WO2012105423A1 - 電池式ガス警報器、その制御装置 - Google Patents

電池式ガス警報器、その制御装置 Download PDF

Info

Publication number
WO2012105423A1
WO2012105423A1 PCT/JP2012/051725 JP2012051725W WO2012105423A1 WO 2012105423 A1 WO2012105423 A1 WO 2012105423A1 JP 2012051725 W JP2012051725 W JP 2012051725W WO 2012105423 A1 WO2012105423 A1 WO 2012105423A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
sensor
alarm
cycle
driving
Prior art date
Application number
PCT/JP2012/051725
Other languages
English (en)
French (fr)
Inventor
剛 上岡
徳美 長瀬
鈴木 卓弥
大西 久男
敏郎 中山
篤 野中
崇 中島
Original Assignee
富士電機株式会社
大阪瓦斯株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社, 大阪瓦斯株式会社 filed Critical 富士電機株式会社
Priority to CN201280004395.1A priority Critical patent/CN103299350B/zh
Priority to JP2012555830A priority patent/JP5662484B2/ja
Publication of WO2012105423A1 publication Critical patent/WO2012105423A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/12Alarms for ensuring the safety of persons responsive to undesired emission of substances, e.g. pollution alarms
    • G08B21/16Combustible gas alarms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0062General constructional details of gas analysers, e.g. portable test equipment concerning the measuring method or the display, e.g. intermittent measurement or digital display
    • G01N33/0063General constructional details of gas analysers, e.g. portable test equipment concerning the measuring method or the display, e.g. intermittent measurement or digital display using a threshold to release an alarm or displaying means
    • G01N33/0065General constructional details of gas analysers, e.g. portable test equipment concerning the measuring method or the display, e.g. intermittent measurement or digital display using a threshold to release an alarm or displaying means using more than one threshold

Definitions

  • the present invention relates to a gas leak alarm that detects a flammable gas such as city gas or LP gas leaking from a gas appliance or gas pipe and issues an alarm, and more particularly to a battery-type gas alarm that uses a battery as a power supply.
  • a gas leak alarm that detects a flammable gas such as city gas or LP gas leaking from a gas appliance or gas pipe and issues an alarm
  • a battery-type gas alarm that uses a battery as a power supply.
  • the gas alarm detects a gas to be detected by a gas detection element such as a gas sensor, and when the gas concentration of the gas to be detected exceeds a predetermined gas concentration, an alarm is issued by an alarm sound or an alarm display. .
  • a gas sensor In a gas alarm, a gas sensor is used to detect a detection target gas such as city gas or LP gas.
  • the gas sensor has, for example, a heater resistance and a sensor resistance.
  • the sensor resistance changes in value due to the reaction with the gas to be detected.
  • Gas detection is performed by measuring the resistance value of the sensor resistance in a state of being heated by the heater resistance. For example, while applying a voltage to the heater resistance of the gas sensor and heating the heater temperature to a predetermined temperature such as 400 ° C., a change in the resistance value of the sensor resistance (in fact, a voltage indicating this resistance value) Gas detection is performed by measuring.
  • Patent Document 1 There is a method of applying a direct current voltage or a method of applying a voltage in a pulse manner as a driving method to set the heater temperature of the gas sensor to a predetermined temperature, but particularly in a battery-powered gas alarm driven by a battery, power consumption is reduced.
  • a method of pulse-energizing the heater in a predetermined drive cycle is performed (Patent Document 1, Patent Document 2).
  • FIG. 1 An example of the sensor drive by pulse electricity supply is shown in FIG.
  • the pulse is supplied to the gas sensor for 100 ms every 45 seconds of the sensor drive cycle, and the gas detection is performed at the final timing of the pulse supply.
  • the pulse conduction time (the voltage application time to the gas sensor; 100 ms in this example) is shortened to enable gas detection in a short time, and the drive cycle is extended to save power in the sensor To be able to
  • Patent Document 3 In the high concentration (12,500 ppm) in-gas test, it is necessary for the gas alarm to detect the occurrence of the gas leak and issue an alarm within 60 seconds after the occurrence of the gas leak (Patent Document 3).
  • a method of performing pulse energization in a predetermined drive cycle is performed to save power.
  • this is gas detection only at a predetermined drive cycle timing, and since gas detection is not performed as needed, it is difficult to detect a gas and issue an alarm within 60 seconds.
  • the gas detection operation is performed only at a predetermined drive cycle timing, and the gas detection is not performed at any time (always), so a sudden increase in gas concentration is caused. It has become difficult to detect gas and issue an alarm early without delay of detection time.
  • Patent Literatures 1 and 2 do not consider detection delay
  • Patent Literature 3 describes an example of pulse driving with a cycle of 20 seconds, but battery consumption becomes extremely large.
  • the above problem can be solved by shortening the drive cycle of pulse energization and increasing the gas detection timing, but when the gas sensor is energized, a large power is required to heat the heater temperature to about 400 ° C., and battery consumption is very serious. (For example, if the drive cycle of 45 seconds is 5 seconds, the power consumed by the gas sensor will increase by 9 times).
  • the battery-type gas alarm it is desirable to make the drive cycle of pulse energization as long as possible, but if the drive cycle is too long, the gas detection is delayed because the gas detection is not performed at timing other than the drive cycle. In spite of the fact that the alarm should be issued early at the same time, the alarm is delayed, and a problem occurs that the alarm can not be performed in the safe state. (For example, if a drive cycle of 45 seconds is 90 seconds, the power consumed by the gas sensor is halved, but since gas detection is performed only every 90 seconds, the gas concentration is large during 90 seconds.
  • the gas concentration inside the gas sensor for detecting the ambient gas concentration is affected immediately by the structure of the alarm main body, the gas sensor structure, the filter configuration provided to remove miscellaneous gases, etc. It will not be the same as the gas concentration, and it will gradually approach the ambient gas concentration later than the ambient gas concentration. Therefore, not only the driving cycle of the sensor but also the delay in detection of the gas concentration due to the structure of the alarm must be taken into consideration to determine the driving cycle.
  • An object of the present invention is to provide a battery-powered gas alarm using a battery as a power source, which can save power and reduce battery consumption, and can promptly issue a gas leak alarm without delay in detection of a detection target gas.
  • Battery-powered gas alarm, its control device and the like are examples of battery-powered gas alarm, its control device and the like.
  • the gas alarm according to the present invention is a battery-powered gas alarm using a battery as a power source, which detects a gas leak based on the output of a gas sensor whose electrical characteristics change according to the gas concentration of a detection target gas. It has composition.
  • it is a means for driving the gas sensor by applying a pulse current at an arbitrary drive cycle, and based on the output of the gas sensor at the time of driving, the sensor drive means for driving the gas sensor at a first drive cycle under normal conditions.
