WO2012111131A1 - ミリ波帯無線送受信装置 - Google Patents

ミリ波帯無線送受信装置 Download PDF

Info

Publication number
WO2012111131A1
WO2012111131A1 PCT/JP2011/053402 JP2011053402W WO2012111131A1 WO 2012111131 A1 WO2012111131 A1 WO 2012111131A1 JP 2011053402 W JP2011053402 W JP 2011053402W WO 2012111131 A1 WO2012111131 A1 WO 2012111131A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
local oscillator
signal
reception
oscillator
Prior art date
Application number
PCT/JP2011/053402
Other languages
English (en)
French (fr)
Inventor
岡田 健一
昭 松澤
Original Assignee
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学 filed Critical 国立大学法人東京工業大学
Priority to US13/985,657 priority Critical patent/US8971389B2/en
Priority to JP2012557732A priority patent/JP5651824B2/ja
Priority to EP11858730.2A priority patent/EP2677667A4/en
Priority to KR1020137024814A priority patent/KR101651496B1/ko
Priority to PCT/JP2011/053402 priority patent/WO2012111131A1/ja
Publication of WO2012111131A1 publication Critical patent/WO2012111131A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/08Modifications for reducing interference; Modifications for reducing effects due to line faults ; Receiver end arrangements for detecting or overcoming line faults
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B27/00Generation of oscillations providing a plurality of outputs of the same frequency but differing in phase, other than merely two anti-phase outputs
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1206Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification
    • H03B5/1212Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification the amplifier comprising a pair of transistors, wherein an output terminal of each being connected to an input terminal of the other, e.g. a cross coupled pair
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1228Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device the amplifier comprising one or more field effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1237Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator
    • H03B5/124Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance
    • H03B5/1246Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance the means comprising transistors used to provide a variable capacitance
    • H03B5/1253Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance the means comprising transistors used to provide a variable capacitance the transistors being field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/24Automatic control of frequency or phase; Synchronisation using a reference signal directly applied to the generator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits

Definitions

  • the present invention relates to a millimeter wave band radio transceiver apparatus, and more particularly to a millimeter wave band radio transceiver apparatus using an injection locked oscillator.
  • a millimeter wave band for example, 60 GHz band
  • a direct conversion wireless transceiver that directly downconverts or upconverts from 60 GHz to a baseband is proposed in order to simplify the circuit configuration and reduce the cost.
  • Such a radio transmission / reception apparatus is generally composed of an amplifier, a mixer circuit, a local oscillator, and the like that amplify a high-frequency signal.
  • the signal from the local oscillator that generates the carrier wave signal determines the characteristics of the wireless communication device. Therefore, the improvement of the phase noise of the local oscillator has been a problem in realizing a wireless communication device in the millimeter wave band.
  • a local oscillator uses a two-phase sine wave output of an I component signal and a Q component signal whose phases are shifted from each other by 90 degrees. For example, when operating each as a differential signal, a total of four-phase sine wave outputs are required.
  • a conventional local oscillator with a four-phase sine wave output for example, generates a signal having a frequency twice as high as the output frequency and divides it to obtain a four-phase output or a two-phase sine wave output oscillator.
  • Patent Document 1 discloses an injection locked oscillator that oscillates at an integer multiple frequency synchronized with an injected reference frequency signal. If the phase noise of the reference frequency signal is low, the phase noise of the output signal having an integral multiple frequency synchronized with the reference frequency signal can be kept low.
  • Patent Document 2 discloses a direct conversion wireless transmitter / receiver that does not require calibration for mismatch between the I component signal and the Q component signal. This is because local oscillators are provided on the transmitter side and the receiver side, respectively, a pilot signal is added on the transmitter side and then transmitted, the pilot signal is extracted on the receiver side, and compared with template data prepared in advance. Then, the I / Q mismatch is corrected by adjusting the phase by performing the shift adjustment of the 90-degree shift phase shifter so as to be within the error range.
  • Patent Document 2 has to add a pilot signal on the transmitter side or extract a pilot signal on the receiver side, and to prepare template data in advance. there were. Furthermore, in Patent Document 2, there is no particular description of a local oscillator, and the viewpoint of reducing phase noise in a high frequency band such as a millimeter wave band is lacking.
  • the present invention is intended to provide a millimeter-wave band radio transceiver that can improve phase noise characteristics and can calibrate each local oscillator of a transmitter and a receiver independently of each other. To do.
  • a millimeter-wave band radio transceiver apparatus includes a transmission local oscillator composed of an injection locked oscillator, a signal from the transmission local oscillator, and a transmission baseband signal. From the transmission mixer that mixes, the transmission amplifier that amplifies the signal from the transmission mixer to the transmission antenna, the reception amplifier that amplifies the signal from the reception antenna, and the injection locked oscillator A receiving local oscillator, a receiving mixer that mixes a signal from the receiving local oscillator and a signal from the receiving amplifier and outputs a receiving baseband signal, a transmitting local oscillator, and a receiving A reference frequency signal generator for injecting a reference frequency signal into the local oscillator.
  • a calibration unit for individually adjusting the transmission local oscillator and the reception local oscillator so that the transmission local oscillator and the reception local oscillator are respectively locked to the reference frequency signal from the reference frequency signal generator. It may be provided.
  • the transmission unit may transmit a modulated signal based on orthogonal I and Q components
  • the reception unit may receive a modulated signal based on orthogonal I and Q components.
  • the transmission unit includes an I / Q coupled transmission quadrature oscillator and two transmission mixers for I component and Q component, and the wiring length from the transmission quadrature oscillator to the two transmission mixers is In order to reduce the I / Q mismatch, they are arranged equally symmetrically, and the receiving unit includes an I / Q coupled reception quadrature oscillator and two receiving mixers for I component and Q component, In order to reduce the I / Q mismatch, the wiring lengths from the orthogonal oscillator for use to the two receiving mixers may be arranged equally symmetrically.
  • the reference frequency signal generator may use a PLL.
  • the transmission unit and the reception unit may be any one of a direct conversion method, a superheterodyne method, and a sliding IF method.
  • the millimeter-wave band radio transmitting / receiving apparatus of the present invention has the advantage that the phase noise characteristics can be improved, and that the local oscillators of the transmitter and receiver can be calibrated independently.
  • FIG. 1 is a schematic plan view of a millimeter wave band radio transceiver apparatus according to the present invention.
  • FIG. 2 is an example of a circuit configuration of a local oscillator for transmission of the millimeter waveband radio transceiver apparatus of the present invention.
  • FIG. 3 is a flowchart for explaining the calibration flow of the millimeter-wave band radio transceiver apparatus according to the present invention.
  • FIG. 4 is a graph showing an example of a change in the reception baseband frequency when the oscillation frequency of the local oscillator for transmission of the millimeter wave band radio transceiver apparatus of the present invention is swept from the lower limit to the upper limit.
  • FIG. 5 is a schematic plan view for explaining the arrangement on the circuit board of each component of the millimeter waveband radio transceiver apparatus of the present invention.
  • FIG. 1 is a schematic plan view of a millimeter wave band radio transceiver apparatus according to the present invention.
  • the millimeter-wave band wireless transmission / reception apparatus of the present invention mainly includes a transmission unit 10, a reception unit 20, and a reference frequency signal generator 30.
  • the reference frequency signal from the reference frequency signal generator 30 is injected into each of a transmission local oscillator 11 of the transmission unit 10 and a reception local oscillator 22 of the reception unit 20 which will be described later.
  • the transmission unit 10 and the reception unit 20 may basically use the same circuit configuration.
  • the transmission unit 10 will be basically described in detail in the following description.
  • the reception unit 20 is different from the transmission unit 10. The explanation is centered.
  • the transmitting unit 10 and the receiving unit 20 will be described focusing on a radio transmission / reception apparatus using a direct conversion method in which the frequency of the local oscillator and the frequency of the carrier wave are substantially the same.
  • an intermediate frequency amplification stage IF stage
  • the IF stage method may use a superheterodyne method, a sliding IF method, or the like, and is not limited to a specific method.
  • the transmission unit 10 transmits, for example, a modulated signal based on orthogonal I and Q components
  • the reception unit 20 receives a modulated signal based on orthogonal I and Q components. It is also good.
  • an I / Q coupled quadrature oscillator that outputs such an I / Q component signal is exemplified.
  • the transmission unit 10 is mainly composed of a transmission local oscillator 11, a transmission mixer 12, and a transmission amplifier 13.
  • the transmission local oscillator 11 is composed of an injection-locked oscillator (Injection Locked Oscillator).
  • the injection-locked oscillator constituting the local oscillator for transmission 11 outputs a high frequency by multiplying a reference frequency signal injected from a reference frequency signal generator 30 described later.
  • the output from the transmission local oscillator 11 is a millimeter-wave band signal.
  • FIG. 2 shows an example of the circuit configuration of the transmission local oscillator 11.
  • an injection locked oscillator capable of outputting a four-phase sine wave is shown.
  • this is an example of a circuit configuration in the case of an I / Q coupled quadrature oscillator that transmits an I component signal and a Q component signal whose phases are shifted from each other by 90 degrees and each signal is operated as a differential signal.
  • the millimeter-wave band radio transceiver apparatus according to the present invention is not limited to the injection-locked oscillator that can output a four-phase sine wave as shown in the illustrated example, and the millimeter-wave band signal is transmitted using the injection-locked oscillator. Any configuration may be used as long as it can output.
  • the present invention when outputting an I / Q component signal, is not limited to an I / Q coupled quadrature oscillator.
  • a local oscillator for oscillating an I component signal and a phase shifter for generating a Q component signal can be combined to generate an I / Q component signal.
  • a Q component signal may be output.
  • transmission local oscillator 11 the differential signal has two injection terminal of INJ n and INJ p, wherein the output of the reference frequency signal generator 30 is input to.
  • the injection-locked oscillator of the illustrated example is an I / Q coupled oscillator that outputs an I component signal and a Q component signal that are 90 degrees out of phase.
  • the entire output frequency is determined by two signals of the I component signal and the Q component signal. For example, when a mismatch occurs between the oscillator for the I component signal and the oscillator for the Q component signal due to manufacturing variation or the like, the oscillation frequency of each signal changes, and a mismatch may occur in the phase balance of I / Q.
  • the coupling between IQ is cut once and each oscillator is oscillated, and then the oscillation frequency for the I component signal and the oscillation frequency for the Q component signal are compared, and the frequency control signal is set so that both are equal. It is also possible to match the phase balance of I / Q by adjusting.
  • a DAC digital-analog converter
  • the oscillation frequency may be adjusted by adjusting the bias of the oscillator with an analog signal output by a digital control signal.
  • the transmission local oscillator 11 composed of the injection-locked oscillator configured in this way is multiplied by N using the output from the reference frequency signal generator 30 as an injection lock signal.
  • the reference frequency signal generator 30 outputs a reference frequency signal of 20 GHz
