WO2015147326A1 - 電極活物質 - Google Patents

電極活物質 Download PDF

Info

Publication number
WO2015147326A1
WO2015147326A1 PCT/JP2015/060019 JP2015060019W WO2015147326A1 WO 2015147326 A1 WO2015147326 A1 WO 2015147326A1 JP 2015060019 W JP2015060019 W JP 2015060019W WO 2015147326 A1 WO2015147326 A1 WO 2015147326A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode active
compound
secondary battery
electrode
Prior art date
Application number
PCT/JP2015/060019
Other languages
English (en)
French (fr)
Inventor
伊藤 正人
久仁子 智原
康介 中本
佑輔 加納
岡田 重人
永島 英夫
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Priority to JP2016510583A priority Critical patent/JPWO2015147326A1/ja
Publication of WO2015147326A1 publication Critical patent/WO2015147326A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention belongs to the technical field of secondary batteries, and particularly relates to a novel electrode active material made of an organic material and a secondary battery using the same.
  • an electrode active material used for such an aqueous electrolyte secondary battery for example, there is NaTi 2 (PO 4 ) 3 used for a negative electrode active material for a sodium ion secondary battery having metallic zinc as a positive electrode (non-contained) Patent Document 1). Further, the composition formula Mg x M1 1-y M2 y O 2 or Mg x M1 1-y M2 y O 2 .nH 2 O used as a positive electrode active material for a magnesium ion secondary battery using a metal magnesium electrode as a negative electrode.
  • M1 is at least one selected from Mn and Fe; M2 is a transition metal excluding M1 and at least one selected from Al; 0 ⁇ x ⁇ 0.5; 0 ⁇ y ⁇ 0.4; 4 to 0.6) and the crystal structure has a layered structure (see Patent Document 1).
  • these electrode active materials involve resource problems and disposal problems because they use inorganic materials including metals such as rare metals.
  • an organic electrode active material containing an organic compound has been proposed.
  • a pyrazine structure bonded to a cycloalkane used as a positive electrode active material for a lithium ion secondary battery is a structural unit.
  • Organic compounds having a non-acene structure contained therein see Patent Document 2), Radialene compounds having a heteroaromatic group (see Non-Patent Document 2), triquinoxalinylene compounds exhibiting 6-electron transfer (see Non-Patent Document 3) ), And polyatomic redox organic molecules (see Non-Patent Document 4 and Non-Patent Document 5).
  • oxocarbonic acid salts such as disodium rhodizonate, disodium squarate, and disodium croconate used for positive electrodes for sodium ion batteries (see Patent Document 3, Non-Patent Document 6, and Non-Patent Document 7)
  • terephthalic acid used for negative electrodes for sodium ion batteries have also been proposed.
  • organic electrode active materials are exclusively used for non-aqueous electrolytes, and the organic electrode active materials used for aqueous electrolytes are not yet known.
  • these organic electrode active materials have sufficient charge / discharge characteristics as a secondary battery except that disodium rhodizonate described in Non-Patent Document 7 is non-aqueous and exhibits a reversible capacity of 300 mAh / g. Not shown.
  • the present invention has been proposed in order to solve the above-described problems.
  • An electrode active material containing an organic compound which can construct a water-based electrolyte secondary battery and can exhibit excellent charge / discharge characteristics and cycle characteristics, is provided. It is to provide.
  • an electrode active material made of an organic compound capable of constructing a water-based electrolyte secondary battery and an electrode active material capable of exhibiting charge / discharge characteristics and cycle characteristics superior to those of the prior art. Newly found. Furthermore, it has been found that a water-based electrolyte secondary battery exhibiting high charge / discharge characteristics can be constructed by selecting and combining this electrode active material and a known counter electrode.
  • an organic compound having a structure in which a cyclohexane ring and / or a benzene ring is condensed to a pyrazine ring, wherein the cyclohexane ring and / or the benzene ring is an OX group (X is H, Na, Li).
  • An electrode active material for a secondary battery is provided, which includes an organic compound that may be substituted with any one of, 1 ⁇ 2 Mg, or none.
  • (A) An example of the layer structure of the water-system sodium ion secondary battery containing the electrode active material which concerns on this invention is shown.
  • (B) (c) shows the results ((b) ex situ XRD, (c) ex situ FT-IR) regarding the structural change accompanying charging / discharging of the electrode active material (compound 1-a-1) according to the present invention. (Example 1).
  • (A) (b) Charging / discharging curve when the electrode active material according to the present invention (compound 1-a-1) is used in an aqueous sodium ion secondary battery (voltage range: (a) -0.5 to 0.5 V, ( b) -0.8 to 0.5 V) (Example 1).
  • (C) shows a charge / discharge curve (voltage range: -0.8 to 0.5 V) when the electrode active material according to the present invention (compound 1-c) is used in an aqueous sodium ion secondary battery (Example 3).
  • (A) (b) Charging / discharging curve (voltage range: (a) -0.5 to 0.5 V, (b) when the electrode active material (compound 2-1) according to the present invention is used in an aqueous sodium ion secondary battery -0.8 to 0.5 V) (Example 4).
  • (A) (b) Charging / discharging curve (voltage range: (a) -0.8 to 0.5 V, (b) when the electrode active material according to the present invention (compound 3-1) is used in an aqueous sodium ion secondary battery -0.9 to 0.5 V) (Example 5).
  • (C) Cycle characteristics when the electrode active material according to the present invention (Compound 3-1) is used in an aqueous sodium ion secondary battery are shown (Example 5).
  • (A) shows a charge / discharge curve (voltage range: -0.8 to 0.5 V) when the electrode active material according to the present invention (compound 4-1) is used in an aqueous sodium ion secondary battery (Example 6).
  • (A) shows a charge / discharge curve (voltage range: -0.15 to 1.7 V) when the electrode active material according to the present invention (Compound 6-1) is used in an aqueous sodium ion secondary battery (Example 8).
  • (B) Cycle characteristics when the electrode active material according to the present invention (Compound 6-1) is used in an aqueous sodium ion secondary battery are shown (Example 8).
  • (A) A charge / discharge curve (voltage range: -0.8 to 0.6 V) when the electrode active material according to the present invention (compound 1-a-1) is used in an aqueous magnesium ion secondary battery is shown (Example 9). .
  • (B) shows a charge / discharge curve (voltage range: -0.8 to 0.7 V) when the electrode active material according to the present invention (compound 1-b-1) is used in an aqueous magnesium ion secondary battery (Example 10).
  • (A) shows a charge / discharge curve (voltage range: -0.8 to 0.6 V) when the electrode active material according to the present invention (compound 1-c) is used in an aqueous magnesium ion secondary battery (Example 11).
  • (B) shows a charge / discharge curve (voltage range: ⁇ 0.8 to 0.6 V) when the electrode active material according to the present invention (Compound 2-1) is used in an aqueous magnesium ion secondary battery (Example 12).
  • Example 13 which shows the charging / discharging curve (voltage range: -0.8-0.6V) at the time of using the electrode active material (compound 5) based on this invention for a water-system magnesium ion secondary battery.
  • the electrode active material according to the present invention is an organic compound having a structure in which a cyclohexane ring and / or a benzene ring are condensed to a pyrazine ring, and the cyclohexane ring and / or the benzene ring is an OX group (X is H, Na, It is characterized by containing an organic compound which may be substituted with Li, 1 / 2Mg, or none).
  • the number of pyrazine rings constituting the organic compound contained in the electrode active material according to the present application is not particularly limited, but may be 1 to 3, for example.
  • the number of cyclohexane rings is not particularly limited, but may be 0 to 1, for example.
  • the number of benzene rings is not particularly limited, but can be 1 to 3.
  • the OX group is any one of an OH group, an ONa group, an OLi group, an O (1 / 2Mg) group, or an O group (oxo group).
  • Such an OX group is preferably included as a substituent in a part of the organic compound constituting the electrode active material according to the present invention, but it is not always necessary.
  • the OX group is contained in the organic compound, the number thereof is preferably 2 to 4, for example, 2 or 4.
  • the organic compound constituting the electrode active material according to the present invention can be selected from the following, for example.
  • the organic compound contains an OX group, it has an OH group having a high affinity with an aqueous solution (aqueous electrolyte) and a C ⁇ O bond from the viewpoint of obtaining excellent battery characteristics as a secondary battery.
  • O group (oxo group) is more preferable. Therefore, the organic compound constituting the electrode active material according to the present invention is more preferably one of the following organic compounds.
  • acene compound a compound having a structure in which a plurality of rings are condensed in series as a whole
  • acene compound is a compound having a structure in which a plurality of rings are bent in a whole in a non-series configuration
  • an azaacene compound includes a heterocycle (pyrazine ring) containing a nitrogen atom in a ring constituting an acene compound having a structure in which a plurality of rings described above are condensed in series as a whole.
  • a heterocycle pyrazine ring
  • a plurality of rings composed of a benzene ring (essential), a pyrazine ring (essential), and a cyclohexane ring (arbitrary) constituting the organic compound have a structure condensed in series as a whole. It means that
  • All of these azaacene compounds exhibit excellent battery characteristics as electrode active materials for aqueous sodium ion secondary batteries.
  • compound 1-a-1 tetraazapentacenedione
  • compound 2-1 (1,4-diazaanthraquinone: DAAQ having two oxo groups ) Is more preferred. Since these compounds have two oxo groups, they can be particularly referred to as azaacenedione compounds.
