WO2013080347A1 - 放電加工機用電源装置 - Google Patents

放電加工機用電源装置 Download PDF

Info

Publication number
WO2013080347A1
WO2013080347A1 PCT/JP2011/077724 JP2011077724W WO2013080347A1 WO 2013080347 A1 WO2013080347 A1 WO 2013080347A1 JP 2011077724 W JP2011077724 W JP 2011077724W WO 2013080347 A1 WO2013080347 A1 WO 2013080347A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
pulse
power supply
electric discharge
switching element
Prior art date
Application number
PCT/JP2011/077724
Other languages
English (en)
French (fr)
Inventor
正裕 岡根
鈴木 智
清仁 小田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2012524977A priority Critical patent/JP5183827B1/ja
Priority to CN201180075175.3A priority patent/CN103958103B/zh
Priority to PCT/JP2011/077724 priority patent/WO2013080347A1/ja
Priority to US14/359,367 priority patent/US9114468B2/en
Priority to DE201111105900 priority patent/DE112011105900T5/de
Publication of WO2013080347A1 publication Critical patent/WO2013080347A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/02Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/02Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges
    • B23H1/022Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges for shaping the discharge pulse train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H2300/00Power source circuits or energization
    • B23H2300/20Relaxation circuit power supplies for supplying the machining current, e.g. capacitor or inductance energy storage circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting

Definitions

  • the present invention relates to a power supply device for an electric discharge machine.
  • Patent Documents 1 and 2 Conventionally, as prior art documents related to a power supply device for an electric discharge machine, there are those shown in Patent Documents 1 and 2 below.
  • Patent Document 1 a switching element that drives a pulse train having a predetermined repetition frequency intermittently every predetermined time is driven, and a machining electrode having a capacitor connected in parallel and a workpiece are machined.
  • a technique for improving surface roughness in electric discharge machining by supplying an AC pulse current to the gap to completely discharge the electric charge of the capacitor to the machining gap to prevent continuation of arc current.
  • a DC circuit for supplying a DC pulse current to a machining gap between a machining electrode and a workpiece a series circuit including a switching element and a resistor
  • the pulse width of the discharge current of the capacitor is equal to or equal to the switching element.
  • a technique for repeating on / off control is disclosed.
  • a current larger than the pulse width of the capacitor discharge does not flow in the gap between the machining electrode and the workpiece (hereinafter referred to as “machining gap”). In this way, the continuation of the arc current is prevented as in Patent Document 1 (see FIGS. 2 and 11).
  • the power supply device for an electric discharge machine in Patent Documents 1 and 2 has a configuration in which a resistor is indispensable between a DC power source and a machining electrode, when the machining current is large, heat generated by the resistor is generated. There is a problem that the amount increases and the amount of heat generated by the apparatus increases.
  • the power supply device for an electric discharge machine disclosed in Patent Document 2 is a method for preventing the continuation of the arc current by limiting the width of the current pulse flowing in the machining gap to a time as short as possible. There is a non-current time of a certain time or more that does not flow, and there is a problem that the machining speed cannot be increased too much.
  • the present invention has been made in view of the above, and it is an object of the present invention to provide a power supply device for an electric discharge machine capable of increasing the machining speed and suppressing the increase in the amount of heat generated as compared with a conventional apparatus. To do.
  • a power supply device for an electric discharge machine supplies a direct current or alternating current pulse to a machining gap between a machining electrode and a workpiece.
  • a series circuit including a DC power source and a switching element, and a control unit that controls the switching element, wherein the control unit generates a current pulse having a triangular wave shape by an inductance component present on the series circuit.
  • the switching element is controlled so that a current pulse time ratio, which is a ratio of a non-current time and a current continuation time in the current pulse, is 1/5 or less.
  • the processing speed can be increased as compared with the conventional apparatus, and an increase in the amount of generated heat can be suppressed.
  • FIG. 1 is a diagram illustrating a configuration example of an electric discharge machine including a power supply device for an electric discharge machine according to the first embodiment.
  • FIG. 2 is a diagram showing an interelectrode voltage and an interelectrode current when the interelectrode is opened in the electric discharge machine according to the first embodiment.
  • FIG. 3 is a diagram illustrating an interelectrode voltage and an interelectrode current when an electric discharge occurs in the electric discharge machine according to the first embodiment.
  • FIG. 4 is a diagram showing the path of the current flowing through the electric discharge machine on the circuit configuration of FIG.
  • FIG. 5 is a diagram illustrating an example of a measurement result indicating a relationship between a current pulse duty ratio and a size of a discharge mark.
  • FIG. 1 is a diagram illustrating a configuration example of an electric discharge machine including a power supply device for an electric discharge machine according to the first embodiment.
  • FIG. 2 is a diagram showing an interelectrode voltage and an interelectrode current when the
  • FIG. 6 is a diagram illustrating a waveform example when the time ratio of some pulses in the current pulse train does not become 1/5 or less.
  • FIG. 7 is a diagram illustrating a waveform example of a current pulse train according to the second embodiment.
  • FIG. 8 is a diagram illustrating a waveform example different from that of FIG. 7 of the current pulse train according to the second embodiment.
  • FIG. 9 is a diagram illustrating a configuration example of an electric discharge machine including the electric discharge machine power supply device according to the third embodiment.
  • FIG. 10 is a diagram illustrating an interelectrode voltage and an interelectrode current when the interelectrode is opened in the electric discharge machine according to the third embodiment.
  • FIG. 11 is a diagram illustrating an interelectrode voltage and an interelectrode current when an electric discharge occurs in the electric discharge machine according to the third embodiment.
  • FIG. 12 is a diagram showing a reverse polarity current path flowing through the electric discharge machine on the circuit configuration of FIG. 9.
  • FIG. 13 is a diagram illustrating a configuration example of an electric discharge machine including a power supply device for an electric discharge machine according to the fourth embodiment.
  • FIG. 1 is a diagram illustrating a configuration example of an electric discharge machine including a power supply device for an electric discharge machine according to the first embodiment.
  • the power supply device for an electric discharge machine according to Embodiment 1 includes a DC power supply 1, switching elements 4a and 4b, diodes 7a to 7c, a resistor 9, and a control unit 10.
  • a workpiece 3 and a machining electrode 2 are switching elements 4a and 4b. (FET is illustrated here), and is connected to the DC power source 1 via a diode 7 a and an inductance 6.
  • the switching element 4a has a source terminal connected to the negative electrode of the DC power source 1 and a drain terminal connected to the cathode terminal of the diode 7a.
  • the switching element 4 b has a source end connected to the workpiece 3 and a drain end connected to the positive electrode of the DC power source 1.
  • the inductance 6 is a parasitic inductance component existing on the current path. In FIG. 1, the inductance 6 is indicated by a broken line as occurring between the anode end of the diode 7 a and the processing electrode 2.
  • the diode 7a is not an essential component and can be omitted.
  • the diodes 7b and 7c are elements that restrict the direction of current flow in one direction together with the diode 7a.
  • the anode end of the diode 7 b is connected to the connection end of the switching element 4 a and the diode 7 a, and the cathode end is connected to the positive electrode of the DC power supply 1.
  • the cathode end of the diode 7c is connected to the connection end between the switching element 4b and the workpiece 3, and the anode end is connected to the connection end between the negative electrode of the DC power source 1 and the switching element 4a.
  • stray capacitance components determined by the above and wiring capacitance components. For this reason, these capacitance components are shown as stray capacitances 8 connected between both ends of the workpiece 3 and the processing electrode 2 as indicated by broken line portions in FIG.
  • control unit 10 is a component that performs on / off control on the switching elements 4a and 4b, and includes a pulse generation circuit 11 and a pulse generation condition setting unit 12.
  • the pulse generation condition setting unit 12 is configured to input machining conditions inputted from the outside and various conditions set based on the machining conditions (for example, machining time, machining current, timing for turning on the switching elements 4a and 4b, switching elements 4a and 4b). ON / OFF time ratio (ratio of off time to on time: off time / on time, etc.).
  • the pulse generation circuit 11 Based on the signal from the pulse generation condition setting unit 12, the pulse generation circuit 11 generates a control signal for turning on / off the switching elements 4a and 4b to control the switching elements 4a and 4b.
  • FIG. 2 is a diagram showing an interelectrode voltage and an interelectrode current when the interelectrode is open, that is, when no interelectrode current flows
  • FIG. 3 is an interelectrode voltage when a discharge occurs, that is, when an interelectrode current flows.
  • FIG. 4 is a diagram showing the path of the current flowing through the electric discharge machine on the circuit configuration of FIG. 1.
  • a predetermined number of pulse trains (five are illustrated in FIG. 2) that are turned on for a predetermined time T1 and turned off for a predetermined time T2 as shown in the upper part of FIG. Output from the pulse generation circuit 11 of the unit 10.
  • a predetermined pause time is provided between the pulse trains as shown in the figure.
  • the switching elements 4 a and 4 b are simultaneously turned on / off by this pulse train, and apply the DC voltage of the DC power source 1 to the machining gap between the workpiece 3 and the machining electrode 2.
  • the path of the interelectrode current (current path) is as shown in FIG. More specifically, the current rises when the pulse train is turned on, and the positive polarity of the DC power source 1 ⁇ the switching element 4b ⁇ the workpiece 3 ⁇ the processing electrode 2 ⁇ the inductance 6 ⁇ the diode 7a ⁇ the switching element 4a ⁇ the DC power source 1 A current between the electrodes flows through a current path indicated by a solid line of the negative electrode.
  • the current falls at the timing of turning off the pulse train, and due to the energy accumulated in the inductance 6, inductance 6 ⁇ diode 7a ⁇ diode 7b ⁇ positive polarity of DC power supply 1 ⁇ negative electrode of DC power supply 1 ⁇ diode 7c ⁇ workpiece 3 A current between the electrodes flows through a current path indicated by a one-dot chain line of ⁇ the machining electrode 2 ⁇ the inductance 6.
  • the on time of the switching elements 4a and 4b is set to 2.5 ⁇ sec
  • the positive slope portion L1 of the interelectrode current waveform includes an inductance component of the inductance 6 and a resistance component present on the current path when the switching elements 4a and 4b are turned on (an electric discharge machine including resistance of the machining gap and machining fluid).
  • the negative slope portion L2 of the inter-electrode current waveform includes an inductance component of the inductance 6 and a resistance component existing on the current path when the switching elements 4a and 4b are turned off (discharge including machining gap resistance and machining fluid).
  • the slope of the positive slope portion L1 in the interpolar current waveform when the switching elements 4a and 4b are switched from OFF to ON is determined.
  • the slope of the negative slope portion L2 in the interelectrode current waveform when the switching elements 4a and 4b are switched from on to off is also determined.
  • the switching elements 4a and 4b by setting the switching elements 4a and 4b to an on time of 2.5 ⁇ sec and an off time of 1.5 ⁇ sec, the time during which no inter-electrode current flows (no current time) is 0.3 ⁇ sec.
  • the duration (current pulse width or current duration) during which the current flows is 3.7 ⁇ sec, and the ratio of the no-current time to the current pulse width (or current duration) is 0.3 / 3.7 ⁇ It can be seen that it is set to 0.08.
  • FIG. 5 is a diagram showing an example of a measurement result indicating the size of the discharge trace when the switching elements 4a and 4b are processed by changing the on / off ratio.
  • the horizontal axis represents the ratio between the non-current time and the current pulse width (hereinafter referred to as “current pulse time ratio”)
  • the vertical axis represents the size of the discharge mark generated by the processing.
  • the size of this discharge mark is standardized, for example, in a narrow hole electric discharge machining apparatus with the current pulse time ratio set to 1 and the hole diameter when the current pulse time ratio is set to 1, and discharge relative to the current pulse time ratio.
  • the size of the mark is expressed as a percentage.
  • the current pulse time ratio preferably 1/5 or less, and more preferably to 1/10 or less, it is possible to perform processing with a reduced current-free time. Therefore, when viewed from the entire pulse train, processing is performed by applying a pseudo rectangular pulse (20 ⁇ sec rectangular pulse in the example of FIG. 3) having the entire pulse train as one pulse, as shown by a one-dot chain line in FIG. It corresponds to that. For this reason, the effect that the energy density in one electric discharge machining can be increased is also acquired.
  • FIG. 6 is an example of a waveform when the time ratio of some current pulses does not become 1/5 or less. More specifically, the rise of the third pulse K1 in the pulse train K is delayed, and an unintended pause time occurs. An example is shown.
  • the width of the pulse train becomes shorter than intended because the current pulse train is interrupted (in the example of FIG. 6, the pulse train K is a pulse train composed of the first pulse and the second pulse). And the third pulse (K1) and the pulse train consisting of the fourth pulse) are considered to be generated at a certain ratio depending on the state between the electrodes and the setting state of the electrode feed control.
