WO2012114446A1 - ハイブリッド車両の制御装置 - Google Patents

ハイブリッド車両の制御装置 Download PDF

Info

Publication number
WO2012114446A1
WO2012114446A1 PCT/JP2011/053745 JP2011053745W WO2012114446A1 WO 2012114446 A1 WO2012114446 A1 WO 2012114446A1 JP 2011053745 W JP2011053745 W JP 2011053745W WO 2012114446 A1 WO2012114446 A1 WO 2012114446A1
Authority
WO
WIPO (PCT)
Prior art keywords
travel
charge capacity
traveling
route
amount
Prior art date
Application number
PCT/JP2011/053745
Other languages
English (en)
French (fr)
Inventor
誠文 内原
知洋 宇佐美
真理子 金井
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2013500742A priority Critical patent/JP5700112B2/ja
Priority to US14/000,706 priority patent/US9610934B2/en
Priority to PCT/JP2011/053745 priority patent/WO2012114446A1/ja
Priority to EP11859449.8A priority patent/EP2679461B1/en
Priority to CN201180068176.5A priority patent/CN103384622B/zh
Publication of WO2012114446A1 publication Critical patent/WO2012114446A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/12Controlling the power contribution of each of the prime movers to meet required power demand using control strategies taking into account route information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/20Road profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle for navigation systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the present invention relates to a control device for a hybrid vehicle including a plurality of driving force sources for traveling including an electric motor driven by electric energy of a power storage device.
  • a hybrid vehicle that includes a plurality of driving power sources including a motor driven by electric energy of a power storage device and that can travel using the motor (for example, motor traveling or assist traveling) is well known.
  • this is a hybrid vehicle described in Patent Documents 1 and 2.
  • the charging capacity (charging state, SOC) of the power storage device has a predetermined range (for example, an upper limit value and a lower limit value) in order to suppress a decrease in durability of the power storage device due to repeated charging and discharging.
  • Patent Document 1 based on the current position based on map information, the SOC value of the battery, and learning data based on the travel history (the amount of energy required when the vehicle travels the link for each link traveled in the past).
  • a technique is disclosed in which a boundary of a travelable range in which a vehicle can travel by motor traveling is calculated and the boundary is displayed on a map displayed on a display.
  • Patent Document 1 since the technique described in Patent Document 1 does not take into account the recovery of electrical energy (regenerative energy) due to regenerative operation during travel, there is a possibility that the accuracy (reliability) of the travelable range may decrease. is there.
  • Patent Document 2 expands the SOC management range when there is a descending section that can recover large regenerative energy on the travel route, such as when crossing a mountain. Furthermore, it has been proposed to drive the electric motor to assist the engine and reduce the SOC before traveling in the descending section.
  • the present invention has been made against the background of the above circumstances, and the object of the present invention is to perform motor traveling and assist traveling that do not cause power failure without specifying a single traveling route.
  • An object of the present invention is to provide a control device for a hybrid vehicle that can improve fuel efficiency.
  • the gist of the first invention for achieving the above object is that: (a) a plurality of driving power sources including a motor driven by the electric energy of the battery storage device are provided, and the vehicle is driven using the motor.
  • a control device for a hybrid vehicle capable of motor travel or assist travel wherein (b) a travel path obtained from the map data is divided into a plurality of sections, and the amount of change in the charge capacity of the power storage device for each of the divided sections Is to remember.
  • the travel route obtained from the map data is divided into a plurality of sections, and the amount of change in the charge capacity of the power storage device is stored for each of the divided sections.
  • the amount of electrical energy of the power storage device that can be consumed prior to the collection of electrical energy can be calculated based on the stored amount of change in the charge capacity of the power storage device.
  • the electric energy amount (regenerative energy amount) collect
  • any travel route that may travel from the current position of the vehicle to a predetermined distance is determined from the map data.
  • the power storage device There is at least one travel route that can recover the electric energy to the extent that it exceeds the predetermined charge capacity upper limit value that is allowed to be charged, and the predetermined charge capacity upper limit value is present among the travel routes that are likely to travel.
  • the motor traveling or the assist traveling is permitted. Is to cancel.
  • the charge capacity of the power storage device becomes a travel other than the travel route where the travel is likely to be performed and the electric energy is consumed in advance by the motor travel or the assist travel. May be below the predetermined charge capacity lower limit value, the permission of the motor drive or the assist drive is canceled, so even if the regenerative energy amount assumed cannot be recovered, power failure occurs. Is avoided. Thereby, driving
  • the travel route with the possibility of travel is a section in which the amount of change in the charge capacity is stored. It is to be constituted by.
  • the travel route in which the change characteristic of the charge capacity is appropriately calculated for each travel route and the electric energy can be recovered to the extent that the predetermined charge capacity upper limit value is exceeded from the change property of the charge capacity. It is appropriately determined whether or not at least one of the travel routes having the travel possibility exists, and electric energy corresponding to the charge capacity change characteristic exceeding the predetermined charge capacity upper limit value is consumed before recovery. However, it is appropriately determined whether or not the predetermined charging capacity lower limit value is not exceeded in any of the travel routes that may travel.
  • the section is based on a branch point where a branch path exists on the travel path. It is to be divided. In this way, the travel route obtained from the map data is appropriately divided into a plurality of sections.
  • FIG. 1 It is a figure explaining the schematic structure of the power transmission path which comprises the hybrid vehicle to which this invention is applied, and is a figure explaining the principal part of the control system provided in the vehicle. It is a conceptual diagram which shows an example of the content memorize
  • FIG. 6 is an auxiliary flowchart executed when the control operation shown in the flowchart of FIG. 5 is executed. It is a conceptual diagram which shows an example at the time of performing the control action shown to the flowchart of FIG.
  • FIG. 4 is a functional block diagram illustrating a main part of a control function of the electronic control device, which is an embodiment different from FIG. 3 in which a new function is added to the functional block diagram of FIG. 3. It is a flowchart explaining the main part of the control action of an electronic controller, ie, the control action for making it difficult to enter forced charge mode and improving fuel consumption.
  • FIG. 4 is a functional block diagram illustrating a main part of a control function of the electronic control device, which is an embodiment different from FIG. 3 in which a new function is added to the functional block diagram of FIG. 3. It is a flowchart explaining the main part of the control action of the electronic control unit, that is, the control action for avoiding power failure when electric energy can no longer be recovered as expected.
  • the travel route with the possibility of traveling is acquired by excluding a branch destination whose road type (road attribute) is different from the branch source by a predetermined amount or more. Further, the travel route with the possibility of travel is acquired by excluding branch destinations whose past travel history is less than or equal to a predetermined value. Further, the travel route with the possibility of traveling is acquired by excluding a branch destination whose direction when traveling to a branch destination differs from the current traveling direction by a predetermined amount or more. In this way, while including all possible travel routes, a route with a low travel probability from the road type of the front branch road, a route with a low travel probability from the past travel history, and / or a general progress.
  • a route in a direction that is not in the direction in which the vehicle is traveling can be excluded from the candidates, and when the travel route with the possibility of travel is obtained, when calculating the change characteristics of the charge capacity thereafter, and the motor travel using the consumable amount or It is possible to reduce the calculation load at the time of each determination related to the determination as to whether or not the assist travel is permitted.
  • the actual charge capacity of the power storage device is the predetermined charge capacity.
  • the predetermined charge capacity lower limit value is temporarily reduced on the condition that the charge capacity will increase in the travel route currently being traveled. In this way, the power storage device is forcibly charged at a location (traveling route) where the recovery of electrical energy can be sufficiently expected after that because it has fallen below the existing predetermined charging capacity lower limit due to variations in traveling conditions and the like.
  • the predetermined charge capacity lower limit value is temporarily lowered, the motor travel or the assist travel is continued, and the electric energy thereafter is reduced. The fuel consumption can be improved by the recovery.
  • the section is divided based on a change amount of a road surface gradient and / or a change amount of altitude in addition to the branch point.
  • the travel route obtained from the map data is more appropriately divided into a plurality of sections in accordance with the changing tendency of the charge capacity of the power storage device.
  • the hybrid vehicle includes an engine and the electric motor as a driving power source for traveling, and a transmission that transmits at least power from the engine to the drive wheel side.
  • the hybrid vehicle may include a clutch that connects and disconnects a power transmission path between the engine and the drive wheels.
  • the hybrid vehicle running with at least the engine as a driving power source for running with the clutch engaged and the clutch are provided.
  • the motor can run with only the electric motor as a driving power source for running with the clutch released. In the engine running, assist running by an electric motor that runs by adding the power of the electric motor to the power of the engine is possible.
  • the hybrid vehicle includes a differential mechanism coupled to the engine so as to be capable of transmitting power and a differential motor coupled to the differential mechanism so as to be capable of transmitting power.
  • a so-called electric continuously variable transmission in which the differential state of the differential mechanism is controlled by controlling the driving state of the motor, and traveling connected to an output rotating member of the electric continuously variable transmission so that power can be transmitted Electric motor.
  • the hybrid vehicle includes a differential mechanism that distributes power from the engine to the first electric motor and the output rotating member, and a second electric motor that is provided on the output rotating member of the differential mechanism.
  • the main part of the power from the engine is mechanically transmitted to the drive wheel side by the differential action, and the remaining part of the power from the engine is electrically transmitted by using the electric path from the first motor to the second motor.
  • An electric continuously variable transmission having a variable gear ratio is provided.
  • the transmission is constituted by a transmission alone, a transmission having a fluid transmission such as a torque converter, or a transmission having a sub-transmission.
  • This transmission includes a known planetary gear type automatic transmission, a known synchronous mesh type parallel twin-shaft manual transmission, a known synchronous mesh type parallel twin shaft automatic transmission, and its synchronous mesh type parallel twin shaft automatic transmission.
  • DCT Dual-Clutch-Transmission
  • a wet or dry engagement device is used as the clutch that connects and disconnects the power transmission path between the engine and the drive wheel.
  • FIG. 1 is a diagram illustrating a schematic configuration of a power transmission path from an engine 14 to a drive wheel 34 constituting a hybrid vehicle 10 (hereinafter referred to as a vehicle 10) to which the present invention is applied, and a driving power source for traveling.
  • a navigation 90 It is a figure explaining the principal part of the control system provided in the vehicle 10 for these.
  • a vehicle power transmission device 12 (hereinafter referred to as a power transmission device 12) is arranged on the engine 14 side in a transmission case 20 (hereinafter referred to as a case 20) as a non-rotating member attached to a vehicle body by bolting or the like.
  • the engine connecting / disconnecting clutch K0, the electric motor MG, the torque converter 16, the oil pump 22, the automatic transmission 18 and the like are provided in order.
  • the power transmission device 12 includes a propeller shaft 26 connected to an output shaft 24 that is an output rotating member of the automatic transmission 18, a differential gear device (differential gear) 28 connected to the propeller shaft 26, and a differential thereof.
  • a pair of axles 30 and the like connected to the gear device 28 are provided.
  • the power transmission device 12 configured in this manner is suitably used for, for example, an FR (front engine / rear drive) type vehicle 10.
  • FR front engine / rear drive
  • the power of the engine 14 is transmitted from the engine connecting shaft 32 that connects the engine 14 and the engine connecting / disconnecting clutch K0 to the engine connecting / disconnecting clutch.
  • the power is transmitted to the pair of drive wheels 34 through the K0, the torque converter 16, the automatic transmission 18, the propeller shaft 26, the differential gear device 28, the pair of axles 30, and the like sequentially.
  • the torque converter 16 is a fluid transmission device that transmits the driving force input to the pump impeller 16a to the automatic transmission 18 side via a fluid.
  • the pump impeller 16a is connected to the engine 14 through the engine connecting / disconnecting clutch K0 and the engine connecting shaft 32 in order, and the driving force from the engine 14 is input and the input side is rotatable about the axis. It is a rotating element.
  • the turbine impeller 16b of the torque converter 16 is an output side rotating element of the torque converter 16, and is connected to a transmission input shaft 36, which is an input rotating member of the automatic transmission 18, so as not to be relatively rotatable by spline fitting or the like. .
  • the electric motor MG is a so-called motor generator having a function as a motor that generates a mechanical driving force from electric energy and a function as a generator that generates electric energy from mechanical energy.
  • the electric motor MG is driven by electric energy supplied from the power storage device 54 via the inverter 52 as an alternative to the engine 14 or in addition to the engine 14 to generate a driving force for driving. Can function as a power source.
  • electric energy is generated by regeneration from the driving force generated by the engine 14 or the driven force (mechanical energy) input from the driving wheel 34 side, and the electric energy is transmitted to the power storage device 54 via the inverter 52. Perform operations such as accumulating.
  • the electric motor MG is operatively connected to the pump impeller 16a, and power is transmitted between the electric motor MG and the pump impeller 16a. Therefore, similarly to the engine 14, the electric motor MG is connected to the transmission input shaft 36 so that power can be transmitted.
  • the oil pump 22 is connected to the pump impeller 16a, and controls the shift of the automatic transmission 18, controls the engagement / release of the engine connecting / disconnecting clutch K0, and is connected to each part of the power transmission path of the vehicle 10.
  • This is a mechanical oil pump that is generated by rotationally driving hydraulic pressure for supplying lubricating oil by the engine 14 (or the electric motor MG).
  • the engine connecting / disconnecting clutch K0 is, for example, a wet multi-plate hydraulic friction engagement device in which a plurality of friction plates stacked on each other are pressed by a hydraulic actuator, and the hydraulic pressure generated by the oil pump 22 is used as a source pressure.
  • Engagement release control is performed by a hydraulic control circuit 50 provided in the power transmission device 12.
  • the torque capacity capable of transmitting the power of the engine connecting / disconnecting clutch K0 that is, the engaging force of the engine connecting / disconnecting clutch K0 is continuously adjusted by adjusting the pressure of the linear solenoid valve or the like in the hydraulic control circuit 50, for example. Can be changed.
  • the engine connecting / disconnecting clutch K0 includes a pair of clutch rotating members (clutch hub and clutch drum) that can rotate relative to each other in the released state, and one of the clutch rotating members (clutch hub) is the engine connecting shaft 32.
  • the other of the clutch rotating members (clutch drum) is connected to the pump impeller 16a of the torque converter 16 so as not to be relatively rotatable.
  • the engine connecting / disconnecting clutch K0 rotates the pump impeller 16a integrally with the engine 14 via the engine connecting shaft 32 in the engaged state. That is, in the engaged state of the engine connecting / disconnecting clutch K0, the driving force from the engine 14 is input to the pump impeller 16a.
  • the automatic transmission 18 is connected to the electric motor MG so as to be able to transmit power without going through the engine connecting / disconnecting clutch K0, and constitutes a part of the power transmission path from the engine 14 to the drive wheels 34. Power from the engine 14 and the electric motor MG is transmitted to the drive wheel 34 side.
  • the automatic transmission 18 is changed in speed by re-holding one of a plurality of hydraulic friction engagement devices such as the clutch C and the brake B (that is, by engagement and release of the hydraulic friction engagement device).
  • This is a planetary gear type multi-stage transmission that functions as a stepped automatic transmission in which a plurality of shift stages (gear stages) are selectively established.
  • the automatic transmission 18 is a stepped transmission that performs a so-called clutch-to-clutch shift that is often used in known vehicles, and shifts the rotation of the transmission input shaft 36 and outputs it from the output shaft 24.
  • the transmission input shaft 36 is also a turbine shaft that is rotationally driven by the turbine impeller 16 b of the torque converter 16.
  • a predetermined gear stage (shift stage) is established according to the accelerator operation of the driver, the vehicle speed V, and the like by the engagement release control of the clutch C and the brake B.
  • the navigation 90 includes a storage medium 92 such as a CD-ROM, DVD-ROM, or HDD (hard disk drive), for example, and a known navigation using a road map database (hereinafter referred to as map data) stored in the storage medium 92. It has a function to execute control.
  • FIG. 2 is a conceptual diagram showing an example of map data stored in the storage medium 92. 2, (a) is a diagram showing a plurality of nodes as arbitrary points specified by the map data and links as a plurality of sections connecting the respective nodes specified by the map data, (b) These are figures which show the data tables, such as traveling path information memorize
  • an ID address is determined for each link, and for each link ID, the start point coordinates and end point coordinates defined by the node, as travel path information (road information)
  • travel path information road information