  • Gas concentration calculation means for calculating the gas concentration, and alarm means for alarming when the calculated gas concentration exceeds a predetermined first threshold.
  • the sensor drive means includes drive cycle changing means for driving the gas sensor in a second drive cycle shorter than the first drive cycle.
  • the gas sensor is usually driven with a relatively long drive cycle (first drive cycle) to detect the ambient gas, and the gas concentration is a threshold lower than the first threshold.
  • first drive cycle the gas concentration is a threshold lower than the first threshold.
  • second drive cycle the sensor drive cycle is shortened (second drive cycle) to detect the ambient gas.
  • FIG. 1 is a block diagram of an embodiment of a gas alarm according to the present invention.
  • the illustrated gas alarm device 10 is a gas leak alarm device that detects a flammable gas such as city gas or LP gas leaked from a gas appliance or gas pipe and issues an alarm, and in particular, a battery-operated gas powered by a battery. It is an alarm.
  • the gas alarm device 10 of the illustrated example comprises a gas sensor 11, a control circuit unit 12, an alarm unit 13, an ambient temperature detection unit 14, a battery unit 15, etc., and further a load resistor R, a transistor switch SW1, a transistor switch SW2 etc.
  • the circuit of Hereinafter, the transistor switch SW1 and the transistor switch SW2 will be omitted and described as a switch SW1 and a switch SW2.
  • the gas sensor 11 for detecting a gas to be detected includes a sensor resistor 11 a for detecting a gas concentration, and a heater resistor 11 b for heating the gas.
  • the sensor resistance 11a has a resistance value corresponding to the concentration of the surrounding gas
  • the heater resistance 11b is set to, for example, 400.degree. C. in the gas leak detection process performed in the predetermined drive cycle. , Etc., to measure the resistance value (voltage value corresponding to the resistance value, etc.) of the sensor resistor 11a.
  • the gas to be detected may be city gas, LP gas, or another gas, but naturally, a gas sensor according to the type of gas to be detected will be used. .
  • the battery unit 15 supplies power of 3 volts in this example, and supplies power of the entire circuit shown in FIG. That is, the voltage from the battery unit 15 is supplied to a sensor system circuit which is a gas detection unit including the heater resistor 11b in the gas sensor 11, the sensor resistor 11a, the load resistor R, and the switches SW1 and SW2. Further, power is also supplied to the control circuit unit 12 from the battery unit 15.
  • a sensor system circuit which is a gas detection unit including the heater resistor 11b in the gas sensor 11, the sensor resistor 11a, the load resistor R, and the switches SW1 and SW2. Further, power is also supplied to the control circuit unit 12 from the battery unit 15.
  • the control circuit unit 12 is a microcomputer (CPU or the like) for controlling the entire operation of the gas alarm device 10, and executes an application program stored in advance in a built-in memory (not shown) to execute the processing of the above control The processing of the flowchart shown in FIG. 3 is executed.
  • the control circuit unit 12 has terminals such as output terminals OUT1 and OUT2 and input terminals AD1 and AD2.
  • the output terminal OUT1 is connected to the base of the switch SW1, and the switch SW1 is controlled ON / OFF by the output signal from the output terminal OUT1.
  • the output terminal OUT2 is connected to the base of the switch SW2, and the switch SW2 is ON / OFF controlled by the output signal from the output terminal OUT2.
  • the input terminals AD1 and AD2 may be particularly referred to as AD conversion input terminals AD1 and AD2, etc. The reason will be described later.
  • the control circuit unit 12 turns on the switch SW1 and the switch SW2 according to the output signals from the output terminals OUT1 and OUT2, so that the gas sensor 11 (its heater resistance 11b
  • the sensor system circuit including the sensor resistor 11a and the load resistor R is supplied with power and operated.
  • a series circuit in which the switch SW2, the sensor resistor 11a and the load resistor R are connected in series and a series circuit in which the switch SW1 and the heater resistor 11b are connected in series are provided in parallel. It is done. A power supply voltage (3 V) from the battery unit 15 is applied to each series circuit.
  • a voltage value V1 between the sensor resistor 11a and the load resistor R is input to the control circuit unit 12 via an AD (analog-digital) conversion input terminal AD1.
  • the resistance value of the load resistance R may be arbitrary but fixed, and when the resistance value of the sensor resistance 11a changes, the voltage value V1 changes. That is, the voltage value V1 corresponds to the resistance value of the sensor resistor 11a.
  • the control circuit unit 12 detects the sensor output (voltage value V1; resistance value of the sensor resistor 11a) of the gas sensor 11 through the input terminal AD1, and for example, the sensor output has a predetermined gas concentration (first reference described later) Gas leak detection is performed by determining whether the value corresponding to the concentration (alarm level) has been exceeded.
  • a second reference density which is a threshold lower than the first reference density, is further set, and using this, a change in the sensor drive cycle, etc. It also processes Details will be described later.
  • the AD conversion input terminals AD1 and AD2 include a function (AD (analog-digital) converter) that converts not only input terminals but also analog signals (such as voltage value V1) input to the input terminals into digital values. It shall be. Therefore, the control circuit unit 12 receives the digital value of the voltage value V1 via the input terminal AD1.
  • AD analog-digital
  • the alarm unit 13 includes an alarm sound output unit 13a, an alarm display unit 13b, and an external alarm output unit 13c.
  • the alarm sound output unit 13a is a part that emits a sound such as an alarm sound, and is configured of, for example, a speaker, a buzzer, or the like.
  • the alarm sound output unit 13 a reports a gas leak state with a voice message or an electronic sound based on the control from the control circuit unit 12.
  • the alarm display unit 13 b is configured by an LED (light emitting diode) or the like, and the control circuit unit 12 blinks or lights the LED at alarming time to display an alarming state by the LED and notifies a gas leak state.
  • the control circuit unit 12 may output an alarm signal to an external device such as a gas meter or a centralized monitoring panel via the external alarm output unit 13c.
  • the ambient temperature detection unit 14 does not relate to the present invention and thus the detailed description is omitted, the ambient temperature value is input to the control circuit unit 12 via the AD conversion input terminal AD2, and the ambient temperature detection unit 14 This is a configuration for performing temperature correction calculation of gas concentration based on temperature.
  • the control circuit unit 12 performs gas detection for each cycle Ta by driving the gas sensor 11 with a sensor drive cycle Ta and a sensor drive time (corresponding to the above-mentioned pulse conduction time) Tb.
  • the sensor drive cycle Ta may be temporarily changed. Details will be described later.
  • the control circuit unit 12 turns on the switch SW1 and the switch SW2 by the output signals from the output terminals OUT1 and OUT2 each time the sensor drive timing according to the sensor drive cycle Ta comes, whereby the heater resistance 11b and the sensor in the gas sensor 11 are detected.
  • a power supply voltage is applied to the resistor 11a.
