質。
  3.  前記置換基=Xは、
    Figure JPOXMLDOC01-appb-C000002
     [ただし、式中、R~Rは、水素原子、置換若しくは無置換のアルキル基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルコキシル基、置換若しくは無置換のアルケニル基、置換若しくは無置換のアリールオキシ基、置換若しくは無置換のアリールアミノ基、置換若しくは無置換のアルキルアミノ基、置換若しくは無置換のチオアリール基、置換若しくは無置換のチオアルキル基、置換若しくは無置換の複素環基、置換若しくは無置換のホルミル基、置換若しくは無置換のシリル基、置換若しくは無置換のボリル基、置換若しくは無置換のスタンニル基、置換若しくは無置換のシアノ基、置換若しくは無置換のニトロ基、置換若しくは無置換のニトロソ基、置換若しくは無置換のアミノ基、置換若しくは無置換のイミノ基、置換若しくは無置換のカルボキシル基、置換若しくは無置換のアルコキシカルボニル基、及びハロゲン原子の少なくともいずれか1種を示し、R~Rは同一の場合及び互いに連結して飽和若しくは不飽和の環を形成する場合を含む。]
     で表わされるグループの中から少なくとも1種以上が選択されることを特徴とする請求項1又は請求項2記載の電極活物質。
  4.  前記置換基=Xは、=Oであることを特徴とする請求項3記載の電極活物質。
  5.  前記R及びRのうちの少なくとも一方は、前記安定ラジカル基であることを特徴とする請求項2乃至請求項4のいずれかに記載の電極活物質。
  6.  前記安定ラジカル基は、2,2,6,6-テトラメチルピペリジン-1-オキシル及び2,2,5,5-テトラメチルピペリジン-1-イルオキシのうちの少なくも一方を含んでいることを特徴とする請求項5記載の電極活物質。
  7.  請求項1乃至請求項6のいずれかに記載の電極活物質と導電性物質とを含有していることを特徴とする電極。
  8.  請求項1乃至請求項6のいずれかに記載の電極活物質が、電池電極反応の少なくとも放電反応における反応出発物、生成物及び中間生成物のうちのいずれかに含まれることを特徴とする二次電池。
  9.  正極、負極、及び電解質を有し、前記正極が、請求項1乃至請求項6のいずれかに記載の電極活物質を含有していることを特徴とする二次電池。
PCT/JP2012/055390 2011-03-10 2012-03-02 電極活物質、電極、及び二次電池 WO2012121145A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013503503A JPWO2012121145A1 (ja) 2011-03-10 2012-03-02 電極活物質、電極、及び二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011053243 2011-03-10
JP2011-053243 2011-03-10

Publications (1)

Publication Number Publication Date
WO2012121145A1 true WO2012121145A1 (ja) 2012-09-13

Family

ID=46798109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055390 WO2012121145A1 (ja) 2011-03-10 2012-03-02 電極活物質、電極、及び二次電池

Country Status (2)

Country Link
JP (1) JPWO2012121145A1 (ja)
WO (1) WO2012121145A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141696A1 (ja) * 2013-03-11 2014-09-18 パナソニック株式会社 蓄電デバイス用電極活物質および蓄電デバイス
WO2015147326A1 (ja) * 2014-03-28 2015-10-01 国立大学法人九州大学 電極活物質
CN105368089A (zh) * 2015-11-23 2016-03-02 吉林大学 一种近红外反射功能有机染料及其制备方法
CN106146287A (zh) * 2016-06-07 2016-11-23 湖南理工学院 一种空气氧化低纯度正戊醛制备正戊酸的绿色工艺
CN107531588A (zh) * 2015-03-19 2018-01-02 西北大学 刚性萘二酰亚胺三角形结构
KR20180033746A (ko) * 2016-09-26 2018-04-04 울산과학기술원 삼차원구조 전극, 및 이를 포함하는 전기 화학 소자
CN109314240A (zh) * 2016-03-31 2019-02-05 三谷电池技术研究所合同会社 水系二次电池
US11560644B2 (en) 2019-08-28 2023-01-24 Northwestern University Supramolecular tessellation of rigid triangular macrocycles
US11912720B2 (en) 2018-01-19 2024-02-27 Northwestern University Rigid chiral photoluminescent isosceles triangular materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255789A (ja) * 1989-03-29 1990-10-16 Asahi Chem Ind Co Ltd 有機電場発光素子
JP2009143855A (ja) * 2007-12-14 2009-07-02 Toyota Central R&D Labs Inc 有機ラジカル化合物、蓄電デバイス用電極及び蓄電デバイス
JP2011146221A (ja) * 2010-01-14 2011-07-28 National Institute Of Advanced Industrial Science & Technology 電池およびキャパシタの電極材料
WO2011111401A1 (ja) * 2010-03-12 2011-09-15 パナソニック株式会社 蓄電デバイス用電極活物質およびそれを用いた蓄電デバイス