  • road information Road gradient, altitude information, road curvature, road types such as general roads (prefectural roads / prefectural roads / city roads / narrow streets), highways and one-way streets, width information, intersection information, and the like are stored.
  • the map data such as each node, link ID, and travel route information stored in the storage medium 92 is, for example, normally rewritable fixed information. However, a medium such as a CD-ROM or DVD-ROM may be replaced, Updating is possible by rewriting the contents of the HDD using update software.
  • the vehicle 10 is provided with an electronic control device 100 including a control device related to, for example, hybrid drive control.
  • the electronic control device 100 includes, for example, a so-called microcomputer having a CPU, a RAM, a ROM, an input / output interface, and the like, and the CPU uses a temporary storage function of the RAM according to a program stored in the ROM in advance.
  • Various controls of the vehicle 10 are executed by performing signal processing.
  • the electronic control unit 100 performs output control of the engine 14, drive control of the electric motor MG including regeneration control of the electric motor MG, shift control of the automatic transmission 18, torque capacity control of the engine connecting / disconnecting clutch K0, and the like. It is configured separately for engine control, motor control, hydraulic control (shift control), etc. as necessary.
  • an engine signal indicative of the engine rotational speed N E is the rotational speed of the engine 14 detected by the rotational speed sensor 56, a turbine rotational speed sensor 58 automatic transmission 18 detected by As a signal indicating the turbine rotational speed NT of the torque converter 16, that is, the transmission input rotational speed N IN which is the rotational speed of the transmission input shaft 36, and the vehicle speed V as a vehicle speed related value detected by the output shaft rotational speed sensor 60.
  • Signal representing the throttle valve opening theta TH is, a signal representing the intake air quantity Q AIR of the engine 14 detected by an intake air amount sensor 66, longitudinal acceleration G (or down front and rear of the vehicle 10 detected by the acceleration sensor 68 signal representing the velocity G), the cooling water temperature TH W signal representative of the signal representative of the oil temperature TH oIL of the working oil in the hydraulic control circuit 50 detected by the oil temperature sensor 72 of the engine 14 detected by a coolant temperature sensor 70 , A signal indicating the accelerator opening Acc, which is an operation amount of the accelerator pedal 76 as a driving force request amount (driver request output) to the vehicle 10 detected by the driver, detected by the accelerator opening sensor 74, and detected by the foot brake sensor 78.
  • the driver operates the brake pedal 80 as a braking force request amount (driver required deceleration) for the vehicle 10.
  • a signal representing the brake operation amount Bra which is a quantity, a lever position of the shift lever 84 such as a known “P”, “N”, “D”, “R”, “S” position detected by the shift position sensor 82 ( shift operating position, shift position, a signal representative of the operating position) P SH, the battery temperature TH BAT and the battery output current (battery charge and discharge current) I BAT and the battery voltage V BAT of the power storage device 54 detected by the battery sensor 86
  • a signal to be displayed, a car navigation information signal Snavi representing map data from the navigation 30 mounted on the vehicle 10, and the like are supplied.
  • the electronic control device 100 sequentially calculates the state of charge (charge capacity) SOC of the power storage device 54 based on, for example, the battery temperature TH BAT , the battery charge / discharge current I BAT , and the battery voltage V BAT .
  • the electronic control unit 100 also outputs, for example, an engine output control command signal S E for controlling the output of the engine 14, an electric motor control command signal S M for controlling the operation of the electric motor MG, an engine connecting / disconnecting clutch K0, and an automatic a hydraulic command signal S P output for operating the solenoid valve included in the hydraulic control circuit 50 to control the hydraulic actuators of clutches C and brakes B of the transmission 18 (solenoid valve) and the like are outputted.
  • an engine output control command signal S E for controlling the output of the engine 14
  • an electric motor control command signal S M for controlling the operation of the electric motor MG
  • an engine connecting / disconnecting clutch K0 an automatic a hydraulic command signal S P output for operating the solenoid valve included in the hydraulic control circuit 50 to control the hydraulic actuators of clutches C and brakes B of the transmission 18 (solenoid valve) and the like are outputted.
  • FIG. 3 is a functional block diagram for explaining a main part of the control function by the electronic control device 100.
  • the stepped shift control unit that is, the stepped shift control unit 102 functions as a shift control unit that shifts the automatic transmission 18.
  • the stepped speed change control means 102 determines the actual vehicle speed V from a known relationship (shift diagram, shift map) stored in advance with the vehicle speed V and the accelerator opening Acc (or the transmission output torque T OUT or the like) as variables. and it performs shift determination based on the vehicle condition represented by the accelerator opening Acc, and outputs a hydraulic pressure command signal S P to perform the automatic shift control of the automatic transmission 16 as the determined gear position is obtained.
  • the hybrid control unit that is, the hybrid control unit 104, functions as an engine drive control unit that controls the drive of the engine 14 and a motor operation control unit that controls an operation as a driving force source or a generator by the motor MG via the inverter 52.
  • the hybrid drive control by the engine 14 and the electric motor MG is executed by these control functions.
  • the hybrid control means 104 the target value of the driving torque T D is a vehicle required torque i.e.
  • torque T D * is traveling drive force source obtained by calculating (the engine 14 and the motor MG) output torque or transmission input torque T target value of the AT (target transmission input torque T AT *), the target transmission The driving force source for traveling is controlled so that the input torque T AT * is obtained.
  • the hybrid control means 104 sets the travel mode to the motor travel mode when, for example, the target drive torque T D * (target transmission input torque T AT * ) is within a range that can be covered only by the motor torque T MG. (Hereinafter referred to as EV mode), and motor travel (EV travel) is performed using only the electric motor MG as a driving force source for travel.
  • the hybrid control unit 104 sets the travel mode to the engine travel mode, that is, the hybrid travel mode (hereinafter referred to as HV). Mode), at least engine driving using the engine 14 as a driving force source for driving, that is, hybrid driving (HV driving) is performed.
  • the hybrid control means 104 When performing HV traveling, the hybrid control means 104 engages the engine connecting / disconnecting clutch K0 to transmit the driving force from the engine 14 to the pump impeller 16a, and also assists the motor MG as needed. Assisted traveling is performed with the output of. On the other hand, when performing EV traveling, the hybrid control means 104 releases the engine connecting / disconnecting clutch K0 to cut off the power transmission path between the engine 14 and the torque converter 16 and also causes the electric motor MG to perform EV traveling. The motor torque MG necessary for the operation is output.
  • the hybrid control means 104 the accelerator pedal 76 during EV traveling is further depressed to increase the target driving torque T D *, the target driving torque T D * to the corresponding target transmission input torque T AT *
  • a predetermined EV running torque range determined in advance as a torque that can be carried by the motor torque MG is exceeded, the running mode is switched from the EV mode to the HV mode, and the engine 14 is started to perform HV running. .
  • the hybrid control means 104 is then the releasing accelerator pedal 76 is in the HV travel operation decreases the target drive torque T D *, the target transmission input torque T AT * becomes the predetermined EV running torque range If this happens, the travel mode is switched from the HV mode to the EV mode, the engine 14 is stopped, and EV travel is performed.
  • the charge capacity SOC of the power storage device 54 is controlled so as to be kept within the range of the SOC management width that is obtained in advance and set as a predetermined range for suppressing the deterioration of the durability of the power storage device 54 that repeats charging and discharging. Is done.
  • the SOC management width for example, a management width upper limit value that is a predetermined charge capacity upper limit value that is obtained and set in advance as an upper limit value of the charge capacity SOC that is allowed to charge the power storage device 54, and discharge of the power storage device 54.
  • the range is defined by a management width lower limit value that is a predetermined charge capacity lower limit value that is obtained and set in advance as a lower limit value of the allowable charge capacity SOC.
  • the amount of electric energy to be consumed is consumed in advance by EV traveling or assist traveling to reduce the charge capacity SOC of the power storage device 54.
  • a traveling state in which the regenerative energy can be recovered unless a single traveling route is specified.
  • the specified travel route is deviated during traveling, the amount of electric energy consumed in advance may not be collected, and there is a possibility that the power will fail. Therefore, in this embodiment, in order to improve fuel efficiency, a method is proposed that enables EV travel and assist travel without causing power failure without specifying a single travel route. The method will be described in detail below.
  • Various information acquisition units that is, various information acquisition means 106, include position information detected using a positioning system using a satellite such as a known GPS (Global Positioning System) and a known INS (Inertial Navigation System).
  • the current position information and vehicle traveling direction information of the vehicle 10 map-matched by the navigation 90 on the road map in the map data stored in the storage medium 92 based on the position information detected using the inertial navigation device) get.
  • the section dividing unit that is, the section dividing means 108 divides the travel route obtained from the map data stored in the storage medium 92 into a plurality of sections, and stores the divided sections in the memory unit 101 in the electronic control unit 100.
  • the section dividing means 108 can convert the road on the road map in the map data corresponding to the currently running road to the branch point where the branch road exists on the road based on the intersection information in the map data.
  • section ID are assigned with an ID address (section ID).
  • the section division (section section) based on the branch point it is difficult to reflect the difference in road surface gradient ⁇ that easily affects the change amount of the charge capacity SOC of the power storage device 54 (hereinafter, charge capacity change amount ⁇ SOC).
  • the section dividing means 108 further divides the section according to the change amount of the road surface gradient ⁇ and the change amount of the altitude H based on the road surface gradient and the elevation information in the map data.
  • the road surface gradient ⁇ may be calculated each time by the electronic control device 100 based on the altitude information.
  • the various information acquisition means 106 further acquires the current (actual) charge capacity SOC of the power storage device 54. Further, the various information acquisition means 106 acquires an actual measurement value of the charge capacity change amount ⁇ SOC for each of the plurality of sections divided by the section dividing means 108 based on the charge capacity SOC, and sets the section ID for each section.
  • the string is added (associated) and stored in the memory unit 101. If the vehicle travels the same section many times, statistical processing (for example, calculation of an average value) may be performed and stored.
  • FIG. 4 is a conceptual diagram showing an example when the traveling road R is divided into a plurality of sections.
  • 4A is a diagram showing a section ID given by section division reflecting road surface gradient ⁇ and the like
  • FIG. 4B is a data table of charge capacity change amount ⁇ SOC for each section stored in the memory unit 101.
  • FIG. 4 in addition to being divided into sections at the branch points based on the intersection information stored in the storage medium 92, the sections are divided into division points set according to changes in the road surface gradient ⁇ . Yes.
  • a section ID is determined for each of the plurality of divided sections, and the charge capacity change amount ⁇ SOC is stored for each section ID.
  • the travel route acquisition unit that is, the travel route acquisition means 110 acquires, from the map data stored in the storage medium 92, any travel route that may travel from the current position of the vehicle 10 to a predetermined distance.
  • the travel route acquisition unit 110 is based on the current position information of the vehicle 10 and the vehicle traveling direction information, and a branch point existing on the traveling path in the traveling direction from the current position of the vehicle 10 (that is, an intersection stored in the storage medium 92).
  • a travel route that increases so as to branch at a branch point based on information) is acquired.
  • the predetermined distance may be a sufficient fixed distance obtained in advance to obtain a fuel efficiency effect, taking into account, for example, that the charging capacity SOC of the power storage device 54 is consumed in advance by EV traveling or assist traveling as described above. .
  • the predetermined distance is, for example, a distance until at least one travel route in a travel state that cannot be recovered as regenerative energy and is discarded among travel routes acquired by the travel route acquisition unit 110 exists. good.
  • the travel route acquisition unit 110 includes a branch destination in which road information such as road type (road attribute) and width information differs from the branch source by a predetermined amount, a branch destination in which a past travel history (past travel history) is a predetermined value, and / or Alternatively, a travel route having a possibility of traveling is acquired by excluding a branch destination whose direction when traveling to a branch destination differs from the current traveling direction of the vehicle by a predetermined amount or more.
  • the travel route acquisition unit 110 compares the road information of the branch source and the branch destination to determine whether or not the road information is different from a predetermined value. If the road information is different from the predetermined value, the branch destination is excluded from the route candidates. Therefore, it is not acquired as a travel route that may travel.
  • the case where the difference is more than the predetermined is, for example, a case where there is a predetermined road type difference or a predetermined width difference which is greater than a preset branch destination having a low driving possibility with respect to the branch source.
  • this predetermined road type difference for example, when the branching source is a national road or a prefectural road, the branch destination is a narrow street or the like.
  • the travel route acquisition unit 110 determines whether or not the past travel history of the branch destination is equal to or less than a predetermined value, and if it is equal to or less than the predetermined value, the travel destination is excluded from the route candidates and travel that may be possible to travel. Do not get as a route.
  • the case of the predetermined value or less is, for example, a case where the value is equal to or less than a predetermined past travel history set in advance as a branch destination having a low travel possibility.
  • the past travel history is stored in the memory unit 101 as the number of travels attached to the section ID as shown in FIG. 4B, for example. Is counted up by various information acquisition means 106. Since the section ID is also divided by the dividing point as described above, the past traveling history is the same in the section ID between the branch point where the branch destination exists and the next branch point.
  • the travel route acquisition unit 110 determines whether or not the direction when traveling to the branch destination differs from the current vehicle traveling direction by a predetermined amount or more, and excludes the branch destination from the route candidates when the direction is different by a predetermined amount or more. It is not acquired as a travel route that may travel.
  • the case where the difference is more than the predetermined is a case where there is a predetermined difference in the traveling direction that is set in advance as a branch destination having a low possibility of traveling with respect to the branch source, for example.
  • this predetermined traveling direction difference for example, the traveling direction of the branch destination differs from the traveling direction of the branch source by ⁇ 2 ⁇ / 3 or more.
  • the per-route SOC calculation unit that is, the per-route SOC calculation means 112 charges each travel route that may be traveled, acquired by the travel route acquisition means 110, based on the charge capacity change amount ⁇ SOC stored for each section ID.
  • the change characteristic of the capacity SOC is calculated in association with the distance from the current position.
  • the change characteristic of the charge capacity SOC is a characteristic obtained by calculating a change in the accumulated value of the charge capacity change amount ⁇ SOC in the travel route obtained with respect to the current charge capacity SOC, using the distance as a variable.
  • the SOC recovery availability determination unit that is, the SOC recovery availability determination unit 114, travels in a travel state in which the travel route acquired by the travel route acquisition unit 110 may be traveled and cannot be recovered as regenerative energy.
  • the charging for each travel route calculated by the per-route SOC calculation means 112 determines whether or not there is at least one travel route that can recover the electric energy to the extent that the control range of the charge capacity SOC is exceeded. Judgment is made from the change characteristic of the capacity SOC. Further, the SOC recovery possibility determination means 114 calculates the position on the road map where the excess part is present on the travel route where there is a part exceeding the upper limit of the management width, and the regenerative energy amount at the part exceeding it as the estimated SOC recovery amount. To do. That is, the SOC recovery possibility determination means 114 determines whether or not there is a possibility of recovering electrical energy exceeding the management width upper limit value of the charge capacity SOC in any one of the travel routes that are likely to travel.
  • the SOC failure determination unit that is, the SOC failure determination means 116, is acquired by the travel route acquisition means 110 even if the estimated SOC recovery amount is consumed before the recovery when the SOC recovery possibility determination means 114 determines that there is a recovery possibility. It is determined whether or not any of the travel routes that are likely to travel does not fall below the lower limit of the management width of the charge capacity SOC. In other words, the SOC failure determination means 116 can manage the charge capacity SOC even if the estimated SOC recovery amount is consumed in advance on a travel route other than the travel route that is predicted to be recovered by the SOC recovery possibility determination means 114. It is determined whether it does not fall below the lower limit and does not fail in terms of power.
  • the EV control or the assist travel using the consumable amount based on the estimated SOC recovery amount (that is, the consumable amount is determined). (EV driving or assisting driving) is permitted. Then, the hybrid control means 104 executes the EV traveling or the assist traveling so that the above consumable amount is consumed before the start of collecting the electric energy.