  • the transmission local oscillator 11 may be adjusted so as to output a signal having a frequency of 57 GHz to 66 GHz in the unlocked state, for example. By adjusting in this way, it becomes possible to output a signal locked to the reference frequency signal.
  • a calibration unit 14 is connected to the transmission local oscillator 11 to adjust the transmission local oscillator 11 to lock to the reference frequency signal from the reference frequency signal generator 30. May be.
  • the calibration unit 14 is configured by, for example, a DAC (digital-analog converter), and the oscillation frequency may be adjusted by adjusting the bias of the oscillator by an analog signal output by a digital control signal.
  • the transmission mixer 12 of the transmission unit 10 mixes the signal from the transmission local oscillator 11 and the transmission baseband signal.
  • a transmission mixer 12 is used to superimpose a transmission baseband signal, that is, information to be transmitted (carrier wave + transmission information), on a signal from the transmission local oscillator 11, that is, a carrier wave.
  • the transmission mixer 12 may have a general circuit configuration, and is not limited to a specific one.
  • the transmission amplifier 13 amplifies the signal from the transmission mixer 12 to the transmission antenna 15. Thus, a predetermined transmission power is obtained at the final stage of the transmission unit 10.
  • the transmission amplifier 13 may also have a general circuit configuration, and is not limited to a specific one.
  • the up-converted signal is radiated from the transmitting antenna 15 by the transmitting unit 10 configured as described above.
  • the receiving unit 20 mainly includes a receiving amplifier 21, a receiving local oscillator 22, and a receiving mixer 23.
  • the receiving amplifier 21 amplifies the signal from the receiving antenna 24. This is particularly effective when the signal received by the receiving antenna 24 is weak, but when the input signal is sufficiently large, the amplifier at the first stage of the receiving unit 20 can be omitted.
  • the reception amplifier 21 may have a general circuit configuration, and is not limited to a specific one.
  • the reception local oscillator 22 may basically have the same circuit configuration as that of the transmission local oscillator 11. That is, since the transmitting unit 10 and the receiving unit 20 are configured in a corresponding manner, the transmitting local oscillator 11 may be an injection locking type oscillator capable of outputting a four-phase sine wave as shown in FIG. For example, the reception local oscillator 22 may be an injection locked oscillator capable of outputting a four-phase sine wave as shown in FIG.
  • the reception mixer 23 mixes the signal from the reception local oscillator 22 and the signal from the reception amplifier 21, and outputs a reception baseband signal. Since both the local oscillator for transmission 11 and the local oscillator for reception 22 are injected with the reference frequency signal from the same reference frequency signal generator 30, the signal from the reception amplifier 21 is received using the reception mixer 23. By subtracting the signal from the local oscillator 22 for reception, that is, the carrier wave, only the received baseband signal that is transmitted information can be extracted.
  • the reception local oscillator 22 is adjusted so that the reception local oscillator 22 is locked to the reference frequency signal from the reference frequency signal generator 30, similarly to the transmission local oscillator 11.
  • a calibration unit 25 may be connected.
  • the calibration unit 25 is configured by, for example, a DAC (digital-analog converter), and the oscillation frequency may be adjusted by adjusting the bias of the oscillator by an analog signal output by a digital control signal.
  • the reception unit 20 configured as described above receives the down-converted reception baseband signal.
  • the reference frequency signal generator 30 for injecting the reference frequency signal into the transmitting local oscillator 11 and the receiving local oscillator 22 is highly stable. This is because by suppressing the phase noise of the reference frequency signal generator 30 to a low level, it is possible to suppress the phase noise of the transmitting local oscillator 11 and the receiving local oscillator 22 as well.
  • the reference frequency signal generator 30 may be configured by a PLL (Phase Locked Loop).
  • the PLL may have any general circuit configuration and is not limited to a specific one.
  • a 36 MHz signal as a reference frequency is input to the PLL from a crystal oscillator or the like, and this is multiplied by 540 to 600 to obtain a reference frequency around 20 GHz.
  • a signal can be output.
  • the reference frequency signal generator is not limited to the one using the PLL, and may have any configuration as long as it can output the reference frequency signal with high stability.
  • the millimeter waveband radio transceiver apparatus of the present invention configured as described above, separate injection-locked oscillators (the local oscillator for transmission 11 and the local oscillator for reception 22) are provided in each of the transmission unit 10 and the reception unit 20. Therefore, it is possible to individually calibrate each of these two injection locked oscillators. That is, the synchronization frequency range can be adjusted on the transmission side and the reception side so that the injection locking oscillator is locked to the reference frequency signal. Furthermore, if the configuration uses an I / Q component signal, it is possible to individually match the I / Q phase balance in each of the oscillators on the transmission side and the reception side.
  • FIG. 3 is a flowchart for explaining the calibration flow of the millimeter-wave band radio transceiver apparatus according to the present invention.
  • the output of the transmission unit leaks to the reception unit side via the antenna, and thus the received baseband signal may be observed in this state. Further, the output of the transmission unit may be directly input to the reception unit. For example, a signal may be directly input using a direct connection switch 40 as shown in FIG.
  • a predetermined DC component signal may be used as a transmission baseband signal.
  • the sine wave signal of the transmission local oscillator 11 is output from the transmission-side mixer 12.
  • I / Q phase balance matching may be performed in advance before performing calibration so as to lock to the reference frequency signal.
  • the oscillation frequency of one local oscillator is set to an upper limit or a lower limit (step S11). Specifically, for example, using the calibration unit 25 connected to the local oscillator for reception 22, the oscillation frequency f Rx of the local oscillator for reception 22 is set to the upper limit. In this case, the reference frequency signal may not be injected into the reception local oscillator 22 but may be free-runned.
  • the oscillation frequency of the other local oscillator is swept from the lower limit to the upper limit, and an oscillation frequency at which the baseband frequency is constant is detected (step S12).
  • the calibration unit 14 may sweep the signal for controlling the oscillation frequency.
  • step S13 is a graph showing an example of a change in the reception baseband frequency f ⁇ when the oscillation frequency of the transmission local oscillator 11 is swept from the lower limit to the upper limit.
  • the measured f ⁇ changes as shown in FIG. 4, but the range in which f ⁇ is constant is in a state where the local oscillator 11 for transmission is locked to the reference frequency signal of the reference frequency signal generator 30. is there.
  • the oscillation frequency of the other local oscillator is fixed near the center of the certain range (step S13). Specifically, by setting the oscillation frequency of the transmission local oscillator 11 near the center of this certain range, the transmission-side injection-locked oscillator can be easily locked.
  • the oscillation frequency of one local oscillator is swept from the lower limit to the upper limit, and an oscillation frequency at which the baseband frequency becomes constant is detected (step S14).
  • the calibration unit 25 connected to the reception local oscillator 22 is used to sweep the oscillation frequency f Rx of the reception local oscillator 22 from the lower limit to the upper limit, and in the range where f ⁇ is constant.
  • the oscillation frequency of the local oscillator for reception 22 is detected.
  • the oscillation frequency of one local oscillator is fixed near the center of the certain range (step S15). Specifically, like the local oscillator 11 for transmission, by setting the oscillation frequency of the local oscillator 22 for reception near the center of this fixed range, the injection-locked oscillator on the reception side can be easily locked. Become.
  • step S14 when the oscillation frequency of one local oscillator is swept, the oscillation frequency of the other local oscillator may be set to an upper limit or a lower limit, or may be an oscillation frequency fixed in step S13. .
  • f ⁇ baseband frequency after down-converter
  • f ⁇ baseband frequency after down-converter
  • I / Q coupled orthogonal oscillator is used as the local oscillator. That is, in the quadrature oscillator, the I / Q phase balance is matched. At this time, the phase balance of the local oscillators on the transmission side and the reception side is individually adjusted so that the local oscillator can be easily locked. Because it becomes possible to calibrate, it is possible to make a very flexible adjustment.
  • FIG. 5 is a schematic plan view for explaining the arrangement on the circuit board of each component of the millimeter waveband radio transceiver apparatus of the present invention.
  • various detailed wiring patterns of the circuit board are omitted, and each component is shown in a simplified form of a block.
  • the same reference numerals as those in FIG. 1 denote the same parts.
  • an I / Q coupled quadrature oscillator is used as a local oscillator, and as described below, the I / Q phase balance mismatch is reduced by aligning the wiring length.
  • the millimeter-wave band radio transceiver apparatus includes a transmission unit 10 on a circuit board 50, an I / Q coupled transmission quadrature oscillator 51, an I component and a Q component 2.
  • Two transmission mixers 52 and 53 are provided.
  • the reception unit 20 also includes an I / Q coupled reception quadrature oscillator 61 and two reception mixers 62 and 63 for I component and Q component.
  • the wiring lengths from the transmission orthogonal oscillator 51 to the two transmission mixers 52 and 53 are equally symmetrically arranged.
  • the wiring lengths from the receiving quadrature oscillator 61 to the two receiving mixers 62 and 63 are arranged equally symmetrically.
  • the I / Q mismatch due to the difference in the wiring length can be reduced by arranging the wiring lengths to be uniform.
  • millimeter-wave band wireless transmission / reception apparatus of the present invention is not limited to the illustrated example described above, and it is needless to say that various modifications can be made without departing from the gist of the present invention.

