JP5409963B1 - 放電加工装置 - Google Patents

放電加工装置 Download PDF

Info

Publication number
JP5409963B1
JP5409963B1 JP2013513482A JP2013513482A JP5409963B1 JP 5409963 B1 JP5409963 B1 JP 5409963B1 JP 2013513482 A JP2013513482 A JP 2013513482A JP 2013513482 A JP2013513482 A JP 2013513482A JP 5409963 B1 JP5409963 B1 JP 5409963B1
Authority
JP
Japan
Prior art keywords
discharge
voltage
time width
electrode
machining apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013513482A
Other languages
English (en)
Other versions
JPWO2014068701A1 (ja
Inventor
利映 金
隆 橋本
智昭 高田
孝幸 中川
祐飛 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP5409963B1 publication Critical patent/JP5409963B1/ja
Publication of JPWO2014068701A1 publication Critical patent/JPWO2014068701A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/02Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges
    • B23H1/024Detection of, and response to, abnormal gap conditions, e.g. short circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/02Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H2300/00Power source circuits or energization
    • B23H2300/20Relaxation circuit power supplies for supplying the machining current, e.g. capacitor or inductance energy storage circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

本発明は、極間が持つコンデンサ容量を利用したコンデンサ放電を自励発振させて加工を行う際、加工が不安定になると考えられる周期で定期的に休止時間を設けることにより、加工精度と加工効率とを向上できるようにしたものである。
本発明の放電加工装置は、電源と、電極と被加工物とから形成される極間と、前記電源と前記極間との間に接続された電流制限抵抗と、前記電源から前記極間への電圧の印加をオン/オフするスイッチング素子と、前記スイッチング素子と前記極間との間に直列に接続されたインダクタンス素子と、前記スイッチング素子を制御する制御部とを備え、前記制御部は、オンパルス時間中に前記極間の電圧が前記電源の電圧値に到達可能なオンパルス時間幅(ΔTon)と前記コンデンサ放電時に流れる放電電流の時間幅(ΔTic)以上且つ自励発振の周期(ΔTso)未満の休止時間幅(ΔToff)とを有するスイッチングパターンで、前記スイッチング素子をオンオフ動作させる。

