WO2010046957A1 - 直交振幅復調器、復調方法およびそれらを利用した半導体装置および試験装置 - Google Patents

直交振幅復調器、復調方法およびそれらを利用した半導体装置および試験装置 Download PDF

Info

Publication number
WO2010046957A1
WO2010046957A1 PCT/JP2008/003036 JP2008003036W WO2010046957A1 WO 2010046957 A1 WO2010046957 A1 WO 2010046957A1 JP 2008003036 W JP2008003036 W JP 2008003036W WO 2010046957 A1 WO2010046957 A1 WO 2010046957A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
terminal
carrier signal
quadrature
quadrature amplitude
Prior art date
Application number
PCT/JP2008/003036
Other languages
English (en)
French (fr)
Inventor
小島昭二
Original Assignee
株式会社アドバンテスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドバンテスト filed Critical 株式会社アドバンテスト
Priority to PCT/JP2008/003036 priority Critical patent/WO2010046957A1/ja
Priority to US12/670,111 priority patent/US20110018626A1/en
Priority to JP2010534611A priority patent/JPWO2010046957A1/ja
Publication of WO2010046957A1 publication Critical patent/WO2010046957A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/362Modulation using more than one carrier, e.g. with quadrature carriers, separately amplitude modulated
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1458Double balanced arrangements, i.e. where both input signals are differential
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1466Passive mixer arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D2200/00Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
    • H03D2200/0001Circuit elements of demodulators
    • H03D2200/0019Gilbert multipliers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D2200/00Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
    • H03D2200/0041Functional aspects of demodulators
    • H03D2200/0082Quadrature arrangements