Abstract

 位相雑音特性を改善でき、送信部及び受信部の各局部発振器をそれぞれ独立してキャリブレーションすることも可能なミリ波帯無線送受信装置を提供する。 本発明によるミリ波帯無線送受信装置は、送信部10と受信部20と基準周波数信号発生器30とからなる。送信部10は、注入同期型発振器からなる送信用局部発振器11と、該送信用局部発振器からの信号と送信ベースバンド信号とを混合する送信用ミキサ12と、送信用ミキサから送信用アンテナ15への信号を増幅する送信用アンプ13とからなる。受信部20は、受信用アンテナ24からの信号を増幅する受信用アンプ25と、注入同期型発振器からなる受信用局部発振器22と、該受信用局部発振器からの信号と受信用アンプからの信号とを混合し受信ベースバンド信号を出力する受信用ミキサ23とからなる。基準周波数信号発生器30は、送受信用局部発振器11,22に基準周波数信号を注入する。

Description

ミリ波帯無線送受信装置
 本発明はミリ波帯無線送受信装置に関し、特に、注入同期型発振器を用いるミリ波帯無線送受信装置に関する。
 現在、無線送受信装置は、移動体通信等への需要が増大し、これまで以上に通信品質、信頼性の向上が望まれている。ミリ波帯(例えば60GHz帯)の無線送受信装置では、回路構成を簡略化及び低コスト化を図るために、60GHzから直接ベースバンドにダウンコンバート又はアップコンバートするダイレクトコンバージョン方式の無線送受信機が提案されている。このような無線送受信装置は、一般的に高周波信号を増幅するアンプやミキサ回路、局部発振器等で構成されている。これらのうち、搬送波信号を生成する局部発振器からの信号が、無線通信装置の特性を左右するものとなる。したがって、ミリ波帯における無線通信装置の実現にあたっては、局部発振器の位相雑音の改善が課題であった。
 さらに、デジタル変調方式を用いた無線通信装置では、局部発振器は位相が互いに90度ずれたI成分信号とQ成分信号の2相の正弦波出力が用いられる。例えばそれぞれを差動信号として動作させるときには、合計4相もの正弦波出力が必要となる。従来の4相正弦波出力の局部発振器の構成は、例えば出力周波数の2倍の周波数の信号を生成し、これを分周して4相出力とするものや、2相正弦波出力の発振器を2つ用意して組み合わせるもの、ポリフェーズフィルタを用いるもの等があった。これらはI/Q不整合の問題等、何れも技術的な難易度が高かった。
 また、発振器として、注入同期型発振器というものが存在する。例えば特許文献1には、注入された基準周波数信号に同期した整数倍の周波数で発振する注入同期型発振器が開示されている。基準周波数信号の位相雑音が低ければ、これに同期した整数倍の周波数の出力信号の位相雑音も低く抑えることが可能である。
 さらに、I成分信号とQ成分信号の不整合に対してキャリブレーションが不要なダイレクトコンバージョン方式の無線送受信機として、例えば特許文献2に開示のものがある。これは、送信機側及び受信器側にそれぞれ局部発振器が設けられ、送信機側でパイロット信号を付加した上で発信し、受信機側でパイロット信号を抽出し、予め用意されたテンプレートデータと比較して、誤差範囲内に納まるように90度シフト位相器のシフト調整を行って位相を調整することでI/Q不整合を補正するものである。
特開2009-117894号公報 特開2008-205810号公報
 しかしながら、特許文献1のような注入同期型発振器を無線送受信機の局部発振器として用いる場合に、特にI/Q成分信号を用いる方式に適用しようとした場合には、I/Q不整合の問題は解消できなかった。即ち、局部発振器として注入同期型発振器を用いるに過ぎず、I/Q不整合の問題については何ら対処されるものではなかった。
 また、特許文献2に開示のものは、送信機側でパイロット信号を付加したり受信器側でパイロット信号を抽出したりしなければならず、また、予めテンプレートデータも用意しなければいけないものであった。さらに、特許文献2では、局部発振器については特に記載が無く、ミリ波帯のような高周波帯での位相雑音の低減といった観点にも欠けていた。
 本発明は、斯かる実情に鑑み、位相雑音特性を改善でき、さらに、送信部及び受信部の各局部発振器をそれぞれ独立してキャリブレーションすることも可能なミリ波帯無線送受信装置を提供しようとするものである。
 上述した本発明の目的を達成するために、本発明によるミリ波帯無線送受信装置は、注入同期型発振器からなる送信用局部発振器と、該送信用局部発振器からの信号と送信ベースバンド信号とを混合する送信用ミキサと、送信用ミキサから送信用アンテナへの信号を増幅する送信用アンプと、を有する送信部と、受信用アンテナからの信号を増幅する受信用アンプと、注入同期型発振器からなる受信用局部発振器と、該受信用局部発振器からの信号と受信用アンプからの信号とを混合し受信ベースバンド信号を出力する受信用ミキサと、を有する受信部と、送信用局部発振器及び受信用局部発振器に基準周波数信号を注入する基準周波数信号発生器と、を具備するものである。
 さらに、送信用局部発振器と受信用局部発振器とがそれぞれ基準周波数信号発生器からの基準周波数信号にロックするように、送信用局部発振器及び受信用局部発振器を個々に調整するためのキャリブレーション部を具備するものであっても良い。
 また、送信部は直交するI成分とQ成分による変調信号を送信し、受信部は直交するI成分とQ成分による変調信号を受信するものであっても良い。
 また送信部は、I/Q結合型の送信用直交発振器と、I成分用とQ成分用の2つの送信用ミキサを具備し、送信用直交発振器から2つの送信用ミキサまでの配線長が、I/Qミスマッチを軽減するためにそれぞれ等しく対称に配置され、受信部は、I/Q結合型の受信用直交発振器と、I成分用とQ成分用の2つの受信用ミキサを具備し、受信用直交発振器から2つの受信用ミキサまでの配線長が、I/Qミスマッチを軽減するためにそれぞれ等しく対称に配置されるものであっても良い。
 また、基準周波数信号発生器は、PLLを用いたものであっても良い。
 また、送信部及び受信部は、ダイレクトコンバージョン方式、スーパーヘテロダイン方式、又はスライディングIF方式の何れかであれば良い。
 本発明のミリ波帯無線送受信装置には、位相雑音特性を改善でき、さらに、送信部及び受信部の各局部発振器をそれぞれ独立してキャリブレーションすることも可能であるという利点がある。
図1は、本発明のミリ波帯無線送受信装置の概略平面図である。 図2は、本発明のミリ波帯無線送受信装置の送信用局部発振器の回路構成の一例である。 図3は、本発明のミリ波帯無線送受信装置のキャリブレーションの流れを説明するためのフロー図である。 図4は、本発明のミリ波帯無線送受信装置の送信用局部発振器の発振周波数を下限から上限までスイープしたときの、受信ベースバンド周波数の変化の一例を表すグラフである。 図5は、本発明のミリ波帯無線送受信装置の各構成要素の回路基板上での配置を説明するための概略平面図である。