  • compound 1-a-1 is particularly preferable because it can exhibit better charge / discharge characteristics.
  • the adjacent C ⁇ N two in the azaacenedione compound is not yet elucidated.
  • the electrode active material according to the present invention can be applied to the negative electrode of an aqueous electrolyte secondary battery (particularly, an aqueous lithium ion secondary battery, an aqueous sodium ion secondary battery, and an aqueous magnesium ion secondary battery).
  • the electrode active material which concerns on this invention has the outstanding characteristic that it can utilize as both a positive electrode active material and a negative electrode active material by selecting the kind of suitable counter electrode (counter electrode).
  • counter electrode counter electrode
  • the electrode active material according to the present invention exhibits a multi-electron reaction peculiar to an organic compound, is hydrophobic, and is hardly soluble in an electrolyte solution. Even in the case of a water-based electrolyte secondary battery that is limited to driving in the water, a sufficient operating voltage is obtained, and it is assumed that a sufficient charge / discharge operation can be performed even in a low voltage region. . In addition, there is no report on practical use of water-based magnesium ion secondary batteries at present, but since the valence of magnesium ions is divalent, the charge / discharge is higher than that of monovalent lithium ions and sodium ions. Characteristics are expected.
  • the electrode active material according to the present invention is preferably applied to a secondary battery of an aqueous electrolyte, but may also be applied to a secondary battery of a non-aqueous electrolyte. Is possible.
  • the electrode active material according to the present invention can be produced using a known method.
  • known literature Chem. Eur. J. 2009, 15, 3965
  • known literature J. Chem. Soc. 1951, 3211
  • known literature Chem. Comm. 2010, 46, 2977
  • known literature Chem. Comm. 2010, 46, 2977
  • compound 1-a can be synthesized by dehydration condensation of o-phenylenediamine and 2,5-dihydroxy-1,4-benzoquinone and subsequent oxidation reaction.
  • Compound 2 can be synthesized according to known literature (Z. Naturforsch. 1991, 46b, 326).
  • Compound 5 a commercially available product may be used as it is.
  • the electrode active material according to the present invention is obtained by a known production method and has an excellent feature that a high energy density is obtained.
  • a C ⁇ N bond contained in the electrode active material according to the present invention a bond between an OX group and carbon (for example, The presence of C ⁇ O bond, C—OH bond, etc.) facilitates the movement of electrons, and it is presumed that the redox reaction related to charge / discharge proceeds efficiently.
  • the electrode active material according to the present invention may be used as it is as a positive electrode or a negative electrode of an aqueous sodium ion secondary battery.
  • a known conductive material is used in order to improve the conductivity (rate characteristic) of the electrode.
  • a complex may be formed.
  • the electrode active material obtained as described above can be carbon coated by pulverizing and mixing together with carbon fine particles in an inert atmosphere.
  • an inert atmosphere vacuum, nitrogen gas, argon gas, or the like can be used.
  • argon gas can be used.
  • Such carbon source addition may be performed in multiple steps (for example, in two stages).
  • the primary aim is often pulverization / mixing in the first stage and carbon coating in the second stage.
  • acetylene black, graphite, carbon nanotubes, or the like can be used as the carbon source, and among these, acetylene black is particularly preferable from the viewpoint of ease of handling.
  • furnace black, channel black, acetylene black, ketjen black, thermal black, and the like can be used, but acetylene black is preferred because of its high conductivity when used as an electrode. (For example, see the examples below)
  • an aqueous sodium ion secondary battery electrode obtained as described above.
  • FIG. 1A is a diagram illustrating an example of a layer configuration of an aqueous sodium ion secondary battery as one embodiment of the present invention, and is a diagram schematically illustrating a cross section cut in a stacking direction.
  • the aqueous electrolyte secondary battery according to the present invention is not necessarily limited to this example.
  • An aqueous electrolyte secondary battery 10 is sandwiched between a positive electrode 6 including a positive electrode active material layer 2 and a positive electrode current collector 4, a negative electrode 7 including a negative electrode active material layer 3 and a negative electrode current collector 5, and a positive electrode 6 and a negative electrode 7.
  • An electrolyte layer 1 is provided.
  • an aqueous electrolyte secondary battery including a positive electrode and a negative electrode containing an electrode active material and an electrolyte interposed therebetween is provided, and exhibits high energy density.
  • an aqueous sodium ion secondary battery that has high energy density, can be manufactured at low cost, and is easy to handle.
  • the electrode used in the present invention preferably comprises an electrode active material layer containing the above-described electrode active material, and in addition to this, an electrode current collector, and an electrode connected to the electrode current collector Provide leads.
  • the current collector As the current collector, a conductor such as aluminum, titanium, nickel, stainless steel, or copper is used. Examples of the shape of the current collector include a foil shape, a net shape, and a porous shape. Among these, aluminum foil is preferable because it is stable at the positive electrode operating potential of the secondary battery, easily processed into a thin film, and inexpensive.
  • thermoplastic resin As the binder, a thermoplastic resin is used. Specifically, polyvinylidene fluoride (hereinafter sometimes referred to as “PVDF”), polytetrafluoroethylene (hereinafter sometimes referred to as “PTFE”). Fluorine resins such as tetrafluoroethylene / hexafluoropropylene / vinylidene fluoride copolymer, hexafluoropropylene / vinylidene fluoride copolymer and tetrafluoroethylene / perfluorovinyl ether copolymer; polyethylene And polyolefin resins such as polypropylene. These thermoplastic resins are used alone or in combination of two or more.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • Fluorine resins such as tetrafluoroethylene / hexafluoropropylene / vinylidene fluoride copolymer
  • the electrode for an aqueous electrolyte secondary battery is manufactured by supporting (stacking) an electrode mixture containing an active material, a conductive material, and a binder on a current collector.
  • a method for supporting the electrode mixture on the current collector (1) a method of pressure-molding the electrode mixture, (2) mixing the organic solvent and the electrode mixture to prepare an electrode mixture paste The paste is applied to a current collector, and the paste applied to the current collector is dried and then fixed by pressing or the like.
  • Examples of the method of applying the paste to the current collector include a slit die coating method, a screen coating method, a curtain coating method, a knife coating method, a gravure coating method, and an electrostatic spray method. In the present invention, a plurality of these coating methods may be used in combination.
  • the electrode (positive electrode or negative electrode) facing the electrode of the present invention can be selected in the required characteristics as an aqueous or non-aqueous lithium, sodium, or magnesium secondary battery.
  • the aqueous electrolyte in the present invention is an aqueous solution made of a substance containing alkali ions, and mainly contains sodium ions, magnesium ions, and lithium ions as alkali ions.
  • Non-aqueous electrolyte is a liquid or solid made of a substance containing alkali ions, and may contain other alkali ions as the alkali ions.
  • the content ratio of sodium ions and magnesium ions contained in the aqueous electrolyte is preferably 50% by mass or more of the entire alkali ions. From the viewpoint of battery characteristics, a larger number is desirable.
  • the aqueous electrolyte in the present invention is usually used as an aqueous electrolytic solution containing an electrolyte and an aqueous solvent.
  • the electrolyte MgSO 4 or Na 2 SO 4 can be used.
  • a non-aqueous electrolyte solution for example, LiClO 4, LiPF 6, LiAsF 6, LiSbF 6, LiBF 4, LiCF 3 SO 3, LiN (SO 2 CF 3) 2, lower aliphatic carboxylic acid lithium salts, LiAlCl 4 Is mentioned. You may use the mixture which mixed 2 or more types for these.
  • an organic solvent for example, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, isopropyl methyl carbonate, vinylene carbonate, 4-trifluoromethyl Carbonates such as 1,3-dioxolan-2-one and 1,2-di (methoxycarbonyloxy) ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropyl methyl ether, 2,2 , 3,3-tetrafluoropropyldifluoromethyl ether, ethers such as tetrahydrofuran, 2-methyltetrahydrofuran; esters such as methyl formate, methyl acetate, ⁇ -butyrolactone; acetonitrile, butyro Nitriles such as tolyl; Amides such as N
  • the aqueous sodium ion secondary battery obtained in this way has a large discharge capacity maintenance rate when it is repeatedly charged and discharged, compared to the conventional sodium ion secondary battery, due to the excellent battery characteristics obtained in the half cell, Excellent charge / discharge cycle characteristics. Furthermore, the production
  • Example 1 (Production of electrode composed of compound 1-a-1) As an electrode active material according to the present invention, compound 1-a-1 was prepared according to known literature (Chem. Eur. J. 2009, 15, 3965) and known literature (Chem. Comm. 2010, 46, 2977). It was synthesized by dehydration condensation of o-phenylenediamine (manufactured by Kanto Chemical Co., Inc.) and 2,5-dihydroxy-1,4-benzoquinone (AlfaAeser) followed by oxidation reaction.
  • o-phenylenediamine manufactured by Kanto Chemical Co., Inc.
  • AlfaAeser 2,5-dihydroxy-1,4-benzoquinone
  • aqueous sodium ion secondary battery using the electrode active material (compound 1-a-1) according to the present invention was measured using an aqueous Na 2 SO 4 solution as the aqueous electrolyte.
