RU2619600C2 - Электродный материал для металл-ионных аккумуляторов, способ его получения, электрод и аккумулятор на основе электродного материала - Google Patents

Электродный материал для металл-ионных аккумуляторов, способ его получения, электрод и аккумулятор на основе электродного материала Download PDF

Info

Publication number
RU2619600C2
RU2619600C2 RU2015141117A RU2015141117A RU2619600C2 RU 2619600 C2 RU2619600 C2 RU 2619600C2 RU 2015141117 A RU2015141117 A RU 2015141117A RU 2015141117 A RU2015141117 A RU 2015141117A RU 2619600 C2 RU2619600 C2 RU 2619600C2
Authority
RU
Russia
Prior art keywords
electrode material
metal
mixture
electrode
phosphate
Prior art date
Application number
RU2015141117A
Other languages
English (en)
Other versions
RU2015141117A (ru
Inventor
Станислав Сергеевич Федотов
Нелли Ракиповна Хасанова
Александр Шайлович Самарин
Евгений Викторович Антипов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ)
Priority to RU2015141117A priority Critical patent/RU2619600C2/ru
Priority to PCT/RU2016/050030 priority patent/WO2017058061A1/ru
Publication of RU2015141117A publication Critical patent/RU2015141117A/ru
Application granted granted Critical
Publication of RU2619600C2 publication Critical patent/RU2619600C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

Изобретение относится к электротехнике, а именно к разработке нового типа электродного материала на основе фторидофосфатов переходных и щелочных металлов для металл-ионных аккумуляторов для применения в крупногабаритных устройствах в альтернативной энергетике. Полученный электродный материал формулы A(M1-xM'x)PO4(F1-yOy) с кристаллической структурой типа «калий-титанил-фосфат» (КТР), где А представляет собой щелочной металл, М - переходный металл, М' - металл, используемый в качестве модифицирующей добавки, где 0≤х≤0,3; 0≤у≤1. Кристаллическая структура синтезированного материала имеет ромбическую сингонию и прочный трехмерный каркас, построенный из полиэдров, в протяженных полостях которого находятся атомы щелочного металла. Полученный материал обладает удельной энергоемкостью более 600 Втч/кг, способен работать при скоростях циклирования свыше 10С с изменением объема при циклировании, не превышающим 5%, что является техническим результатом изобретения. 6 н. и 7 з.п. ф-лы, 6 ил., 3 табл., 19 прим.