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2698631B1 (fr) * 1992-12-01 1995-02-10 Centre Nat Rech Scient Copolymères à propriétés rédox et leur utilisation pour l'élaboration de matériaux à conduction mixte.
JP4904662B2 (ja) * 2000-02-25 2012-03-28 日本電気株式会社 二次電池用活物質
DE102005061997A1 (de) * 2005-12-23 2007-07-05 Basf Ag Naphthalintetracarbonsäurederivate und deren Verwendung
JP5386884B2 (ja) * 2007-09-10 2014-01-15 株式会社リコー ナフタレンテトラカルボン酸ジイミド誘導体、及び該ナフタレンテトラカルボン酸ジイミド誘導体を用いた電子写真感光体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255789A (ja) * 1989-03-29 1990-10-16 Asahi Chem Ind Co Ltd 有機電場発光素子
JP2009143855A (ja) * 2007-12-14 2009-07-02 Toyota Central R&D Labs Inc 有機ラジカル化合物、蓄電デバイス用電極及び蓄電デバイス
JP2011146221A (ja) * 2010-01-14 2011-07-28 National Institute Of Advanced Industrial Science & Technology 電池およびキャパシタの電極材料
WO2011111401A1 (ja) * 2010-03-12 2011-09-15 パナソニック株式会社 蓄電デバイス用電極活物質およびそれを用いた蓄電デバイス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHIPING SONG ET AL.: "Polyimides: Promising Energy-Storage Materials", ANGEWANDTE CHEMIE, INTERNATIONAL EDITION, vol. 49, 2010, pages 8444 - 8448 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10270101B2 (en) 2013-03-11 2019-04-23 Panasonic Corporation Electrode active material for power storage device, and power storage device
WO2014141696A1 (ja) * 2013-03-11 2014-09-18 パナソニック株式会社 蓄電デバイス用電極活物質および蓄電デバイス
JPWO2014141696A1 (ja) * 2013-03-11 2017-02-16 パナソニック株式会社 蓄電デバイス用電極活物質および蓄電デバイス
WO2015147326A1 (ja) * 2014-03-28 2015-10-01 国立大学法人九州大学 電極活物質
CN107531588A (zh) * 2015-03-19 2018-01-02 西北大学 刚性萘二酰亚胺三角形结构
US10903496B2 (en) 2015-03-19 2021-01-26 Northwestern University Rigid naphthalenediimide triangle structures
EP3271317A4 (en) * 2015-03-19 2018-09-19 Northwestern University Rigid naphthalenediimide triangle structures
CN105368089A (zh) * 2015-11-23 2016-03-02 吉林大学 一种近红外反射功能有机染料及其制备方法
CN109314240A (zh) * 2016-03-31 2019-02-05 三谷电池技术研究所合同会社 水系二次电池
CN106146287A (zh) * 2016-06-07 2016-11-23 湖南理工学院 一种空气氧化低纯度正戊醛制备正戊酸的绿色工艺
KR20180033746A (ko) * 2016-09-26 2018-04-04 울산과학기술원 삼차원구조 전극, 및 이를 포함하는 전기 화학 소자
US11912720B2 (en) 2018-01-19 2024-02-27 Northwestern University Rigid chiral photoluminescent isosceles triangular materials
US11560644B2 (en) 2019-08-28 2023-01-24 Northwestern University Supramolecular tessellation of rigid triangular macrocycles

Also Published As

Publication number Publication date
JPWO2012121145A1 (ja) 2014-07-17

Similar Documents

Publication Publication Date Title
JP5531424B2 (ja) 電極活物質及びそれを用いた二次電池
JP5483523B2 (ja) 電極活物質、及び二次電池
WO2012121145A1 (ja) 電極活物質、電極、及び二次電池
JP5488799B2 (ja) 電極活物質及び二次電池
JP2010080343A (ja) 電極活物質、及び二次電池
JP5527882B2 (ja) 電極活物質及びそれを用いた二次電池
WO2012043728A1 (ja) 電極活物質及び二次電池
JP5808067B2 (ja) 二次電池
JP5483521B2 (ja) 電極活物質、及び二次電池
WO2012117941A1 (ja) 電極活物質、電極、及び二次電池
JP5645319B2 (ja) 二次電池
WO2012105439A1 (ja) 電極活物質、電極、及び二次電池
WO2011074367A1 (ja) 二次電池
JP6179233B2 (ja) 非水電解液二次電池
JP5633949B2 (ja) 電極活物質、該電極活物質の製造方法、電極、及び二次電池
JP5534589B2 (ja) 電極活物質及び二次電池
JP2007305481A (ja) 電極活物質および二次電池
WO2012105438A1 (ja) 電極活物質、電極、及び二次電池
JP5633948B2 (ja) 電極活物質、電極、及び二次電池
JP5536519B2 (ja) 電極活物質及び二次電池
JP5716934B2 (ja) 電極活物質、電極、及び二次電池
JP2010113840A (ja) 電極活物質及び電池
WO2013172323A1 (ja) 電極活物質、電極、及び二次電池
WO2014073562A1 (ja) 二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12755342

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013503503

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12755342

Country of ref document: EP

Kind code of ref document: A1