  • the heater resistor 11 b is heated to, for example, 400 ° C. by applying a power supply voltage.
  • the control circuit unit 12 reads the gas sensor output voltage V1 from the AD1 terminal when 100 ms elapses from the sensor drive timing (for example, the internal timer determines that 100 ms has elapsed).
  • the control circuit unit 12 converts the read sensor output voltage V1 into a gas concentration, and compares the gas concentration with a predetermined threshold (alarm level) to determine whether the predetermined gas concentration is exceeded. .
  • the process itself for converting the sensor output voltage V1 into the gas concentration is an existing general one and will not be particularly described here.
  • the process itself for comparing the converted gas concentration (measured gas concentration) with a predetermined alarm level is also an existing technology, another threshold is added in this method. That is, in the present method, two types of threshold values are provided in contrast to the conventional one type of threshold value.
  • a first reference concentration (first threshold) and a second reference concentration (second threshold) are provided.
  • the first reference concentration may be considered to correspond to, for example, the alarm level, and when the converted gas concentration (measured gas concentration) exceeds the first reference concentration, a gas leak alarm is issued. become.
  • the second reference concentration is a threshold lower than the first reference concentration (first reference concentration> second reference concentration). When a gas leak occurs (particularly when the gas concentration is high), the measurement gas concentration basically exceeds the second threshold first and then the first threshold.
  • the alarm unit 13 is controlled to perform the gas leak notification operation as in the conventional case.
  • the measured gas concentration does not exceed the second reference concentration (the second threshold), so it is determined that there is no gas in the surroundings, and an alarm Without this, the sensor drive cycle Ta continues for 45 seconds.
  • the sensor drive cycle Ta is shortened (from the normal 45 second cycle in this example). Change to 20 seconds cycle). At this time, since the measured gas concentration does not exceed the first reference concentration which is the alarm level concentration, the gas leak alarm is not performed.
  • the process in the case where the number of times of detection reaches a predetermined number of times (five times) will be described later.
  • the gas leak alarm is issued by voice and the alarm is displayed by LED display.
  • the sensor drive cycle Ta is returned to the normal 45 second cycle and the gas detection is continued thereafter (gas from the seventh time onwards) Detection).
  • the power saving is realized by the detection operation with a relatively long period (for example, the 45-second period operation) during normal operation, and the gas concentration rises rapidly while suppressing battery consumption.
  • a relatively long period for example, the 45-second period operation
  • gas concentration rises rapidly while suppressing battery consumption.
  • a relatively short cycle for example, a cycle of 20 seconds
  • step S2 of FIG. 3 is NO and step S3 is YES)
  • step S3 is YES
  • the sensor drive cycle in the 20 second cycle is stopped to return to the 45 second cycle which is the normal sensor drive cycle, thereby suppressing unnecessary power consumption.
  • the value of the sensor drive cycle of the predetermined number of times or relatively short cycle is appropriately determined to be an optimum value according to the gas concentration change to be detected, and is limited to the above value (5 times or 20 seconds) It is not a thing.
  • FIG. 3 is a flowchart of a process of determining a drive cycle of sensor drive according to an embodiment. The process of this flowchart is repeatedly performed each time sensor driving is performed in a Ta cycle by the control circuit unit 12 (microcomputer or the like) of FIG. Implemented).
  • the sensor to be driven is, of course, the gas sensor 11 described above.
  • control circuit unit 12 of FIG. 1 performs sensor drive for each sensor drive time Tb at a sensor drive cycle Ta based on control by an internal timer (not shown), and the AD conversion input terminal AD1
  • the sensor output voltage V1 of the gas sensor 11 is read through.
  • the control circuit unit 12 calculates the gas concentration based on the read sensor output voltage V1 (step S1). As described above, in this example, Ta in a normal state is 45 seconds, and Tb is always 100 ms.
  • Step S2 it is determined whether the calculated current gas concentration (measurement gas concentration) exceeds the first reference concentration (first threshold) which is the alarm level concentration (measurement gas concentration> first reference concentration?) (Step S2).
  • Step S12 is an alarm process by the alarm unit 13 described above.
  • the drive cycle (in this example, 20 seconds) shorter than the normal drive cycle (in this example, 45 seconds) in the state of “second reference concentration ⁇ measured gas concentration ⁇ first reference concentration”.
  • the short period detection counter is a counter that counts the number of times of sensor driving in a 20-second cycle.
  • the sensor drive cycle Ta is returned from the short cycle (20 sec) to the normal drive cycle (45 sec) (step S4 described later) Is YES and S9).
  • the short cycle detection counter is forcibly set to '5' regardless of the current count value.
  • the sensor driving in a short cycle is stopped. This is because, in the example of FIG. 3, after the measured gas concentration exceeds the first reference concentration, for example, due to some fluctuations etc., the state of “second reference concentration ⁇ measured gas concentration ⁇ first reference concentration” is obtained again.
  • the determination in step S4 described later is YES, the normal drive cycle (45 seconds) is maintained.
  • the second reference concentration in which the measured gas concentration is a threshold lower than the first reference concentration Is determined (measured gas concentration> second reference concentration?) (Step S3).
  • the sensor drive cycle Ta is set to 45 seconds of normal drive (step S9), and an alarm-free state is set (if the alarm is in progress, the alarm is canceled) (step S7), and the present process is ended.
  • the short cycle detection counter becomes 5 times or more first It is determined whether there is any (step S4).
  • step S4 When the short cycle detection counter is 5 times or more (step S4, YES), that is, when the number of sensor driving times in a short cycle (20 seconds) reaches a predetermined number, the sensor driving cycle Ta is set. It returns to the 45-second cycle of normal drive (step S9). This is because the number of short cycle detections has already been completed for the reason already described.
  • Step S4 if the short cycle detection counter is less than 5 times (step S4, NO), set the sensor drive cycle to 20 seconds (if it is already 20 seconds, leave it as it is; continue detection in short cycle) (Step S5), the short cycle detection counter is counted up (Step S6), the process of Step S7 is performed, and the process ends.
  • the sensor drive cycle shorter than the normal sensor drive cycle (45 seconds)
  • power saving is realized to suppress battery consumption while detecting gas delay even when gas concentration increases rapidly. It is possible to detect a gas leak early and issue an alarm without occurrence of
  • the number of times of sensor driving in a short cycle (20 seconds) can be restricted to suppress unnecessary power consumption. That is, after the measurement gas concentration exceeds the first reference concentration (after issuing an alarm), it is possible to suppress wasteful power consumption by returning the sensor drive cycle Ta to the 45 sec cycle of normal drive. .
  • the number of times of driving the number of times of detection
  • the sensor driving cycle By returning Ta from the short cycle (20 seconds) to the normal drive cycle (45 seconds), wasteful power consumption can be suppressed.
  • FIG. 4 shows the relationship between the gas concentration change in the gas sensor 11 and the reference concentration when the conventional gas alarm device is exposed to a high concentration (12500 ppm) gas.