Definitions

  • the present invention relates to digital data transmission technology.
  • the digital wireless communication system transmits / receives multi-bit information on a carrier signal. That is, the data rate is not directly limited to the carrier frequency.
  • a QAM (Quadrature ⁇ ⁇ Amplitude Modulation) transmission method which is the most basic orthogonal modulation / demodulation method can realize four-value transmission with one channel.
  • 64QAM 64-value transmission can be realized with one carrier. That is, the transfer capacity can be improved by such a multi-level modulation method without increasing the carrier frequency.
  • Such a modulation / demodulation method is not limited to wireless communication but can be performed by wired communication, and has already begun to be applied as a PAM (Pulse Amplitude Modulation), QPSK (Quadrature Phase Shift Keying), or DQPSK (Differential QPSK) method.
  • PAM Pulse Amplitude Modulation
  • QPSK Quadrature Phase Shift Keying
  • DQPSK Downifferential QPSK
  • the conventional quadrature amplitude modulator / demodulator has to be configured using a high-speed device, it is not easy to design, or a high-frequency bipolar process or a Bi-CMOS process is required, which increases the manufacturing cost of the device. was there.
  • the present invention has been made in view of such a situation, and one of its exemplary purposes is to provide a quadrature amplitude demodulator that can be easily implemented.
  • An aspect of the present invention relates to a quadrature amplitude demodulator that demodulates a modulated signal subjected to quadrature amplitude modulation.
  • the quadrature amplitude demodulator includes an oscillator that generates a rectangular wave, a trapezoidal wave, or an in-phase carrier signal having a waveform similar to these, and a quadrature carrier signal whose phase is shifted by 1 ⁇ 4 period with respect to the in-phase carrier signal, and a modulated signal.
  • the first and second mixers for mixing the in-phase carrier signal and the quadrature carrier signal, respectively, and the output signals of the first and second mixers are integrated for a predetermined period according to the period of the in-phase carrier signal and the quadrature carrier signal, respectively.
  • First and second integrators, and first and second A / D converters for converting the outputs of the first and second integrators into digital values, respectively.
  • a rectangular wave, a trapezoidal wave, or a similar waveform is also understood as a signal having a constant value at the peak and bottom of the period.
  • a rectangular wave or trapezoidal wave is used instead of a sine wave (cosine wave) as a demodulation carrier signal (also referred to as an RF signal), and a mixed (down-converted) signal is converted into a symbol period or a carrier period.
  • Baseband components can be extracted.
  • the quadrature amplitude demodulator further includes first and second sample and hold circuits that sample and hold the output signals of the first and second integrators at intervals between symbols that are temporally adjacent to each other. May be.
  • the first and second A / D converters may convert the output signals of the first and second sample and hold circuits into digital values, respectively.
  • the modulated signal, the in-phase carrier signal, and the quadrature carrier signal are each in a differential format, and the first and second mixers may each be a Gilbert cell mixer that mixes the modulated signal and the corresponding carrier signal.
  • This configuration is compatible with a CMOS (Complementary Metal Metal Oxide Semiconductor) process.
  • Each of the first and second integrators includes a first capacitor provided between a line through which the output signals of the first and second mixers propagate and a fixed voltage terminal, and a break between symbols that are temporally adjacent to each other.
  • a first switch that initializes the charge of the first capacitor. This configuration is compatible with a CMOS (Complementary Metal Metal Oxide Semiconductor) process.
  • CMOS Complementary Metal Metal Oxide Semiconductor
  • the output signals of the first and second mixers may be in a differential format.
  • a pair of the first integrator and the first sample and hold circuit, and a pair of the second integrator and the second sample and hold circuit, respectively, are first input terminals to which a first polarity signal of the differential output signal of the corresponding mixer is input.
  • a second switch in which a first terminal is connected to the first input terminal, a predetermined fixed voltage is input to the second terminal, a third terminal is connected to one end of the second capacitor, and the first, second,
  • a third switch including a third terminal, wherein the second terminal is connected to the first input terminal, a predetermined fixed voltage is input to the first terminal, and the third terminal is connected to one end of the third capacitor; , Second and third terminals, the second terminal is connected to the output terminal, and the first end Is connected to the second input terminal, the third terminal is connected to the other end of the second capacitor, the first switch, the second switch, the third terminal, the first terminal is connected to the output terminal,
  • a fifth switch in which the second terminal is connected to the second input terminal, the third terminal is connected to the other end of the third capacitor, one end is connected to the output terminal, and a fixed potential is applied to the other end And a switch.
  • the second to fifth switches have a first state in which the first terminal and the third terminal are in conduction and a second state in which the second terminal and the third terminal are in conduction for each break between adjacent symbols in time.
  • the sixth switch may be turned on for a predetermined time prior to the symbol switching. In this case, the circuit area can be reduced.
  • Each of the first and second A / D converters includes a plurality of comparators that compare the output signals of the corresponding integrators with threshold voltages set to the respective integrators, and an encoder that receives and encodes the output signals of the plurality of comparators.
  • a latch circuit that latches at least one of the outputs of the plurality of comparators or the outputs of the encoder. In this case, since it is not necessary to provide a sample-and-hold circuit before the A / D converter, the circuit area can be reduced.
  • Each of the first and second mixers has a first input terminal to which a first polarity signal of a differential modulated signal is input, and a second input terminal to which a second polarity signal of the modulated signal is input.
  • the first and second gates provided in series between the first and second input terminals and the first and second input terminals provided in parallel with the path formed by the first and second gates in series.
  • a differential amplifier that differentially amplifies the potential at the connection point of the third and fourth gates, the connection point of the first and second gates, and the potential of the connection point of the third and fourth gates. .
  • the pair of first and third gates and the pair of second and fourth gates may be repeatedly turned on and off in a complementary manner. This configuration is also compatible with the CMOS process.
  • the first and second integrators integrate one cycle of the carrier signal and the output signals of the first and second mixers, respectively. Also good.
  • the first and second integrators respectively output n periods of the carrier signal and output signals of the first and second mixers. You may integrate.
  • Another aspect of the present invention relates to a test apparatus for testing a quadrature amplitude modulated signal output from a device under test.
  • This apparatus includes a quadrature amplitude modulator according to any one of the above-described modes that demodulates a signal from a device under test, and a determination unit that compares data demodulated by the quadrature amplitude modulator with an expected value.
  • Still another aspect of the present invention is a semiconductor device.
  • This apparatus includes the quadrature amplitude modulator according to any one of the above-described aspects.
  • Yet another embodiment of the present invention relates to a demodulation method of a modulated signal subjected to quadrature amplitude modulation.
  • This method includes the following processes. 1. An in-phase carrier signal having a rectangular wave, a trapezoidal wave, or a waveform similar to these, and a quadrature carrier signal having a phase shifted by 1 ⁇ 4 period with respect to the in-phase carrier signal are generated. 2. An in-phase carrier signal and a quadrature carrier signal are mixed with the modulated signal. 3. The in-phase component and the quadrature component obtained by mixing are integrated for a predetermined period according to the period of the in-phase carrier signal and the quadrature carrier signal, respectively. 4). Each of the in-phase component and the quadrature component obtained by the integration is converted into a digital value.
  • a low-pass filter that is difficult to design becomes unnecessary.
  • FIG. 3 is a time chart showing the operation of the quadrature amplitude demodulator of FIG. 1.
  • 6 is another time chart showing the operation of the quadrature amplitude demodulator of FIG. 1.
  • 6 is still another time chart showing the operation of the quadrature amplitude demodulator of FIG.
  • It is a circuit diagram which shows the specific structural example of a mixer and an integrator. 6 is a time chart showing a reset signal RST and a sample hold signal S & H in FIG. 5. It is a circuit diagram which shows the specific structural example of an integrator and a sample hold circuit. It is a time chart which shows the operation
  • FIG. 7 It is a circuit diagram which shows the specific structural example of an A / D converter. 10 is a time chart showing the operation of the A / D converter of FIG. 9. It is a circuit diagram which shows another structural example of a mixer. It is a block diagram which shows the structure of the test apparatus carrying the quadrature amplitude demodulator which concerns on embodiment.
  • the state in which the member A is connected to the member B means that the member A and the member B are electrically connected in addition to the case where the member A and the member B are physically directly connected. The case where it is indirectly connected through another member that does not affect the state is also included.
  • the state in which the member C is provided between the member A and the member B refers to the case where the member A and the member C or the member B and the member C are directly connected, as well as an electrical condition. It includes the case of being indirectly connected through another member that does not affect the connection state.
  • FIG. 1 is a circuit diagram showing a configuration of a transmission system 300 using a quadrature amplitude demodulator 200 according to an embodiment.
  • the transmission system 300 includes a quadrature amplitude modulator 100, a transmission channel 102, a baseband data generation unit 104, and a demodulator 200.
  • the quadrature amplitude modulator 100 generates a modulated signal M subjected to multilevel quadrature amplitude modulation, such as 16QAM, 64QAM, and 256QAM, and transmits the modulated signal M to the demodulator 200 via the transmission channel 102.
  • multilevel quadrature amplitude modulation such as 16QAM, 64QAM, and 256QAM
  • the transmission system 300 is used for data transmission between different semiconductor devices as an example.
  • the baseband data generation unit 104 and the quadrature amplitude modulator 100 are mounted on the transmission-side semiconductor device
  • the demodulator 200 is mounted on the reception-side semiconductor device.
  • the configuration on the quadrature amplitude modulator 100 side will be described.
  • the configuration of the quadrature amplitude modulator 100 may be general.
  • the baseband data generation unit 104 generates (2 m ) -value in-phase baseband data and (2 m ) -value quadrature baseband data.
  • In-phase baseband data and quadrature baseband data are output as m-bit binary data (B0, B1) and (B2, B3), respectively.
  • the quadrature amplitude modulator 100 receives the (2 m ) -value in-phase baseband data (B1, B0) and the (2 m ) -value quadrature baseband data (B3, B2), and receives (2 m ) binary values.
  • a modulated signal M subjected to quadrature amplitude modulation is generated.
  • the quadrature amplitude modulator 100 includes D / A converters 12i and 12q, low-pass filters 14i and 14q, an oscillator 10, a phase shifter 15, mixers 18i and 18q, and an adder 20.
  • the oscillator 10 generates a sinusoidal in-phase carrier signal RecSin.
  • the phase shifter 15 shifts the phase of the in-phase carrier signal RecSin by 90 degrees (1/4 period) to generate a quadrature carrier signal RecCos.
  • D / A converters 12i and 12q perform digital / analog conversion, respectively, to convert baseband data (B1, B0) and (B3, B2) into analog baseband signals BBI and BBQ.
  • the mixers 18i and 18q respectively multiply the analog baseband signals BBI and BBQ with the corresponding carrier signals RecSin and RecCos. That is, the mixer 18 amplitude-modulates the carrier signal using the baseband signal as a modulation signal.
  • the modulated signals MI and MQ are output from the mixers 18i and 18q, respectively.
  • the adder 20 adds the modulated signal MI on the I-phase side and the modulated signal MQ on the Q-phase side.
  • the configuration of the modulator that generates the modulated signal M is not limited to that of FIG. 1, and for example, a rectangular wave, a trapezoidal wave, or a similar waveform may be used as the carrier signal.
  • the demodulator 200 includes an amplifier 41, oscillators 40i and 40q, mixers 42i and 42q, integrators 44i and 44q, sample hold circuits 46i and 46q, and A / D converters 48i and 48q.
  • the amplifier 41 amplifies the modulated signal RR propagated through the transmission channel 102.
  • the amplifier 41 may be a simple amplifier or an equalizer that compensates for attenuation caused by the transmission channel 102. If the received modulated signal RR is attenuated or its waveform is negligible, the amplifier 41 can be omitted.
  • the oscillator 40i generates an in-phase carrier signal RecSin having a rectangular wave, a trapezoidal wave, or a similar waveform.
  • the oscillator 40q generates a quadrature carrier signal RecCos whose phase is shifted by 1 ⁇ 4 period with respect to the in-phase carrier signal RecSin.
  • the carrier signals RecSin and RecCos generated by the oscillators 40i and 40q need to be synchronized with the carrier signal of the received modulated signal R.
  • a general carrier reproduction technique may be used for synchronization of the carrier signal.
  • the first mixer 42i and the second mixer 42q respectively mix the modulated signal R from the amplifier 41 with the in-phase carrier signal RecSin and the quadrature carrier signal RecCos, and down-convert them into low-frequency signals.
  • the first integrator 44i and the second integrator 44q respectively output the output signals RI and RQ of the first mixer 42i and the second mixer 42q to predetermined integration periods corresponding to the periods of the in-phase carrier signal RecSin and the orthogonal carrier signal RecCos, respectively. Integrate.
  • the predetermined period is set as follows. 1. When the frequencies of the carrier signals RecSin and RecCos (carrier frequency) are equal to the symbol rate of the modulated signal R, the predetermined integration period is one period of the carrier signal, in other words, a symbol period.
