WO2012114524A1 - 放電加工機用電源装置およびその制御方法 - Google Patents

放電加工機用電源装置およびその制御方法 Download PDF

Info

Publication number
WO2012114524A1
WO2012114524A1 PCT/JP2011/054390 JP2011054390W WO2012114524A1 WO 2012114524 A1 WO2012114524 A1 WO 2012114524A1 JP 2011054390 W JP2011054390 W JP 2011054390W WO 2012114524 A1 WO2012114524 A1 WO 2012114524A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch element
power supply
electrode gap
electric discharge
supply device
Prior art date
Application number
PCT/JP2011/054390
Other languages
English (en)
French (fr)
Inventor
森田 一成
博紀 彦坂
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US13/263,863 priority Critical patent/US20120228268A1/en
Priority to DE112011104963T priority patent/DE112011104963T5/de
Priority to CN201180002357.8A priority patent/CN102770225B/zh
Priority to PCT/JP2011/054390 priority patent/WO2012114524A1/ja
Priority to JP2011525311A priority patent/JP4850318B1/ja
Publication of WO2012114524A1 publication Critical patent/WO2012114524A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/02Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges
    • B23H1/022Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges for shaping the discharge pulse train

Definitions

  • the present invention relates to a power supply device for an electric discharge machine and a control method for the power supply device for an electric discharge machine.
  • Patent Document 1 as a conventional power supply device for an electric discharge machine, in order to solve the former problem in the above-mentioned problem, four series circuits of resistors and capacitors are arranged in parallel, and charging of the four capacitors takes time. An embodiment is disclosed in which the charging time for the capacitor is substantially increased by a factor of four by performing the shift. Further, in order to solve the latter problem, an embodiment is disclosed in which four switch elements are connected in parallel and are simultaneously turned on to reduce the amount of heat generated per switch element.
  • Patent Document 1 is a technique that simply increases the number of parallel discharge circuits and charging circuits, there is a problem that an increase in circuit scale is unavoidable for enhancing the processing capability.
  • the present invention has been made in view of the above, and it is an object of the present invention to provide a power supply device for an electric discharge machine and a control method thereof that can avoid or suppress an increase in circuit scale when enhancing machining capability. To do.
  • the present invention provides a charge storage element that stores charges, a DC power source that charges the charge storage elements, and charges stored in the charge storage elements in the electrode gap.
  • a first switch element that generates a pulsed discharge when applied, and a detector that detects a voltage of the electrode gap or an electric quantity that changes in accordance with a voltage applied to the electrode gap.
  • a control unit that controls conduction and non-conduction of the first switch element based on detection values of various electrical quantities detected by the unit, wherein the control unit controls the first switch element to conduct.
  • FIG. 1 is a diagram illustrating a configuration example of an electric discharge machine including a power supply device for an electric discharge machine according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of a timing chart in the case of generating a pulse discharge having a relatively small interelectrode current.
  • FIG. 3 is a diagram showing an example of a timing chart in the case of generating a pulse discharge having a relatively large interelectrode current.
  • FIG. 4 is a diagram showing an example of a timing chart in the case of generating a group pulse discharge in which a pulse discharge having a large interelectrode current and a small pulse discharge are mixed.
  • FIG. 1 is a diagram illustrating a configuration example of an electric discharge machine including a power supply device for an electric discharge machine according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of a timing chart in the case of generating a pulse discharge having a relatively small interelectrode current.
  • FIG. 3 is a diagram showing
  • FIG. 5 is a diagram illustrating a configuration example of an electric discharge machine including a power supply device for an electric discharge machine according to the second embodiment.
  • FIG. 6 is a diagram illustrating an example of a timing chart according to the control operation of the second embodiment.
  • FIG. 7 is a diagram illustrating a configuration example of an electric discharge machine including the electric discharge machine power supply device according to the third embodiment.
  • FIG. 8 is a diagram illustrating a configuration example of an electric discharge machine including a power supply device for an electric discharge machine according to the fourth embodiment.
  • FIG. 9 is a diagram illustrating a configuration example of an electrical discharge machine including the power supply device for an electrical discharge machine according to the fifth embodiment.
  • FIG. 1 is a diagram illustrating a configuration example of an electric discharge machine including the power supply device for an electric discharge machine according to the first embodiment.
  • the power supply device for an electrical discharge machine according to Embodiment 1 includes a DC power supply V, a resistor Rs, a capacitor Cq, a first switch element S1, a second switch element S2, and a control unit 10.
  • a workpiece W and an electrode E are a first switch element S1 (here, an FET is illustrated). And connected to a DC power source V through a resistor Rs.
  • the capacitor Cq is a charge storage element and is connected to both ends of the resistor Rs and the DC power supply V connected in series.
  • the drain terminal of the first switch element S1 is connected to one end of the capacitor Cq, and the source terminal is connected to the drain terminal of the second switch element S2 (here, FET is exemplified).
  • the source end of the second switch element S2 is connected to the other end of the capacitor Cq, resulting in a circuit configuration connected to the negative end of the DC power supply V.
  • an electrostatic capacity Cs and a machining fluid resistance Rw are added in parallel to each other due to the circuit configuration.
  • an electric circuit is formed by adding a parasitic inductance Ls that may exist on the current path between the DC power supply V and the electrode E.
  • the parasitic inductance Ls is an inductance component existing inside the electric discharge machine power supply device or an inductance component included in a conductor portion connecting the electric discharge machine power supply device, the workpiece W, and the electrode E.
  • control unit 10 is a component that performs switching control of the first switch element S1 and the second switch element S2, and includes a voltage detection unit 11, a voltage setting unit 12, a voltage comparison unit 13, an operation setting unit 14, and A switch control unit 15 is provided.
  • the voltage detector 11 detects a voltage (hereinafter referred to as “electrode voltage”) generated in the electrode gap G formed between the workpiece W and the electrode E.
  • the voltage comparison unit 13 compares the voltage between the electrodes detected by the voltage detection unit 11 with the setting voltage from the voltage setting unit 12, generates a comparison signal as to whether or not the voltage between the electrodes is higher than the setting voltage, and performs switch control. Input to unit 15.
  • the switch control unit 15 generates a control signal for turning on and off the first switch element S1 and the second switch element S2 based on the comparison signal from the voltage comparison unit 13 and the signal set by the operation setting unit 14. The first switch element S1 and the second switch element S2 are controlled.
  • FIG. 2 is a diagram illustrating an example of a timing chart in the case of generating a pulse discharge having a relatively small interelectrode current.