  • FIG. 5 shows the relationship between the gas concentration change (same as FIG. 4) and the two reference concentrations in the case of the gas alarm device 10 of this example.
  • the gas concentration in the gas sensor 11 is not immediately equal to the ambient gas concentration due to the influence of the sensor chamber structure of the alarm device 10, the gas sensor structure, the filter for removing miscellaneous gases, etc. It will be close to the gas concentration.
  • the gas concentration in the gas sensor 11 gradually rises and approaches the ambient gas concentration.
  • the time when the gas alarm 10 is inserted into the high concentration gas can be regarded as the time when the gas leak occurs.
  • the gas concentration in the gas sensor 11 exceeds the first reference concentration (alarm level) when 34 seconds have elapsed since the gas leak.
  • the first reference density is exceeded in the interval T1.
  • the sensor drive cycle is a 45-second cycle
  • the next sensor drive timing is 45 seconds after the current drive, and is the next sensor drive timing in the T4 section (45 to 60 seconds) of FIG.
  • the gas concentration exceeds the first reference concentration, so a gas leak alarm is issued. Therefore, if there is a sensor drive timing within T1 even in the normal sensor drive cycle (45 seconds), the next drive timing will be within 60 seconds from the gas leak occurrence time and the first reference concentration will be exceeded at the next drive timing. Since it is possible to detect the gas concentration, a gas leak alarm can be issued within one minute.
  • the gas sensor 11 at this timing is the gas sensor 11
  • the gas concentration in the gas already exceeds the first reference concentration, and a gas leak alarm can be issued immediately.
  • the gas concentration at that time is the first reference concentration And therefore no gas leak warning is triggered.
  • the next sensor drive timing is T5 (60 to 79 seconds), which exceeds about 6000 ppm in the illustrated example (of course, the gas concentration already exceeds the first reference concentration) And a gas leak alarm will be issued, but this will issue a gas leak alarm 60 seconds after the occurrence of a gas leak and can not meet the requirement that the alarm be issued within one minute.
  • a gas leak alarm can be performed within one minute in any case as shown in FIG.
  • the sensor drive timing is reached within the section of T1 or T3
  • the gas alarm device 10 of this example even when the sensor drive timing comes within the section of T2, it is possible to issue a gas leak alarm within one minute.
  • the gas concentration change to be measured is the same as the example of FIG. 4, and the alarm level (first reference concentration) is also the same as the example of FIG.
  • a threshold (second reference concentration) lower than the alarm level (first reference concentration) is also set, and in the example shown in FIG. The measurement gas concentration exceeds the second reference concentration at the beginning of the T2 zone).
  • the sensor drive cycle is the above
  • the normal period (45 seconds period) is changed to the short period (20 seconds period). Since the detection cycle (drive cycle) is 20 seconds, the next sensor drive timing is in the T6 section (35 to 54 seconds) of FIG. Therefore, at the next sensor drive timing, since the measurement gas concentration exceeds the first reference concentration, it is possible to perform a gas leak alarm within one minute.
  • the cycle is normally 45 seconds, and the gas sensor can be driven without consuming extra power, so the battery usage can be reduced. it can. Then, only when there is a possibility of gas leak (when the second reference concentration is exceeded), switching from a normal drive cycle (45 seconds cycle) to a short drive cycle (20 seconds cycle) is performed, and the sensor is faster than normal Gas detection is performed at drive intervals. In this way, it is possible to give an early warning of gas leak while minimizing the increase in current consumption. In particular, when it is required to issue a gas leak alarm within one minute, it becomes possible to reliably issue a gas leak alarm within one minute while suppressing power consumption, providing a highly reliable alarm. It becomes possible.
  • the relationship between the concentration of methane gas and the elapsed time shown in Figs. 4 and 5 is an example, and the relationship between the gas concentration and the elapsed time differs depending on the sensor chamber structure of the alarm main body, the gas sensor structure, and the filter type of the gas sensor.
  • the time of the drive cycle shorter than the normal time and the number of short cycle drives are determined appropriately by the designer or the like based on these relationships.
  • FIG. 6 shows a time chart of sensor driving in the case where the gas concentration gradually increases.
  • the gas leak detection within 60 seconds is the condition in the high concentration (12,500 ppm) in-gas test, and is not relevant in the example shown in FIG. 6 (the gas concentration gradually increases). Therefore, although the gas leak detection within 60 seconds is not performed in the example of FIG. 6, there is no particular problem.
  • FIG. 7 is a time chart figure of the sensor drive in the modification which does not perform S10 and S11.
  • the process example shown in FIG. 3 is an example, and is not limited to this example.
  • S10 and S11 may not be performed.
  • the alarm device of the present invention extends the drive cycle of pulse energization for gas detection normally to reduce the battery usage, and the gas concentration of the gas to be detected is a predetermined concentration lower than the alarm level.
  • the sensor drive cycle is shortened to realize early gas detection.
  • the sensor drive cycle may be shortened up to a predetermined number of times.
  • the sensor drive cycle may be returned immediately. In this way, it is possible to give an early warning of gas leak while minimizing the increase in current consumption.
  • An alarm can be issued at a predetermined gas concentration without a detection delay with respect to a sudden gas concentration change, and a highly reliable gas alarm can be provided.
  • the gas sensor can be driven without consuming extra power, the battery usage can be reduced, and the cost can be reduced by reducing the number of batteries, and the size and weight of the device can be reduced.
  • the above-described gas alarm 10 which is a battery-type gas alarm using a battery as a power source, detects a gas leak based on the output of a gas sensor whose electrical characteristics change according to the gas concentration of the detection target gas. It has a functional unit.
  • it is a functional unit that drives the gas sensor by applying a pulse in any drive cycle, and has a sensor drive functional unit that drives the gas sensor in the first drive cycle at normal times.
  • the gas concentration calculation function unit calculates a gas concentration based on the output of the gas sensor at the time of driving the sensor, and the alarm function unit warns when the calculated gas concentration exceeds a predetermined first threshold. .
  • the sensor drive function unit has a drive cycle changing function unit that drives the gas sensor in a second drive cycle shorter than the first drive cycle.
  • the driving cycle changing function unit performs the second operation before the measurement gas concentration exceeds the first threshold.
  • the sensor drive cycle of the sensor drive function unit may be returned to the first drive cycle.
  • the drive cycle changing function unit may return the drive cycle of the sensor drive function unit to the first drive cycle.
  • the control device thereof, etc. in the battery-type gas alarm using a battery as a power source, power saving is realized and battery exhaustion is suppressed while rapid increase in gas concentration is achieved.