Description

本発明は、放電加工装置に関する。
放電加工装置は、加工用電極と被加工物との間にアーク放電を発生させる事により被加工物の加工を行う装置である。放電加工装置には、アーク放電を発生させるための電力源(加工用電源)が必要となる。この加工用電源の構成に関しては、従来から種々のものが存在している。
その中で、極間に対して並列に存在する極間のコンデンサ容量を利用したコンデンサ放電方式が知られている。基本回路は、電源、電流制限抵抗、極間のコンデンサ容量で構成される。極間のコンデンサ容量は、極間に対して並列にコンデンサ素子が接続されている場合、電極及びワークの間の機械的な浮遊容量とコンデンサ素子の容量との合成されたものであり、極間に対して並列にコンデンサ素子が接続されていない場合、電極及びワークの間の機械的な浮遊容量である。
基本回路では、まず、電源から電源制限抵抗を介して極間のコンデンサ容量に充電すると、極間の電圧が上昇する。極間の電圧が放電開始電圧を超えると、絶縁破壊が起こり、極間のコンデンサ容量に蓄積された電荷が放電エネルギーとして利用される。極間電圧は放電によりアーク電位まで低下するとともに、極間のコンデンサ容量に蓄えられた放電エネルギーだけ電流が流れる。このとき、電源からの電流は電流制限抵抗値により制限されるので、放電開始時に極間に流れる電流の中で、電源からの電流の比率は非常に小さい。そのため極間のコンデンサ容量に蓄えられた電荷がなくなると放電はもはや持続することが困難である。その後、放電が終わって絶縁回復すると、再度、電源から充電抵抗を介して極間のコンデンサ容量に電流が流れ、極間電圧が立ち上がる。
このように、放電自身の挙動により、オン(放電)とオフ(非放電、もしくはオープン)が繰り返される現象を自励発振とよぶ。自励発振は、極間のコンデンサ容量により放電電流が規定されるが、電源と極間との間にスイッチング素子を挿入することで、スイッチングにより放電電流を規定することもできる。
特許文献1には、放電加工電源回路において、直流電圧源と加工用電極との間に可変抵抗器及びスイッチング素子と可変抵抗器より十分大きな抵抗値を有する電流抑制抵抗器とを並列接続し、加工が安定に進んでいる場合にスイッチング素子をオンし、加工が不安定になった場合にスイッチング素子をオフすることが記載されている。これにより、特許文献1によれば、加工が不安定になった場合に加工用電極及び被加工物間への供給エネルギーを減少させて放電現象の発生を抑えるようにしたので、側面方向の放電と加工粉を介した二次放電を減少することができ、放電加工の安定化及び加工速度の向上が図れるとされている。
特許文献2には、ワイヤ放電加工装置において、直流電源と被加工物及び加工用電極が対向して配置された極間との間を4つのスイッチング素子でフルブリッジ接続し、4つのスイッチング素子のうち一方の対角アームのスイッチング素子に群パルスパターンを供給してスイッチングさせることが記載されている。このとき、制御部は、極間状態検出回路からの信号を元に、放電を検出すると、放電検出後のパルス休止時間を非放電時のパルス休止時間より長くし、さらに放電が連続しやすくワイヤの断線に至りやすい状態を検出すると、パルス休止時間を放電検出後のパルス休止時間より長くする。これにより、特許文献2によれば、放電時に放電状態に応じて群パルスの休止時間を制御するので、放電の集中を防止し、加工の安定化、加工速度の向上を図ることができるとされている。
一方、電源回路に抵抗以外にインダクタンス素子やコンデンサ素子を挿入することで、自励発振のオン、オフを調整することもできる。
特許文献3には、ワイヤカット放電加工装置において、電磁開閉器の接点の手前の配線中に可変抵抗器を設け、電磁開閉器の接点から被加工物までの配線中にインダクタンス素子を設けることが記載されている。これにより、特許文献3によれば、加工間隙に微小放電エネルギーを供給する回路を可変抵抗器とインダクタンス素子とで構成するとともに、インダクタンス素子が配線中の浮遊コンデンサ成分を打ち消すための役割も兼ねているとされている。
特開平5−38627号公報 特開2012−166323号公報 特開2000−52151号公報
まず、コンデンサ放電の特性について説明する。
コンデンサ放電は、仕上げ加工の領域で、または細い(φ0.1未満の細線領域)ワイヤを用いた加工の全工程において使われることが多い。放電エネルギーは、電源電圧、電流制限抵抗、極間コンデンサ容量によって決定され、超仕上げ加工領域になると、極間コンデンサ容量を減少させることが求められる。コンデンサ容量が減少していくと、同じ抵抗値の抵抗を用いた場合、電圧の立ち上がりも速くなり、電荷量の減少により放電電流幅も短くなるため、スイッチングを使わない自然放電による自励発振の周波数が高くなる。
コンデンサ放電は、極間のコンデンサ容量(極間浮遊容量だけでも良い)により成立するが、一般的に抵抗を挿入したCR回路で構成される。この回路にインダクタンス素子を挿入しLCR回路にすることで、インダクタンスの誘電起電力を利用することも考えられる。LCR回路は立ち上がりが速くなるという利点があるが、一方、電圧がオーバーシュートしやすくなり、短絡した場合に大きい電流が流れる可能性が生じるため、定数の選定は困難であるし、また様々に変化する極間状態の全てを満たす回路定数は存在しないため、加工状況に応じて波形の変動が生じてしまう。
一方、スイッチング素子を使った発振制御では、素子の性能によりオン、オフする周波数に限界がある。放電時、極間に並列に存在するコンデンサ容量が大きい場合は、発振制御し、強制的に休止時間を挿入することで、一発の放電電流を速く打ち切るため、放電エネルギーを制限し、電圧を速く立ち上がらせることができるため、効果的である。しかし、極間のコンデンサ容量が小さくなり、自励発振の方が発振制御素子の限界周波数より速くなると、群パルスを用いて発振制御すると、充分放電周波数が得られず、加工能力が低下する可能性がある。
以上の放電現象の特性を考慮すると、特許文献1〜3に記載の技術では、次のような課題が生じる可能性がある。
特許文献1に記載の技術では、コンデンサ放電中に、加工が不安定になるときに、スイッチングすることで、大きい抵抗を直列に接続し、極間に流れる電流を制限する方法を提案している。特許文献1には、まず、加工が不安定になることを検出する方法が開示されていない。また、特許文献1に記載の技術では、加工が不安定な場合、駆動軸を動かして電極と被加工物との距離を離すときに、コンデンサ放電の自励発振を止めるために、大きい抵抗を挿入し、極間放電を抑制するものであると考えられる。特許文献1に記載の技術では、加工の不安定を駆動軸サーボの分解能で制御することになるが、放電周波数は数百KHzから数MHzのオーダで発生しているのに対し、駆動軸を動かすサーボの分解能のオーダは数十KHzであるため、放電周波数よりかなり遅い応答性を持って制御することになると考えられる。一方、CR回路では、電流が流れ、コンデンサに充電する瞬間の勾配が、LCR回路の勾配より大きいため、連続放電が発生しやすいという問題がある。以上の理由から、特許文献1の技術を用いては、コンデンサ放電を用いた加工において、連続放電により加工面精度が悪くなり、遅い応答性の制御により、加工のバラつきが大きくなる可能性が高いので、加工精度と加工効率とを上げることは困難であると考えられる。
特許文献2に記載の技術は、コンデンサ放電に群パルス制御を加え、群パルスのデューティ比を調整するものであると考えられる。この技術では、群パルスのオン幅に放電を一回引き起こすことを仮定している。抵抗とコンデンサ容量とで決まる時定数によっては、発振制御が自励発振を抑制する可能性があり、休止時間を長時間化することで加工安定化はできるが、加工効率を向上させることは困難になる。また、特許文献2では、数回のパルスを発生させ、所定電圧まで立ち上がる回路においての制御であり、電圧の立ち上がりがスイッチング素子のオン、オフより遅い場合に有効である。そのため、コンデンサ容量が小さくなり、電圧の立ち上がりがスイッチング素子より速くなった場合は、特許文献2による制御を用いると、電圧が立ち上がってから休止時間を挿入することになるので、想定した効果を得ることはできない可能性がある。一方、休止時間を挿入した分、放電周波数が減少するため、加工能力が低下する可能性がある。以上から、特許文献2に記載の技術では、コンデンサ容量の値による回路の時定数が速くなればなるほど余計に頻繁に休止時間を挿入することになるので、加工効率を上げることは困難になる。
特許文献3に記載の技術では、仕上げ加工時の微細エネルギー投入のため、インダクタンス素子を挿入することで電極と被加工物との間に存在する浮遊容量を小さくする技術を提案している。特許文献3に記載の構成では、放電状態による制御が困難であるため、放電のバラつきやムラにより加工面精度が悪化する可能性がある。一方、インダクタンス素子により電圧の立ち上がり時にオーバーシュートが生じ、所定の電圧より高い電圧で放電するので面粗度が悪化する可能性がある。また放電中、電極と被加工物とが短絡した場合、インダクタンス素子に電流が流れつづけ、開放した瞬間に大電圧が極間に発生することで面粗さが悪化する可能性がある。特許文献3に記載の技術では、回路構成により面粗さのバラつきが大きくなる可能性があり、面粗さのバラつきを抑制するための制御も困難であるので、加工精度と効率を向上させることは困難である。
本発明は、上記に鑑みてなされたものであって、コンデンサ放電を用いた加工における加工精度と加工効率とを向上できる放電加工装置を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明の1つの側面にかかる放電加工装置は、放電加工を行う放電加工装置であって、電源と、電極と被加工物とから形成される極間と、前記電源と前記極間との間に接続された電流制限抵抗と、前記電源から前記極間への電圧の印加をオン/オフするスイッチング素子と、前記スイッチング素子と前記極間との間に直列に接続されたインダクタンス素子と、前記スイッチング素子を制御する制御部とを備え、前記放電加工装置は、前記極間が持つコンデンサ容量を利用したコンデンサ放電を自励発振させて加工を行い、前記制御部は、オンパルス時間中に前記極間の電圧が前記電源の電圧値に到達可能なオンパルス時間幅と前記コンデンサ放電時に流れる放電電流の時間幅以上且つ自励発振の周期未満の休止時間幅とを有するスイッチングパターンで、前記スイッチング素子をオンオフ動作させることを特徴とする。