  • the switch control unit 15 controls the first switch element S1 to be ON. Then, the electric charge accumulated in the capacitor Cq is applied to the electrode gap G, and the electrode voltage increases. This inter-electrode voltage is detected by the voltage detector 11.
  • set voltage the voltage set by the voltage setting unit 12
  • a comparison signal is generated by the voltage comparison unit 13 (FIG. 2B). )).
  • the switch control unit 15 controls the first switch element S1 to be turned OFF after the elapse of a predetermined time t1 from the falling edge of the comparison signal ((c) in the figure).
  • the switch control unit 15 controls the first switch element S1 to OFF, and then turns on the second switch element S2 in anticipation of the timing when the first switch element S1 and the second switch element S2 are not simultaneously turned ON. (Fig. 4D).
  • the second switch element S2 short-circuits between the workpiece W and the electrode E (between the electrodes), and the electric charge remaining in the capacitance Cs between the electrodes is discharged. Since the first switch element S1 is turned off, the charge remaining in the capacitor Cq is maintained.
  • the above-described control causes a current between the electrodes as shown in FIG.
  • the broken line in FIG. 5E is a virtual line indicating the magnitude of the current that is expected to flow when discharged using the total amount of charge accumulated in the capacitor Cq.
  • the area of the region surrounded by the axis corresponds to the total charge amount accumulated in the capacitor Cq.
  • the predetermined time t1 for controlling the first switch element S1 to be OFF after the falling edge of the comparison signal is set short, so that the magnitude of the current between the electrodes can be limited to a relatively small value. It has become.
  • FIG. 3 is a diagram showing an example of a timing chart in the case of generating a pulse discharge having a relatively large interelectrode current.
  • the difference from FIG. 2 regarding the control is that, as shown in FIG. 3C, the predetermined time t2 for controlling the first switch element S1 to be OFF after the falling edge of the comparison signal is shown in FIG.
  • the point is set longer than the predetermined time t1) (t2> t1).
  • the electric charge accumulated in the capacitor Cq is supplied to the electrode gap G according to a time constant substantially determined by the parasitic inductance Ls and the capacitance Cs during the ON period of the first switch element S1.
  • FIG. 3C the predetermined time t2 for controlling the first switch element S1 to be OFF after the falling edge of the comparison signal is shown in FIG.
  • the point is set longer than the predetermined time t1) (t2> t1).
  • the electric charge accumulated in the capacitor Cq is supplied to the electrode gap G according to a time constant substantially determined
  • the predetermined time t2 for controlling the first switch element S1 to be OFF is set near the peak of the interelectrode current as shown in FIG. Is not to be done.
  • the predetermined time t2 for controlling the first switch element S1 to be OFF may be a long time exceeding the peak of the interelectrode current.
  • FIG. 4 is a diagram showing an example of a timing chart in the case of generating a group pulse discharge in which a pulse discharge with a large charge amount and a small pulse discharge are mixed.
  • control is performed to generate a group pulse (P2) in which a current pulse with a small interelectrode current continues following a current pulse (P1) with a large interelectrode current. ing.
  • EDM machines when machining with a certain shape as the target, it is rare that the work is completed with only one machining, and finishing to reduce the surface accuracy of the workpiece cut surface from machining called rough machining. In general, it is necessary to perform processing several times until processing. For this reason, in general electric discharge machines, in order to cover from rough machining using large energy to finishing machining using small energy, the setting of the power supply can be switched so that the magnitude of the discharge pulse can be changed according to the machining. Or, a plurality of power supply circuits are provided and control for switching the power supply circuit itself is performed. In order to achieve both high processing speed and fine surface roughness, one large discharge pulse and a plurality of small discharge pulses are repeatedly applied in a continuous pulse discharge.
  • the function of controlling the magnitude of the electric discharge pulse according to the roughing and finishing as described above, and one large electric discharge pulse and a plurality of small electric discharges in the continuous pulse electric discharge It is preferable to have a function capable of repeatedly applying a pulse. In the electric discharge machine according to the first embodiment, these functions are realized by the function of the control unit 10.
  • a large inter-electrode current is obtained by controlling the first switch element S1 to be OFF after the elapse of a predetermined time t3 (first predetermined time) from the time when the comparison signal falls.
  • a discharge pulse (P1) is generated.
  • the first switch element S1 is controlled to be ON after a predetermined time t4 (second predetermined time) has elapsed since the first switch element S1 was controlled to be OFF, and the first switch element S1 is turned ON.
  • the first switching element S1 When the predetermined time t5 (third predetermined time) elapses from the time when the control is performed, the first switching element S1 is controlled to be OFF, thereby generating a discharge pulse (P2) having a small interelectrode current. Further, by repeating the control of the OFF time t4 and the ON time t5 a predetermined number of times, a pulse group (P3) having a small interelectrode current is generated together with the previous discharge pulse P2.
  • the second switch element S2 is controlled to be ON during the period t4 when the first switch element S1 is controlled to be OFF ((d) in FIG. 4). In this control, the electric charge remaining in the capacitance Cs is discharged. In the example of FIG. 4, the control for repeating the OFF time t4 and the ON time t5 is performed.
  • these time parameters are not necessarily the same, and it goes without saying that the pulse width before and after the group pulse is changed. Is possible.
  • the control unit 10 controls the first switch element S1 to be conductive, and the charge accumulated in the capacitor Cq is transferred to the electrode gap G.
  • the discharge pulse generated in the electrode gap G is changed by changing the time from when the detected voltage detected by the voltage detector 11 drops below a predetermined value to when the first switch element S1 is controlled to be non-conductive. Therefore, the machining capability can be enhanced without changing the circuit configuration of the power supply device for the electric discharge machine.
  • the time from when the first switch element S1 is turned on to when it is turned off can be arbitrarily controlled.
  • a plurality of discharge pulses having different current values can be generated while avoiding or suppressing an increase in scale.
  • the current value varies by arbitrarily controlling the time from when the first switch element S1 is turned on to when it is turned off. Since the discharge pulse can be generated, it is possible to maintain a certain machining condition even when the work piece W is changed or the environment is changed and the interelectrode impedance is changed.
  • a switch element used in a conventional power supply device for an electric discharge machine
  • a switch element (IGBT, MOSFET, etc.) made of silicon (Si) is generally used.
  • the technique described in the first embodiment is not limited to a switch element formed using silicon as a material.
  • a switch element made of silicon carbide (SiC) which has been attracting attention in recent years, as a power supply device for an electric discharge machine, instead of silicon.
