WO2012111688A1 - リチウム系電池用電極およびリチウム系電池 - Google Patents

リチウム系電池用電極およびリチウム系電池 Download PDF

Info

Publication number
WO2012111688A1
WO2012111688A1 PCT/JP2012/053466 JP2012053466W WO2012111688A1 WO 2012111688 A1 WO2012111688 A1 WO 2012111688A1 JP 2012053466 W JP2012053466 W JP 2012053466W WO 2012111688 A1 WO2012111688 A1 WO 2012111688A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
carbon
mass
fiber
lithium
Prior art date
Application number
PCT/JP2012/053466
Other languages
English (en)
French (fr)
Inventor
山本 竜之
祐輔 山田
中村 武志
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2012557983A priority Critical patent/JP6088824B2/ja
Priority to DE112012000825.1T priority patent/DE112012000825B4/de
Priority to CN2012800090100A priority patent/CN103430362A/zh
Priority to KR1020137008682A priority patent/KR101513520B1/ko
Publication of WO2012111688A1 publication Critical patent/WO2012111688A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode for a lithium battery and a lithium battery using the electrode.
  • Lithium ion secondary batteries are widely used as power sources for portable electronic terminals that are smaller and more functional because they have a higher energy density and are lighter than conventional secondary batteries. In recent years, it has also been studied as a power tool power source and an electric vehicle battery.
  • Patent Document 1 discloses a negative electrode material in which a granular graphite material is coated with a fibrous graphite material with a low crystallinity graphite material and integrated.
  • the fibrous graphite material surrounds the granulated graphite material, and since it is coated with another carbon material from above, the contact between the granulated graphite material and the fibrous graphite material is strong. is there.
  • the contact between the negative electrode materials is due to the low crystallinity graphite materials, and it is difficult to reduce the resistance value of the electrodes as expected.
  • Patent Document 2 discloses an invention in which fine carbon fibers are mixed with a positive electrode material to reduce the internal resistance of the battery. Usually, mixing fine carbon fibers having a lower bulk density than that of the positive electrode material lowers the electrode packing density, resulting in a decrease in battery capacity and load characteristics.
  • An object of the present invention is to provide a lithium battery electrode excellent in battery characteristics such as a large current load characteristic and a lithium battery using the same.
  • the present inventors have shown that excellent battery characteristics are exhibited by including two specific carbon fibers as carbon-based conductive assistants for electrodes.
  • the headline and the present invention were completed. That is, the present invention provides a lithium battery electrode and a lithium battery having the following configuration.
  • An electrode for a lithium battery including an electrode active material (A) capable of inserting and extracting lithium ions, a carbon-based conductive aid (B), and a binder (C), wherein the carbon-based conductive aid is carbon
  • the carbon fiber is a mixture of two types of carbon fibers having different fiber diameter distributions (based on the number of fibers), and the carbon fiber diameter distribution in the electrode has one or more maximum values of 5 to 40 nm and 50 to 300 nm.
  • An electrode for a lithium battery having one or more maximum values.
  • the above-mentioned two types of carbon fibers are carbon fiber (B1) in which 90% or more of the fiber diameter distribution (number basis) is in the range of 50 to 300 nm and 90% or more of the fiber diameter distribution (number basis). 2.
  • the content of the electrode active material (A) in the electrode is 85% by mass to 95% by mass
  • the content of the carbon-based conductive additive (B) is 2% by mass to 10% by mass
  • the binder content 3.
  • the lithium battery electrode according to 1 or 2 wherein is 3 mass% or more and 5 mass% or less.
  • the carbon-based conductive auxiliary agent is composed of two types of carbon fibers (B1) and (B2) having different fiber diameters and carbon black (B3).
  • An electrode for a lithium battery including an electrode active material (A) capable of inserting and extracting lithium ions, a carbon-based conductive additive (B), and a binder (C), wherein the carbon-based conductive additive is carbon
  • the carbon fiber has one or more maximum values at 5 to 40 nm and one or more maximum values at 50 to 300 nm in the fiber diameter distribution (number basis), and the fiber diameter distribution (number basis) ) In the range of 5 to 40 nm and 50 to 300 nm.
  • the content of the electrode active material (A) is 85% by mass to 95% by mass with respect to the electrode, the content of the carbon-based conductive additive (B) is 2% by mass to 10% by mass, 9.
  • the carbon fiber in the fiber diameter range of 50 to 300 nm is (b1)
  • the carbon fiber in the fiber diameter range of 5 to 40 nm is (b2)
  • the carbon black is (B3)
  • the mass ratio ⁇ (b1 11 The electrode for a lithium battery according to 10, wherein + (b2) ⁇ / ⁇ (b1) + (b2) + (B3) ⁇ is 20% by mass or more and 50% by mass or less.
  • the electrode active material (A) is an electrode active material for a positive electrode and is made of a lithium-containing metal oxide capable of inserting and extracting lithium ions. Battery electrode.
  • the electrode active material (A) is an electrode active material for a negative electrode and is made of a lithium-containing metal oxide capable of inserting and extracting lithium ions.
  • Battery electrode [14] A lithium battery including the lithium battery electrode according to any one of 1 to 13 as a constituent element.
  • an electrode for a lithium-based battery comprising carbon fibers having a specific fiber diameter distribution as a carbon-based conductive additive, a reduction in discharge capacity is suppressed, and lithium having excellent battery characteristics such as large current load characteristics A system battery can be obtained.
  • Fiber diameter distribution of VGCF-H Aspect ratio distribution of VGCF-H. TEM image of VGCF-XA (magnification 120,000 times). Fiber diameter distribution of VGCF-XA. Fiber diameter distribution of carbon fibers contained in the electrode of Example 1 (500 observations).
  • Lithium battery electrode of the present invention comprises an electrode active material (A) capable of inserting and extracting lithium ions, a carbon-based conductive additive (B), and a binder (C). Yes, any of a positive electrode and a negative electrode may be sufficient.
  • the lithium battery in the present invention refers to a lithium secondary battery.
  • Electrode active material (A) In the present invention, the electrode active material (A) is applied to both a positive electrode active material (positive electrode active material) and a negative electrode active material (negative electrode active material) by appropriately selecting a constituent material. Can do.
  • any one or two or more kinds of conventionally known materials (materials capable of occluding and releasing lithium ions) known as positive electrode active materials in lithium batteries are appropriately selected and used. be able to. Among these, lithium-containing metal oxides that can occlude and release lithium ions are preferable.
  • lithium-containing metal oxide examples include a composite oxide containing lithium and at least one element selected from Co, Mg, Cr, Mn, Ni, Fe, Al, Mo, V, W, and Ti. Can do.
  • the mass average particle diameter (D50) of the positive electrode active material is preferably 10 ⁇ m or less. When the mass average particle diameter exceeds 10 ⁇ m, the efficiency of the charge / discharge reaction under a large current may be reduced. More preferably, it is 8 micrometers or less, More preferably, it is 7 micrometers or less.
  • the lower limit of the mass average particle diameter is preferably 50 nm or more. When the average particle size is smaller than 50 nm, when an electrode is produced, the packing density of the electrode is lowered, and problems such as a reduction in capacity may occur. More preferably, it is 60 nm.
  • the negative electrode active material can be used in a lithium battery by selecting one or more types from conventionally known materials known as negative electrode active materials (materials capable of inserting and extracting lithium ions).
  • a material capable of inserting and extracting lithium ions a carbon material, one of Si and Sn, or an alloy or oxide containing at least one of them can be used. Among these, a carbon material is preferable.
  • Typical examples of the carbon material include artificial graphite produced by heat-treating natural graphite, petroleum-based and coal-based coke; hard carbon obtained by carbonizing a resin, mesophase pitch-based carbon material, and the like.
  • natural graphite or artificial graphite from the viewpoint of increasing battery capacity, there is one in which the interplanar spacing d (002) of the (002) plane of the graphite structure by powder X-ray diffraction is in the range of 0.335 to 0.337 nm. preferable.
  • an alloy containing at least one of Si and Sn in addition to the carbon material as the negative electrode active material has a smaller electric capacity than when using each of Si and Sn alone or using each oxide. It is effective in that it can be done. Of these, Si-based alloys are preferable.
  • the average particle diameter of the negative electrode active material is preferably 10 ⁇ m or less. When the average particle diameter exceeds 10 ⁇ m, the efficiency of the charge / discharge reaction under a large current may be reduced.
  • a more preferable average particle size is 0.1 to 10 ⁇ m, and a further preferable average particle size is 1 to 7 ⁇ m.
  • the content of the electrode active material (A) in the electrode is preferably 85% by mass or more and 95% by mass or less.
  • the content of (A) in the electrode active material is less than 85% by mass, the battery capacity decreases, which is not preferable.
  • the content of (A) in the electrode active material is more than 95% by mass, it is not preferable because the conductivity is easily lowered and the electrode is easily broken due to the volume change of the electrode active material during charge / discharge.
  • Carbon-based conductive additive (B) The carbon-based conductive additive (B) used in the present invention contains two types of carbon fibers having different fiber diameter distributions. Although the method of confirming whether it contains two types of carbon fibers from which fiber diameter distribution differs is not specifically limited, Any of the following methods is employable. Note that it may not be possible to perform a satisfactory measurement in both methods 1 and 2. It can be confirmed that only one of the methods includes two types of carbon fibers having different fiber diameter distributions. (Method 1) Observation with an electron microscope. Since carbon fibers having a fiber diameter of about 50 to 300 nm are observed with a scanning electron microscope at a magnification of about 10,000 times, the fiber diameter can be measured.
  • carbon fibers having a fiber diameter of 40 nm or less are not focused at a magnification of about 10,000 times, but the fiber diameter can be measured by observing at a magnification of 100,000 times or more. Therefore, whether or not two types of carbon fibers having different fiber diameter distributions are contained can be confirmed by changing the magnification of the scanning electron microscope and observing. The existence ratio can also be measured by a method as described later. (Method 2)
  • the oxidation start temperature is measured. Since carbon fibers having different fiber diameters have different oxidation start temperatures, two or more carbon fibers having different fiber diameter distributions can be obtained if there are two or more temperatures at which mass reduction starts in the measurement with a thermobalance in an air atmosphere. Will be included.
  • carbon fibers having a fiber diameter of about 50 to 300 nm have an oxidation start temperature in the range of 550 to 700 ° C.
  • the oxidation start temperature of carbon fibers having a fiber diameter of 40 nm or less is 400 to 550 ° C.
  • the fiber diameter of the carbon fiber to be used can be measured by observing with an electron microscope. Specifically, for a carbon fiber having a fiber diameter of about 50 nm or more, the fiber diameter distribution is evaluated by enlarging the carbon fiber by 20,000 times or more with a scanning electron microscope and measuring 100 or more. For carbon fibers having a fiber diameter thinner than about 50 nm, the fiber diameter distribution is evaluated by enlarging the carbon fibers by 100,000 times or more with a transmission electron microscope and measuring 100 or more.
  • the carbon fiber (B1) is preferably a carbon fiber in which 90% or more of the fiber diameter distribution (number basis) is in the range of 50 to 300 nm, more preferably 90% or more of the fiber diameter distribution (number basis). Is a carbon fiber having a fiber diameter in the range of 70 to 200 nm.
  • the floating catalyst method is a flow reactor in which a raw material solution obtained by dissolving ferrocene, a sulfur compound, or a sulfur compound in benzene, which is a carbon source, or a gasified product thereof is heated to 1000 ° C. or higher using a carrier gas such as hydrogen.