  • the gas leak alarm can be issued early without delay.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Emergency Management (AREA)
  • Business, Economics & Management (AREA)
  • Toxicology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Emergency Alarm Devices (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

 警報レベルである第1基準濃度よりも低い閾値である第2基準濃度を設け、ガス濃度が第2基準濃度以下の場合には(S3,NO)センサ駆動周期は45秒であるが、第2基準濃度を超えた場合には(S3,YES)センサ駆動周期を短周期(20秒)に設定する。

Description

電池式ガス警報器、その制御装置
 本発明は、ガス器具やガス配管から漏れた都市ガスやLPガスなどの可燃性ガスを検知して警報を発するガス漏れ警報器に係わり、特に電池を電源とする電池式ガス警報器に関する。
 ガス器具やガス配管からのガス漏れを検知し、音声やブザーなどで警報を発し、ガス使用者にガス漏れを知らせるガス警報器が知られている。
 ガス警報器は、ガスセンサなどのガス検知素子により検知対象ガスを検出し、検知対象ガスのガス濃度が所定のガス濃度を超えている場合、警報音や警報表示により警報を行うようになっている。
 ガス警報器においては、都市ガスやLPガスなどの検知対象ガスを検知するためにガスセンサが用いられている。ガスセンサは、例えばヒータ抵抗とセンサ抵抗を有する。センサ抵抗は、検知対象ガスとの反応によりその抵抗値が変化する。ヒータ抵抗によって加熱した状態でセンサ抵抗の抵抗値を測定することで、ガス検知を行っている。例えば、ガスセンサのヒータ抵抗に電圧を印加してヒータ温度をたとえば400℃などの所定温度に加熱した状態にして、上記センサ抵抗の抵抗値(実際にはこの抵抗値を示す電圧等)の変化を測定することにより、ガス検知を行っている。
 ガスセンサのヒータ温度を所定温度にする駆動方法には、直流電圧を印加する方法やパルス的に電圧を印加する方法があるが、特に電池で駆動する電池式ガス警報器では、消費電力を低減するために所定の駆動周期でヒータをパルス通電する方法が行われている(特許文献1、特許文献2)。
 図8にパルス通電によるセンサ駆動の一例を示す。センサ駆動周期45秒毎に100ms間だけガスセンサにパルス通電を行い、パルス通電の最終タイミングでガス検知を行っている。省電力のために、パルス通電時間(ガスセンサへの電圧印加時間;本例では100ms)を短くして短時間でガス検出ができるようにしているとともに、駆動周期を長くして省電力でセンサ駆動が行えるようにしている。
 ガス警報器は、高濃度(12500ppm)のガス中試験では、ガス漏れ発生から60秒以内に当該ガス漏れ発生を検知して警報を発する必要がある(特許文献3)。
 これに対して、上述したように、電池駆動式のガス警報器では、省電力のために所定の駆動周期でパルス通電する方法が行われている。しかし、これは所定の駆動周期タイミングのみでのガス検知となっており、随時ガス検知を行っていないため、60秒以内でガスを検知して警報を発することが困難になっている。
 また、コードレス化による取付性向上や機器小型化などの理由から、電池駆動によるガス警報器が望まれているが、検知対象ガスを検出するにあたりガスセンサのヒータ温度を400℃程度にしなければならず大きな電力が必要となっている。このため、ガス警報器の有効期限である5年間を電池で駆動できるように省電力でセンサ駆動を行うことが課題となっている。
特開1999-248659号公報 特開2003-67867号公報 特開2010-86199号公報
 上述したように、電池式のガス警報器では、所定の駆動周期タイミングでのみガス検知動作を行っており、随時の(常時の)ガス検知を行っていないため、急激なガス濃度上昇に対して、検知時間の遅れなく早期にガスを検知して警報を発することが、困難になっている。
 特許文献1,2は検知遅れを考慮しておらず、特許文献3では20秒周期でのパルス駆動の例が記載されているが、電池消耗が非常に大きくなる。パルス通電の駆動周期を短くしてガス検知タイミングを多くすれば、上記課題は解決できるが、ガスセンサの通電時にはヒータの温度を400℃程度に加熱するために大きな電力を必要としており電池消耗が非常に大きくなる(例えば、駆動周期45秒を5秒周期にすると、ガスセンサで消費する電力は9倍に増加することになる)。
 従って、電池式ガス警報器においては、パルス通電の駆動周期をできるだけ長くしたいが、駆動周期を長くしすぎると、駆動周期以外のタイミングではガスの検知を行わないためにガスの検知が遅れてしまい、本来は早期に警報発報をしなければならないにも関わらず、警報が遅れ安全な状態での警報が行えない問題が発生してしまう。(例えば、駆動周期45秒を90秒周期にすれば、ガスセンサで消費する電力は1/2になるが、ガスの検知を90秒毎にしか行わないので、90秒の間にガス濃度が大きく上昇した場合、本来検知したいガス濃度を大きく超えてからのガス検知となる可能性もあり、安全上の不安が発生することになる。)
 また、周囲のガス濃度を検知するためのガスセンサ内部のガス濃度は、警報器本体の構造やガスセンサ構造、雑ガスを除去するために設けられているフィルタ構成などに影響を受けて、即時に周囲ガス濃度と同一とはならず、周囲ガス濃度に遅れて徐々に周囲ガス濃度に近づくことになる。従って、センサの駆動周期のみではなく、警報器の構造によるガス濃度の検出遅れも考慮して駆動周期を決定しなければならない。
 本発明の課題は、電池を電源とする電池式ガス警報器において、省電力化を実現して電池消耗を抑えつつ、検知対象ガスの検出遅れなく早期にガス漏れ警報を発することができる信頼性の高い電池式ガス警報器、その制御装置等を提供することにある。
 本発明のガス警報器は、検知対象ガスのガス濃度に応じて電気的特性が変化するガスセンサの出力に基づいてガス漏れ検知する、電池を電源とする電池式ガス警報器であって、以下の構成を有する。
 すなわち、任意の駆動周期でパルス通電することで前記ガスセンサを駆動する手段であって通常時は第1の駆動周期で前記ガスセンサを駆動するセンサ駆動手段と、該駆動時の前記ガスセンサの出力に基づいてガス濃度を算出するガス濃度算出手段と、該算出したガス濃度が所定の第1閾値を超えたときに警報を行う警報手段とを有する。