  • silicon carbide has a feature that it can be used at a high temperature
  • a switch element made of silicon carbide is used as a switch element provided in a power supply device for an electric discharge machine, the switch Since the allowable operating temperature of the element can be increased, it is possible to reliably avoid problems with the amount of generated heat. This makes it possible to enhance the processing capability while avoiding or suppressing an increase in circuit scale.
  • the switch element formed of silicon carbide has high heat resistance, it is possible to reduce the size of the radiator (heat sink) added to the switch element, and further downsize the device.
  • the switch element formed of silicon carbide has low power loss, it is possible to increase the efficiency of the switch element, and thus to increase the efficiency of the apparatus.
  • silicon carbide is an example of a semiconductor referred to as a wide band gap semiconductor, capturing the characteristic that the band gap is larger than that of silicon (Si).
  • SiC silicon carbide
  • a semiconductor formed using a gallium nitride-based material or diamond belongs to a wide band gap semiconductor, and their characteristics are also similar to silicon carbide. Therefore, a configuration using a wide band gap semiconductor other than silicon carbide also forms the gist of the present invention.
  • FIG. FIG. 5 is a diagram showing a configuration example of an electric discharge machine including the power supply device for an electric discharge machine according to the second embodiment. 5 is different from FIG. 1 in that floating capacitance Cp, resistance Rp, and inductance Lp due to other electric circuits and mechanical structures are added to both ends of the workpiece W and the electrode E.
  • the second switch element S2 is omitted, and in particular, in the case of a sculpting electric discharge machine, the circuit configuration of FIG.
  • the Die-sinker EDM when there is a floating resistance component due to other electrical circuits and mechanical structures, and the resistance value is large enough to enable the discharge operation described later
  • the second switch element S2 can be omitted.
  • the floating resistance Rp is smaller than the resistance Rw of the working fluid. For this reason, even when no discharge occurs or even when a discharge occurs and a discharge with a small interelectrode current is performed, the charges accumulated in the capacitances Cs and Cp are discharged through the resistor Rp. The charge remaining in G can be lost.
  • FIG. 6 is a diagram illustrating an example of a timing chart relating to the control operation of the second embodiment. 6 differs from FIG. 4 only in that there is no control relating to the second switch element, and the other operations are the same as those in FIG. For this reason, also in the power supply apparatus for electric discharge machines and its control method of Embodiment 2, the same or equivalent effect as that of Embodiment 1 can be obtained.
  • FIG. 7 is a diagram illustrating a configuration example of an electric discharge machine including the electric discharge machine power supply device according to the third embodiment. 7 is different from FIG. 1 only in that the detection point of the voltage detection unit 11 is changed from the gap (between the workpiece W and the electrode E) to both ends of the capacitor Cq.
  • the voltage of the capacitor Cq is an electrical quantity that directly represents the amount of charge accumulated in the capacitor Cq, and the voltage change of the capacitor Cq due to the discharge behaves similarly to the voltage change of the electrode gap G. For this reason, also in the power supply device for electric discharge machines and its control method of Embodiment 3, the same or equivalent effect as that of Embodiments 1 and 2 can be obtained.
  • FIG. FIG. 8 is a diagram illustrating a configuration example of an electric discharge machine including a power supply device for an electric discharge machine according to the fourth embodiment.
  • the detection target of the control unit 10 is the voltage of the electrode gap G.
  • the fourth embodiment is different in that the detection target of the control unit 10 is the current flowing through the electrode gap G. Therefore, in the fourth embodiment, in the control unit 10, the current detection unit 16 instead of the voltage detection unit 11, the current setting unit 17 instead of the voltage setting unit 12, and the current comparison unit 18 instead of the voltage comparison unit 13. And a shunt resistor Rk for current detection is provided on the current path between the first switch element S1 and the electrode gap G.
  • a shunt resistor Rk for current detection is provided on the current path between the first switch element S1 and the electrode gap G.
  • it is the same as that of FIG. 1, and is attaching
  • the current detection unit 16 detects a current (hereinafter referred to as “processing current”) that flows through the electrode gap G for processing as a voltage generated at both ends of the shunt resistor Rk.
  • the current comparison unit 18 compares the machining current detected by the current detection unit 16 with the set current from the current setting unit 17, generates a comparison signal as to whether or not the machining current is higher than the set current, and switches the control unit 15.
  • the switch control unit 15 generates a control signal for turning on and off the first switch element S1 and the second switch element S2 based on the comparison signal from the current comparison unit 18 and the signal set by the operation setting unit 14.
  • the first switch element S1 and the second switch element S2 are controlled.
  • the subsequent operation is the same as or equivalent to that of the first embodiment.
  • the interelectrode current is an electrical quantity that directly represents the energy of the discharge, and the change in the machining current accompanying the discharge behaves in the same manner as the voltage change in the electrode gap G. For this reason, also in the power supply device for electric discharge machines and the control method thereof according to the fourth embodiment, the same or equivalent effect as in the first to third embodiments can be obtained.
  • FIG. FIG. 9 is a diagram illustrating a configuration example of an electrical discharge machine including the power supply device for an electrical discharge machine according to the fifth embodiment. 9 is different from FIG. 8 only in that the machining current detection means is changed from the shunt resistor Rk to the current transformer (CT) 21. For this reason, also in the power supply device for electric discharge machines and the control method thereof according to the fifth embodiment, the same or equivalent effects as those of the first to fourth embodiments can be obtained.
  • CT current transformer
  • the current transformer 21 When the current transformer 21 is used, it is not necessary to insert the shunt resistor Rk. Therefore, since there is no loss due to the shunt resistor Rk, the consumption of the device is larger than that of the power supply device for the electric discharge machine according to the fourth embodiment. It becomes possible to reduce electric power.
  • the power supply device for an electric discharge machine and the control method thereof according to Embodiments 1 to 5 have been described.
  • the above-described configuration is an example of the configuration of the present invention and can be combined with another known technique.
  • the present invention can be modified and configured such that a part thereof is omitted without departing from the gist of the present invention.
  • the electric discharge machine power supply device and the control method for the electric discharge machine power supply device according to the present embodiment are inventions that can enhance machining capability while avoiding or suppressing an increase in circuit scale. Useful.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