  • a hollow tube is formed from a catalytic metal at the beginning of the reaction, and the approximate length of the carbon fiber is determined. Thereafter, pyrolytic carbon is deposited on the hollow tube surface, and the growth in the radial direction proceeds to form an annual ring-like carbon structure. Therefore, the fiber diameter can be adjusted by controlling the amount of pyrolytic carbon deposited on the carbon fiber during the reaction, that is, the reaction time, the raw material concentration in the atmosphere, and the reaction temperature.
  • the carbon fiber (B1) obtained by the reaction has low conductivity because it is covered with pyrolytic carbon having low crystallinity. Therefore, in order to increase the crystallinity of the carbon fiber, it is desirable to perform a heat treatment at 800 to 1500 ° C. in an inert gas atmosphere such as argon, and then perform a graphitization treatment at 2000 to 3500 ° C. At the same time, the graphitization treatment can evaporate and remove the catalyst metal, and the carbon fiber can be highly purified.
  • the carbon fiber (B1) obtained by the heat treatment can be adjusted in fiber length by a pulverizer, or the branch of the branched carbon fiber can be broken.
  • the proportion of fibers thicker than 300 nm when the proportion of fibers thicker than 300 nm is increased and the proportion of fibers contained in the fiber diameter range of 50 to 300 nm is less than 90%, the number of fibers per unit mass is reduced. It becomes difficult to bring active materials into uniform contact with each other.
  • the proportion of fibers finer than 50 nm increases and the proportion of fibers contained in the fiber diameter range of 50 to 300 nm is less than 90%, aggregates of 100 ⁇ m or more are formed due to the high cohesiveness of the fine fibers, and dispersibility It becomes difficult.
  • the BET specific surface area of the carbon fiber (B1) is preferably 6 to 40 m 2 / g, more preferably 8 to 25 m 2 / g, still more preferably 10 to 20 m 2 / g.
  • the aspect ratio of the carbon fiber (B1) is preferably 20 to 150, more preferably 40 to 120, still more preferably 50 to 100.
  • the aspect ratio is calculated by dividing the fiber length of the carbon fiber by the fiber diameter of the carbon fiber. The fiber length is measured by changing the magnification to 5000 times for the fiber whose fiber diameter is measured by a scanning electron microscope, photographing the fiber in a panoramic manner, and measuring the lengths of both ends of the fiber.
  • the aspect ratio of the carbon fiber is smaller than 20, a large amount of addition is required to form a conductive path, and as a result, the ratio of the electrode active material in the electrode is lowered, and a sufficient capacity cannot be obtained. There is.
  • the aspect ratio is greater than 150, it is generally easy to form a conductive path by contact between fibers, but at the same time, it is easily entangled and difficult to disperse.
  • the C 0 value of the carbon fiber (B1) is preferably 0.676 to 0.678 nm. In the case of carbon fibers grown by thermal decomposition of hydrocarbons, good conductivity may not be obtained if the C 0 value is larger than 0.678 nm.
  • the carbon fiber (B2) is a carbon fiber in which 90% or more of the fiber diameter distribution (number basis) is in the fiber diameter range of 5 to 40 nm.
  • a catalyst in which a metal or metal oxide is supported on an inorganic carrier, ethylene And carbon fibers synthesized by supplying a hydrocarbon gas such as hydrogen, a carrier gas such as nitrogen, argon and the like at a relatively low temperature of 500 to 800 ° C.
  • a hydrocarbon gas such as hydrogen
  • a carrier gas such as nitrogen, argon and the like
  • This method has a feature that the reaction temperature is low and the increase in fiber diameter due to thermal decomposition of hydrocarbons is not observed, so that thin fibers with relatively high crystallinity precipitated from the catalyst metal can be obtained effectively.
  • a carbon fiber having a tubular, helibone, or platelet type structure can be obtained depending on the combination of the metal and the carrier used for the catalyst.
  • a carbon fiber having a tubular structure is preferable from the viewpoint of conductivity and physical strength.
  • the fiber (B2) obtained by the reaction is preferably subjected to high-temperature treatment at 2000 to 3500 ° C. in an inert atmosphere or acid cleaning such as nitric acid and hydrochloric acid to remove the catalyst metal and the carrier.
  • the carbon fiber (B2) obtained by the reaction grows starting from the catalyst particles, so that the entanglement between adjacent fibers is strong and it may be difficult to disperse.
  • pulverization can be performed by a pulverizer, a bantam mill, a jet mill or the like.
  • the BET specific surface area of the carbon fiber (B2) is preferably 50 to 380 m 2 / g, more preferably 100 to 340 m 2 / g, still more preferably 150 to 280 m 2 / g.
  • a carbon fiber (B2) having an aspect ratio of 150 or more is preferred.
  • the aspect ratio is calculated by dividing the fiber length of the carbon fiber by the fiber diameter of the carbon fiber. The fiber length is measured by observing the fiber whose fiber diameter has been measured with a transmission electron microscope at a magnification of 100,000 or more. Because the aspect ratio is very large, a specific fiber is used as a representative value. Since the fiber diameter of the carbon fiber (B2) is small, it is preferable that the aspect ratio is larger than 150 because the cross-linking effect between the electrode active materials can be easily obtained.
  • the C 0 value of the carbon fiber (B2) is preferably 0.678 to 0.682 nm. This is because in the case of carbon fibers grown by catalytic action, when the C 0 value is smaller than 0.682 nm, good conductivity can be obtained due to the reduction of defects and the like contained in the crystal.
  • Carbon black (B3) a carbon black-based material such as acetylene black, furnace black, and ketjen black can be used.
  • This carbon black material is preferably a material with a small amount of metal impurities.
  • the content of the carbon-based conductive additive (B) in the electrode is preferably 2% by mass or more and 10% by mass or less.
  • the content of the carbon-based conductive additive (B) is less than 2% by mass, sufficient conductivity may not be imparted to the electrode, and high-speed charge / discharge becomes difficult.
  • the content of the carbon-based conductive auxiliary agent (B) is more than 10% by mass, the content of the active material or the content of the binder is decreased. In the former case, the capacity of the battery is decreased, and in the latter case. Tends to reduce the strength of the electrode.
  • the blending ratio (B2) / ⁇ (B1) + (B2) ⁇ of carbon fiber (B1) and carbon fiber (B2) contained in the carbon-based conductive additive is preferably 5% by mass or more and 20% by mass or less.
  • the proportion of fine carbon fibers (B2) in the entire carbon fibers is less than 5% by mass, it is difficult to form a network of carbon fibers uniformly over the entire electrode.
  • the proportion of fine carbon fibers (B2) in the entire carbon fiber is higher than 20% by mass, the entanglement between the fibers becomes strong, the dispersibility in the electrode is reduced, the electrode density is lowered, and the internal resistance is reduced. There may be an increase in capacity or a decrease in capacity.
  • the electrode cross section is observed with a scanning electron microscope at a magnification of 100,000 times or more, or the electrode is subjected to microtome, ion thinning, focused ion beam processing, etc. Prepare and observe using a transmission electron microscope at a magnification of 100,000 times or more.
  • the fiber diameter distribution of the carbon fibers contained in the electrode is determined by measuring 300 or more carbon fibers.
  • Mixing ratio of carbon fiber (B1), carbon fiber (B2) and carbon black (B3) contained in carbon-based conductive additive ⁇ (B1) + (B2) ⁇ / ⁇ (B1) + (B2) + (B3 ) ⁇ Is preferably 20% by mass or more and 50% by mass or less.
  • the proportion of carbon fibers contained in the carbon-based conductive additive is less than 20% by mass, the conductivity imparting effect tends to be low.
  • the ratio of the carbon fiber contained in the carbon-based conductive additive is more than 50% by mass, aggregation due to the entanglement of the fibers tends to occur, and the conductivity imparting effect tends to decrease.
  • the carbon fiber in the carbon-based conductive additive (B) has one or more maximum values at 5 to 40 nm and one or more maximum values at 50 to 300 nm in the fiber diameter distribution (number basis), 90% or more of the fiber diameter distribution (number basis) is in the range of 5 to 40 nm and 50 to 300 nm.
  • the mass ratio (b2) / ⁇ (b1) + (B2) ⁇ is preferably 5% by mass or more and 20% by mass or less.
  • the mass ratio ⁇ (b1) + (b2) ⁇ / ⁇ (b1) + (b2) + (B3) ⁇ is preferably 20 masses. % Or more and 50% by mass or less.
  • Binder (C) There is no restriction
  • the binder (C) include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, and vinylidene fluoride-tetrafluoroethylene copolymer.
  • PVDF polyvinylidene fluoride
  • vinylidene fluoride-hexafluoropropylene copolymer vinylidene fluoride-chlorotrifluoroethylene copolymer
  • vinylidene fluoride-tetrafluoroethylene copolymer Preferred examples include fluorine-containing polymer, styrene-butadiene copolymer rubber (SBR) and the like.
  • the content of the binder (C) in the electrode is preferably 3% by mass or more and 5% by mass or less with respect to the electrode.
  • content of a binder is less than 3 mass% with respect to an electrode, there exists a tendency for the intensity
  • the content of the binder is more than 5% by mass, the resistance value of the electrode increases and the conductivity tends to decrease.
  • the manufacturing method of the electrode for lithium battery of this invention is not specifically limited, Usually, after mixing an electrode active material (A), a carbon-type conductive support agent (B), and a binder (C), It can be produced by drying and pressing after coating on a supporting substrate such as a metal current collector.
  • a method for mixing each material (1) a method in which the electrode active material (A), the carbon-based conductive additive (B) and the binder (C) are mixed at a time, and (2) the electrode active material (A) and the carbon-based material.
  • the dispersion state in the electrode differs depending on the material type, composition ratio, combination, etc., and affects the electrode resistance, liquid absorption, etc. Therefore, it is necessary to select the optimum mixing method depending on the conditions.
  • a method of mixing the electrode active material and the carbon-based conductive additive may be agitated with, for example, a mixer.
  • the stirring method is not particularly limited, for example, apparatuses such as a ribbon mixer, a screw type kneader, a spartan luzer, a redige mixer, a planetary mixer, and a universal mixer can be used.
  • the method of mixing the binder with these mixtures is not particularly limited, but is a method of kneading with a solvent after mixing by a dry method, or by diluting the binder material with a solvent to obtain an electrode active material, a carbon-based conductive aid or a mixture thereof. The method of kneading is mentioned.
  • a mixture containing these solvents is applied onto a current collector (base material) and formed into a sheet.
  • a polymer such as CMC (sodium carbomethyl cellulose) or polyethylene glycol is used.
  • a thickener may be added.
  • the kneading method after the addition of the solvent is not particularly limited, and for example, a known apparatus such as a ribbon mixer, a screw kneader, a Spartan rewinder, a ladyge mixer, a planetary mixer, a universal mixer can be used.
  • a known apparatus such as a ribbon mixer, a screw kneader, a Spartan rewinder, a ladyge mixer, a planetary mixer, a universal mixer can be used.
  • the electrode of the present invention can be produced by applying the kneaded mixture to a current collector.
  • coating to the electrical power collector after kneading can be implemented by a well-known method. For example, after applying with a doctor blade or a bar coater, a method of forming with a roll press or the like can be mentioned.
  • the current collector known materials such as aluminum, stainless steel, nickel, titanium and alloys thereof, platinum, and a carbon sheet can be used.
  • coated electrode materials are dried by a known method, and then formed into a desired thickness and density by a known method such as a roll press or a pressure press.
  • the press pressure cannot be generally specified, but usually pressurization of 1 ton / cm 2 or more is performed.
  • the electrode thickness varies depending on the shape of the target battery and is not particularly limited, but is usually 0.5 to 1000 ⁇ m, preferably 5 to 500 ⁇ m.
  • Lithium battery The lithium battery electrode of the present invention can be used as an electrode of a high energy density non-aqueous secondary battery such as a Li ion battery or a Li polymer battery.
  • a high energy density non-aqueous secondary battery such as a Li ion battery or a Li polymer battery.
  • a typical method for producing a Li ion battery and / or a Li polymer battery will be described below, but is not limited thereto.