Description

Область техники
Изобретение относится к электротехнике, а именно к разработке нового типа электродного материала на основе фторидофосфатов переходных и щелочных металлов для металл-ионных аккумуляторов для применения в крупногабаритных устройствах в альтернативной энергетике.
Уровень техники
Химические источники тока - аккумуляторы - широко распространены в различных областях человеческой деятельности. Основная задача аккумулятора - обеспечение энергией устройств в отсутствие прямого доступа к энергетическим сетям. В частности, благодаря литий-ионным аккумуляторам стало возможным появление современной портативной электроники: смартфонов, лэптопов, ноутбуков. Основными компонентами аккумулятора, ограничивающими удельные энергетические характеристики, являются электродные материалы.
В настоящее время в аккумуляторах, применяемых в мобильных устройствах, используются материалы на основе слоистых оксидов LiMO2 (М=Mn, Со, Ni). Однако, несмотря на довольно высокую удельную емкость, данные материалы не могут использоваться в крупномасштабных приложениях, таких как стационарные накопители энергии или электротранспорт, ввиду проблем с безопасностью, связанных с неустойчивостью кристаллической структуры. При работе таких материалов, особенно при неравномерном заряжении или перезаряжении, может произойти выделение активного кислорода, приводящее к возгоранию электролита и последующему разрушению аккумулятора.
Наиболее распространенным электродным материалом для крупногабаритных устройств является LiFePO4 со структурой оливина, удельная энергоемкость которого составляет 583 Втч/кг. Основные минусы данного материала связаны с невысоким рабочим потенциалом и, как следствие, малой энергоемкостью, а также с довольно большим изменением объема в процессе циклирования ~7%. Кроме того, LiFePO4 обладает низкими мощностными показателями, которые обусловлены двухфазным механизмом де/интеркаляции ионов Li+.
Известен электродный материал Li3V2(PO4)3, обладающий высокой ионной проводимостью, который является основным кандидатом в качестве катодного материала для высокомощных устройств. Однако данный материал претерпевает значительное изменение объема при циклировании (около 8%), что может негативно отразиться на деградационной устойчивости материала [Rui, X., Yan, Q., Skyllas-Kazacos, M, Lim, Т.M. (2014). Journal of Power Sources 258, 19-38].
Известен электродный материал LiFeSO4F со структурой калий-титанил фосфата (КТР). Однако данный материал имеет низкую энергоемкость - 558 Втч/кг, что снижает его привлекательность для использования в крупногабаритных устройствах. Более того, для данного соединения нет данных о мощностных характеристиках. [Recham, N.; Gwenaelle, R.; Sougrati, M.Т.; Chotard, J.-N.; Frayret, С; Mariyappan, S.; Melot, В.C; Jumas, J.-C; Tarascon, J.-M. (2012) Chem. Mater., 24, 4363-4370].
Наиболее близким к заявляемому изобретению является материал на основе LiVPO4F со структурой таворита (US 6645452 В1). Обладая сравнимыми величинами удельной энергоемкости, катодные материалы на основе LiVPO4F с энергоемкостью 655 Втч/кг имеют серьезный конструктивный недостаток - большое изменение объема при протекании процессов заряда-разряда - ~8.5% [Ellis, В.L., Ramesh, Т.N., Davis, L.J.М., Goward, G.R. & Nazar, L.F. (2011). Chem. Mater. 23, 5138-5148]. В связи с этим, стабильное циклирование данного материала в долгосрочной перспективе (более 500-1000 циклов) ставится под сомнение. Кроме того, данный тип материалов имеет весьма невысокие кинетические характеристики, а именно коэффициенты диффузии ионов Li+ составляют 10-12÷10-18 см2/с, что препятствует его применению в устройствах высокой мощности [Xiao, P.F., Lai, М.О., Lu L. (2013), Solid State Ionics, 242, 10-19].
Раскрытие изобретения
Задачей настоящего изобретения являлось создание электродного материала с уникальным сочетанием структуры и элементного состава, обеспечивающего удельную энергоемкостью более 600 Втч/кг, способного работать при скоростях циклирования свыше 10С и изменением объема при циклировании не превышающим 5%, т.е. ориентированного на использование в устройствах для аккумулирования энергии, в том числе и в высокомощных источниках тока с повышенной удельной энергией.
Поставленная задача достигается тем, что в качестве электродного материала для металл-ионных аккумуляторов использован материал на основе фторидофосфатов переходных и щелочных металлов общей формулой A(M1-xM'x)PO4(F1-yOy) с кристаллической структурой «калий-титанил-фосфат» (КТР), ранее не использовавшийся в сочетании с указанным химическим составом в материалах для металл-ионных аккумуляторов, где А представляет собой щелочной металл, М - переходный металл, М' - металл, используемый в качестве модифицирующей добавки, где 0≤х≤0,3; 0≤y≤1.
Предпочтительно в качестве щелочного металла (А) используют Li и/или Na, и/или K, и/или Rb.
Предпочтительно в качестве переходного металла (М) используют Ti, V, Nb, Cr, Mo, Mn, Fe или их смесь.
Предпочтительно в качестве модифицирующей добавки (М') используют Mg, Zn, Al, Ga или их смесь.
Также поставленная задача достигается способом получения электродного материала формулы A(M1-xM'x)PO4(F1-yOy), где в качестве щелочного металла (А) выступает K и/или Rb, включающий получение фосфата M1-xM'xOyPO4 методом сублимационной сушки с последующим отжигом или керамическим синтезом, с последующим смешением полученного фосфата с AF, AHF2, А2СО3 или смесью NH4F и А2СО3 и отжигом полученной смеси.
Поставленная задача достигается способом получения электродного материала формулы A(M1-xM'x)PO4(F1-yOy), где в качестве щелочного металла (А) выступает Li и/или Na, или смесь с K и/или Rb, включающий получение электродного материала формулы A(M1-xM'x)PO4(F1-yOy), где в качестве щелочного металла (А) выступает K и/или Rb с последующим полным или частичным замещением K и/или Rb на Li и/или Na.
Предпочтительно замещение K и/или Rb на Li и/или Na осуществляют с использованием ионного обмена или электрохимического замещения.
Технический результат от использования предлагаемого технического решения заключается в том, что получен электродный материал формулы A(M1-xM'x)PO4(F1-yOy) с кристаллической структурой «калий-титанил-фосфат» (КТР), где А представляет собой щелочной металл, М - переходный металл, М' - металл, используемый в качестве модифицирующей добавки, где 0≤х≤0,3; 0≤у≤1, который обладает удельной энергоемкостью более 600 Втч/кг, способен работать при скоростях циклирования свыше 10С с изменением объема при циклировании, не превышающим 5%.
Предлагаемый электродный материал с кристаллической структурой «калий-титанил-фосфат» (КТР) может быть отнесен к высокомощным электродным материалам, способным стабильно работать при высоких скоростях циклирования 10÷40С (время разряда 5 минут - 90 секунд соответственно) с сохранением более 50% от первоначальной удельной емкости (материал с размером частиц порядка 300 нм). Добиться данных величин удельной емкости при столь высоких токах позволяют высокие кинетические характеристики данного материала, а именно коэффициенты диффузии Li+, в среднем равные 10-9÷10-13 см2/с, что достигается за счет специфической кристаллической структуры материалов, представляющей собой прочный трехмерный каркас, построенный из полиэдров M1-xM'xO6-2yF2y и РО4 и формирующий объемные протяженные каналы, в которых находятся подвижные ионы А+, способные к быстрой миграции.
К преимуществам предлагаемого электродного материала можно отнести малое изменение объема при электрохимических процессах заряда-разряда. Для материала с составом AVPO4F этот показатель составил ~3%, что делает возможным его многократное циклирование (более 1000 циклов) без значительных механических деформаций, ведущих к разрушению электрода. Другим достоинством описываемого электродного материала является высокая ионная проводимость, характерная для данного структурного типа (до 10-4÷10-5 См/см).