 以下、本発明を実施するための形態を図示例と共に説明する。図1は、本発明のミリ波帯無線送受信装置の概略平面図である。図示の通り、本発明のミリ波帯無線送受信装置は、送信部10と、受信部20と、基準周波数信号発生器30とから主に構成されている。そして、基準周波数信号発生器30による基準周波数信号は、後述の送信部10の送信用局部発振器11及び受信部20の受信用局部発振器22のそれぞれに注入されている。なお、送信部10及び受信部20は、基本的に同じ回路構成を用いれば良く、以下の説明でも基本的に送信部10について詳細に説明し、受信部20については送信部10と異なる点を中心に説明する。また、以下の図示例では送信部10及び受信部20は、局部発振器の周波数と搬送波との周波数が略同一のダイレクトコンバージョン方式を用いた無線送受信装置を中心に説明するが、本発明はこれに限定されず、送信部及び受信部のそれぞれに注入同期型発振器からなる局部発振器を用いた構成であれば、中間周波数増幅段(IF段)を設けても良い。このIF段の方式はスーパーヘテロダイン方式やスライディングIF方式等を用いても良く、特定の方式に限定されるものでもない。さらに、図1に示されるミリ波帯無線送受信装置では、送信ベースバンド信号や受信ベースバンド信号がそれぞれ1つしか示されていないが、本発明はこれに限定されず、送信部と受信部にそれぞれ局部発振器が設けられるものであれば、送信部10が例えば直交するI成分とQ成分による変調信号を送信し、受信部20が直交するI成分とQ成分による変調信号を受信するような構成としても良い。後述の具体的な局部発振器の回路構成においては、このようなI/Q成分信号を出力するI/Q結合型の直交発振器を例示した。
 さて、本発明のミリ波帯無線送受信装置において、送信部10は、送信用局部発振器11と、送信用ミキサ12と、送信用アンプ13とから主に構成されている。送信用局部発振器11は、注入同期型発振器(Injection Locked Oscillator)からなるものである。送信用局部発振器11を構成する注入同期型発振器は、後述の基準周波数信号発生器30から注入される基準周波数信号を逓倍して高周波を出力するものである。ダイレクトコンバージョン方式の場合には、送信用局部発振器11からの出力は、ミリ波帯の信号となる。
 図2に、送信用局部発振器11の回路構成の一例を示す。この例では、4相正弦波出力が可能な注入同期型発振器を示した。即ち、位相が互いに90度ずれたI成分信号とQ成分信号を発信するI/Q結合型の直交発振器であり、各信号それぞれを差動信号として動作させる場合の回路構成の一例である。なお、本発明のミリ波帯無線送受信装置においては、図示例のような4相正弦波出力が可能な注入同期型発振器には限定されず、注入同期型発振器を用いてミリ波帯の信号を出力できるものであれば、いかなる構成であっても良い。また、I/Q成分信号を出力する場合、I/Q結合型直交発振器にも限定されず、例えばI成分信号発振用の局部発振器とQ成分信号生成用の移相器とを組み合わせてI/Q成分信号を出力するものであっても良い。
 さて、図示の通り、送信用局部発振器11は、差動信号用にINJとINJの2つの注入端子を有しており、ここに基準周波数信号発生器30の出力が入力される。図示例の注入同期型発振器は、90度位相が異なるI成分信号とQ成分信号が出力されるI/Q結合型発振器である。このような構成の注入同期型発振器では、I成分信号とQ成分信号の2つの信号により全体の出力周波数が決まる。例えば製造上のばらつき等により、I成分信号用の発振器とQ成分信号用の発振器にミスマッチが生じた場合、それぞれの信号の発振周波数が変わり、I/Qの位相バランスにミスマッチが生じ得る。そこで、例えばI-Q間の結合を一旦切り、個々の発振器をそれぞれ発振させた上でI成分信号用の発振周波数とQ成分信号用の発振周波数を比べ、両者が等しくなるように周波数制御信号を調整することでI/Qの位相バランスのマッチングを図ることも可能である。この個々の発振周波数の調整には、例えばDAC(デジタル-アナログ変換器)を用い、デジタル制御信号により出力されるアナログ信号により発振器のバイアスを調整することで、発振周波数が調整されれば良い。
 このように構成される注入同期型発振器からなる送信用局部発振器11は、基準周波数信号発生器30からの出力を注入ロック信号として用いてN逓倍するものとなる。例えば基準周波数信号発生器30が20GHzの基準周波数信号を出力する場合、これを注入同期型発振器に注入すると、3逓倍して60GHzの信号を生成することが可能となる。この場合、送信用局部発振器11は、例えばアンロック状態で57GHz~66GHzの周波数の信号を出力するように調整されれば良い。このように調整することで、基準周波数信号にロックした信号を出力することが可能となる。
 ここで、図1に示されるように、送信用局部発振器11には、基準周波数信号発生器30からの基準周波数信号に送信用局部発振器11がロックするように調整するキャリブレーション部14が接続されていても良い。キャリブレーション部14は、例えばDAC(デジタル-アナログ変換器)で構成され、デジタル制御信号により出力されるアナログ信号により発振器のバイアスを調整することで、発振周波数が調整されれば良い。
 そして、送信部10の送信用ミキサ12は、送信用局部発振器11からの信号と送信ベースバンド信号とを混合するものである。送信用局部発振器11からの信号、即ち搬送波に、送信ベースバンド信号、即ち、送信したい情報を重畳(搬送波+送信情報)するために、送信用ミキサ12が用いられる。送信用ミキサ12は、一般的な回路構成のものであれば良く、特定のものに限定はされない。
 そして、送信用アンプ13は、送信用ミキサ12から送信用アンテナ15への信号を増幅するものである。これにより、送信部10の最終段で所定の送出電力を得るように構成している。送信用アンプ13についても、一般的な回路構成のものであれば良く、特定のものに限定はされない。
 このように構成された送信部10により、アップコンバージョンされた信号が送信用アンテナ15から放射される。
 そして、再度図1を参照すると、受信部20は、受信用アンプ21と、受信用局部発振器22と、受信用ミキサ23とから主に構成されている。受信用アンプ21は、受信用アンテナ24からの信号を増幅するものである。受信用アンテナ24により受信された信号が微弱な場合に特に有効なものであるが、入力信号が十分に大きい場合等には、受信部20の初段でのアンプは省略可能である。受信用アンプ21についても送信用アンプ13と同様、一般的な回路構成のものであれば良く、特定のものに限定はされない。
 また、受信用局部発振器22は、基本的に送信用局部発振器11と同じ回路構成のものを用いれば良い。即ち、送信部10及び受信部20はそれぞれが対応した方式で構成されるため、送信用局部発振器11が例えば図2に示されるような、4相正弦波出力が可能な注入同期型発振器であれば、受信用局部発振器22も図2に示されるような、4相正弦波出力が可能な注入同期型発振器であれば良い。
 そして、受信用ミキサ23は、受信用局部発振器22からの信号と受信用アンプ21からの信号とを混合し、受信ベースバンド信号を出力するものである。送信用局部発振器11と受信用局部発振器22は、共に同じ基準周波数信号発生器30からの基準周波数信号が注入されているため、受信用ミキサ23を用いて、受信用アンプ21からの信号から、受信用局部発振器22からの信号、即ち搬送波を差分することで、送信された情報である受信ベースバンド信号のみを抽出することができる。
 ここで、図1に示されるように、受信用局部発振器22にも、送信用局部発振器11と同様、基準周波数信号発生器30からの基準周波数信号に受信用局部発振器22がロックするように調整するキャリブレーション部25が接続されても良い。キャリブレーション部25は、例えばDAC(デジタル-アナログ変換器)で構成され、デジタル制御信号により出力されるアナログ信号により発振器のバイアスを調整することで発振周波数が調整されれば良い。
 このように構成された受信部20により、ダウンコンバージョンされた受信ベースバンド信号が受信される。