 電荷を蓄積するコンデンサCq、コンデンサCqを充電する直流電源V、コンデンサCqの蓄積電荷を電極間隙Gに印加してパルス状の放電を発生させる第1のスイッチ素子S1および、電極間隙Gの電圧に基づいて第1のスイッチ素子S1の導通/非導通を制御する制御部10を備える。制御部10は、第1のスイッチ素子S1を導通に制御してコンデンサCqの蓄積電荷を電極間隙Gに印加した後、電極間隙Gの電圧が所定値以下に低下した時点から第1のスイッチ素子S1を非導通に制御するまでの時間を変更することにより電極間隙Gに生ずる放電パルスの大きさを制御する。

Description

放電加工機用電源装置およびその制御方法
 本発明は、放電加工機用電源装置および放電加工機用電源装置の制御方法に関する。
 放電加工機において、加工能力を高めようとして放電周波数を高くする制御を行う場合の課題としては主に2つあり、1つは放電エネルギーとなる電荷を蓄積するコンデンサに対する充電時間であり、もう1つはコンデンサに蓄積された電荷を放電するときにオン制御されるスイッチ素子の発熱量である。
 従来の放電加工機用電源装置として下記特許文献1では、上記課題における前者の課題を解決するため、抵抗とコンデンサの直列回路を4並列に配置し、且つ、4個のコンデンサに対する充電を時間をずらして行うことにより、コンデンサに対する充電時間を実質的に4倍長くする実施例を開示している。また、後者の課題を解決するため、4個のスイッチ素子を並列に接続し、且つ、それらを同時にオンすることによりスイッチ素子1個あたりの発熱量を低減する実施例を開示している。
特開2003-205426号公報(図26および図29)
 しかしながら、上記特許文献1に示される手法は、放電回路および充電回路の並列数を単純に増加させる手法であるため、加工能力の増強には回路規模の増加が不可避であるという課題があった。
 本発明は、上記に鑑みてなされたものであって、加工能力の増強に際し、回路規模の増加を回避若しくは抑制することができる放電加工機用電源装置およびその制御方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するため、本発明は、電荷を蓄積する電荷蓄積素子と、前記電荷蓄積素子を充電する直流電源と、前記電荷蓄積素子に蓄積された電荷を電極間隙に印加してパルス状の放電を発生させる第1のスイッチ素子と、前記電極間隙の電圧もしくは当該電極間隙に印加される電圧に応じて変化する電気諸量を検出する検出部を有し、当該検出部が検出した電気諸量の検出値に基づいて前記第1のスイッチ素子の導通、非導通を制御する制御部と、を備え、前記制御部は、前記第1のスイッチ素子を導通に制御して前記電荷蓄積素子に蓄積された電荷を電極間隙に印加した後、前記電気諸量の検出値が所定値以下に低下した時点から前記第1のスイッチ素子を非導通に制御するまでの時間を変更することにより前記電極間隙に生ずる放電パルスの大きさを制御することを特徴とする。
 この発明によれば、加工能力の増強に際し、回路規模の増大を回避もしくは抑制することができるという効果を奏する。
図1は、実施の形態1に係る放電加工機用電源装置を含む放電加工機の一構成例を示す図である。 図2は、極間電流の比較的小さなパルス放電を発生させる場合のタイミングチャートの一例を示す図である。 図3は、極間電流の比較的大きなパルス放電を発生させる場合のタイミングチャートの一例を示す図である。 図4は、極間電流の大きなパルス放電と小さなパルス放電とを混在させた群パルス放電を発生させる場合のタイミングチャートの一例を示す図である。 図5は、実施の形態2に係る放電加工機用電源装置を含む放電加工機の一構成例を示す図である。 図6は、実施の形態2の制御動作に係るタイミングチャートの一例を示す図である。 図7は、実施の形態3に係る放電加工機用電源装置を含む放電加工機の一構成例を示す図である。 図8は、実施の形態4に係る放電加工機用電源装置を含む放電加工機の一構成例を示す図である。 図9は、実施の形態5に係る放電加工機用電源装置を含む放電加工機の一構成例を示す図である。
 以下に添付図面を参照し、本発明の実施の形態にかかる放電加工機用電源装置およびその制御方法について説明する。なお、以下に示す実施の形態により本発明が限定されるものではない。
実施の形態1.
 図1は、実施の形態1に係る放電加工機用電源装置を含む放電加工機の一構成例を示す図である。実施の形態1に係る放電加工機用電源装置は、直流電源V、抵抗Rs、コンデンサCq、第1のスイッチ素子S1、第2のスイッチ素子S2および制御部10を備えて構成される。
 図1において、被加工物Wと電極E(ワイヤ放電加工機の場合にはワイヤ、形彫り放電加工機の場合には型電極)とが、第1のスイッチ素子S1(ここではFETを例示)および抵抗Rsを介して直流電源Vに接続されている。コンデンサCqは電荷蓄積素子であり、直列接続された抵抗Rsおよび直流電源Vの両端に接続されている。第1のスイッチ素子S1のドレイン端はコンデンサCqの一端に接続され、ソース端は第2のスイッチ素子S2(ここではFETを例示)のドレイン端に接続されている。第2のスイッチ素子S2のソース端はコンデンサCqの他端に接続され、結果として直流電源Vの負極端に接続される回路構成となる。
 被加工物Wおよび電極Eの両端には、回路構成上、静電容量Csと加工液の抵抗Rwとが並列に接続される形で加わる。これら静電容量Csおよび抵抗Rwの他にも、直流電源Vと電極Eとの間の電流経路上に存在し得る寄生インダクタンスLsも加わる形で電気回路が形成される。なお、寄生インダクタンスLsは、放電加工機用電源装置の内部に存在するインダクタンス成分あるいは、放電加工機用電源装置と被加工物Wおよび電極Eとを接続する導体部などが有するインダクタンス成分である。
 一方、制御部10は、第1のスイッチ素子S1および第2のスイッチ素子S2のスイッチング制御を行う構成部であり、電圧検出部11、電圧設定部12、電圧比較部13、動作設定部14およびスイッチ制御部15を備えて構成される。電圧検出部11は、被加工物Wと電極Eとの間に形成される電極間隙Gに生ずる電圧(以下「極間電圧」と称する)を検出する。電圧比較部13は、電圧検出部11が検出した極間電圧を電圧設定部12からの設定電圧と比較し、極間電圧が設定電圧よりも高いか否かの比較信号を生成してスイッチ制御部15に入力する。スイッチ制御部15は、電圧比較部13からの比較信号と動作設定部14にて設定された信号とに基づき、第1のスイッチ素子S1および第2のスイッチ素子S2をオンオフする制御信号を生成して第1のスイッチ素子S1および第2のスイッチ素子S2を制御する。