По величине энергоемкости данный электродный материал не уступает известным аналогам, таким как LiVPO4F со структурой таворита (655 Втч/кг) и превосходит множество других, таких как LiFePO4 со структурой оливина (583 Втч/кг). Величина энергоемкости предлагаемого электродного материала состава LiVPO4F составляет 600÷660 Втч/кг. Величина объемной плотности энергии нового электродного материала со структурой КТР оказывается незначительно ниже в сравнении с некоторыми известными аналогами (~2040 Втч/л против 2135 Втч/л для LiFePO4 и 2140 Втч/л для LiVPO4F со структурой таворита), однако во многих областях применения, связанных с крупногабаритными устройствами (например, в альтернативной энергетике), данная характеристика не имеет решающего значения.
При варьировании химического состава заявленный электродный материал проявляет электрохимическую активность в различных интервалах значений потенциалов: при значении потенциала выше 3.0 В (относительно Li/Li+) материал выступает как катод, при значении потенциала ниже 2.5 В проявляет свойства анодного материала.
Для подтверждения получения указанного технического результата были изготовлены образцы заявленного электродного материала формулы A(M1-xM'x)PO4(F1-yOy), а именно KVPO4F, KV0.9Al0.1PO4F, RbVPO4F, KV0.75Cr0.25PO4F, KVPO4F0.5O0.5, KTiPO4F, LiVPO4F и др., проанализированы необходимым для данной области техники спектром физико-химических методов исследования.
Фазовый состав установлен методом рентгенофазового анализа (РФА) с использованием дифрактометра Bruker D2 PHASER при Cu-Kα излучении и λ=1,5406
Figure 00000001
. Все полученные образцы являются однофазными.
Химический состав образцов подтвержден методами атомно-эмиссионной спектроскопии с индуктивно связанной плазмой (АЭС-ИП) на спектрометре Agilent ICP-OES 5100 (Agilent Technologies) и локальным рентгеноспектральным анализом на просвечивающем электронном микроскопе (ПЭМ-ЛРСА) с коррекцией аббревиации Titan G3 при рабочем напряжении 120 кВ. Так, например, в материале KVPO4F соотношение K:V:P составляет 1.00(5): 1.10(8): 1.13(5), что соответствует в пределах допустимой погрешности приписываемой химической формуле.
Морфология частиц перечисленных материалов изучена методом растровой электронной микроскопии (РЭМ) на приборе Carl Zeiss NVision 40 с использованием LaB6 катода с полевой эмиссией и In-Lens-детектора при ускоряющем напряжении 10÷20 кВ. Частицы материала имеют овальную форму с линейными размерами 100÷500 нм. Содержание остаточного углерода в образцах установлено методом термогравиметрии (ТГ) в атмосфере воздуха на термическом анализаторе TG-DSC STA-449 apparatus (Netzsch, Germany) и не превышает 5% масс.
Определение кристаллической структуры образцов проведено методом Ритвельда. Показано, что заявленный электродный материал кристаллизуется в ромбической сингонии. Так, например, для материала с формулой KVPO4F (пространственная группа #33 Pna21) параметры элементарной ячейки: а=12.8201(3)
Figure 00000001
, b=6.3957(2)
Figure 00000001
, с=10.6118(2)
Figure 00000001
и V=870.10(3)
Figure 00000001
3; χ2=1.59, Rp=5.11%, Rwp=6.69% (фиг. 1).
Кристаллическая структура электродного материала заявленной формулы построена из соединенных вершинами октаэдров M1-xM'xO4X2 (X=F, О), образующих зигзагообразные цепочки, связанные между собой тетраэдрами РО4 в прочный трехмерный каркас, в протяженных полостях которого находятся атомы щелочного металла. В зависимости от природы подвижного иона в указанных материалах можно наблюдать одномерную (в случае рубидия и калия или их смесей с натрием или литием) или трехмерную (натрий, литий) систему диффузионных каналов, что продемонстрировано с помощью построения карт валентных усилий связей (фиг. 2). Степень окисления M1-xM'x подтверждена методом спектроскопии характеристических потерь энергии электронов (фиг. 3). Методом инфракрасной спектроскопии, проведенной на Agilent Carry 630 FT-IR, подтверждена химическая формула материала, показано отсутствие адсорбированной и/или кристаллизационной Н2О, а также гидроксильных групп (фиг. 4).
Для измерения электрохимических свойств заявленного электродного материала были приготовлены электроды (пример 17), далее собраны двухэлектродные прижимные ячейки (пример 18). В результате проведенных измерений было установлено, что заявленный электродный материал проявляет электрохимическую активность в интервалах потенциалов 1.0÷5.1 В отн. Li/Li+ в зависимости от химического состава и может служить как материалом для положительного электрода (катода, >3 В), так и для отрицательного (анода, <2.5 В). Так, например, материал формулы KVPO4F демонстрирует свойства высоковольтного катодного материала - диапазон потенциалов 3.0×4.8 В отн. Li/Li+, теоретическая удельная емкость 130 Ач/кг.
Электрохимические процессы в заявленном электродном материале характеризуются высокими скоростями протекания. Так для материала состава LiVPO4F коэффициенты диффузии ионов Li+, рассчитанные по методу потенциостатического прерывистого титрования составляют 10-9÷10-13 см2/с, низкой величиной поляризацией - не более 50 мВ при скорости циклирования С/10, и малой потерей удельной емкости при длительном циклировании ~25% за 100 циклов на скорости циклирования 1С.
Для подтверждения энергоемкости заявленного электродного материала проведены гальваностатические измерения при силе тока С/20. Интегрирование полученной экспериментальной зависимости в координатах потенциал (В) - удельная емкость (Ач/кг) позволяет оценить величину удельной энергоемкости (600÷660 Втч/кг для состава AVPO4F).
Работоспособность заявляемого электродного материала при скоростях циклирования 10÷40С продемонстрирована в серии непрерывных гальваностатических измерений с последовательным увеличением величины силы тока разряда от 1/10 до 40 эквивалентов С. По результатам тестирования электродный материал стабильно удерживает более 50% от теоретической емкости при скоростях выше 10С. Данные, подтверждающие представлены на фиг. 5Б для KVPO4F и фиг. 6Б для LiVPO4F.
Краткое описание чертежей
Сущность изобретения поясняется чертежами.
На фиг. 1 представлена дифрактограмма электродного материала состава KVPO4F, полученная с использованием CuKα излучения (λ=1,5406
Figure 00000001
). Дифрактограмма проиндицирована в ромбической сингонии (пространственная группа Pna21 с параметрами элементарной ячейки а=12.8201(3)
Figure 00000001
, b=6.3957(2)
Figure 00000001
, с=10.6118(2)
Figure 00000001
. На вставке показана кристаллическая структура KVPO4F, соответствующая структурному типу КТР.
На фиг. 2 показаны карты валентных усилий для электродного материала А) состава KVPO4F и Б) состава L1VPO4F. Синим цветом (1) обозначены октаэдры M1-xM'xO6-2yF2y, оранжевым (2) - тетраэдры РО4, белые сферы (3) - ионы K+.
На фиг. 3 представлен спектр характеристических потерь электронов (VL2,3 - край) для электродного материала состава KVPO4F.
На фиг. 4 приведен ИК-спектр электродного материала состава KVPO4F.
На фиг. 5 приведены результаты электрохимического тестирования электродного материала состава KVPO4F в модельной ячейке в интервале потенциалов 2.0÷4.7 В отн. Li/Li+, при комнатной температуре: А) кривые гальваностатического циклирования при скорости С/5; Б) разрядные кривые при различных скоростях циклирования; В) зависимость удельной емкости от номера цикла при различных скоростях циклирования. Удельная энергоемкость материала (Втч/кг) определяется как произведение удельной емкости (Ач/кг) на усредненную величину потенциала (В).