  • This charge / discharge measurement was performed using 20 ml of 2M Na 2 SO 4 / H 2 O as an electrolyte, 16 mm diameter zinc metal (manufactured by Sank Metal Co., Ltd.) as a counter electrode, and a silver-silver chloride electrode as a reference electrode (BAS Co., Ltd.)
  • a constant current mode of a constant charge / discharge current density (current density: 0.1 mA / cm 2 ) was set and performed at room temperature (25 ° C).
  • 2A and 2B show the charge / discharge characteristics of compound 1-a-1 with respect to the zinc counter electrode (voltage ranges: (a) -0.5 to 0.5 V, (b) -0.8 to 0.5 V).
  • 131 mAh / degree of reaction of about 1.5 Na and 2.7 Na for the voltage ranges of ⁇ 0.5 to 0.5 V and ⁇ 0.8 to 0.5 V with respect to the silver-silver chloride reference electrode, respectively.
  • g, 230 mAh / g was observed, and the voltage at the flat portion of the discharge was 2.5 V and 2.3 V in terms of Na + / Na.
  • FIG. 2 (c) since the charge / discharge capacity was stably maintained even when the number of cycles exceeded 25, it became clear that the aqueous sodium ion electrolyte exhibited good cycle characteristics.
  • Example 2 Production of electrode composed of compound 1-b-1
  • compound 1-b-1 was mixed with o-phenylenediamine (manufactured by Kanto Chemical Co., Ltd.) and rhodizone acid dihydrate (in accordance with known literature (Tetrahedron 1969, 25, 3935) ( AlfaAeser) was synthesized by dehydration condensation followed by oxidation reaction.
  • FIG. 3 (a) shows the charge / discharge characteristics of compound 1-b-1 with respect to the zinc counter electrode (voltage range: -0.8 to 0.5 V).
  • the charge / discharge capacity was stably maintained even after exceeding 15 cycles, and thus it became clear that the aqueous sodium ion electrolyte exhibited good cycle characteristics.
  • Example 3 (Production of electrode composed of compound 1-c) As an electrode active material according to the present invention, Compound 1-c was subjected to dehydration condensation of o-phenylenediamine (manufactured by Kanto Chemical Co., Inc.) and Compound 1-b-1 according to known literature (Tetrahedron 1969, 25, 3935). Was synthesized. Thereafter, the same procedure as in Example 1 was performed.
  • FIG. 3 (c) shows the charge / discharge characteristics of Compound 1-c with respect to the zinc counter electrode (voltage range: -0.8 to 0.5 V). For the first reversible capacity, 240 mAh / g was observed.
  • Example 4 (Production of electrode composed of compound 2-1)
  • compound 2-1 was prepared according to known literature (Z. Naturforsch. 1991, 46b, 326) according to 2,3-dichloro-1,4-naphthoquinone (manufactured by Tokyo Chemical Industry Co., Ltd.). ) was converted to an amino group and then synthesized by dehydration condensation with glyoxal trimer dihydrate (Aldrich).
  • FIGS. 4A and 4B show the charge / discharge characteristics of Compound 2-1 with respect to the zinc counter electrode (voltage ranges: (a) -0.5 to 0.5 V, (b) -0.8 to 0.5 V).
  • the initial reversible capacity 92 mAh / g and 185 mAh / g were observed in the voltage ranges of ⁇ 0.5 to 0.5 V and ⁇ 0.8 to 0.5 V, respectively.
  • the charge / discharge capacity was stably maintained in the voltage range of ⁇ 0.5 to 0.5V even after exceeding 40 cycles. It became clear to show the characteristics.
  • Example 5 Manufacture of electrode composed of compound 3-1
  • compound 3-1 was prepared according to known literature (Tetrahedron 1969, 25, 3935), o-phenylenediamine (manufactured by Kanto Chemical Co., Inc.) and rosinic acid dihydrate (AlfaAeser). Was synthesized by dehydration condensation. Thereafter, the same procedure as in Example 1 was performed.
  • 5A and 5B show the charge / discharge characteristics of Compound 3-1 with respect to the zinc counter electrode (voltage ranges: (a) -0.8 to 0.5 V, (b) -0.9 to 0.5 V).
  • the initial reversible capacity 290 mAh / g and 480 mAh / g were observed in the voltage ranges of ⁇ 0.8 to 0.5 V and ⁇ 0.9 to 0.5 V, respectively.
  • FIG.5 (c) since charging / discharging capacity was stably maintained even if it exceeded 30 cycles, it became clear that a water-system sodium ion electrolyte solution shows a favorable cycle characteristic.
  • Example 6 Manufacture of electrodes consisting of compound 4-1
  • compound 4-1 was prepared according to known literature (Tetrahedron 1969, 25, 3935), o-phenylenediamine (manufactured by Kanto Chemical Co., Inc.) and tetrahydroxy-1,4-benzoquinone ( Synthesized by Tokyo Kasei Kogyo Co., Ltd.) and subsequent oxidation reaction. Thereafter, the same procedure as in Example 1 was performed.
  • FIG. 6A shows the charge / discharge characteristics of Compound 4-1 with respect to the zinc counter electrode (voltage range: ⁇ 0.8 to 0.5 V). With respect to the first reversible capacity, 300 mAh / g was observed, and thus it became clear that the aqueous sodium ion electrolyte exhibited good charge / discharge characteristics.
  • Example 7 Manufacture of electrode composed of compound 5
  • Compound 5 manufactured by Tokyo Chemical Industry Co., Ltd.
  • the subsequent procedure was the same as in Example 1.
  • FIG. 6B shows the charge / discharge characteristics of compound 1-b-1 with respect to the zinc counter electrode (voltage range: ⁇ 0.8 to 0.5 V).
  • For the first reversible capacity 350 mAh / g was observed.
  • FIG.6 (c) since charging / discharging capacity was stably maintained even if it exceeded 35 cycles, it became clear that a water-system sodium ion electrolyte solution shows a favorable cycle characteristic.
  • FIG. 6 (d) shows the ex situ XRD result obtained by X-ray diffraction measurement (using Rigaku TTRIII) using CuK ⁇ rays for the structural change accompanying charging / discharging.
  • X-ray diffraction measurement using Rigaku TTRIII
  • CuK ⁇ rays for the structural change accompanying charging / discharging.
  • FIG. 6 (e) shows an ex-situ FT-IR result of the structural change accompanying charge / discharge. From the FT-IR measurement results, remarkable changes were observed during discharge, especially around 1300 and 1500, but it was confirmed that the IR profile was restored to the initial state with good reversibility by charging.
  • Example 8 Manufacture of electrodes consisting of compound 6-1
  • compound 6-1 was prepared according to known literature (Tetrahedron 1969, 25, 3935), o-phenylenediamine (manufactured by Kanto Chemical Co., Inc.) and tetrahydroxy-1,4-benzoquinone ( Synthesized by dehydration condensation of Tokyo Chemical Industry Co., Ltd.). Thereafter, the same procedure as in Example 1 was performed.
  • FIG. 7A shows the charge / discharge characteristics of Compound 6-1 against the zinc counter electrode (voltage range: ⁇ 0.15 to 1.7 V).
  • the charge / discharge capacity was stably maintained even after exceeding 25 cycles, and thus it became clear that the aqueous sodium ion electrolyte exhibited good cycle characteristics.
  • the aqueous magnesium ion according to the present invention is obtained using the compound 1-a-1, compound 1-b-1, compound c, compound 2-1, compound 5 and compound c obtained above.
  • the charge / discharge characteristics as an electrode active material for a secondary battery were confirmed.
  • Example 9 Electrode consisting of compound 1-a-1) ⁇ Measurement of secondary battery characteristics> Using an aqueous MgSO 4 solution as the aqueous electrolyte, charge / discharge measurement of an aqueous magnesium ion secondary battery using the electrode active material (compound 1-a-1) according to the present invention was performed. In this charge / discharge measurement, 20 ml of 3M MgSO 4 / H 2 O was used for the electrolyte, 16 mm diameter zinc metal (manufactured by Sank Metal) was used for the counter electrode, and a silver-silver chloride electrode (manufactured by BAS Co., Ltd.) for the reference electrode.
  • FIG. 8A shows the charge / discharge characteristics of Compound 1-a-1 with respect to the zinc counter electrode (voltage range: ⁇ 0.8 to 0.6 V). For the initial reversible capacity, 280 mAh / g was observed. Moreover, the outstanding charge / discharge characteristic that there exists a 3.6 electronic reaction in charging / discharging was confirmed.
  • Example 10 (Electrode consisting of compound 1-b-1) ⁇ Measurement of secondary battery characteristics> Under the same conditions as in Example 9 above, charge / discharge measurement of an aqueous magnesium ion secondary battery using the electrode active material (Compound 1-b-1) according to the present invention was performed.
  • FIG. 8B shows the charge / discharge characteristics of Compound 1-b-1 with respect to the zinc counter electrode (voltage range: ⁇ 0.8 to 0.7 V). For the first reversible capacity, 195 mAh / g was observed. Moreover, the outstanding charging / discharging characteristic of having 2.6 electronic reaction in charging / discharging was confirmed.
  • Example 11 (Electrode consisting of compound 1-c) ⁇ Measurement of secondary battery characteristics> Under the same conditions as in Example 9 above, charge / discharge measurement of an aqueous magnesium ion secondary battery using the electrode active material (Compound 1-c) according to the present invention was performed. The charge / discharge characteristics of compound 1-c with respect to the zinc counter electrode are shown in FIG. 9 (a) (voltage range: -0.8 to 0.6V). For the first reversible capacity, 250 mAh / g was observed.
  • Example 12 (Electrode consisting of Compound 2-1) ⁇ Measurement of secondary battery characteristics> Under the same conditions as in Example 9, charge / discharge measurement of an aqueous magnesium ion secondary battery using the electrode active material (Compound 2-1: DAAQ) according to the present invention was performed.
  • FIG. 9B shows the charge / discharge characteristics of Compound 2-1 with respect to the zinc counter electrode (voltage range: ⁇ 0.8 to 0.6 V). For the first reversible capacity, 208 mAh / g was observed.
  • Example 13 (Electrode consisting of Compound 5) ⁇ Measurement of secondary battery characteristics> Under the same conditions as in Example 9 above, charge / discharge measurement of a water-based magnesium ion secondary battery using the electrode active material (Compound 5) according to the present invention was performed.
  • FIG. 10 shows the charge / discharge characteristics of Compound 5 with respect to the zinc counter electrode (voltage range: ⁇ 0.8 to 0.6 V). It was confirmed that the charge / discharge capacity increased each time 10 cycles, 20 cycles and 30 cycles were added, and 93 mAh / g at 40 cycles although not shown in the figure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