本発明によれば、コンデンサ放電において、自励発振を優先しながらも、間歇的に、すなわち加工が不安定になると考えられる周期で定期的に休止時間を設けることで、長い短絡が発生することを防止できると共に、短絡解消時に電圧が電源の電圧より跳ね上がり、極間に大きい電流が流れることを抑制できる。これにより、放電周波数の低下を抑制できるとともに極間の不安定な状態を早期に解消できるので、コンデンサ放電を用いた加工における加工精度と加工効率とを向上できる。
図1は、実施の形態1にかかる放電加工装置の構成例を示す図である。 図2は、実施の形態1にかかる放電加工装置の他の構成例を示す図である。 図3は、コンデンサ放電においてスイッチング制御しない場合の発振信号及び極間電圧、電流波形図である。 図4は、実施の形態1における発振制御を示す発振信号及び極間電圧、電流波形図である。 図5は、実施の形態2にかかる放電加工装置の構成例を示す図である。 図6は、実施の形態2にかかる放電加工装置の他の構成例を示す図である。 図7は、実施の形態2における発振制御を示す発振信号、極間電圧波形、電流波形、及び一定時間内のエネルギー積分値の推移を表す図である。 図8は、実施の形態3にかかる放電加工装置の構成例を示す図である。 図9は、実施の形態3にかかる放電加工装置の他の構成例を示す図である。 図10は、実施の形態3における発振制御を示す発振信号、極間電圧波形、電流波形、及び電圧の時間微分値の推移を表す図である。 図11は、実施の形態3における発振制御のフローチャートである。
以下に、本発明にかかる放電加工装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
実施の形態1にかかる放電加工装置100について図1,2を用いて説明する。図1は、放電加工装置100の構成例を示す図である。図2は、放電加工装置100の他の構成例を示す図である。
例えば、図1に示すように、放電加工装置100は、極間101、電源部102、及び制御部11を備える。
極間101は、電極7と被加工物6とから形成される。電極7及び被加工物6は、互いに加工間隙を介して対向している。被加工物6は、例えばグランド電位に接地されている。電極7と被加工物6との間に存在するコンデンサ容量4は、任意で挿入することもできるし、ケーブルなど機械構成に存在する浮遊容量を利用することも可能である。
極間101が持つコンデンサ容量4は、例えば電極7と被加工物6とに並列に設置されたもので、電極7と被加工物6との距離が離れているときは、コンデンサ容量4に電圧が印加され電荷が貯まり、電極7と被加工物6との距離が近づき、放電が発生した場合は、コンデンサ容量4に貯まった電荷によるエネルギーが電極7と被加工物6との間に流れることになる。コンデンサ容量4は、用途によりコンデンサ素子を挿入することも有り、ケーブルや加工槽に存在するものや、電極7と被加工物6の形状、大きさ、また電極7と被加工物6の距離によって決まる浮遊容量成分だけで構成されることもある。
電源部102は、電源2、抵抗3、複数のスイッチング素子S1〜S4、及びインダクタンス素子5を有する。電源2は、例えば、直流電源であり、直流電力を発生させる。電源2は、複数のスイッチング素子S1〜S4を介して極間101に接続されている。例えば、電源2は、極間101に所定の加工条件(例えば、荒加工又は仕上げ加工)に適合した加工用電圧を印加し、極間101に所定の加工に必要な放電を生じさせる電源装置である。
なお、電源2は、交流電源であってもよい。電源2が交流電源である場合、電源2と複数のスイッチング素子S1〜S4との間に、例えば複数のダイオードをフルブリッジ接続することなどにより整流回路を設けてもよい。
複数のスイッチング素子S1〜S4は、電源2と極間101との間に電気的に接続されており、電源2から極間101への電圧の印加をオン/オフする。例えば、フルブリッジ接続されてフルブリッジ回路を構成している。スイッチング素子S1,S4及びスイッチング素子S2,S3が、それぞれ対角アームを構成するスイッチング素子である。一方の対角アーム(スイッチング素子S1,S4)と他方の対角アーム(スイッチング素子S2,S3)とを交互にオン、オフさせることで、電源2から極間101への電圧の印加をオン/オフするとともに、電極7と被加工物6の間に印加される電圧の極性を変えることもできる。極性を変えながら加工する両極加工では、スイッチング素子S1〜S4を用いフルブリッジを構成する必要があるが、一つの極性のみで加工する場合は、フルブリッジ構成ではなく、一つのスイッチング素子によるオン、オフ制御を行うことも可能である。
抵抗3は、電源2から大電流が流れないように、電流を制限するために挿入されたものである。また抵抗3は、電流制限の用途以外にも、電圧の立ち上がりの時定数を決めるパラメータでもあるので、値を調整することで、電圧の立ち上がりを変化させることも可能である。抵抗3は、経路に挿入されていれば良いため、図1のように電源2とスイッチング素子S1の間でも良いし、例えば、スイッチング素子S1とインダクタンス素子5との間でも良いし、電源2とスイッチング素子S3との間でも良いし、スイッチング素子S4と被加工物6との間に挿入されていても良い。ただし、各スイッチング素子をオンにした場合、電源2から電極7までの経路、もしくは被加工物6から電源2までの経路に挿入されている必要がある。
インダクタンス素子5は、コンデンサ容量4の充電時や加工時に流れる電流の変化により、電極7と被加工物6とに印加される電圧の立ち上がりを速くする役割をする。インダクタンス素子5の挿入により、抵抗3及びコンデンサ容量4との間でLCR回路の回路を構成することになり、LCR回路の臨界条件を満足する値にすることで、電圧の立ち上がりをオーバーシュートすること無く、速くすることができる。インダクタンス素子5の位置は、図1のようにスイッチング素子S1〜S4と電極7との間に挿入しても良いし、スイッチング素子S1〜S4と被加工物6との間に挿入しても構わない。インダクタンス素子5は、例えば、コイルである。
あるいは、例えば、図2に示すように、放電加工装置100は、電源部102(図1参照)に代えて電源部103を備えていてもよい。
電源部103は、インダクタンス素子5(図1参照)に代えて、インダクタンス素子51を有する。インダクタンス素子51は、例えば、コア51cの周りに第1の巻線51a及び第2の巻線51bを巻きつけた部品を利用する。インダクタンス素子51を導入することで、低周波数の電流の影響を抑え、機械に存在している浮遊容量(コンデンサ容量4)に流れる電流を抑制することができる。ここでインダクタンス素子51は、一般的にチョークコイルと呼ばれるものであり、第1の巻線51a及び第2の巻線51bをコア51cの周りに巻きつけることで、コア51c内部に磁束の通り道(磁路)が発生することを利用する素子である。第1の巻線51a及び第2の巻線51bをコア51cの周りに互いに逆方向に巻きつけることによって、第1の巻線51a及び第2の巻線51bについて逆方向へ流れる電流に対しては、インダクタンス素子51がインダクタンスとしての影響は少なく、第1の巻線51a及び第2の巻線51bの一方に流れる電流と、第1の巻線51a及び第2の巻線51bについて同方向へ流れる電流とに対しては、インダクタンス素子51が大きいインダクタンスとして働くことにより、回路に流れる電流を制限することができる。つまり、インダクタンス素子51におけるインダクタンス素子5(図1)の機能とは、インダクタンスとしては影響が小さい、浮遊インダクタンス成分に相当することになる。
コンデンサ放電は、小さい電流を用い、微細加工をする用途も多く、市場要求からより厳しい条件での加工を求められた際には、できるだけエネルギーを絞って小さくする必要がある。電極7と被加工物6との間ではなく、機械側の加工槽、ケーブルなどに存在する容量を減らすことは限界があるため浮遊容量が残存する。コンデンサ容量4において、コンデンサ素子の容量の容量が大きい場合、機械側に存在する浮遊容量の比率は小さいため、加工に及ぼす影響を無視できる。ただし、コンデンサ容量4が小さい場合、すなわちコンデンサ素子の容量を小さくし、微細加工を行う際には、機械側に存在する浮遊容量の比率が大きくなるため、浮遊容量に充電されたエネルギーが放電時に電極7と被加工物6との間に流れ、加工面の面粗さがコンデンサ素子の容量の大きさから想定していた加工面の面粗さより増大する可能性がある。
図2でのインダクタンス素子51をチョークコイルにし、コア51c内部に生じる磁束を利用することで、機械側の浮遊容量に充電される電流を抑制することができる。結果的にコンデンサ容量4の値が小さくても機械側の浮遊容量からの影響を防止することができる。
インダクタンス素子51として、チョークコイルのような構造を用いることも可能であるが、上記の効果を有する等価回路(例えば、棒状の鉄心に第1の巻線51a及び第2の巻線51bを互いに逆向きに巻き回したもの)に代替することもできる。またコア51cの材料及び巻き線の巻数の少なくとも一方を第1の巻線51a及び第2の巻線51bの間で異ならせることによって、コア51c内部に生じる磁束を制御し、逆方向に流れる電流においてインダクタンスとして利用することもできる。
放電加工の加工液としては、例えば、主に水と油との2種類が用いられる。加工液の種類による物性値の違いにより、放電に様々な影響を及ぼすが、図1に示す放電加工装置100の中では、コンデンサ容量4が加工液の影響を大きく受ける。特に機械的に存在する浮遊容量のみで加工する場合、加工液の誘電率はコンデンサ容量4の大きさを決めるため、加工液によるコンデンサ容量4の変化が吸収できるように回路を構成する必要がある。