 つぎに、放電加工機用電源装置の動作について説明する。図2は、極間電流の比較的小さなパルス放電を発生させる場合のタイミングチャートの一例を示す図である。図2において、スイッチ制御部15は、第1のスイッチ素子S1をONに制御する。すると、コンデンサCqに蓄積された電荷が電極間隙Gに印加され、極間電圧が上昇する。この極間電圧は、電圧検出部11にて検出される。極間電圧が電圧設定部12で設定した電圧(以下「設定電圧」と称する)よりも大きい場合(同図(a))、電圧比較部13にて比較信号が生成される(同図(b))。極間電圧の上昇後、放電が開始されて極間電流が流れ始めると極間電圧は低下する(同図(a))。スイッチ制御部15は、比較信号の立ち下がりから所定時間t1の経過後に第1のスイッチ素子S1をOFFに制御する(同図(c))。スイッチ制御部15は、第1のスイッチ素子S1をOFFに制御した後、第1のスイッチ素子S1と第2のスイッチ素子S2とが同時にONとならないタイミングを見計らって第2のスイッチ素子S2をONに制御する(同図(d))。この制御により、第2のスイッチ素子S2が被加工物Wと電極Eとの間(極間)を短絡し、極間の静電容量Csに残留している電荷が放電される。なお、第1のスイッチ素子S1をOFFとしているため、コンデンサCqに残留している電荷は維持される。
 上記の制御により、図2(e)に示すような極間電流が流れる。なお、同図(e)の破線は、コンデンサCqに蓄積されている全電荷量を用いて放電させたときに流れると予想される電流の大きさを示す仮想的な線であり、破線と時間軸とに囲まれる領域の面積がコンデンサCqに蓄積されている全電荷量に相当する。図2の場合、比較信号の立ち下がり後に第1のスイッチ素子S1をOFFに制御する所定時間t1を短く設定しているため、極間電流の大きさを比較的小さな値に制限することが可能となっている。
 一方、図3は、極間電流の比較的大きなパルス放電を発生させる場合のタイミングチャートの一例を示す図である。図3において、制御に関する図2との相違点は、図3(c)に示すように、比較信号の立ち下がり後に第1のスイッチ素子S1をOFFに制御する所定時間t2を図2の場合(所定時間t1)よりも長く設定している点にある(t2>t1)。コンデンサCqに蓄積されている電荷は、第1のスイッチ素子S1のON期間に寄生インダクタンスLsと静電容量Csとでほぼ決まる時定数に従って電極間隙Gに供給される。図3の場合、電極間隙Gに供給される時間が図2の例より長くなるので、極間電流のピーク値は大きくなり、また、流れる時間も長くなる。なお、図3の例では、第1のスイッチ素子S1をOFFに制御する所定時間t2を同図(e)に示すように極間電流のピーク付近としているが、極間電流のピーク付近に限定されるものではない。例えば、第1のスイッチ素子S1をOFFに制御する所定時間t2が、極間電流のピークを超えるような長い時間であっても構わない。
 また、図4は、電荷量の大きなパルス放電と小さなパルス放電とを混在させた群パルス放電を発生させる場合のタイミングチャートの一例を示す図である。本例では、図4(e)に示すように、極間電流の大きな電流パルス(P1)に引き続き、極間電流の小さな電流パルスが継続するような群パルス(P2)を発生させる制御を行っている。
 放電加工機において、ある形状を目標として加工する場合、たった一度の加工で作業が終了するということは稀であり、荒加工と呼ばれる加工から被加工物切断面の面精度を細かくするための仕上げ加工まで、一般に数回程度の加工を行う必要がある。このため、一般的な放電加工機では、大きなエネルギーを用いる荒加工から小さなエネルギーによる仕上げ加工までをカバーするために、加工に応じて放電パルスの大きさを変化できるように電源の設定を切り替えたり、あるいは複数の電源回路を備えて電源回路自体を切り替える制御を行ったりしている。また、高い加工速度と細かい面粗さとの両立を図るため、連続するパルス放電の中で1つの大きな放電パルスと複数の小さな放電パルスとを反復的に印加することも行われている。
 実施の形態1の放電加工機でも、上記のような荒加工および仕上げ加工に応じて放電パルスの大きさを制御する機能ならびに、連続するパルス放電の中で1つの大きな放電パルスと複数の小さな放電パルスとを反復的に印加することができる機能を具備することが好ましい。実施の形態1の放電加工機では、制御部10の機能によりこれらの機能を実現している。
 図4に戻り、同図(a),(b)に示す動作は図2および図3と同様である。一方、図4に示す例では、まず、比較信号が立ち下がった時点から所定時間t3(第1の所定時間)の経過後に第1のスイッチ素子S1をOFFに制御することで極間電流の大きな放電パルス(P1)を発生させている。その後、第1のスイッチ素子S1をOFFに制御した時点から所定時間t4(第2の所定時間)の経過後に第1のスイッチ素子S1をONに制御し、且つ、第1のスイッチ素子S1をONに制御した時点から所定時間t5(第3の所定時間)の経過後に第1のスイッチ素子S1をOFFに制御することで極間電流の小さな放電パルス(P2)を発生させている。さらに、OFF時間t4およびON時間t5の制御を所定回数繰り返すことにより、先の放電パルスP2と共に極間電流の小さなパルス群(P3)を発生させている。
 なお、図4の例では、第1のスイッチ素子S1をOFFに制御しているt4の期間に第2のスイッチ素子S2をONに制御しているが(同図(d))、この制御は、静電容量Csに残留している電荷を放電させる制御である。また、図4の例では、OFF時間t4およびON時間t5を繰り返す制御を行っているが、これらの時間パラメータが同一である必要性はなく、群パルスにおける前後のパルス幅を変更することも無論可能である。
 このように、実施の形態1の放電加工機用電源装置およびその制御方法では、制御部10は、第1のスイッチ素子S1を導通に制御してコンデンサCqに蓄積された電荷を電極間隙Gに印加した後、電圧検出部11が検出した検出電圧が所定値以下に低下した時点から第1のスイッチ素子S1を非導通に制御するまでの時間を変更することにより、電極間隙Gに生ずる放電パルスの大きさを制御するようにしているので、放電加工機用電源装置の回路構成に変更を加えることなく、加工能力を増強することが可能となる。
 また、実施の形態1の放電加工機用電源装置およびその制御方法によれば、第1のスイッチ素子S1を導通にしてから非導通にするまでの時間を任意に制御することができるので、回路規模の増加を回避もしくは抑制しつつ、電流値の異なる複数の放電パルスの生成が可能となる。
 また、実施の形態1の放電加工機用電源装置およびその制御方法によれば、第1のスイッチ素子S1を導通にしてから非導通にするまでの時間を任意に制御することで電流値の異なる放電パルスを生成することができるので、被加工物Wが変わったり、環境が変わったりして極間インピーダンスが変化した場合であっても、ある一定の加工条件を維持することが可能となる。
 なお、従来の放電加工機用電源装置で用いられるスイッチ素子としては、珪素(Si)を素材とするスイッチ素子(IGBT、MOSFETなど)が一般的である。一方、上記実施の形態1で説明した技術は、珪素を素材として形成されたスイッチ素子に限定されるものではない。この珪素に代え、近年注目されている炭化珪素(SiC)を素材とするスイッチ素子を放電加工機用電源装置に用いることも無論可能である。