  • a phenomenon may occur even in a conventional power supply circuit that outputs a rectangular waveform (for example, Patent Document 3: Japanese Patent Application Laid-Open No. 07-237039). Is so low that it can be almost ignored.
  • the power supply device for an electric discharge machine there is no resistance between the DC power supply 1 and the machining electrode 2 and it exists on the series circuit including the DC power supply 1 and the switching elements 4a and 4b. Since the inter-electrode current flowing in the machining gap is limited by the inductance 6 to be generated, the amount of heat generation can be reduced as compared with the case where a rectangular wave current having the same peak value is passed.
  • the present invention is not limited to this, and can be set in the range of 15 to 150 A, for example. If the peak current is increased, difficult-to-cut materials such as cemented carbide can be processed, and if the peak current is decreased, the processing accuracy can be increased.
  • the present invention is not limited to this, and can be set in the range of 0.3 to 10.0 ⁇ sec, for example. If the current pulse width is increased, the substantial peak current can be increased, so that difficult-to-cut materials such as cemented carbide can be processed. Further, if the current pulse width is reduced, the substantial peak current can be reduced, so that the processing accuracy and surface roughness can be improved.
  • these current pulse widths and peak current magnitudes can be set independently. For example, when the peak current is 15 A, the current pulse width may be set to 0.3 ⁇ sec, or may be set to 10.0 ⁇ sec. For example, when the peak current is 150 A, the current pulse width may be set to 0.3 ⁇ sec, or may be set to 10.0 ⁇ sec.
  • the current pulse width and the magnitude of the peak current can be independently changed because the DC power supply 1 is a voltage variable power supply as shown in FIG. That is, by changing the voltage of the DC power source 1, the current pulse width and the peak current are individually changed so that the current pulse width and the peak current are suitable for the processing speed or processing accuracy. It becomes possible.
  • a current pulse having a triangular wave shape is generated using an inductance component existing on a series circuit including a DC power supply and a switching element. Since the switching element is controlled so that the current pulse time ratio, which is the ratio of the no-current time and the current duration in the current pulse, is 1/5 or less and 1/10 or more, It is possible to achieve both processing speed and processing accuracy while suppressing the increase.
  • the current pulse time ratio may be set to 1/5 or a value close thereto, and the processing speed can be increased while maintaining the processing accuracy.
  • the current pulse time ratio may be set to 1/10 or less, and the machining speed can be further increased while maintaining a certain level of machining accuracy.
  • the pulse width of each current pulse in the current pulse train is controlled to be constant or substantially constant (3.7 ⁇ s in the example of FIG. 3).
  • Embodiment 2 shows an embodiment in which the pulse width or peak value of each current pulse in the current pulse train is made different in the current pulse train.
  • a waveform having a slow current rising speed is suitable for suppressing electrode consumption due to machining, an example of which is shown in FIG.
  • the pulse train shown in FIG. 7 the pulse train is such that the peak value of the current pulse gradually increases from the first pulse to the third pulse.
  • the current characteristics seen in the entire pulse train can be grasped as current characteristics with a slow rising speed, as shown by the broken line (envelope connecting the peak values) in the figure. It is effective to suppress.
  • Such a pulse train may be, for example, the first pulse to the third pulse (not limited to the third pulse but other pulses (including the last pulse) in the example of FIG. 7. This can be achieved by controlling the switching element ON time and OFF time gradually longer.
  • the pulse train shown in FIG. 8 the pulse train has a peak value that is relatively small and gradually decreases after the second pulse after the first pulse having a relatively large peak value. Such a pulse train is effective in suppressing electrode consumption while increasing the processing speed or without sacrificing it.
  • pulse trains shown in FIGS. 7 and 8 are examples, and the desired pulse width and desired peak value can be set by controlling the switching element on-time and the switching element off-time.
  • the peak value between each current pulse is made different by changing the peak value of an arbitrary or predetermined current pulse in the pulse train. Therefore, it is possible to suppress electrode consumption while maintaining the effect of the first embodiment.
  • FIG. 9 is a diagram illustrating a configuration example of an electric discharge machine including the electric discharge machine power supply device according to the third embodiment.
  • the power supply device for an electric discharge machine according to the first embodiment shown in FIG. 1 is a power supply device for an electric discharge machine that can generate only positive current pulses
  • the power supply device for electric discharge is a power supply device for an electric discharge machine that can generate current pulses of both polarities (positive polarity and reverse polarity), and is newly provided with a DC power supply 1b, a switching element 4c, a diode 7d, and a resistor 5. It has been.
  • a DC power source 1b, a switching element 4c, a diode 7d, and a resistor 5 are connected in series, one end of the resistor 5 is connected to the connection end of the inductance 6 and the diode 7a, and the other end is connected to the cathode end of the diode 7d. It is connected.
  • the switching element 4c has a source terminal connected to the anode terminal of the diode 7d and a drain terminal connected to the positive electrode of the DC power source 1b. Further, the negative electrode of the DC power source 1 b is connected to a connection end between the switching element 4 b and the workpiece 3.
  • the DC power supply 1 shown in FIG. 1 as the DC power supply 1a in FIG. The duplicated explanation is omitted.
  • FIG. 10 is a diagram showing the interelectrode voltage and the interelectrode current when the interelectrode is open, that is, when no interelectrode current flows
  • FIG. 11 is the interelectrode voltage when a discharge occurs, that is, when the interelectrode current flows.
  • FIG. 12 is a diagram showing a current path of reverse polarity flowing through the electric discharge machine on the circuit configuration of FIG. 9. Note that the operation when a positive pulse current flows is the same as or equivalent to that of the first embodiment, and therefore, here, the operation when a reverse polarity pulse current flows will be described.
  • the pulse generation circuit output 18a is a positive pulse train (pulse group), whereas the pulse generation circuit output 18b is a reverse polarity pulse train (pulse group).
  • the reason why the bipolar pulse group is used is, for example, to prevent electrolytic corrosion.
  • oil-based machining fluid is used as the machining fluid, there is almost no effect due to electrolytic action.
  • pure water is used as the machining fluid or when a polymer compound is mixed with an aqueous machining fluid, Electrolytic corrosion may occur on the material side and damage the treated surface. If processing is performed using a bipolar (alternating current) pulse group as in this embodiment, such electrolytic corrosion can be prevented.
  • the current path flowing in the reverse polarity is as shown in FIG. 12, and the positive electrode of the DC power source 1b ⁇ switching element 4c ⁇ diode 7d ⁇ resistance 5 ⁇ inductance 6 ⁇ processing electrode 2 ⁇ workpiece 3 ⁇ DC power source 1b.
  • the inter-electrode current flows through the current path indicated by the solid line of the negative electrode.
  • the resistor 5 functions as a current limiting resistor for preventing discharge on the reverse polarity side that promotes consumption of the processing electrode. Due to the action of the resistor 5, the current on the reverse polarity side is suppressed and smaller than the current on the positive polarity side, as shown in the waveform in the lower part of FIG.
  • FIG. 13 is a diagram illustrating a configuration example of an electric discharge machine including a power supply device for an electric discharge machine according to the fourth embodiment.
  • the power supply device for an electric discharge machine according to the first embodiment shown in FIGS. 1 to 4 performs machining by applying a machining current by applying a voltage to the electrode 1 with a negative polarity and a workpiece 3 with a positive polarity.
  • the polarity inversion circuit 20 is added so that the electrode 1 can be switched to the positive polarity and the workpiece 3 can be switched to the negative polarity for processing. It is used when the processing is performed with the polarity reversed depending on the material of the electrode 1 or the workpiece 3 or when the shape of the electrode is shaped by intentionally consuming a large amount of the electrode.
  • the polarity inverting circuit 20 has switches 21 a and 21 b of one circuit and two contacts, and is inserted into the circuit so as to be connected in parallel to the resistor 9 on the processing electrode 2 side than the resistor 9.
  • the switches 21a and 21b are switched at the same time and the contacts are controlled to the solid line side, the positive voltage of the DC power source 1 is applied to the machining electrode 2, and the negative voltage of the DC power source 1 is applied to the workpiece 3.
  • the connection is made so that the contact is controlled to the broken line side, the negative voltage of the DC power source 1 is applied to the machining electrode 2 and the positive voltage of the DC power source 1 is applied to the workpiece 3. So that they are connected.
  • the basic operation is the same as in the first to third embodiments, and a description thereof is omitted here.
  • FIG. 5 a switching element and a diode provided in a power supply device for an electric discharge machine will be described.
  • a switching element used for a power supply device for an electric discharge machine a semiconductor switching element made of silicon (Si) (MOSFET, IGBT, etc., hereinafter abbreviated as “Si-SW”) is generally used.
  • a diode used in a power supply device a semiconductor diode (also referred to as “Si-D” hereinafter, such as a PN junction type or a Schottky barrier type) that is also made of silicon is generally used.
  • the technique described in the first embodiment can use this general Si-SW and Si-D.
  • the techniques of the first and second embodiments are not limited to these Si-SW and Si-D.
  • a semiconductor switching element made of silicon carbide (SiC) which has been attracting attention in recent years
  • a semiconductor diode made of SiC are used as a switching element and a diode of the power supply device for an electric discharge machine described above.
  • SiC silicon carbide
  • SiC has a feature that it can be used at a high temperature
  • a switching element and a diode made of SiC are used as a switching element and a diode provided in a power supply device for an electric discharge machine, switching is performed. It is possible to increase the allowable operating temperature of the element and the diode, and it is possible to reliably avoid the problem of the heat generation amount. For this reason, by using a SiC element, the upper limit value of the peak current can be increased, and the processing capability can be enhanced.
  • SiC has a feature that it can operate at high speed, if a switching element and a diode made of SiC are used as a switching element and a diode included in a power supply device for an electric discharge machine, the switching element and the diode The operation speed can be increased. For this reason, by using the SiC element, the current pulse width can be further reduced, and the processing accuracy and the surface roughness can be improved.
  • SiC is an example of a semiconductor referred to as a wide bandgap semiconductor by capturing the characteristic that the bandgap is larger than that of Si (in contrast, Si is referred to as a narrow bandgap semiconductor).
  • a semiconductor formed using a gallium nitride-based material or diamond belongs to a wide bandgap semiconductor, and their characteristics are also similar to silicon carbide. Therefore, a configuration using a wide band gap semiconductor other than silicon carbide also forms the gist of the present invention.
  • switching elements and diodes formed of such wide band gap semiconductors have high voltage resistance and high allowable current density, so that switching elements and diodes can be miniaturized.
  • elements and diodes it is possible to reduce the size of a semiconductor module incorporating these elements.
  • the switching element formed of a wide band gap semiconductor has high heat resistance, in the case of a switching element that requires a cooling mechanism such as a heat sink, the cooling mechanism can be downsized, and the switching element module can be further reduced in size. Can be realized.
  • Embodiments 1 to 3 above are examples of the configuration of the present invention, and can be combined with other known techniques, and can be combined within the scope of the present invention. Needless to say, the configuration may be modified by omitting the unit.
  • the present invention is useful as a power supply device for an electric discharge machine that can increase the machining speed and suppress an increase in the amount of heat generation as compared with a conventional apparatus.
  • Pulse generation circuit Pulse generation condition Setting unit 18a Pulse generation circuit output 18b Pulse generation circuit output 20 Polarity inversion circuit 21a, 21b Switch