制御部11は、スイッチング素子S1〜S4を制御する。すなわち、制御部11は、複数のスイッチング素子S1〜S4の制御端子に発振信号を供給し、複数のスイッチング素子S1〜S4をオンオフ動作させる。制御部11による制御(発振制御)の詳細は後述する。
次に、図1又は図2に示す放電加工装置100において、仮に、発振制御を行わない場合の放電動作について図3を用いて説明する。図3は、発振制御を行わない場合の信号、電圧、電流波形を表す。図3における(a)はスイッチング素子のオン、オフ信号、(b)は極間電圧の推移、(c)は放電電流波形を表す。ここで(a)のスイッチング素子は、一定の極性の間に行われることを想定しており、図3では、電極7をプラスにする場合(スイッチング素子S1,S4をオンする場合)を示している。なお、このとき、残りのスイッチング素子S2,S3は、オフ状態に維持されている。
図3(b)、(c)のように、放電が発生した場合、コンデンサ容量4に蓄積されたエネルギーが電流として流れ、LCR回路の時定数で決定される立ち上がり時間で電圧が印加される。図3における、各タイミングt1〜t5における動作について図1を用いて説明する。
タイミングt1では、制御部11が、スイッチング素子S1,S4をオンにすることで、電源2の電圧が、スイッチング素子S1及びインダクタンス素子5(もしくはインダクタンス素子51)を通って、極間101のコンデンサ容量4に充電され、電極7と被加工物6との間には電圧Vcが印加されている。コンデンサ放電では、タイミングt1のように、抵抗3とインダクタンス素子5、コンデンサ容量4の定数によって決定される時定数で極間101に電圧Vcが印加される。このとき、放電は発生していないので、放電電流Icは流れない。
なお、図3では、発振制御を行わないので、タイミングt1以降、発振信号は、発振停止の指令があるまで、ONレベルに固定されている。すなわち、制御部11は、スイッチング素子S1,S4の制御端子にONレベルの発振信号を継続的に供給している。
タイミングt2は、放電が発生したときの極間101の電圧Vc及び放電電流Icの波形を示す。放電が発生すると、コンデンサ容量4に充電された電荷量(エネルギー)が電極7と被加工物6との間に流れ、スイッチング素子S4を通って電源2に繋がるループができる。コンデンサ容量4に充電されていた電荷が極間101に流れ終わり、電極7と被加工物6との間に絶縁が回復すると、タイミングt1と同様、また電圧Vcが印加される。
タイミングt3は、印加される電圧によりコンデンサ容量4が完全に充電される前に放電が発生した場合を表す。極間101に流れる電荷量は、コンデンサ容量4に充電された電荷なので、タイミングt2と比較し、小さい電流が流れる。連続放電の場合、電圧が完全に立ち上がる前に放電が発生することが多いため、タイミングt3近傍に示されるような小さい放電電流Icが連続することになる。
タイミングt4は、短絡した場合の極間101の電圧Vc及び放電電流Icの波形を表す。電極7と被加工物6との間が放電後に短絡すると、極間101がアーク柱で繋がっており、アーク電圧が印加されると共に短絡電流が流れる。短絡時間は、数μsから長い場合は数msまでも及ぶが、このように長く電流が流れると、極間101に電流が流れ続け、インダクタンス素子5(又はインダクタンス素子51)にはエネルギーが蓄えられ続ける。そして短絡が解消されると、短絡時、インダクタンス素子5(又はインダクタンス素子51)に貯まっていたエネルギーが一気に極間101に流れるため、極間101の電圧Vcが大きく跳ね上がる。
タイミングt5では、電圧が大きく跳ね上がったときに放電が発生した場合、大きい電流が極間101に流れるということを表している。
上記のように、LCR回路によるコンデンサ放電では、発振制御無しでは、放電状態にバラつきをコントロールできる手段が無く、短絡した場合、短絡電流や電圧のオーバーシュートを制限することができない。そのため、加工面にムラが生じたり、短絡によるスジが生じたり、また放電周波数が減少するという問題を引き起こす可能性がある。
そこで、実施の形態1では、LCR回路によるコンデンサ放電において、スイッチング素子をオフ状態に維持する休止期間を定期的に挿入することで、上記の問題の解決を図る。
具体的には、制御部11は、図4(a)に示すように、オンパルス時間Ton中に極間101の電圧Vcが電源2の電圧値に到達可能なオンパルス時間幅ΔTonとコンデンサ放電時に流れる放電電流Icの時間幅ΔTic以上且つ自励発振の周期ΔTso以下の休止時間幅ΔToffとを有するスイッチングパターン(発振信号)で、スイッチング素子S1,S4をオンオフ動作させる。オンパルス時間幅ΔTonは、例えば、オンパルス時間Ton中に極間101の電圧Vcが電源2の電圧値に到達可能なものとして予め実験的に得られたものである。休止時間幅ΔToffは、例えば、コンデンサ放電時に流れる放電電流Icの時間幅ΔTic以上且つ自励発振の周期ΔTso以下であるものとして予め実験的に得られたものである。
実施の形態1では、図4(a)に示すように、間歇的に休止時間Toffを挿入する発振制御を行うことで、上記のようなコンデンサ放電の問題の解決を図る。
図3と同様、放電と短絡とが発生した場合に発振制御によりどのような変化が生じたかを説明する。スイッチング素子S1,S4をオンにし、電源2から極間101に電圧を印加している間は、図3に示す発振制御が無い場合と同じ動きをする。
そして、スイッチング素子S1,S4をオフにする休止時間Toffを挿入すると、電源2から極間101への電圧の印加が停止する。
例えば、タイミングt6のように、極間101の電圧Vcが立ち上がっている途中に休止時間Toffが挿入される(図4(b)参照)と、電圧の立ち上がりは休止時間幅ΔToff分遅くなるが、自励放電の周期ΔTsoに対して充分短いため、放電周波数低下の影響は少ない。
一方、タイミングt7のように短絡している場合、休止時間Toffが挿入されることで、短絡電流が流れる時間を短縮することができる(図4(c)参照)。また休止時間Toff経過後、電圧の立ち上がりは、通常の電圧立ち上がりの同等になるため、インダクタンスによる電圧のオーバーシュート(図3に示すタイミングt5の直前の電圧Vcの波形参照)を大幅に減少させることができる。
ここで、制御部11は、スイッチング素子S1,S4をオンにし、電源2からの電圧を極間101に印加する電圧印加持続時間、すなわちパルスオン時間幅ΔTonを、極間101の電圧Vcの立ち上がり時定数より長くし、また発振制御によらない自励発振が2回以上発生する時間を有するように制御する。また、制御部11は、極間101の電圧Vcが立ち上がってすぐに短絡した場合でも、加工面に悪影響を及ぼさないようにパルスオン時間幅ΔTonを制御する。電圧印加持続時間(パルスオン時間幅ΔTon)は、回路定数により適正範囲への調整(例えば、最適化)が必要であるが、例えば、数μsから数百μsのオーダで設定することができる。
一方、休止時間Toffは、放電時の放電電流持続時間(放電電流Icの時間幅ΔTic)以上であることが好ましい。仮に、休止時間Toffを放電時の放電電流持続時間(放電電流Icの時間幅ΔTic)よりも短く設定してしまうと、休止時間Toffを挿入しても放電が持続し、放電を停止させることが出来ない可能性がある。また、休止時間Toffは、短絡解消時、インダクタンス素子5(又はインダクタンス素子51)に貯まっているエネルギーが極間101に流れないように、休止時間Toffの間、インダクタンス素子5(又はインダクタンス素子51)のエネルギーを消費させるような長さに設定する必要がある。
また、休止時間幅ΔToffは、自励発振の周期ΔTso未満の長さであることが好ましい。仮に、休止時間幅ΔToffが自励発振の周期ΔTso以上に長くなると、放電周波数が減少するようになるため、加工能力が低下する傾向にある。休止時間幅ΔToffの設定は、電圧印加持続時間と同様に回路定数により適正範囲へ調整(例えば、最適化)する必要はあるが、例えば、数十μs以下とすることができる。
ここで、休止時間Toffを挿入する方法は2つ考えられる。1つ目は、スイッチング素子S1,S4をオフにし、電源2から電極7と被加工物6とへの電圧印加を止める方法である。電源2からの電圧印加を停止することで休止時間Toffの間は極間101に印加される電圧が低下し、放電が連続して発生することを防ぐことができる。2つ目は、電源2を含まない閉ループを作ることで極間101に印加されている電圧を消費する方法である。例えば、スイッチング素子S1,S4をオンしていた場合、休止時間Toffの間はスイッチング素子S3,S4をオンにすることで電源2を含まない閉回路を形成し、休止時間Toffの間に放電が連続発生することを抑制できる。特に2つ目の方法は、漏れ電流による電圧降下が小さい放電加工において効果があると考えられる。逆に、1つ目の方法であれば、スイッチング素子S1,S4をオフにし、電源2から極間101を電気的に分離しても極間101には電圧が印加され続けているため、放電周波数は2つ目よりも高くできる利点がある。
このような制御により、極間101のギャップ距離が長くて放電周波数が密集していない場合は、自励発振による周波数を稼ぎ、加工が不安定になると考えられる周期で定期的に休止時間Toffを入れることで、極間101の短絡を抑制でき、インダクタンス素子5(又はインダクタンス素子51)に貯まるエネルギーを消費することができる。