  • the predetermined integration period is 2.1 n period of carrier signal, in other words, symbol period 2.2 It can be set to any one period of carrier signal.
  • the integration period is one period of the carrier signal (2.2)
  • the integration result is obtained n times during one symbol.
  • the integrator 44 may output any of the n integration results, or may output data obtained by performing statistical processing such as averaging on them.
  • the integrators 44i and 44q have their output values reset at the timing of the reset signal RST that is asserted every integration period.
  • the first sample-and-hold circuit 46i and the second sample-and-hold circuit 46q respectively output the outputs UI and UQ of the first integrator 44i and the second integrator 44q, respectively, at each interval between symbols that are temporally adjacent, that is, symbols Sample and hold every period.
  • the sample hold circuits 46i and 46q sample the input signal at the timing of the sample hold signal S & H that is asserted every symbol period.
  • the first A / D converter 48i and the second A / D converter 48q respectively convert the output signals SI and SQ of the first sample hold circuit 46i and the second sample hold circuit 46q from analog to digital, and baseband signals (B1, B0). (B3, B2) is generated.
  • FIG. 2 is a time chart showing the operation of the quadrature amplitude demodulator 200.
  • a modulated signal R shown in FIG. 2 is a signal that is generated using a sine wave (cosine wave) carrier signal in the quadrature amplitude modulator 100 and received via a lossless transmission channel 102. Moreover, the case where a symbol rate and a carrier frequency are equal is shown.
  • FIG. 3 is another time chart showing the operation of the quadrature amplitude demodulator 200.
  • the modulated signal R in FIG. 3 is a signal generated by the quadrature amplitude modulator 100 using a rectangular wave carrier signal and received via the lossless transmission channel 102.
  • FIG. 4 is still another time chart showing the operation of the quadrature amplitude demodulator 200.
  • the modulated signal R in FIG. 4 is generated by the quadrature amplitude modulator 100 using a rectangular wave carrier signal, and is received via a 0.4 m lossy transmission channel 102 formed on a printed circuit board. Signal.
  • the quadrature amplitude demodulator 200 of FIG. 1 can also restore the baseband signal for the modulated signal R of FIGS.
  • the low-pass filter used in the conventional demodulator can be replaced with an integrator.
  • the low-pass filter has many design items such as a cut-off frequency and a slope characteristic, and the mounting area becomes large.
  • the integrator has an advantage that the design is easy and the area can be reduced.
  • FIG. 5 is a circuit diagram showing a specific configuration example of the mixer 42 and the integrator 44. Since the mixers 42i and 42q have the same configuration and the integrators 44i and 44q have the same configuration, only the circuit blocks 42i and 44i that process the in-phase component will be described here.
  • the modulated signal R output from the amplifier 41 has a differential format.
  • the first mixer 42i is a Gilbert cell mixer that mixes the modulated signal R and the corresponding carrier signal RecSin.
  • the mixer 42i includes transistors M40 to M45, current sources CS40 to CS42, and resistors R40 and R41.
  • the transistors M40 to M45 may be bipolar transistors instead of MOSFETs.
  • the load circuit of this Gilbert cell mixer is characterized in that it is a current source CS40, CS41.
  • the mixed signal is output as a differential current signal to the integrator 44i in the subsequent stage.
  • the integrator 44i includes first capacitors C41p and 41n and first switches SW41p and SW41n.
  • the first capacitors C41p and C41n are respectively provided between the line through which the output signals RIp and RIn of the differential mixer 42i propagate and a fixed voltage terminal (ground terminal).
  • the initialization voltage VR generated by the voltage source 45 is applied to one end of each of the first switches SW41p and SW41n.
  • the first switches SW41p and SW41n are turned on at each symbol break in synchronization with the reset signal RST to initialize the charges of the first capacitors C41p and C41n.
  • the initialization voltage VR may be a common voltage of the differential signals RIp and RIn.
  • FIG. 6 is a time chart showing the reset signal RST and the sample hold signal S & H.
  • the reset signal RST is asserted, the first switches SW41p and SW41n are turned on, and the charges of the first capacitors C41p and C41n are initialized. Thereafter, the first capacitors C41p and C41n are charged or discharged by the output current of the mixer 42i, and the output of the mixer 42i is integrated.
  • the sample hold signal S & H is asserted, and the potentials UIp and UIn of the first capacitors C41p and C41n are sampled. The sampled differential potentials UIp and UIn are output as a single-ended signal SI.
  • FIG. 7A and 7B are circuit diagrams showing specific configuration examples of the integrator 44 and the sample hold circuit 46.
  • FIG. 7A the integrator 44 and the sample hold circuit 46 are integrally configured.
  • the configuration of the mixer 42 is the same as that of FIG. 5 and outputs differential current signals RIp and RIn.
  • a pair of the first integrator 44i and the first sample and hold circuit 46i, and the pair of the second integrator 44q and the second sample and hold circuit 46q are configured similarly.
  • a pair of the first integrator 44i and the first sample hold circuit 46i includes a first input terminal IN1, a second input terminal IN2, an output terminal OUT, a second capacitor C42, a third capacitor C43, a second switch SW42 to a sixth switch. SW46 is included.
  • the first polarity signal RIp of the differential output signal of the mixer 42i is input to the first input terminal IN1.
  • the second polarity signal RIn of the differential output signal of the mixer 42i is input to the second input terminal IN2.
  • the second switch SW42 to the fifth switch SW45 include first, second, and third terminals T1 to T3, respectively.
  • the first terminal T1 of the second switch SW42 is connected to the first input terminal IN1.
  • a predetermined reset voltage VR is input to the second terminal T2.
  • the third terminal T3 is connected to one end of the second capacitor C42.
  • the second terminal of the third switch SW43 is connected to the first input terminal IN1.
  • the reset voltage VR is input to the first terminal, and the third terminal is connected to one end of the third capacitor C43.
  • the second terminal of the fourth switch SW44 is connected to the output terminal OUT, the first terminal is connected to the second input terminal IN2, and the third terminal is connected to the other end of the second capacitor C42.
  • the first terminal of the fifth switch SW45 is connected to the output terminal OUT, the second terminal is connected to the second input terminal IN2, and the third terminal is connected to the other end of the third capacitor C43.
  • the sixth switch SW46 has one end connected to the output terminal OUT and the other end to which the reset voltage VR is applied.
  • the first terminal T1 and the third terminal T3 are set for each segment between temporally adjacent symbols according to the capacitor selection signal CapSel generated by the capacitor control unit 49.
  • the first state of conduction and the second state of conduction between the second terminal T2 and the third terminal T3 are alternately switched.
  • the sixth switch SW46 is turned on prior to symbol switching during a predetermined discharge period in which the discharge control signal DisCharge generated by the discharge controller 47 is asserted.
  • the sixth switch SW46 is turned on, the charge of either the second capacitor C42 or the third capacitor C43 is initialized.
  • FIG. 8 is a time chart showing the operations of the integrator 44i and the sample hold circuit 46i of FIG.
  • the output signal (B1, B0) of the A / D converter 48i is valid for a period indicated by “Valid” in the drawing, that is, for a period from the transition of the capacitor selection signal CapSel to the timing when the discharge control signal DisCharge is asserted. .
  • FIG. 9 is a circuit diagram showing a specific configuration example of the A / D converter 48.
  • the A / D converters 48i and 48q are configured similarly.
  • the first A / D converter 48i includes a comparison unit 50i, a latch unit 52i, and an encoder 54i.
  • the comparison unit 50i includes a plurality of comparators CMP1 to CMP3, and each of the comparators CMP1 to CMP3 compares the output signal of the integrator 44i with the threshold voltages Vth1 to Vth3 set respectively.
  • the latch unit 52i is provided for each of the comparators CMP1 to CMP3, and includes latch circuits L1 to L3 that latch the outputs of the corresponding comparators. Each of the latch circuits L1 to L3 latches corresponding data at the timing of the positive edge of the latch signal Latch generated by the latch control unit 56. The latch signal Latch is asserted every time the symbols are switched.
  • the encoder 54i receives the output signals of the plurality of comparators CMP1 to CMP3 latched by the latch unit 52i and encodes them into a format that is optimal for subsequent processing. Since the outputs of the comparators CMP1 to CMP3 are so-called thermometer codes, the encoder of FIG. 9 converts them into binary data. Specifically, the encoder 54 i includes an AND gate 57 and an OR gate 58.
  • FIG. 10 is a time chart showing the operation of the A / D converter 48 of FIG. Since the latch signal Latch is asserted every symbol period, the finally generated binary data B1 and B0 are valid for one symbol period. That is, if the A / D converter 48 of FIG. 9 is used, the sample and hold circuit is not required in the previous stage, and the circuit area can be reduced.
  • the latch unit 52i is arranged at the subsequent stage of the comparison unit 50i.
  • the final generated binary data B1 and B0 may be latched by arranging the latch unit 52i at the subsequent stage of the encoder 54i. .
  • FIG. 11 is a circuit diagram showing another configuration example of the mixer 42. Other configurations are the same as those in FIG.
  • the differential modulated signal Rp / Rn is input to the mixer 42i.
  • the first polarity signal Rp and the second polarity signal Rn of the modulated signal R are input to the first and second input terminals IN1 and IN2, respectively.
  • the first gate TG1 and the second gate TG2 are provided in series between the first input terminal IN1 and the second input terminal IN2.
  • the third gate TG3 and the fourth gate TG4 are provided in parallel with the path formed by the first and second gates TG1 and TG2 between the first input terminal IN1 and the second input terminal IN2.
  • transfer gates and analog switches can be preferably used as the first gate TG1 to the fourth gate TG4.
  • the pair of the first gate TG1 and the third gate TG3 and the pair of the second gate TG2 and the fourth gate TG4 are repeatedly turned on and off in a complementary manner according to the corresponding carrier signal RecSin.
  • the differential amplifier 43 differentially amplifies the potential at the connection point between the first gate TG1 and the second gate TG2 and the potential at the connection point between the third gate TG3 and the fourth gate TG4.
  • the differential amplifier 43 includes transistors M50 and M51 forming a differential input pair, current sources CS50 and CS51 provided as loads for the differential input pair, resistors R50 and R51 provided on the source side of the transistors M50 and M51, and a tail.
  • a current source CS52 is included.
  • the differential output of the differential amplifier 43 is output to the integrator 44i in the subsequent stage.
  • the quadrature amplitude demodulator 200 can be mounted in a receiving unit of a semiconductor device, and can also be used in a test apparatus that tests a semiconductor device capable of transmitting a 16QAM signal, as will be described below.
  • FIG. 12 is a block diagram showing a configuration of a test apparatus 400 equipped with the quadrature amplitude demodulator 200 according to the embodiment.
  • the test apparatus 400 includes a plurality of I / O terminals 402a, 402b, 402c,... Provided for each I / O port of the DUT.
  • the number of I / O ports is arbitrary, but in the case of a memory or MPU, tens to hundreds or more are provided.
  • Each of the plurality of I / O terminals 402 is connected to a corresponding I / O port of the DUT 410 via a transmission line.
  • the test apparatus 400 includes a plurality of data transmission / reception units 2a, 2b, 2c,... And determination units 8a, 8b, 8c,... Provided for each of the plurality of I / O terminals 402a, 402b, 402c,. Since the plurality of data transmission / reception units 2 and the determination unit 8 have the same configuration, only the configuration of the data transmission / reception unit 2a and the determination unit 8a is shown in detail.
  • Each data transmitter / receiver 2 (1) Using a pattern signal (baseband data) to be supplied to the DUT 410 as a modulation signal, a square wave or trapezoid wave carrier signal (carrier wave) is subjected to multi-level QAM modulation and output to the corresponding I / O port of the DUT 410 Function and (2) a function of receiving a modulated signal output from the DUT 410 and demodulating the modulated signal; Is provided. The demodulated data is compared with the expected value, and the quality of the DUT 410 is determined.
  • baseband data baseband data
  • carrier wave carrier wave
  • the data transmitter / receiver 2 includes a pattern generator 4, a timing generator 6, an output buffer BUF1, an input buffer BUF2, a digital modulator 100, and a digital demodulator 200.
  • the pattern generator 4 generates a test pattern to be supplied to the DUT 410.
  • Each data (also referred to as pattern data) of the test pattern has the number of bits corresponding to the digital modulation / demodulation format used for data transmission between the DUT 410 and the test apparatus 400. For example, in the case of 16QAM, each data is 4 bits, and in the case of 64QAM, it is 6 bits.
  • the timing generator 6 generates a timing signal and outputs it to the digital modulator 100.
  • the timing generator 6 can finely adjust the phase of the timing signal for each cycle of pattern data, for example, in the order of several ps to several ns.
  • the timing generator 6 and the pattern generator 4 can use a known circuit used in a test apparatus used in a conventional system that performs binary transmission.
  • the digital modulator 100 generates a modulated signal that has been subjected to quadrature amplitude modulation (for example, 16QAM) according to the pattern data, and outputs it as a test signal.
  • the test signal is output to the DUT 410 by the output buffer BUF1.
  • the input buffer BUF2 receives the signal under test output from the DUT 410 and outputs it to the digital demodulator 200.
  • the digital demodulator 200 demodulates the modulated data and extracts digital data.
  • the digital demodulator 200 is configured using the architecture of the quadrature amplitude demodulator 200 described above.
  • the determination unit 8 a compares the data demodulated by the digital demodulator 200 with the expected value data output from the pattern generator 4.
  • the output buffer BUF1 and the input buffer BUF2 may be configured as bidirectional buffers.
  • the multilevel QAM signal can be demodulated on a logic circuit basis, so that the design is facilitated and the cost is reduced.
  • Certain aspects of the present invention can be used in signal transmission technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Superheterodyne Receivers (AREA)