 更に、前記ガス濃度算出手段が算出したガス濃度が、前記第1閾値よりも低い閾値である第2閾値を超えたか否かを判定し、ガス濃度が該第2閾値を超えた場合には前記センサ駆動手段に前記第1の駆動周期よりも短い第2の駆動周期で前記ガスセンサを駆動させる駆動周期変更手段を有する。
 上記本発明のガス警報器では、通常時は比較的長い駆動周期(第1の駆動周期)でガスセンサを駆動して周囲ガスの検知を行っており、ガス濃度が第1閾値より低い閾値である第2閾値を超えた場合に、センサ駆動周期を短くして(第2の駆動周期)周囲ガスの検知を行うようにしている。このため、省電力化を実現して電池消耗を抑えつつ、急激なガス濃度上昇に対しても検知遅れなく早期にガス漏れ警報を発することができる。
本発明によるガス警報器の一実施形態の構成図である。 一実施形態におけるセンサ駆動のタイムチャート図である。 一実施形態によるセンサ駆動周期を判定する処理フローチャート図である。 ガス濃度と経過時間との関係を示す図である。 一実施形態によるガス濃度と経過時間との関係を示す図である。 ガス濃度が緩やかに増加する場合におけるセンサ駆動のタイムチャート図である。 S10,S11を実行しない変形例におけるセンサ駆動のタイムチャート図である。 従来の電池式ガス警報器のセンサ駆動タイミングを説明する図である。
 以下、本発明を実施するための形態について図面を参照しながら詳細に説明する。
 図1は、本発明によるガス警報器の実施形態の構成図である。
 図示のガス警報器10は、ガス器具やガス配管から漏れた都市ガスやLPガスなどの可燃性ガスを検知して警報を発するガス漏れ警報器であって、特に電池を電源とする電池式ガス警報器である。
 図示の例のガス警報器10は、ガスセンサ11、制御回路部12、警報部13、周囲温度検出部14、電池部15等と、更に負荷抵抗R、トランジスタスイッチSW1、トランジスタスイッチSW2等から成る図示の回路を有している。尚、以下、トランジスタスイッチSW1,トランジスタスイッチSW2は、省略して、スイッチSW1、スイッチSW2と記すものとする。
 検知対象ガスを検出するガスセンサ11は、ガス濃度を検出するためのセンサ抵抗11aと、これを加熱するためのヒータ抵抗11bとを備える。既に従来で説明したように、センサ抵抗11aは周囲ガスの濃度に応じた抵抗値となるものであり、上記所定の駆動周期で行うガス漏れ検出処理の際には、ヒータ抵抗11bを例えば400℃等に加熱して、センサ抵抗11aの抵抗値(抵抗値に相当する電圧値等)を測定することになる。尚、検知対象ガスは、都市ガスであってもよいしLPガスであってもよいし、他のガスであってもよいが、当然、検知対象ガスの種類に応じたガスセンサを用いることになる。
 電池部15は、本例では3ボルトの電源を供給し、図1に示す回路全体の電力を供給する。すなわち、電池部15からの電圧を、ガスセンサ11内のヒータ抵抗11bとセンサ抵抗11a、負荷抵抗R、スイッチSW1、SW2等からなるガス検出手段であるセンサ系回路に供給する。また、制御回路部12にも電池部15から電力供給している。
 制御回路部12は、ガス警報器10全体の動作を制御するマイコン(CPU等)であり、不図示の内蔵メモリに予め記憶されているアプリケーションプログラムを実行することにより、上記制御の処理や、後述する図3に示すフローチャートの処理等を実行する。
 制御回路部12は、出力端子OUT1、OUT2、入力端子AD1,AD2等の各端子を有している。出力端子OUT1はスイッチSW1のベースに接続しており、出力端子OUT1からの出力信号によってスイッチSW1をON/OFF制御する。出力端子OUT2はスイッチSW2のベースに接続しており、出力端子OUT2からの出力信号によってスイッチSW2をON/OFF制御する。尚、入力端子AD1,AD2を、特に、AD変換入力端子AD1、AD2等と呼ぶ場合もあり、その理由は後述する。
 上記所定の駆動周期で行うガス漏れ検出処理の際には、制御回路部12は、出力端子OUT1、OUT2からの出力信号によってスイッチSW1およびスイッチSW2をオンすることで、ガスセンサ11(そのヒータ抵抗11b、センサ抵抗11a)、負荷抵抗Rからなるセンサ系回路に電力供給させて動作させる。
 尚、図示の通り、スイッチSW2とセンサ抵抗11aと負荷抵抗Rとが直列に接続して成る直列回路と、スイッチSW1とヒータ抵抗11bとが直列に接続してなる直列回路とが、並列に設けられている。各直列回路には上記電池部15による電源電圧(3V)が印加される。
 また、センサ抵抗11aと負荷抵抗Rとの間の電圧値V1が、AD(アナログ-ディジタル)変換入力端子AD1を介して、制御回路部12に入力している。負荷抵抗Rの抵抗値は任意でよいが固定であり、センサ抵抗11aの抵抗値が変化すると、電圧値V1が変化することになる。つまり、電圧値V1はセンサ抵抗11aの抵抗値に相当するものである。
 このように制御回路部12は、入力端子AD1を介してガスセンサ11のセンサ出力(電圧値V1;センサ抵抗11aの抵抗値)を検出し、例えばセンサ出力が所定のガス濃度(後述する第1基準濃度(警報レベル))に対応する値を超えたか否かを判定することにより、ガス漏れ検出を行う。この事自体は従来と略同様であると考えてよいが、本例では更に第1基準濃度よりも低い閾値である第2基準濃度が設定されており、これを用いてセンサ駆動周期の変更等の処理も行う。詳しくは後述する。
 尚、AD変換入力端子AD1,AD2には、入力端子だけでなく、入力端子に入力されるアナログ信号(電圧値V1等)をディジタル値に変換する機能(AD(アナログ-ディジタル)コンバータ)も含まれているものとする。よって、制御回路部12は、入力端子AD1を介して、電圧値V1のディジタル値を入力することになる。
 警報部13は、警報音出力部13a、警報表示部13b、外部警報出力部13cを備える。警報音出力部13aは、警報音等の音を発する部分であり、例えばスピーカやブザーなどで構成される。警報音出力部13aは、制御回路部12からの制御に基づいて、音声メッセージや電子音でガス漏れ状態を報知する。警報表示部13bは、LED(発光ダイオード)等で構成されており、制御回路部12は警報時には、LEDを点滅や点灯させて警報状態をLEDで表示させて、ガス漏れ状態を報知する。また、制御回路部12は、警報時には外部警報出力部13cを介してガスメータや集中監視盤等の外部機器へ、警報信号の出力を行うようにしてもよい。
 尚、周囲温度検出部14は、本発明には関係ないので詳細な説明は省略するが、AD変換入力端子AD2を介して周囲温度値を制御回路部12に入力し、制御回路部12に周囲温度に基づくガス濃度の温度補正計算などを実施させる為の構成である。
 ここで、本実施形態によるセンサ駆動について、図2のタイムチャートを用いて説明する。