На фиг. 6 представлены результаты электрохимического тестирования электродного материала состава L1VPO4F, полученного заряжением исходных KVPO4F электродов до 4.8 В отн. Li/Li+ на скорости С/20, выдерживанием на данном потенциале в течение 5 часов для удаления ионов K+ и последующей промывкой диметилкарбонатом. На основе полученных электродов собраны модельные двухэлектродные ячейки, которые протестированы в интервале потенциалов 2.0÷4.7 В отн. Li/Li+, при комнатной температуре: А) кривые гальваностатического циклирования при скорости С/5; Б) разрядные кривые при различных скоростях циклирования; В) зависимость удельной емкости от номера цикла при различных скоростях циклирования. Удельная энергоемкость материала (Втч/кг) определяется как произведение удельной емкости (Ач/кг) на усредненную величину потенциала (В).
Осуществление изобретения
Электродный материал формулы A(M1-xM'x)PO4(F1-yOy) со структурой КТР синтезируется двустадийным керамическим методом.
На первой стадии, синтезируют фосфат M1-xM'xOyPO4, который может быть получен с использованием метода сублимационной сушки или традиционным керамическим синтезом.
В случае использования метода сублимационной сушки однозамещенный или двузамещенный фосфат аммония (NH4H2PO4 или (NH4)2HPO4) и соответствующие соли переходного металла М и металла М' растворяют в дистиллированной Н2О при постоянном перемешивании при 50÷100°С, с добавлением источника углерода и восстанавливающего агента. Образовавшийся раствор распыляют в жидкий азот и подвергают сублимации при давлении не выше 10-2 атм. в течение 48÷72 часов. Полученный криогранулят отжигают при 700÷900°С в течение 3÷10 часов, контролируя парциальное давление кислорода в системе в зависимости от степени окисления переходного металла, используемого в электродном материале.
Предпочтительно используемые соли переходного металла М и металла М' представлены в таблице 1.
Figure 00000002
В качестве восстанавливающего агента могут быть использованы аскорбиновая кислота, лимонная кислота, уксусная кислота, глюкоза, сахароза.
При получении M1-xM'xOyPO4 керамическим синтезом фосфат аммония (NH4H2PO4 или (NH4)2HPO4), реагенты, содержащие М и М', а также углеродный источник (на данном этапе в качестве углеродного источника могут быть различные формы углерода, в т.ч. сажа, графит, углеродные нанотрубки, графен, или органические соединения, такие как аскорбиновая кислота, лимонная кислота, уксусная кислота, глюкоза, сахароза) тщательно перетирают и гомогенизируют в шаровой мельнице, а затем отжигают при 700÷950°С в течение 10÷20 часов, поддерживая постоянное парциальное давление кислорода в системе.
В качестве реагентов, содержащих М и М', можно использовать соединения, представленные в таблице 2.
Figure 00000003
На второй стадии, полученный M1-xM'xOyPO4 смешивают с AF, AHF2, А2СО3 или смесью NH4F и А2СО3 и отжигают в потоке аргона (или азота) при 550÷675°С в течение 30÷90 минут с последующей закалкой до комнатной температуры. Количество остаточной сажи в фосфате M1-xM'xOyPO4 определяют химически или методами термогравиметрии.
В результате получают электродный материал формулы A(M1-xM'x)PO4(F1-yOy), кристаллизующийся в ромбической сингонии.
Для приготовления композитного материала тщательно смешивают 60-99% масс, полученного электродного материала с одной или несколькими электропроводящими добавками и одним или несколькими связующими. Содержание электропроводящих добавок в составе композитного материала может варьироваться от 0,5% до 20% масс, связующего - так же от 0,5% до 20% масс. Смесь равномерно наносят на алюминиевую или медную подложку (токосъемник), предварительно сушат и прокатывают на вальцах. Затем вырезают электроды диаметром 16 мм, взвешивают и окончательно высушивают при пониженном давлении (10-2 атм) при 110°С в течение 4 часов для удаления остаточной воды и растворителя [Thorat I.V., Mathur V., Harb J.N., Wheeler D.R. (2006), Journal of Power Sources, 162, 673-678].
Толщина слоя активного материала (каждого слоя активного материала на одной из поверхностей каждого токосъемника) обычно приблизительно находится в диапазоне 1-500 мкм, предпочтительно 2-100 мкм с учетом назначения аккумулятора и величины ионной проводимости.
В качестве электропроводящей добавки могут использоваться различные формы углерода, в частности графит, сажа, углеродные нанотрубки, фуллерен, проводящие полимерные материалы на основе полианилина, полипиролла, полиэтилендиокситиофена или их смеси. Тем не менее, электропроводящая добавка не ограничивается перечисленными примерами. Могут использоваться общеизвестные материалы, которые к настоящему времени применя.тся в качестве электропроводящих добавок для литий-ионного аккумулятора. Эти электропроводящие добавки могут использоваться отдельно, или две или более из них могут использоваться в комбинации.
В качестве связующего могут быть использованы поливинилиденфторид в N-метилпирролидоне (pVdF) и его модификации (например Solef® 6010, Solef® 6020, Solef® 5130, Solef® 21216), полиэтилен (РЕ), полипропилен (РР), полиэтилентерефталат (PET), полиакрилонитрил (PAN), полиимид (PI), полиамид (РА), карбоксиметилцеллюлоза (CMC) или суспензия перфторполиэтилена в воде. В качестве перфторполиэтилена предпочтительно использовать фторопласт или тефлон.
На основе полученных электродов собирают электрохимические ячейки с неводным электролитом, сепаратором и противоэлектродом, затем проводят электрохимические испытания. В качестве электролита предпочтительно использовать раствор соли LiPF6, или LiBF4 в смеси алкилкарбонатов или сульфонах с концентрацией соли от 0.5 до 2 моль/л. В качестве алкилкарбонатов используют смесь этиленкарбоната (ЕС), пропиленкарбоната (PC), диметилкарбоната (DMC), объемное соотношение которых может варьироваться. В качестве сульфонов предпочтительно использовать этилметилсульфон, тетраметиленсульфон. В качестве сепаратора используют боросиликатное стекло, фторопласт, полиамид, коммерческие мембраны изготовленные из полиэтилена или полипропилена или полиэтилентерафталата с керамическим покрытием или без.
Сущность изобретения поясняется примерами, подтверждающими практическую реализацию изобретения. Нижеследующие примеры носят поясняющий характер в отношении предлагаемого технического решения и служат иллюстрацией решенных данным изобретением проблем, однако эти примеры не следует рассматривать как ограничение. Специалист в данной области, исходя из сведений приведенных в описании, может получить электродный материал формулы КТР, указанным способом.
Пример 1.
Электродный материал KVPO4F синтезировали двустадийным керамическим методом.
На первой стадии, методом сублимационной сушки получали фосфат VPO4. Для этого исходные реагенты 1.75 г NH4VO3 и 1.68 г NH4H2PO4 растворяли в 250 мл дистиллированной Н2О при постоянном перемешивании при 80°С, с добавлением 1.70 г аскорбиновой кислоты. Образовавшийся раствор распыляли в жидкий азот и подвергали сублимации при давлении 10-2 атм в течение 72 часов. Полученный криогранулят отжигали при 850°С в течение 5 часов.
На второй стадии, полученный 2.15 г VPO4 смешали с 1.16 г KHF2 в мольном соотношении 1:1 (количество остаточной сажи в фосфате VPO4 определяли химически или методами термогравиметрии) и отжигали в потоке аргона при 600°С в течение 90 минут с последующей закалкой до комнатной температуры.
Полученный материал представляет собой фторидофосфат калия ванадия, кристаллизующийся в ромбической сингонии с параметрами элементарной ячейки а=12.8201(3)
Figure 00000001
, b=6.3957(2)
Figure 00000001
, с=10.6118(2)
Figure 00000001
*.
* - параметры элементарной ячейки могут варьироваться в пределах величины трех стандартных отклонений.
Пример 2.
Электродный материал KVPO4F синтезировали по схеме, описанной в примере 1, только в качестве исходных компонентов использовали V2O5 и (NH4)2НРО4.
Пример 3.
Электродный материал KVPO4F синтезировали по схеме, описанной в примере 1, за исключением того, что на второй стадии к 2.15 г полученного VPO4 добавляли 0.55 г NH4F и 1.01 г K2CO3, тщательно перетирали и гомогенизировали, а затем отжигали в потоке аргона при 600°С в течение 90 минут с последующей закалкой до комнатной температуры.