  • the electrode prepared above into a desired shape, laminate it on the positive electrode sheet / separator / negative electrode sheet, and prevent the positive electrode and negative electrode from touching each other in a coin-type, square-type, cylindrical-type, sheet-type container, etc. Store. If there is a possibility that moisture or oxygen has been adsorbed during stacking and storage, continue drying in an inert atmosphere under reduced pressure and / or a low dew point (-50 ° C. or lower), and then move to an inert atmosphere with a low dew point.
  • At least one of an electrolytic solution and / or a solid polymer electrolyte and / or a polymerizable composition is injected, and when the polymerizable composition is injected, the container is sealed after further impregnation with the electrolytic solution.
  • a Li ion battery or a Li polymer battery can be produced.
  • polyethylene and polypropylene porous microporous films are preferable from the viewpoint of being thin and having high strength.
  • the porosity is preferably higher from the viewpoint of ionic conduction, but if it is too high, it will cause a decrease in strength and a short circuit between the positive electrode and the negative electrode, so usually it is used at 30 to 90%, preferably 50 to 80%. is there.
  • the thickness is preferably as thin as possible in terms of ion conduction and battery capacity. However, if the thickness is too thin, it may cause a decrease in strength or a short circuit between the positive electrode and the negative electrode, and therefore the thickness is usually 5 to 100 ⁇ m, preferably 5 to 50 ⁇ m.
  • These microporous films can be used in combination of two or more kinds or other separators such as a nonwoven fabric.
  • electrolyte and electrolyte in a non-aqueous secondary battery particularly a lithium ion battery and / or a Li polymer battery
  • organic electrolytes, inorganic solid electrolytes, and polymer solid electrolytes can be used.
  • Non-aqueous solvents used in organic electrolytes include diethyl ether, dibutyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, diethylene glycol Ethers such as dimethyl ether and ethylene glycol diphenyl ether; formamide, N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, N-methylacetamide, N, N-dimethylacetamide, N-ethyl Acetamide, N, N-diethylacetamide, N, N-dimethylpropionami Amides such as hexamethylphosphorylamide; sulfur-containing compounds such as dimethyl sulfoxide and sulfolane; dialkyl ketones such as
  • esters such as ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, propylene carbonate, vinylene carbonate, ⁇ -butyrolactone, ethers such as dioxolane, diethyl ether, diethoxyethane, dimethyl sulfoxide, Acetonitrile, tetrahydrofuran, etc.
  • carbonate type nonaqueous solvents such as ethylene carbonate and propylene carbonate, can be used. These solvents can be used alone or in admixture of two or more.
  • Lithium salts are used as solutes (electrolytes) for these solvents.
  • Commonly known lithium salts include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCl, LiCF 3 SO 3 , LiCF 3 CO 2 , LiN (CF 3 SO 2 ) 2 and the like. is there.
  • polymer solid electrolyte examples include polyalkylene oxide derivatives such as polyethylene oxide and polypropylene oxide, polymers containing the derivatives, vinylidene fluoride, hexafluoropropylene, polycarbonate, phosphate ester polymers, polyalkylimines, and polyacrylo Derivatives such as nitriles, poly (meth) acrylic acid esters, polyphosphazenes, polyurethanes, polyamides, polyesters, polysiloxanes, and polymers containing the derivatives are included.
  • polyalkylene oxide derivatives such as polyethylene oxide and polypropylene oxide
  • polymers containing the derivatives vinylidene fluoride, hexafluoropropylene
  • polycarbonate phosphate ester polymers
  • polyalkylimines examples include polyacrylo Derivatives such as nitriles, poly (meth) acrylic acid esters, polyphosphazenes, polyurethanes, polyamides, polyesters, polys
  • those containing oxyalkylene such as polyalkylene oxide, polyurethane, and polycarbonate, urethane, and carbonate structures in the molecule have good compatibility with various polar solvents and good electrochemical stability. preferable.
  • fluorocarbon groups such as a polyvinylidene fluoride and polyhexafluoropropylene, in a molecule
  • numerator from a surface of stability is also preferable.
  • These oxyalkylene, urethane, carbonate, and fluorocarbon groups may be contained in the same polymer. The repeating number of these groups may be in the range of 1 to 1000, preferably in the range of 5 to 100.
  • Li-ion battery test cell (laminate cell; positive electrode)
  • a laminate cell was produced as follows. The following operation was performed in a dry argon atmosphere with a dew point of -80 ° C or lower.
  • a reference electrode lithium metal foil
  • a separator a working electrode
  • a separator a counter electrode
  • a separator a polypropylene microporous film (Celgard Corp., Cellguard 2400), 25 ⁇ m).
  • the obtained laminate was wrapped with an aluminum laminate, and three sides were heat sealed, and then an electrolyte was poured into this and vacuum sealed to obtain a test cell.
  • a triode cell was produced as follows. The following operation was performed in a dry argon atmosphere with a dew point of -80 ° C or lower. An electrode sample for evaluation (diameter ⁇ 16 mm) and a lithium metal foil are sandwiched between separators (polypropylene microporous film (Celgard Corp., Cellguard 2400), 25 ⁇ m) in a polypropylene screw-in cell (with an inner diameter of about 18 mm). It is. Further, a lithium metal foil for reference was laminated similarly with a separator interposed therebetween. An electrolytic solution was added thereto to obtain a test cell.
  • Electrolytic solution The solvent is a mixed solution of 2 parts by mass of EC (ethylene carbonate) and 3 parts by mass of EMC (ethyl methyl carbonate), and the electrolyte is 1.0 mol / liter LiPF 6 .
  • ⁇ Positive electrode active material > LFP-NCO (LiFePO 4 ): manufactured by Alees, average particle size: 2 ⁇ m.
  • VGCF-H Showa Denko KK Average fiber diameter (SEM: observed at a magnification of 30,000, measured 300): 180 nm, Ratio of fiber having a fiber diameter in the range of 50 to 300 nm: 98% Average fiber length (SEM: observed at a magnification of 5000 times, measured 300): 7 ⁇ m, Average aspect ratio: 40, BET specific surface area: 13 m 2 / g, Tap bulk density: 0.090 g / cm 3 X-ray C 0 (crystallinity of graphite crystal determined by Gakushin method): 0.677 nm. 1 and 2 show the fiber diameter distribution and aspect ratio distribution of VGCF-H.
  • VGCF-XA Showa Denko KK Average fiber diameter (SEM: observed at a magnification of 120,000, measured 300): 12 nm, Ratio of fiber in fiber diameter range of 5 to 40 nm: 99% Aspect ratio: 160 or more BET specific surface area: 260 m 2 / g, Tap bulk density: 0.025 g / cm 3 , X-ray C 0: 0.680nm. 3 and 4 show a TEM image and fiber diameter distribution of VGCF-XA.
  • the KF-polymer contains PVDF dissolved in NMP (N-methyl-2-pyrrolidone). Both are made by Kureha Chemical Co., Ltd.
  • ⁇ Dry mixer> Nobilta: Hosokawa Micron Corporation (peripheral speed: 30-50 m / s), IKA mixer: manufactured by Janke & Kunkel GmbH (mixing blade maximum rotation speed: 10,000 rpm (circumferential speed: 17 m / s)).
  • Example 1 LFP-NCO, VGCF-H, VGCF-XA, and acetylene black are weighed in a total of 200 g so that the mass ratio shown in Table 1 is obtained, put into a Nobilta mixing container (effective volume: 500 mL), and dry mixed for 12 minutes. It was. The peripheral speed of the mixing blade was 40 m / s. Thereafter, the mixed powder was transferred to TK-Hibismix, and KF-polymer (L # 1320) was added so that PVDF was 4% by mass in solid content, and kneading was performed. Then, it knead
  • the resulting slurry was applied onto an aluminum foil using an automatic coater and a doctor blade, then 30 minutes on a hot plate (80 ° C.) and then 1 hour in a vacuum dryer (120 ° C.). Drying was performed. After drying, it was punched to a predetermined size and pressed using a press molding machine (electrode density 1.89 g / cm 3 ). Thereafter, drying was performed again with a vacuum dryer (120 ° C.) for 12 hours to obtain a positive electrode sample. The press pressure was 5 MPa.
  • the evaluation results of the battery are shown in Table 1, and the carbon fiber diameter distribution in the electrode is shown in FIG. The fiber diameter distribution of the carbon fibers in the electrode was evaluated by bending the electrode in liquid nitrogen and depositing the broken surface with gold, and then measuring 500 or more pieces with a scanning electron microscope of 100,000 times or more.
  • Example 2 A positive electrode sample (electrode density 1.92 g / cm 3 ) was prepared in the same manner as in Example 1 except that LFP-NCO, VGCF-H, VGCF-XA, and acetylene black at the time of dry mixing were changed to the mass ratio shown in Table 1. The battery was evaluated. The evaluation results of the battery are shown in Table 1.
  • Example 3 A positive electrode sample (electrode density 1.88 g / cm 3 ) was prepared in the same manner as in Example 1 except that LFP-NCO, VGCF-H, VGCF-XA, and acetylene black at the time of dry mixing were changed to the mass ratio shown in Table 1. The battery was evaluated. The evaluation results of the battery are shown in Table 1.
  • Example 4 A positive electrode sample was prepared in the same manner as in Example 1 except that LFP-NCO, VGCF-H, VGCF-XA, and acetylene black at the time of dry mixing were changed to the mass ratio shown in Table 1, and battery evaluation was performed. The evaluation results of the battery are shown in Table 1.
  • Example 5 MCMB6-28, VGCF-H, VGCF-XA, and acetylene black are weighed in a total of 100 g so as to have the mass ratio shown in Table 2, and placed in a Nobilta mixing container (effective volume: 500 mL) and dry mixed for 8 minutes. It was. The peripheral speed of the mixing blade was 40 m / s. This was transferred to TK-Hibismix, and KF-polymer L # 9210 was added so that PVDF was 5% by mass in solid content, and kneaded. Then, it knead
  • the resulting slurry was applied onto a copper foil using an automatic coater and a doctor blade, then 30 minutes on a hot plate (80 ° C.) and then 1 hour in a vacuum dryer (120 ° C.). Drying was performed. After drying, it was punched to a predetermined size and pressed using a press molding machine. Thereafter, drying was performed again with a vacuum dryer (120 ° C.) for 12 hours. The press pressure was adjusted so that the final electrode density was 1.5 g / cm 3 .
  • the evaluation results of the battery are shown in Table 2.
  • Comparative Example 1 A positive electrode sample (electrode density 1.86 g / cm 3 ) was prepared in the same manner as in Example 1 except that LFP-NCO, VGCF-H, VGCF-XA, and acetylene black at the time of dry mixing were changed to the mass ratio shown in Table 1. The battery was evaluated. The evaluation results of the battery are shown in Table 1.
  • Comparative Example 2 A positive electrode sample (electrode density 1.87 g / cm 3 ) was prepared in the same manner as in Example 1 except that LFP-NCO, VGCF-H, and acetylene black at the time of dry mixing were changed to the mass ratio shown in Table 1, and battery evaluation was made. Carried out. The evaluation results of the battery are shown in Table 1.
  • Comparative Example 3 A positive electrode sample (electrode density 1.85 g / cm 3 ) was prepared in the same manner as in Example 1 except that LFP-NCO, VGCF-XA, and acetylene black at the time of dry mixing were changed to the mass ratio shown in Table 1, and battery evaluation Carried out. The evaluation results of the battery are shown in Table 1.
  • Comparative Example 4 A positive electrode sample was prepared in the same manner as in Example 1 except that LFP-NCO and acetylene black at the time of dry mixing were changed to the mass ratio shown in Table 1, and battery evaluation was performed. The evaluation results of the battery are shown in Table 1.
  • Comparative Example 5 A negative electrode sample was prepared in the same manner as in Example 5 except that the mass ratio of MCMB6-28 and acetylene black was changed as shown in Table 2, and battery evaluation was performed. The evaluation results of the battery are shown in Table 2.
  • Comparative Example 6 A negative electrode sample was prepared in the same manner as in Example 5 except that MCMB6-28 and VGCF-XA were changed to the mass ratio shown in Table 2, and battery evaluation was performed. The evaluation results of the battery are shown in Table 2.
  • the ratio of the carbon-based conductive additive (B) in the positive electrode is 5 to 9% by mass, and the ratio of carbon fiber (carbon fiber (B1) + carbon fiber (B2)) in the carbon-based conductive auxiliary is 20 By adjusting the content to ⁇ 44 mass%, the capacity ratio of 75% or more could be maintained.
  • the proportion of the carbon-based conductive additive (B) in the negative electrode is 2% by mass, and the proportion of the carbon fiber (carbon fiber (B1) + carbon fiber (B2)) in the carbon-based conductive additive is 50% by mass. It was possible to maintain a capacity ratio of 90% or more by adjusting to.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明は、リチウムイオンを吸蔵・放出可能な電極活物質(A)、炭素系導電助剤(B)およびバインダー(C)を含むリチウム系電池用電極であって、前記炭素系導電助剤が炭素繊維を含み、前記炭素繊維は繊維径分布(本数基準)の異なる2種類の炭素繊維を混合してなり、電極中の炭素繊維径分布において5~40nmに1つ以上の極大値と50~300nmに1つ以上の極大値を有することを特徴とするリチウム系電池用電極およびその電極を用いた放電容量の低下が抑制されたリチウム系電池に関する。