Abstract

 直交振幅復調器200は、直交振幅変調が施された被変調信号Rを復調する。発振器40i、40qは、矩形波、台形波もしくはこれらに類する波形の同相キャリア信号RecSinと、同相キャリア信号RecSinに対して位相が1/4周期シフトした直交キャリア信号RecCosと、を生成する。第1、第2ミキサ42i、42qは、被変調信号Rに、同相キャリア信号RecSin、直交キャリア信号RecCosをそれぞれミキシングする。第1、第2積分器44i、44qは、第1、第2ミキサ42i、42qの出力信号RI、RQをそれぞれ、同相キャリア信号、直交キャリア信号の周期に応じた所定期間、積分する。第1、第2A/Dコンバータ48i、48qは、第1、第2積分器44i、44qの出力をそれぞれ、デジタル値に変換する。

Description

直交振幅復調器、復調方法およびそれらを利用した半導体装置および試験装置
 本発明は、デジタルデータ伝送技術に関する。
 デジタル有線通信は従来、時間分割多重(TDM)方式による2値伝送が主流であり、大容量伝送を行う場合は、パラレル伝送、高速伝送によって実現してきた。パラレル伝送の物理的な限界に直面すると、シリアル伝送つまり、高速インタフェース(I/F)回路による数Gbps~10Gbps以上のデータレートでの高速伝送が行われる。しかしながら、データレートの高速化にも限界があり、伝送線路の高周波損失や反射によるBER(Bit Error Rate)の劣化が問題となる。
 一方、デジタル無線通信方式は、キャリア信号に多ビットの情報をのせて送受信する。つまり、データレートはキャリア周波数に直接的に制限されない。例えば、最も基本的な直交変復調方式であるQAM(Quadrature Amplitude Modulation)伝送方式は4値伝送を一つのチャネルで実現することが出来る。64QAMにいたっては、64値伝送がワンキャリアで実現できる。つまり、キャリア周波数を高めなくてもこのような多値変調方式によって、転送容量を向上させることが出来る。
 このような変復調方式は、無線通信に限らず有線通信でも可能であり、PAM(Pulse Amplitude Modulation)やQPSK(Quadrature Phase Shift Keying)あるいはDQPSK(Differential QPSK)方式として既に適用され始めている。特に、光通信分野においては、1本の光ファイバにどれだけ多くの情報をのせられるかがコスト的にも重要であり、2値TDMからこれらのデジタル変調を利用した伝送へと技術トレンドがシフトしている。近い将来、このようなデジタル多値変復調方式が、メモリやSoC(System On a Chip)をはじめとするデバイス間の有線インタフェースに適用される可能性がある。
米国特許第5,652,552号明細書
 従来の直交振幅変復調器は高速なデバイスを用いて構成する必要があったため、設計が容易でなく、あるいは高周波バイポーラプロセスあるいはBi-CMOSプロセスが必要となるため、デバイスの製造コストが高くなるという問題があった。
 本発明はかかる状況に鑑みてなされたものであり、その例示的な目的のひとつは、簡易にインプリメント可能な直交振幅復調器の提供にある。
 本発明のある態様は、直交振幅変調が施された被変調信号を復調する直交振幅復調器に関する。直交振幅復調器は、矩形波、台形波もしくはこれらに類する波形の同相キャリア信号と、同相キャリア信号に対して位相が1/4周期シフトした直交キャリア信号と、を生成する発振器と、被変調信号に、同相キャリア信号、直交キャリア信号をそれぞれミキシングする第1、第2ミキサと、第1、第2ミキサの出力信号をそれぞれ、同相キャリア信号、直交キャリア信号の周期に応じた所定期間、積分する第1、第2積分器と、第1、第2積分器の出力をそれぞれ、デジタル値に変換する第1、第2A/Dコンバータと、を備える。
 「矩形波、台形波もしくはこれらに類する波形」とは、周期のピークおよびボトムにおいて、一定値をとる信号とも解される。この態様では、復調用のキャリア信号(RF信号ともいう)として、正弦波(余弦波)の代わりに矩形波や台形波を用い、ミキシング(ダウンコンバージョン)された信号を、シンボル期間、もしくはキャリア周期にわたり積分することにより、ベースバンド成分を抽出できる。この態様には、従来の復調器で必要であったローパスフィルタが不要となるという利点がある。
 ある態様の直交振幅復調器は、第1、第2積分器の出力信号をそれぞれ、時間的に隣接するシンボル間の区切れ目ごとにサンプリングして保持する第1、第2サンプルホールド回路をさらに備えてもよい。第1、第2A/Dコンバータはそれぞれ、第1、第2サンプルホールド回路の出力信号をデジタル値に変換してもよい。
 被変調信号、同相キャリア信号、直交キャリア信号はそれぞれ差動形式であり、第1、第2ミキサはそれぞれ、被変調信号と、対応するキャリア信号とをミキシングするギルバートセルミキサであってもよい。この形態はCMOS(Complementary Metal Oxide Semiconductor)プロセスに適合している。
 第1、第2積分器はそれぞれ、第1、第2ミキサの出力信号が伝搬するラインと固定電圧端子間に設けられた第1キャパシタと、時間的に隣接するシンボル間の区切れ目ごとに、第1キャパシタの電荷を初期化する第1スイッチと、を含んでもよい。この形態はCMOS(Complementary Metal Oxide Semiconductor)プロセスに適合している。
 第1、第2ミキサそれぞれの出力信号は差動形式であってもよい。第1積分器と第1サンプルホールド回路のペア、第2積分器と第2サンプルホールド回路のペアはそれぞれ、対応するミキサの差動出力信号の第1極性の信号が入力される第1入力端子と、対応するミキサの差動出力信号の第2極性の信号が入力される第2入力端子と、出力端子と、第2キャパシタと、第3キャパシタと、第1、第2、第3端子を含み、第1端子が第1入力端子と接続され、第2端子に所定の固定電圧が入力され、第3端子が第2キャパシタの一端と接続された第2スイッチと、第1、第2、第3端子を含み、第2端子が第1入力端子と接続され、第1端子に所定の固定電圧が入力され、第3端子が第3キャパシタの一端に接続された第3スイッチと、第1、第2、第3端子を含み、第2端子が出力端子と接続され、第1端子が第2入力端子と接続され、第3端子が第2キャパシタの他端と接続された第4スイッチと、第1、第2、第3端子を含み、第1端子が出力端子と接続され、第2端子が第2入力端子と接続され、第3端子が第3キャパシタの他端と接続された第5スイッチと、一端が出力端子と接続され、他端に固定電位が印加された第6スイッチと、を含んでもよい。第2から第5スイッチは、時間的に隣接するシンボル間の区切れ目ごとに、第1端子と第3端子が導通する第1状態と、第2端子と第3端子間が導通する第2状態とが交互に切り換えられ、第6スイッチは、シンボルの切り換えに先立ち所定時間オンしてもよい。
 この場合、回路面積を小さくできる。
 第1、第2A/Dコンバータはそれぞれ、対応する積分器の出力信号を、それぞれに設定されたしきい値電圧と比較する複数のコンパレータと、複数のコンパレータの出力信号を受け、エンコードするエンコーダと、複数のコンパレータの出力またはエンコーダの出力の少なくとも一方をラッチするラッチ回路と、を含んでもよい。
 この場合、A/Dコンバータの前段にサンプルホールド回路を設けなくてよいため、回路面積を削減できる。
 第1、第2ミキサはそれぞれ、差動形式の被変調信号の第1極性の信号が入力される第1入力端子と、被変調信号の第2極性の信号が入力される第2入力端子と、第1、第2入力端子の間に直列に設けられた第1、第2ゲートと、第1、第2入力端子の間に直列に、第1、第2ゲートが成す経路と並列に設けられた第3、第4ゲートと、第1、第2ゲートの接続点の電位と、第3、第4ゲートの接続点の電位と、を差動増幅する差動増幅器と、を含んでもよい。対応するキャリア信号に応じて、第1、第3ゲートのペアと、第2、第4ゲートのペアは、相補的にオン、オフを繰り返してもよい。
 この構成も、CMOSプロセスに適合している。
 同相キャリア信号、直交キャリア信号の周波数が、被変調信号のシンボルレートと等しいとき、第1、第2積分器はそれぞれ、キャリア信号の1周期、第1、第2ミキサの出力信号を積分してもよい。
 同相キャリア信号、直交キャリア信号の周波数が、被変調信号のシンボルレートのn倍であるとき、第1、第2積分器はそれぞれ、キャリア信号のn周期、第1、第2ミキサの出力信号を積分してもよい。
 本発明の別の態様は、被試験デバイスから出力される直交振幅変調された信号を試験する試験装置に関する。この装置は、被試験デバイスからの信号を復調する上述のいずれかの態様の直交振幅変調器と、直交振幅変調器により復調されたデータを期待値と比較する判定部と、を備える。
 本発明のさらに別の態様は、半導体装置である。この装置は、上述のいずれかの態様の直交振幅変調器を備える。
 本発明のさらに別の態様は、直交振幅変調が施された被変調信号の復調方法に関する。この方法では、以下の処理を含む。
 1. 矩形波、台形波もしくはこれらに類する波形の同相キャリア信号と、同相キャリア信号に対して位相が1/4周期シフトした直交キャリア信号と、を生成する。
 2. 被変調信号に、同相キャリア信号、直交キャリア信号をそれぞれミキシングする。
 3. ミキシングにより得られた同相成分、直交成分をそれぞれ、同相キャリア信号、直交キャリア信号の周期に応じた所定期間、積分する。
 4. 積分により得られた同相成分、直交成分をそれぞれ、デジタル値に変換する。
 なお、以上の構成要素の任意の組み合わせ、本発明の表現を、方法、装置などの間で変換したものもまた、本発明の態様として有効である。
 本発明のある態様の直交振幅復調器によれば、設計の難易度の高いローパスフィルタが不要となる。
実施の形態に係る直交振幅復調器を利用した伝送システムの構成を示す回路図である。 図1の直交振幅復調器の動作を示すタイムチャートである。 図1の直交振幅復調器の動作を示す別のタイムチャートである。 図1の直交振幅復調器の動作を示すさらに別のタイムチャートである。 ミキサおよび積分器の具体的な構成例を示す回路図である。 図5のリセット信号RSTとサンプルホールド信号S&Hを示すタイムチャートである。 積分器、サンプルホールド回路の具体的な構成例を示す回路図である。 図7の積分器、サンプルホールド回路の動作を示すタイムチャートである。 A/Dコンバータの具体的な構成例を示す回路図である。 図9のA/Dコンバータの動作を示すタイムチャートである。 ミキサの別の構成例を示す回路図である。 実施の形態に係る直交振幅復調器を搭載した試験装置の構成を示すブロック図である。
符号の説明
100…直交振幅変調器、102…伝送チャネル、104…ベースバンドデータ生成部、200…直交振幅復調器、300…伝送システム、400…試験装置、10…発振器、12…D/Aコンバータ、18…ミキサ、20…加算器、41…アンプ、40…発振器、42…ミキサ、44…積分器、46…サンプルホールド回路、48…A/Dコンバータ。
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。
 本明細書において、「部材Aが部材Bに接続された状態」とは、部材Aと部材Bが物理的に直接的に接続される場合のほか、部材Aと部材Bが、電気的な接続状態に影響を及ぼさない他の部材を介して間接的に接続される場合も含む。
 同様に、「部材Cが、部材Aと部材Bの間に設けられた状態」とは、部材Aと部材C、あるいは部材Bと部材Cが直接的に接続される場合のほか、電気的な接続状態に影響を及ぼさない他の部材を介して間接的に接続される場合も含む。
 図1は、実施の形態に係る直交振幅復調器200を利用した伝送システム300の構成を示す回路図である。伝送システム300は、直交振幅変調器100、伝送チャネル102、ベースバンドデータ生成部104、復調器200を備える。直交振幅変調器100は、16QAM、64QAM、256QAMなどの、多値直交振幅変調された被変調信号Mを生成し、伝送チャネル102を介して復調器200へと送信する。ここでは一般化して(2値の直交振幅変調を行うものとする。伝送システム300は、一例として異なる半導体デバイス間のデータ伝送に利用される。この場合、ベースバンドデータ生成部104および直交振幅変調器100は、送信側の半導体デバイスに搭載され、復調器200は受信側の半導体デバイスに搭載される。
 はじめに、直交振幅変調器100側の構成を説明する。直交振幅変調器100の構成は一般的なものでよい。
 ベースバンドデータ生成部104は、(2)値の同相ベースバンドデータと、(2)値の直交ベースバンドデータを生成する。図1では、m=2の場合が例示されており、16値QAMを実行する回路が示されるが、その他のm=3(64QAM)、m=4(256QAM)等にも本発明は有効である。同相ベースバンドデータおよび直交ベースバンドデータはそれぞれ、mビットのバイナリデータ(B0,B1)および(B2,B3)として出力される。
 直交振幅変調器100は、(2)値の同相ベースバンドデータ(B1,B0)と、(2)値の直交ベースバンドデータ(B3,B2)と、を受け、(2値直交振幅変調が施された被変調信号Mを生成する。直交振幅変調器100は、D/Aコンバータ12i、12q、ローパスフィルタ14i、14q、発振器10、移相器15、ミキサ18i、18q、加算器20を含む。
 発振器10は、正弦波の同相キャリア信号RecSinを生成する。移相器15は、同相キャリア信号RecSinの位相を90度(1/4周期)シフトし、直交キャリア信号RecCosを生成する。
 D/Aコンバータ12i、12qはそれぞれ、デジタル/アナログ変換し、ベースバンドデータ(B1,B0)、(B3、B2)をアナログベースバンド信号BBI、BBQに変換する。
 ミキサ18i、18qはそれぞれ、アナログベースバンド信号BBI、BBQを、対応するキャリア信号RecSin、RecCosと乗算する。すなわちミキサ18は、ベースバンド信号を変調信号として、キャリア信号を振幅変調する。ミキサ18i、18qからはそれぞれ、被変調信号MI、MQが出力される。加算器20は、I相側の被変調信号MIと、Q相側の被変調信号MQを加算する。
 なお、被変調信号Mを生成する変調器の構成は図1のそれに限定されず、たとえばキャリア信号として矩形波や台形波、それに類似する波形が用いられてもよい。
 続いて、実施の形態に係る直交振幅復調器200の構成を説明する。復調器200は、アンプ41、発振器40i、40q、ミキサ42i、42q、積分器44i、44q、サンプルホールド回路46i、46q、A/Dコンバータ48i、48qを備える。
 アンプ41は、伝送チャネル102を伝搬した被変調信号RRを増幅する。アンプ41は、単なる増幅器であってもよいし、伝送チャネル102による減衰を補償するイコライザであってもよい。受信した被変調信号RRの減衰や波形の劣化が無視しうる場合、アンプ41は省略することもできる。
 発振器40iは、矩形波、台形波もしくはこれらに類する波形の同相キャリア信号RecSinを生成する。発振器40qは、同相キャリア信号RecSinに対して位相が1/4周期シフトした直交キャリア信号RecCosを生成する。発振器40i、40qにより生成されるキャリア信号RecSin、RecCosは、受信した被変調信号Rのキャリア信号と同期される必要がある。キャリア信号の同期には、一般的なキャリア再生技術を利用すればよい。
 第1ミキサ42i、第2ミキサ42qはそれぞれ、アンプ41からの被変調信号Rに、同相キャリア信号RecSin、直交キャリア信号RecCosをそれぞれミキシングし、低周波信号にダウンコンバージョンする。
 第1積分器44i、第2積分器44qはそれぞれ、第1ミキサ42i、第2ミキサ42qの出力信号RI、RQをそれぞれ、同相キャリア信号RecSin、直交キャリア信号RecCosの周期に応じた所定の積分期間、積分する。