Пример 4.
Электродный материал KVPO4F синтезировали двустадийным керамическим методом.
На первой стадии, керамическим методом получали фосфат ванадия VPO4. Для этого 1.75 г NH4VO3, 1.68 г NH4H2PO4 и 0.10 г сажи тщательно перетирали и гомогенизировали в шаровой мельнице, а затем отжигали при 850°С в токе аргона в течение 15 часов.
На второй стадии, 2.15 г полученного VPO4 смешивали с 1.16 г KHF2 в мольном соотношении 1:1 и отжигали в потоке аргона при 600°С в течение 90 минут с последующей закалкой до комнатной температуры.
Пример 5.
Электродный материал KVPO4F синтезировали по схеме, описанной в примере 4, только в качестве исходных компонентов использовали V2O5 и (NH4)2HPO4.
Пример 6.
Электродный материал KVPO4F синтезировали по схеме, описанной в примере 4, за исключением того, что на второй стадии к 2.15 г полученного VPO4 добавляли 0.55 г NH4F и 1.01 г K2CO3, тщательно перетирали и гомогенизировали, а затем отжигали в потоке аргона при 600°С в течение 90 минут с последующей закалкой до комнатной температуры.
Пример 7.
Электродный материал KV0.9Al0.1PO4F синтезировали двустадийным керамическим методом. На первой стадии, методом сублимационной сушки получали фосфат V0.9Al0.1PO4. Для этого 1.57 г NH4VO3 и 1.67 г NH4H2PO4 растворяли в 250 мл дистиллированной Н2О при постоянном перемешивании при 80°С, с добавлением 1.70 г аскорбиновой кислоты. К полученному раствору добавляли 0.56 г Al(NO3)3⋅9H2O.
Образовавшийся раствор распыляли в жидкий азот и подвергали сублимации при давлении 10-2 атм. в течение 72 часов. Полученный криогранулят отжигали при 850°С в течение 5 часов.
На второй стадии, 2.01 г полученного V0.9Al0.1PO4 смешивали с 1.09 г KHF2 (количество остаточной сажи в фосфате VPO4 определяли методом термогравиметрии) и отжигали в потоке аргона при 600°С в течение 90 минут с последующей закалкой до комнатной температуры.
Пример 8
Электродный материал KV0.9Al0.1PO4F синтезировали по схеме, описанной в примере 7, только в качестве исходных компонентов использовали V2O5 и (NH4)2HPO4.
Пример 9.
Электродный материал RbVPO4F синтезировали двустадийным керамическим методом по схеме, описанной в примере 6, только вместо K2CO3 использовали Rb2CO3.
Пример 10.
Электродный материал KV0.75Cr0.25PO4F синтезировали двустадийным керамическим методом.
На первой стадии, методом сублимационной сушки получали фосфат V0.75Cr0.25PO4. Для этого 1.31 г NH4VO3 и 1.68 г NH4H2PO4 растворяли в 250 мл дистиллированной Н2О при постоянном перемешивании при 80°С, с добавлением 1.70 г аскорбиновой кислоты. К полученному раствору добавляли 1.50 г Cr(NO3)3⋅9Н2О. Образовавшийся раствор распыляли в жидкий азот и подвергали сублимации при давлении 10-2 атм. в течение 72 часов. Полученный криогранулят отжигали в потоке аргона (или азота) при 850°С в течение 5 часов.
На второй стадии, 2.10 г полученного V0.75Cr0.25PO4 смешивали с 1.10 г KHF2 (количество остаточной сажи в фосфате V0.75Cr0.25PO4 определяли методом термогравиметрии) и отжигали в потоке аргона при 600°С в течение 90 минут с последующей закалкой до комнатной температуры.
Пример 11.
Электродный материал KVPO4F0.5O0.5 синтезировали двустадийным керамическим методом.
На первой стадии, методом сублимационной сушки получали фосфат VO0.5PO4. Для этого 1.75 г NH4VO3 и 1.68 г NH4H2PO4 растворяли в 250 мл дистиллированной Н2О при постоянном перемешивании при 80°С, с добавлением 1.00 г аскорбиновой кислоты. Образовавшийся раствор распыляли в жидкий азот и подвергали сублимации при низком давлении в течение 72 часов. Полученный криогранулят отжигали при 700°С в течение 10 часов в потоке аргона или азота.
На второй стадии, 2.20 г полученного VO0.5PO4 смешивали с 1.11 г KHF2 в мольном соотношении 1:1 (количество остаточной сажи в фосфате VO0.5PO4 определяли методом термогравиметрии) и отжигали в потоке аргона при 600°С в течение 90 минут с последующей закалкой до комнатной температуры.
Пример 12.
Электродный материал KTiPO4F синтезировали двустадийным керамическим методом.
На первой стадии, керамическим методом получали фосфат TiPO4. Для этого 1.20 г TiO2 и 1.68 г NH4H2PO4 тщательно перетирали и гомогенизировали в шаровой мельнице, а затем отжигали при 950°С в токе аргона и водорода, в течение 20 часов.
На второй стадии, 2.12 г полученного TiPO4 смешивали с 1.10 г KHF2 и отжигали в потоке аргона при 700°С в течение 90 минут с последующей закалкой до комнатной температуры.
Пример 13.
Электродный материал KTiPO4F синтезировали по схеме, описанной в примере 12, за исключением того, что на второй стадии к 2.12 г полученного TiPO4 добавляли 0.55 г NH4F и 1.01 г K2CO3, тщательно перетирали и гомогенизировали, а затем отжигали в потоке аргона при при 700°С в течение 90 минут с последующей закалкой до комнатной температуры.
Пример 14.
Композитный материал на основе электродного материала состава KVPO4F получали путем тщательного смешивания 70% масс, активного материала KVPO4F, 15% сажи (Carbon Super-C), используемой в качестве электропроводящей добавки, и 15% поливинилиденфторид, используемого в качестве связующего. Гальваностатические и потенциостатические измерения проводили в двухэлектродных прижимных ячейках с литиевым анодом. В качестве электролита использовали раствор LiPF6 в смеси алкилкарбонатов (этиленкарбонат ЕС, диметилкарбонат DMC, пропиленкарбонат PC), в качестве сепаратора - боросиликатное стекловолокно, полимерные мембраны.
Пример 15.
Электродный материал LiVPO4F получали путем электрохимического замещения К на Li. Исходные KVPO4F электроды заряжали в электрохимической ячейке с Li-анодом до 4.8 В отн. Li/Li+ на скорости С/20, выдерживали на данном потенциале в течение 5 часов для удаления ионов K+ и промывали диметилкарбонатом. На основе полученных электродов собрали модельные двухэлектродные ячейки, которые циклировали в интервале потенциалов 2.0÷4.7 В отн. Li/Li+ и разряжали до потенциала 2.0 В.
Пример 16.
Электродный материал LiVPO4F получали путем ионного обмена К на Li. Для этого исходный материал KVPO4F выдерживали в растворе LiBr (или LiNO3) в абсолютированном этиловом спирте (или ацетонитриле) при постоянном перемешивании и температуре 60°С в течение 48 часов.
Пример 17.
Электроды приготовили путем тщательного смешивания 80% масс, активного материала KVPO4F, 10% масс, сажи марки Carbon Super-C и 10% связующего, в качестве которого использовали поливинилидендифторид, растворенный в N-метилпирролидоне. Смесь равномерно нанесли на алюминиевую подложку (токосъемник), предварительно высушенную и прокатали на вальцах. Затем вырезали электроды диаметром 16 мм, взвесили и окончательно высушили при давлении 10-2 атм при 110°С в течение 4 часов для удаления остаточной воды и растворителя.
Пример 18.
На основе электродов (пример 17) собрали в инертном боксе (M-Braun) электрохимические ячейки, в которых в качестве электролита использовали 1М раствор LiPF6 в смеси EC:DMC (1:1 по объему) и боросиликатное стекло в качестве сепаратора.
Пример 19.
Серию электродов приготовили путем тщательного смешивания Х% масс, активного материала KVPO4F, Y% масс, сажи марки Carbon Super-C и Z% связующего, в качестве которого использовали коммерческое связующее марки Solef® 5130, растворенный в N-метилпирролидоне. Значения X, Y, Z приведены в таблице 3. Смесь равномерно нанесли на подложку (токосъемник), предварительно высушенную и прокатали на вальцах. Затем вырезали электроды диаметром 16 мм, взвесили и окончательно высушили при давлении 10-2 атм при 110°С в течение 4 часов для удаления остаточной воды и растворителя. На основе электродов собрали в инертном боксе (М-Braun) электрохимические ячейки, в которых в качестве электролита использовали 1М раствор LiPF6 в смеси EC:DMC (1:1 по объему) и боросиликатное стекло в качестве сепаратора.
Figure 00000004