Description

リチウム系電池用電極およびリチウム系電池
 本発明はリチウム系電池用電極、およびその電極を用いたリチウム系電池に関する。
 リチウムイオン二次電池は従来の二次電池と比較してエネルギー密度が高く、軽量であることから、小型化、高機能化する携帯用電子端末用電源として広く使用されている。また、近年ではパワーツール用電源、電気自動車用バッテリーとしても検討されている。
 パワーツール用電源や電気自動車用バッテリーなどでは、大電流負荷特性の改善、例えば、大電流を流したときの電極内の抵抗値を下げる検討などが様々行われてきた。
 特許文献1では、造粒黒鉛質材料に繊維状黒鉛材料を結晶性の低い黒鉛質材料でコートし、一体化させた負極材料が開示されている。負極粒子一個に着目した場合、造粒黒鉛質材料のまわりを繊維状黒鉛材料が取り巻き、その上から別の炭素材料によりコーティングされるため造粒黒鉛質粒子と繊維状黒鉛材料の接触は強固である。しかし、粉体全体で見ると負極材料間の接触は、結晶性の低い黒鉛質材料同士によるため、電極の抵抗値は期待通りに低下させることは困難である。
 特許文献2では、正極材料に微細炭素繊維を混合し、電池の内部抵抗を低下させる発明が開示されている。通常、正極材料に比べ嵩密度が低い微細炭素繊維を混ぜることにより電極充填密度が低下し、電池の容量低下、負荷特性の低下を招くという問題がある。
特開2005-019399号公報 特開2007-226967号公報 特開2006-086116号公報(国際公開第2006/019148号パンフレット) 特開2009-016265号公報
 本発明は大電流負荷特性などの電池特性に優れたリチウム系電池用電極およびそれを用いたリチウム系電池を提供することを目的とする。
 本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、電極用の炭素系導電助剤として特定の二種の炭素繊維を含ませることにより、優れた電池特性を示すことを見出し、本発明を完成するに至った。すなわち、本発明は、以下の構成からなるリチウム系電池用電極およびリチウム系電池を提供するものである。
[1]リチウムイオンを吸蔵・放出可能な電極活物質(A)、炭素系導電助剤(B)およびバインダー(C)を含むリチウム系電池用電極であって、前記炭素系導電助剤が炭素繊維を含み、前記炭素繊維は繊維径分布(本数基準)の異なる2種類の炭素繊維の混合物であり、電極中の炭素繊維径分布において5~40nmに1つ以上の極大値と50~300nmに1つ以上の極大値を有することを特徴とするリチウム系電池用電極。
[2]前記の2種類の炭素繊維が、繊維径分布(本数基準)の90%以上が繊維径50~300nmの範囲にある炭素繊維(B1)と繊維径分布(本数基準)の90%以上が繊維径5~40nmの範囲にある炭素繊維(B2)である前記1記載のリチウム系電池用電極。
[3]電極中の電極活物質(A)の含有量が85質量%以上95質量%以下、炭素系導電助剤(B)の含有量が2質量%以上10質量%以下、バインダーの含有量が3質量%以上5質量%以下である前記1または2記載のリチウム系電池用電極。
[4]繊維径分布(本数基準)の90%以上が繊維径50~300nmの範囲にある炭素繊維(B1)と繊維径分布(本数基準)の90%以上が繊維径5~40nmの範囲にある炭素繊維(B2)の配合比率(B2)/{(B1)+(B2)}が5質量%以上20質量%以下である前記1から3のいずれか1項に記載のリチウム系電池用電極。
[5]前記炭素系導電助剤が、繊維径の異なる2種類の炭素繊維(B1)および(B2)とカーボンブラック(B3)からなる前記1から4のいずれか1項に記載のリチウム系電池用電極。
[6]繊維径の異なる2種類の炭素繊維(B1)および(B2)とカーボンブラック(B3)の配合比率{(B1)+(B2)}/{(B1)+(B2)+(B3)}が20質量%以上50質量%以下である前記5に記載のリチウム系電池用電極。
[7]リチウムイオンを吸蔵・放出可能な電極活物質(A)、炭素系導電助剤(B)およびバインダー(C)を含むリチウム系電池用電極であって、前記炭素系導電助剤が炭素繊維を含み、前記炭素繊維は繊維径分布(本数基準)において5~40nmに1つ以上の極大値と50~300nmに1つ以上の極大値を有するものであり、前記繊維径分布(本数基準)の90%以上が5~40nmおよび50~300nmの範囲にあることを特徴とするリチウム系電池用電極。
[8]前記炭素繊維中、繊維径50~300nmの範囲にある炭素繊維を(b1)、繊維径5~40nmの範囲にある炭素繊維を(b2)としたとき、質量比(b2)/{(b1)+(b2)}が5質量%以上20質量%以下である前記7に記載のリチウム系電池用電極。
[9]電極に対し、前記電極活物質(A)の含有量が85質量%以上95質量%以下、炭素系導電助剤(B)の含有量が2質量%以上10質量%以下、バインダーの含有量が3質量%以上5質量%以下である前記7または8に記載のリチウム系電池用電極。
[10]前記炭素系導電助剤が、前記炭素繊維とカーボンブラックとからなる前記7から9のいずれか1項に記載のリチウム系電池用電極。
[11]繊維径50~300nmの範囲にある炭素繊維を(b1)、繊維径5~40nmの範囲にある炭素繊維を(b2)、カーボンブラックを(B3)としたとき、質量比{(b1)+(b2)}/{(b1)+(b2)+(B3)}が20質量%以上50質量%以下である前記10に記載のリチウム系電池用電極。
[12]前記電極活物質(A)が、正極用の電極活物質であって、リチウムイオンを吸蔵・放出可能なリチウム含有金属酸化物からなる前記1から11のいずれか1項に記載のリチウム系電池用電極。
[13]前記電極活物質(A)が、負極用の電極活物質であって、リチウムイオンを吸蔵・放出可能なリチウム含有金属酸化物からなる前記1から11のいずれか1項に記載のリチウム系電池用電極。
[14]前記1~13のいずれか1項に記載のリチウム系電池用電極を構成要素として含むリチウム系電池。
 炭素系導電助剤として特定の繊維径分布を有する炭素繊維を配合してなるリチウム系電池用電極を用いることにより、放電容量の低下が抑制され、大電流負荷特性などの電池特性に優れたリチウム系電池を得ることができる。
VGCF-Hの繊維径分布。 VGCF-Hのアスペクト比分布。 VGCF-XAのTEM像(倍率12万倍)。 VGCF-XAの繊維径分布。 実施例1の電極中に含まれる炭素繊維の繊維径分布(観察本数500本)。
[1]リチウム系電池用電極
 本発明のリチウム系電池用電極は、リチウムイオンを吸蔵・放出可能な電極活物質(A)、炭素系導電助材(B)及びバインダー(C)を含むものであり、正極及び負極のいずれであってもよい。なお、本発明におけるリチウム系電池とは、リチウム系二次電池を指す。
(1)電極活物質(A)
 本発明において、電極活物質(A)は、構成材料を適宜選択することで正極用の電極活物質(正極活物質)および負極用の電極活物質(負極活物質)のいずれにも適用することができる。
<正極活物質>
 正極活物質は、リチウム系電池において正極活物質として知られている従来公知の材料(リチウムイオンを吸蔵・放出可能な材料)の中から、任意のものを一種または二種以上適宜選択して用いることができる。これらの中では、リチウムイオンを吸蔵・放出可能なリチウム含有金属酸化物が好適である。
 リチウム含有金属酸化物としては、リチウムと、Co、Mg、Cr、Mn、Ni、Fe、Al、Mo、V、W及びTiなどの中から選ばれる少なくとも一種の元素を含む複合酸化物を挙げることができる。
 正極活物質の質量平均粒子径(D50)は、10μm以下が好ましい。質量平均粒子径が10μmを超えると、大電流下での充放電反応の効率が低下することがある。より好ましくは8μm以下であり、さらに好ましくは7μm以下である。
 質量平均粒子径の下限は50nm以上が好ましい。平均粒子径が50nmよりも小さくなると電極を作製したとき、電極の充填密度が低下し、容量の低下などの問題が起きることがある。より好ましくは60nmである。
<負極活物質>
 負極活物質は、リチウム系電池において、負極活物質として知られている従来公知の材料(リチウムイオンを吸蔵・放出可能な材料)の中から、一種または二種以上選択して用いることができる。例えば、リチウムイオンを吸蔵・放出可能な材料として、炭素材料、SiおよびSnのいずれか、またはこれらの少なくとも一種を含む合金や酸化物;などを用いることができる。これらの中でも炭素材料が好ましい。
 上記炭素材料としては、天然黒鉛、石油系及び石炭系コークスを熱処理することで製造される人造黒鉛;樹脂を炭素化したハードカーボン、メソフェーズピッチ系炭素材料などを代表例として挙げることができる。天然黒鉛や人造黒鉛を用いる場合、電池容量の増大の観点から、粉末X線回折による黒鉛構造の(002)面の面間隔d(002)が0.335~0.337nmの範囲にあるものが好ましい。
 負極活物質として炭素材料の他に、SiおよびSnの少なくとも一種を含む合金を使用することは、SiおよびSnのそれぞれを単体で用いる場合やそれぞれの酸化物を用いる場合に比べ、電気容量を小さくすることができる点で有効である。なかでもSi系合金が好ましい。
 負極活物質の平均粒子径は10μm以下が好ましい。平均粒子径が10μmを超えると、大電流下での充放電反応の効率が低下することがある。より好ましい平均粒子径は0.1~10μmであり、さらに好ましい平均粒子径は1~7μmである。
 電極中の電極活物質(A)の含有量は85質量%以上95質量%以下が好ましい。電極活物質の(A)の含有量が85質量%未満の場合、電池の容量が低下するため好ましくない。また、電極活物質の(A)の含有量が95質量%より多くなると、導電性の低下、充放電時の電極活物質の体積変化による電極の破壊が生じやすくなるため好ましくない。
(2)炭素系導電助材(B)
 本発明で用いる炭素系導電助材(B)には、繊維径分布の異なる2種類の炭素繊維が含まれている。繊維径分布の異なる2種類の炭素繊維を含んでいるかどうかを確認する方法は、特に限定されないが、以下のいずれかの方法が採用可能である。なお、方法1、方法2の両方の測定において満足する測定ができなくてもよい。いずれか一方の方法だけでも、繊維径分布の異なる2種類の炭素繊維が含まれていることは確認可能である。
 (方法1)電子顕微鏡で観察する。
 繊維径50~300nm程度の炭素繊維は、走査型電子顕微鏡で1万倍程度の倍率により観察されるので、繊維径が測定できる。一方、繊維径40nm以下の炭素繊維は、1万倍程度の倍率では焦点が合わないが、10万倍以上の倍率で観察することで、繊維径が測定可能となる。従って、繊維径分布の異なる2種類の炭素繊維を含んでいるかどうかは、走査型電子顕微鏡の倍率を変化させて観察することで確認可能である。そして、その存在比率についても後述するような方法で測定可能である。
(方法2)酸化開始温度を測定する。
 繊維径の異なる炭素繊維では、酸化開始温度が相違するので、空気雰囲気中の熱天秤による測定において、質量減少が開始される温度が2種類以上あれば、繊維径分布の異なる2種類の炭素繊維を含んでいることになる。炭素繊維の比表面積が大きいほど炭素繊維の表面エネルギーが高くなるため、酸化開始温度は低下するからである。
 例えば、繊維径が50~300nm程度の炭素繊維は、550~700℃の範囲に酸化開始温度を有している。一方、繊維径が40nm以下の炭素繊維の酸化開始温度は400~550℃である。
 本明細書において、用いる炭素繊維の繊維径は電子顕微鏡により観察することにより計測することができる。具体的には、繊維径が約50nm以上の炭素繊維は、炭素繊維を走査型電子顕微鏡により2万倍以上に拡大し100本以上計測することにより繊維径分布を評価する。繊維径が約50nmより細い炭素繊維については、炭素繊維を透過型電子顕微鏡により10万倍以上に拡大し100本以上計測することにより繊維径分布を評価する。
<炭素繊維(B1)>
 炭素繊維(B1)は、繊維径分布(本数基準)の90%以上が繊維径50~300nmの範囲にある炭素繊維であることが好ましく、より好ましくは繊維径分布(本数基準)の90%以上が繊維径70~200nmの範囲にある炭素繊維である。例えば、浮遊触媒法で合成した炭素繊維が使用可能である。浮遊触媒法は、炭素源であるベンゼンに触媒源であるフェロセン、硫黄化合物を溶解した原料液またはそれをガス化したものを水素などのキャリアガスを用いて1000℃以上に加熱した流通系反応炉に導入して炭素繊維を得る方法である。一般的に反応初期に触媒金属からホローチューブが形成され、炭素繊維のおおよその長さが決定される。その後、ホローチューブ表面に熱分解炭素が堆積し、径方向の成長が進行し、年輪状の炭素構造を形成する。したがって、繊維径の調整は、反応中の炭素繊維上への熱分解炭素の堆積量、すなわち反応時間、雰囲気中の原料濃度、反応温度を制御することにより可能である。