 良好な充放電特性を有し、コストの面でも優れた新しいタイプの有機化合物を含む電極活物質を提供する。 ピラジン環にシクロヘキサン環及び/又はベンゼン環が縮合した構造の有機化合物であって、当該シクロヘキサン環及び/又はベンゼン環が、OX基(Xは、H、Na、Li、1/2Mg、または無しのいずれか)で置換されていてもよい有機化合物を含むことを特徴とする二次電池用の電極活物質から成り、水系ナトリウムイオン二次電池や水系マグネシウムイオン二次電池において良好な充放電特性を発揮する。

Description

電極活物質
 本発明は、二次電池の技術分野に属し、特に、有機系材料から成る新規な電極活物質およびそれを用いる二次電池に関する。
 近年、二次電池として、高コストパフォーマンスを志向する大型蓄電池が望まれている。特に、電解液溶媒を、これまでの非水系から水系溶媒に置き換えることが出来れば、コストが安く安全な水を利用することになり、経済性や安全性の点でも有利である。
 このような水系電解質二次電池に用いられる電極活物質としては、例えば、金属亜鉛を正極とするナトリウムイオン二次電池用の負極活物質に用いられる、NaTi(POがある(非特許文献1参照)。また、金属マグネシウム電極を負極として、マグネシウムイオン二次電池用の正極活物質に用いられる、組成式MgxM11-yM2y2またはMgxM11-yM2y2・nH2O(M1はMn、Feから選ばれる少なくとも1種;M2は前記M1を除く遷移金属、Alから選ばれる少なくとも1種;0<x≦0.5;0≦y<0.4;nは0.4~0.6)で表され、結晶構造が層状構造を有するものもある(特許文献1参照)。しかし、これらの電極活物質は、レアメタルをはじめとする金属を含む無機材料を用いることから、資源問題や廃棄問題を伴うものである。
 このため、金属を含まないメタルフリーな電極活物質が、より望まれている。このような電極活物質としては、有機化合物を含む有機系電極活物質が提案されており、例えば、リチウムイオン二次電池用の正極活物質に用いられる、シクロアルカンに結合したピラジン構造を構成単位中に含有した非アセン系構造の有機化合物(特許文献2参照)、ヘテロ芳香族基を有するラジアレン化合物(非特許文献2参照)、6電子移動を呈するトリキノキサリニレン化合物(非特許文献3参照)、および多原子レドックス系有機分子(非特許文献4および非特許文献5参照)などが提案されている。
 この他、ナトリウムイオン電池用の正極に用いられる、ロジゾン酸二ナトリウム、スクアリン酸二ナトリウム、およびクロコン酸二ナトリウム等のオキソカーボン酸 塩(特許文献3、非特許文献6、および非特許文献7参照)、およびナトリウムイオン電池用の負極に用いられるテレフタル酸(非特許文献8参照)なども提案されている。
特開2002-25555号公報 特開2012-79479号公報 特開2013-229321号公報
Sun Il Park, Irina Gocheva, Shigeto Okada, and Jun-ichi Yamaki, Journal of The Electrochemical Society, 158(9)1-4, 2011. 杉本豊成ら、「多電子酸化還元するヘテロ芳香族基を有するラジアレン化合物を用いた有機二次電池の作成」、第51回電池討論会講演要旨集、3G22、p523、2010年 Takayuki Matsunaga, Takayuki Kubota, Toyonari Sugimoto, and Masaharu Satoh, Chem. Lett. 2011, 40, 750 増田有沙ら、「多電子レドックス系有機分子のリチウムイオン電池正極材料への応用」、電気化学会創立第80周年記念大会講演要旨集、PBT-24、p490、2013年 Yuki Hanyu, Toyonari Sugimoto, Yoshiyuki Ganbe, Asuna Masuda, and Itaru Honma, Journal of The Electrochemical Society, 161(1)A6-A9, 2014 智原久仁子ら、「ナトリウム2次電池用有機正極材料Na2C6O6の電気化学特性及び充放電メカニズム」、第54回電池討論会講演要旨集、2F27、p407、2013年 K.Chihara et al., Electrochim. Acta, 110, 240, 2013 大島敏史ら、「フタル酸系有機正極のナトリウム二次電池特性」、第50回化学関連支部合同九州大会、2_4.083、2013年
 しかし、これらの有機系電極活物質は、専ら非水系の電解液に用いられるものであり、水系の電解液に用いられる有機系電極活物質は、現在のところ、未だ知られていない。また、これらの有機系電極活物質は、非特許文献7に記載のロジゾン酸二ナトリウムが非水系で、300mAh/gの可逆容量を示した以外は、二次電池としての十分な充放電特性が示されてはいない。
 本発明は、上記課題を解決するために提案されたものであり、水系電解質二次電池を構築することができ、優れた充放電特性やサイクル特性を発揮できる、有機化合物を含む電極活物質を提供することにある。
 本発明者らは、鋭意研究の結果、水系電解質二次電池を構築可能な、有機化合物からなる電極活物質であって、従来よりも優れた充放電特性やサイクル特性を発揮できる電極活物質を新たに見出した。さらに、この電極活物質と、公知の対向電極を選択して組み合わせることにより、高い充放電特性を発揮する水系電解質二次電池を構築できることを見出した。
 かくして、本発明に従えば、ピラジン環にシクロヘキサン環及び/又はベンゼン環が縮合した構造の有機化合物であって、当該シクロヘキサン環及び/又はベンゼン環が、OX基(Xは、H、Na、Li、1/2Mg、または無しのいずれか)で置換されていてもよい有機化合物を含むことを特徴とする二次電池用の電極活物質が提供される。
(a)本発明に係る電極活物質を含む水系ナトリウムイオン二次電池の層構成の一例を示す。(b)(c)本発明に係る電極活物質(化合物1-a-1)の充放電に伴う構造変化についての結果((b)ex situ XRD、(c)ex situ FT-IR)を示す(実施例1)。 (a)(b)本発明に係る電極活物質(化合物1-a-1)を水系ナトリウムイオン二次電池に使用した場合の充放電曲線(電圧範囲:(a)-0.5~0.5V、(b)-0.8~0.5V)を示す(実施例1)。(c)本発明に係る電極活物質(化合物1-a-1)を水系ナトリウムイオン二次電池に使用した場合のサイクル特性を示す(実施例1)。 (a)本発明に係る電極活物質(化合物1-b-1)を水系ナトリウムイオン二次電池に使用した場合の充放電曲線(電圧範囲:-0.8~0.5V)を示す(実施例2)。(b)本発明に係る電極活物質(化合物1-b-1)を水系ナトリウムイオン二次電池に使用した場合のサイクル特性を示す(実施例2)。(c)本発明に係る電極活物質(化合物1-c)を水系ナトリウムイオン二次電池に使用した場合の充放電曲線(電圧範囲:-0.8~0.5V)を示す(実施例3)。 (a)(b)本発明に係る電極活物質(化合物2-1)を水系ナトリウムイオン二次電池に使用した場合の充放電曲線(電圧範囲:(a)-0.5~0.5V、(b)-0.8~0.5V)を示す(実施例4)。(c)本発明に係る電極活物質(化合物2-1)を水系ナトリウムイオン二次電池に使用した場合のサイクル特性を示す(実施例4)。 (a)(b)本発明に係る電極活物質(化合物3-1)を水系ナトリウムイオン二次電池に使用した場合の充放電曲線(電圧範囲:(a)-0.8~0.5V、(b)-0.9~0.5V)を示す(実施例5)。(c)本発明に係る電極活物質(化合物3-1)を水系ナトリウムイオン二次電池に使用した場合のサイクル特性を示す(実施例5)。 (a)本発明に係る電極活物質(化合物4-1)を水系ナトリウムイオン二次電池に使用した場合の充放電曲線(電圧範囲:-0.8~0.5V)を示す(実施例6)。(b)本発明に係る電極活物質(化合物5)を水系ナトリウムイオン二次電池に使用した場合の充放電曲線(電圧範囲:(a)-0.8~0.5V、(b)-0.9~0.5V)を示す(実施例7)。(c)本発明に係る電極活物質(化合物5)を水系ナトリウムイオン二次電池に使用した場合のサイクル特性を示す(実施例7)。(d)(e)本発明に係る電極活物質(化合物5)の充放電に伴う構造変化についての結果((d)ex situ XRD、(e)ex situ FT-IR)を示す(実施例7)。 (a)本発明に係る電極活物質(化合物6-1)を水系ナトリウムイオン二次電池に使用した場合の充放電曲線(電圧範囲:-0.15~1.7V)を示す(実施例8)。(b)本発明に係る電極活物質(化合物6-1)を水系ナトリウムイオン二次電池に使用した場合のサイクル特性を示す(実施例8)。 (a)本発明に係る電極活物質(化合物1-a-1)を水系マグネシウムイオン二次電池に使用した場合の充放電曲線(電圧範囲:-0.8~0.6V)を示す(実施例9)。(b)本発明に係る電極活物質(化合物1-b-1)を水系マグネシウムイオン二次電池に使用した場合の充放電曲線(電圧範囲:-0.8~0.7V)を示す(実施例10)。 (a)本発明に係る電極活物質(化合物1-c)を水系マグネシウムイオン二次電池に使用した場合の充放電曲線(電圧範囲:-0.8~0.6V)を示す(実施例11)。(b)本発明に係る電極活物質(化合物2-1)を水系マグネシウムイオン二次電池に使用した場合の充放電曲線(電圧範囲:-0.8~0.6V)を示す(実施例12)。 本発明に係る電極活物質(化合物5)を水系マグネシウムイオン二次電池に使用した場合の充放電曲線(電圧範囲:-0.8~0.6V)を示す(実施例13)。