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

発熱量の増大を抑制しつつ、加工速度と加工精度とを両立させるために、本発明では、加工用電極(2)と被加工物(3)との間の加工間隙に直流または交流の電流パルスを供給するための直流電源(1)、スイッチング素子(4a,4b)およびダイオード(7a)を含む直列回路と、電流の流れる方向を一方向に規制するダイオード(7b,7c)と、スイッチング素子(4a,4b)を制御する制御部(10)と、を備え、制御部(10)は、直列回路上に存在するインダクタンス(6)によって三角波形状を成す電流パルスを生成する際に、複数の電流パルスからなるパルス列における任意の電流パルスのピーク値が変化するようにスイッチング素子(4a,4b)のオン時間およびオフ時間を制御する。

Description

放電加工機用電源装置
 本発明は、放電加工機用電源装置に関する。
 従来、放電加工機用電源装置に関連する先行技術文献として、下記特許文献1および2に示されたものがある。
 特許文献1に示される放電加工機用電源装置では、所定の繰返し周波数を有するパルス列を所定時間毎に断続させるスイッチング素子を駆動し、コンデンサが並列接続された加工用電極と被加工物との加工間隙に交流パルス電流を供給することにより、コンデンサの電荷をその加工間隙に完全に放電させてアーク電流の続流を防止し、放電加工における面粗度を良好とする技術が開示されている。
 また、特許文献2に示される放電加工機用電源装置では、加工用電極と被加工物との加工間隙に直流パルス電流を供給するための直流電源、スイッチング素子と抵抗器とからなる直列回路、加工用電極と被加工物とに並列接続されたコンデンサおよび、加工間隙の放電の発生を検出する放電検出手段を具備する構成において、スイッチング素子に対してコンデンサの放電電流のパルス幅と同等かそれ以下のパルス幅だけオンし、所定時間だけオフするオン/オフ制御をコンデンサが放電し放電検出手段がその放電を検出するまで繰返し、放電検出手段で放電の検出後における所定のオフ時間の後に再度オン/オフ制御を繰返す技術を開示している。この特許文献2の放電加工機用電源装置によれば、加工用電極と被加工物との間の間隙(以下「加工間隙」という)には、コンデンサの放電のパルス幅以上の電流が流れないようにして、特許文献1と同様にアーク電流の続流を防止している(図2および図11を参照)。
特開平03-55117号公報 特許第2914123号公報
 上記特許文献1,2の放電加工機用電源装置は、直流電源と加工用電極との間に抵抗器が必須となる構成であるため、加工電流が大きい場合には、この抵抗器での発熱量が大きくなり、装置の発熱量が増大するという課題があった。
 また、上記特許文献2の放電加工機用電源装置は、加工間隙に流れる電流パルス幅を極力短い時間に制限することにより、アーク電流の続流を防止する手法であるため、加工間隙に放電電流が流れないある一定時間以上の無電流時間が存在し、加工速度をあまり大きくできないという課題があった。
 本発明は、上記に鑑みてなされたものであって、従来の装置よりも加工速度を高め、かつ、発熱量の増大を抑制することができる放電加工機用電源装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る放電加工機用電源装置は、加工用電極と被加工物との間の加工間隙に直流または交流の電流パルスを供給するための直流電源およびスイッチング素子を含む直列回路と、前記スイッチング素子を制御する制御部と、を備え、前記制御部は、前記直列回路上に存在するインダクタンス成分によって三角波形状を成す電流パルスを生成する際に、当該電流パルスにおける無電流時間と電流継続時間との比である電流パルス時比率が1/5以下となるように前記スイッチング素子を制御することを特徴とする。
 この発明によれば、従来の装置よりも加工速度を高めることができ、発熱量の増大をも抑制することができるという効果を奏する。
図1は、実施の形態1に係る放電加工機用電源装置を含む放電加工機の一構成例を示す図である。 図2は、実施の形態1の放電加工機における極間開放時の極間電圧および極間電流を示す図である。 図3は、実施の形態1の放電加工機における放電発生時の極間電圧および極間電流を示す図である。 図4は、放電加工機に流れる電流の経路を図1の回路構成上に示した図である。 図5は、電流パルスの時比率と放電痕の大きさとの関係を示す測定結果の一例を示す図である。 図6は、電流パルス列における一部のパルスの時比率が1/5以下とならない場合の波形例を示す図である。 図7は、実施の形態2に係る電流パルス列の波形例を示す図である。 図8は、実施の形態2に係る電流パルス列の図7とは異なる波形例を示す図である。 図9は、実施の形態3に係る放電加工機用電源装置を含む放電加工機の一構成例を示す図である。 図10は、実施の形態3の放電加工機における極間開放時の極間電圧および極間電流を示す図である。 図11は、実施の形態3の放電加工機における放電発生時の極間電圧および極間電流を示す図である。 図12は、放電加工機に流れる逆極性の電流経路を図9の回路構成上に示した図である。 図13は、実施の形態4に係る放電加工機用電源装置を含む放電加工機の一構成例を示す図である。
 以下に添付図面を参照し、本発明の実施の形態に係る放電加工機用電源装置について説明する。なお、以下に示す実施の形態により本発明が限定されるものではない。
実施の形態1.
 図1は、実施の形態1に係る放電加工機用電源装置を含む放電加工機の一構成例を示す図である。実施の形態1に係る放電加工機用電源装置は、直流電源1、スイッチング素子4a,4b、ダイオード7a~7c、抵抗9および制御部10を備えて構成される。
 図1において、被加工物3と加工用電極2(細穴放電加工機および形彫り放電加工機の場合には型電極、ワイヤ放電加工機の場合にはワイヤ)とが、スイッチング素子4a,4b(ここではFETを例示)、ダイオード7aおよびインダクタンス6を介して直流電源1に接続されている。スイッチング素子4aのソース端は、直流電源1の負極に接続され、ドレイン端は、ダイオード7aのカソード端に接続されている。スイッチング素子4bのソース端は、被加工物3に接続され、ドレイン端は、直流電源1の正極に接続されている。インダクタンス6は、電流経路上に存在する寄生インダクタンス成分であり、図1では、ダイオード7aのアノード端と加工用電極2との間に生じるものとして破線で示している。なお、ダイオード7aは、必須の構成要素ではなく、省略することも可能である。
 ダイオード7b,7cは、ダイオード7aと共に電流の流れる方向を一方向に規制する素子である。ダイオード7bのアノード端は、スイッチング素子4aとダイオード7aとの接続端に接続され、カソード端は、直流電源1の正極に接続されている。また、ダイオード7cのカソード端は、スイッチング素子4bと被加工物3との接続端に接続され、アノード端は、直流電源1の負極とスイッチング素子4aとの接続端に接続されている。
 被加工物3と加工用電極2との間には、被加工物3および加工用電極2の形状や大きさ、あるいは被加工物3と加工用電極2との間の距離(極間距離)などによって決まる浮遊容量成分や、配線の容量成分が存在する。このため、これらの容量成分を、図1の破線部で示すように、被加工物3および加工用電極2の両端間に接続される浮遊容量8として示している。
 一方、制御部10は、スイッチング素子4a,4bに対するオン/オフ制御を行う構成部であり、パルス発生回路11およびパルス発生条件設定部12を備えて構成される。パルス発生条件設定部12は、外部から入力される加工条件や、加工条件に基づいて設定される諸条件(例えば加工時間、加工電流、スイッチング素子4a,4bをオンするタイミング、スイッチング素子4a,4bのオンオフ時比率(オン時間に対するオフ時間の比:オフ時間/オン時間)など)を設定する。パルス発生回路11は、パルス発生条件設定部12からの信号に基づき、スイッチング素子4a,4bをオン/オフするための制御信号を生成してスイッチング素子4a,4bを制御する。
 つぎに、実施の形態1に係る放電加工機用電源装置の動作について図1~図4の各図面を参照して説明する。図2は、極間開放時、即ち極間電流が流れないときの極間電圧および極間電流を示す図であり、図3は、放電発生時、即ち極間電流が流れるときの極間電圧および極間電流を示す図であり、図4は、放電加工機に流れる電流の経路を図1の回路構成上に示した図である。
 実施の形態1の放電加工機用電源装置では、図2の上段部に示すような所定時間T1だけオンし、所定時間T2だけオフする所定数(図2では5個を例示)のパルス列が制御部10のパルス発生回路11から出力される。なお、パルス列とパルス列との間には、図示のように、所定の休止時間が設けられる。スイッチング素子4a,4bは、このパルス列により同時にオン/オフ制御され、直流電源1の直流電圧を被加工物3と加工用電極2との間の加工間隙に印加する。
 ここで、極間電流が流れない場合(即ち放電が起こらない場合)、直流電源1からの直流電圧は、パルス列のオンにより浮遊容量8に印加され、浮遊容量8が充電される。このとき、図2の中段部に示すように、パルス列がオンの期間においては、極間電圧(充電電圧)が保持され、パルス列がオフの期間においては、蓄積電荷の一部が浮遊容量8と抵抗9とでほぼ決まる時定数に従って放電される。断続的に印加されるパルス列によって、これらの充電および放電が繰り返される。また、パルス列印加後の休止期間においては、浮遊容量8の蓄積電荷が放電され、極間電圧は、当該時定数に従い零レベルに向かって低下して行く。