  • the consumable amount may be determined by the SOC failure determination means 116 not to fail in terms of power. For example, it is basically the estimated SOC recovery amount, but in consideration of calculation errors and variations, The smaller one of the estimated SOC recovery amount and (current charge capacity SOC-management width lower limit value) may be set as the consumable amount.
  • FIG. 5 shows a control operation of the electronic control unit 100, that is, control for improving fuel efficiency by enabling EV driving and assist driving without causing power failure without specifying one driving route. It is a flowchart explaining the operation, and is repeatedly executed with a very short cycle time of, for example, about several milliseconds to several tens of milliseconds.
  • FIG. 6 is an auxiliary flowchart executed when the control operation shown in the flowchart of FIG. 5 is executed.
  • FIG. 7 is a conceptual diagram showing an example when the control operation shown in the flowchart of FIG. 5 is executed.
  • step (hereinafter, step is omitted) S10 corresponding to the travel route acquisition unit 110 for example, any travel route that may travel from the current position of the vehicle 10 to a predetermined distance. It is acquired from the map data stored in the storage medium 92.
  • step (hereinafter, step is omitted) S10 corresponding to the travel route acquisition unit 110 for example, any travel route that may travel from the current position of the vehicle 10 to a predetermined distance. It is acquired from the map data stored in the storage medium 92.
  • the flowchart of FIG. 6 is executed and the road information such as the road type and the width information is different from the branch source by a predetermined amount or more, a branch destination whose past travel history is a predetermined branch destination or less, and a direction when proceeding to the branch destination Branch destinations that differ from the current traveling direction of the vehicle by a predetermined amount or more are excluded.
  • S ⁇ b> 110 road information such as the road type and width information of the traveling road corresponding to the branch destination is acquired from the map data stored in the storage medium 92.
  • S120 it is determined whether the branch destination road information is different from the branch source road information by a predetermined amount or more.
  • S130 the number of travels on the travel route (section) corresponding to the branch destination is acquired from the data stored in the memory unit 101.
  • S140 it is determined whether the past travel history at the branch destination is equal to or less than a predetermined value.
  • S150 the direction when traveling to the travel path corresponding to the branch destination is acquired from the map data stored in the storage medium 92.
  • S160 it is determined whether the direction when traveling to the branch destination is different from the current traveling direction of the vehicle by a predetermined amount or more. If the determination in S160 is negative, this routine is terminated. On the other hand, if any of S120, S140, and S160 is affirmed, a travel route in which the affirmed branch destination is acquired in S10 in the flowchart of FIG. Excluded from candidates.
  • the travel routes A, B, and C (solid lines) shown in FIGS. 7A and 7B are examples of travel routes that may be traveled acquired in S10.
  • a travel route D two-dot chain line
  • FIG. 7A is an example of a branch destination that is excluded from a travel route that may travel because the road information differs from the branch source by a predetermined amount or more.
  • the travel route E (two-dot chain line) shown in FIG. 7A is a branch destination that is excluded from the travel route that may travel because the direction when traveling is different from the traveling direction of the current vehicle by a predetermined amount or more. It is an example. Note that steps S110 to S170 in the flowchart of FIG. 6 correspond to the travel route acquisition unit 110, respectively.
  • the position on the travel route exceeding the management width upper limit value and the estimated SOC recovery amount are calculated.
  • the arrow A part is a part that cannot be recovered as regenerative energy and is discarded, and when this part is present, the travel route A is determined as “possible recovery”. If the determination in S30 is negative, the present routine is terminated. If the determination is affirmative, in S40 corresponding to the SOC failure determination means 116, for example, in a travel route other than the travel route that is considered to have a recovery possibility.
  • the estimated SOC recovery amount is consumed before (in advance) the recovery, it is determined whether or not it does not fall below the management width lower limit value of the charge capacity SOC and does not fail in terms of power.
  • FIG. 7C when it is determined that the travel route A is “possible collection”, paying attention to the other travel routes B and C, the estimated SOC collection amount is consumed in advance (by the collection start point). In this case, it is determined whether or not the traveling routes B and C do not fail in terms of power.
  • the travel routes B ′ and C ′ (broken line) in FIG. 7D correspond to the case where the estimated SOC recovery amount has been consumed in advance, and in this case, it does not fall below the management width lower limit value of the charge capacity SOC.
  • S40 determines whether it will fail. If the determination in S40 is negative, this routine is terminated. If the determination is affirmative, in S50 corresponding to the hybrid control means 104, the SOC recovery is performed up to the point where SOC recovery (electric energy recovery) is started. EV travel or assist travel is permitted so that a consumable amount based on the expected amount can be consumed.
  • the target value of the control of the charge capacity SOC is changed from the median value of the SOC management range to “current charge capacity SOC ⁇ consumable amount” or EV running or Assist driving may be performed.
  • the EV travel or the assist travel may be performed at a timing at which the above consumable amount can be consumed by calculating backward from the general consumption speed (discharge speed) during the EV travel or the assist travel.
  • the travel route obtained from the map data stored in the storage medium 92 is divided into a plurality of sections, and the charge capacity change amount ⁇ SOC of the power storage device 54 for each of the divided sections. Therefore, the amount of electrical energy of the power storage device 54 that can be consumed prior to the collection of electrical energy when traveling on a certain travel route can be calculated based on the stored charge capacity change amount ⁇ SOC. And the electric energy amount (regenerative energy amount) collect
  • any travel route that may travel from the current position of the vehicle 10 to a predetermined distance is acquired from the map data, and based on the charge capacity change amount ⁇ SOC,
  • the change characteristic of the charge capacity SOC is calculated in association with the distance from the current position for each travel route, and electric energy is recovered to the extent that it exceeds the control width upper limit value of the charge capacity SOC as judged from the change characteristic of the charge capacity SOC. Even if there is at least one of the travel routes that can be traveled and the electric energy that exceeds the upper limit of the management width is consumed before the recovery, there is a possibility of travel.
  • the section is divided based on a branch point where a branch path exists in the travel path, and thus the travel path obtained from the map data is appropriately divided into a plurality of sections. Further, since the section is divided according to the amount of change in the road surface gradient ⁇ and the amount of change in the altitude H based on the road surface gradient and altitude information in the map data, there are a plurality of travel routes obtained from the map data. Divide more appropriately into sections.
  • the travel route with the possibility of traveling is a case where the road type is different from the branch source by a predetermined amount or more, a branch destination whose past travel history is a predetermined branch destination or less, and a branch destination. Since the direction is acquired by excluding a branch destination whose direction is different from the traveling direction of the current vehicle by a predetermined amount or more, the travel probability is low as judged from the road type of the front branch road while including all possible travel routes.
  • the management width lower limit value of the charge capacity SOC is set due to variations in travel conditions and the like. If it falls below, there is a possibility that the fuel consumption may deteriorate due to entering a forced charging mode in which the power storage device 54 is forcibly charged. On the other hand, during traveling in which EV traveling or assist traveling is permitted, this is a traveling route from which electric energy can be sufficiently recovered.
  • the management width lower limit value is temporarily set on the condition that the charge capacity SOC will increase in the travel route currently being traveled. Make it smaller.
  • FIG. 8 is a functional block diagram for explaining a main part of the control function by the electronic control unit 100, and is different from FIG. 3 in which a new function is added to the functional block diagram of FIG. This is an example.
  • the EV traveling permission determining unit that is, the EV traveling permission determining means 118 determines whether the EV traveling that consumes the consumable amount or the EV traveling permitted for the assist traveling or the assist traveling is performed. To do.
  • the current charging capacity SOC is calculated. It is determined whether or not it is in the vicinity of a predetermined capacity difference or less with respect to the management width lower limit value.
  • the SOC recovery possibility determination means 114 determines whether or not the charge capacity SOC will increase in the future based on the change characteristics of the charge capacity SOC in each travel route that may travel from the currently traveled travel route. The determination of whether or not the charge capacity SOC increases is changed according to, for example, how to set the change amount (reduction amount) of the management width lower limit value by the management width lower limit value changing unit 122 described later. For example, when the change amount of the management width lower limit value is the minimum value of the future increase amount of the charge capacity SOC, it is determined whether or not the charge capacity SOC increases as it is. On the other hand, when the change amount of the management width lower limit value is a predetermined fixed value or a variable value corresponding to the distance, it is determined whether or not the charge capacity SOC increases more than the change amount of the management width lower limit value. .
  • the management width lower limit value changing unit that is, the management width lower limit value changing unit 122 temporarily changes (decreases) the management width lower limit value when the SOC recovery possibility determination unit 114 determines that the charge capacity SOC will increase in the future.
  • FIG. 9 is a flowchart for explaining a main part of the control operation of the electronic control unit 100, that is, a control operation for improving the fuel consumption by making it difficult to enter the forced charging mode. For example, an extremely short cycle of about several milliseconds to several tens of milliseconds It is executed repeatedly in time.
  • S210 corresponding to the EV traveling permission determining means 118 it is determined whether the EV traveling that consumes the consumable amount or the EV traveling permitted for the assist traveling or the assist traveling is performed. Is done. If the determination in S210 is negative, this routine is terminated. If the determination is affirmative, in S220 corresponding to the management width lower limit vicinity determining unit 120, for example, the current charge capacity SOC is compared with the management width lower limit. It is determined whether or not it is in the vicinity of a predetermined capacity difference or less. If the determination in S220 is negative, this routine is terminated.
  • S230 corresponding to the SOC recovery possibility determination means 114, for example, each travel that may travel from the currently traveled travel route. It is determined whether or not the charge capacity SOC will increase in the future based on the change characteristic of the charge capacity SOC in the route. If the determination in S230 is negative, this routine is terminated. If the determination is positive, in S240 corresponding to the management width lower limit changing means 122, for example, the management width lower limit is temporarily changed (reduced). .
  • Travel with possibility of travel acquired by travel route acquisition means 110 during EV travel or assist travel in which EV travel that consumes the consumable amount executed in the first embodiment or assist travel is permitted When the vehicle deviates from the route, that is, when the vehicle travels on a travel route other than the travel route with the possibility of travel after EV travel or assist travel is permitted, the power storage device 54 is charged by pre-consumption of the electric energy amount by the EV travel or assist travel. There is a possibility that the capacity SOC falls below the management width lower limit. Therefore, in this embodiment, in order to avoid a failure in terms of electric power, permission for EV traveling or assist traveling is canceled when traveling other than the travel route with the possibility of traveling is performed. Further, EV travel or assist travel is not permitted until the charge capacity SOC is restored to a normal level (for example, the median value of the SOC management range).
  • a normal level for example, the median value of the SOC management range
  • FIG. 10 is a functional block diagram for explaining a main part of the control function by the electronic control unit 100, and is different from FIG. 3 in which a new function is added to the functional block diagram of FIG. This is an example.
  • the route departure determination unit that is, the route departure determination unit 124
  • the route departure determination unit 124 is acquired by the travel route acquisition unit 110 when the EV travel permission determination unit 118 determines that the EV travel is being performed or the assist travel is being performed. It is determined based on the current position information of the vehicle 10 whether or not the vehicle has deviated from the travel route that may have traveled.
  • Hybrid control means 104 cancels permission of EV travel or assist travel that consumes the consumable amount, and executes normal control excluding EV travel or assist travel control that consumes the consumable amount. In addition, the hybrid control means 104 determines that the charge capacity SOC has been recovered to the normal level by the SOC recovery determination means 126 described later after once canceling the permission of EV travel or assist travel that consumes the consumable amount. Until then, EV travel or assist travel that consumes the consumable amount is not permitted.
  • the SOC recovery determination unit that is, the SOC recovery determination means 126 determines whether or not the charge capacity SOC has recovered to a normal level (for example, the median value of the SOC management width) in the normal control.
  • FIG. 11 is a flowchart for explaining a control operation of the electronic control device 100, that is, a control operation for avoiding power failure when electric energy cannot be recovered as expected. It is repeatedly executed with an extremely short cycle time of about several tens of msec.
  • S310 corresponding to the EV traveling permission determining means 118 it is determined whether the EV traveling that consumes the consumable amount or the EV traveling permitted for the assist traveling or the assist traveling is performed. Is done. If the determination in S310 is negative, this routine is terminated. If the determination is affirmative, in S320 corresponding to the route departure determination unit 124, for example, whether or not the obtained travel route that may have traveled has been deviated. Is determined based on the current position information of the vehicle 10. If the determination in S320 is negative, this routine is terminated. If the determination is positive, in S330 corresponding to the hybrid control means 104, for example, permission for EV driving or assist driving that consumes the consumable amount is canceled.
  • S340 corresponding to the SOC recovery determination means 126, it is determined whether or not the charge capacity SOC has been recovered to the normal level (for example, the median value of the SOC management width) by the normal control. If the determination in S340 is affirmed, this routine is terminated. If the determination is negative, in S350 corresponding to the hybrid control means 104, for example, EV travel or assist travel that consumes the consumable amount is not permitted. Next, S340 is executed again. In other words, until the determination in S340 is affirmed, EV traveling or assist traveling that consumes the consumable amount is not permitted in S350.
  • Example of this invention was described in detail based on drawing, this invention can be implemented combining an Example mutually and is applied also in another aspect.
  • each embodiment is implemented independently.
  • the above embodiments are not necessarily implemented independently, and may be implemented in appropriate combination.
  • the travel route with the possibility of travel may be configured by a section in which the charge capacity change amount ⁇ SOC is stored.
  • the change characteristic of the charge capacity SOC is appropriately calculated for each travel route having the possibility of traveling, and the electric energy is increased to the extent that the control width upper limit value of the charge capacity SOC is exceeded from the change characteristic of the charge capacity SOC. It is appropriately determined whether or not there is at least one of the travel routes that can be recovered from the travel routes that may be traveled, and the amount that exceeds the upper limit of the management width from the change characteristics of the charge capacity SOC. Even if the electric energy is consumed before the recovery, it is appropriately determined whether or not the travel route with the possibility of traveling does not fall below the lower limit of the management width of the charge capacity SOC.
  • the travel route by configuring the travel route with the travel possibility by the section in which the charge capacity change amount ⁇ SOC is stored, as a result, the section other than the section in which the charge capacity change amount ⁇ SOC is stored. In the case of traveling, permission for EV traveling or assist traveling is canceled.
  • the charge capacity change amount ⁇ SOC in a certain section is acquired as an actual measurement value based on the charge capacity SOC, but is not limited thereto.
  • accumulation of travel energy (position energy mgh + travel resistance Cd ⁇ projected area A ⁇ vehicle speed V 2 + rolling resistance) ⁇ charge efficiency ⁇ ; m is vehicle weight, g is gravitational acceleration, and h is altitude difference) in a certain section.
  • the value may be calculated as a charge capacity change amount ⁇ SOC. Therefore, the estimated charge capacity change amount ⁇ SOC in a section where there is no travel history in the past and the charge capacity change amount ⁇ SOC is not stored may be calculated as the integrated value of the travel energy.
  • the vehicle speed V is required in the calculation of the travel energy, for example, the legal vehicle speed in the section or the average vehicle speed in other similar road types is used as the vehicle speed V.
  • the three determination conditions (steps S120, S140, and S160) for excluding the branch destination in the flowchart of FIG. 6 are OR conditions, but may be AND conditions.
  • permission for EV traveling or assist traveling is canceled when traveling on a route other than a travel route that may be traveled.
  • the present invention is not limited to this. For example, electric energy is assumed for some reason. When the street cannot be collected, permission for EV traveling or assist traveling may be canceled. Even if it does in this way, failure in terms of power can be avoided appropriately.
  • Hybrid vehicle 14 Engine (driving drive power source) 54: Power storage device 100: Electronic control device (control device) MG: Electric motor (driving drive power source)