Claims (13)

1. Электродный материал для металл-ионных аккумуляторов общей формулы A(M1-xM'x)PO4(F1-yOy), характеризующийся кристаллической структурой типа «калий-титанил фосфат», где А представляет собой щелочной металл, М - переходный металл, М' - металл, используемый в качестве модифицирующей добавки, где 0≤х≤0.3, 0≤y≤1.
2. Электродный материал по п. 1, характеризующийся тем, что щелочной металл представляет собой Li и/или Na, и/или K, и/или Rb.
3. Электродный материал по п. 1, характеризующийся тем, что переходный металл М представляет собой Ti, V, Nb, Cr, Mo, Mn, Fe или их смесь.
4. Электродный материал по п. 1, характеризующийся тем, что в качестве модифицирующей добавки М' используют Mg, Zn, Al, Ga или их смесь.
5. Способ получения электродного материала формулы A(M1-xM'x)PO4(F1-yOy), где в качестве щелочного металла (А) выступает K и/или Rb, включающий получение фосфата М1-xM'xOyPO4 методом сублимационной сушки с последующим отжигом или керамическим синтезом, с последующим смешением полученного фосфата с AF, AHF2, А2СО3 или смесью NH4F и А2СО3 и отжигом полученной смеси.
6. Способ получения электродного материала формулы A(M1-xM'x)PO4(F1-yOy), где в качестве щелочного металла (А) выступает Li и/или Na, или смесь с K и/или Rb, включающий получение электродного материала формулы A(M1-xM'x)PO4(F1-yOy), где в качестве щелочного металла (А) выступает K и/или Rb по п. 5 с последующим полным или частичным замещением K и/или Rb на Li, Na.
7. Способ по п. 6, характеризующийся тем, что замещение K и/или Rb на Li и/или Na осуществляют с использованием ионного обмена или электрохимического замещения.
8. Композитный материал для изготовления электродов для металл-ионных аккумуляторов, включающий 60-99% масс. соединения по п. 1, одну или несколько электропроводящих добавок и один или несколько органических связующих компонентов.
9. Композитный материал по п. 7, характеризующийся тем, что в качестве электропроводящей добавки используют графит, графен, сажу, углеродные нанотрубки, проводящие полимерные материалы на основе полианилина, полипиролла, полиэтилендиокситиофена или их смесь в количестве от 0,5 до 20% масс.
10. Композитный материал по п. 7, характеризующийся тем, что в качестве органического связующего компонента используют растворенный в N-метилпирролидоне поливинилиденфторид, или его производные, или стирол-бутадиеновые каучуки, или их смесь, или суспензии перфторполиэтилена (фторопласт, тефлон) в воде, в количестве от 0,5 до 20% масс.
11. Композитный материал по п. 8, характеризующийся тем, что в качестве перфторполиэтилена используют фторопласт или тефлон.
12. Электрод для металл-ионных аккумуляторов, включающий размещенный на металлической подложке композитный материал по п. 8.
13. Металл-ионный аккумулятор, включающий катод, анод и электролит, при этом один из электродов выполнен по п. 12.
RU2015141117A 2015-09-28 2015-09-28 Электродный материал для металл-ионных аккумуляторов, способ его получения, электрод и аккумулятор на основе электродного материала RU2619600C2 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2015141117A RU2619600C2 (ru) 2015-09-28 2015-09-28 Электродный материал для металл-ионных аккумуляторов, способ его получения, электрод и аккумулятор на основе электродного материала
PCT/RU2016/050030 WO2017058061A1 (ru) 2015-09-28 2016-09-08 Электродный материал для металл-ионных аккумуляторов и способ его получения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015141117A RU2619600C2 (ru) 2015-09-28 2015-09-28 Электродный материал для металл-ионных аккумуляторов, способ его получения, электрод и аккумулятор на основе электродного материала