以上のように、実施の形態1では、放電加工装置100において、制御部11が、オンパルス時間Ton中に極間101の電圧Vcが電源2の電圧値に到達可能なオンパルス時間幅ΔTonとコンデンサ放電時に流れる放電電流Icの時間幅ΔTic以上且つ自励発振の周期ΔTso未満の休止時間幅ΔToffとを有するスイッチングパターンで、スイッチング素子S1,S4をオンオフ動作させる。すなわち、コンデンサ放電において、自励発振を優先しながらも、間歇的に、すなわち加工が不安定になると考えられる周期(ΔTon+ΔToff)で定期的に休止時間Toffを設けることで、長い短絡が発生することを防止できると共に、短絡解消時に電圧が電源2の電圧より跳ね上がり(図3のタイミングt5の直前に示されるような電圧印加時のオーバーシュート)、極間101に大きい電流が流れることを抑制できる。言い換えると、コンデンサ放電の加工不安定要素を回避する制御を間歇的に(定期的に)入れることで、集中放電、短絡により加工面にスジが発生することや、放電周波数が減少し加工能力が低下することを抑制することができる。これにより、放電周波数の低下を抑制できるとともに極間101の不安定な状態を早期に解消できるので、コンデンサ放電を用いた加工における加工精度と加工効率とを向上できる。
例えば、コンデンサ放電により加工されるワイヤ放電加工の細線(φ0.1未満)加工の全工程や、面粗さを小さくしなければならない仕上げ(もしくは、超仕上げ)加工領域で、加工精度と加工効率とを向上させることができる。
また、実施の形態1では、放電加工装置100において、インダクタンス素子5(又はインダクタンス素子51)が、スイッチング素子S1〜S4と極間101との間に直列に接続されている。これにより、コンデンサ放電において、高周波放電を発生することができるため、加工効率(加工能力)を向上できる。コンデンサ放電回路の自励発振を十分利用することで、スイッチング素子による群パルスを利用した制御より加工能力を向上できることが期待できる。
また、実施の形態1では、放電加工装置100において、制御部11が、インダクタンス素子5(又はインダクタンス素子51)のもつエネルギーに起因して極間101の電圧が電源2の電圧値を超えないように、スイッチングパターンにおけるオンパルス時間幅ΔTonと休止時間幅ΔToffとの少なくとも一方を制御する。例えば、制御部11は、加工が不安定になると考えられる周期(ΔTon+ΔToff)で定期的に休止時間Toffを入れるようにオンパルス時間幅ΔTonを制御する。これにより、極間101の短絡を抑制でき、インダクタンス素子5(又はインダクタンス素子51)に貯まるエネルギーを消費することができる。この結果、インダクタンス素子5(又はインダクタンス素子51)のもつエネルギーに起因して極間101の電圧が電源2の電圧値を超えないように制御することができる。
実施の形態2.
次に、実施の形態2にかかる放電加工装置100iについて図5,6を用いて説明する。図5は、放電加工装置100iの構成例を示す図である。図6は、放電加工装置100iの他の構成例を示す図である。以下では、実施の形態1と異なる部分を中心に説明する。
実施の形態1では、スイッチングパターン(発振信号)におけるオンパルス時間幅ΔTon及び休止時間幅ΔToffは、例えば予め実験的に得られたものを用いている。それに対して、実施の形態2では、スイッチングパターン(発振信号)におけるオンパルス時間幅ΔTon及び休止時間幅ΔToffを、極間101の状態に応じて動的に調節する。
例えば、図5に示すように、放電加工装置100iは、図1に示す放電加工装置100に比べて、検出部10iをさらに備え、制御部11に代えて制御部11iを備える。あるいは、例えば、図6に示すように、放電加工装置100iは、図2に示す放電加工装置100に比べて、検出部10iをさらに備え、制御部11に代えて制御部11iを備える。
具体的には、検出部10iが、オン動作中の自励発振中の極間101の状態を検出する。検出部10iは、電極7と被加工物6とから形成される極間101に対して並列に設けられる。検出部10iは、検出結果を制御部11iへ供給する。制御部11iでは、所定の制御則によりスイッチング素子S1〜S4、各々のオン、オフ信号を出力し、電極7と被加工物6との極間101に印加される電圧を制御する。すなわち、制御部11iは、検出部10iによる検出結果に応じて極間101の状態を判断し、その判断結果に応じて、スイッチングパターン(発振信号)におけるオンパルス時間幅ΔTon及び休止時間幅ΔToffの少なくとも一方を制御する。
検出部10iの位置は、図5,6のように電極7と被加工物6との間に設けても良いし、回路の出力側、すなわちスイッチング素子S1〜S4とインダクタンス素子5(又はインダクタンス素子51)の間に設けてもよい。極間101と並列にすれば、極間101の放電状態を直接観測できるというメリットを持つし、回路の出力先であれば、回路構成が一体化できると共に、極間101から制御部11iまでの配線を短くできる(例えば、無くせる)ため、不要な浮遊容量を削減することができる。
検出部10iでは、例えば、極間101の電圧、電流のように加工状態を表すパラメータを検出してそのデータを制御部11iに出力してもよい。制御部11iでは、入力されたデータと、微分、積分、カウンタなどのツールを用いて処理したデータを用いて極間101の状態を判断すること、極間101の状態に応じたスイッチング素子S1〜S4の制御(スイッチングパターン)を決定してもよい。
検出部10iと制御部11iとで扱う極間101の状態について説明する。
放電加工の原理について簡単にまとめると、電極7と被加工物6との間に電圧が印加され、電界強度が高くなると絶縁破壊を引き起こし、コンデンサ容量4に蓄積された電荷により放電加工が行われる。放電が終わったら、また電極7と被加工物6との間に絶縁が回復し、電源2から印加された電圧によりコンデンサ容量4に電荷が充電され、電極7と被加工物6との間にはまた電界が形成される。
このような放電現象を表すパラメータとして、極間101の電圧と電流とのデータがある。電圧波形からは、検出したタイミングでの放電発生の有無を判断することができ、放電した瞬間に印加されている電圧値から放電時に流れる電流(エネルギー)を推測することができる。また、一定時間の電圧を平均することで投入されたエネルギーを見出すこともでき、電圧の時間微分を求めることで放電のバラつきを推測することもできる。電流波形は放電現象の結果現れるもので、まず放電発生の有無を判断することができ、電流波形から電荷量を求めることで投入されたエネルギーを推測することができる。また、一定時間内に発生した放電電流パルスをカウントすることで、放電発生の頻度を算出し、バラつきを求めることもできる。
例えば、制御部11iは、算出部11i1及び決定部11i2を有する。算出部11i1は、検出部10iにより検出された極間101の状態(例えば、極間101の電圧、電流、放電パルス数)に応じて、放電時のエネルギーを算出する。算出部11i1は、算出された放電時のエネルギーを決定部11i2へ供給する。決定部11i2は、算出された放電時のエネルギーに応じて、スイッチングパターンにおけるオンパルス時間幅ΔTonと休止時間幅ΔToffとを決定する。例えば、決定部11i2は、極間101に投入されるエネルギーが目標値E0になるように、スイッチングパターンにおけるオンパルス時間幅ΔTonと休止時間幅ΔToffとを決定する。
上記の電圧、電流のデータの処理装置は、回路上に設けアナログ的に処理しても、A/D変換後にデジタル的な処理を行っても構わない。加工用途により必要とされる応答性と素子の能力により適宜選定すればよい。
図7は、実施の形態2における放電制御動作を説明するためのスイッチング信号波形および極間電圧波形の一例を示す図である。図7において(a)から(c)は、図3と図4における(a)から(c)に対応した内容である。また図7の(d)は一定時間内のエネルギーを積分した様子を表す。図7の(d)に示すエネルギーは、検出部10iで検出されたパラメータから制御部11i(例えば、算出部11i1)で算出された値である。
実施の形態2では、極間101の状態を検出し、加工エネルギーのバラつきを無くすために、スイッチング素子S1,S4をオフする(休止時間Toffを挿入する)タイミング(すなわちオンパルス時間ΔTon)とオフ時間(すなわち休止時間幅ΔToff)を決定する制御方法を提案する。すなわち、放電状態毎に、例えば一定の休止時間を挿入するまでのスイッチング素子のオン時間(パルスオン時間Ton)とオフ時間(休止時間Toff)とを調整することで極間101への投入エネルギーを一定に保ち、安定な加工を行う制御方法である。
図7において、縦の点線は検出のタイミング(周期Tcon)を表しており、検出時に取り組むデータから一定時間の中に投入されたエネルギーを算出する。投入されたエネルギーの算出は、平均電圧値、放電パルスのカウント値、電荷量の積分値など、上記した放電状態の検出パラメータを処理することで求めることができる。検出タイミングごとに、データを取り組み、投入されたエネルギーの算出値が所定の目標値E0に達した場合、次のタイミングで休止時間Toff1,Toff2を設定し挿入する。
図7を用いて電圧印加持続時間(パルスオン時間Ton)と休止時間Toffの制御について説明する。最初にスイッチング素子(S1とS4、もしくはS2とS3)をオンにし、電極7と被加工物6との極間101に電圧を印加させる。その後、LCR回路定数で決定される自由放電(自励発振)が発生するが、極間101に電圧が印加されてから検出タイミングごとに投入されたエネルギーを算出する。投入されたエネルギーの算出値が前もって設定した目標値E0より大きくなったタイミングt11で休止時間Toff1を投入する。休止時間Toff1経過後に再び極間101に電圧を印加し、投入されたエネルギーが所定の目標値E0より大きくなったタイミングt12でまた休止時間Toff2を投入する。
実施の形態2では、例えば、一定の時間Tconの間に投入されるエネルギーを算出し、一定(例えば、目標値E0近傍の値)にすることで、集中放電の発生や放電のバラつきを抑制できる。タイミングt11で休止時間Toff1を挿入する場合、長い電圧印加持続時間(オンパルス時間幅ΔTon1)後に挿入される休止時間幅ΔToff1は比較的に短くなり、タイミングt12で休止を挿入する場合、短い電圧印加持続時間(オンパルス時間幅ΔTon2<ΔTon1)後に挿入される休止時間幅ΔToff2は比較的に長く(ΔToff2>ΔToff1)設定される。図7に表す放電状態においては、Tconの中で投入エネルギーが所定のE0に達するまで電圧印加持続時間Ton1がTon2より長いため、休止時間Toff1がToff2より短く設定されることになる。