Abstract

 走行経路を1つに特定しなくても、電力的に破綻することの無いEV走行やアシスト走行を可能にして燃費を向上する。 記憶媒体92に記憶された地図データから得られる走行路が複数の区間に分割され、その分割された区間毎に蓄電装置54の充電容量変化量ΔSOCが記憶されるので、ある走行経路を走行するときに電気エネルギの回収に先立って消費可能な蓄電装置54の電気エネルギ量をその記憶された充電容量変化量ΔSOCに基づいて算出することができる。そして、EV走行やアシスト走行による電気エネルギ量の事前消費によりその後に回収する電気エネルギ量(回生エネルギ量)を増やすことができる。これにより、走行経路を1つに特定しなくても電力的に破綻することの無いEV走行やアシスト走行を可能にして燃費を向上することができる。

Description

ハイブリッド車両の制御装置
 本発明は、蓄電装置の電気エネルギにより駆動される電動機を含む複数の走行用駆動力源を備えたハイブリッド車両の制御装置に関するものである。
 蓄電装置の電気エネルギにより駆動される電動機を含む複数の走行用駆動力源を備え、その電動機を用いた走行(例えばモータ走行やアシスト走行)が可能なハイブリッド車両が良く知られている。例えば、特許文献1,2に記載されたハイブリッド車両がそれである。一般的に、このようなハイブリッド車両では、蓄電装置の充電容量(充電状態、SOC)は、充放電の繰り返しによる蓄電装置の耐久性低下を抑制する為に、所定の範囲(例えば上限値と下限値とで規定されるSOC管理幅の範囲)に保たれるように制御される。従って、その限られたSOCの中で電動機が力行作動されたり或いは回生作動されたりする。見方を換えれば、蓄電装置のSOC情報に基づいてモータ走行やアシスト走行の可否を判断することができる。特許文献1には、地図情報に基づく現在位置、バッテリのSOC値、及び走行履歴に基づく学習データ(過去に走行したリンク毎に車両がそのリンクを走行する際に必要なエネルギ量)に基づいて、車両がモータ走行によって走行可能な走行可能範囲の境界を算出し、その境界をディスプレイに表示されている地図上に重ねて表示する技術が開示されている。
特開2010-169423号公報 特開2005-160269号公報
 しかしながら、前記特許文献1に記載された技術では、走行中の回生作動による電気エネルギ(回生エネルギ)の回収分を考慮していない為、走行可能範囲の精度(信頼度)が低下する可能性がある。ここで、電動機による回生エネルギの回収分を考慮した技術として、特許文献2には、山越えを行うときなど走行経路上に大きな回生エネルギを回収できる下り区間がある場合、SOC管理幅を拡大し、更に電動機を駆動してエンジンを補助し、下り区間走行前までにSOCを低下させておくことが提案されている。しかしながら、特許文献2に記載された技術では、現在地点と走行方向とから走行経路を1つに特定する必要があり、また分岐路等がある場合の複数の走行経路については考慮されておらず、特定した走行経路とは異なる走行経路に進んだ場合に電動機を駆動していると電力的に破綻する恐れがある。尚、上述したような課題は未公知であり、走行経路を1つに特定しなくても、電力的に破綻しないモータ走行やアシスト走行を可能にすることについて未だ提案されていない。
 本発明は、以上の事情を背景として為されたものであり、その目的とするところは、走行経路を1つに特定しなくても、電力的に破綻することの無いモータ走行やアシスト走行を可能にして燃費を向上することができるハイブリッド車両の制御装置を提供することにある。
 前記目的を達成する為の第1の発明の要旨とするところは、(a) 蓄電装置の電気エネルギにより駆動される電動機を含む複数の走行用駆動力源を備え、その電動機を用いて走行するモータ走行或いはアシスト走行が可能なハイブリッド車両の制御装置であって、(b) 地図データから得られる走行路を複数の区間に分割し、その分割した区間毎に前記蓄電装置の充電容量の変化量を記憶することにある。
 このようにすれば、地図データから得られる走行路が複数の区間に分割され、その分割された区間毎に前記蓄電装置の充電容量の変化量が記憶されるので、ある走行経路を走行するときに電気エネルギの回収に先立って消費可能な蓄電装置の電気エネルギ量を前記記憶された蓄電装置の充電容量の変化量に基づいて算出することができる。そして、モータ走行やアシスト走行による電気エネルギ量の事前消費によりその後に回収する電気エネルギ量(回生エネルギ量)を増やすことができる。これにより、走行経路を1つに特定しなくても電力的に破綻することの無いモータ走行やアシスト走行を可能にして燃費を向上することができる。
 ここで、第2の発明は、前記第1の発明に記載のハイブリッド車両の制御装置において、車両の現在位置から所定距離までの間で走行可能性のある走行経路の何れもを前記地図データから取得し、前記充電容量の変化量に基づいて、前記走行経路毎にその充電容量の変化特性を現在位置からの距離に関連付けて算出し、前記充電容量の変化特性から判断して、前記蓄電装置の充電が許可される所定充電容量上限値を超える程に電気エネルギを回収することができる走行経路が前記走行可能性のある走行経路のうちで少なくとも1つ存在し、且つその所定充電容量上限値を超える分の電気エネルギを回収前に消費したとしてもその走行可能性のある走行経路の何れにおいてもその蓄電装置の放電が許可される所定充電容量下限値を下回らない場合には、その所定充電容量上限値を超える分の電気エネルギに基づく消費可能量を用いた前記モータ走行或いは前記アシスト走行を許可することにある。このようにすれば、モータ走行やアシスト走行による電気エネルギ量の事前消費によりその後に回収する回生エネルギ量を増やすことができる。よって、走行経路を1つに特定しなくても電力的に破綻することの無いモータ走行やアシスト走行を可能にして燃費を向上することができる。
 また、第3の発明は、前記第2の発明に記載のハイブリッド車両の制御装置において、前記走行可能性のある走行経路以外の走行となった場合には、前記モータ走行或いは前記アシスト走行の許可を取り消すことにある。このようにすれば、前記モータ走行或いは前記アシスト走行が許可された後に前記走行可能性のある走行経路以外の走行となってモータ走行やアシスト走行による電気エネルギ量の事前消費により蓄電装置の充電容量が前記所定充電容量下限値を下回る可能性があることに対して、前記モータ走行或いは前記アシスト走行の許可が取り消されるので、想定していた回生エネルギ量を回収できなくなったとしても電力的に破綻することが回避される。これにより、適切に走行を継続することができる。
 また、第4の発明は、前記第2の発明又は第3の発明に記載のハイブリッド車両の制御装置において、前記走行可能性のある走行経路は、前記充電容量の変化量が記憶されている区間により構成されることにある。このようにすれば、前記走行経路毎に充電容量の変化特性が適切に算出され、その充電容量の変化特性から前記所定充電容量上限値を超える程に電気エネルギを回収することができる走行経路が前記走行可能性のある走行経路のうちで少なくとも1つ存在するか否かが適切に判断され、その充電容量の変化特性からその所定充電容量上限値を超える分の電気エネルギを回収前に消費したとしても前記走行可能性のある走行経路の何れにおいても前記所定充電容量下限値を下回らないか否かが適切に判断される。
 また、第5の発明は、前記第1の発明乃至第4の発明の何れか1つに記載のハイブリッド車両の制御装置において、前記区間は、走行路において分岐路が存在する分岐点に基づいて分割されることにある。このようにすれば、地図データから得られる走行路が複数の区間に適切に分割される。
本発明が適用されるハイブリッド車両を構成する動力伝達経路の概略構成を説明する図であると共に、車両に設けられた制御系統の要部を説明する図である。 ナビの記憶媒体に記憶されている内容の一例を示す概念図である。 電子制御装置の制御機能の要部を説明する機能ブロック線図である。 走行路を複数の区間に分割した場合の一例を示す概念図である。 電子制御装置の制御作動の要部すなわち走行経路を1つに特定しなくても電力的に破綻することの無いモータ走行やアシスト走行を可能にして燃費を向上する為の制御作動を説明するフローチャートである。 図5のフローチャートに示す制御作動を実行した場合に実行させられる補助的なフローチャートである。 図5のフローチャートに示す制御作動を実行した場合の一例を示す概念図である。 電子制御装置の制御機能の要部を説明する機能ブロック線図であって、図3の機能ブロック線図に新たな機能が加えられた図3とは別の実施例である。 電子制御装置の制御作動の要部すなわち強制充電モードに入り難くして燃費を向上する為の制御作動を説明するフローチャートである。 電子制御装置の制御機能の要部を説明する機能ブロック線図であって、図3の機能ブロック線図に新たな機能が加えられた図3とは別の実施例である。 電子制御装置の制御作動の要部すなわち電気エネルギが想定通り回収できなくなったときに電力的に破綻することを回避する為の制御作動を説明するフローチャートである。
 本発明において、好適には、前記走行可能性のある走行経路は、道路種別(道路属性)が分岐元と所定以上異なる分岐先を除外して取得される。また、前記走行可能性のある走行経路は、過去の走行履歴が所定以下の分岐先を除外して取得される。また、前記走行可能性のある走行経路は、分岐先へ進行した場合の方向が現在の車両の進行方向と所定以上異なる分岐先を除外して取得される。このようにすれば、走行可能性のある走行経路を全て含みつつ、前方の分岐路の道路種別から走行確率が低い経路、過去の走行履歴から走行確率が低い経路、及び/又は大凡の進んでいる方角でない方向の経路を、候補から除外することができ、走行可能性のある走行経路の取得時、その後の充電容量の変化特性の演算時、及び前記消費可能量を用いた前記モータ走行或いは前記アシスト走行を許可するか否かの判断に関連する各判断時等の演算負荷を低減することができる。
 また、好適には、消費可能量を用いた前記モータ走行或いは前記アシスト走行が許可されてそのモータ走行中或いはそのアシスト走行中であるときに、前記蓄電装置の実際の充電容量が前記所定充電容量下限値に対して所定容量差以下の近傍にある場合には、現在走行中の走行経路においてその充電容量が今後増加することを条件としてその所定充電容量下限値を一時的に小さくする。このようにすれば、本来その後に電気エネルギの回収が十分に見込める箇所(走行経路)において、走行状況等のばらつきにより既存の所定充電容量下限値を下回ったことにより強制的に蓄電装置が充電される制御が為されて燃費が悪化してしまう可能性があることに対して、前記所定充電容量下限値を一時的に下げることにより、前記モータ走行或いは前記アシスト走行が継続され、その後の電気エネルギ回収により燃費を向上させることができる。
 また、好適には、前記区間は、前記分岐点に加え、路面勾配の変化量及び/又は標高の変化量に基づいて分割される。このようにすれば、地図データから得られる走行路が前記蓄電装置の充電容量の変化傾向に合わせて複数の区間に一層適切に分割される。
 また、好適には、前記ハイブリッド車両は、走行用駆動力源としてのエンジン及び前記電動機と、少なくともエンジンからの動力を駆動輪側へ伝達する変速機とを備えている。更に、このハイブリッド車両は、前記エンジンと前記駆動輪との間の動力伝達経路を断接するクラッチを備えていても良い。そして、このようなハイブリッド車両は、上記クラッチを備える場合にはそのクラッチを係合した状態で少なくとも上記エンジンを走行用駆動力源として走行するエンジン走行(ハイブリッド走行)と、上記クラッチを備える場合にはそのクラッチを解放した状態で上記電動機のみを走行用駆動力源として走行するモータ走行とが可能である。また、上記エンジン走行においては、上記エンジンの動力に上記電動機の動力を加えて走行する電動機によるアシスト走行が可能である。
 或いは、好適には、前記ハイブリッド車両は、エンジンに動力伝達可能に連結された差動機構とその差動機構に動力伝達可能に連結された差動用電動機とを有してその差動用電動機の運転状態が制御されることによりその差動機構の差動状態が制御される所謂電気式無段変速機と、その電気式無段変速機の出力回転部材に動力伝達可能に連結される走行用電動機とを備えている。すなわち、前記ハイブリッド車両は、エンジンからの動力を第1電動機及び出力回転部材へ分配する差動機構とその差動機構の出力回転部材に設けられた第2電動機とを備えてその差動機構の差動作用によりエンジンからの動力の主部を駆動輪側へ機械的に伝達しエンジンからの動力の残部を第1電動機から第2電動機への電気パスを用いて電気的に伝達することにより電気的に変速比が変更される電気式無段変速機を備えている。
 また、好適には、前記変速機は、変速機単体、トルクコンバータ等の流体式伝動装置を有する変速機、或いは副変速機を有する変速機などにより構成される。この変速機は、公知の遊星歯車式自動変速機、公知の同期噛合型平行2軸式手動変速機、公知の同期噛合型平行2軸式自動変速機、その同期噛合型平行2軸式自動変速機であるが入力軸を2系統備える型式の変速機である所謂DCT(Dual Clutch Transmission)、公知のベルト式無段変速機、公知のトラクション型無段変速機などにより構成される。
 また、好適には、前記エンジンと前記駆動輪との間の動力伝達経路を断接するクラッチは、湿式或いは乾式の係合装置が用いられる。
 以下、本発明の実施例を図面を参照しつつ詳細に説明する。
 図1は、本発明が適用されるハイブリッド車両10(以下、車両10という)を構成するエンジン14から駆動輪34までの動力伝達経路の概略構成を説明する図であると共に、走行用駆動力源として機能するエンジン14の出力制御、自動変速機18の変速制御、走行用駆動力源として機能する電動機MGの駆動制御、ナビゲーションシステム90(以下、ナビ90という)を利用した走行路の区間分割制御などの為に車両10に設けられた制御系統の要部を説明する図である。
 図1において、車両用動力伝達装置12(以下、動力伝達装置12という)は、車体にボルト止め等によって取り付けられる非回転部材としてのトランスミッションケース20(以下、ケース20という)内において、エンジン14側から順番に、エンジン断接用クラッチK0、電動機MG、トルクコンバータ16、オイルポンプ22、及び自動変速機18等を備えている。また、動力伝達装置12は、自動変速機18の出力回転部材である出力軸24に連結されたプロペラシャフト26、そのプロペラシャフト26に連結された差動歯車装置(ディファレンシャルギヤ)28、その差動歯車装置28に連結された1対の車軸30等を備えている。このように構成された動力伝達装置12は、例えばFR(フロントエンジン・リヤドライブ)型の車両10に好適に用いられるものである。動力伝達装置12において、エンジン14の動力は、エンジン断接用クラッチK0が係合された場合に、エンジン14とエンジン断接用クラッチK0とを連結するエンジン連結軸32から、エンジン断接用クラッチK0、トルクコンバータ16、自動変速機18、プロペラシャフト26、差動歯車装置28、及び1対の車軸30等を順次介して1対の駆動輪34へ伝達される。