 所定期間は以下のように設定される。
 1. キャリア信号RecSin、RecCosの周波数(キャリア周波数)が、被変調信号Rのシンボルレートと等しいとき、所定の積分期間は、キャリア信号の1周期、いいかえればシンボル周期となる。
 2. キャリア信号RecSin、RecCosの周波数が、被変調信号Rのシンボルレートのn倍であるとき、所定の積分期間は、
 2.1 キャリア信号のn周期、いいかえればシンボル周期
 2.2 キャリア信号の1周期
のいずれかに設定できる。積分期間をキャリア信号の1周期とした場合(2.2)、1シンボルの間にn回、積分結果が得られる。積分器44は、n個の積分結果のいずれかを出力してもよいし、それらに平均化などの統計的処理を施したデータを出力してもよい。
 積分器44i、44qは、積分期間ごとにアサートされるリセット信号RSTのタイミングで、その出力の値がリセットされる。
 第1サンプルホールド回路46i、第2サンプルホールド回路46qはそれぞれ、第1積分器44i、第2積分器44qの出力UI、UQをそれぞれ、時間的に隣接するシンボル間の区切れ目ごとに、つまりシンボル周期ごとに、サンプリングして保持する。サンプルホールド回路46i、46qは、シンボル周期ごとにアサートされるサンプルホールド信号S&Hのタイミングで、入力信号をサンプリングする。
 第1A/Dコンバータ48i、第2A/Dコンバータ48qはそれぞれ、第1サンプルホールド回路46i、第2サンプルホールド回路46qの出力信号SI、SQをアナログ/デジタル変換し、ベースバンド信号(B1,B0)(B3,B2)を生成する。
 以上が実施の形態に係る直交振幅復調器200の構成である。続いてその動作を説明する。図2は、直交振幅復調器200の動作を示すタイムチャートである。図2に示される被変調信号Rは、直交振幅変調器100において正弦波(余弦波)のキャリア信号を用いて生成され、無損失の伝送チャネル102を介して受信された信号である。また、シンボルレートとキャリア周波数が等しい場合が示される。
 矩形波状のキャリア信号RecSin、RecCosを用いてダウンコンバージョンを行い、その信号をキャリア信号の1周期、積分すると、送信側のアナログベースバンド信号BBI、BBQに相当する信号を抽出することができる。抽出された信号をアナログ/デジタル変換することにより、ベースバンドデータ(B1,B0)、(B3、B2)を再生することができる。
 図3は、直交振幅復調器200の動作を示す別のタイムチャートである。図3の被変調信号Rは、直交振幅変調器100において、矩形波のキャリア信号を用いて生成され、無損失の伝送チャネル102を介して受信された信号である。
 図4は、直交振幅復調器200の動作を示すさらに別のタイムチャートである。図4の被変調信号Rは、直交振幅変調器100において、矩形波のキャリア信号を用いて生成され、プリント基板上に形成された0.4mの有損失の伝送チャネル102を介して受信された信号である。
 図3、図4の被変調信号Rに対しても、図1の直交振幅復調器200はベースバンド信号を復元することができる。
 図1の直交振幅復調器200では、従来の復調器に用いられていたローパスフィルタを、積分器に置き換えることができる。ローパスフィルタは、カットオフ周波数やスロープ特性など、設計項目が多く、また実装面積も大きくなるが、積分器は設計が容易であり、また面積を削減できるという利点がある。
 図5は、ミキサ42および積分器44の具体的な構成例を示す回路図である。ミキサ42i、42qは同じ構成であり、積分器44i、44qは同じ構成であるため、ここでは同相成分を処理する回路ブロック42i、44iについてのみ説明する。
 アンプ41から出力される被変調信号Rは、差動形式を有する。
 第1ミキサ42iは、被変調信号Rと、対応するキャリア信号RecSinとをミキシングするギルバートセルミキサである。具体的には、ミキサ42iは、トランジスタM40~M45、電流源CS40~CS42、抵抗R40、R41を備える。トランジスタM40~M45は、MOSFETに変えて、バイポーラトランジスタであってもよい。このギルバートセルミキサの負荷回路は、電流源CS40、CS41である点が特徴である。ミキシングされた信号は、差動の電流信号として後段の積分器44iへと出力される。
 積分器44iは、第1キャパシタC41p、41n、第1スイッチSW41p、SW41nを含む。
 第1キャパシタC41p、C41nはそれぞれ、差動形式のミキサ42iの出力信号RIp、RInそれぞれが伝搬するラインと固定電圧端子(接地端子)間に設けられる。第1スイッチSW41p、SW41nそれぞれの一端は、電圧源45により生成される初期化電圧VRが印加される。第1スイッチSW41p、SW41nはそれぞれ、リセット信号RSTと同期して、シンボルの区切れ目ごとにオンとなって、第1キャパシタC41p、C41nの電荷を初期化する。初期化電圧VRは、差動信号RIp、RInのコモン電圧であってもよい。
 図6は、リセット信号RSTとサンプルホールド信号S&Hを示すタイムチャートである。キャリア周期の開始直後、リセット信号RSTがアサートされて、第1スイッチSW41p、SW41nがオンし、第1キャパシタC41p、C41nの電荷が初期化される。その後、第1キャパシタC41p、C41nは、ミキサ42iの出力電流によって充電もしくは放電され、ミキサ42iの出力が積分される。キャリア周期の終了直前に、サンプルホールド信号S&Hがアサートされ、第1キャパシタC41p、C41nの電位UIp、UInがサンプリングされる。サンプリングされた差動形式の電位UIp、UInは、シングルエンドの信号SIとして出力される。
 図7(a)、(b)は、積分器44、サンプルホールド回路46の具体的な構成例を示す回路図である。図7(a)の構成では、積分器44、サンプルホールド回路46が一体に構成される。ミキサ42の構成は図5のそれと同様であり、差動形式の電流信号RIp、RInを出力する。
 第1積分器44iと第1サンプルホールド回路46iのペア、第2積分器44qと第2サンプルホールド回路46qのペアは同様に構成される。
 第1積分器44iと第1サンプルホールド回路46iのペアは、第1入力端子IN1、第2入力端子IN2、出力端子OUT、第2キャパシタC42、第3キャパシタC43、第2スイッチSW42~第6スイッチSW46を含む。
 第1入力端子IN1には、ミキサ42iの差動出力信号の第1極性の信号RIpが入力される。第2入力端子IN2には、ミキサ42iの差動出力信号の第2極性の信号RInが入力される。
 第2スイッチSW42~第5スイッチSW45はそれぞれ、第1、第2、第3端子T1~T3を備える。
 第2スイッチSW42の第1端子T1は、第1入力端子IN1と接続される。その第2端子T2には、所定のリセット電圧VRが入力される。その第3端子T3は、第2キャパシタC42の一端と接続される。
 第3スイッチSW43の第2端子は、第1入力端子IN1と接続される。その第1端子にはリセット電圧VRが入力され、第3端子は第3キャパシタC43の一端に接続される。
 第4スイッチSW44の第2端子は、出力端子OUTと接続され、その第1端子は第2入力端子IN2と接続され、その第3端子は第2キャパシタC42の他端と接続される。
 第5スイッチSW45の第1端子は、出力端子OUTと接続され、その第2端子は第2入力端子IN2と接続され、その第3端子は第3キャパシタC43の他端と接続される。
 第6スイッチSW46は、一端が出力端子OUTと接続され、他端にリセット電圧VRが印加される。
 第2スイッチSW42から第5スイッチSW45は、キャパシタ制御部49により生成されるキャパシタ選択信号CapSelに応じて、時間的に隣接するシンボル間の区切れ目ごとに、第1端子T1と第3端子T3が導通する第1状態と、第2端子T2と第3端子T3間が導通する第2状態とが交互に切り換えられる。
 第6スイッチSW46は、ディスチャージ制御部47により生成される放電制御信号DisChargeがアサートされる所定のディスチャージ期間、シンボルの切り換えに先立ってオンとなる。第6スイッチSW46がオンすると、第2キャパシタC42、第3キャパシタC43のいずれか一方の電荷が初期化される。
 図8は、図7の積分器44i、サンプルホールド回路46iの動作を示すタイムチャートである。A/Dコンバータ48iの出力信号(B1,B0)は、図中”Valid”で示される期間、すなわち、キャパシタ選択信号CapSelの遷移から、ディスチャージ制御信号DisChargeがアサートされるタイミングまで期間、有効となる。
 図7の構成によれば、図1の構成のように、サンプルホールド回路を積分器と一体に構成できるため、回路面積を削減できる。
 図9は、A/Dコンバータ48の具体的な構成例を示す回路図である。A/Dコンバータ48i、48qは同様に構成される。
 第1A/Dコンバータ48iは、比較部50i、ラッチ部52i、エンコーダ54iを含む。比較部50iは、複数のコンパレータCMP1~CMP3を含み、各コンパレータCMP1~CMP3は、積分器44iの出力信号を、それぞれに設定されたしきい値電圧Vth1~Vth3と比較する。ラッチ部52iは、コンパレータCMP1~CMP3ごとに設けられ、対応するコンパレータの出力をラッチするラッチ回路L1~L3を含む。各ラッチ回路L1~L3は、ラッチ制御部56により生成されるラッチ信号Latchのポジティブエッジのタイミングで、対応するデータをラッチする。ラッチ信号Latchは、シンボルの切り替わりごとにアサートされる。
 エンコーダ54iは、ラッチ部52iによってラッチされた複数のコンパレータCMP1~CMP3の出力信号を受け、後段の処理に最適なフォーマットにエンコードする。コンパレータCMP1~CMP3の出力は、いわゆるサーモメータコードであるため、図9のエンコーダは、バイナリデータに変換する。具体的には、エンコーダ54iは、ANDゲート57と、ORゲート58を含む。
 図10は、図9のA/Dコンバータ48の動作を示すタイムチャートである。ラッチ信号Latchは、シンボル周期ごとにアサートされため、最終的に生成されるバイナリデータB1、B0は、1シンボル周期の間、有効となる。つまり図9のA/Dコンバータ48を用いれば、その前段にサンプルホールド回路が不要となるため、回路面積を削減できる。
 なお、図9の構成では、ラッチ部52iを比較部50iの後段に配置する構成としたが、エンコーダ54iの後段に配置して、最終生成されるバイナリデータB1、B0をラッチする構成としてもよい。
 図11は、ミキサ42の別の構成例を示す回路図である。その他の構成は図5と同様である。ミキサ42iには、差動形式の被変調信号Rp/Rnが入力される。
 第1、第2入力端子IN1、IN2にはそれぞれ、被変調信号Rの第1極性の信号Rp、第2極性の信号Rnが入力される。
 第1ゲートTG1、第2ゲートTG2は、第1入力端子IN1と第2入力端子IN2の間に直列に設けられる。第3ゲートTG3と第4ゲートTG4は、第1入力端子IN1と第2入力端子IN2の間に、第1、第2ゲートTG1、TG2が成す経路と並列に設けられる。第1ゲートTG1~第4ゲートTG4は、トランスファゲートやアナログスイッチが好適に利用できる。
 第1ゲートTG1、第3ゲートTG3のペアと、第2ゲートTG2、第4ゲートTG4のペアは、対応するキャリア信号RecSinに応じて、相補的にオン、オフを繰り返す。
 差動増幅器43は、第1ゲートTG1と第2ゲートTG2の接続点の電位と、第3ゲートTG3と第4ゲートTG4の接続点の電位と、を差動増幅する。差動増幅器43は、差動入力対をなすトランジスタM50、M51、差動入力対に対する負荷として設けられた電流源CS50、CS51、トランジスタM50、M51のソース側に設けられた抵抗R50、R51およびテイル電流源CS52を含む。差動増幅器43の差動出力が、後段の積分器44iへと出力される。
 図11のミキサ42によれば、図5のギルバートセルミキサと比べて、電源電圧と接地間に縦積みされるトランジスタの段数が減少するため、低電源電圧での動作に適している。
 続いて、実施の形態に係る直交振幅復調器200の好適なアプリケーションを説明する。直交振幅復調器200は、半導体デバイスの受信部に搭載できるほか、以下で説明するように、16QAM信号を送信可能な半導体デバイスを試験する試験装置にも利用できる。
 図12は、実施の形態に係る直交振幅復調器200を搭載した試験装置400の構成を示すブロック図である。試験装置400は、DUTのI/Oポートごとに設けられた複数のI/O端子402a、402b、402c、…を備える。I/Oポートの個数は任意であるが、メモリやMPUの場合、数十~百個以上設けられる。複数のI/O端子402はそれぞれ、DUT410の対応するI/Oポートと伝送路を介して接続されている。
 試験装置400は、複数のI/O端子402a、402b、402c、…ごとに設けられた複数のデータ送受信部2a、2b、2c…および判定部8a、8b、8c、…を備える。複数のデータ送受信部2および判定部8は同一の構成であるため、データ送受信部2aおよび判定部8aの構成のみが詳細に示される。
 各データ送受信部2は、
 (1)DUT410に供給すべきパターンデータ(ベースバンドデータ)を変調信号として、矩形波もしくは台形波のキャリア信号(搬送波)を多値QAM変調し、DUT410の対応するI/Oポートへと出力する機能と、
 (2)DUT410から出力される被変調信号を受け、これを復調する機能と、
を備える。復調されたデータは、期待値と比較され、DUT410の良否が判定される。
 データ送受信部2は、パターン発生器4、タイミング発生器6、出力バッファBUF1、入力バッファBUF2、デジタル変調器100、デジタル復調器200を備える。
 パターン発生器4は、DUT410に対して供給すべき試験パターンを生成する。試験パターンの各データ(パターンデータともいう)は、DUT410と試験装置400の間のデータ伝送に使用されるデジタル変復調のフォーマットに応じたビット数を有している。たとえば16QAMの場合、各データは4ビットであり、64QAMの場合6ビットである。
 タイミング発生器6は、タイミング信号を生成し、デジタル変調器100へと出力する。タイミング発生器6は、パターンデータのサイクルごとにタイミング信号の位相を細かく、たとえば数ps~数nsのオーダーで調節可能である。タイミング発生器6およびパターン発生器4は、従来の2値伝送を行うシステムに使用される試験装置に使用される公知の回路を利用することができる。
 デジタル変調器100は、パターンデータに応じて、直交振幅変調(たとえば16QAM)された被変調信号を生成し、試験信号として出力する。試験信号は、出力バッファBUF1によってDUT410へと出力される。
 入力バッファBUF2はDUT410から出力される被試験信号を受け、デジタル復調器200へと出力する。デジタル復調器200は被変調データを復調し、デジタルのデータを抽出する。このデジタル復調器200は、上述した直交振幅復調器200のアーキテクチャを利用して構成される。判定部8aは、デジタル復調器200により復調されたデータを、パターン発生器4から出力される期待値データと比較する。出力バッファBUF1および入力バッファBUF2は、双方向バッファとして構成されてもよい。
 以上が試験装置400の構成である。この試験装置400によれば、多値QAM信号をロジック回路ベースで復調できるため、設計が容易となり、また低コスト化に資することとなる。
 実施の形態にもとづき本発明を説明したが、実施の形態は、本発明の原理、応用を示しているにすぎず、実施の形態には、請求の範囲に規定された本発明の思想を離脱しない範囲において、多くの変形例や配置の変更が可能である。
 本発明のある態様は、信号伝送技術に利用できる。