このような制御において、もし一定時間Tconの間に所定のエネルギーレベルE0に達しない場合は、Tcon時点で算出されたエネルギーはリセットし、次回のTconの間のエネルギーを算出する。そのため、加工がオープン気味で放電周波数が低い場合は、休止時間Toffを設けずに、スイッチング素子をずっとオンすることで、加工効率を向上させることができる。
実施の形態2においての電圧印加持続時間(オンパルス時間Ton1,Ton2)と休止時間Toff1,Toff2の考え方は、基本的には、実施の形態1と同様である。例えば、電圧印加持続時間(オンパルス時間Ton1,Ton2)は、電圧の立ち上がり時定数より長くし、また発振制御によらない自励発振が2回以上発生する時間を有するとともに電圧が立ち上がってすぐに短絡した場合でも、加工面に悪影響を及ぼさないように設定する。一方、休止時間Toff1,Toff2は、放電電流Icの時間幅ΔTicより長く、また短絡解消時にインダクタンスに貯まっているエネルギーが消費される時間より長い時間でありながら、放電周波数が減少させないように自励発振の周期ΔTso未満に設定する。実施の形態2では、上記のように電圧印加持続時間と休止時間とを考慮し、エネルギーを算出するための時間Tconを設定することで、投入エネルギーの均一化に加え、短絡発生時にも対応することができる。
実施の形態2の制御により、コンデンサ放電において投入エネルギーを調整することで、加工面にムラが生じることや、短絡によるスジが発生することを防止することができる。
以上のように、実施の形態2では、放電加工装置100iにおいて、検出部10iが、オン動作中の自励発振中の極間101の状態を検出する。制御部11iは、検出部10iにより検出された極間101の状態に基づいて、スイッチングパターンにおけるオンパルス時間幅ΔTon1,ΔTon2を制御する。これにより、前回のオン動作時の放電状態に応じて、例えば、極間101に投入されるエネルギーが目標値E0になったことに応じて、オンパルス時間幅ΔTon1,ΔTon2を短く、もしくは長くすることができる。これにより、制御の周期Tconごとにおける極間101に投入されるエネルギーを一定に維持することができ、加工に発生する放電のバラつきやムラを低減できるので、加工精度と加工効率とをさらに向上させることができる。
また、実施の形態2では、制御部11iにおいて、算出部11i1が、検出部10iにより検出された極間101の状態に応じて、放電時のエネルギーを算出し、決定部11i2が、算出部11i1により算出された放電時のエネルギーに応じて、例えば、極間101に投入されるエネルギーが目標値E0になったことに応じて、スイッチングパターンにおけるオンパルス時間幅ΔTon1,ΔTon2と休止時間幅ΔToff1,ΔToff2とを決定する。これにより、例えば、制御の周期Tconごとにおける極間101に投入されるエネルギーが目標値E0近傍に維持することができる。
実施の形態3.
次に、実施の形態3にかかる放電加工装置100jについて図8及び図9を用いて説明する。図8は、放電加工装置100jの構成例を示す図である。図9は、放電加工装置100jの他の構成例を示す図である。以下では、実施の形態2と異なる部分を中心に説明する。
実施の形態2では、検出部10iにより検出された極間101の状態に応じて、極間101への投入エネルギーが略一定になるようにスイッチングパターンにおけるオンパルス時間幅と休止時間幅とを調整している。それに対して、実施の形態3では、検出部10iにより検出された極間101の状態に応じて、極間101の短絡が解消されるようにスイッチングパターンにおけるオンパルス時間幅と休止時間幅とを調整する。
具体的には、図8,9に示す放電加工装置100jは、制御部11i(図5,6)に代えて、制御部11jを備える。制御部11jは、判別部11j1、算出部11j2、及びカウント部11j3を有する。
図10は、実施の形態3における放電制御動作を説明するためのスイッチング信号波形および極間電圧波形の一例を示す図である。図10における(a)はスイッチング素子のオン、オフ信号、(b)は極間電圧の推移、(c)は放電電流波形、(d)は極間電圧の時間による変化、すなわち電圧の時間微分値を表す。ここで図10の(a)の発振信号(スイッチングパターン)は、複数のスイッチング素子S1〜S4が一定の極性に維持されることを想定しており、電極7をプラスにする場合はスイッチング素子S1とS4をオン、マイナスにする場合はスイッチング素子S2とS3をオンにする。
実施の形態3では、コンデンサ放電加工における短絡検出および発振制御の方法を提案する。上記したように、コンデンサ放電加工中に電極7と被加工物6とが短絡すると、加工能力が低下するとともに面粗さも悪くなる。しかし、コンデンサ放電加工では、必ず一定の電圧で放電が発生するのではなく、放電間距離によって放電直前の電圧にバラつきが大きく、放電電流のピーク値もバラつきが大きい。そのため、電圧や電流の検出した結果に閾値を設け、極間101の電圧や電流が閾値より低いことに応じて短絡であると一律に判別することは難しい。
そこで、実施の形態3では、短絡をより正確に検出するために、判別部11j1が、極間101の電圧に短絡を判別するための閾値Vtkを有するとともに、算出部11j2が、極間101の電圧の時間微分値|ΔVc|を算出する。また2つのパラメータをカウントするカウント部11j3を制御部11j内に設ける。電圧の時間微分値|ΔVc|はA/D変換前のアナログ的な処理で求めてよいし、A/D変換後のデジタル的な処理で求めても構わない。電圧Vcと電圧の微分値|ΔVc|とを閾値と比べるために、カウントするカウント部11j3は、アナログ的にフィルターを使った処理でカウントしてもよいし、デジタル的に計算しても良い。
図11は、実施の形態3における、短絡を判別し、休止時間を投入する制御の流れを示すフローチャートである。図11において、Vcは、検出部10iにより検出された極間101の電圧値である。Vtkは、判別部11j1で短絡検出レベルと設定された電圧の閾値である。|ΔVc|は、電圧Vcの時間微分値である。Cは、カウント部11j3によるカウント値である。Kは、判別部11j1で短絡と判定できるカウントCの最大値を示す。
図10と図11とを用いて、短絡と判断するプロセスを説明する。図10において、電源がオンし、タイミングt21までは、電圧Vcが短絡検出レベルVtkより高い(ステップS1でNo)ため、短絡と判定せず、カウント値Cに0を設定する(ステップS7)。
図10のタイミングt22では、電圧Vcが短絡検出レベルVtkより低い(ステップS1でYes)ので、ステップS2に進むが、放電が発生しており、電圧微分値|ΔVc|が1より十分小さくない(ステップS2でNo)ため、短絡と判別せず、カウント値Cに0を設定する(ステップS8)。
図10のタイミングt23では、短い短絡が発生している。この場合、電圧Vcが短絡検出レベルVtkより低い(ステップS1でYes)ので、ステップS2に進み、短絡した時点では、電圧微分値|ΔVc|が1より十分小さい(ステップS2でYes)ため、ステップS3に進んで、カウント値Cをカウントアップ(インクリメント)し、カウント値Cを最大値Kと比較する(ステップS4)。しかし、図10のタイミングt23では、短絡が自然に解消され、すぐ絶縁回復したため、カウント値Cが最大値Kに達する前(ステップS4でNo)に解消される(ステップS1,S2でNo)ため、カウント値Cは0にリセットされる(ステップS7,S8)。
図10のタイミングt24では、実際に長く短絡し、自然解消されにくい場合を表している。図10のタイミングt24では、検出タイミング毎に、カウント値Cが最大値Kを超える(ステップS4でYes)ため、休止時間Toffを挿入する(ステップS5)。そのときの様子は、図10のタイミングt25のようになる。ここで休止時間を挿入する方法は、実施の形態1,2と同様にスイッチング素子をオフにし、電源2から極間101を電気的に分離する方法と、電源2を含まない閉回路を形成する方法の2つのうち、加工液、加工用途に合わせて適切な方法を選択する。そして、カウント値Cを0にリセットする(ステップS6)。
実施の形態3において、休止時間Toffの考え方は、基本的には、実施の形態1と同様である。例えば、休止時間幅ΔToffは、放電電流の時間幅ΔTicより長く、また短絡解消時にインダクタンスに貯まっているエネルギーが消費される時間より長い時間でありながら、放電周波数を減少させないように自励発振の周期ΔTso未満に設定する。このように必要最低限の休止時間を挿入することで、短絡を解消する。
このような制御により、コンデンサ放電において短絡を検出して休止時間を挿入することで、加工面に短絡によるスジが発生することや、短絡により加工効率が低下することを防止することができる。
以上のように、実施の形態3では、放電加工装置100jにおいて、制御部11jは、検出部10iにより検出された極間101の状態に基づいて極間101の短絡が発生していると判断される場合にスイッチングパターンに休止時間Toffを挿入することにより、スイッチングパターンにおけるオンパルス時間幅ΔTonを制御する。これにより、加工が不安定になるまでの期間の長さが変動する場合に、加工が不安定になるまで自励発振を行うことができるので、放電周波数をさらに向上でき、加工効率をさらに向上できる。また、加工が不安定になった場合に、休止時間Toffを挿入するので、集中放電、短絡により加工面にスジが発生することを抑制できる。
以上のように、本発明にかかる放電加工装置は、放電加工に有用である。
2 電源、 3 抵抗、 4 コンデンサ容量、 5 インダクタンス素子、 51 インダクタンス素子、 6 被加工物、 7 電極、 10i 検出部、 11,11i,11j 制御部、 100,100i,100j 放電加工装置、 101 極間、 102,103 電源部、 S1〜S4 スイッチング素子。