 トルクコンバータ16は、ポンプ翼車16aに入力された駆動力を自動変速機18側へ流体を介して伝達する流体式伝動装置である。このポンプ翼車16aは、エンジン断接用クラッチK0とエンジン連結軸32とを順次介してエンジン14に連結されており、エンジン14からの駆動力が入力され且つ軸心回りに回転可能な入力側回転要素である。トルクコンバータ16のタービン翼車16bは、トルクコンバータ16の出力側回転要素であり、自動変速機18の入力回転部材である変速機入力軸36にスプライン嵌合等によって相対回転不能に連結されている。
 電動機MGは、電気エネルギから機械的な駆動力を発生させる発動機としての機能及び機械的なエネルギーから電気エネルギを発生させる発電機としての機能を有する所謂モータジェネレータである。換言すれば、電動機MGは、エンジン14の代替として或いはそのエンジン14に加えて、インバータ52を介して蓄電装置54から供給される電気エネルギにより駆動されて走行用の駆動力を発生させる走行用駆動力源として機能し得る。また、エンジン14により発生させられた駆動力や駆動輪34側から入力される被駆動力(機械的エネルギー)から回生により電気エネルギを発生させ、その電気エネルギをインバータ52を介して蓄電装置54に蓄積する等の作動を行う。電動機MGは、作動的にポンプ翼車16aに連結されており、電動機MGとポンプ翼車16aとの間では、相互に動力が伝達される。従って、電動機MGは、エンジン14と同様に、変速機入力軸36に動力伝達可能に連結されている。
 オイルポンプ22は、ポンプ翼車16aに連結されており、自動変速機18を変速制御したり、エンジン断接用クラッチK0の係合・解放を制御したり、車両10の動力伝達経路の各部に潤滑油を供給したりする為の作動油圧をエンジン14(或いは電動機MG)により回転駆動されることにより発生する機械式のオイルポンプである。
 エンジン断接用クラッチK0は、例えば互いに重ねられた複数枚の摩擦板が油圧アクチュエータにより押圧される湿式多板型の油圧式摩擦係合装置であり、オイルポンプ22が発生する油圧を元圧とし動力伝達装置12に設けられた油圧制御回路50によって係合解放制御される。そして、その係合解放制御においてはエンジン断接用クラッチK0の動力伝達可能なトルク容量すなわちエンジン断接用クラッチK0の係合力が、油圧制御回路50内のリニヤソレノイドバルブ等の調圧により例えば連続的に変化させられる。エンジン断接用クラッチK0は、それの解放状態において相対回転可能な1対のクラッチ回転部材(クラッチハブ及びクラッチドラム)を備えており、そのクラッチ回転部材の一方(クラッチハブ)はエンジン連結軸32に相対回転不能に連結されている一方で、そのクラッチ回転部材の他方(クラッチドラム)はトルクコンバータ16のポンプ翼車16aに相対回転不能に連結されている。このような構成から、エンジン断接用クラッチK0は、係合状態では、エンジン連結軸32を介してポンプ翼車16aをエンジン14と一体的に回転させる。すなわち、エンジン断接用クラッチK0の係合状態では、エンジン14からの駆動力がポンプ翼車16aに入力される。一方で、エンジン断接用クラッチK0の解放状態では、ポンプ翼車16aとエンジン14との間の動力伝達が遮断される。また、前述したように、電動機MGは作動的にポンプ翼車16aに連結されているので、エンジン断接用クラッチK0は、エンジン14と電動機MGとの間の動力伝達経路を断接するクラッチとして機能する。
 自動変速機18は、エンジン断接用クラッチK0を介することなく電動機MGに動力伝達可能に連結されて、エンジン14から駆動輪34までの動力伝達経路の一部を構成し、走行用駆動力源(エンジン14及び電動機MG)からの動力を駆動輪34側へ伝達する。自動変速機18は、例えばクラッチCやブレーキB等の複数の油圧式摩擦係合装置の何れかの掴み替えにより(すなわち油圧式摩擦係合装置の係合と解放とにより)変速が実行されて複数の変速段(ギヤ段)が選択的に成立させられる有段式の自動変速機として機能する遊星歯車式多段変速機である。すなわち、自動変速機18は、公知の車両によく用いられる所謂クラッチツゥクラッチ変速を行う有段変速機であり、変速機入力軸36の回転を変速して出力軸24から出力する。また、この変速機入力軸36は、トルクコンバータ16のタービン翼車16bによって回転駆動されるタービン軸でもある。そして、自動変速機18では、クラッチC及びブレーキBのそれぞれの係合解放制御により、運転者のアクセル操作や車速V等に応じて所定のギヤ段(変速段)が成立させられる。
 ナビ90は、例えばCD-ROMやDVD-ROMやHDD(hard disk drive)などの記憶媒体92を備え、記憶媒体92に記憶された道路地図データベース(以下、地図データという)を用いて公知のナビゲーション制御を実行する機能を有している。図2は、記憶媒体92に記憶されている地図データの一例を示す概念図である。図2において、(a)は地図データにより特定される任意のポイントとしての複数のノード、及び地図データにより特定される各ノード間を結ぶ複数の区間としてのリンクを示す図であり、(b)は各リンク毎に記憶されている走行路情報等のデータテーブルを示す図である。図2に示すように、各リンク毎にIDアドレス(リンクID)が決められており、その各リンクID毎に、ノードにより定義される始点座標及び終点座標、走行路情報(道路情報)としての路面勾配、標高情報、道路曲率、一般道(国道/県道/市道/細街路等)や高速道路や一方通行などの道路種別、幅員情報、交差点情報、などが記憶されている。尚、記憶媒体92に記憶された各ノードやリンクIDや走行路情報などの地図データは、例えば通常は書き換え不能な固定情報であるが、CD-ROMやDVD-ROMなどのメディアを取り替えたり、更新ソフトを用いてHDDの内容を書き換えることにより更新が可能である。
 図1に戻り、車両10には、例えばハイブリッド駆動制御などに関連する制御装置を含む電子制御装置100が備えられている。電子制御装置100は、例えばCPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことにより車両10の各種制御を実行する。例えば、電子制御装置100は、エンジン14の出力制御、電動機MGの回生制御を含む電動機MGの駆動制御、自動変速機18の変速制御、エンジン断接用クラッチK0のトルク容量制御等を実行するようになっており、必要に応じてエンジン制御用や電動機制御用や油圧制御用(変速制御用)等に分けて構成される。
 電子制御装置100には、例えばエンジン回転速度センサ56により検出されたエンジン14の回転速度であるエンジン回転速度Nを表す信号、タービン回転速度センサ58により検出された自動変速機18の入力回転速度としてのトルクコンバータ16のタービン回転速度Nすなわち変速機入力軸36の回転速度である変速機入力回転速度NINを表す信号、出力軸回転速度センサ60により検出された車速関連値としての車速Vやプロペラシャフト26の回転速度等に対応する出力軸24の回転速度である変速機出力回転速度NOUTを表す信号、電動機回転速度センサ62により検出された電動機MGの回転速度である電動機回転速度NMGを表す信号、スロットルセンサ64により検出された不図示の電子スロットル弁の開度であるスロットル弁開度θTHを表す信号、吸入空気量センサ66により検出されたエンジン14の吸入空気量QAIRを表す信号、加速度センサ68により検出された車両10の前後加速度G(或いは前後減速度G)を表す信号、冷却水温センサ70により検出されたエンジン14の冷却水温THを表す信号、油温センサ72により検出された油圧制御回路50内の作動油の油温THOILを表す信号、アクセル開度センサ74により検出された運転者による車両10に対する駆動力要求量(ドライバ要求出力)としてのアクセルペダル76の操作量であるアクセル開度Accを表す信号、フットブレーキセンサ78により検出された運転者による車両10に対する制動力要求量(ドライバ要求減速度)としてのブレーキペダル80の操作量であるブレーキ操作量Braを表す信号、シフトポジションセンサ82により検出された公知の「P」,「N」,「D」,「R」,「S」ポジション等のシフトレバー84のレバーポジション(シフト操作位置、シフトポジション、操作ポジション)PSHを表す信号、バッテリセンサ86により検出された蓄電装置54のバッテリ温度THBATやバッテリ入出力電流(バッテリ充放電電流)IBATやバッテリ電圧VBATを表す信号、車両10に搭載されたナビ30からの地図データを表すカーナビ情報信号Snaviなどが、それぞれ供給される。尚、電子制御装置100は、例えば上記バッテリ温度THBAT、バッテリ充放電電流IBAT、及びバッテリ電圧VBATなどに基づいて蓄電装置54の充電状態(充電容量)SOCを逐次算出する。
 また、電子制御装置100からは、例えばエンジン14の出力制御の為のエンジン出力制御指令信号S、電動機MGの作動を制御する為の電動機制御指令信号S、エンジン断接用クラッチK0や自動変速機18のクラッチC及びブレーキBの油圧アクチュエータを制御する為に油圧制御回路50に含まれる電磁弁(ソレノイドバルブ)等を作動させる為の油圧指令信号Sなどが、それぞれ出力される。
 図3は、電子制御装置100による制御機能の要部を説明する機能ブロック線図である。図3において、有段変速制御部すなわち有段変速制御手段102は、自動変速機18の変速を行う変速制御手段として機能するものである。有段変速制御手段102は、例えば車速Vとアクセル開度Acc(或いは変速機出力トルクTOUT等)とを変数として予め記憶された公知の関係(変速線図、変速マップ)から実際の車速V及びアクセル開度Accで示される車両状態に基づいて変速判断を行い、その判断した変速段が得られるように自動変速機16の自動変速制御を実行する油圧指令信号Sを出力する。
 ハイブリッド制御部すなわちハイブリッド制御手段104は、エンジン14の駆動を制御するエンジン駆動制御手段としての機能と、インバータ52を介して電動機MGによる駆動力源又は発電機としての作動を制御する電動機作動制御手段としての機能を含んでおり、それら制御機能によりエンジン14及び電動機MGによるハイブリッド駆動制御等を実行する。例えば、ハイブリッド制御手段104は、アクセル開度Accや車速Vに基づいて車両要求トルクすなわち車軸30上でのトルク(駆動輪34における出力トルク)である駆動トルクTの目標値(目標駆動トルクT )を算出し、伝達損失、補機負荷、自動変速機18の変速段、蓄電装置54の充電容量SOC(換言すれば蓄電装置54の充放電要求量)等を考慮してその目標駆動トルクT が得られる走行用駆動力源(エンジン14及び電動機MG)の出力トルクすなわち変速機入力トルクTATの目標値(目標変速機入力トルクTAT )を算出し、その目標変速機入力トルクTAT となるようにその走行用駆動力源を制御する。
 より具体的には、ハイブリッド制御手段104は、例えば目標駆動トルクT (目標変速機入力トルクTAT )が電動機トルクTMGのみで賄える範囲である場合には、走行モードをモータ走行モード(以下、EVモード)とし、電動機MGのみを走行用の駆動力源とするモータ走行(EV走行)を行う。一方で、ハイブリッド制御手段104は、例えば目標駆動トルクT が少なくともエンジントルクTを用いないと賄えない範囲である場合には、走行モードをエンジン走行モードすなわちハイブリッド走行モード(以下、HVモード)とし、少なくともエンジン14を走行用の駆動力源とするエンジン走行すなわちハイブリッド走行(HV走行)を行う。
 ハイブリッド制御手段104は、HV走行を行う場合には、エンジン断接用クラッチK0を係合させてエンジン14からの駆動力をポンプ翼車16aに伝達させると共に、必要に応じて電動機MGにアシストトルクを出力させて走行するアシスト走行を行う。一方で、ハイブリッド制御手段104は、EV走行を行う場合には、エンジン断接用クラッチK0を解放させてエンジン14とトルクコンバータ16との間の動力伝達経路を遮断すると共に、電動機MGにEV走行に必要な電動機トルクMGを出力させる。
 例えば、ハイブリッド制御手段104は、EV走行中にアクセルペダル76が踏増し操作されて目標駆動トルクT が増大し、その目標駆動トルクT に対応する目標変速機入力トルクTAT が電動機トルクMGにて受持ち可能なトルクとして予め求められて定められた所定EV走行トルク範囲を超えた場合には、走行モードをEVモードからHVモードへ切り換え、エンジン14を始動してHV走行を行う。一方で、ハイブリッド制御手段104は、HV走行中にアクセルペダル76が踏戻し操作されて目標駆動トルクT が減少し、目標変速機入力トルクTAT が前記所定EV走行トルク範囲内となった場合には、走行モードをHVモードからEVモードへ切り換え、エンジン14を停止してEV走行を行う。
 ところで、蓄電装置54の充電容量SOCは、充放電を繰り返す蓄電装置54の耐久性低下を抑制する為の所定範囲として予め求められて設定されたSOC管理幅の範囲内に保たれるように制御される。このSOC管理幅としては、例えば蓄電装置54の充電が許可される充電容量SOCの上限値として予め求められて設定された所定充電容量上限値である管理幅上限値と、蓄電装置54の放電が許可される充電容量SOCの下限値として予め求められて設定された所定充電容量下限値である管理幅下限値とでその範囲が規定される。その為、電動機MGの回生作動により電気エネルギ(回生エネルギ)を回収できるような走行状態にあったとしても、SOC管理幅(管理幅上限値)を超える分のエネルギに関しては回生エネルギとして回収できず、ホイールブレーキやエンジンブレーキなどの回生ブレーキ以外による他の制動トルクとして消費されて捨てられることになる。そうすると、回生エネルギを回収できる走行状態にも拘わらず回生エネルギ量を増やすことができず、燃費を向上させられない。
 これに対して、回生エネルギとして回収しきれずに捨てられてしまう走行状態になることが事前に分かっておれば、その捨てられてしまうエネルギ分を回生エネルギとして回収する為に、そのエネルギ分に相当する電気エネルギ量をEV走行やアシスト走行により事前に消費して蓄電装置54の充電容量SOCを低下させておくことが考えられる。但し、走行経路を1つに特定しなければ回生エネルギを回収できる走行状態になることが事前に分からない。また、走行中にその特定した走行経路を外れてしまうと、事前に消費した電気エネルギ量を回収できなくなって電力的に破綻してしまう可能性もある。そこで、本実施例では、燃費を向上させる為に、走行経路を1つに特定しなくても、電力的に破綻させることなくEV走行やアシスト走行を可能にする方法を提案する。以下に、その方法について詳細に説明する。