 反応により得られた炭素繊維(B1)は、結晶性の低い熱分解炭素により覆われているため導電性が低い。そのため炭素繊維の結晶性を上げるために、アルゴン等の不活性ガス雰囲気下で800~1500℃で熱処理を行った後、さらに2000~3500℃で黒鉛化処理を行うことが望ましい。黒鉛化処理は同時に触媒金属を蒸発除去することができ、炭素繊維の高純度化を行うことができる。
 熱処理により得られた炭素繊維(B1)は、粉砕機により繊維の長さを調整したり、分岐状炭素繊維の枝を折ることもできる。
 炭素繊維(B1)において、300nmより太い繊維の割合が増えて、繊維径50~300nmの範囲に含まれる繊維の割合が90%未満となる場合、単位質量あたりの繊維本数が減少するため、電極活物質同士を均一に接触させることが困難となる。一方、50nmより細い繊維の割合が増えて繊維径50~300nmの範囲に含まれる繊維の割合が90%未満となる場合、細い繊維の高い凝集性により100μm以上の凝集体が形成され、分散性が困難となる。
 炭素繊維(B1)のBET比表面積は6~40m2/gが好ましく、より好ましくは8~25m2/g、さらに好ましくは10~20m2/gである。
 炭素繊維(B1)のアスペクト比は20~150が好ましく、より好ましくは40~120、さらに好ましくは50~100である。
 アスペクト比の算出は、炭素繊維の繊維長を炭素繊維の繊維径で除したものある。繊維長の測定は、走査型電子顕微鏡により繊維径を測定した繊維について、倍率を5000倍に変更し、繊維をパノラマ的に撮影して繊維両端の長さを計測する。炭素繊維のアスペクト比が20より小さくなると導電経路を形成するのに多くの添加量が必要となり、結果的に電極中の電極活物質の割合が低下してしまい、充分な容量が得られなくなる傾向がある。一方、アスペクト比が150より大きくなると一般的に繊維同士の接触による導電経路が形成しやすくなるが、同時に絡まりやすく、分散することが困難となる。
 炭素繊維(B1)のC0値は0.676~0.678nmが好ましい。炭化水素の熱分解により成長した炭素繊維の場合、C0値が0.678nmより大きくなると、良好な導電性を得られない場合がある。
<炭素繊維(B2)>
 炭素繊維(B2)は、繊維径分布(本数基準)の90%以上が繊維径5~40nmの範囲にある炭素繊維であり、例えば、無機担体に金属または金属酸化物を担持した触媒と、エチレンなどの炭化水素と水素、窒素、アルゴンなどのキャリアガスを500~800℃という比較的低温に供給して合成した炭素繊維が挙げられる。前記方法では、反応温度が低いために数分~数時間の反応時間が必要となる。そのため、流動層、移動層あるいは固定床反応器を用いる。
 この方法は、反応温度が低く、炭化水素の熱分解による繊維径の増大が見られないため、触媒金属から析出した結晶性が比較的高い細い繊維を効果的に得ることができるという特徴がある。ただし、触媒に用いる金属および担体の組み合わせにより、チューブラー、ヘリボーン、プレイトレット型構造の炭素繊維が得られる。導電性および物理的強度の観点からチューブラー型構造を有する炭素繊維が好ましい。
 反応により得られた繊維(B2)は、不活性雰囲気下2000~3500℃で高温処理または、硝酸、塩酸など酸洗浄により触媒金属および担体を除去することが好ましい。
 反応により得られた炭素繊維(B2)は、触媒粒子を起点に繊維が成長するため、隣接する繊維同士の絡み合いが強く、分散させることが難しい場合がある。分散性を考慮して、パルベライザ、バンタムミル、ジェットミルなどにより解砕処理を施すことも可能である。
 炭素繊維(B2)のBET比表面積は50~380m2/gが好ましく、より好ましくは100~340m2/g、さらに好ましくは150~280m2/gである。
 炭素繊維(B2)のアスペクト比150以上のものが好ましい。
 アスペクト比の算出は、炭素繊維の繊維長を炭素繊維の繊維径で除したものある。繊維長の測定は、透過型電子顕微鏡により繊維径を測定した繊維について、倍率を10万倍以上で観察する。アスペクト比が非常に大きいため特定の繊維を以って、その代表値とする。
 炭素繊維(B2)は繊維径が小さいので、アスペクト比が150より大きい方が電極活物質間への架橋効果を得られやすく、好ましい。
 炭素繊維(B2)のC0値は0.678~0.682nmであることが好ましい。触媒作用により成長した炭素繊維の場合、C0値が0.682nmより小さくなると結晶中に含まれる欠陥等の減少により良好な導電性が得られるからである。
<カーボンブラック(B3)>
 炭素系導電助材(B3)においては、例えばアセチレンブラック、ファーネスブラック、ケッチェンブラックなどのカーボンブラック系材料を用いることができる。このカーボンブラック系材料は、金属不純物量の少ないものが好ましい。
 電極中の炭素系導電助剤(B)の含有量は2質量%以上10質量%以下が好ましい。炭素系導電助剤(B)の含有量が2質量%未満の場合、電極に十分な導電性を付与することができない場合があり、高速の充放電が困難となる。一方、炭素系導電助剤(B)の含有量が10質量%より多くなると、活物質の含有量の低下あるいはバインダーの含有量の低下が起き、前者の場合は電池の容量低下、後者の場合は電極の強度低下を招く傾向がある。
 炭素系導電助剤中に含まれる炭素繊維(B1)と炭素繊維(B2)の配合比率(B2)/{(B1)+(B2)}は5質量%以上20質量%以下が好ましい。炭素繊維全体における微細な炭素繊維(B2)の割合が5質量%未満では、電極全体に均一に炭素繊維によるネットワークを形成することが難しい。一方、炭素繊維全体における微細な炭素繊維(B2)の割合が20質量%より高くなると繊維同士の絡み合いが強くなり電極中への分散性が低下し、電極密度の低下、しいては内部抵抗の増大、容量低下を招く場合がある。
 電極中に含まれる炭素繊維の観察方法としては、電極断面を10万倍以上の倍率で走査型電子顕微鏡を用いて観察するか、電極をミクロトーム、イオンシニング、集束イオンビーム加工等で試料を調製し、10万倍以上の倍率で透過型電子顕微鏡を用いて観察する。電極中に含まれる炭素繊維の繊維径分布は、300本以上炭素繊維を測定して求める。
 炭素系導電助剤中に含まれる炭素繊維(B1)、炭素繊維(B2)およびカーボンブラック(B3)の配合比率{(B1)+(B2)}/{(B1)+(B2)+(B3)}は20質量%以上50質量%以下であることが好ましい。炭素系導電助剤中に含まれる炭素繊維の割合が20質量%未満では、導電性付与効果が低くなる傾向がある。一方、炭素系導電助剤中に含まれる炭素繊維の割合が50質量%より多くなると繊維同士の絡み合いによる凝集が発生しやすくなり、導電性付与効果が低下する傾向がある。
 炭素系導電助材(B)中の炭素繊維は、繊維径分布(本数基準)において5~40nmに1つ以上の極大値と50~300nmに1つ以上の極大値を有するものであり、前記繊維径分布(本数基準)の90%以上が5~40nmおよび50~300nmの範囲にある。前記炭素繊維中、繊維径50~300nmの範囲にある炭素繊維を(b1)、繊維径5~40nmの範囲にある炭素繊維を(b2)としたとき、質量比(b2)/{(b1)+(b2)}は、好ましくは5質量%以上20質量%以下である。
 また、炭素系導電助剤中のカーボンブラックを(B3)としたとき、質量比{(b1)+(b2)}/{(b1)+(b2)+(B3)}は、好ましくは20質量%以上50質量%以下である。
(3)バインダー(C)
 電極形成材料におけるバインダー(C)としては、特に制限はなく、リチウム系電池用電極のバインダーとして従来公知の材料から、適宜選択して用いることができる。バインダー(C)としては、例えばポリフッ化ビニリデン(PVDF)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-クロロトリフルオロエチレン共重合体、フッ化ビニリデン-テトラフルオロエチレン共重合体などのフッ素含有高分子重合体、スチレン-ブタジエン共重合ゴム(SBR)などを好ましく挙げることができる。
 電極中のバインダー(C)の含有量は、電極に対して3質量%以上5質量%以下が好ましい。バインダーの含有量が電極に対して3質量%未満の場合、電極の強度が低下する傾向がある。一方、バインダーの含有率が5質量%より多いと電極の抵抗値が増大し、導電性が低下する傾向がある。
(4)電極の作製
 本発明のリチウム系電池用電極の製造方法は特に限定されないが、通常は、電極活物質(A)、炭素系導電助剤(B)およびバインダー(C)を混合後、金属集電体等の担持基材上に塗布後、乾燥、プレスすることにより製造することができる。
 各材料の混合方法としては、(1)電極活物質(A)、炭素系導電助剤(B)およびバインダー(C)を一度に混合する方法、(2)電極活物質(A)と炭素系導電助剤(B)を混合後、バインダー(C)を混合する方法、(3)電極活物質(A)とバインダー(C)を混合後、炭素系導電助剤(B)を混合する方法、(4)炭素系導電助剤(B)とバインダー(C)を混合後、電極活物質(A)を混合する方法等が挙げられる。
 各々の材料種や組成比、組合せ等で電極内の分散状態が異なり、電極抵抗、吸液性等に影響してくるので、条件によって最適な混合法を選択する必要がある。
 電極活物質と炭素系導電助剤を混合する方法は、例えばミキサー等で撹拌すればよい。撹拌方法は特に限定されないが、例えば、リボンミキサー、スクリュー型ニーダー、スパルタンリューザー、レディゲミキサー、プラネタリーミキサー、万能ミキサー等の装置を使用することができる。
 これらの混合物にバインダーを混合する方法は特に限定されないが、乾式で混合後、溶媒で混練りする方法や、バインダー材料を溶媒で希釈して電極活物質、炭素系導電助剤またはこれらの混合物と混練りする方法が挙げられる。これら溶媒を含む混合物を集電体(基材)上に塗布し、シート化するが、溶媒を含む混合物の粘度調整の為に、さらにCMC(sodium carboxymethyl cellulose)やポリエチレングリコール等のポリマーのような増粘材を添加してもよい。
 溶媒添加後の混錬り法は特に限定されないが、例えば、リボンミキサー、スクリュー型ニーダー、スパルタンリューザー、レディゲミキサー、プラネタリーミキサー、万能ミキサー等公知の装置が使用できる。
 以上の混練りした混合物を集電体に塗布することにより本発明の電極を作製できる。
 混錬り後の集電体への塗布は、公知の方法により実施できる。例えばドクターブレードやバーコーターなどで塗布後、ロールプレス等で成形する方法等が挙げられる。
 集電体としては、アルミニウム、ステンレス、ニッケル、チタン及びそれらの合金、白金、カーボンシートなど公知の材料が使用できる。
 これら塗布した電極材料を公知の方法で乾燥後、ロールプレス、加圧プレス等公知の方法で、所望の厚み、密度に成形する。
 プレス圧力は、一概に言えないが、通常は1ton/cm2以上の加圧を行う。また、電極厚みは目的とする電池の形状によって異なり、特に限定されないが、通常は0.5~1000μm、好ましくは5~500μmとする。
[2]リチウム系電池
 本発明のリチウム系電池用電極は、Liイオン電池やLiポリマー電池等の高エネルギー密度の非水系二次電池の電極として用いることができる。Liイオン電池及び/またはLiポリマー電池の代表的な製造方法を以下に述べるが、これに限定されない。
 上記で作製した電極を所望の形状に加工し、正極シート/セパレータ/負極シートに積層し、正極と負極がふれないようにし、コイン型、角型、円筒型、シート型等の容器の中に収納する。積層、収納で水分や酸素を吸着した可能性がある場合は、このまま減圧及びまたは低露点(-50℃以下)不活性雰囲気中で再度乾燥後、低露点の不活性雰囲気内に移す。ついで、電解液及び/または高分子固体電解質及び/または重合性組成物のいずれか少なくとも一つ以上を注入し、重合性組成物を注入した場合にはさらに電解液を含浸した後に容器を封印することにより、Liイオン電池またはLiポリマー電池が作製できる。
 セパレータは公知のものが使用できるが、薄くて強度が高いという観点から、ポリエチレンやポリプロピレン性の多孔性のマイクロポーラスフィルムが好ましい。多孔度は、イオン伝導という観点から高い方がよいが、高すぎると強度の低下や正極と負極の短絡の原因となるので、通常は30~90%で用いられ、好ましくは50~80%である。また厚みもイオン伝導、電池容量という観点から薄い方がよいが、薄すぎると強度の低下や正極と負極の短絡の原因となるので、通常は5~100μm、好ましくは5~50μmで用いられる。これらマイクロポーラスフィルムは二種以上の併用や不織布等の他のセパレータと併用して用いることができる。
 非水系二次電池、特にリチウムイオン電池及び/またはLiポリマー電池における電解液及び電解質は公知の有機電解液、無機固体電解質、高分子固体電解質が使用できる。