Claims (12)

  1.  直交振幅変調が施された被変調信号を復調する直交振幅復調器であって、
     矩形波、台形波もしくはこれらに類する波形の同相キャリア信号と、前記同相キャリア信号に対して位相が1/4周期シフトした直交キャリア信号と、を生成する発振器と、
     前記被変調信号に、前記同相キャリア信号、前記直交キャリア信号をそれぞれミキシングする第1、第2ミキサと、
     前記第1、第2ミキサの出力信号をそれぞれ、前記同相キャリア信号、直交キャリア信号の周期に応じた所定期間、積分する第1、第2積分器と、
     前記第1、第2積分器の出力をそれぞれ、デジタル値に変換する第1、第2A/Dコンバータと、
     を備えることを特徴とする直交振幅復調器。
  2.  前記第1、第2積分器の出力信号をそれぞれ、時間的に隣接するシンボル間の区切れ目ごとにサンプリングして保持する第1、第2サンプルホールド回路をさらに備え、
     前記第1、第2A/Dコンバータはそれぞれ、前記第1、第2サンプルホールド回路の出力信号をデジタル値に変換することを特徴とする請求項1に記載の直交振幅復調器。
  3.  前記被変調信号、前記同相キャリア信号、前記直交キャリア信号はそれぞれ差動形式であり、
     前記第1、第2ミキサはそれぞれ、前記被変調信号と、対応するキャリア信号とをミキシングするギルバートセルミキサであることを特徴とする請求項1または2に記載の直交振幅復調器。
  4.  前記第1、第2積分器はそれぞれ、
     前記第1、第2ミキサの出力信号が伝搬するラインと固定電圧端子間に設けられた第1キャパシタと、
     時間的に隣接するシンボル間の区切れ目ごとに、前記第1キャパシタの電荷を初期化する第1スイッチと、
     を含むことを特徴とする請求項1または2に記載の直交振幅復調器。
  5.  前記第1、第2ミキサそれぞれの出力信号は差動形式であり、
     前記第1積分器と前記第1サンプルホールド回路のペア、前記第2積分器と前記第2サンプルホールド回路のペアはそれぞれ、
     対応するミキサの差動出力信号の第1極性の信号が入力される第1入力端子と、
     前記対応するミキサの差動出力信号の第2極性の信号が入力される第2入力端子と、
     出力端子と、
     第2キャパシタと、
     第3キャパシタと、
     第1、第2、第3端子を含み、前記第1端子が前記第1入力端子と接続され、前記第2端子に所定の固定電圧が入力され、前記第3端子が前記第2キャパシタの一端と接続された第2スイッチと、
     第1、第2、第3端子を含み、前記第2端子が前記第1入力端子と接続され、前記第1端子に所定の固定電圧が入力され、前記第3端子が前記第3キャパシタの一端に接続された第3スイッチと、
     第1、第2、第3端子を含み、前記第2端子が前記出力端子と接続され、前記第1端子が前記第2入力端子と接続され、前記第3端子が前記第2キャパシタの他端と接続された第4スイッチと、
     第1、第2、第3端子を含み、前記第1端子が前記出力端子と接続され、前記第2端子が前記第2入力端子と接続され、前記第3端子が前記第3キャパシタの他端と接続された第5スイッチと、
     一端が前記出力端子と接続され、他端に固定電位が印加された第6スイッチと、
     を含み、
     前記第2から第5スイッチは、時間的に隣接するシンボル間の区切れ目ごとに、前記第1端子と前記第3端子が導通する第1状態と、前記第2端子と前記第3端子間が導通する第2状態とが交互に切り換えられ、
     前記第6スイッチは、前記シンボルの切り換えに先立ち所定時間オンすることを特徴とする請求項2に記載の直交振幅復調器。
  6.  前記第1、第2A/Dコンバータはそれぞれ、
     対応する前記積分器の出力信号を、それぞれに設定されたしきい値電圧と比較する複数のコンパレータと、
     前記複数のコンパレータの出力信号を受け、エンコードするエンコーダと、
     前記複数のコンパレータの出力または前記エンコーダの出力の少なくとも一方をラッチするラッチ回路と、
     を含むことを特徴とする請求項1に記載の直交振幅復調器。
  7.  前記第1、第2ミキサはそれぞれ、
     差動形式の前記被変調信号の第1極性の信号が入力される第1入力端子と、
     前記被変調信号の第2極性の信号が入力される第2入力端子と、
     前記第1、第2入力端子の間に直列に設けられた第1、第2ゲートと、
     前記第1、第2入力端子の間に直列に、前記第1、第2ゲートが成す経路と並列に設けられた第3、第4ゲートと、
     前記第1、第2ゲートの接続点の電位と、前記第3、第4ゲートの接続点の電位と、を差動増幅する差動増幅器と、
     を含み、
     対応する前記キャリア信号に応じて、前記第1、第3ゲートのペアと、前記第2、第4ゲートのペアは、相補的にオン、オフを繰り返すことを特徴とする請求項1に記載の直交振幅復調器。
  8.  前記同相キャリア信号、直交キャリア信号の周波数が、前記被変調信号のシンボルレートと等しいとき、前記第1、第2積分器はそれぞれ、前記キャリア信号の1周期、前記第1、第2ミキサの出力信号を積分することを特徴とする請求項1に記載の直交振幅復調器。
  9.  前記同相キャリア信号、直交キャリア信号の周波数が、前記被変調信号のシンボルレートのn倍であるとき、前記第1、第2積分器はそれぞれ、前記キャリア信号のn周期、前記第1、第2ミキサの出力信号を積分することを特徴とする請求項1に記載の直交振幅復調器。
  10.  被試験デバイスから出力される直交振幅変調された信号を試験する試験装置であって、
     前記信号を復調する請求項1から9のいずれかに記載の直交振幅変調器と、
     前記直交振幅変調器により復調されたデータを期待値と比較する判定部と、
     を備えることを特徴とする試験装置。
  11.  請求項1から9のいずれかに記載の直交振幅変調器を備えることを特徴とする半導体装置。
  12.  直交振幅変調が施された被変調信号の復調方法であって、
     矩形波、台形波もしくはこれらに類する波形の同相キャリア信号と、前記同相キャリア信号に対して位相が1/4周期シフトした直交キャリア信号と、を生成するステップと、
     前記被変調信号に、前記同相キャリア信号、前記直交キャリア信号をそれぞれミキシングするステップと、
     ミキシングにより得られた同相成分、直交成分をそれぞれ、前記同相キャリア信号、直交キャリア信号の周期に応じた所定期間、積分するステップと、
     積分により得られた同相成分、直交成分をそれぞれ、デジタル値に変換するステップと、
     を備えることを特徴とする方法。
PCT/JP2008/003036 2008-10-24 2008-10-24 直交振幅復調器、復調方法およびそれらを利用した半導体装置および試験装置 WO2010046957A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2008/003036 WO2010046957A1 (ja) 2008-10-24 2008-10-24 直交振幅復調器、復調方法およびそれらを利用した半導体装置および試験装置
US12/670,111 US20110018626A1 (en) 2008-10-24 2008-10-24 Quadrature amplitude demodulator and demodulation method
JP2010534611A JPWO2010046957A1 (ja) 2008-10-24 2008-10-24 直交振幅復調器、復調方法およびそれらを利用した半導体装置および試験装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/003036 WO2010046957A1 (ja) 2008-10-24 2008-10-24 直交振幅復調器、復調方法およびそれらを利用した半導体装置および試験装置