 各種情報取得部すなわち各種情報取得手段106は、公知のGPS(Global Positioning System;全地球測位システム)などの人工衛星を利用した測位システムを用いて検出された位置情報及び公知のINS(Inertial Navigation System;慣性航法装置)を用いて検出された位置情報に基づいて、記憶媒体92に記憶された地図データにおける道路地図上にナビ90によりマップマッチングされた車両10の現在位置情報及び車両進行方向情報を取得する。
 区間分割部すなわち区間分割手段108は、記憶媒体92に記憶された地図データから得られる走行路を複数の区間に分割し、その分割した各区間を電子制御装置100内のメモリ部101に記憶する。例えば、区間分割手段108は、現在走行中の走行路に対応する上記地図データにおける道路地図上の走行路を、上記地図データにおける交差点情報に基づいてその走行路において分岐路が存在する分岐点までを1つの区間としてIDアドレス(区間ID)を付して区分する。ここで、上記分岐点に基づく区間分割(区間区分)では、蓄電装置54の充電容量SOCの変化量(以下、充電容量変化量ΔSOC)に影響を与え易い路面勾配θの違いが反映され難い。そこで、区間分割手段108は、更に、上記地図データにおける路面勾配や標高情報に基づいて、路面勾配θの変化量や標高Hの変化量に応じて区間分割する。尚、例えば地図データとして路面勾配が記憶されていない場合には、電子制御装置100により標高情報などに基づいて路面勾配θがその都度算出されても良い。また、例えば地図データとして路面勾配や標高情報が記憶されていない場合には、電子制御装置100により車速V、前後加速度G、及び重力加速度gに基づいて路面勾配θ(=asin((dV/dt-G)/g))が算出されても良い。
 各種情報取得手段106は、更に、蓄電装置54の現在の(実際の)充電容量SOCを取得する。また、各種情報取得手段106は、その充電容量SOCに基づいて、区間分割手段108により分割された複数の区間毎に充電容量変化量ΔSOCの実測値を取得し、その区間毎に上記区間IDにヒモ付けして(関連付けて)メモリ部101に記憶する。尚、何度も同じ区間を走行した場合には、統計的処理(例えば平均値の算出)を行って記憶しても良い。
 図4は、走行路Rを複数の区間に分割した場合の一例を示す概念図である。図4において、(a)は路面勾配θなどを反映した区間分割により付された区間ID示す図であり、(b)はメモリ部101に記憶される区間毎の充電容量変化量ΔSOCのデータテーブルを示す図である。図4に示すように、記憶媒体92に記憶された交差点情報に基づく分岐点にて区間分割されることの他に、路面勾配θの変化に応じて設定された分割点にて区間分割されている。そして、それら分割された複数の各区間毎に区間IDが決められ、その各区間ID毎に充電容量変化量ΔSOCが記憶されている。
 走行経路取得部すなわち走行経路取得手段110は、車両10の現在位置から所定距離までの間で走行可能性のある走行経路の何れもを記憶媒体92に記憶された地図データから取得する。例えば、走行経路取得手段110は、車両10の現在位置情報及び車両進行方向情報に基づいて、車両10の現在位置から進行方向における走行路に存在する分岐点(すなわち記憶媒体92に記憶された交差点情報に基づく分岐点)にて枝分かれするように増えていく走行経路を取得する。上記所定距離は、例えば前述したようなEV走行やアシスト走行により蓄電装置54の充電容量SOCを事前に消費することを考慮に入れて燃費効果を得る為の予め求められた十分な固定距離で良い。或いは、上記所定距離は、例えば走行経路取得手段110が取得していく走行経路のうちで回生エネルギとして回収しきれずに捨てられてしまう走行状態となる走行経路が少なくとも1つ存在するまでの距離でも良い。
 ところで、分岐点にて枝分かれする全ての走行経路を取得していては演算負荷が増大するし、取得した走行経路を元にした後述する各種演算においても演算負荷が増大する。そこで、走行経路取得手段110は、道路種別(道路属性)や幅員情報などの道路情報が分岐元と所定以上異なる分岐先、過去の走行履歴(過去走行履歴)が所定以下の分岐先、及び/又は分岐先へ進行した場合の方向が現在の車両の進行方向と所定以上異なる分岐先を除外して走行可能性のある走行経路を取得する。
 例えば、走行経路取得手段110は、分岐元と分岐先との道路情報を比較してその道路情報が所定以上異なるか否かを判定し、所定以上異なる場合にはその分岐先を経路候補から除外して走行可能性のある走行経路として取得しない。上記所定以上異なる場合とは、例えば分岐元に対して走行可能性が低い分岐先として予め設定された以上の所定の道路種別差がある場合や所定の幅員差がある場合である。この所定の道路種別差としては、例えば分岐元が国道や県道である場合に対して、分岐先が細街路などの場合である。
 また、走行経路取得手段110は、分岐先の過去走行履歴が所定以下であるか否かを判定し、所定以下である場合にはその分岐先を経路候補から除外して走行可能性のある走行経路として取得しない。上記所定以下である場合とは、例えば走行可能性が低い分岐先として予め設定された所定の過去走行履歴以下である場合である。また、上記過去走行履歴は、例えば図4(b)に示すように区間IDにヒモ付けされて走行回数としてメモリ部101に記憶されているものであり、走行路を走行する毎にその走行路の走行回数が各種情報取得手段106によりカウントアップされる。尚、区間IDは上述したように分割点によっても区分されているので、分岐先が存在する分岐点から次の分岐点までの間の区間IDにおいては過去走行履歴は同じとなる。
 また、走行経路取得手段110は、分岐先へ進行した場合の方向が現在の車両の進行方向と所定以上異なるか否かを判定し、所定以上異なる場合にはその分岐先を経路候補から除外して走行可能性のある走行経路として取得しない。上記所定以上異なる場合とは、例えば分岐元に対して走行可能性が低い分岐先として予め設定された以上の所定の進行方向差がある場合である。この所定の進行方向差としては、例えば分岐元の進行方向に対して、分岐先の進行方向が±2π/3以上異なる場合である。
 経路毎SOC算出部すなわち経路毎SOC算出手段112は、前記区間ID毎に記憶された充電容量変化量ΔSOCに基づいて、走行経路取得手段110により取得された走行可能性のある走行経路毎に充電容量SOCの変化特性を現在位置からの距離に関連付けて算出する。この充電容量SOCの変化特性は、現在の充電容量SOCに対してその取得された走行経路における充電容量変化量ΔSOCの累積値の変化を、距離を変数として算出した特性である。
 SOC回収可否判定部すなわちSOC回収可否判定手段114は、走行経路取得手段110により取得された走行可能性のある走行経路のうちで、回生エネルギとして回収しきれずに捨てられてしまう走行状態となる走行経路すなわち充電容量SOCの管理幅上限値を超える程に電気エネルギを回収することができる走行経路が少なくとも1つ存在するか否かを、経路毎SOC算出手段112により算出された走行経路毎の充電容量SOCの変化特性から判断する。また、SOC回収可否判定手段114は、管理幅上限値を超える部分がある走行経路において、その超える部分がある道路地図上の位置、及びその超える部分での回生エネルギ量をSOC回収見込み量として算出する。つまり、SOC回収可否判定手段114は、上記走行可能性のある走行経路のうちで1つでも充電容量SOCの管理幅上限値を超える電気エネルギの回収見込みがあるか否かを判定する。
 SOC破綻判定部すなわちSOC破綻判定手段116は、SOC回収可否判定手段114により回収見込み有りと判定された場合には、前記SOC回収見込み量を回収前に消費したとしても走行経路取得手段110により取得された走行可能性のある走行経路の何れにおいても充電容量SOCの管理幅下限値を下回らないか否かを判定する。つまり、SOC破綻判定手段116は、SOC回収可否判定手段114により回収見込み有りとされた走行経路以外の他の走行経路において、上記SOC回収見込み量を事前に消費したとしても充電容量SOCの管理幅下限値を下回らず、電力的に破綻しないか否かを判定する。
 ハイブリッド制御手段104は、SOC破綻判定手段116により電力的に破綻しないと判定された場合には、前記SOC回収見込み量に基づく消費可能量を用いたEV走行或いはアシスト走行(すなわちその消費可能量を消費するEV走行或いはアシスト走行)を許可する。そして、ハイブリッド制御手段104は、電気エネルギの回収開始前までに、上記消費可能量を消費するようにEV走行或いはアシスト走行を実行する。上記消費可能量は、SOC破綻判定手段116により電力的に破綻しないと判定されていることもあり、例えば基本的には上記SOC回収見込み量であるが、演算誤差やばらつき等を考慮して、そのSOC回収見込み量と(現在の充電容量SOC-管理幅下限値)との小さい方を消費可能量としても良い。
 図5は、電子制御装置100の制御作動の要部すなわち走行経路を1つに特定しなくても電力的に破綻することの無いEV走行やアシスト走行を可能にして燃費を向上する為の制御作動を説明するフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行される。また、図6は、図5のフローチャートに示す制御作動を実行した場合に実行させられる補助的なフローチャートである。また、図7は、図5のフローチャートに示す制御作動を実行した場合の一例を示す概念図である。
 図5において、先ず、走行経路取得手段110に対応するステップ(以下、ステップを省略する)S10において、例えば車両10の現在位置から所定距離までの間で走行可能性のある走行経路の何れもが記憶媒体92に記憶された地図データから取得される。この際、図6のフローチャートが実行されて、道路種別や幅員情報などの道路情報が分岐元と所定以上異なる分岐先、過去走行履歴が所定以下の分岐先、及び分岐先へ進行した場合の方向が現在の車両の進行方向と所定以上異なる分岐先が除外される。具体的には、図6において、先ず、S110において、記憶媒体92に記憶された地図データから分岐先に対応する走行路の道路種別や幅員情報などの道路情報が取得される。次いで、S120において、分岐先の道路情報が分岐元の道路情報と所定以上異なるか否かが判定される。このS120の判定が否定される場合はS130において、メモリ部101に記憶されているデータから分岐先に対応する走行路(区間)の走行回数が取得される。次いでS140において、分岐先の過去走行履歴が所定以下であるか否かが判定される。このS140の判定が否定される場合はS150において、記憶媒体92に記憶された地図データから分岐先に対応する走行路へ進行した場合の方向が取得される。次いでS160において、分岐先へ進行した場合の方向が現在の車両の進行方向と所定以上異なるか否かが判定される。このS160の判断が否定される場合は本ルーチンが終了させられる。一方、上記S120、上記S140、及び上記S160のうちの何れかが肯定される場合はS170において、肯定された分岐先が上記図5のフローチャートにおけるS10にて取得される走行可能性のある走行経路の候補から除外される。図7(a),(b)に示す走行経路A,B,C(実線)は、それぞれS10にて取得された走行可能性のある走行経路の一例である。また、図7(a)に示す走行経路D(二点鎖線)は、道路情報が分岐元と所定以上異なるために走行可能性のある走行経路から除外された分岐先の一例である。また、図7(a)に示す走行経路E(二点鎖線)は、進行した場合の方向が現在の車両の進行方向と所定以上異なるために走行可能性のある走行経路から除外された分岐先の一例である。尚、図6のフローチャートにおける各ステップS110乃至S170は、各々走行経路取得手段110に対応している。
 図5に戻り、上記S10に次いで、経路毎SOC算出手段112に対応するS20において、そのS10にて取得された走行可能性のある走行経路における区間ID毎に記憶された充電容量変化量ΔSOCに基づいて、その走行可能性のある走行経路毎に充電容量SOCの変化特性が現在位置からの距離に関連付けて算出される(図7(c)のSOC変化特性参照)。次いで、SOC回収可否判定手段114に対応するS30において、上記S10にて取得された走行可能性のある走行経路のうちで、1つでも充電容量SOCの管理幅上限値を超える電気エネルギの回収見込みがあるか否かが判定される。また、管理幅上限値を超える電気エネルギの回収見込みがある場合には、その管理幅上限値を超える部分の走行経路における位置、及びSOC回収見込み量が算出される。図7(c)においては、矢印A部分が回生エネルギとして回収しきれずに捨てられる部分であり、この部分がある場合、走行経路Aが「回収見込み有」と判定される。このS30の判断が否定される場合は本ルーチンが終了させられるが肯定される場合はSOC破綻判定手段116に対応するS40において、例えば上記回収見込み有りとされた走行経路以外の他の走行経路において上記SOC回収見込み量が回収前(事前)に消費されたとしても、充電容量SOCの管理幅下限値を下回らず、電力的に破綻しないか否かが判定される。図7(c)において、走行経路Aが「回収見込み有」と判定された場合、他の走行経路B,Cに着目し、上記SOC回収見込み量を事前に(回収開始点までに)消費した場合に走行経路B,Cにおいて電力的に破綻しないか否かが判定される。図7(d)における走行経路B’,C’(破線)がSOC回収見込み量を事前に消費した場合に相当し、この場合、充電容量SOCの管理幅下限値を下回っておらず、「電力的に破綻しない」と判定される。このS40の判断が否定される場合は本ルーチンが終了させられるが肯定される場合はハイブリッド制御手段104に対応するS50において、SOC回収(電気エネルギの回収)が開始される地点までに上記SOC回収見込み量に基づく消費可能量を消費できるようにEV走行或いはアシスト走行が許可される。ここで、蓄電装置54に対する実際の充放電制御としては、例えば充電容量SOCの制御の狙い値をSOC管理幅の中央値から「現在の充電容量SOC-消費可能量」に変更してEV走行或いはアシスト走行させても良い。或いは、EV走行時或いはアシスト走行時の一般的な消費速度(放電速度)から逆算して上記消費可能量を消費できるタイミングでEV走行或いはアシスト走行させても良い。
 上述のように、本実施例によれば、記憶媒体92に記憶された地図データから得られる走行路が複数の区間に分割され、その分割された区間毎に蓄電装置54の充電容量変化量ΔSOCが記憶されるので、ある走行経路を走行するときに電気エネルギの回収に先立って消費可能な蓄電装置54の電気エネルギ量をその記憶された充電容量変化量ΔSOCに基づいて算出することができる。そして、EV走行やアシスト走行による電気エネルギ量の事前消費によりその後に回収する電気エネルギ量(回生エネルギ量)を増やすことができる。これにより、走行経路を1つに特定しなくても電力的に破綻することの無いEV走行やアシスト走行を可能にして燃費を向上することができる。