 有機電解液(非水系電解液)に用いられる非水系溶媒としては、ジエチルエーテル、ジブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、エチレングリコールジフェニルエーテル等のエーテル;ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N-エチルホルムアミド、N,N-ジエチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-エチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルプロピオンアミド、ヘキサメチルホスホリルアミド等のアミド;ジメチルスルホキシド、スルホラン等の含硫黄化合物;メチルエチルケトン、メチルイソブチルケトン等のジアルキルケトン;エチレンオキシド、プロピレンオキシド、テトラヒドロフラン、2-メトキシテトラヒドロフラン、1,2-ジメトキシエタン、1,3-ジオキソラン等の環状エーテル;エチレンカーボネート、ブチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、プロピレンカーボネート、ビニレンカーボネート等のカーボネート;γ-ブチロラクトン;N-メチルピロリドン;アセトニトリル、ニトロメタン等の有機溶媒が好ましい。さらに、好ましくはエチレンカーボネート、ブチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、プロピレンカーボネート、ビニレンカーボネート、γ-ブチロラクトン等のエステル類、ジオキソラン、ジエチルエーテル、ジエトキシエタン等のエーテル類、ジメチルスルホキシド、アセトニトリル、テトラヒドロフラン等が挙げられ、特に好ましくはエチレンカーボネート、プロピレンカーボネート等のカーボネート系非水溶媒を用いることができる。これらの溶媒は、単独でまたは2種以上を混合して使用することができる。
 これらの溶媒の溶質(電解質)には、リチウム塩が使用される。一般的に知られているリチウム塩にはLiClO4、LiBF4、LiPF6、LiAlCl4、LiSbF6、LiSCN、LiCl、LiCF3SO3、LiCF3CO2、LiN(CF3SO22等がある。
高分子固体電解質としては、ポリエチレンオキサイドやポリプロピレンオキサイドなどのポリアルキレンオキサイド誘導体及び該誘導体を含む重合体や、フッ化ビニリデン、ヘキサフルオロプロピレン、ポリカーボネート、リン酸エステル重合体、ポリアルキルイミン、ポリアクルロニトリル、ポリ(メタ)アクリル酸エステル、ポリフォスファゼン、ポリウレタン、ポリアミド、ポリエステル、ポリシロキサンなどの誘導体及び該誘導体を含む重合体等が挙げられる。
上記高分子化合物の中でもポリアルキレンオキシド、ポリウレタン、ポリカーボネート等のオキシアルキレン、ウレタン、カーボネート構造を分子内に含むものが、各種極性溶媒との相溶性が良好で、電気化学的安定性が良好であり好ましい。また、安定性の面からポリフッ化ビニリデンやポリヘキサフルオロプロピレン等のフルオロカーボン基を分子内に有するものも好ましい。これらオキシアルキレン、ウレタン、カーボネート、フルオロカーボン基は同一高分子中に含まれていても良い。これらの基の繰り返し数は各々1~1000の範囲であればよく、5~100の範囲が好ましい。
 上記以外の電池構成上必要な部材の選択についてはなんら制約を受けるものではない。
 次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
電池評価方法:
(1)Liイオン電池試験セルの作製(ラミネートセル;正極)
 下記のようにしてラミネートセルを作製した。なお以下の操作は露点-80℃以下の乾燥アルゴン雰囲気下で実施した。
 セパレータ(ポリプロピレン製マイクロポーラスフィルム(セルガード社製、セルガード2400)、25μm)の上に、参照極(リチウム金属箔)、セパレータ、作用極、セパレータ、対向極(リチウム金属箔)、セパレータを積層する。得られた積層体をアルミラミネートで包み、三辺をヒートシールした後、これに電解液を注入し、真空シールして試験用セルとした。
(2)Liイオン電池試験セルの作製(3極式セル;負極)
 下記のようにして3極セルを作製した。なお以下の操作は露点-80℃以下の乾燥アルゴン雰囲気下で実施した。
 ポリプロピレン製のねじ込み式フタ付きのセル(内径約18mm)内において、評価用電極サンプル(直径φ16mm)とリチウム金属箔をセパレータ(ポリプロピレン製マイクロポーラスフィルム(セルガード社製、セルガード2400)、25μm)で挟み込んだ。さらにリファレンス用のリチウム金属箔を、同様にセパレータを挟んで積層した。これに電解液を加えて試験用セルとした。
(3)電解液
 溶媒は2質量部のEC(エチレンカーボネート)及び3質量部のEMC(エチルメチルカーボネート)の混合液であり、電解質は1.0モル/リットルのLiPF6である。
(4)大電流負荷試験(ラミネートセル;正極評価)
充電はレストポテンシャルから4.2Vまで0.2Cの電流でCC(コンスタントカレント:定電流)充電を行い、次いで2mVでCV(コンスタントボルト:定電圧)充電に切り替え、電流値が12μAに低下した時点で充電を停止させた。放電は0.2C相当および2.0C相当の電流値でCC放電を行い、電圧2.5Vでカットオフした。
 0.2C時の放電容量に対する2.0C時の放電容量の割合を、容量比(高率放電容量保持率)として評価を行った。
(5)大電流負荷試験(3極式セル;負極評価)
 充電はレストポテンシャルから2mVまで0.2Cの電流でCC(コンスタントカレント:定電流)充電を行い、次いで2mVでCV(コンスタントボルト:定電圧)充電に切り替え、電流値が12μAに低下した時点で充電を停止させた。放電は0.2C相当および2.0C相当の電流値でCC放電を行い、電圧1.5Vでカットオフした。
 0.2C時の放電容量に対する2.0C時の放電容量の割合を、容量比(高率放電容量保持率)として評価を行った。
 また、実施例及び比較例で使用した材料及び機器の種類を以下に示す。
<正極活物質>
 LFP-NCO(LiFePO4):Aleees社製、平均粒子径:2μm。
<負極活物質>
 MCMB6-28:大阪ガス株式会社製、平均粒子径:6μm。
<炭素繊維(B1)>
 VGCF-H:昭和電工株式会社製;
  平均繊維径(SEM:倍率3万倍で観察し、300本計測):180nm、
  繊維径50~300nmの範囲にある繊維の割合:98%
  平均繊維長(SEM:倍率5000倍で観察し、300本計測):7μm、
  平均アスペクト比:40、
  BET比表面積:13m2/g、
  タップ嵩密度:0.090g/cm3
  X線C0(学振法により求められる黒鉛結晶の結晶化度):0.677nm。
 図1と図2にVGCF-Hの繊維径分布とアスペクト比分布を示す。
<炭素繊維(B2)>
 VGCF-XA:昭和電工株式会社製;
  平均繊維径(SEM:倍率12万倍で観察し、300本計測):12nm、
  繊維径5~40nmの範囲にある繊維の割合:99%、
  アスペクト比:160以上、
  BET比表面積:260m2/g、
  タップ嵩密度:0.025g/cm3
  X線C0:0.680nm。
 図3と図4にVGCF-XAのTEM像と繊維径分布を示す。
<アセチレンブラック(B3)>
 デンカブラック:電気化学工業株式会社製
<バインダー(C)>
 KF-ポリマー(L#1320):正極用、
 KF-ポリマー(L#9210):負極用。
 上記KF-ポリマーには、PVDFがNMP(N-メチル-2-ピロリドン)に溶解した状態で含まれている。いずれも、呉羽化学工業株式会社製。
<溶媒>
 NMP:昭和電工株式会社製。
<乾式混合機>
 ノビルタ:ホソカワミクロン株式会社製(周速度:30~50m/s)、
 IKAミキサー:Janke&Kunkel GmbH製(混合羽根最大回転数:10,000rpm(周速度:17m/s))。
<スラリー混練機>
 TK-ハイビスミックスf-Model.03型:プライミクス株式会社製。
実施例1
 LFP-NCOとVGCF-HとVGCF-XAとアセチレンブラックを表1に示す質量比となるように合計200gを量り採り、ノビルタの混合容器(実効容積:500mL)に入れ、12分間乾式混合を行った。混合羽根の周速度は40m/sとした。
 その後、TK-ハイビスミックスに混合粉体を移し変えて、KF-ポリマー(L#1320)をPVDFが固形分で4質量%となるように加え、混練を行った。その後、NMPを加えながら混練し、最適な塗工粘度となるよう調整した。
 できあがった上記スラリーを、自動塗工機とドクターブレードを用いて、アルミ箔上に塗布し、その後、ホットプレート(80℃)上で30分間、次いで真空乾燥機(120℃)にて1時間の乾燥を行った。乾燥後、所定の大きさに打抜き、プレス成形機を用いてプレスを行った(電極密度1.89g/cm3)。この後、再度真空乾燥機(120℃)にて12時間の乾燥を行い、正極サンプルを得た。なお、プレス圧は5MPaとした。
 電池の評価結果を表1に示し、電極中の炭素繊維径分布を図5に示す。
 なお、電極中の炭素繊維の繊維径分布は、電極を液体窒素中で折り曲げ、破断した面を金蒸着した後、走査型電子顕微鏡10万倍以上で500本以上計測することにより評価した。
実施例2
 乾式混合時のLFP-NCOとVGCF-HとVGCF-XAとアセチレンブラックを表1に示す質量比とした以外、実施例1と同様にして正極サンプル(電極密度1.92g/cm3)を作製し、電池評価を実施した。電池の評価結果を表1に示す。
実施例3
 乾式混合時のLFP-NCOとVGCF-HとVGCF-XAとアセチレンブラックを表1に示す質量比とした以外、実施例1と同様にして正極サンプル(電極密度1.88g/cm3)を作製し、電池評価を実施した。電池の評価結果を表1に示す。
実施例4
 乾式混合時のLFP-NCOとVGCF-HとVGCF-XAとアセチレンブラックを表1に示す質量比とした以外、実施例1と同様にして正極サンプルを作製し、電池評価を実施した。電池の評価結果を表1に示す。
実施例5
 MCMB6-28とVGCF-HとVGCF-XAとアセチレンブラックを表2に示す質量比となるように合計100gを量り採り、ノビルタの混合容器(実効容積:500mL)に入れ、8分間乾式混合を行った。混合羽根の周速度は40m/sとした。これをTK-ハイビスミックスに移し、KF-ポリマーL#9210をPVDFが固形分で5質量%となるように加えて、混練を行った。その後、NMPを加えながら混練し、最適な塗工粘度となるよう調整した。できあがった前記スラリーを、自動塗工機とドクターブレードを用いて、銅箔上に塗布し、その後、ホットプレート(80℃)上で30分間、次いで真空乾燥機(120℃)にて1時間の乾燥を行った。乾燥後、所定の大きさに打抜き、プレス成形機を用いてプレスを行った。この後、再度真空乾燥機(120℃)にて12時間の乾燥を行った。尚、プレス圧は最終的な電極密度が1.5g/cm3となるように調整した。電池の評価結果を表2に示す。
比較例1
 乾式混合時のLFP-NCOとVGCF-HとVGCF-XAとアセチレンブラックを表1に示す質量比とした以外、実施例1と同様にして正極サンプル(電極密度1.86g/cm3)を作製し、電池評価を実施した。電池の評価結果を表1に示す。
比較例2
 乾式混合時のLFP-NCOとVGCF-Hとアセチレンブラックを表1に示す質量比とした以外、実施例1と同様にして正極サンプル(電極密度1.87g/cm3)を作製し、電池評価を実施した。電池の評価結果を表1に示す。
比較例3
 乾式混合時のLFP-NCOとVGCF-XAとアセチレンブラックを表1に示す質量比とした以外、実施例1と同様にして正極サンプル(電極密度1.85g/cm3)を作製し、電池評価を実施した。電池の評価結果を表1に示す。
比較例4
 乾式混合時のLFP-NCOとアセチレンブラックを表1に示す質量比とした以外、実施例1と同様にして正極サンプルを作製し、電池評価を実施した。電池の評価結果を表1に示す。
比較例5
 MCMB6-28とアセチレンブラックを表2に示す質量比とした以外、実施例5と同様にして負極サンプルを作製し、電池評価を実施した。電池の評価結果を表2に示す。
比較例6
 MCMB6-28とVGCF-XAを表2に示す質量比とした以外、実施例5と同様にして負極サンプルを作製し、電池評価を実施した。電池の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1より、正極中の炭素系導電助剤(B)の割合を5~9質量%、炭素系導電助剤中の炭素繊維(炭素繊維(B1)+炭素繊維(B2))の割合を20~44質量%に調整することで容量比75%以上を維持することができた。
 表2より、負極中の炭素系導電助剤(B)の割合を2質量%、炭素系導電助剤中の炭素繊維(炭素繊維(B1)+炭素繊維(B2))の割合を50質量%に調整することで容量比90%以上を維持することができた。