Publications (1)

Publication Number Publication Date
WO2010046957A1 true WO2010046957A1 (ja) 2010-04-29

Family

ID=42119018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/003036 WO2010046957A1 (ja) 2008-10-24 2008-10-24 直交振幅復調器、復調方法およびそれらを利用した半導体装置および試験装置

Country Status (3)

Country Link
US (1) US20110018626A1 (ja)
JP (1) JPWO2010046957A1 (ja)
WO (1) WO2010046957A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140006043A (ko) * 2011-02-17 2014-01-15 고쿠리츠다이가쿠호진 토쿄고교 다이가꾸 밀리미터파 대역 무선 송수신 장치

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9112452B1 (en) 2009-07-14 2015-08-18 Rf Micro Devices, Inc. High-efficiency power supply for a modulated load
US8633766B2 (en) 2010-04-19 2014-01-21 Rf Micro Devices, Inc. Pseudo-envelope follower power management system with high frequency ripple current compensation
US9099961B2 (en) 2010-04-19 2015-08-04 Rf Micro Devices, Inc. Output impedance compensation of a pseudo-envelope follower power management system
US8981848B2 (en) 2010-04-19 2015-03-17 Rf Micro Devices, Inc. Programmable delay circuitry
US8519788B2 (en) 2010-04-19 2013-08-27 Rf Micro Devices, Inc. Boost charge-pump with fractional ratio and offset loop for supply modulation
US9431974B2 (en) 2010-04-19 2016-08-30 Qorvo Us, Inc. Pseudo-envelope following feedback delay compensation
EP2782247B1 (en) 2010-04-19 2018-08-15 Qorvo US, Inc. Pseudo-envelope following power management system
US8571498B2 (en) 2010-08-25 2013-10-29 Rf Micro Devices, Inc. Multi-mode/multi-band power management system
US9954436B2 (en) 2010-09-29 2018-04-24 Qorvo Us, Inc. Single μC-buckboost converter with multiple regulated supply outputs
WO2012068260A1 (en) 2010-11-16 2012-05-24 Rf Micro Devices, Inc. Digital gain multiplier for envelop tracking systems and corresponding method
US8588713B2 (en) 2011-01-10 2013-11-19 Rf Micro Devices, Inc. Power management system for multi-carriers transmitter
US8611402B2 (en) 2011-02-02 2013-12-17 Rf Micro Devices, Inc. Fast envelope system calibration
US8624760B2 (en) 2011-02-07 2014-01-07 Rf Micro Devices, Inc. Apparatuses and methods for rate conversion and fractional delay calculation using a coefficient look up table
WO2012109227A2 (en) 2011-02-07 2012-08-16 Rf Micro Devices, Inc. Group delay calibration method for power amplifier envelope tracking
US8860432B2 (en) 2011-02-25 2014-10-14 Maxim Integrated Products, Inc. Background noise measurement and frequency selection in touch panel sensor systems
WO2012148539A1 (en) 2011-02-25 2012-11-01 Maxim Integrated Products, Inc Capacitive touch sense architecture
US9086439B2 (en) 2011-02-25 2015-07-21 Maxim Integrated Products, Inc. Circuits, devices and methods having pipelined capacitance sensing
US9247496B2 (en) 2011-05-05 2016-01-26 Rf Micro Devices, Inc. Power loop control based envelope tracking
US9379667B2 (en) 2011-05-05 2016-06-28 Rf Micro Devices, Inc. Multiple power supply input parallel amplifier based envelope tracking
US9246460B2 (en) 2011-05-05 2016-01-26 Rf Micro Devices, Inc. Power management architecture for modulated and constant supply operation
CN103748794B (zh) 2011-05-31 2015-09-16 射频小型装置公司 一种用于测量发射路径的复数增益的方法和设备
US9019011B2 (en) 2011-06-01 2015-04-28 Rf Micro Devices, Inc. Method of power amplifier calibration for an envelope tracking system
US8760228B2 (en) 2011-06-24 2014-06-24 Rf Micro Devices, Inc. Differential power management and power amplifier architecture
US8952710B2 (en) 2011-07-15 2015-02-10 Rf Micro Devices, Inc. Pulsed behavior modeling with steady state average conditions
US8792840B2 (en) 2011-07-15 2014-07-29 Rf Micro Devices, Inc. Modified switching ripple for envelope tracking system
US8626091B2 (en) 2011-07-15 2014-01-07 Rf Micro Devices, Inc. Envelope tracking with variable compression
US9263996B2 (en) 2011-07-20 2016-02-16 Rf Micro Devices, Inc. Quasi iso-gain supply voltage function for envelope tracking systems
US8624576B2 (en) 2011-08-17 2014-01-07 Rf Micro Devices, Inc. Charge-pump system for providing independent voltages
US8942652B2 (en) 2011-09-02 2015-01-27 Rf Micro Devices, Inc. Split VCC and common VCC power management architecture for envelope tracking
US8957728B2 (en) 2011-10-06 2015-02-17 Rf Micro Devices, Inc. Combined filter and transconductance amplifier
US9024688B2 (en) 2011-10-26 2015-05-05 Rf Micro Devices, Inc. Dual parallel amplifier based DC-DC converter
WO2013063364A1 (en) 2011-10-26 2013-05-02 Rf Micro Devices, Inc. Average frequency control of switcher for envelope tracking
US9484797B2 (en) 2011-10-26 2016-11-01 Qorvo Us, Inc. RF switching converter with ripple correction
US8878606B2 (en) 2011-10-26 2014-11-04 Rf Micro Devices, Inc. Inductance based parallel amplifier phase compensation
US9515621B2 (en) 2011-11-30 2016-12-06 Qorvo Us, Inc. Multimode RF amplifier system
US8975959B2 (en) 2011-11-30 2015-03-10 Rf Micro Devices, Inc. Monotonic conversion of RF power amplifier calibration data
US9250643B2 (en) 2011-11-30 2016-02-02 Rf Micro Devices, Inc. Using a switching signal delay to reduce noise from a switching power supply
US8947161B2 (en) 2011-12-01 2015-02-03 Rf Micro Devices, Inc. Linear amplifier power supply modulation for envelope tracking
US9256234B2 (en) 2011-12-01 2016-02-09 Rf Micro Devices, Inc. Voltage offset loop for a switching controller
US9280163B2 (en) 2011-12-01 2016-03-08 Rf Micro Devices, Inc. Average power tracking controller
US9041365B2 (en) 2011-12-01 2015-05-26 Rf Micro Devices, Inc. Multiple mode RF power converter
WO2013082384A1 (en) 2011-12-01 2013-06-06 Rf Micro Devices, Inc. Rf power converter
US9494962B2 (en) 2011-12-02 2016-11-15 Rf Micro Devices, Inc. Phase reconfigurable switching power supply
US9813036B2 (en) 2011-12-16 2017-11-07 Qorvo Us, Inc. Dynamic loadline power amplifier with baseband linearization
US9298198B2 (en) 2011-12-28 2016-03-29 Rf Micro Devices, Inc. Noise reduction for envelope tracking
US8981839B2 (en) 2012-06-11 2015-03-17 Rf Micro Devices, Inc. Power source multiplexer
CN104662792B (zh) 2012-07-26 2017-08-08 Qorvo美国公司 用于包络跟踪的可编程rf陷波滤波器
US9225231B2 (en) 2012-09-14 2015-12-29 Rf Micro Devices, Inc. Open loop ripple cancellation circuit in a DC-DC converter
US9197256B2 (en) 2012-10-08 2015-11-24 Rf Micro Devices, Inc. Reducing effects of RF mixer-based artifact using pre-distortion of an envelope power supply signal
US9207692B2 (en) 2012-10-18 2015-12-08 Rf Micro Devices, Inc. Transitioning from envelope tracking to average power tracking
US9627975B2 (en) 2012-11-16 2017-04-18 Qorvo Us, Inc. Modulated power supply system and method with automatic transition between buck and boost modes
WO2014116933A2 (en) 2013-01-24 2014-07-31 Rf Micro Devices, Inc Communications based adjustments of an envelope tracking power supply
US9178472B2 (en) 2013-02-08 2015-11-03 Rf Micro Devices, Inc. Bi-directional power supply signal based linear amplifier
US9197162B2 (en) 2013-03-14 2015-11-24 Rf Micro Devices, Inc. Envelope tracking power supply voltage dynamic range reduction
WO2014152876A1 (en) 2013-03-14 2014-09-25 Rf Micro Devices, Inc Noise conversion gain limited rf power amplifier
US9479118B2 (en) 2013-04-16 2016-10-25 Rf Micro Devices, Inc. Dual instantaneous envelope tracking
TWI538408B (zh) * 2013-05-21 2016-06-11 國立交通大學 使用週期性重置積分之角度解調變裝置及其方法
US9374005B2 (en) 2013-08-13 2016-06-21 Rf Micro Devices, Inc. Expanded range DC-DC converter
US9495049B2 (en) * 2014-05-18 2016-11-15 Himax Technologies Limited Electronic device with touch sensitive functionality
US9614476B2 (en) 2014-07-01 2017-04-04 Qorvo Us, Inc. Group delay calibration of RF envelope tracking
CN104503294A (zh) * 2014-11-21 2015-04-08 三峡大学 一种基于直流负反馈原理的梯形-矩形加权数字积分器
US9912297B2 (en) 2015-07-01 2018-03-06 Qorvo Us, Inc. Envelope tracking power converter circuitry
US9948240B2 (en) 2015-07-01 2018-04-17 Qorvo Us, Inc. Dual-output asynchronous power converter circuitry
FR3038808B1 (fr) * 2015-07-09 2017-07-21 Commissariat Energie Atomique Demodulateur en quadrature pour recepteur rfid a tres haut debit
US9973147B2 (en) 2016-05-10 2018-05-15 Qorvo Us, Inc. Envelope tracking power management circuit
US10476437B2 (en) 2018-03-15 2019-11-12 Qorvo Us, Inc. Multimode voltage tracker circuit
US10944415B2 (en) 2018-06-27 2021-03-09 Massachusetts Institute Of Technology Spectrally efficient digital logic (SEDL) analog to digital converter (ADC)
US10673417B2 (en) * 2018-06-27 2020-06-02 Massachusetts Institute Of Technology Spectrally efficient digital logic
US10886612B2 (en) 2018-09-17 2021-01-05 Qualcomm Incorporated Bi-directional active phase shifting
US11280833B2 (en) * 2019-01-04 2022-03-22 Rohde & Schwarz Gmbh & Co. Kg Testing device and testing method for testing a device under test
US11316489B2 (en) 2019-08-30 2022-04-26 Qualcomm Incorporated Bidirectional variable gain amplification
US10784636B1 (en) 2019-10-14 2020-09-22 Qualcomm Incorporated Asymmetrical quadrature hybrid coupler