 また、本実施例によれば、車両10の現在位置から所定距離までの間で走行可能性のある走行経路の何れもを前記地図データから取得し、前記充電容量変化量ΔSOCに基づいて、その走行経路毎に充電容量SOCの変化特性を現在位置からの距離に関連付けて算出し、その充電容量SOCの変化特性から判断して、充電容量SOCの管理幅上限値を超える程に電気エネルギを回収することができる走行経路がその走行可能性のある走行経路のうちで少なくとも1つ存在し、且つその管理幅上限値を超える分の電気エネルギを回収前に消費したとしてもその走行可能性のある走行経路の何れにおいても充電容量SOCの管理幅下限値を下回らない場合には、その管理幅上限値を超える分の電気エネルギに基づく消費可能量を用いたEV走行或いはアシスト走行を許可するので、EV走行やアシスト走行による電気エネルギ量の事前消費によりその後に回収する回生エネルギ量を増やすことができる。よって、走行経路を1つに特定しなくても電力的に破綻することの無いEV走行やアシスト走行を可能にして燃費を向上することができる。
 また、本実施例によれば、前記区間は、走行路において分岐路が存在する分岐点に基づいて分割されるので、前記地図データから得られる走行路が複数の区間に適切に分割される。また、前記区間は、その地図データにおける路面勾配や標高情報に基づいて、路面勾配θの変化量や標高Hの変化量に応じて分割されるので、前記地図データから得られる走行路が複数の区間に一層適切に分割される。
 また、本実施例によれば、前記走行可能性のある走行経路は、道路種別が分岐元と所定以上異なる分岐先、過去の走行履歴が所定以下の分岐先、及び分岐先へ進行した場合の方向が現在の車両の進行方向と所定以上異なる分岐先を除外して取得されるので、走行可能性のある走行経路を全て含みつつ、前方の分岐路の道路種別から判断して走行確率が低い走行経路、過去の走行履歴から判断して走行確率が低い走行経路、及び大凡の進んでいる方角でない方向の走行経路を、候補から除外することができ、走行可能性のある走行経路の取得時、その後の充電容量SOCの変化特性の演算時、及び前記消費可能量を用いたEV走行或いはアシスト走行を許可するか否かの判断に関連する各判断時等の演算負荷を低減することができる。
 次に、本発明の他の実施例を説明する。なお、以下の説明において実施例相互に共通する部分には同一の符号を付して説明を省略する。
 前述の実施例1にて実行された前記消費可能量を消費するEV走行或いはアシスト走行が許可されたEV走行中或いはアシスト走行中に、走行状況等のばらつきにより充電容量SOCの管理幅下限値を下回ってしまうと、強制的に蓄電装置54が充電される強制充電モードに入って燃費が悪化してしまう可能性がある。一方、EV走行或いはアシスト走行が許可された走行中は、本来その後に電気エネルギの回収が十分に見込める走行経路である。そこで、本実施例では、強制充電モードに入ることを抑制する為に、前記消費可能量を消費するEV走行或いはアシスト走行が許可されたEV走行中或いはアシスト走行中において、蓄電装置54の実際の充電容量SOCが管理幅下限値に対して所定容量差以下の近傍にある場合には、現在走行中の走行経路においてその充電容量SOCが今後増加することを条件としてその管理幅下限値を一時的に小さくする。
 具体的には、図8は、電子制御装置100による制御機能の要部を説明する機能ブロック線図であって、図3の機能ブロック線図に新たな機能が加えられた図3とは別の実施例である。図8において、EV走行許可中判定部すなわちEV走行許可中判定手段118は、前記消費可能量を消費するEV走行或いはアシスト走行が許可されたEV走行中或いはアシスト走行中であるか否かを判定する。
 管理幅下限値近傍判定部すなわち管理幅下限値近傍判定手段120は、EV走行許可中判定手段118により前記EV走行中或いはアシスト走行中であると判定された場合には、現在の充電容量SOCが管理幅下限値に対して所定容量差以下の近傍にあるか否かを判定する。この所定容量差は、例えば管理幅下限値の近傍であることを判定する為の予め求められた判定閾値であって、所定の固定値であっても良いし、所定の算出式から算出されるSOC回収開始地点と現在値との距離dに応じた可変値(=ゲイン×d)であっても良い。この可変値は、例えば距離dが短いときは小さくされ、管理幅下限値の変更を直前まで厳密に判定するようにしても良い。
 SOC回収可否判定手段114は、現在走行中の走行経路から走行する可能性のある各走行経路における充電容量SOCの変化特性に基づいて、今後、充電容量SOCが増加するか否かを判定する。充電容量SOCが増加するか否かの判定は、例えば後述する管理幅下限値変更手段122による管理幅下限値の変更量(低減量)の設定の仕方に応じて変更される。例えば、管理幅下限値の変更量が今後の充電容量SOCの増加量の最小値である場合には、そのまま充電容量SOCが増加するか否かが判定される。一方、管理幅下限値の変更量が所定の固定値或いは距離に応じた可変値である場合には、充電容量SOCがその管理幅下限値の変更量以上に増加するか否かが判定される。
 管理幅下限値変更部すなわち管理幅下限値変更手段122は、SOC回収可否判定手段114により充電容量SOCが今後増加すると判定された場合には、管理幅下限値を一時的に変更(低減)する。上述したように、管理幅下限値の変更量は、例えば今後の充電容量SOCの増加量の最小値であっても良いし、予め求められた所定の固定値であっても良いし、予め求められた所定の算出式から算出されるSOC回収開始地点と現在値との距離dに応じた可変値(=ゲイン×d)であっても良い。この可変値は、例えば距離dが長い程大きくされ、強制充電モードに入り難くしても良い。
 図9は、電子制御装置100の制御作動の要部すなわち強制充電モードに入り難くして燃費を向上する為の制御作動を説明するフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行される。
 図9において、先ず、EV走行許可中判定手段118に対応するS210において、例えば前記消費可能量を消費するEV走行或いはアシスト走行が許可されたEV走行中或いはアシスト走行中であるか否かが判定される。このS210の判断が否定される場合は本ルーチンが終了させられるが肯定される場合は管理幅下限値近傍判定手段120に対応するS220において、例えば現在の充電容量SOCが管理幅下限値に対して所定容量差以下の近傍にあるか否かが判定される。このS220の判断が否定される場合は本ルーチンが終了させられるが肯定される場合はSOC回収可否判定手段114に対応するS230において、例えば現在走行中の走行経路から走行する可能性のある各走行経路における充電容量SOCの変化特性に基づいて充電容量SOCが今後増加するか否かが判定される。このS230の判断が否定される場合は本ルーチンが終了させられるが肯定される場合は管理幅下限値変更手段122に対応するS240において、例えば管理幅下限値が一時的に変更(低減)される。
 上述のように、本実施例によれば、前述の実施例の効果に加え、前記消費可能量を用いたEV走行或いはアシスト走行が許可されてそのEV走行中或いはそのアシスト走行中であるときに、蓄電装置54の実際の充電容量SOCが管理幅下限値に対して所定容量差以下の近傍にある場合には、現在走行中の走行経路において充電容量SOCが今後増加することを条件としてその管理幅下限値を一時的に小さくするので、EV走行或いはアシスト走行が継続され、その後の電気エネルギ回収により燃費を向上させることができる。
 前述の実施例1にて実行された前記消費可能量を消費するEV走行或いはアシスト走行が許可されたEV走行中或いはアシスト走行中に、走行経路取得手段110により取得された走行可能性のある走行経路を逸脱すると、すなわちEV走行或いはアシスト走行が許可された後に前記走行可能性のある走行経路以外の走行路を走行すると、EV走行或いはアシスト走行による電気エネルギ量の事前消費により蓄電装置54の充電容量SOCが管理幅下限値を下回る可能性がある。そこで、本実施例では、電力的に破綻することを回避する為に、上記走行可能性のある走行経路以外の走行となった場合には、EV走行或いはアシスト走行の許可を取り消す。また、充電容量SOCが通常レベル(例えばSOC管理幅の中央値)まで回復するまでは、EV走行或いはアシスト走行を許可しない。
 具体的には、図10は、電子制御装置100による制御機能の要部を説明する機能ブロック線図であって、図3の機能ブロック線図に新たな機能が加えられた図3とは別の実施例である。図10において、経路逸脱判定部すなわち経路逸脱判定手段124は、EV走行許可中判定手段118により前記EV走行中或いはアシスト走行中であると判定された場合には、走行経路取得手段110により取得された走行可能性のある走行経路から逸脱したか否かを車両10の現在位置情報に基づいて判定する。
 ハイブリッド制御手段104は、前記消費可能量を消費するEV走行或いはアシスト走行の許可を取り消し、その消費可能量を消費するEV走行或いはアシスト走行の制御を除く通常制御を実行する。加えて、ハイブリッド制御手段104は、前記消費可能量を消費するEV走行或いはアシスト走行の許可を一旦取り消した後は、後述するSOC回復判定手段126により充電容量SOCが通常レベルまで回復したと判定されるまでは、その消費可能量を消費するEV走行或いはアシスト走行を許可しない。
 SOC回復判定部すなわちSOC回復判定手段126は、上記通常制御において、充電容量SOCが通常レベル(例えばSOC管理幅の中央値)まで回復したか否かを判定する。
 図11は、電子制御装置100の制御作動の要部すなわち電気エネルギが想定通り回収できなくなったときに電力的に破綻することを回避する為の制御作動を説明するフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行される。
 図11において、先ず、EV走行許可中判定手段118に対応するS310において、例えば前記消費可能量を消費するEV走行或いはアシスト走行が許可されたEV走行中或いはアシスト走行中であるか否かが判定される。このS310の判断が否定される場合は本ルーチンが終了させられるが肯定される場合は経路逸脱判定手段124に対応するS320において、例えば前記取得された走行可能性のある走行経路から逸脱したか否かが車両10の現在位置情報に基づいて判定される。このS320の判断が否定される場合は本ルーチンが終了させられるが肯定される場合はハイブリッド制御手段104に対応するS330において、例えば前記消費可能量を消費するEV走行或いはアシスト走行の許可が取り消され、通常制御が実行される。次いで、SOC回復判定手段126に対応するS340において、上記通常制御にて充電容量SOCが通常レベル(例えばSOC管理幅の中央値)まで回復したか否かが判定される。このS340の判断が肯定される場合は本ルーチンが終了させられるが否定される場合はハイブリッド制御手段104に対応するS350において、例えば前記消費可能量を消費するEV走行或いはアシスト走行が許可されない。次いで、上記S340が再び実行される。つまり、このS340の判断が肯定されるまでは、上記S350において、前記消費可能量を消費するEV走行或いはアシスト走行が許可されない。
 上述のように、本実施例によれば、前述の実施例の効果に加え、前記走行可能性のある走行経路以外の走行となった場合には、EV走行或いはアシスト走行の許可を取り消すので、想定していた回生エネルギ量を回収できなくなったとしても電力的に破綻することが回避される。これにより、適切に走行を継続することができる。
 以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明は実施例相互を組み合わせて実施可能であると共にその他の態様においても適用される。
 例えば、前述の実施例において、各実施例が独立して実施されているが、上記各実施例は必ずしも独立して実施する必要はなく、適宜組み合わせて実施しても構わない。
 また、前述の実施例における態様に加え、前記走行可能性のある走行経路は、充電容量変化量ΔSOCが記憶されている区間により構成されても良い。このようにすれば、その走行可能性のある走行経路毎に充電容量SOCの変化特性が適切に算出され、その充電容量SOCの変化特性から充電容量SOCの管理幅上限値を超える程に電気エネルギを回収することができる走行経路がその走行可能性のある走行経路のうちで少なくとも1つ存在するか否かが適切に判断され、その充電容量SOCの変化特性からその管理幅上限値を超える分の電気エネルギを回収前に消費したとしてもその走行可能性のある走行経路の何れにおいても充電容量SOCの管理幅下限値を下回らないか否かが適切に判断される。
 また、別の観点では、充電容量変化量ΔSOCが記憶されている区間により前記走行可能性のある走行経路を構成することで、結果的に、充電容量変化量ΔSOCが記憶されている区間以外の走行となった場合には、EV走行或いはアシスト走行の許可が取り消される。
 また、前述の実施例では、ある区間における充電容量変化量ΔSOCは充電容量SOCに基づく実測値として取得されたが、これに限らない。例えば、ある区間における走行エネルギ(=(位置エネルギmgh+走行抵抗Cd×投影面積A×車速V+転がり抵抗)×充電効率η;mは車重、gは重力加速度、hは標高差)の積算値を充電容量変化量ΔSOCとして算出しても良い。従って、過去に走行履歴がなく、充電容量変化量ΔSOCが記憶されていない区間の推定の充電容量変化量ΔSOCを上記走行エネルギの積算値として算出しても良い。但し、上記走行エネルギの算出では車速Vが必要であるので、この車速Vとして例えばその区間における法定車速や他の同種の道路種別における平均車速などを用いることになる。
 また、前述の実施例では、図6のフローチャートにおいて、分岐先を除外する3つの判定条件(ステップS120,S140,S160)をOR条件としたが、AND条件としても良い。
 また、前述の実施例3では、走行可能性のある走行経路以外の走行となった場合に、EV走行或いはアシスト走行の許可を取り消したが、これに限らず、例えば何らかの理由で電気エネルギが想定通り回収できなくなった場合に、EV走行或いはアシスト走行の許可を取り消しても良い。このようにしても、電力的に破綻することが適切に回避される。
 尚、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
10:ハイブリッド車両
14:エンジン(走行用駆動力源)
54:蓄電装置
100:電子制御装置(制御装置)
MG:電動機(走行用駆動力源)