 制御回路部12は、センサ駆動周期Ta、センサ駆動時間(上記パルス通電時間に相当)Tbで、ガスセンサ11を駆動することで、周期Ta毎のガス検知を行う。本手法では、このセンサ駆動周期Taが一時的に変更される場合がある。詳しくは後述する。
 本実施形態では、通常時は、一例として例えば、センサ駆動周期Ta=45秒、センサ駆動時間Tb=100ms(ミリ秒)で、ガスセンサ11を駆動するものとする。具体的には制御回路部12の内部タイマ(不図示)による制御に基づいてセンサ駆動周期Ta毎に以下の動作を実行する。
 上記センサ駆動周期Taによるセンサ駆動タイミングになる毎に、制御回路部12は、出力端子OUT1、OUT2からの出力信号によってスイッチSW1とスイッチSW2をオンすることで、ガスセンサ11内のヒータ抵抗11bとセンサ抵抗11aに電源電圧を印加する。ヒータ抵抗11bは電源電圧を印加することで例えば400℃等に加熱される。
 制御回路部12は、上記センサ駆動タイミングから100ms経過すると(例えば内部タイマで100ms経過を判定)、AD1端子からガスセンサ出力電圧V1を読み込みする。制御回路部12は、読み込んだセンサ出力電圧V1をガス濃度に換算し、このガス濃度を所定の閾値(警報レベル)と比較することで、所定のガス濃度を超えているか否かの判定を行う。
 尚、センサ出力電圧V1をガス濃度に換算する処理自体は、既存の一般的なものであり、ここでは特に説明しない。更に、上記換算したガス濃度(測定したガス濃度)を所定の警報レベルと比較する処理自体も既存技術であるが、本手法では更に別の閾値を追加している。つまり、従来では閾値が1種類であったのに対して、本手法では2種類の閾値を設けている。
 すなわち、本手法では、図2に示すように、第1基準濃度(第1の閾値)、第2基準濃度(第2の閾値)の2種類の閾値を設けている。第1基準濃度は、例えば、上記警報レベルに相当するものと考えてもよく、上記換算したガス濃度(測定したガス濃度)が第1基準濃度を超えた場合には、ガス漏れ警報を発することになる。一方、第2基準濃度は、第1基準濃度よりも低い閾値である(第1基準濃度>第2基準濃度)。ガス漏れが発生した場合(特にガス濃度が濃い場合)、上記測定ガス濃度は、基本的には、まず第2の閾値を超え、その後に第1の閾値を超えることになる。
 そして、本手法では、測定ガス濃度が第2の閾値を超えた場合には(且つ第1の閾値は超えていない場合には)、センサ駆動周期Taを変更する。これは、上記通常時のセンサ駆動周期(=45秒)よりも短くするように変更し、本例では例えばTa=20秒とするが、当然、この例に限らない。その後、測定ガス濃度が第1の閾値を超えた場合には、従来と同様、上記警報部13を制御してガス漏れ報知動作を行う。
 ここで、図2の「ガス濃度」欄には、上記第1基準濃度、第2基準濃度、測定ガス濃度の具体例を示している。そして、「センサ駆動」欄、「警報表示」欄には、「ガス濃度」欄の例に応じたセンサ駆動タイミング、報知・発報タイミングを示している。
 図2に示す例では、初回から3回目までのガス検知では、測定ガス濃度は第2基準濃度(第2の閾値)を超えていないため、周囲にガスがない状態であると判定し警報は行わず、センサ駆動周期Taも45秒のままで継続される。
 4回目のガス検知では、測定ガス濃度が第2基準濃度を超えているため、周囲にガスがある状態であると判定し、センサ駆動周期Taを短くする(本例では通常の45秒周期から20秒周期に変更する)。また、このとき、測定ガス濃度は、警報レベル濃度である第1基準濃度を超えていないのでガス漏れ警報は行わない。
 センサ駆動周期Taが変更(短周期に)されたことで、5回目のガス検知は、4回目のガス検知から20秒後に実施されるが、“測定ガス濃度は第2基準濃度を超えているが第1基準濃度以下であり、且つ、検知回数(=2回目)が所定回数(5回)未満である”ため、センサ駆動周期Ta=20秒が継続される。尚、検知回数が所定回数(5回)以上となった場合の処理については、後に説明する。
 但し、上記“検知回数が所定回数未満である”という条件は、必ずしも必須の条件ではない。よって、例えば、上記“測定ガス濃度は第2基準濃度を超えているが第1基準濃度以下である”条件が満たされる限りは、検知回数に関係なくセンサ駆動周期Ta=20秒が継続されるようにしてもよい。
 さらに、6回目のガス検知では、測定ガス濃度が上昇して警報レベル濃度である第1基準濃度を超えているので、音声によるガス漏れ警報発報やLED表示による警報表示を行う。また、ガス漏れ警報を行うと、目的である早期ガス検知は満足されるので、センサ駆動周期Taを通常の45秒周期に復帰してその後のガス検知を継続して行う(7回目以降のガス検知)。但し、これも必ずしも必須の条件ではない。よって、例えば、警報発報や警報表示等を行った後も、45秒周期に復帰せずに、センサ駆動周期Ta=20秒が継続されるようにしてもよい。
 上述したように、本例のガス警報器10は、通常時は比較的長周期の検知動作(例えば45秒周期動作)により省電力化を実現して電池消耗を抑えつつ、急激なガス濃度上昇に対しても比較的短周期の検知動作(例えば20秒周期動作)に変更することで検知遅れなく早期にガス漏れ検知できるようになり、信頼性の高いガス警報器を提供することができる。
 また、図2のタイムチャートには示していないが、下記のように動作させてもよい。
 すなわち、基本的には上記のように測定ガス濃度が第2基準濃度を超えた後には20秒周期で本処理(ガス漏れ判定)を実行するが、所定回数(本例では5回)連続して「第2基準濃度<測定したガス濃度<第1基準濃度」(図3のステップS2がNOでステップS3がYES)となった場合には、センサ駆動周期Taを通常の45秒周期に復帰させることが望ましい。すなわち、この様な場合、つまり周囲にガスがある状態となってから所定時間経過しても第1基準濃度を超えない場合には、ガス濃度の上昇は緩やかであり緊急性はないと判断できるため、20秒周期でのセンサ駆動周期をやめて通常のセンサ駆動周期である45秒周期に戻し、以って無駄な電力消費を抑制する。
 尚、上記所定回数や比較的短周期のセンサ駆動周期の値は、検出したいガス濃度変化により適宜最適な値に決定されるものであり、上記の値(5回や20秒)に限定されるものではない。
 図3は、一実施形態によるセンサ駆動の駆動周期を決定する処理のフローチャート図である。このフローチャート図の処理は、図1の制御回路部12(マイコン等)によって、Ta周期でセンサ駆動を実行する毎に繰り返し行われるものであって、例えばセンサパルス駆動の最終タイミング(100ms経過時等)に実施される。また、駆動するセンサは、当然、上記ガスセンサ11である。