Claims (14)

  1.  リチウムイオンを吸蔵・放出可能な電極活物質(A)、炭素系導電助剤(B)およびバインダー(C)を含むリチウム系電池用電極であって、前記炭素系導電助剤が炭素繊維を含み、前記炭素繊維は繊維径分布(本数基準)の異なる2種類の炭素繊維の混合物であり、電極中の炭素繊維径分布において5~40nmに1つ以上の極大値と50~300nmに1つ以上の極大値を有することを特徴とするリチウム系電池用電極。
  2.  前記の2種類の炭素繊維が、繊維径分布(本数基準)の90%以上が繊維径50~300nmの範囲にある炭素繊維(B1)と繊維径分布(本数基準)の90%以上が繊維径5~40nmの範囲にある炭素繊維(B2)である請求項1記載のリチウム系電池用電極。
  3.  電極中の電極活物質(A)の含有量が85質量%以上95質量%以下、炭素系導電助剤(B)の含有量が2質量%以上10質量%以下、バインダーの含有量が3質量%以上5質量%以下である請求項1または2記載のリチウム系電池用電極。
  4.  繊維径分布(本数基準)の90%以上が繊維径50~300nmの範囲にある炭素繊維(B1)と繊維径分布(本数基準)の90%以上が繊維径5~40nmの範囲にある炭素繊維(B2)の配合比率(B2)/{(B1)+(B2)}が5質量%以上20質量%以下である請求項1から3のいずれか1項に記載のリチウム系電池用電極。
  5.  前記炭素系導電助剤が、繊維径の異なる2種類の炭素繊維(B1)および(B2)とカーボンブラック(B3)からなる請求項1から4のいずれか1項に記載のリチウム系電池用電極。
  6.  繊維径の異なる2種類の炭素繊維(B1)および(B2)とカーボンブラック(B3)の配合比率{(B1)+(B2)}/{(B1)+(B2)+(B3)}が20質量%以上50質量%以下である請求項5に記載のリチウム系電池用電極。
  7.  リチウムイオンを吸蔵・放出可能な電極活物質(A)、炭素系導電助剤(B)およびバインダー(C)を含むリチウム系電池用電極であって、前記炭素系導電助剤が炭素繊維を含み、前記炭素繊維は繊維径分布(本数基準)において5~40nmに1つ以上の極大値と50~300nmに1つ以上の極大値を有するものであり、前記繊維径分布(本数基準)の90%以上が5~40nmおよび50~300nmの範囲にあることを特徴とするリチウム系電池用電極。
  8.  前記炭素繊維中、繊維径50~300nmの範囲にある炭素繊維を(b1)、繊維径5~40nmの範囲にある炭素繊維を(b2)としたとき、質量比(b2)/{(b1)+(b2)}が5質量%以上20質量%以下である請求項7に記載のリチウム系電池用電極。
  9.  電極に対し、前記電極活物質(A)の含有量が85質量%以上95質量%以下、炭素系導電助剤(B)の含有量が2質量%以上10質量%以下、バインダーの含有量が3質量%以上5質量%以下である請求項7または8に記載のリチウム系電池用電極。
  10.  前記炭素系導電助剤が、前記炭素繊維とカーボンブラックとからなる請求項7から9のいずれか1項に記載のリチウム系電池用電極。
  11.  繊維径50~300nmの範囲にある炭素繊維を(b1)、繊維径5~40nmの範囲にある炭素繊維を(b2)、カーボンブラックを(B3)としたとき、質量比{(b1)+(b2)}/{(b1)+(b2)+(B3)}が20質量%以上50質量%以下である請求項10に記載のリチウム系電池用電極。
  12.  前記電極活物質(A)が、正極用の電極活物質であって、リチウムイオンを吸蔵・放出可能なリチウム含有金属酸化物からなる請求項1から11のいずれか1項に記載のリチウム系電池用電極。
  13.  前記電極活物質(A)が、負極用の電極活物質であって、リチウムイオンを吸蔵・放出可能なリチウム含有金属酸化物からなる請求項1から11のいずれか1項に記載のリチウム系電池用電極。
  14.  請求項1~13のいずれか1項に記載のリチウム系電池用電極を構成要素として含むリチウム系電池。
PCT/JP2012/053466 2011-02-16 2012-02-15 リチウム系電池用電極およびリチウム系電池 WO2012111688A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012557983A JP6088824B2 (ja) 2011-02-16 2012-02-15 リチウム系電池用電極およびリチウム系電池
DE112012000825.1T DE112012000825B4 (de) 2011-02-16 2012-02-15 Elektrode für einen Lithium-Akkumulator und Lithium-Akkumulator
CN2012800090100A CN103430362A (zh) 2011-02-16 2012-02-15 锂系电池用电极以及锂系电池
KR1020137008682A KR101513520B1 (ko) 2011-02-16 2012-02-15 리튬계 전지용 전극 및 리튬계 전지

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011031339 2011-02-16
JP2011-031339 2011-02-16
US201161444662P 2011-02-18 2011-02-18
US61/444662 2011-02-18

Publications (1)