 ここで、炭化珪素は、高温度での使用が可能であるという特徴を有しているので、放電加工機用電源装置に具備されるスイッチ素子として炭化珪素を素材とするものを用いれば、スイッチ素子の許容動作温度を高くすることができるので、発熱量に対する問題を確実に回避することが可能となる。このことにより、回路規模の増加を回避もしくは抑制しつつ、加工能力の増強を図ることが可能となる。
 また、炭化珪素によって形成されたスイッチ素子は、耐熱性も高いため、スイッチ素子に付加される放熱器(ヒートシンク)の小型化が可能となり、装置の更なる小型化が可能になる。
 さらに、炭化珪素によって形成されたスイッチ素子は電力損失が低いため、スイッチ素子の高効率化が可能であり、延いては装置の高効率化が可能になる。
 なお、炭化珪素(SiC)は、珪素(Si)よりもバンドギャップが大きいという特性を捉えて、ワイドバンドギャップ半導体と称される半導体の一例である。この炭化珪素以外にも、例えば窒化ガリウム系材料または、ダイヤモンドを用いて形成される半導体もワイドバンドギャップ半導体に属しており、それらの特性も炭化珪素に類似した点が多い。したがって、炭化珪素以外の他のワイドバンドギャップ半導体を用いる構成も、本発明の要旨を成すものである。
実施の形態2.
 図5は、実施の形態2に係る放電加工機用電源装置を含む放電加工機の一構成例を示す図である。図5において、図1との相違点は、被加工物Wおよび電極Eの両端に他の電気回路や機械的構造に起因する浮遊の静電容量Cp、抵抗RpおよびインダクタンスLpが付加される一方で、第2のスイッチ素子S2を省略していることにあり、特に、形彫り放電加工機の場合には、図5の回路構成とすることが可能である。また、形彫り放電加工機以外でも、他の電気回路や機械的構造に起因する浮遊の抵抗成分が存在し、且つ、その抵抗値が後述する放電動作が可能になる程度の大きさである場合には、第2のスイッチ素子S2を省略することが可能である。
 図5において、浮遊の抵抗Rpは加工液の抵抗Rwに比べて小さい。このため、放電が生じなかった場合や、放電が生じても極間電流の小さな放電が行った場合でも、静電容量Cs,Cpに蓄積された電荷は抵抗Rpを通じて放電されるので、電極間隙Gに残留する電荷を消失することができる。
 図6は、実施の形態2の制御動作に係るタイミングチャートの一例を示す図である。図6において、図4との相違点は、第2のスイッチ素子に関する制御が存在しないことのみであり、他の動作は図4のものと同一である。このため、実施の形態2の放電加工機用電源装置およびその制御方法においても、実施の形態1のものと同一または同等の効果が得られる。
実施の形態3.
 図7は、実施の形態3に係る放電加工機用電源装置を含む放電加工機の一構成例を示す図である。図7において、図1との相違点は、電圧検出部11の検出箇所を極間(被加工物Wと電極Eとの間)からコンデンサCqの両端に変更していることのみである。
 コンデンサCqの電圧は、コンデンサCqに蓄積された電荷量を直接的に表す電気諸量であるのと共に、放電に伴うコンデンサCqの電圧変化は、電極間隙Gの電圧変化と同様な挙動となる。このため、実施の形態3の放電加工機用電源装置およびその制御方法においても、実施の形態1,2のものと同一または同等の効果が得られる。
実施の形態4.
 図8は、実施の形態4に係る放電加工機用電源装置を含む放電加工機の一構成例を示す図である。実施の形態1では、制御部10の検出対象を電極間隙Gの電圧としていたが、実施の形態4では、制御部10の検出対象を電極間隙Gに流れる電流としている点が相違点である。このため、実施の形態4では、制御部10において、電圧検出部11に代えて電流検出部16、電圧設定部12に代えて電流設定部17および、電圧比較部13に代えて電流比較部18を備えると共に、第1のスイッチ素子S1と電極間隙Gとの間の電流経路上に電流検出用のシャント抵抗Rkを設けている。なお、その他の構成については、図1と同一または同等であり、同一の箇所には同一の符号を付して示している。
 つぎに、放電加工機用電源装置の動作について説明する。電流検出部16は、加工のために電極間隙Gに流す電流(以下「加工電流」と称する)をシャント抵抗Rkの両端に生じる電圧として検出する。電流比較部18は、電流検出部16が検出した加工電流を電流設定部17からの設定電流と比較し、加工電流が設定電流よりも高いか否かの比較信号を生成してスイッチ制御部15に入力する。スイッチ制御部15は、電流比較部18からの比較信号と動作設定部14にて設定された信号とに基づき、第1のスイッチ素子S1および第2のスイッチ素子S2をオンオフする制御信号を生成して第1のスイッチ素子S1および第2のスイッチ素子S2を制御する。なお、その後の動作は、実施の形態1と同一もしくは同等である。
 極間電流は、放電のエネルギーを直接的に表す電気諸量であると共に、放電に伴う加工電流の変化は、電極間隙Gの電圧変化と同様な挙動となる。このため、実施の形態4の放電加工機用電源装置およびその制御方法においても、実施の形態1~3のものと同一または同等の効果が得られる。
実施の形態5.
 図9は、実施の形態5に係る放電加工機用電源装置を含む放電加工機の一構成例を示す図である。図9において、図8との相違点は、加工電流の検出手段をシャント抵抗Rkから変流器(CT)21に変更していることのみである。このため、実施の形態5の放電加工機用電源装置およびその制御方法においても、実施の形態1~4のものと同一または同等の効果が得られる。
 なお、変流器21を用いた場合、シャント抵抗Rkを挿入する必要がないので、シャント抵抗Rkによる損失がない分、実施の形態4の放電加工機用電源装置に比して、装置の消費電力を低減することが可能となる。
 以上、実施の形態1~5に係る放電加工機用電源装置およびその制御方法について説明してきたが、上述した構成は、本発明の構成の一例であり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能であることは言うまでもない。
 以上のように、本実施の形態に係る放電加工機用電源装置および放電加工機用電源装置の制御方法は、回路規模の増大を回避もしくは抑制しつつ、加工能力を増強することができる発明として有用である。
 10 制御部
 11 電圧検出部
 12 電圧設定部
 13 電圧比較部
 14 動作設定部
 15 スイッチ制御部
 16 電流検出部
 17 電流設定部
 18 電流比較部
 21 変流器(CT)
 Cp,Cs 静電容量
 Cq コンデンサ
 E 電極
 G 電極間隙
 Lp インダクタンス
 Ls 寄生インダクタンス
 Rk シャント抵抗
 Rp,Rs 抵抗
 Rw 加工液の抵抗
 S1 第1のスイッチ素子
 S2 第2のスイッチ素子
 V 直流電源
 W 被加工物