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05143144A (ja) * 1991-11-18 1993-06-11 Komatsu Ltd 加工機械のオーバライド設定装置
JPH06350680A (ja) * 1993-06-08 1994-12-22 Toshiba Corp データ伝送装置の試験装置
JPH11313118A (ja) * 1998-04-27 1999-11-09 Matsushita Electric Ind Co Ltd 送受信方法及び送受信装置
JP2001136223A (ja) * 1999-11-05 2001-05-18 Nec Corp 復調装置及び方法
JP2002195082A (ja) * 2000-11-24 2002-07-10 Robert Bosch Gmbh 車両駆動ユニットの制御方法および装置
JP2004165936A (ja) * 2002-11-12 2004-06-10 Matsushita Electric Ind Co Ltd 位相変調信号復調器
JP2004165900A (ja) * 2002-11-12 2004-06-10 Hitachi Kokusai Electric Inc 通信装置
JP2006173897A (ja) * 2004-12-14 2006-06-29 Matsushita Electric Ind Co Ltd 直接直交復調器及び無線通信装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3557308A (en) * 1968-03-01 1971-01-19 Gen Dynamics Corp Data synchronizing system
US3879664A (en) * 1973-05-07 1975-04-22 Signatron High speed digital communication receiver
US4130802A (en) * 1976-01-15 1978-12-19 Rca Corporation Unidirectional phase shift keyed communication system
US4485358A (en) * 1981-09-28 1984-11-27 E-Systems, Inc. Method and apparatus for pulse angle modulation
US4635279A (en) * 1985-07-25 1987-01-06 Rca Corporation Arrangement for coherently generating sinusoids of different frequencies, and angle modulation data receiver using the arrangement
GB2182529A (en) * 1985-10-30 1987-05-13 Philips Electronic Associated Digital communication of analogue signals
US5053782A (en) * 1989-12-13 1991-10-01 Gilat Communication Systems Ltd. Commercial satellite communications system
FR2718910B1 (fr) * 1994-04-18 1996-05-31 Sat Dispositif de décision à seuils adaptatifs pour modulation à multiétat.
KR0137529B1 (ko) * 1995-03-20 1998-07-01 김주용 4상 위상 변조기
US5761615A (en) * 1995-05-31 1998-06-02 Motorola, Inc. Wide band zero if quadrature demodulator using a intermediate frequency and a single local oscillator
AUPN455695A0 (en) * 1995-08-01 1995-08-24 Canon Kabushiki Kaisha Qam spread spectrum demodulation system
AU6384799A (en) * 1998-09-08 2000-03-27 University Of Hawaii Spread-spectrum continuous-time analog correlator and method therefor
SE513332C2 (sv) * 1998-11-26 2000-08-28 Ericsson Telefon Ab L M Kommunikationssignalmottagare samt driftmetod för densamma
US6348830B1 (en) * 2000-05-08 2002-02-19 The Regents Of The University Of Michigan Subharmonic double-balanced mixer
US7369813B2 (en) * 2003-05-14 2008-05-06 Telefonaktiebolaget L M Ericsson (Publ) Fast calibration of electronic components
US6999747B2 (en) * 2003-06-22 2006-02-14 Realtek Semiconductor Corp. Passive harmonic switch mixer
US8054867B2 (en) * 2008-02-13 2011-11-08 International Business Machines Corporation Apparatus for transmitting data and additional information simultaneously within a wire-based communication system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05143144A (ja) * 1991-11-18 1993-06-11 Komatsu Ltd 加工機械のオーバライド設定装置
JPH06350680A (ja) * 1993-06-08 1994-12-22 Toshiba Corp データ伝送装置の試験装置
JPH11313118A (ja) * 1998-04-27 1999-11-09 Matsushita Electric Ind Co Ltd 送受信方法及び送受信装置
JP2001136223A (ja) * 1999-11-05 2001-05-18 Nec Corp 復調装置及び方法
JP2002195082A (ja) * 2000-11-24 2002-07-10 Robert Bosch Gmbh 車両駆動ユニットの制御方法および装置
JP2004165936A (ja) * 2002-11-12 2004-06-10 Matsushita Electric Ind Co Ltd 位相変調信号復調器
JP2004165900A (ja) * 2002-11-12 2004-06-10 Hitachi Kokusai Electric Inc 通信装置
JP2006173897A (ja) * 2004-12-14 2006-06-29 Matsushita Electric Ind Co Ltd 直接直交復調器及び無線通信装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140006043A (ko) * 2011-02-17 2014-01-15 고쿠리츠다이가쿠호진 토쿄고교 다이가꾸 밀리미터파 대역 무선 송수신 장치
KR101651496B1 (ko) 2011-02-17 2016-08-26 고쿠리츠다이가쿠호진 토쿄고교 다이가꾸 밀리미터파 대역 무선 송수신 장치

Also Published As

Publication number Publication date
JPWO2010046957A1 (ja) 2012-03-15
US20110018626A1 (en) 2011-01-27

Similar Documents

Publication Publication Date Title
WO2010046957A1 (ja) 直交振幅復調器、復調方法およびそれらを利用した半導体装置および試験装置
US8269569B2 (en) Test apparatus for digital modulated signal
US8379698B2 (en) Wireless frequency-domain multi-channel communications
US7733980B2 (en) Quadrature modulation circuits and systems supporting multiple modulation modes at gigabit data rates
US8542773B2 (en) Digital RF converter, digital RF modulator and transmitter including the same
Al-Rubaye et al. ${W} $-Band Direct-Modulation> 20-Gb/s Transmit and Receive Building Blocks in 32-nm SOI CMOS
US8319569B2 (en) Quadrature amplitude modulator and quadrature amplitude modulation method
US8754631B2 (en) Test apparatus for digital modulated signal
Mirabbasi et al. Hierarchical QAM: a spectrally efficient DC-free modulation scheme
US6304136B1 (en) Reduced noise sensitivity, high performance FM demodulator circuit and method
JP5274550B2 (ja) デジタル変調信号の試験装置、ならびにデジタル変調器、変調方法およびそれを用いた半導体装置
US8660213B1 (en) Bandpass-sampling wide-band receiver
US8994571B1 (en) Compact high-speed analog-to-digital converter for both I and Q analog to digital conversion
Carlowitz et al. SPARS: simultaneous phase and amplitude regenerative sampling
US8659458B1 (en) Multiple return-to-zero current switching digital-to-analog converter for RF signal generation
Mohammadnezhad et al. A Single-Channel RF-to-Bits 36Gbps 8PSK RX with Direct Demodulation in RF Domain
KR101292667B1 (ko) 디지털 rf 컨버터 및 이를 포함하는 디지털 rf 변조기와 송신기
Tawa et al. A 950MHz RF 20MHz bandwidth direct RF sampling bit streamer receiver based on an FPGA
US9313018B1 (en) Circuit and method for clock recovery of quadrature amplitude modulated waveforms
Sobel et al. A 1Gbps mixed-signal analog front end for a 60GHz wireless receiver
Gao et al. A 7.9 μA 4-bit 4Msps successive approximation phase-domain ADC for GFSK demodulator
Åberg CMOS Data Converters for Closed-Loop mmWave Transmitters
Du Design of Energy-Efficient Single-Ended Frequency-Division Multiplexing Wireline Transceivers
Topiłko et al. Analog Quadrature Modulator and Coupling Circuit for Narrowband Power Line Communication
Kaissoine et al. Demodulation of RF signal aggregating four non-contiguous frequency carriers

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 12670111

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08877523

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010534611

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08877523

Country of ref document: EP

Kind code of ref document: A1