Claims (8)

  1. 放電加工を行う放電加工装置であって、
    電源と、
    電極と被加工物とから形成される極間と、
    前記電源と前記極間との間に接続された電流制限抵抗と、
    前記電源から前記極間への電圧の印加をオン/オフするスイッチング素子と、
    前記スイッチング素子と前記極間との間に直列に接続されたインダクタンス素子と、
    前記スイッチング素子を制御する制御部と、
    を備え、
    前記放電加工装置は、前記極間が持つコンデンサ容量を利用したコンデンサ放電を前記電流制限抵抗、前記インダクタンス素子、及び前記コンデンサ容量で構成されたLCR回路の回路定数により自励発振させて加工を行い、
    前記制御部は、オンパルス時間中に前記極間の電圧が前記電源の電圧値に到達可能であり自励発振が回以上発生するオンパルス時間幅と前記コンデンサ放電時に流れる放電電流の時間幅以上且つ自励発振の周期未満の休止時間幅とを有するスイッチングパターンで、前記スイッチング素子をオンオフ動作させ、
    前記制御部は、前記インダクタンス素子のもつエネルギーに起因して前記極間の電圧が前記電源の電圧値を超えないように、前記スイッチングパターンにおける前記オンパルス時間幅と前記休止時間幅との少なくとも一方を制御する
    ことを特徴とする放電加工装置。
  2. 前記制御部は、加工が不安定になる周期で定期的に休止時間を挿入するように、前記スイッチングパターンにおける前記オンパルス時間幅を制御する
    ことを特徴とする請求項1に記載の放電加工装置。
  3. オン動作中の自励発振中の極間状態を検出する検出部をさらに備え、
    前記制御部は、前記検出部により検出された極間状態に基づいて、前記スイッチングパターンにおける前記オンパルス時間幅を制御する
    ことを特徴とする請求項1に記載の放電加工装置。
  4. オン動作中の自励発振中の極間状態を検出する検出部をさらに備え、
    前記制御部は、前記検出部により検出された極間状態に基づいて、前記スイッチングパターンにおける前記休止時間幅を制御する
    ことを特徴とする請求項1に記載の放電加工装置。
  5. 前記制御部は、
    前記検出部により検出された極間状態に応じて、放電時のエネルギーを算出する算出部と、
    前記算出部により算出された放電時のエネルギーに応じて、前記スイッチングパターンにおける前記オンパルス時間幅と前記休止時間幅とを決定する決定部と、
    を有する
    ことを特徴とする請求項3に記載の放電加工装置。
  6. 前記制御部は、
    前記検出部により検出された極間状態に応じて、放電時のエネルギーを算出する算出部と、
    前記算出部により算出された放電時のエネルギーに応じて、前記スイッチングパターンにおける前記オンパルス時間幅と前記休止時間幅とを決定する決定部と、
    を有する
    ことを特徴とする請求項4に記載の放電加工装置。
  7. 前記制御部は、前記検出部により検出された極間状態に基づいて前記極間の短絡が発生していると判断される場合に前記スイッチングパターンに休止時間を挿入することにより、前記オンパルス時間幅を制御する
    ことを特徴とする請求項3に記載の放電加工装置。
  8. 前記電流制限抵抗、前記インダクタンス素子、及び前記コンデンサ容量による回路定数は、自励発振の周波数が前記制御部による発振制御の限界周波数より高くなるように決定されている
    ことを特徴とする請求項1に記載の放電加工装置。
JP2013513482A 2012-10-31 2012-10-31 放電加工装置 Active JP5409963B1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/078163 WO2014068701A1 (ja) 2012-10-31 2012-10-31 放電加工装置