Claims (13)

  1.  電荷を蓄積する電荷蓄積素子と、
     前記電荷蓄積素子を充電する直流電源と、
     前記電荷蓄積素子に蓄積された電荷を電極間隙に印加してパルス状の放電を発生させる第1のスイッチ素子と、
     前記電極間隙の電圧もしくは当該電極間隙に印加される電圧に応じて変化する電気諸量を検出する検出部を有し、当該検出部が検出した電気諸量の検出値に基づいて前記第1のスイッチ素子の導通、非導通を制御する制御部と、
     を備え、
     前記制御部は、前記第1のスイッチ素子を導通に制御して前記電荷蓄積素子に蓄積された電荷を電極間隙に印加した後、前記電気諸量の検出値が所定値以下に低下した時点から前記第1のスイッチ素子を非導通に制御するまでの時間を変更することにより前記電極間隙に生ずる放電パルスの大きさを制御することを特徴とする放電加工機用電源装置。
  2.  前記制御部は、前記電気諸量の検出値が所定値以下に低下した時点から第1の所定時間の経過後に前記第1のスイッチ素子を非導通に制御することにより前記電極間隙に第1の放電パルスを生じさせると共に、前記第1のスイッチ素子を非導通に制御した時点から第2の所定時間の経過後に前記第1のスイッチ素子を導通に制御し、且つ、前記第1のスイッチ素子を導通に制御した時点から前記第1の所定時間よりも短い第3の所定時間の経過後に前記第1のスイッチ素子を非導通に制御することにより前記電極間隙に前記第1の放電パルスよりも小さな第2の放電パルスを生じさせることを特徴とする請求項1に記載の放電加工機用電源装置。
  3.  前記第2の放電パルスが、複数の放電パルスからなることを特徴とする請求項2に記載の放電加工機用電源装置。
  4.  前記電極間隙に並列に接続され、前記電極間隙を短絡可能に構成される第2のスイッチ素子をさらに備え、
     前記制御部は、前記第1のスイッチ素子の非導通期間に前記第2のスイッチ素子を制御して前記電極間隙に蓄積された電荷を放電することを特徴とする請求項1に記載の放電加工機用電源装置。
  5.  前記第1のスイッチ素子は、ワイドバンドギャップ半導体にて形成されることを特徴とする請求項1に記載の放電加工機用電源装置。
  6.  前記ワイドバンドギャップ半導体は、炭化ケイ素、窒化ガリウム系材料または、ダイヤモンドを用いた半導体であることを特徴とする請求項5に記載の放電加工機用電源装置。
  7.  前記電気諸量を検出する検出部は電圧検出部であり、前記電圧検出部は前記電極間隙の電圧を検出することを特徴とする請求項1~6の何れか1項に記載の放電加工機用電源装置。
  8.  前記電気諸量を検出する検出部は電圧検出部であり、前記電圧検出部は前記電荷蓄積素子の電圧を検出することを特徴とする請求項1~6の何れか1項に記載の放電加工機用電源装置。
  9.  前記電気諸量を検出する検出部は電流検出部であり、前記電流検出部は前記電極間隙に流れる電流を検出することを特徴とする請求項1~6の何れか1項に記載の放電加工機用電源装置。
  10.  電荷を蓄積する電荷蓄積素子と、前記電荷蓄積素子を充電する直流電源と、前記電荷蓄積素子に蓄積された電荷を電極間隙に印加してパルス状の放電を発生させる第1のスイッチ素子と、前記電極間隙の電圧もしくは当該電極間隙に印加される電圧に応じて変化する電気諸量を検出する検出部と、を有する放電加工機用電源装置の制御方法であって、
     前記第1のスイッチ素子を導通に制御して前記電荷蓄積素子に蓄積された電荷を電極間隙に印加する第1のステップと、
     前記第1のステップによる制御の後、前記電気諸量の検出値が所定値以下に低下した時点から前記第1のスイッチ素子を非導通に制御するまでの時間を変更することにより前記電極間隙に生ずる放電パルスの大きさを制御する第2のステップと、
     を含むことを特徴とする放電加工機用電源装置の制御方法。
  11.  前記放電加工機用電源装置には、前記電極間隙に並列に接続され、前記電極間隙を短絡可能に構成される第2のスイッチ素子が設けられ、
     前記第2のステップ後における前記第1のスイッチ素子の非導通期間において、前記第2のスイッチ素子を制御して前記電極間隙に蓄積された電荷を放電する第3のステップを含むことを特徴とする請求項10に記載の放電加工機用電源装置の制御方法。
  12.  前記第2のステップは、
     前記電気諸量の検出値が所定値以下に低下した時点から第1の所定時間の経過後に前記第1のスイッチ素子を非導通に制御する第1のサブステップと、
     前記第1のサブステップにより前記第1のスイッチ素子を非導通に制御した時点から第2の所定時間の経過後に前記第1のスイッチ素子を導通に制御する第2のサブステップと、
     前記第2のサブステップにより前記第1のスイッチ素子を導通に制御した時点から前記第1の所定時間よりも短い第3の所定時間の経過後に前記第1のスイッチ素子を非導通に制御する第3のサブステップと、
     を含むことを特徴とする請求項10に記載の放電加工機用電源装置の制御方法。
  13.  前記放電加工機用電源装置には、前記電極間隙に並列に接続され、前記電極間隙を短絡可能に構成される第2のスイッチ素子が設けられ、
     前記第1のサブステップ後における前記第1のスイッチ素子の非導通期間と、前記第3のサブステップ後における前記第1のスイッチ素子の非導通期間とのうちの少なくとも1つの期間において、前記第2のスイッチ素子を制御して前記電極間隙に蓄積された電荷を放電するサブステップが含まれることを特徴とする請求項12に記載の放電加工機用電源装置の制御方法。
PCT/JP2011/054390 2011-02-25 2011-02-25 放電加工機用電源装置およびその制御方法 WO2012114524A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/263,863 US20120228268A1 (en) 2011-02-25 2011-02-25 Power supply device for electrical discharge machine and control method therefor
DE112011104963T DE112011104963T5 (de) 2011-02-25 2011-02-25 Energieversorgungsvorrichtung für eine Funkenerosionsmaschineund ein Steuerverfahren dafür
CN201180002357.8A CN102770225B (zh) 2011-02-25 2011-02-25 放电加工机用电源装置及其控制方法
PCT/JP2011/054390 WO2012114524A1 (ja) 2011-02-25 2011-02-25 放電加工機用電源装置およびその制御方法
JP2011525311A JP4850318B1 (ja) 2011-02-25 2011-02-25 放電加工機用電源装置およびその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/054390 WO2012114524A1 (ja) 2011-02-25 2011-02-25 放電加工機用電源装置およびその制御方法

Publications (1)

Publication Number Publication Date
WO2012114524A1 true WO2012114524A1 (ja) 2012-08-30

Family

ID=45540479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054390 WO2012114524A1 (ja) 2011-02-25 2011-02-25 放電加工機用電源装置およびその制御方法

Country Status (5)