 ここで、送信用局部発振器11及び受信用局部発振器22に基準周波数信号を注入する基準周波数信号発生器30は、高安定なものが好ましい。基準周波数信号発生器30の位相雑音を低く抑えることで、送信用局部発振器11及び受信用局部発振器22についても位相雑音を低く抑えることが可能となるからである。例えば、基準周波数信号発生器30は、PLL(Phase Locked Loop)から構成されれば良い。PLLについては、一般的な回路構成のものであれば良く、特定のものに限定はされない。例えば、基準周波数信号として20GHz帯の信号をPLLから出力するために、例えば基準周波数として36MHzの信号を水晶発振器等からPLLへ入力し、これを540~600逓倍することで、20GHz前後の基準周波数信号を出力することが可能となる。なお、本発明では、基準周波数信号発生器はPLLを用いたものに限定されるものではなく、高安定に基準周波数信号を出力可能なものであれば、いかなる構成であっても構わない。
 このように構成された本発明のミリ波帯無線送受信装置では、送信部10と受信部20のそれぞれに別個の注入同期型発振器(送信用局部発振器11、受信用局部発振器22)が設けられているため、これらの2つの注入同期型発振器をそれぞれ個々にキャリブレーションすることが可能となる。即ち、送信側と受信側で、基準周波数信号に注入同期型発振器がロックするように、それぞれの同期周波数範囲の調整が可能となる。さらに、I/Q成分信号を用いる構成であれば、送信側と受信側のそれぞれの発振器において、I/Qの位相バランスのマッチングを個々に図ることも可能となる。
 以下、図3を用いて、本発明のミリ波帯無線送受信装置において、基準周波数信号にロックするようにキャリブレーションを行う際の流れについて説明する。図3は、本発明のミリ波帯無線送受信装置のキャリブレーションの流れを説明するためのフロー図である。なお、キャリブレーションを行う場合には、送信部の出力はアンテナを介して受信部側に漏れるため、この状態で受信ベースバンド信号を観察しても良い。さらに、送信部の出力を直接受信部に入力しても良い。これは、例えば図1に示されるような、直接接続用のスイッチ40を用いて、直接的に信号を入力するようにすれば良い。また、キャリブレーションを行う際には、送信ベースバンド信号として所定のDC成分信号を用いれば良い。これにより、送信側ミキサ12から送信用局部発振器11の正弦波信号が出力されるようになる。なお、I/Q成分信号を用いる構成であれば、基準周波数信号にロックするようにキャリブレーションを行う前に、予めI/Qの位相バランスのマッチングを行っておけば良い。
 図示の通り、まず、一方の局部発振器の発振周波数を上限又は下限に設定する(ステップS11)。具体的には、例えば受信用局部発振器22に接続されるキャリブレーション部25を用いて、受信用局部発振器22の発振周波数fRxを上限に設定する。この際には、受信用局部発振器22には基準周波数信号は注入せず、フリーランさせておいても良い。次に、他方の局部発振器の発振周波数を下限から上限までスイープし、ベースバンド周波数が一定となる発振周波数を検出する(ステップS12)。具体的には、送信用局部発振器11に基準周波数信号を注入した状態で、送信用局部発振器11に接続されるキャリブレーション部14を用いて、送信用局部発振器11の発振周波数fTxを下限から上限までスイープし、ベースバンド周波数fΔ=|fRx-fTx|を測定し、fΔが一定となる範囲の送信用局部発振器11の発振周波数を検出する。発振周波数fTxを下限から上限までスイープするには、キャリブレーション部14により発振周波数を制御する信号をスイープすれば良い。図4は、送信用局部発振器11の発振周波数を下限から上限までスイープしたときの、受信ベースバンド周波数fΔの変化の一例を表すグラフである。測定されたfΔは、図4に示されるように変化するが、fΔが一定となる範囲が、送信用局部発振器11が基準周波数信号発生器30の基準周波数信号にロックしている状態である。次に、この一定の範囲の中心付近に他方の局部発振器の発振周波数を固定する(ステップS13)。具体的には、送信用局部発振器11の発振周波数をこの一定の範囲の中心付近に設定することで、送信側の注入同期型発振器が容易にロックするようになる。そして、今度は一方の局部発振器の発振周波数を下限から上限までスイープし、ベースバンド周波数が一定となる発振周波数を検出する(ステップS14)。具体的には、受信用局部発振器22に接続されるキャリブレーション部25を用いて、受信用局部発振器22の発振周波数fRxを下限から上限までスイープし、同様にfΔが一定となる範囲の受信用局部発振器22の発振周波数を検出する。そして最後に、この一定の範囲の中心付近に一方の局部発振器の発振周波数を固定する(ステップS15)。具体的には、送信用局部発振器11と同様に、この一定の範囲の中心付近に受信用局部発振器22の発振周波数を設定することで、受信側の注入同期型発振器が容易にロックするようになる。
 なお、上述の具体例では、一方の局部発振器を受信用局部発振器22とし、他方の局部発振器を送信用局部発振器11として説明したが、本発明のミリ波帯無線送受信装置ではこれに限定されず、逆であっても勿論良い。また、ステップS14において、一方の局部発振器の発振周波数をスイープする際には、他方の局部発振器の発振周波数は上限又は下限に設定されても良いし、ステップS13において固定された発振周波数としても良い。
 このように、本発明のミリ波帯無線送受信装置では、局部発振器が送信側及び受信側にそれぞれ1個ずつあるため、その発振周波数の差であるfΔ(ダウンコンバータ後のベースバンド周波数)を観察してキャリブレーションできるため、高周波を扱う必要がなく、安価なカウンタ等で容易に観察可能である。また、局部発振器として例えばI/Q結合型の直交発振器が用いられる場合にも有利となる。即ち、直交発振器では、I/Qの位相バランスのマッチングを図るが、この際、送信側と受信側のそれぞれの局部発振器の位相バランスを個々に調整し、その上で局部発振器がロックしやすいようにキャリブレーションできるようになるため、非常に柔軟な調整が可能となる。
 次に、本発明のミリ波帯無線送受信装置の回路基板上での配置について説明する。図5は、本発明のミリ波帯無線送受信装置の各構成要素の回路基板上での配置を説明するための概略平面図である。なお、図示例では、回路基板の種々の詳細な配線パターンは省略し、また、各構成要素はブロックで簡略化して示している。図中、図1と同一の符号を付した部分は同一物を表わしている。この例は、局部発振器としてI/Q結合型直交発振器を用いた例であり、以下に説明する通り、配線長を揃えることで、I/Qの位相バランスのミスマッチの軽減を図るものである。即ち、図示例では、本発明のミリ波帯無線送受信装置は、回路基板50上に、送信部10が、I/Q結合型の送信用直交発振器51と、I成分用とQ成分用の2つの送信用ミキサ52,53を具備している。また、受信部20についても、I/Q結合型の受信用直交発振器61と、I成分用とQ成分用の2つの受信用ミキサ62,63を具備している。そして、送信用直交発振器51から2つの送信用ミキサ52,53までの配線長が、それぞれ等しく対称に配置されている。同様に、受信用直交発振器61から2つの受信用ミキサ62,63までの配線長が、それぞれ等しく対称に配置されている。このように、I成分用とQ成分用のミキサがそれぞれある場合には、配線長を揃えるように配置されることで、配線長の違いによるI/Qミスマッチを軽減することが可能となる。
 なお、本発明のミリ波帯無線送受信装置は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
 10  送信部
 11  送信用局部発振器
 12  送信用ミキサ
 13  送信用アンプ
 14  キャリブレーション部
 15  送信用アンテナ
 20  受信部
 21  受信用アンプ
 22  受信用局部発振器
 23  受信用ミキサ
 24  受信用アンテナ
 25  キャリブレーション部
 30  基準周波数信号発生器
 40  スイッチ
 50  回路基板
 51  送信用直交発振器
 52,53  送信用ミキサ
 61  受信用直交発振器
 62,63  受信用ミキサ