 本発明に係る電極活物質は、ピラジン環にシクロヘキサン環及び/又はベンゼン環が縮合した構造の有機化合物であって、当該シクロヘキサン環及び/又はベンゼン環が、OX基(Xは、H、Na、Li、1/2Mg、または無しのいずれか)で置換されていてもよい有機化合物を含むことを特徴としている。
 本願に係る電極活物質に含まれる前記有機化合物を構成するピラジン環の個数は、特に限定されないが、例えば、1~3とすることができる。シクロヘキサン環の個数については、特に限定されないが、例えば、0~1とすることができる。ベンゼン環の個数については、特に限定されないが、1~3とすることができる。
 OX基としては、OH基、ONa基、OLi基、O(1/2Mg)基、またはO基(オキソ基)のいずれかである。本発明に係る電極活物質を構成する有機化合物の一部に、このようなOX基が置換基として含まれていることが好ましいが、必ずしも含まれていなくてもよい。OX基が前記有機化合物に含まれる場合には、その個数は、2~4であることが好ましく、例えば、2または4とすることができる。
 このようなことから、本発明に係る電極活物質を構成する有機化合物としては、例えば、下記から選択することができる。
Figure JPOXMLDOC01-appb-C000004
 前記有機化合物にOX基が含まれる場合には、二次電池としての優れた電池特性が得られるという観点から、水溶液(水系電解質)との親和性の高いOH基や、C=O結合を有するO基(オキソ基)であることが、より好ましい。このようなことから、本発明に係る電極活物質を構成する有機化合物としては、上記の有機化合物のうち、下記のいずれかであることがより好ましい。
Figure JPOXMLDOC01-appb-C000005
 上記の有機化合物のうち、複数の環が全体として直列状に縮合した構造を有する化合物(いわゆるアセン系化合物)のほうが、複数の環が全体として折れ曲がった非直列状に縮合した構造を有する化合物(いわゆる非アセン系化合物)よりも優れた充放電特性が得られることから、下記のアザアセン系化合物を用いることがより好ましい。
Figure JPOXMLDOC01-appb-C000006
 ここでいうアザアセン系化合物とは、上述した複数の環が全体として直列状に縮合した構造を有するアセン系化合物を構成する環に、窒素原子を含むヘテロ環(ピラジン環)が一部に含まれている構造を意味している。すなわち、前記有機化合物を構成する、ベンゼン環(必須)と、ピラジン環(必須)と、シクロヘキサン環(任意)とから構成される複数の環が、全体として直列状に縮合した構造を有していることを意味している。
 これらのアザアセン系化合物は、いずれも、水系ナトリウムイオン二次電池の電極活物質として、優れた電池特性を発揮するものである。このうち、優れた充放電特性を発揮できるという点からは、2つのオキソ基を有する、化合物1-a-1(テトラアザペンタセンジオン)および化合物2-1(1,4-ジアザアントラキノン:DAAQ)が、より好ましい。これらの化合物は、2つのオキソ基を有することから、特に、アザアセンジオン系化合物ということができる。さらに、このアザアセンジオン系化合物のうち、より良好な充放電特性を発揮できるという点から、特に好ましいのは、化合物1-a-1である。
本発明に係る電極活物質としてのアザアセンジオン系化合物が示す優れた充放電特性については、そのメカニズムは詳細には解明されていないが、アザアセンジオン系化合物内の隣接するC=Nの二重結合が連動し(化合物によってはC=Oの二重結合も含めて連動し)、2価イオン(例えば、マグネシウムイオン)と可逆的に結合及び解離することによって、良好なレドックス活性が2価カチオンに発現されるものと推察される。
 本発明に係る電極活物質は、水系電解質二次電池(特に、水系リチウムイオン二次電池、水系ナトリウムイオン二次電池、および水系マグネシウムイオン二次電池)の負極に適用できる。本発明に係る電極活物質は、適した対向電極(対極)の種類を選定することによって、正極活物質としても負極活物質としても利用することができるという優れた特性を有する。これらの水系電解質二次電池の報告例は、現時点では多くはみられない。例えば、水系ナトリウム二次電池の負極に関しては、NaTi2(PO4)3および吸着反応にて充放電が進行する活性炭についての報告があるのみで、その実用化はされていない状況である。
 このように、本発明に係る電極活物質が示す高い汎用性および優れた特性については、そのメカニズムは詳細には解明されていないが、次のようなことが推察される。すなわち、本発明に係る電極活物質は、有機化合物特有の多電子反応を示すと共に、疎水性を有するものであり、さらには電解液に難溶解であることも相俟って、水の電圧範囲内での駆動に限定される水系電解質二次電池であっても、十分な作動電圧が得られ、特に低電圧の領域であっても、十分な充放電動作が行えているものと推察される。また、水系マグネシウムイオン二次電池については、現在のところ実用化までの報告は無いが、マグネシウムイオンの価数は二価であることから、一価のリチウムイオンやナトリウムイオンよりも、高い充放電特性が期待されるものである。
 なお、上述したように、本発明に係る電極活物質は、水系電解質の二次電池に適用することが好ましいものであるが、この他にも、非水系電解質の二次電池に適用することも可能である。
{本発明に係る電極活物質の製造方法}
 本発明に係る電極活物質は、公知の手法を用いて製造することができる。例えば、上述した化合物1-aを得るためには、公知文献(Chem. Eur. J. 2009, 15, 3965)と公知文献(J. Chem. Soc. 1951, 3211)あるいは公知文献(Chem. Comm. 2010, 46, 2977)を参考にして合成することができるが、例えば、公知文献(Chem. Eur. J. 2009, 15, 3965)と公知文献(J. Chem. Soc. 1951, 3211)に沿って、o-フェニレンジアミンと2,5-ジヒドロキシ-1,4-ベンゾキノンの脱水縮合とそれに引き続く酸化反応によって化合物1-aを合成することができる。この他、例えば、化合物2については、公知文献(Z. Naturforsch. 1991, 46b, 326)に沿って合成することができる。また、化合物5については、市販品をそのまま使ってもよい。
 このように、本発明に係る電極活物質は、公知の製法によって得られ、高いエネルギー密度が得られるという優れた特徴を有する。このように優れた効果を奏するメカニズムは、詳細には解明されていないが、充放電反応において、本発明に係る電極活物質に含まれるC=N結合や、OX基と炭素との結合(例えば、C=O結合やC-OH結合など)の存在によって、電子の移動が円滑化され、充放電に係る酸化還元反応が効率的に進行するものと推察される。
 本発明に係る電極活物質は、一つの態様として、水系ナトリウムイオン二次電池の正極または負極としてそのまま用いてもよいが、電極の導電性(レート特性)を向上させるために、公知の導電材との複合体を形成させてもよい。特に、炭素源を添加して混合することが好ましい。
 すなわち、本発明に従えば、レート特性を向上させる観点から、上記で得られた電極活物質を、不活性雰囲気下で炭素微粒子と共に粉砕・混合することにより、カーボンコートすることができる。不活性雰囲気としては、真空、窒素ガスやアルゴンガス等を用いることができ、例えば、アルゴンガスを用いることができる。
 このような炭素源の添加は複数回(例えば2段階)に分けて行ってもよい。この場合、第1段階では粉砕・混合、第2段階ではカーボンコートを主な狙いとすることが多い。 第1段階では、炭素源として、アセチレンブラック、グラファイトまたは、カーボンナノチューブなどを使用することができ、このうち特に、取り扱いの容易性などからアセチレンブラックを用いることが好ましい。第2段階では、ファーネスブラック、チャンネルブラック、アセチレンブラック、ケッチェンブラック、サーマルブラック等を使用することができるが、電極として使用する際の導電性の高さからアセチレンブラックが好適である。(例えば、後述の実施例参照)
 本発明に従えば、以上のようにして得られた水系ナトリウムイオン二次電池用電極が提供される。
 図1(a)は、本発明の一態様として、水系ナトリウムイオン二次電池の層構成の一例を示す図であって、積層方向に切断した断面を模式的に示した図である。なお、本発明に係わる水系電解質二次電池は、必ずしもこの例のみに限定されるものではない。
 水系電解質二次電池10は、正極活物質層2および正極集電体4を備える正極6と負極活物質層3および負極集電体5を備える負極7と、正極6と負極7に挟持される電解質層1を備える。
 このように、本発明では、一態様として、電極活物質を含有する正極と負極、その間に介在する電解質を備える水系電解質二次電池が提供され、高いエネルギー密度を発揮する。エネルギー密度が高く、低コストで製造でき、さらに取り扱いが容易な水系ナトリウム