Country Link
US (1) US20120228268A1 (ja)
JP (1) JP4850318B1 (ja)
CN (1) CN102770225B (ja)
DE (1) DE112011104963T5 (ja)
WO (1) WO2012114524A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11666978B2 (en) 2019-09-09 2023-06-06 Fanuc Corporation Wire electrical discharge machine and control method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080347A1 (ja) * 2011-11-30 2013-06-06 三菱電機株式会社 放電加工機用電源装置
JP5414864B1 (ja) * 2012-09-18 2014-02-12 株式会社ソディック ワイヤカット放電加工装置の加工電源装置
JP5689211B1 (ja) * 2013-04-04 2015-03-25 西部電機株式会社 放電加工装置、放電加工方法及び設計方法
JP5800923B2 (ja) * 2014-01-15 2015-10-28 ファナック株式会社 ワイヤ放電加工機の加工用電源装置
FR3083999B1 (fr) * 2018-07-23 2020-06-26 Thermocompact Procede et dispositif de prevention des ruptures de fil electrode lors d'un usinage par etincelage erosif
US10985537B2 (en) 2018-09-14 2021-04-20 Ge Aviation Systems Llc Power overlay architecture
CN110912421B (zh) * 2018-09-14 2023-04-14 通用电气航空系统有限责任公司 电力覆盖架构
US11794263B2 (en) * 2018-10-31 2023-10-24 Makino Milling Machine Co., Ltd. Power source device for electric discharge machine
WO2020090070A1 (ja) * 2018-10-31 2020-05-07 株式会社牧野フライス製作所 放電加工機の電源装置
TWI767550B (zh) * 2021-02-03 2022-06-11 精呈科技股份有限公司 精加工之放電波寬調變方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5771726A (en) * 1980-10-17 1982-05-04 Hitachi Seiko Ltd Electrical discharge machine
JP2579961B2 (ja) * 1987-10-21 1997-02-12 株式会社放電精密加工研究所 放電加工用電源回路
JP2002224915A (ja) * 2000-12-01 2002-08-13 Mitsubishi Electric Corp 放電加工装置
JP2003205426A (ja) * 2001-11-06 2003-07-22 Mitsubishi Electric Corp 放電加工機用電源
JP2007196340A (ja) * 2006-01-30 2007-08-09 Sodick Co Ltd ワイヤ放電加工機の加工電源装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3737615A (en) * 1971-09-13 1973-06-05 Elox Inc Current and frequency control system for electrical discharge machining apparatus
JPS6014653B2 (ja) * 1980-02-26 1985-04-15 株式会社井上ジャパックス研究所 放電加工装置
DE3323609A1 (de) * 1982-06-30 1984-01-12 Mitsubishi Denki K.K., Tokyo Elektrische entladungs-bearbeitungsmaschine
JP2903031B2 (ja) * 1990-03-16 1999-06-07 株式会社 ソディック 放電加工装置用電源回路
US5432455A (en) * 1992-07-30 1995-07-11 Blades; Frederick K. Method and apparatus for detecting arcing in alternating current power systems by monitoring high-frequency noise
JPH11320260A (ja) * 1998-04-30 1999-11-24 Higashi Hoden Kk 放電加工機用電源およびその制御方法
JP4014997B2 (ja) * 2002-10-17 2007-11-28 三菱電機株式会社 放電加工機の電源装置
JP4133795B2 (ja) * 2003-12-22 2008-08-13 関西電力株式会社 高圧電源装置
US7554220B2 (en) * 2004-07-19 2009-06-30 The Kansai Electric Power Co., Inc. Stable power supplying apparatus
WO2006046630A1 (ja) * 2004-10-28 2006-05-04 Mitsubishi Denki Kabushiki Kaisha 放電加工用電源装置及び放電加工方法
FR2882869A1 (fr) * 2005-03-04 2006-09-08 St Microelectronics Sa Source d'alimentation a decoupage
JP2007288992A (ja) * 2006-03-20 2007-11-01 Hitachi Ltd 半導体回路
US20100294743A1 (en) * 2008-01-31 2010-11-25 Mitsubishi Electric Corporation Electric discharge device
JP4617364B2 (ja) * 2008-02-29 2011-01-26 キヤノンアネルバ株式会社 基板加熱装置及び処理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5771726A (en) * 1980-10-17 1982-05-04 Hitachi Seiko Ltd Electrical discharge machine
JP2579961B2 (ja) * 1987-10-21 1997-02-12 株式会社放電精密加工研究所 放電加工用電源回路
JP2002224915A (ja) * 2000-12-01 2002-08-13 Mitsubishi Electric Corp 放電加工装置
JP2003205426A (ja) * 2001-11-06 2003-07-22 Mitsubishi Electric Corp 放電加工機用電源
JP2007196340A (ja) * 2006-01-30 2007-08-09 Sodick Co Ltd ワイヤ放電加工機の加工電源装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11666978B2 (en) 2019-09-09 2023-06-06 Fanuc Corporation Wire electrical discharge machine and control method

Also Published As

Publication number Publication date
DE112011104963T5 (de) 2013-11-28
CN102770225A (zh) 2012-11-07
JP4850318B1 (ja) 2012-01-11
CN102770225B (zh) 2014-09-17
US20120228268A1 (en) 2012-09-13
JPWO2012114524A1 (ja) 2014-07-07

Similar Documents

Publication Publication Date Title
JP4850318B1 (ja) 放電加工機用電源装置およびその制御方法
JP5183827B1 (ja) 放電加工機用電源装置
KR101681120B1 (ko) 와이어 방전 가공용 전원 장치
JP2010201521A (ja) 形彫放電加工装置の加工用電源装置
JP5165061B2 (ja) 放電加工装置、放電加工方法および半導体基板の製造方法
WO2012140735A1 (ja) 放電加工機用電源装置および放電加工方法
JP5409963B1 (ja) 放電加工装置
JP2005246551A (ja) 放電加工用電源装置
EP2883641B1 (en) Electric discharge machining device
JP5013392B2 (ja) ワイヤ放電加工機の加工電源装置
JP6165210B2 (ja) ワイヤ放電加工装置の加工電源装置
JP5968565B1 (ja) 放電加工装置
JP2016016463A (ja) ワイヤ電極成分の付着を利用するワイヤ放電加工機
JP4042485B2 (ja) 放電加工方法
KR101580072B1 (ko) 콘덴서식 용접기 및 그 충전 방법
JP7032561B2 (ja) 放電加工機の電源装置
CN112912193B (zh) 放电加工机的电源装置
JP5389128B2 (ja) 放電加工装置
JPS6150736B2 (ja)
JPH0631534A (ja) 放電加工機用電源装置
JP2004050299A (ja) 放電加工方法及び放電加工装置
JP2004136374A (ja) ワイヤ放電加工装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180002357.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011525311

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13263863

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859346

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120111049633

Country of ref document: DE

Ref document number: 112011104963

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11859346

Country of ref document: EP

Kind code of ref document: A1