Claims (6)

  1.  ミリ波帯の搬送波を用いるミリ波帯無線送受信装置であって、該ミリ波帯無線送受信装置は、
     注入同期型発振器からなる送信用局部発振器と、該送信用局部発振器からの信号と送信ベースバンド信号とを混合する送信用ミキサと、送信用ミキサから送信用アンテナへの信号を増幅する送信用アンプと、を有する送信部と、
     受信用アンテナからの信号を増幅する受信用アンプと、注入同期型発振器からなる受信用局部発振器と、該受信用局部発振器からの信号と受信用アンプからの信号とを混合し受信ベースバンド信号を出力する受信用ミキサと、を有する受信部と、
     送信用局部発振器及び受信用局部発振器に基準周波数信号を注入する基準周波数信号発生器と、
     を具備することを特徴とするミリ波帯無線送受信装置。
  2.  請求項1に記載のミリ波帯無線送受信装置であって、さらに、送信用局部発振器と受信用局部発振器とがそれぞれ基準周波数信号発生器からの基準周波数信号にロックするように、送信用局部発振器及び受信用局部発振器を個々に調整するためのキャリブレーション部を具備することを特徴とするミリ波帯無線送受信装置。
  3.  請求項1又は請求項2に記載のミリ波帯無線送受信装置において、前記送信部は直交するI成分とQ成分による変調信号を送信し、受信部は直交するI成分とQ成分による変調信号を受信することを特徴とするミリ波帯無線送受信装置。
  4.  請求項3に記載のミリ波帯無線送受信装置において、
     前記送信部は、I/Q結合型の送信用直交発振器と、I成分用とQ成分用の2つの送信用ミキサを具備し、送信用直交発振器から2つの送信用ミキサまでの配線長が、I/Qミスマッチを軽減するためにそれぞれ等しく対称に配置され、
     前記受信部は、I/Q結合型の受信用直交発振器と、I成分用とQ成分用の2つの受信用ミキサを具備し、受信用直交発振器から2つの受信用ミキサまでの配線長が、I/Qミスマッチを軽減するためにそれぞれ等しく対称に配置される、
     ことを特徴とするミリ波帯無線送受信装置。
  5.  請求項1乃至請求項4の何れかに記載のミリ波帯無線送受信装置において、前記基準周波数信号発生器は、PLLを用いたものであることを特徴とするミリ波帯無線送受信装置。
  6.  請求項1乃至請求項5の何れかに記載のミリ波帯無線送受信装置において、前記送信部及び受信部は、ダイレクトコンバージョン方式、スーパーヘテロダイン方式、又はスライディングIF方式の何れかであることを特徴とするミリ波帯無線送受信装置。
PCT/JP2011/053402 2011-02-17 2011-02-17 ミリ波帯無線送受信装置 WO2012111131A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/985,657 US8971389B2 (en) 2011-02-17 2011-02-17 Millimeter-wave band radio transceiver device
JP2012557732A JP5651824B2 (ja) 2011-02-17 2011-02-17 ミリ波帯無線送受信装置
EP11858730.2A EP2677667A4 (en) 2011-02-17 2011-02-17 Millimeter wavelength range wireless transceiver device
KR1020137024814A KR101651496B1 (ko) 2011-02-17 2011-02-17 밀리미터파 대역 무선 송수신 장치
PCT/JP2011/053402 WO2012111131A1 (ja) 2011-02-17 2011-02-17 ミリ波帯無線送受信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/053402 WO2012111131A1 (ja) 2011-02-17 2011-02-17 ミリ波帯無線送受信装置

Publications (1)

Publication Number Publication Date
WO2012111131A1 true WO2012111131A1 (ja) 2012-08-23

Family

ID=46672093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053402 WO2012111131A1 (ja) 2011-02-17 2011-02-17 ミリ波帯無線送受信装置

Country Status (5)

Country Link
US (1) US8971389B2 (ja)
EP (1) EP2677667A4 (ja)
JP (1) JP5651824B2 (ja)
KR (1) KR101651496B1 (ja)
WO (1) WO2012111131A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014150615A1 (en) * 2013-03-15 2014-09-25 Qualcomm Incorporated Programmable frequency divider for local oscillator generation
US8971389B2 (en) 2011-02-17 2015-03-03 Tokyo Institute Of Technology Millimeter-wave band radio transceiver device
EP2846468A1 (en) * 2013-09-10 2015-03-11 Fujitsu Limited High-frequency signal generation circuit, transmitter, receiver, and transmitter-receiver systems which use a plurality of injection-locked oscillators
JP2015154486A (ja) * 2014-02-13 2015-08-24 富士通株式会社 信号生成システム及び方法
WO2021191970A1 (ja) * 2020-03-23 2021-09-30 三菱電機株式会社 送受信機

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9603555B2 (en) 2010-05-17 2017-03-28 Industrial Technology Research Institute Motion/vibration detection system and method with self-injection locking
US9375153B2 (en) * 2010-05-17 2016-06-28 Industrial Technology Research Institute Motion/vibration sensor
US9331632B2 (en) * 2012-04-18 2016-05-03 Qualcomm Incorporated Integrated circuit for mixing millimeter-wavelength signals
US9584231B2 (en) * 2014-10-30 2017-02-28 Samsung Electronics Co., Ltd. Integrated two dimensional active antenna array communication system
KR101704688B1 (ko) * 2014-12-02 2017-02-10 전자부품연구원 밀리미터파 대역 무선 송수신 장치
KR101704689B1 (ko) * 2014-12-02 2017-02-10 전자부품연구원 밀리미터파 모듈레이션 장치
CN106501742B (zh) * 2016-09-28 2019-03-08 北京无线电计量测试研究所 一种基于光电融合技术的微波毫米波相位噪声标准装置
WO2018135853A1 (ko) * 2017-01-20 2018-07-26 엘지전자 주식회사 출력 신호를 전송하는 방법 및 그 방법을 수행하는 분산형 안테나 시스템
KR102010434B1 (ko) 2017-12-29 2019-08-14 성균관대학교산학협력단 주입 동기 주파수 체배기 및 그의 주파수 체배 방법
US20190356464A1 (en) * 2018-05-21 2019-11-21 Phazr, Inc. Methods and Systems for Communication Using Dual Connectivity Wireless Transceiver
KR20210060633A (ko) 2018-10-12 2021-05-26 스카이워크스 솔루션즈, 인코포레이티드 주입-고정 발진기를 트랜시버 어레이에 통합하기 위한 시스템 및 방법
TWI723824B (zh) * 2020-03-30 2021-04-01 國立高雄科技大學 無線鎖頻迴路之生理感測雷達
TWI741875B (zh) * 2020-11-12 2021-10-01 國立中山大學 頻率位移式自我注入鎖定雷達