Publication Number Publication Date
WO2012111688A1 true WO2012111688A1 (ja) 2012-08-23

Family

ID=46653010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053466 WO2012111688A1 (ja) 2011-02-16 2012-02-15 リチウム系電池用電極およびリチウム系電池

Country Status (7)

Country Link
US (1) US9337491B2 (ja)
JP (1) JP6088824B2 (ja)
KR (1) KR101513520B1 (ja)
CN (1) CN103430362A (ja)
DE (1) DE112012000825B4 (ja)
TW (1) TWI565128B (ja)
WO (1) WO2012111688A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2682517A3 (en) * 2012-07-03 2014-02-19 Showa Denko K.K. Composite carbon fibers
WO2016084697A1 (ja) * 2014-11-26 2016-06-02 昭和電工株式会社 導電性ペーストの製造方法及び導電性ペースト
JP2018181858A (ja) * 2013-01-25 2018-11-15 帝人株式会社 超極細繊維状炭素、超極細繊維状炭素集合体、炭素系導電助剤、非水電解質二次電池用電極材料、非水電解質二次電池用電極及び非水電解質二次電池、並びに超極細繊維状炭素の製造方法
JP2020013798A (ja) * 2015-06-30 2020-01-23 株式会社村田製作所 負極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
WO2020045243A1 (ja) * 2018-08-27 2020-03-05 帝人株式会社 炭素繊維集合体及びその製造方法、並びに非水電解質二次電池用電極合剤層

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2623407A1 (en) * 2008-02-28 2009-08-28 Hydro-Quebec Composite electrode material
CN103493265B (zh) * 2011-04-28 2016-10-12 昭和电工株式会社 锂二次电池用正极材料及其制造方法
JP5497110B2 (ja) 2012-07-03 2014-05-21 昭和電工株式会社 複合炭素繊維の製造方法
CA2794290A1 (en) * 2012-10-22 2014-04-22 Hydro-Quebec Method of producing electrode material for lithium-ion secondary battery and lithium-ion secondary battery using such electrode material
JP5580910B1 (ja) * 2013-02-20 2014-08-27 昭和電工株式会社 電池用電極の製造方法
JP5497220B1 (ja) * 2013-03-14 2014-05-21 昭和電工株式会社 複合炭素繊維
KR102305509B1 (ko) * 2014-07-22 2021-09-28 씨-나노 테크놀로지 리미티드 배터리용 전극 조성물
JP2016131123A (ja) * 2015-01-14 2016-07-21 株式会社日立製作所 リチウム二次電池、リチウム二次電池を含む蓄電装置、およびリチウム二次電池の製造方法
KR101665656B1 (ko) * 2015-04-28 2016-10-12 충남대학교산학협력단 이차전지용 양극 및 이로부터 제조된 리튬이차전지
JP6394987B2 (ja) * 2015-08-06 2018-09-26 トヨタ自動車株式会社 非水電解液二次電池
WO2017057527A1 (ja) * 2015-09-30 2017-04-06 帝人株式会社 ピッチ系極細炭素繊維、その製造方法、該ピッチ系極細炭素繊維を用いた非水電解質二次電池用負極及び当該非水電解質二次電池用負極を具備する非水電解質二次電池
KR102050837B1 (ko) * 2016-02-03 2019-12-03 주식회사 엘지화학 리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지
KR102081397B1 (ko) * 2016-12-12 2020-02-25 주식회사 엘지화학 리튬 이차전지용 전극의 제조방법
WO2018232286A1 (en) * 2017-06-15 2018-12-20 Cabot Corporation Electrodes and batteries containing different carbon black particles
CN108878887A (zh) * 2018-07-13 2018-11-23 四川理工学院 一种磷酸铁锂正极材料用导电剂及其制备方法
KR102439661B1 (ko) * 2019-01-17 2022-09-02 주식회사 엘지에너지솔루션 음극 및 이를 포함하는 리튬 이차 전지
JP7428156B2 (ja) * 2021-03-12 2024-02-06 トヨタ自動車株式会社 全固体電池
CN117529831A (zh) * 2021-11-22 2024-02-06 株式会社力森诺科 正极合剂层、导电助剂、正极合剂及锂离子二次电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086116A (ja) * 2004-08-16 2006-03-30 Showa Denko Kk リチウム系電池用正極及びそれを用いたリチウム系電池
JP2007226967A (ja) * 2004-03-22 2007-09-06 Mitsubishi Corp 電池用正極及びこれを使用した電池
JP2010031214A (ja) * 2008-07-02 2010-02-12 Denki Kagaku Kogyo Kk カーボンブラック複合体及びその用途
JP2010238575A (ja) * 2009-03-31 2010-10-21 Ube Ind Ltd リチウムイオン電池用電極およびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7390593B2 (en) * 2001-11-07 2008-06-24 Showa Denko K.K. Fine carbon fiber, method for producing the same and use thereof
JP4040606B2 (ja) 2003-06-06 2008-01-30 Jfeケミカル株式会社 リチウムイオン二次電池用負極材料およびその製造方法、ならびにリチウムイオン二次電池用負極およびリチウムイオン二次電池
TWI459616B (zh) * 2004-08-16 2014-11-01 Showa Denko Kk Lithium batteries with positive and the use of its lithium batteries
US8119287B2 (en) * 2005-05-16 2012-02-21 Mitsubishi Chemical Corporation Nonaqueous electrolyte rechargeable battery, and negative electrode and material thereof
KR101520508B1 (ko) * 2007-03-29 2015-05-14 미쓰비시 마테리알 가부시키가이샤 정극 형성재, 그 재료와 제조 방법, 및 리튬 이온 2 차 전지
JP2009016265A (ja) 2007-07-06 2009-01-22 Showa Denko Kk リチウム系電池用電極、リチウム系電池用電極の製造方法、リチウム系電池、及びリチウム系電池の製造方法
JP2012003985A (ja) 2010-06-17 2012-01-05 Teijin Ltd リチウムイオン二次電池用電極およびリチウムイオン二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007226967A (ja) * 2004-03-22 2007-09-06 Mitsubishi Corp 電池用正極及びこれを使用した電池
JP2006086116A (ja) * 2004-08-16 2006-03-30 Showa Denko Kk リチウム系電池用正極及びそれを用いたリチウム系電池
JP2010031214A (ja) * 2008-07-02 2010-02-12 Denki Kagaku Kogyo Kk カーボンブラック複合体及びその用途
JP2010238575A (ja) * 2009-03-31 2010-10-21 Ube Ind Ltd リチウムイオン電池用電極およびその製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2682517A3 (en) * 2012-07-03 2014-02-19 Showa Denko K.K. Composite carbon fibers
JP2018181858A (ja) * 2013-01-25 2018-11-15 帝人株式会社 超極細繊維状炭素、超極細繊維状炭素集合体、炭素系導電助剤、非水電解質二次電池用電極材料、非水電解質二次電池用電極及び非水電解質二次電池、並びに超極細繊維状炭素の製造方法
WO2016084697A1 (ja) * 2014-11-26 2016-06-02 昭和電工株式会社 導電性ペーストの製造方法及び導電性ペースト
JPWO2016084697A1 (ja) * 2014-11-26 2017-08-31 昭和電工株式会社 導電性ペーストの製造方法及び導電性ペースト
US10312519B2 (en) 2014-11-26 2019-06-04 Showa Denko K.K. Method for manufacturing electroconductive paste, and electroconductive paste
JP2020013798A (ja) * 2015-06-30 2020-01-23 株式会社村田製作所 負極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
US10826068B2 (en) 2015-06-30 2020-11-03 Murata Manufacturing Co., Ltd. Negative electrode, battery, battery pack, electronic apparatus, electrically driven vehicle, electrical storage device, and electric power system
WO2020045243A1 (ja) * 2018-08-27 2020-03-05 帝人株式会社 炭素繊維集合体及びその製造方法、並びに非水電解質二次電池用電極合剤層
CN112585307A (zh) * 2018-08-27 2021-03-30 帝人株式会社 碳纤维集合体及其制造方法、以及非水电解质二次电池用电极合剂层
JPWO2020045243A1 (ja) * 2018-08-27 2021-08-26 帝人株式会社 炭素繊維集合体及びその製造方法、並びに非水電解質二次電池用電極合剤層
JP7143425B2 (ja) 2018-08-27 2022-09-28 帝人株式会社 炭素繊維集合体及びその製造方法、並びに非水電解質二次電池用電極合剤層

Also Published As

Publication number Publication date
US9337491B2 (en) 2016-05-10
CN103430362A (zh) 2013-12-04
US20120214070A1 (en) 2012-08-23
JP6088824B2 (ja) 2017-03-01
JPWO2012111688A1 (ja) 2014-07-07
TWI565128B (zh) 2017-01-01
DE112012000825B4 (de) 2019-02-21
KR101513520B1 (ko) 2015-04-20
DE112012000825T5 (de) 2013-12-24
TW201246669A (en) 2012-11-16
KR20130056319A (ko) 2013-05-29

Similar Documents

Publication Publication Date Title
JP6088824B2 (ja) リチウム系電池用電極およびリチウム系電池
JP4084353B2 (ja) リチウム電池用負極材用組成物の製造方法
EP2770560B1 (en) Method of manufacturing battery electrode
JP5389652B2 (ja) リチウム系二次電池用負極、炭素系負極活物質の製造方法及びリチウム系二次電池及びその用途
JP3958781B2 (ja) リチウム二次電池用負極、負極組成物の製造方法、及びリチウム二次電池
JP3930002B2 (ja) 高密度電極及びその電極を用いた電池
JP4031009B2 (ja) リチウム系電池用正極及びそれを用いたリチウム系電池
EP2950375B1 (en) Ultra-fine fibrous carbon for non-aqueous electrolyte secondary battery, ultra-fine fibrous carbon aggregate, composite body, and electrode active material layer
JP7308007B2 (ja) 非水電解質二次電池用電極合剤層、非水電解質二次電池用電極及び非水電解質二次電池
JP6522167B2 (ja) 金属ナノ粒子を含む正極活物質及び正極、それを含むリチウム−硫黄電池
US11532822B2 (en) Fibrous carbon, method for manufacturing same, electrode mixture layer for non-aqueous-electrolyte secondary cell, electrode for non-aqueous-electrolyte secondary cell, and non-aqueous-electrolyte secondary cell
JP2009016265A (ja) リチウム系電池用電極、リチウム系電池用電極の製造方法、リチウム系電池、及びリチウム系電池の製造方法
JP2008016456A (ja) リチウム電池用負極材及びリチウム電池
KR101276145B1 (ko) 리튬 2차전지용 음극과 음극 조성물의 제조방법, 및 리튬2차전지
JP2012022933A (ja) 二次電池用負極材料、リチウムイオン二次電池用負極およびリチウムイオン二次電池
KR20200033736A (ko) 황-탄소 복합체, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
JP2011157668A (ja) ピッチ繊維の紡糸方法、炭素繊維の製造方法、カーボンナノファイバー
JP7240801B2 (ja) 非水電解質二次電池用正極合剤層、それを含む非水電解質二次電池用正極及び非水電解質二次電池
JP6432520B2 (ja) 非水系二次電池負極用炭素材、それを用いた非水系二次電池用負極及び非水系二次電池
WO2021177291A1 (ja) 二次電池電極用添加剤
KR102663584B1 (ko) 황-탄소 복합체
JP2023019106A (ja) 電極用複合粒子及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12747079

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012557983

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137008682

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112012000825

Country of ref document: DE

Ref document number: 1120120008251

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12747079

Country of ref document: EP

Kind code of ref document: A1