 一方、極間電流が流れる場合(即ち放電が起こる場合)、浮遊容量8の蓄積電荷(充電エネルギー)が加工間隙に供給される。ここで、極間電流の経路(電流経路)は、図4に示す通りである。より詳細に説明すると、パルス列のオンのタイミングで電流は立ち上がり、直流電源1の正極→スイッチング素子4b→被加工物3→加工用電極2→インダクタンス6→ダイオード7a→スイッチング素子4a→直流電源1の負極という実線で示す電流経路で極間電流が流れる。一方、パルス列のオフのタイミングで電流は立ち下がり、インダクタンス6に蓄積されたエネルギーにより、インダクタンス6→ダイオード7a→ダイオード7b→直流電源1の正極→直流電源1の負極→ダイオード7c→被加工物3→加工用電極2→インダクタンス6という一点鎖線で示す電流経路で極間電流が流れる。
 このようにして、図3の下段部に示すような極間電流が流れる。なお、浮遊容量8の蓄積電荷は放電の際に加工間隙に供給され、極間電圧の変化は図3の中段部に示すように小さい。
 つぎに、実施の形態1に係る放電加工機用電源装置の要部動作について図3および図4の図面などを参照して説明する。
 例えば、図3の下段部に示す波形は、スイッチング素子4a,4bのオン時間を2.5μsec、オフ時間を1.5μsec、即ちオンオフ時比率を1.5/2.5=0.6に設定したときの極間電流(放電電流)波形である。極間電流波形の正の傾斜部L1は、インダクタンス6のインダクタンス成分と、スイッチング素子4a,4bがオンするときの電流経路上に存在する抵抗成分(加工間隙の抵抗や加工液を含む放電加工機での抵抗、配線抵抗、スイッチング素子4a,4bおよびダイオード7aのオン抵抗成分など)とで決まる時定数に従って過渡的に立ち上がる電流成分であり、図示のようにほぼ直線的に立ち上がる。また、極間電流波形の負の傾斜部L2は、インダクタンス6のインダクタンス成分と、スイッチング素子4a,4bがオフするときの電流経路上に存在する抵抗成分(加工間隙の抵抗や加工液を含む放電加工機での抵抗、配線抵抗、ダイオード7a~7cのオン抵抗成分、直流電源1の内部抵抗など)とで決まる時定数に従って立ち下がる電流成分であり、図示のようにほぼ直線的に立ち下がる。
 上述したことから理解できることであるが、回路構成が決まり素子の選定が為されれば、スイッチング素子4a,4bがオフからオンに切り替わるときの極間電流波形における正の傾斜部L1の傾きが決まり、スイッチング素子4a,4bがオンからオフに切り替わるときの極間電流波形における負の傾斜部L2の傾きも決まる。
 図3の例では、スイッチング素子4a,4bのオン時間を2.5μsec、オフ時間を1.5μsecに設定することにより、極間電流が流れていない時間(無電流時間)が0.3μsec、極間電流が流れて継続している時間(電流パルス幅もしくは電流継続時間)が3.7μsecとなり、無電流時間と電流パルス幅(もしくは電流継続時間)との比が0.3/3.7≒0.08に設定されていることが分かる。
 図5は、スイッチング素子4a,4bのオンオフ時比率を変更して加工したときの放電痕の大きさを示す測定結果の一例を示す図である。図5において、横軸は無電流時間と電流パルス幅との比(以下「電流パルス時比率」という)であり、縦軸は加工によって生じた放電痕の大きさを示している。この放電痕の大きさは、例えば細穴放電加工装置において、ある条件の下、電流パルス時比率を1にして加工を行ったときの穴の径を1として規格化し、電流パルス時比率に対する放電痕の大きさを百分率で表したものである。
 図5から、少なくとも以下の4つの事項が理解できる。
(1)電流パルス時比率が小さくなれば、放電痕は大きくなる。
(2)電流パルス時比率=0.2まではフラットな特性であり、電流パルス時比率が0.2以下になると放電痕が大きくなる。
(3)電流パルス時比率=0.1のときの放電痕の大きさは、電流パルス時比率=1.0のときの放電痕の大きさの約2倍の大きさである。
(4)電流パルス時比率が0.1未満のときの測定データはないが、電流パルス時比率が0.1の近傍において、放電痕の大きさが頭打ちになる傾向が見られる。
 電流パルス時比率が小さいということは、電流エネルギーの集中度が高いことを意味する。したがって、電流パルス時比率が大きい電流パルスで加工を行う場合よりも、電流パルス時比率が小さい電流パルスで加工を行う方が加工速度が速くなる。それ故、電流パルス時比率=0.2(=1/5)もしくはその近傍値は、加工精度を維持しつつ、加工速度を高めることができる好ましい設定値であると言える。
 また、電流パルス時比率=0.1(=1/10)は、加工精度よりも加工速度を重視して加工を行う場合の設定値である。この設定値の場合、上述したように、電流パルス時比率=1.0のときよりも放電痕の大きさが約2倍になるが、細穴放電加工装置の場合、加工用電極2の径を細くすることで加工精度の低下を補うことができる。それ故、電流パルス時比率を0.1(=1/10)以下に設定することとすれば、ある一定以上の加工精度を維持しつつ、加工速度をより高めることができるという効果が得られる。
 また、上記2つの場合の対比として、電流パルス時比率を0.1(=1/10)以上、且つ、0.2(=1/5)以下に設定することとすれば、加工速度と加工精度とを両立させることができるという効果が得られる。
 また、電流パルス時比率を好ましくは1/5以下に設定し、より好ましくは1/10以下に設定することにより、無電流時間を小さくした加工が可能となる。それ故、パルス列全体から見れば、図3において一点鎖線で示すような、パルス列全体を1パルスとする擬似的な矩形パルス(図3の例では20μsecの矩形パルス)を印加して加工していることに相当する。このため、1回の放電加工におけるエネルギー密度を増大することができるという効果も得られる。
 なお、電流パルス時比率を1/5もしくはその近傍値に設定した場合であっても、極間の状態によっては放電のタイミングが遅れてパルス列における全ての電流パルス時比率が1/5以下にならない場合もある。図6は、一部の電流パルスの時比率が1/5以下とならない場合の波形例であり、より詳細に説明すると、パルス列Kにおける第3パルスK1の立ち上がりが遅れ、意図しない休止時間が生じている例を示している。
 図6のように、電流パルス列が途切れたような状態になることによりパルス列の幅が意図したよりも短くなること(図6の例では、パルス列Kが、第1パルスおよび第2パルスからなるパルス列と、第3パルス(K1)および第4パルスからなるパルス列とに分離されたように見える)は、極間の状態や電極送り制御の設定状態によってある割合で発生していると考えられる。しかしながら、このような現象は、矩形波形を出力する従来方式の電源回路(例えば、特許文献3:特開平07-237039号)であっても、発生する場合があり、また、全体として、発生頻度は低いので殆ど無視することができる。
 また、本実施の形態の放電加工機用電源装置の場合、直流電源1と加工用電極2との間に抵抗を有さず、直流電源1およびスイッチング素子4a,4bを含む直列回路上に存在するインダクタンス6によって加工間隙に流れる極間電流を制限する構成であるため、同じピーク値の矩形波電流を流す場合に比して、発熱量を低減することができるという効果が得られる。
 なお、図3では、ピーク電流の大きさを100Aとする場合を例示したが、これに限定されるものではなく、例えば15~150Aの範囲で設定することが可能である。ピーク電流を大きくすれば、超硬合金などの難削材の加工が可能になり、ピーク電流を小さくすれば加工精度を高くすることができる。
 また、図3では電流パルス幅を3.7μsecとする場合を例示したが、これに限定されるものではなく、例えば0.3~10.0μsecの範囲で設定することが可能である。電流パルス幅を大きくすれば、実質的なピーク電流を大きくすることができるので、超硬合金などの難削材の加工が可能になる。また、電流パルス幅を小さくすれば、実質的なピーク電流を小さくすることができるので、加工精度や面粗度を向上させることができる。
 また、これらの電流パルス幅およびピーク電流の大きさは、個々独立に設定することが可能である。例えば、ピーク電流が15Aのときに電流パルス幅を0.3μsecに設定してもよいし、10.0μsecに設定してもよい。また、例えば、ピーク電流が150Aのときに電流パルス幅を0.3μsecに設定してもよいし、10.0μsecに設定してもよい。なお、インダクタンスは固定であるにも関わらず、電流パルス幅およびピーク電流の大きさを個々独立に変更できるのは、直流電源1を図1に示すように電圧可変電源としているからである。即ち、直流電源1の電圧を変更することにより、加工速度または加工精度に応じた好適な電流パルス幅およびピーク電流の大きさになるように、これら電流パルス幅およびピーク電流を個々独立に変更することが可能となる。
 以上説明したように、実施の形態1の放電加工機用電源装置によれば、直流電源およびスイッチング素子を含む直列回路上に存在するインダクタンス成分を利用して三角波形状を成す電流パルスを生成すると共に、当該電流パルスにおける無電流時間と電流継続時間との比である電流パルス時比率が1/5以下、且つ、1/10以上となるようにスイッチング素子を制御することとしたので、発熱量の増大を抑制しつつ、加工速度と加工精度とを両立させることが可能となる。
 なお、上記電流パルス時比率を1/5もしくはその近傍値に設定してもよく、加工精度を維持しつつ、加工速度を高めることが可能となる。
 また、上記電流パルス時比率を1/10以下に設定してもよく、ある一定以上の加工精度を維持しつつ、加工速度をより高めることが可能となる。
実施の形態2.
 実施の形態1では、スイッチング素子オン時間とスイッチング素子オフ時間とをパルス列内において固定(例えば、図3に示す例では、スイッチング素子オン時間=2.5μs、スイッチング素子オフ時間=1.5μs)とすることで、電流パルス列内における各電流パルスのパルス幅が一定もしくは略一定(図3の例では、3.7μs)となるように制御していた。一方、実施の形態2では、電流パルス列内における各電流パルスのパルス幅もしくはピーク値を電流パルス列内において異ならせる実施形態を示すものである。