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006094333A (ja) * 2004-09-27 2006-04-06 Mitsubishi Electric Corp 2周波発振器およびレーダ装置
JP2008205810A (ja) 2007-02-20 2008-09-04 Matsushita Electric Works Ltd ダイレクトコンバージョン方式の無線送受信装置
JP2009117894A (ja) 2007-11-01 2009-05-28 Univ Of Tokyo 注入同期型発振器
JP2010273283A (ja) * 2009-05-25 2010-12-02 Mitsubishi Electric Corp 送受信装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5465418A (en) * 1993-04-29 1995-11-07 Drexel University Self-oscillating mixer circuits and methods therefor
US6308048B1 (en) * 1997-11-19 2001-10-23 Ericsson Inc. Simplified reference frequency distribution in a mobile phone
JP3952610B2 (ja) * 1998-09-30 2007-08-01 株式会社デンソー Fmcwレーダ装置の高周波回路及びfmcwレーダ装置
JP3796372B2 (ja) * 1999-06-07 2006-07-12 シャープ株式会社 ミリ波帯通信装置
JP3564480B2 (ja) * 2002-02-18 2004-09-08 独立行政法人情報通信研究機構 複数の無線通信端末間で通信を行う無線通信方法及びシステム
JP4040034B2 (ja) * 2004-05-28 2008-01-30 富士通株式会社 発振器および半導体装置
WO2007015296A1 (ja) * 2005-08-03 2007-02-08 National Institute Of Information And Communications Technology Incorporated Administrative Agency 無線通信システム
JP2008236557A (ja) * 2007-03-22 2008-10-02 Toshiba Corp 周波数シンセサイザ及びこれを用いた無線通信装置
JP4908284B2 (ja) * 2007-03-28 2012-04-04 ルネサスエレクトロニクス株式会社 電圧制御発振器
WO2010046957A1 (ja) 2008-10-24 2010-04-29 株式会社アドバンテスト 直交振幅復調器、復調方法およびそれらを利用した半導体装置および試験装置
US9374100B2 (en) * 2009-07-01 2016-06-21 Qualcomm Incorporated Low power LO distribution using a frequency-multiplying subharmonically injection-locked oscillator
JP2011018994A (ja) 2009-07-07 2011-01-27 Kddi Corp Δς変換器を用いて複数の帯域のrf信号を同時に送信する送信機及びプログラム
JP5446552B2 (ja) * 2009-07-30 2014-03-19 ソニー株式会社 無線通信装置、回転構造体、電子機器
JP2011103603A (ja) * 2009-11-11 2011-05-26 Sony Corp 無線送信装置、無線受信装置、無線通信システム及び無線通信方法
EP2677667A4 (en) 2011-02-17 2017-05-10 Tokyo Institute of Technology Millimeter wavelength range wireless transceiver device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006094333A (ja) * 2004-09-27 2006-04-06 Mitsubishi Electric Corp 2周波発振器およびレーダ装置
JP2008205810A (ja) 2007-02-20 2008-09-04 Matsushita Electric Works Ltd ダイレクトコンバージョン方式の無線送受信装置
JP2009117894A (ja) 2007-11-01 2009-05-28 Univ Of Tokyo 注入同期型発振器
JP2010273283A (ja) * 2009-05-25 2010-12-02 Mitsubishi Electric Corp 送受信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2677667A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8971389B2 (en) 2011-02-17 2015-03-03 Tokyo Institute Of Technology Millimeter-wave band radio transceiver device
WO2014150615A1 (en) * 2013-03-15 2014-09-25 Qualcomm Incorporated Programmable frequency divider for local oscillator generation
US9106234B2 (en) 2013-03-15 2015-08-11 Qualcomm Incorporated Programmable frequency divider for local oscillator generation
CN105191126A (zh) * 2013-03-15 2015-12-23 高通股份有限公司 用于本地振荡器生成的可编程分频器
EP2974017A1 (en) * 2013-03-15 2016-01-20 Qualcomm Incorporated Programmable frequency divider for local oscillator generation
EP2846468A1 (en) * 2013-09-10 2015-03-11 Fujitsu Limited High-frequency signal generation circuit, transmitter, receiver, and transmitter-receiver systems which use a plurality of injection-locked oscillators
JP2015056673A (ja) * 2013-09-10 2015-03-23 富士通株式会社 高周波信号発生回路、送信装置、受信装置及び送受信装置
US9362961B2 (en) 2013-09-10 2016-06-07 Fujitsu Limited High-frequency signal generation circuit, transmitter, and receiver
JP2015154486A (ja) * 2014-02-13 2015-08-24 富士通株式会社 信号生成システム及び方法
WO2021191970A1 (ja) * 2020-03-23 2021-09-30 三菱電機株式会社 送受信機

Also Published As

Publication number Publication date
JP5651824B2 (ja) 2015-01-14
US8971389B2 (en) 2015-03-03
KR20140006043A (ko) 2014-01-15
JPWO2012111131A1 (ja) 2014-07-03
US20140016731A1 (en) 2014-01-16
EP2677667A4 (en) 2017-05-10
EP2677667A1 (en) 2013-12-25
KR101651496B1 (ko) 2016-08-26

Similar Documents

Publication Publication Date Title
JP5651824B2 (ja) ミリ波帯無線送受信装置
US5822366A (en) Transceiver and method for generating and processing complex I/Q-signals
JP4499739B2 (ja) マルチモードおよびマルチバンドrf送受信機ならびに関連する通信方法
EP2843839A1 (en) Circuit and method for suppressing a phase mismatch between the outputs of a plurality of phase synchronisation circuits in an electronic circuit
US20080318620A1 (en) Multi-mode modulator
US20070149143A1 (en) Local oscillation frequency generation apparatus and wireless transceiver having the same
US9762276B2 (en) Wireless transmission system
US7860196B2 (en) Method and circuit for estimating in-phase/quadrature signal amplitude imbalance
US10778200B2 (en) Wide-band 360 degree phase shifter utilizing right-hand and left-hand transmission line switches for RF communications
EP2963825B1 (en) Oscillator circuits and method to compensate the frequency pulling
CN101816129B (zh) 具有减少的耦合的多路传输设备
CN112514245A (zh) 宽频带毫米波前端集成电路
US8306484B1 (en) Direct-conversion transmitter with resistance to local oscillator pulling effects
US9654326B2 (en) Wireless transceiver with TX/FBRX sequential QMC calibration using separate/shared PLLS
US20090253398A1 (en) Modulation and upconversion techniques
US7333554B2 (en) Communication system with frequency modulation and a single local oscillator
US20120282866A1 (en) Radio transceiver architecture
JP2004513551A (ja) Iq変調システム並びに個別的な位相パス及び信号パスを使用する方法
US20090280752A1 (en) Local oscillator generator architecture using a wide tuning range oscillator
Kondo et al. A 60-GHz CMOS direct-conversion transmitter with injection-locking I/Q calibration
JP2012227739A (ja) 受信装置及び受信方法
JP4571591B2 (ja) 無線通信回路
CN117792421A (zh) 使用包络检测器进行杂散发射检测和校准
KR20080098110A (ko) Tdd 방식의 이동통신용 송수신신호 변환장치
JP2005223429A (ja) レトロディレクティブアンテナ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858730

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2012557732

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011858730

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137024814

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13985657

Country of ref document: US