イオン二次電池が提供される。
 本発明に使用される電極は、好ましくは上述した電極活物質を含む電極活物質層を備えるものであり、通常、これに加えて電極集電体、および当該電極集電体に接続された電極リードを備える。
[集電体]
 集電体としては、アルミニウム、チタン、ニッケル、ステンレス、銅等の導電体が用いられる。集電体の形状は、箔状、網状および多孔体状等が挙げられる。これらのなかでも、二次電池の正極作動電位において安定であり、薄膜に加工し易く、安価であるという点から、アルミニウム箔が好ましい。
[バインダー]
 バインダーとしては、熱可塑性樹脂が用いられ、具体的には、ポリフッ化ビニリデン(以下、「PVDF」と言うことがある。)、ポリテトラフルオロエチレン(以下、「PTFE」と言うことがある。)、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体および四フッ化エチレン・パーフルオロビニルエーテル系共重合体等のフッ素樹脂;ポリエチレン、ポリプロピレン等のポリオレフィン樹脂等が挙げられる。これらの熱可塑性樹脂は、1種または2種以上が組み合わされて用いられる。
[水系電解質二次電池用電極の製造方法]
 水系電解質二次電池用電極は、集電体に、活物質、導電材およびバインダーを含む電極合材を担持(積層)することによって製造される。
 集電体に、電極合材を担持する方法としては、(1)電極合材を加圧成形する方法、(2)有機溶媒等と電極合材を混合して、電極合材のペーストを調製し、そのペーストを、集電体に塗工し、さらに、集電体に塗工したペーストを乾燥した後、プレスする等して固着する方法が挙げられる。
 集電体に、ペーストを塗工する方法としては、例えば、スリットダイ塗工法、スクリーン塗工法、カーテン塗工法、ナイフ塗工法、グラビア塗工法、静電スプレー法等が挙げられる。本発明では、これらの塗工法を、複数組み合わせて用いてもよい。
本発明の電極に対向する電極(正極または負極)については、水系または非水系のリチウム、ナトリウム、またはマグネシウムの二次電池としての必要な特性において、選ぶことができる。
[水系電解質]
 本発明における水系電解質とは、アルカリイオンを含有する物質からなる水溶液であって、アルカリイオンとして、主にナトリウムイオン、マグネシウムイオン、およびリチウムイオンを含有する。
[非水系電解質]
 本発明における非水系電解質とは、アルカリイオンを含有する物質からなる液体または固体であって、アルカリイオンとして、それ以外に他のアルカリイオンを含んでいてもよい。
 水系電解質に含有されるナトリウムイオンおよびマグネシウムイオンの含有割合は、アルカリイオン全体の50質量%以上であることが好ましい。電池特性からは、さらに多い方が望ましい。
 本発明における水系電解質は、通常、電解質および水系溶媒を含有する水系電解液として用いられる。
 電解質としては、MgSOやNaSOが可能である。この他、非水系電解液として、例えば、LiClO、LiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCF、低級脂肪族カルボン酸リチウム塩、LiAlClが挙げられる。これらは、2種以上を混合した混合物を使用してもよい。
 本発明では、水系電解質以外にも、電解質に有機溶媒を用いる場合には、例えば、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、イソプロピルメチルカーボネート、ビニレンカーボネート、4-トリフルオロメチル-1,3-ジオキソラン-2-オン、1,2-ジ(メトキシカルボニルオキシ)エタン等のカーボネート類;1,2-ジメトキシエタン、1,3-ジメトキシプロパン、ペンタフルオロプロピルメチルエーテル、2,2,3,3-テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン等のエーテル類;ギ酸メチル、酢酸メチル、γ-ブチロラクトン等のエステル類;アセトニトリル、ブチロニトリル等のニトリル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類;3-メチル-2-オキサゾリドン等のカーバメート類;スルホラン、ジメチルスルホキシド、1,3-プロパンスルトン等の含硫黄化合物;または、前記の有機溶媒にさらにフッ素置換基を導入したもの等が用いられる。
 このようにして得られる水系ナトリウムイオン二次電池は、ハーフセルで得られた優れた電池特性から、従来のナトリウムイオン二次電池に比べて、充放電を繰り返した際の放電容量維持率が大きく、充放電サイクル特性に優れるものとなる。さらに、ナトリウムデンドライトの生成も抑制することができ、二次電池としての安定性に優れるものとなる。
以下に、実施例を挙げて、本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
(水系ナトリウムイオン二次電池用電極活物質の製造)
 以下、実施例1~8では、本願発明に係る、水系ナトリウムイオン二次電池用電極活物質の製造を行い、二次電池としての電池特性を確認した。
(実施例1)
(化合物1-a-1から成る電極の製造)
 本願発明に係る電極活物質として、化合物1-a-1を、公知文献(Chem. Eur. J. 2009, 15, 3965)と公知文献(Chem. Comm. 2010, 46, 2977)に沿って、o-フェニレンジアミン(関東化学株式会社製)と2,5-ジヒドロキシ-1,4-ベンゾキノン(AlfaAeser)の脱水縮合とそれに引き続く酸化反応によって合成した。この化合物1-a-1と、導電材として、アセチレンブラック(電気化学工業社製)、バインダーとして、ポリ テトラフルオロエチレン(ダイキン社製)を用い、これらが質量比で、化合物1-a-1:導電材:バインダー=50:45:5の組成となるように、それぞれを秤量した。その後、化合物1-a-1と導電材をメノウ乳鉢で十分に混合し、さらにバインダーを加え、引き続き均一になるように混合した後、その混合物を薄く延ばしてシート化した。シートを、ハンドプレスにより、集電体であるステンレスメッシュに十分に圧着し、さらに、乾燥機に入れて十分に乾燥して、第1電極(負極)を得た。なお、電池の組み立てを、アルゴン雰囲気のグローブボックス内で行った。
<二次電池特性の測定>
 水系電解液としてNaSO水溶液を用いて、本願発明に係る電極活物質(化合物1-a-1)を用いた水系ナトリウムイオン二次電池の充放電測定を行った。この充放電測定は、電解液に20mlの2M NaSO/HO、対極に直径16mmの亜鉛金属(サンクメタル社製)、参照極に銀-塩化銀電極(ビー・エー・エス株式会社製)を用いて作製したビーカーセルにて、一定充放電電流密度(電流密度:0.1mA/cm)の定電流モードに設定し室温(25 ℃)にて行った。
 充放電に伴う構造変化について、CuKα線を用いてX線回折測定(リガクTTRIIIを使用)して得られたex situ XRD結果を図1(b)に、ex situ FT-IR結果を図1(c)に示す。これらの結果から、特に大きな変化は認められなかった。
 図2(a)および(b)に、亜鉛対極に対する化合物1-a-1の充放電特性を示す(電圧範囲:(a)-0.5~0.5V、(b)-0.8~0.5V)。初回可逆容量については、銀-塩化銀参照電極に対する電圧範囲-0.5~0.5V及び-0.8~0.5Vにて各々約1.5Na、2.7Na分の反応に値する131mAh/g、230mAh/gが観測され、その放電平坦部の電圧は対Na/Na換算で2.5V、2.3Vに相当した。また、図2(c)に示すように、25サイクルを超えても充放電容量は安定的に維持されたことから、水系ナトリウムイオン電解液で良好なサイクル特性を示すことが明らかとなった。
(実施例2)
(化合物1-b-1から成る電極の製造)
 本願発明に係る電極活物質として、化合物1-b-1を、公知文献(Tetrahedron 1969, 25, 3935)に沿って、o-フェニレンジアミン(関東化学株式会社製)とロジゾン酸二水和物(AlfaAeser)の脱水縮合とそれに引き続く酸化反応によって合成した。この化合物1-b-1と、導電材として、アセチレンブラック(電気化学工業社製)、バインダーとして、ポリテトラフルオロエチレン(ダイキン社製)を用い、これらが質量比で、化合物1-b-1:導電材:バインダー=50:45:5の組成となるように、それぞれを秤量した。後は、実施例1と同様の手順で行った。
<二次電池特性の測定>
 上記実施例1と同じ条件で、本願発明に係る電極活物質(化合物1-b-1)を用いた水系ナトリウムイオン二次電池の充放電測定を行った。
 図3(a)に、亜鉛対極に対する化合物1-b-1の充放電特性を示す(電圧範囲:-0.8~0.5V)。初回可逆容量については、265mAh/gが観測された。また、図3(b)に示すように、15サイクルを超えても充放電容量は安定的に維持されたことから、水系ナトリウムイオン電解液で良好なサイクル特性を示すことが明らかとなった。
(実施例3)
(化合物1-cから成る電極の製造)