Publications (2)

Publication Number Publication Date
RU2015141117A RU2015141117A (ru) 2017-04-03
RU2619600C2 true RU2619600C2 (ru) 2017-05-17

Family

ID=58423957

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015141117A RU2619600C2 (ru) 2015-09-28 2015-09-28 Электродный материал для металл-ионных аккумуляторов, способ его получения, электрод и аккумулятор на основе электродного материала

Country Status (2)

Country Link
RU (1) RU2619600C2 (ru)
WO (1) WO2017058061A1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2704186C1 (ru) * 2018-10-12 2019-10-24 Автономная некоммерческая образовательная организация высшего образования "Сколковский институт науки и технологий" СПОСОБ ПОЛУЧЕНИЯ КАТОДНОГО МАТЕРИАЛА СОСТАВА Na3V2O2x(PO4)2F3-2x (где 0<x≤1) ДЛЯ Na-ИОННЫХ АККУМУЛЯТОРОВ
RU2732368C1 (ru) * 2020-02-14 2020-09-16 Автономная некоммерческая образовательная организация высшего образования "Сколковский институт науки и технологий" (Сколковский институт науки и технологий) Электродная масса, электродный композитный материал, способ его получения и его применение металл-ионных аккумуляторах
RU2748159C1 (ru) * 2020-12-11 2021-05-20 Автономная некоммерческая образовательная организация высшего образования "Сколковский институт науки и технологий" (Сколковский институт науки и технологий) Электродный материал для натрий-ионных аккумуляторов, способ его получения, электрод и аккумулятор на основе электродного материала
RU2796475C1 (ru) * 2022-09-22 2023-05-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В.Ломоносова" (МГУ) Электродный материал металл-ионных аккумуляторов, электрод и аккумулятор на его основе

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018097109A1 (ja) * 2016-11-25 2018-05-31 学校法人東京理科大学 カリウムイオン電池用正極活物質、カリウムイオン電池用正極、及び、カリウムイオン電池
CN110492099B (zh) * 2019-07-23 2021-02-19 深圳先进技术研究院 一种层状聚阴离子正极材料、制备方法、钾离子电池正极、钾离子电池及应用
CN111029573B (zh) * 2019-12-24 2021-07-27 武汉理工大学 一种磷酸氧钛钾薄膜负极材料及其制备方法和应用
CN111634899B (zh) * 2020-06-14 2022-11-18 南开大学 一种基于金属-有机框架衍生合成碳包覆磷酸钛钾纳米花的制备方法
CN113046768B (zh) * 2021-03-15 2023-07-21 东北师范大学 一种氟磷酸钒氧钾及其制备方法和应用、一种钾离子电池
CN113394382B (zh) * 2021-06-11 2022-11-15 北京化工大学 一种磷酸钛钾@碳-还原氧化石墨烯材料及其制备方法和钾离子电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6153333A (en) * 1999-03-23 2000-11-28 Valence Technology, Inc. Lithium-containing phosphate active materials
US6645452B1 (en) * 2000-11-28 2003-11-11 Valence Technology, Inc. Methods of making lithium metal cathode active materials
US20110300442A1 (en) * 2010-06-02 2011-12-08 Infinity Energy (Hong Kong) Co., Limited Novel nanoscale solution method for synthesizing lithium cathode active materials
CN102683703A (zh) * 2012-06-08 2012-09-19 中南大学 一种多平台锂离子电池复合正极材料及其制备方法
RU2492557C1 (ru) * 2012-09-11 2013-09-10 Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН) Композиционный катодный материал
CN103872289A (zh) * 2014-03-28 2014-06-18 张宝 一种球形锂离子电池正极材料LiVPO4F的制备方法
CN104103832A (zh) * 2014-07-23 2014-10-15 中南大学 锂离子电池正极材料磷酸亚铁锂-氟磷酸钒锂的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090111525A (ko) * 2008-04-22 2009-10-27 엘에스엠트론 주식회사 리튬 이차전지용 양극 활물질과 스피넬형 리튬 복합 금속산화물의 제조방법 및 이를 양극으로 포함하는리튬이차전지