Publications (2)

Publication Number Publication Date
JP5409963B1 true JP5409963B1 (ja) 2014-02-05
JPWO2014068701A1 JPWO2014068701A1 (ja) 2016-09-08

Family

ID=50202675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013513482A Active JP5409963B1 (ja) 2012-10-31 2012-10-31 放電加工装置

Country Status (5)

Country Link
US (1) US9533365B2 (ja)
JP (1) JP5409963B1 (ja)
CN (1) CN104781029B (ja)
DE (1) DE112012007077B4 (ja)
WO (1) WO2014068701A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5887378B2 (ja) * 2014-04-30 2016-03-16 ファナック株式会社 放電加工機の加工電源装置
CN106735636B (zh) * 2017-03-31 2019-11-19 山东豪迈机械科技股份有限公司 电火花加工放电状态检测电路及方法
CN108672852A (zh) * 2018-07-10 2018-10-19 南京航空航天大学 一种脉冲电源单个脉冲能量非均匀分布的电火花加工方法
JP6770041B2 (ja) * 2018-10-23 2020-10-14 ファナック株式会社 ワイヤ放電加工機および放電加工方法
CN112912193B (zh) * 2018-10-31 2024-04-05 株式会社牧野铣床制作所 放电加工机的电源装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113497A (ja) * 1974-07-25 1976-02-02 Metsupu Kk Hodenkakosochi
JPS56146623A (en) * 1980-04-16 1981-11-14 Fanuc Ltd Power source for discharge processing
JPS57156128A (en) * 1981-03-20 1982-09-27 Inoue Japax Res Inc Electric discharge machining device
JPH0379221A (ja) * 1989-08-16 1991-04-04 Hoden Seimitsu Kako Kenkyusho Ltd 放電加工用電源回路
JPH0487722A (ja) * 1990-07-30 1992-03-19 Mitsubishi Electric Corp 放電加工機の制御装置
JPH04315521A (ja) * 1991-04-11 1992-11-06 I N R Kenkyusho:Kk 放電加工装置
JPH0538627A (ja) * 1991-08-07 1993-02-19 Mitsubishi Electric Corp 放電加工装置
JPH06143034A (ja) * 1992-11-06 1994-05-24 Fanuc Ltd 放電加工方法及び装置
JPH0890342A (ja) * 1994-09-20 1996-04-09 Mitsubishi Electric Corp ワイヤ放電加工装置及びその制御方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52151A (en) 1975-06-23 1977-01-05 Maspro Denkoh Corp Distributor
DE8709260U1 (ja) 1987-07-04 1987-12-17 Peter Lancier Maschinenbau-Hafenhuette Gmbh & Co Kg, 4400 Muenster, De
US4840460A (en) 1987-11-13 1989-06-20 Honeywell Inc. Apparatus and method for providing a gray scale capability in a liquid crystal display unit
JPH11207526A (ja) 1998-01-30 1999-08-03 Fuji Xerox Co Ltd 微小構造体の製造方法
US6130395A (en) 1998-06-17 2000-10-10 Sodick Co., Ltd. Method and apparatus for achieving a fine surface finish in wire-cut EDM
JP4250377B2 (ja) 2001-11-06 2009-04-08 三菱電機株式会社 放電加工機用電源
JP2008173717A (ja) * 2007-01-18 2008-07-31 Fanuc Ltd 放電加工装置
DE112008003658B4 (de) * 2008-01-31 2015-12-10 Mitsubishi Electric Corp. Elektrische Entladungsbearbeitungsvorrichtung
JP5253441B2 (ja) 2010-03-09 2013-07-31 三菱電機株式会社 放電加工用電源装置
JP5478532B2 (ja) 2011-02-16 2014-04-23 三菱電機株式会社 放電加工装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113497A (ja) * 1974-07-25 1976-02-02 Metsupu Kk Hodenkakosochi
JPS56146623A (en) * 1980-04-16 1981-11-14 Fanuc Ltd Power source for discharge processing
JPS57156128A (en) * 1981-03-20 1982-09-27 Inoue Japax Res Inc Electric discharge machining device
JPH0379221A (ja) * 1989-08-16 1991-04-04 Hoden Seimitsu Kako Kenkyusho Ltd 放電加工用電源回路
JPH0487722A (ja) * 1990-07-30 1992-03-19 Mitsubishi Electric Corp 放電加工機の制御装置
JPH04315521A (ja) * 1991-04-11 1992-11-06 I N R Kenkyusho:Kk 放電加工装置
JPH0538627A (ja) * 1991-08-07 1993-02-19 Mitsubishi Electric Corp 放電加工装置
JPH06143034A (ja) * 1992-11-06 1994-05-24 Fanuc Ltd 放電加工方法及び装置
JPH0890342A (ja) * 1994-09-20 1996-04-09 Mitsubishi Electric Corp ワイヤ放電加工装置及びその制御方法

Also Published As

Publication number Publication date
WO2014068701A1 (ja) 2014-05-08
CN104781029A (zh) 2015-07-15
JPWO2014068701A1 (ja) 2016-09-08
DE112012007077B4 (de) 2021-12-09
DE112012007077T5 (de) 2015-08-13
CN104781029B (zh) 2016-07-06
US9533365B2 (en) 2017-01-03
US20150283634A1 (en) 2015-10-08

Similar Documents

Publication Publication Date Title
JP5739563B2 (ja) 平均放電遅れ時間算出手段を備えたワイヤ放電加工機
JP5409963B1 (ja) 放電加工装置
JP5037941B2 (ja) ワイヤ放電加工装置およびワイヤ放電加工方法
US8735762B2 (en) Wire electric discharge machine capable of detecting machining state and determining average voltage in machining gap
JP5414864B1 (ja) ワイヤカット放電加工装置の加工電源装置
TWI442985B (zh) 金屬線放電加工機
WO2012114524A1 (ja) 放電加工機用電源装置およびその制御方法
WO2010098424A1 (ja) 形彫放電加工用の電源装置
JP5220036B2 (ja) 放電加工装置
US10493547B2 (en) Wire electrical discharge machining device
US9486869B2 (en) Power supply device for electric discharge machining
JP4089618B2 (ja) ワイヤ放電加工機の加工電源装置
JP5478532B2 (ja) 放電加工装置
JP5013392B2 (ja) ワイヤ放電加工機の加工電源装置
JP5253441B2 (ja) 放電加工用電源装置
JP6165210B2 (ja) ワイヤ放電加工装置の加工電源装置
JP5510616B1 (ja) 放電加工装置
JP5474148B2 (ja) 放電加工用電源装置
JP2004050298A (ja) 放電加工方法及び放電加工装置
JP2984664B2 (ja) 放電加工装置
JP2000061732A (ja) 放電加工装置
JPS6080522A (ja) 放電加工装置
JPWO2016059689A1 (ja) 放電加工機の電源装置
JP2010194714A (ja) 放電加工装置および放電加工方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131105

R150 Certificate of patent or registration of utility model

Ref document number: 5409963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250