 本願発明に係る電極活物質として、化合物1-cを、公知文献(Tetrahedron 1969, 25, 3935)に沿って、o-フェニレンジアミン(関東化学株式会社製)と化合物1-b-1の脱水縮合によって合成した。後は、実施例1と同様の手順で行った。
<二次電池特性の測定>
 上記実施例1と同じ条件で、本願発明に係る電極活物質(化合物1-c)を用いた水系ナトリウムイオン二次電池の充放電測定を行った。
 図3(c)に、亜鉛対極に対する化合物1-cの充放電特性を示す(電圧範囲:-0.8~0.5V)。初回可逆容量については、240mAh/gが観測された。
(実施例4)
(化合物2-1から成る電極の製造)
 本願発明に係る電極活物質として、化合物2-1を、公知文献(Z. Naturforsch. 1991, 46b, 326)に沿って、2,3-ジクロロ-1,4-ナフトキノン(東京化成工業株式会社製)の塩素基をアミノ基に変換した後、グリオキサールトリマー2水和物(Aldrich)との脱水縮合を行うことによって合成した。この化合物2-1と、導電材として、アセチレンブラック(電気化学工業社製)、バインダーとして、ポリテトラフルオロエチレン(ダイキン社製)を用い、これらが質量比で、化合物2-1:導電材:バインダー=50:45:5の組成となるように、それぞれを秤量した。後は、実施例1と同様の手順で行った。
<二次電池特性の測定>
 図4(a)および(b)に、亜鉛対極に対する化合物2-1の充放電特性を示す(電圧範囲:(a)-0.5~0.5V、(b)-0.8~0.5V)。初回可逆容量については、電圧範囲-0.5~0.5V及び-0.8~0.5Vにて各々92mAh/g、185mAh/gが観測された。また、図4(c)に示すように、-0.5~0.5Vの電圧範囲において、40サイクルを超えても充放電容量は安定的に維持されたことから、水系ナトリウムイオン電解液で良好なサイクル特性を示すことが明らかとなった。
(実施例5)
(化合物3-1から成る電極の製造)
 本願発明に係る電極活物質として、化合物3-1を、公知文献(Tetrahedron 1969, 25, 3935)に沿って、o-フェニレンジアミン(関東化学株式会社製)とロジゾン酸二水和物(AlfaAeser)の脱水縮合によって合成した。後は、実施例1と同様の手順で行った。
<二次電池特性の測定>
 図5(a)および(b)に、亜鉛対極に対する化合物3-1の充放電特性を示す(電圧範囲:(a)-0.8~0.5V、(b)-0.9~0.5V)。初回可逆容量については、電圧範囲-0.8~0.5V及び-0.9~0.5Vにて各々290mAh/g、480mAh/gが観測された。また、図5(c)に示すように、30サイクルを超えても充放電容量は安定的に維持されたことから、水系ナトリウムイオン電解液で良好なサイクル特性を示すことが明らかとなった。
(実施例6)
(化合物4-1から成る電極の製造)
 本願発明に係る電極活物質として、化合物4-1を、公知文献(Tetrahedron 1969, 25, 3935)に沿って、o-フェニレンジアミン(関東化学株式会社製)とテトラヒドロキシ-1,4-ベンゾキノン(東京化成工業株式会社製)の脱水縮合とそれに引き続く酸化反応によって合成した。後は、実施例1と同様の手順で行った。
<二次電池特性の測定>
 図6(a)に、亜鉛対極に対する化合物4-1の充放電特性を示す(電圧範囲:-0.8~0.5V)。初回可逆容量については、300mAh/gが観測されたことから、水系ナトリウムイオン電解液で良好な充放電特性を示すことが明らかとなった。
(実施例7)
(化合物5から成る電極の製造)
 本願発明に係る電極活物質として、化合物5(東京化成工業株式会社製)を用い、後は、実施例1と同様の手順で行った。
<二次電池特性の測定>
 上記実施例1と同じ条件で、本願発明に係る電極活物質(化合物1-b-1)を用いた水系ナトリウムイオン二次電池の充放電測定を行った。
 図6(b)に、亜鉛対極に対する化合物1-b-1の充放電特性を示す(電圧範囲:-0.8~0.5V)。初回可逆容量については、350mAh/gが観測された。また、図6(c)に示すように、35サイクルを超えても充放電容量は安定的に維持されたことから、水系ナトリウムイオン電解液で良好なサイクル特性を示すことが明らかとなった。
 充放電に伴う構造変化について、CuKα線を用いてX線回折測定(リガクTTRIIIを使用)して得られたex situ XRD結果を、図6(d)に示す。充放電に伴う化合物5の構造変化を見ると、2Na放電時に大きく構造変化しているものの、充電末端では再度イニシャル構造に戻っていることが確認された。このことから化合物5は二相反応的に充放電が進行していることが示唆された。また、充放電に伴う構造変化について、ex situ FT-IR結果を、図6(e)に示す。FT-IR測定結果から、放電時、特に1300、1500付近に顕著な変化が認められたが、充電により可逆性よく初期状態にIRプロファイルが復帰していることが確認された。
(実施例8)
(化合物6-1から成る電極の製造)
 本願発明に係る電極活物質として、化合物6-1を、公知文献(Tetrahedron 1969, 25, 3935)に沿って、o-フェニレンジアミン(関東化学株式会社製)とテトラヒドロキシ-1,4-ベンゾキノン(東京化成工業株式会社製)の脱水縮合によって合成した。後は、実施例1と同様の手順で行った。
<二次電池特性の測定>
 上記実施例1と同じ条件で、本願発明に係る電極活物質(化合物6-1)を用いた水系ナトリウムイオン二次電池の充放電測定を行った。
 図7(a)に、亜鉛対極に対する化合物6-1の充放電特性を示す(電圧範囲:-0.15~1.7V)。初回可逆容量については、220mAh/gが観測された。また、図7(b)に示すように、25サイクルを超えても充放電容量は安定的に維持されたことから、水系ナトリウムイオン電解液で良好なサイクル特性を示すことが明らかとなった。
(水系マグネシウムイオン二次電池用電極活物質としての測定)
 以下の実施例では、上記で得た化合物1-a-1、化合物1-b-1、化合物c、化合物2-1、および化合物5および化合物cを用いて、本願発明に係る、水系マグネシウムイオン二次電池用電極活物質としての、充放電特性を確認した。
(実施例9)
(化合物1-a-1から成る電極)
<二次電池特性の測定>
 水系電解液としてMgSO水溶液を用いて、本願発明に係る電極活物質(化合物1-a-1)を用いた水系マグネシウムイオン二次電池の充放電測定を行った。この充放電測定は、電解液に20mlの3M MgSO/HO、対極に直径16mmの亜鉛金属(サンクメタル社製)、参照極に銀-塩化銀電極(ビー・エー・エス株式会社製)を用いて作製したビーカーセルにて、一定充放電電流密度(電流密度:0.2mA/cm)の定電流モードに設定し室温(25 ℃)にて行った。
 図8(a)に、亜鉛対極に対する化合物1-a-1の充放電特性を示す(電圧範囲:-0.8~0.6V)。初回可逆容量については、280mAh/gが観測された。また、充放電において3.6電子反応を奏するという優れた充放電特性が確認された。
(実施例10)
(化合物1-b-1から成る電極)
<二次電池特性の測定>
 上記実施例9と同じ条件で、本願発明に係る電極活物質(化合物1-b-1)を用いた水系マグネシウムイオン二次電池の充放電測定を行った。
 図8(b)に、亜鉛対極に対する化合物1-b-1の充放電特性を示す(電圧範囲:-0.8~0.7V)。初回可逆容量については、195mAh/gが観測された。また、充放電において2.6電子反応を奏するという優れた充放電特性が確認された。
(実施例11)
(化合物1-cから成る電極)
<二次電池特性の測定>
 上記実施例9と同じ条件で、本願発明に係る電極活物質(化合物1-c)を用いた水系マグネシウムイオン二次電池の充放電測定を行った。亜鉛対極に対する化合物1-cの充放電特性を図9(a)に示す(電圧範囲:-0.8~0.6V)。初回可逆容量については、250mAh/gが観測された。
(実施例12)
(化合物2-1から成る電極)
<二次電池特性の測定>
 上記実施例9と同じ条件で、本願発明に係る電極活物質(化合物2-1:DAAQ)を用いた水系マグネシウムイオン二次電池の充放電測定を行った。
 図9(b)に、亜鉛対極に対する化合物2-1の充放電特性を示す(電圧範囲:-0.8~0.6V)。初回可逆容量については、208mAh/gが観測された。
(実施例13)
(化合物5から成る電極)
<二次電池特性の測定>
 上記実施例9と同じ条件で、本願発明に係る電極活物質(化合物5)を用いた水系マグネシウムイオン二次電池の充放電測定を行った。
 図10に、亜鉛対極に対する化合物5の充放電特性を示す(電圧範囲:-0.8~0.6V)。10サイクル、20サイクル、30サイクル、とサイクルを加えるごとに、充放電容量が増大し、図中にはないが40サイクルでは93mAh/gとなることが確認された。
以上の実施例では、ハーフセルで十分な電池特性が得られていることから、対向する電極を選定することによって、フルセルの二次電池としても上記と同様に、良好な電池特性が得られるものである。
 1  電解質層
 2  正極層
 3  負極層
 4  正極集電体
 5  負極集電体
 6  正極
 7  負極
 10 水系電解質二次電池