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6153333A (en) * 1999-03-23 2000-11-28 Valence Technology, Inc. Lithium-containing phosphate active materials
US6645452B1 (en) * 2000-11-28 2003-11-11 Valence Technology, Inc. Methods of making lithium metal cathode active materials
US20110300442A1 (en) * 2010-06-02 2011-12-08 Infinity Energy (Hong Kong) Co., Limited Novel nanoscale solution method for synthesizing lithium cathode active materials
CN102683703A (zh) * 2012-06-08 2012-09-19 中南大学 一种多平台锂离子电池复合正极材料及其制备方法
RU2492557C1 (ru) * 2012-09-11 2013-09-10 Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН) Композиционный катодный материал
CN103872289A (zh) * 2014-03-28 2014-06-18 张宝 一种球形锂离子电池正极材料LiVPO4F的制备方法
CN104103832A (zh) * 2014-07-23 2014-10-15 中南大学 锂离子电池正极材料磷酸亚铁锂-氟磷酸钒锂的制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2704186C1 (ru) * 2018-10-12 2019-10-24 Автономная некоммерческая образовательная организация высшего образования "Сколковский институт науки и технологий" СПОСОБ ПОЛУЧЕНИЯ КАТОДНОГО МАТЕРИАЛА СОСТАВА Na3V2O2x(PO4)2F3-2x (где 0<x≤1) ДЛЯ Na-ИОННЫХ АККУМУЛЯТОРОВ
RU2732368C1 (ru) * 2020-02-14 2020-09-16 Автономная некоммерческая образовательная организация высшего образования "Сколковский институт науки и технологий" (Сколковский институт науки и технологий) Электродная масса, электродный композитный материал, способ его получения и его применение металл-ионных аккумуляторах
RU2748159C1 (ru) * 2020-12-11 2021-05-20 Автономная некоммерческая образовательная организация высшего образования "Сколковский институт науки и технологий" (Сколковский институт науки и технологий) Электродный материал для натрий-ионных аккумуляторов, способ его получения, электрод и аккумулятор на основе электродного материала
RU2799067C1 (ru) * 2022-09-13 2023-07-03 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела и механохимии Сибирского отделения Российской академии наук Способ получения композиционного анодного материала TiNb2O7/C для литий-ионных аккумуляторов
RU2796475C1 (ru) * 2022-09-22 2023-05-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В.Ломоносова" (МГУ) Электродный материал металл-ионных аккумуляторов, электрод и аккумулятор на его основе

Also Published As

Publication number Publication date
RU2015141117A (ru) 2017-04-03
WO2017058061A1 (ru) 2017-04-06

Similar Documents

Publication Publication Date Title
RU2619600C2 (ru) Электродный материал для металл-ионных аккумуляторов, способ его получения, электрод и аккумулятор на основе электродного материала
Reddy et al. High performance Na x CoO 2 as a cathode material for rechargeable sodium batteries
Liang et al. New understanding of Li3VO4/C as potential anode for Li-ion batteries: Preparation, structure characterization and lithium insertion mechanism
Yi et al. Advanced electrochemical properties of Mo-doped Li 4 Ti 5 O 12 anode material for power lithium ion battery
US7285260B2 (en) Synthesis method for carbon material based on LixM1-yM&#39;(XO4)n
TWI449248B (zh) 碳包覆磷酸鋰錳陰極材料
TWI614211B (zh) 可高度分散之石墨烯組成物、其製備方法、及包含該可高度分散之石墨烯組成物的用於鋰離子二次電池之電極
EP2919304B1 (en) Positive electrode active material and hybrid ion battery
Sen et al. Synthesis of molybdenum oxides and their electrochemical properties against Li
CN110024187B (zh) 钾离子电池用正极活性物质、钾离子电池用正极、及钾离子电池
Hsieh et al. Electrochemical performance of lithium iron phosphate cathodes at various temperatures
Pişkin et al. Development and characterization of layered Li (NixMnyCo1− x− y) O2 cathode materials for lithium ion batteries
Hameed et al. Carbon coated Li3V2 (PO4) 3 from the single-source precursor, Li2 (VO) 2 (HPO4) 2 (C2O4)· 6H2O as cathode and anode materials for Lithium ion batteries
Feng et al. Enhanced cycling stability of Co3 (PO4) 2-coated LiMn2O4 cathode materials for lithium ion batteries
Ting et al. Effect of Mn-doping on performance of Li3V2 (PO4) 3/C cathode material for lithium ion batteries
Zhong et al. Micro/nano-structured SnS 2 negative electrodes using chitosan derivatives as water-soluble binders for Li-ion batteries
Di Lecce et al. High capacity semi-liquid lithium sulfur cells with enhanced reversibility for application in new-generation energy storage systems
Li et al. Synthesis and electrochemical characterizations of LiMn2O4 prepared by high temperature ball milling combustion method with citric acid as fuel
Logan et al. A scalable aluminum niobate anode for high energy, high power practical lithium-ion batteries
RU2718878C1 (ru) Соединение для электродного материала металл-ионных аккумуляторов, электродный материал на его основе, электрод и аккумулятор на основе электродного материала
Amedzo-Adore et al. Chemically lithiated layered VOPO4 by a microwave-assisted hydrothermal method and its electrochemical properties in rechargeable Li-ion batteries and supercapacitor applications
Du et al. A three volt lithium ion battery with LiCoPO4 and zero-strain Li4Ti5O12 as insertion material
RU2748159C1 (ru) Электродный материал для натрий-ионных аккумуляторов, способ его получения, электрод и аккумулятор на основе электродного материала
Cao et al. Electrochemical properties of 0.5 Li2MnO3· 0.5 Li4Mn5O12 nanotubes prepared by a self-templating method
US20150044557A1 (en) Negative electrode active material for sodium-ion battery, and sodium-ion battery