 例えば、形彫り放電加工機の場合、加工による電極消耗を抑制するには電流の立ち上り速度の遅い波形が適しており、その一例を図7に示している。図7に示すパルス列では、第1パルスから第3パルスにかけて電流パルスのピーク値が徐々に大きくなるようなパルス列としている。このようなパルス列とすれば、パルス列全体で見た電流特性は、図示の破線(ピーク値を結んだ包絡線)で示すように、立ち上がり速度の遅い電流特性として捉えることができるので、電極消耗を抑制するのに効果的である。なお、このようなパルス列は、例えば、図7の例であれば、第1のパルスから第3のパルス(第3のパルスに限らず他のパルス(最後のパルスを含む)であっても構わない)にかけてスイッチング素子オン時間およびオフ時間を徐々に長くする制御を行うことで達成することができる。
 また、形彫り放電加工機において、超硬合金などの難加工材を加工する場合では、大きな三角波電流に続いて小さな電流を暫くの間継続して流すことにより、加工速度が早く、且つ、電極消耗を低減することができる場合があり、その一例を図8に示している。図8に示すパルス列では、ピーク値の比較的大きな第1パルスに続いて、第2パルス以降ではピーク値が比較的小さく、且つ、徐々に小さくなるようなパルス列としている。このようなパルス列とすれば、加工速度を高めつつ、または、犠牲にすることなく、電極消耗を抑制するのに効果的である。
 なお、図7および図8に示すパルス列は一例であり、スイッチング素子オン時間とスイッチング素子オフ時間を制御することにより、所望のパルス幅および所望のピーク値に設定することが可能となる。
 以上説明したように、実施の形態2の放電加工機用電源装置によれば、パルス列内における任意もしくは所定の電流パルスのピーク値を変化させることにより各電流パルス間のピーク値を異ならせることとしたので、実施の形態1の効果を維持しつつ電極消耗を抑制することが可能となる。
実施の形態3.
 図9は、実施の形態3に係る放電加工機用電源装置を含む放電加工機の一構成例を示す図である。図1に示した実施の形態1の放電加工機用電源装置が、正極性の電流パルスのみを発生することができる放電加工機用電源装置であったのに対し、図9に示す放電加工機用電源装置は、両極性(正極性および逆極性)の電流パルスの発生を可能とする放電加工機用電源装置であり、新たに、直流電源1b、スイッチング素子4c、ダイオード7dおよび抵抗5が設けられている。
 図9において、直流電源1b、スイッチング素子4c、ダイオード7dおよび抵抗5は直列に接続され、抵抗5の一端はインダクタンス6とダイオード7aとの接続端に接続され、他端はダイオード7dのカソード端に接続されている。スイッチング素子4cのソース端は、ダイオード7dのアノード端に接続され、ドレイン端は直流電源1bの正極に接続されている。また、直流電源1bの負極は、スイッチング素子4bと被加工物3との接続端に接続されている。なお、その他の構成については、同一または同等であり、図1に示す直流電源1を図9では直流電源1aとして示していることを除き、共通の構成部には同一の符号を付して示し、重複する説明を省略する。
 つぎに、実施の形態3に係る放電加工機用電源装置の動作について図10~図12の各図面を参照して説明する。図10は、極間開放時、すなわち極間電流が流れないときの極間電圧および極間電流を示す図であり、図11は、放電発生時、すなわち極間電流が流れるときの極間電圧および極間電流を示す図であり、図12は、放電加工機に流れる逆極性の電流経路を図9の回路構成上に示した図である。なお、正極性のパルス電流が流れるときの動作は、実施の形態1と同一または同等であるため、ここでは、逆極性のパルス電流が流れるときの動作について説明する。
 図10および図11において、パルス発生回路出力18aは正極性のパルス列(パルス群)であるのに対し、パルス発生回路出力18bは逆極性のパルス列(パルス群)である。両極性のパルス群を用いる理由は、例えば電解腐食を防止するためである。加工液として油系の加工液を用いる場合は電解作用による影響は殆どないが、加工液として純水を用いる場合もしくは、水系の加工液に高分子化合物を混合したものを用いる場合には、加工材側に電解腐食が発生し処理面にダメージを与えることがある。本実施の形態のように、両極性(交流)のパルス群を用いて加工するようにすれば、このような電解腐食を防止することができる。
 また、逆極性時に流れる電流経路は、図12に示す通りであり、直流電源1bの正極→スイッチング素子4c→ダイオード7d→抵抗5→インダクタンス6→加工用電極2→被加工物3→直流電源1bの負極という実線で示す電流経路で極間電流が流れる。ここで、正極性の電流を流す電流経路上には抵抗が存在しないが、逆極性の電流を流す電流経路上には抵抗5が存在する。この抵抗5は、加工用電極の消耗を助長することになる逆極性側の放電を防止するための電流制限抵抗として機能する。抵抗5の作用により、逆極性側の電流は、図11の下段部の波形に示すように、正極性側の電流よりも抑制されて小さくなる。
実施の形態4.
 図13は、実施の形態4に係る放電加工機用電源装置を含む放電加工機の一構成例を示す図である。図1から図4に示した実施の形態1の放電加工機用電源装置が、電極1をマイナス極性に被加工物3をプラス極性に電圧を印加して加工電流を流すことにより加工を行う例あったのに対し、本実施の形態では極性反転回路20を加えることにより、電極1をプラス極性に被加工物3をマイナス極性に切り換えて加工することが出来るようにしたものである。電極1や被加工物3の材質により極性を反転させて加工した方が加工速度が得られたり、また、意図的に電極を多く消耗させて電極形状を整形させる場合になどに用いられる。
 図13において、極性反転回路20は、1回路2接点のスイッチ21a,21bを有し、抵抗9よりも加工用電極2側で、且つ、抵抗9に並列に接続されるように回路内に挿入されている。スイッチ21a,21bは、同時に切り換えられ、接点が実線側に制御されている場合には、直流電源1の正電圧が加工用電極2に印加され、直流電源1の負電圧が被加工物3に印加されるように接続され、接点が破線側に制御されている場合には、直流電源1の負電圧が加工用電極2に印加され、直流電源1の正電圧が被加工物3に印加されるように接続される。なお、基本的な動作は、実施の形態1~3の場合と同様であり、ここでの説明は省略する。
実施の形態5.
 実施の形態5では、放電加工機用電源装置に具備されるスイッチング素子およびダイオードについて説明する。放電加工機用電源装置に用いられるスイッチング素子としては、珪素(Si)を素材とする半導体スイッチング素
子(MOSFET、IGBTなど、以下「Si-SW」と略記)が一般的であり、放電加工機用電源装置に用いられるダイオードとしては、同じく珪素を素材とする半導体ダイオード(PN接合型、ショットキーバリア型など、以下「Si-D」と略記)が一般的である。上記実施の形態1で説明した技術は、この一般的なSi-SWおよびSi-Dを用いることができる。
 一方、上記実施の形態1,2の技術は、これらのSi-SWおよびSi-Dに限定されるものではない。この珪素(Si)に代え、近年注目されている炭化珪素(SiC)を素材とする半導体スイッチング素子およびSiCを素材とする半導体ダイオードを上述した放電加工機用電源装置のスイッチング素子およびダイオードとして用いることも無論可能である。
 ここで、SiCは、高温度での使用が可能であるという特徴を有しているので、放電加工機用電源装置に具備されるスイッチング素子およびダイオードとしてSiCを素材とするものを用いれば、スイッチング素子およびダイオードの許容動作温度を高くすることができ、発熱量に対する問題を確実に回避することが可能となる。このため、SiC素子を用いることにより、ピーク電流の上限値を増大することができ、加工能力の増強を図ることが可能となる。
 また、SiCは、高速動作が可能であるという特徴を有しているので、放電加工機用電源装置に具備されるスイッチング素子およびダイオードとしてSiCを素材とするものを用いれば、スイッチング素子およびダイオードの動作速度を速くすることができる。このため、SiC素子を用いることにより、電流パルス幅を更に小さくすることができ、加工精度や面粗度の向上を図ることが可能となる。
 なお、SiCは、Siよりもバンドギャップが大きいという特性を捉えて、ワイドバンドギャップ半導体と称される半導体の一例である(これに対し、Siは、ナローバンドギャップ半導体と称される)。このSiC以外にも、例えば窒化ガリウム系材料または、ダイヤモンドを用いて形成される半導体もワイドバンドギャップ半導体に属しており、それらの特性も炭化珪素に類似した点が多い。したがって、炭化珪素以外の他のワイドバンドギャップ半導体を用いる構成も、本発明の要旨を成すものである。
 また、このようなワイドバンドギャップ半導体によって形成されたスイッチング素子やダイオードは、耐電圧性が高く、許容電流密度も高いため、スイッチング素子やダイオードの小型化が可能であり、これら小型化されたスイッチング素子やダイオードを用いることにより、これらの素子を組み込んだ半導体モジュールの小型化が可能となる。
 また、ワイドバンドギャップ半導体によって形成されたスイッチング素子は、耐熱性も高いため、ヒートシンク等の冷却機構を必要とするスイッチング素子の場合、冷却機構の小型化が可能となり、スイッチング素子モジュールの更なる小型化が可能になる。
 なお、以上の実施の形態1~3に示した構成は、本発明の構成の一例であり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能であることは言うまでもない。
 以上のように、本発明は、従来の装置よりも加工速度を高め、かつ、発熱量の増大を抑制することができる放電加工機用電源装置として有用である。
 1,1a,1b 直流電源
 2 加工用電極
 3 被加工物
 4a,4b,4c スイッチング素子
 5,9 抵抗
 6 インダクタンス
 7a,7b,7c,7d ダイオード
 8 浮遊容量
 10 制御部
 11 パルス発生回路
 12 パルス発生条件設定部
 18a パルス発生回路出力
 18b パルス発生回路出力
 20 極性反転回路
 21a,21b スイッチ