Claims (6)

  1.  ピラジン環にシクロヘキサン環及び/又はベンゼン環が縮合した構造の有機化合物であって、当該シクロヘキサン環及び/又はベンゼン環が、OX基(Xは、H、Na、Li、1/2Mg、または無しのいずれか)で置換されていてもよい有機化合物を含むことを特徴とする二次電池用の電極活物質。
  2.  有機化合物が下記から選択されることを特徴とする請求項1に記載の電極活物質。
    Figure JPOXMLDOC01-appb-C000001
  3.  有機化合物が下記から選択されることを特徴とする請求項2に記載の電極活物質。
    Figure JPOXMLDOC01-appb-C000002
  4.  有機化合物が下記のアザアセン系化合物から選択されることを特徴とする請求項3に記載の電極活物質。
    Figure JPOXMLDOC01-appb-C000003
  5.  正極または負極に請求項1~4のいずれかに記載の電極活物質を備え、ナトリウム水溶液を電解液とすることを特徴とする水系ナトリウムイオン二次電池。
  6.  正極または負極に請求項1~4のいずれかに記載の電極活物質を備え、マグネシウム水溶液を電解液とすることを特徴とする水系マグネシウムイオン二次電池。
PCT/JP2015/060019 2014-03-28 2015-03-30 電極活物質 WO2015147326A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016510583A JPWO2015147326A1 (ja) 2014-03-28 2015-03-30 電極活物質

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-070550 2014-03-28
JP2014070550 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015147326A1 true WO2015147326A1 (ja) 2015-10-01

Family

ID=54195828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060019 WO2015147326A1 (ja) 2014-03-28 2015-03-30 電極活物質

Country Status (2)

Country Link
JP (1) JPWO2015147326A1 (ja)
WO (1) WO2015147326A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019017846A1 (en) * 2017-07-20 2019-01-24 Agency For Science, Technology And Research HEXAAZATRIPHENYLENE DERIVATIVES AND GRAPHENE OXIDE COMPOSITES
CN113422053A (zh) * 2021-05-12 2021-09-21 暨南大学 基于三环喹唑啉及其衍生物的电池负极材料及其在碱金属离子电池中的应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110212203B (zh) * 2019-05-22 2022-06-21 南京大学 一种碱性羟基吩嗪类有机液流电池及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257431A (ja) * 2002-03-04 2003-09-12 Nec Tokin Corp キノキサリン系化合物を用いた蓄電素子
JP2012079479A (ja) * 2010-09-30 2012-04-19 Murata Mfg Co Ltd 電極活物質及び二次電池
WO2012121145A1 (ja) * 2011-03-10 2012-09-13 株式会社 村田製作所 電極活物質、電極、及び二次電池
JP2013229321A (ja) * 2012-03-28 2013-11-07 Sumitomo Chemical Co Ltd ナトリウム二次電池用活物質、ナトリウム二次電池用電極、ナトリウム二次電池
WO2014141696A1 (ja) * 2013-03-11 2014-09-18 パナソニック株式会社 蓄電デバイス用電極活物質および蓄電デバイス

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257431A (ja) * 2002-03-04 2003-09-12 Nec Tokin Corp キノキサリン系化合物を用いた蓄電素子
JP2012079479A (ja) * 2010-09-30 2012-04-19 Murata Mfg Co Ltd 電極活物質及び二次電池
WO2012121145A1 (ja) * 2011-03-10 2012-09-13 株式会社 村田製作所 電極活物質、電極、及び二次電池
JP2013229321A (ja) * 2012-03-28 2013-11-07 Sumitomo Chemical Co Ltd ナトリウム二次電池用活物質、ナトリウム二次電池用電極、ナトリウム二次電池
WO2014141696A1 (ja) * 2013-03-11 2014-09-18 パナソニック株式会社 蓄電デバイス用電極活物質および蓄電デバイス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QIN TANG ET AL.: "Benzenoid and Quinonoid Nitrogen-Containing Heteropentacenes", CHEMISTRY A EUROPEAN JOURNAL, vol. 15, no. 16, pages 3965 - 3969, XP055225262, ISSN: 0947-6539 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019017846A1 (en) * 2017-07-20 2019-01-24 Agency For Science, Technology And Research HEXAAZATRIPHENYLENE DERIVATIVES AND GRAPHENE OXIDE COMPOSITES
CN113422053A (zh) * 2021-05-12 2021-09-21 暨南大学 基于三环喹唑啉及其衍生物的电池负极材料及其在碱金属离子电池中的应用

Also Published As

Publication number Publication date
JPWO2015147326A1 (ja) 2017-04-13

Similar Documents

Publication Publication Date Title
Dall’Asta et al. Aqueous processing of Na0. 44MnO2 cathode material for the development of greener Na-ion batteries
Ding et al. Electrochemical performance of hard carbon negative electrodes for ionic liquid-based sodium ion batteries over a wide temperature range
JP5348170B2 (ja) リチウム二次電池用負極及びリチウム二次電池
Damien et al. Fluorinated graphene based electrodes for high performance primary lithium batteries
JP6423794B2 (ja) ナトリウムイオン二次電池用正極材料
JP5897971B2 (ja) 電極活物質、非水系二次電池用電極、非水系二次電池及び非水系二次電池用電極の製造方法
RU2619600C2 (ru) Электродный материал для металл-ионных аккумуляторов, способ его получения, электрод и аккумулятор на основе электродного материала
JP6120160B2 (ja) ナトリウムイオン電池用の正極活物質およびその製造方法
US20140065492A1 (en) Sodium secondary battery electrode and sodium secondary battery
CN103928702B (zh) 蓄电元件及其制造方法
JP5966992B2 (ja) リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極及びリチウムイオン二次電池
WO2016167302A1 (ja) 硫化物固体電解質の製造方法及び硫黄系材料
JP5312099B2 (ja) 正極活物質の製造方法及び正極活物質
Zhong et al. Micro/nano-structured SnS 2 negative electrodes using chitosan derivatives as water-soluble binders for Li-ion batteries
JP6273584B2 (ja) 複合金属酸化物、複合金属酸化物の製造方法およびナトリウム二次電池
Wang et al. Zinc terephthalates ZnC8H4O4 as anodes for lithium ion batteries
WO2015147326A1 (ja) 電極活物質
JP2015198007A (ja) 非水系二次電池用電極及び非水系二次電池
Wang et al. Engineering the interplanar spacing of K-birnessite for ultra-long cycle Zn-ion battery through “hydrothermal potassium insertion” strategy
KR102120071B1 (ko) 코팅층을 구비하는 양극활물질 제조방법, 이를 포함하여 제조된 양극 및 이를 포함하는 나트륨이온 이차전지
CN110832682B (zh) 非水性二次电池用的正极活性物质及使用其的非水性二次电池
Deng et al. Disodium terephthalate/multiwall-carbon nanotube nanocomposite as advanced anode material for Li-ion batteries
JP6137747B2 (ja) ナトリウム二次電池用活物質、ナトリウム二次電池用電極、ナトリウム二次電池
US20150044557A1 (en) Negative electrode active material for sodium-ion battery, and sodium-ion battery
JP2017045538A (ja) ケイ酸塩を含む二次電池用正極材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15770318

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016510583

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15770318

Country of ref document: EP

Kind code of ref document: A1