Claims (5)

  1.  蓄電装置の電気エネルギにより駆動される電動機を含む複数の走行用駆動力源を備え、該電動機を用いて走行するモータ走行或いはアシスト走行が可能なハイブリッド車両の制御装置であって、
     地図データから得られる走行路を複数の区間に分割し、該分割した区間毎に前記蓄電装置の充電容量の変化量を記憶することを特徴とするハイブリッド車両の制御装置。
  2.  車両の現在位置から所定距離までの間で走行可能性のある走行経路の何れもを前記地図データから取得し、
     前記充電容量の変化量に基づいて、前記走行経路毎に該充電容量の変化特性を現在位置からの距離に関連付けて算出し、
     前記充電容量の変化特性から判断して、前記蓄電装置の充電が許可される所定充電容量上限値を超える程に電気エネルギを回収することができる走行経路が前記走行可能性のある走行経路のうちで少なくとも1つ存在し、且つ該所定充電容量上限値を超える分の電気エネルギを回収前に消費したとしても該走行可能性のある走行経路の何れにおいても該蓄電装置の放電が許可される所定充電容量下限値を下回らない場合には、該所定充電容量上限値を超える分の電気エネルギに基づく消費可能量を用いた前記モータ走行或いは前記アシスト走行を許可することを特徴とする請求項1に記載のハイブリッド車両の制御装置。
  3.  前記走行可能性のある走行経路以外の走行となった場合には、前記モータ走行或いは前記アシスト走行の許可を取り消すことを特徴とする請求項2に記載のハイブリッド車両の制御装置。
  4.  前記走行可能性のある走行経路は、前記充電容量の変化量が記憶されている区間により構成されることを特徴とする請求項2又は3に記載のハイブリッド車両の制御装置。
  5.  前記区間は、走行路において分岐路が存在する分岐点に基づいて分割されることを特徴とする請求項1乃至4の何れか1項に記載のハイブリッド車両の制御装置。
PCT/JP2011/053745 2011-02-21 2011-02-21 ハイブリッド車両の制御装置 WO2012114446A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013500742A JP5700112B2 (ja) 2011-02-21 2011-02-21 ハイブリッド車両の制御装置
US14/000,706 US9610934B2 (en) 2011-02-21 2011-02-21 Control device of hybrid vehicle
PCT/JP2011/053745 WO2012114446A1 (ja) 2011-02-21 2011-02-21 ハイブリッド車両の制御装置
EP11859449.8A EP2679461B1 (en) 2011-02-21 2011-02-21 Control device of hybrid vehicle
CN201180068176.5A CN103384622B (zh) 2011-02-21 2011-02-21 混合动力车辆的控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/053745 WO2012114446A1 (ja) 2011-02-21 2011-02-21 ハイブリッド車両の制御装置

Publications (1)

Publication Number Publication Date
WO2012114446A1 true WO2012114446A1 (ja) 2012-08-30

Family

ID=46720266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053745 WO2012114446A1 (ja) 2011-02-21 2011-02-21 ハイブリッド車両の制御装置

Country Status (5)

Country Link
US (1) US9610934B2 (ja)
EP (1) EP2679461B1 (ja)
JP (1) JP5700112B2 (ja)
CN (1) CN103384622B (ja)
WO (1) WO2012114446A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014094724A (ja) * 2012-11-12 2014-05-22 Honda Motor Co Ltd ハイブリッド車両
WO2014177786A1 (fr) * 2013-05-03 2014-11-06 Renault S.A.S Procede d'optimisation de la consommation energetique d'un vehicule hybride
US20150025727A1 (en) * 2013-07-17 2015-01-22 Volvo Car Corporation Method for optimizing the power usage of a vehicle
JP2015080961A (ja) * 2013-10-21 2015-04-27 トヨタ自動車株式会社 移動支援装置、移動支援方法、及び運転支援システム
WO2015049572A3 (en) * 2013-10-03 2015-06-18 Toyota Jidosha Kabushiki Kaisha Predictive and adaptative movement support apparatus, movement support method, and driving support system for a hybrid vehicle for mode driving section optimization
WO2015086227A1 (de) * 2013-12-11 2015-06-18 Volkswagen Aktiengesellschaft Verfahren zum ermitteln eines fahrzustandes eines hybridfahrzeuges für streckensegmente einer vorausliegenden fahrstrecke und hybridfahrzeug
RU2581993C2 (ru) * 2012-05-04 2016-04-20 ФОРД ГЛОУБАЛ ТЕКНОЛОДЖИЗ, ЭлЭлСи Способ работы транспортного средства с гибридным приводом (варианты)
WO2018096821A1 (ja) * 2016-11-25 2018-05-31 株式会社デンソー 車両の走行制御装置
WO2020090341A1 (ja) * 2018-10-31 2020-05-07 パナソニックIpマネジメント株式会社 情報処理システム、制御装置、及び車両用電源システム
CN112977400A (zh) * 2021-03-09 2021-06-18 北京汽车股份有限公司 一种用于混合动力汽车驱动系统的能量管理方法及系统

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130016851A1 (en) * 2010-03-25 2013-01-17 Pioneer Corporation Pseudonoise generation device and pseudonoise generation method
US9242544B2 (en) * 2011-09-23 2016-01-26 Kanzaki Kokyukoki Mfg. Co., Ltd. Vehicle with electric transaxle
JP5803645B2 (ja) * 2011-12-15 2015-11-04 アイシン・エィ・ダブリュ株式会社 評価表示システム、方法およびプログラム
KR101371463B1 (ko) * 2012-09-06 2014-03-24 기아자동차주식회사 하이브리드 자동차의 배터리 충전 제어 방법 및 시스템
JP6007929B2 (ja) * 2014-02-24 2016-10-19 トヨタ自動車株式会社 移動支援装置、移動支援方法、及び運転支援システム
US9327712B2 (en) * 2014-04-22 2016-05-03 Alcatel Lucent System and method for control of a hybrid vehicle with regenerative braking using location awareness
SE539479C2 (sv) 2014-07-07 2017-09-26 Scania Cv Ab Styrning av en förbränningsmotor i samband med frihjulning
SE539477C2 (sv) 2014-07-07 2017-09-26 Scania Cv Ab Styrning av en förbränningsmotor i samband med frihjulning
SE538539C2 (sv) 2014-07-07 2016-09-13 Scania Cv Ab Styrning av förberedande åtgärder i ett fordon
KR101573625B1 (ko) * 2014-08-12 2015-12-01 현대자동차주식회사 하이브리드 차량의 변속 제어 장치 및 방법
KR101601473B1 (ko) * 2014-08-25 2016-03-09 현대자동차주식회사 하이브리드 차량용 배터리의 충방전 보정 제어 장치 및 방법
CN104309605A (zh) * 2014-09-02 2015-01-28 郑州宇通客车股份有限公司 基于gps地理信息的混合动力汽车节能控制方法
EP2998178B1 (en) 2014-09-17 2022-01-26 Volvo Car Corporation Vehicle control through machine learning
KR101655609B1 (ko) * 2014-12-11 2016-09-07 현대자동차주식회사 하이브리드 자동차의 배터리 충전 상태 제어 장치 및 방법
US9718456B2 (en) * 2015-03-26 2017-08-01 Ford Global Technologies, Llc Torque assist based on battery state of charge allocation
KR101713752B1 (ko) * 2015-10-28 2017-03-22 현대자동차 주식회사 차량의 변속 제어 장치 및 그 방법
CN105501070B (zh) * 2015-12-16 2018-09-25 中国北方车辆研究所 主动式电力驱动车辆供耗电平衡控制方法
KR101755976B1 (ko) * 2016-01-07 2017-07-07 현대자동차주식회사 배터리 과 방전 방어방법과 컨트롤러 및 하이브리드 차량
JP6808014B2 (ja) * 2017-02-21 2021-01-06 日立オートモティブシステムズ株式会社 駐車制御装置
US10678234B2 (en) * 2017-08-24 2020-06-09 Tusimple, Inc. System and method for autonomous vehicle control to minimize energy cost
JP6992419B2 (ja) * 2017-11-08 2022-01-13 トヨタ自動車株式会社 電動車両の電費予測方法、サーバおよび電動車両
SE1751528A1 (en) * 2017-12-12 2019-06-13 Scania Cv Ab Method and system for propelling a vehicle
KR20200071854A (ko) * 2018-12-04 2020-06-22 현대자동차주식회사 차량의 멀티미디어 제어 장치 및 방법
CN110040128A (zh) * 2019-05-07 2019-07-23 上海爱驱汽车技术有限公司 混合动力能量供给控制方法、装置及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08331772A (ja) * 1995-05-30 1996-12-13 Toyota Motor Corp 車載誘導機の制御装置
JP2002036903A (ja) * 2000-07-24 2002-02-06 Toyota Motor Corp 車両のエネルギー蓄積装置用制御装置
JP2005160269A (ja) 2003-11-28 2005-06-16 Equos Research Co Ltd 駆動制御装置、及びハイブリッド車両
JP2010125868A (ja) * 2008-11-25 2010-06-10 Denso Corp 充放電計画装置
JP2010169423A (ja) 2009-01-20 2010-08-05 Aisin Aw Co Ltd 走行案内装置、走行案内方法及びコンピュータプログラム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005037553A1 (de) * 2005-08-09 2007-02-15 Robert Bosch Gmbh Verfahren zur Ansteuerung eines Hybridfahrzeugs und Hybridfahrzeug
JP4314257B2 (ja) * 2006-09-28 2009-08-12 トヨタ自動車株式会社 車両の表示装置および車両の表示装置の制御方法、プログラム、およびプログラムを記録した記録媒体
JP4862621B2 (ja) * 2006-11-15 2012-01-25 トヨタ自動車株式会社 ハイブリッド車両およびその制御方法
US7865298B2 (en) * 2007-05-03 2011-01-04 Ford Motor Company System and method for providing route information to a driver of a vehicle
JP5045685B2 (ja) * 2009-01-20 2012-10-10 アイシン・エィ・ダブリュ株式会社 経路案内装置、経路案内方法及びコンピュータプログラム
JP4692646B2 (ja) * 2009-02-04 2011-06-01 株式会社デンソー 動力発生源制御装置
JP2010264791A (ja) * 2009-05-12 2010-11-25 Toyota Central R&D Labs Inc ハイブリッド車両の駆動制御装置及びプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08331772A (ja) * 1995-05-30 1996-12-13 Toyota Motor Corp 車載誘導機の制御装置
JP2002036903A (ja) * 2000-07-24 2002-02-06 Toyota Motor Corp 車両のエネルギー蓄積装置用制御装置
JP2005160269A (ja) 2003-11-28 2005-06-16 Equos Research Co Ltd 駆動制御装置、及びハイブリッド車両
JP2010125868A (ja) * 2008-11-25 2010-06-10 Denso Corp 充放電計画装置
JP2010169423A (ja) 2009-01-20 2010-08-05 Aisin Aw Co Ltd 走行案内装置、走行案内方法及びコンピュータプログラム

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2581993C2 (ru) * 2012-05-04 2016-04-20 ФОРД ГЛОУБАЛ ТЕКНОЛОДЖИЗ, ЭлЭлСи Способ работы транспортного средства с гибридным приводом (варианты)
JP2014094724A (ja) * 2012-11-12 2014-05-22 Honda Motor Co Ltd ハイブリッド車両
WO2014177786A1 (fr) * 2013-05-03 2014-11-06 Renault S.A.S Procede d'optimisation de la consommation energetique d'un vehicule hybride
FR3005296A1 (fr) * 2013-05-03 2014-11-07 Renault Sa Procede d'optimisation de la consommation energetique d'un vehicule hybride
CN105246753A (zh) * 2013-05-03 2016-01-13 雷诺股份公司 用于优化混合动力车辆的能量消耗的方法
US20150025727A1 (en) * 2013-07-17 2015-01-22 Volvo Car Corporation Method for optimizing the power usage of a vehicle
US9499161B2 (en) 2013-10-03 2016-11-22 Toyota Jidosha Kabushiki Kaisha Predictive and adaptive movement support apparatus, movement support method, and driving support system for a hybrid vehicle for mode driving section optimization
WO2015049572A3 (en) * 2013-10-03 2015-06-18 Toyota Jidosha Kabushiki Kaisha Predictive and adaptative movement support apparatus, movement support method, and driving support system for a hybrid vehicle for mode driving section optimization
CN105593096B (zh) * 2013-10-03 2017-12-26 丰田自动车株式会社 用于混合动力车辆的模式驾驶区间优化的预测性且自适应性运动支持设备、运动支持方法以及驾驶支持系统
CN105593096A (zh) * 2013-10-03 2016-05-18 丰田自动车株式会社 用于混合动力车辆的模式驾驶区间优化的预测性且自适应性运动支持设备、运动支持方法以及驾驶支持系统
JP2015080961A (ja) * 2013-10-21 2015-04-27 トヨタ自動車株式会社 移動支援装置、移動支援方法、及び運転支援システム
WO2015086227A1 (de) * 2013-12-11 2015-06-18 Volkswagen Aktiengesellschaft Verfahren zum ermitteln eines fahrzustandes eines hybridfahrzeuges für streckensegmente einer vorausliegenden fahrstrecke und hybridfahrzeug
EP3333036A1 (de) * 2013-12-11 2018-06-13 Volkswagen Aktiengesellschaft Verfahren zum ermitteln eines fahrzustandes eines hybridfahrzeuges für streckensegmente einer vorausliegenden fahrstrecke und hybridfahrzeug
WO2018096821A1 (ja) * 2016-11-25 2018-05-31 株式会社デンソー 車両の走行制御装置
DE112017005969T5 (de) 2016-11-25 2019-08-14 Denso Corporation Fahrzeugfahrsteuerungsvorrichtung
WO2020090341A1 (ja) * 2018-10-31 2020-05-07 パナソニックIpマネジメント株式会社 情報処理システム、制御装置、及び車両用電源システム
JP7373805B2 (ja) 2018-10-31 2023-11-06 パナソニックIpマネジメント株式会社 情報処理システム、制御装置、及び車両用電源システム
CN112977400A (zh) * 2021-03-09 2021-06-18 北京汽车股份有限公司 一种用于混合动力汽车驱动系统的能量管理方法及系统

Also Published As

Publication number Publication date
CN103384622A (zh) 2013-11-06
JP5700112B2 (ja) 2015-04-15
US9610934B2 (en) 2017-04-04
EP2679461B1 (en) 2019-04-17
CN103384622B (zh) 2016-09-07
EP2679461A4 (en) 2018-04-25
EP2679461A1 (en) 2014-01-01
US20130332020A1 (en) 2013-12-12
JPWO2012114446A1 (ja) 2014-07-07

Similar Documents

Publication Publication Date Title
JP5700112B2 (ja) ハイブリッド車両の制御装置
JP4909863B2 (ja) ハイブリッド車両の制御装置
EP3153365B1 (en) Hybrid vehicle control apparatus and hybrid vehicle including the control apparatus
US9031727B2 (en) Vehicle travel control apparatus
JP2001169408A (ja) ハイブリッド車両の制御装置
CN109941262A (zh) 混合动力电动车辆及其搜索路径的方法
JP6813430B2 (ja) 車両制御装置
JP2018103930A (ja) ハイブリッド車両の制御装置
JP2014103771A (ja) 電気自動車の回生制御装置
WO2017086435A1 (ja) ハイブリッド車両の回生電力量制御システム、ハイブリッド車両及びハイブリッド車両の回生電力量制御方法
JP2017030595A (ja) ハイブリッド車両及びその制御方法
JP2016175503A (ja) ハイブリッド車両及びその制御方法
JP5780041B2 (ja) 車両用制御装置
JP6551021B2 (ja) ハイブリッド車両及びその制御方法
JP2016217851A (ja) 車両質量推定装置および車両質量推定方法
JP2016175496A (ja) ハイブリッド車両及びその制御方法
JP2016175502A (ja) ハイブリッド車両及びその制御方法
JP6149879B2 (ja) ハイブリッド車両の制御装置
JP2014097762A (ja) 走行制御装置
JP2013169915A (ja) ハイブリッド車両の制御装置
JP5803370B2 (ja) 車両用の学習値更新制御装置
JP2016175505A (ja) ハイブリッド車両及びその制御方法
JP2016175504A (ja) ハイブリッド車両及びその制御方法
JP6593045B2 (ja) ハイブリッド車両及びその制御方法
JP5618007B2 (ja) 車両用走行制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859449

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013500742

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14000706

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011859449

Country of ref document: EP