Claims (8)

  1.  加工用電極と被加工物との間の加工間隙に直流または交流の電流パルスを供給するための直流電源およびスイッチング素子を含む直列回路と、
     前記スイッチング素子を制御する制御部と、
     を備え、
     前記制御部は、前記直列回路上に存在するインダクタンス成分によって三角波形状を成す電流パルスを生成する際に、複数の前記電流パルスからなるパルス列における任意の電流パルスのピーク値が変化するように前記スイッチング素子のオン時間およびオフ時間を制御することを特徴とする放電加工機用電源装置。
  2.  前記制御部は、前記電流パルスにおける無電流時間と電流継続時間との比である電流パルス時比率が1/5以下、且つ、1/10以上となるように前記スイッチング素子を制御することを特徴とする請求項1に記載の放電加工機用電源装置。
  3.  前記制御部は、前記電流パルスにおける無電流時間と電流継続時間との比である電流パルス時比率が1/10以下となるように前記スイッチング素子を制御することを特徴とする請求項1に記載の放電加工機用電源装置。
  4.  前記制御部は、前記電流パルスにおける無電流時間と電流継続時間との比である電流パルス時比率が1/5もしくはその近傍値となるように前記スイッチング素子を制御することを特徴とする請求項1に記載の放電加工機用電源装置。
  5.  前記直列回路には、前記直流電源の印加極性を変更するための極性反転回路が設けられており、
     前記制御回路は、前記極性反転回路を制御して前記直流電源の印加極性を変更することにより正極性のパルスまたは逆極性のパルスを前記加工間隙に供給することを特徴とする請求項1~4の何れか1項に記載の放電加工機用電源装置。
  6.  前記直流電源は、前記直列回路内にて第1のスイッチング素子を介して正極性に接続される第1の直流電源と、前記直列回路内にて第2のスイッチング素子を介して逆極性に接続される第2の直流電源と、を有してなり、
     前記制御回路は、前記加工間隙に正極性のパルスを供給するときには前記第1のスイッチング素子をオンに制御し、前記加工間隙に逆極性のパルスを供給するときには前記第2のスイッチング素子をオンに制御することを特徴とする請求項1~4の何れか1項に記載の放電加工機用電源装置。
  7.  前記直列回路に具備されるスイッチング素子は、ワイドバンドギャップ半導体にて形成されるスイッチング素子であることを特徴とする請求項1~4の何れか1項に記載の放電加工機用電源装置。
  8.  前記ワイドバンドギャップ半導体は、炭化ケイ素、窒化ガリウム系材料または、ダイヤモンドを用いた半導体であることを特徴とする請求項7に記載の放電加工機用電源装置。
PCT/JP2011/077724 2011-11-30 2011-11-30 放電加工機用電源装置 WO2013080347A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012524977A JP5183827B1 (ja) 2011-11-30 2011-11-30 放電加工機用電源装置
CN201180075175.3A CN103958103B (zh) 2011-11-30 2011-11-30 放电加工机用电源装置
PCT/JP2011/077724 WO2013080347A1 (ja) 2011-11-30 2011-11-30 放電加工機用電源装置
US14/359,367 US9114468B2 (en) 2011-11-30 2011-11-30 Power supply device for electrical discharge machine
DE201111105900 DE112011105900T5 (de) 2011-11-30 2011-11-30 Stromversorgungsvorrichtung für Elektroentladungsmaschine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/077724 WO2013080347A1 (ja) 2011-11-30 2011-11-30 放電加工機用電源装置

Publications (1)

Publication Number Publication Date
WO2013080347A1 true WO2013080347A1 (ja) 2013-06-06

Family

ID=48481382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077724 WO2013080347A1 (ja) 2011-11-30 2011-11-30 放電加工機用電源装置

Country Status (5)

Country Link
US (1) US9114468B2 (ja)
JP (1) JP5183827B1 (ja)
CN (1) CN103958103B (ja)
DE (1) DE112011105900T5 (ja)
WO (1) WO2013080347A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3085448T3 (pl) * 2014-01-29 2018-09-28 Mitsubishi Hitachi Power Systems Environmental Solutions, Ltd. Odpylacz elektrostatyczny, program sterowania ładowaniem dla odpylacza elektrostatycznego, i sposób sterowania ładowaniem dla odpylacza elektrostatycznego
CN107635705B (zh) * 2015-06-12 2019-05-10 三菱电机株式会社 放电加工电源装置
CN107775128B (zh) * 2016-08-31 2019-09-13 山东豪迈机械科技股份有限公司 电火花加工电源及其控制方法
CN107775127B (zh) * 2016-08-31 2019-11-19 山东豪迈机械科技股份有限公司 电火花加工电源及其控制方法
CN107086810A (zh) * 2017-06-29 2017-08-22 张玉炜 一种高能脉冲电源控制电路
US11084112B2 (en) 2018-05-31 2021-08-10 Johnson Technology, Inc. Electrical discharge machine time slice power supply
WO2020090070A1 (ja) * 2018-10-31 2020-05-07 株式会社牧野フライス製作所 放電加工機の電源装置
JP7032561B2 (ja) * 2018-10-31 2022-03-08 株式会社牧野フライス製作所 放電加工機の電源装置
JP6883138B1 (ja) * 2020-09-03 2021-06-09 株式会社ソディック 放電加工機

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05208316A (ja) * 1992-01-28 1993-08-20 Mitsubishi Electric Corp 放電加工機用電源装置
WO2001032342A1 (fr) * 1999-11-01 2001-05-10 Mitsubishi Denki Kabushiki Kaisha Dispositif d'alimentation destine a un usinage par etincelage, et procede d'usinage par etincelage
JP2003181724A (ja) * 2001-12-19 2003-07-02 Yoshihide Kanehara 放電加工用電源装置
JP2010155330A (ja) * 2009-01-05 2010-07-15 Hitachi-Ge Nuclear Energy Ltd 水中放電加工装置
JP4850317B1 (ja) * 2011-04-12 2012-01-11 三菱電機株式会社 放電加工機用電源装置および放電加工方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3409753A (en) * 1964-10-05 1968-11-05 Inoue Kiyoshi Saturable reactor type control system for electrical discharge machining apparatus
US3974357A (en) * 1973-03-22 1976-08-10 Mitsubishi Denki Kabushiki Kaisha Process and apparatus for electrical discharge shaping using sequential switching
US3851135A (en) * 1973-11-09 1974-11-26 Trw Inc Electrical discharge machining process employing brass electrode, silicone oil dielectric, and controlled voltage pulses
US4319114A (en) * 1979-08-21 1982-03-09 Colt Industries Operating Corp Current limit system for electrical discharge machining apparatus
DE3419943C2 (de) 1984-05-11 1986-04-24 Aktiengesellschaft für industrielle Elektronik AGIE Losone bei Locarno, Losone, Locarno Verfahren zur Erzeugung einer elektroerosiven Entladespannung und Drahtschneidmaschine zur Durchführung des Verfahrens
JP2652392B2 (ja) * 1988-02-04 1997-09-10 ファナック株式会社 放電加工電源
JPH01216721A (ja) 1988-02-23 1989-08-30 Merudasu Syst Eng Kk 放電加工機群制御装置
JPH0355117A (ja) 1989-07-19 1991-03-08 Mitsubishi Electric Corp 放電加工用電源装置
JP2914123B2 (ja) 1993-10-19 1999-06-28 三菱電機株式会社 放電加工機用電源装置
JP3331077B2 (ja) * 1994-12-21 2002-10-07 株式会社ソディック 放電仕上げ加工用電源装置
US5872347A (en) * 1997-06-24 1999-02-16 Industrial Technology Research Institute Method and device for controlling discharging current slope of wire cut electrical discharge machine
JP3660478B2 (ja) 1997-08-27 2005-06-15 三菱電機株式会社 放電加工用電源装置
DE10084876B4 (de) * 2000-06-06 2006-06-08 Mitsubishi Denki K.K. Funkenerosions-Stromversorgungssystem
ATE356686T1 (de) * 2002-06-03 2007-04-15 Charmilles Technologies Funkenerosionsmaschine
CN1272132C (zh) * 2002-06-12 2006-08-30 三菱电机株式会社 金属线放电加工机的加工电源装置
DE60229445D1 (de) * 2002-07-12 2008-11-27 Mitsubishi Electric Corp Spannungsquelle für funkenerosion
JP5045104B2 (ja) 2004-10-27 2012-10-10 三菱電機株式会社 放電加工用電源装置及び細穴放電加工装置
US8168914B2 (en) * 2004-10-28 2012-05-01 Mitsubishi Electric Corporation Electric-discharge-machining power supply apparatus and electric discharge machining method
DE102007006595B4 (de) * 2007-02-09 2013-11-07 Agie Charmilles S.A. Verfahren und Vorrichtung zum Strecken und/oder Trennen von Drähten
US7816619B2 (en) * 2007-03-21 2010-10-19 Nebojsa Jaksic Methods and apparatus for manufacturing carbon nanotubes
JP4874358B2 (ja) 2009-02-27 2012-02-15 株式会社ソディック 形彫放電加工装置の加工用電源装置
WO2012114524A1 (ja) * 2011-02-25 2012-08-30 三菱電機株式会社 放電加工機用電源装置およびその制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05208316A (ja) * 1992-01-28 1993-08-20 Mitsubishi Electric Corp 放電加工機用電源装置
WO2001032342A1 (fr) * 1999-11-01 2001-05-10 Mitsubishi Denki Kabushiki Kaisha Dispositif d'alimentation destine a un usinage par etincelage, et procede d'usinage par etincelage
JP2003181724A (ja) * 2001-12-19 2003-07-02 Yoshihide Kanehara 放電加工用電源装置
JP2010155330A (ja) * 2009-01-05 2010-07-15 Hitachi-Ge Nuclear Energy Ltd 水中放電加工装置
JP4850317B1 (ja) * 2011-04-12 2012-01-11 三菱電機株式会社 放電加工機用電源装置および放電加工方法

Also Published As

Publication number Publication date
JPWO2013080347A1 (ja) 2015-04-27
US9114468B2 (en) 2015-08-25
JP5183827B1 (ja) 2013-04-17
CN103958103A (zh) 2014-07-30
US20140319102A1 (en) 2014-10-30
DE112011105900T5 (de) 2014-09-11
CN103958103B (zh) 2016-12-28

Similar Documents

Publication Publication Date Title
JP5183827B1 (ja) 放電加工機用電源装置
JP4850317B1 (ja) 放電加工機用電源装置および放電加工方法
US7645958B2 (en) Electric-discharge-machining power supply apparatus and small-hole electric-discharge machining apparatus
JP4850318B1 (ja) 放電加工機用電源装置およびその制御方法
JP5220036B2 (ja) 放電加工装置
JP2014058012A (ja) ワイヤカット放電加工装置の加工電源装置
TW504422B (en) Power supply device for a discharge machine
EP2883641B1 (en) Electric discharge machining device
US8901448B2 (en) Electric discharge machine
US8746174B2 (en) Discharge surface treatment apparatus and discharge surface treatment method
JP5466255B2 (ja) 細穴放電加工機の放電制御方法および細穴放電加工用電源装置
WO2018216429A1 (ja) 放電加工機用電源装置、放電加工装置及び放電加工方法
JPH11333632A (ja) 放電加工装置
JP5389128B2 (ja) 放電加工装置
JPH048165B2 (ja)
JP2004136374A (ja) ワイヤ放電加工装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012524977

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11876466

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14359367

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120111059000

Country of ref document: DE

Ref document number: 112011105900

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11876466

Country of ref document: EP

Kind code of ref document: A1