 まず、図1の制御回路部12は、その不図示の内部タイマによる制御に基づいて、センサ駆動周期Taでセンサ駆動時間Tbずつのセンサ駆動を行い、センサ駆動の終了時にAD変換入力端子AD1を介してガスセンサ11のセンサ出力電圧V1を読み込む。制御回路部12は、読み込んだセンサ出力電圧V1に基づいてガス濃度を算出する(ステップS1)。尚、上記の通り本例では通常時のTaは45秒であり、またTbは常に100msである。
 次に、算出した現在のガス濃度(測定ガス濃度)が、警報レベル濃度である第1基準濃度(第1の閾値)を超えているか否か(測定ガス濃度>第1基準濃度?)を判定する(ステップS2)。
 測定ガス濃度が第1基準濃度を超えている場合は(ステップS2,YES)、短周期検知カウンタ値を強制的に‘5’とし(ステップS10)、さらに、センサ駆動周期Taを通常の周期(本例では45秒)として(ステップS11)、所定の警報処理(ステップS12)を行い、本処理を終了する。尚、ステップS12は上述した警報部13による警報処理である。
 ここで、本手法では、「第2基準濃度<測定したガス濃度<第1基準濃度」の状態のときには通常の駆動周期(本例では45秒)よりも短い駆動周期(本例では20秒)でセンサ駆動を行うが、短周期検知カウンタとは、20秒周期のセンサ駆動の回数をカウントするカウンタである。このカウント値が所定値(本例では‘5’)以上となった場合には、センサ駆動周期Taを、短周期(20秒)から通常の駆動周期(45秒)に戻す(後述するステップS4がYESでS9)。
 但し、測定ガス濃度が第1基準濃度を超えた場合には、現在のカウント値に関係なく強制的に短周期検知カウンタを‘5’とする。これによって、測定ガス濃度が第1基準濃度を超えた場合には、短周期でのセンサ駆動を止めるようにしている。これは、図3の例では、測定ガス濃度が第1基準濃度を超えた後には、例えば多少の変動等によって再び「第2基準濃度<測定したガス濃度<第1基準濃度」の状態になっても、後述するステップS4の判定がYESとなることから、通常の駆動周期(45秒)が維持されるものである。但し、この例に限るものではない。
 この様に、本例では、短周期でのセンサ駆動の回数を出来るだけ減らすようにすることで、消費電流の増加を最小限に抑えつつ、早期にガス漏れの警報を発することができるようにする。
 一方、測定ガス濃度が第1基準濃度以下である場合には(ステップS2,NO)、続いて、測定ガス濃度が、第1基準濃度より低い閾値である第2基準濃度(第2の閾値)を超えているか否か(測定ガス濃度>第2基準濃度?)を判定する(ステップS3)。
 測定ガス濃度が第2基準濃度以下であれば(ステップS3,NO)、周囲にガスが無いと判定して、短周期検知カウンタをクリアし(カウンタ値を初期値=1とする)(ステップS8)、センサ駆動周期Taを通常駆動の45秒にセットして(ステップS9)、更に、警報無し状態として(警報中であれば警報解除して)(ステップS7)、本処理を終了する。
 また、測定ガス濃度が、第1基準濃度以下であり、かつ、第2基準濃度を超えている場合は(S2がNOでS3がYES)、まず、短周期検知カウンタが5回以上となっているかを判定する(ステップS4)。
 短周期検知カウンタが5回以上となっている場合には(ステップS4,YES)、すなわち短周期(20秒)でのセンサ駆動回数が所定回数に達した場合には、、センサ駆動周期Taを通常駆動の45秒周期に戻す(ステップS9)。これは、既に述べた理由により、既に必要な短周期での検知回数が終了しているためである。
 一方、短周期検知カウンタが5回未満の場合には(ステップS4,NO)、センサ駆動周期を20秒にセットし(既に20秒の場合はそのままとする;短周期での検知を継続する)(ステップS5)、短周期検知カウンタをカウントアップして(ステップS6)、上記ステップS7の処理を行って、本処理を終了する。
 以上説明したようにして、本実施形態では、ガス漏れの疑いがある状況になったら(測定ガス濃度>第2基準濃度になったら)通常のセンサ駆動周期(45秒)よりも短いセンサ駆動周期(20秒)に切り替えて、通常時よりも早いセンサ駆動間隔でガス検知を行うようにするため、省電力化を実現して電池消耗を抑えつつ、ガス濃度が急激に増加する場合でも検出遅れが生じることなく早期にガス漏れを検知して警報を発することができるようになる。
 特に「高濃度(12500ppm)のガス中試験において、ガス漏れを60秒以内に検知して警報を発する」という要求を、省電力化を実現して電池消耗を抑えつつ実現させることができる(後に図4、図5を参照して説明する)。
 また、本実施形態では、上記S10とS11あるいはS4とS9の処理によって、短周期(20秒)のセンサ駆動の回数に制約を掛けて、無駄な電力消費を抑制することができる。すなわち、測定ガス濃度が第1基準濃度を超えた後には(警報を発した後には)、センサ駆動周期Taを通常駆動の45秒周期に戻すことで、無駄な電力消費を抑制することができる。あるいは、短周期(20秒)でセンサ駆動を行う状態になってから、測定ガス濃度が第1基準濃度を超えないまま駆動回数(検知回数)が所定回数に達した場合には、センサ駆動周期Taを、短周期(20秒)から通常の駆動周期(45秒)に戻すことで、無駄な電力消費を抑制することができる。
 次に、図4、図5を参照しながら、本実施例で動作させたときの一例を示す。
 図4は、高濃度(12500ppm)のガス中に従来のガス警報器を曝したときのガスセンサ11内のガス濃度変化と基準濃度との関係を表している。図5は本例のガス警報器10の場合のガス濃度変化(図4と同じ)と2つの基準濃度との関係を表している。
 ガスセンサ11内のガス濃度は、警報器10本体のセンサ室構造やガスセンサ構造、雑ガスを除去するためのフィルタなどの影響により、すぐには周囲のガス濃度と同一にならず、徐々に周囲のガス濃度に近づくことになる。高濃度ガス中にガス警報器10を入れると、図示の通り、ガスセンサ11内のガス濃度が徐々に上昇して、周囲のガス濃度に近づくことになる。尚、高濃度ガス中にガス警報器10を入れた時点を、ガス漏れ発生時点と見做すことができる。
 尚、本例では、図示の通り、ガス漏れ発生から34秒経過時点でガスセンサ11内のガス濃度(つまり、計測されるガス濃度)が、第1基準濃度(警報レベル)を超えるものとする。
 上記のような条件で急激にガス濃度が上昇する場合には、1分以内にガス漏れ警報を発する必要がある。しかし、通常の45秒周期でのセンサ駆動のみの場合では、センサ駆動タイミングによっては、ガス漏れ発生時から1分以内にガス漏れ警報を発することができないことがある。具体的には、図4のT2の区間にセンサ駆動タイミングとなった場合には、1分以内にガス漏れ警報を発することができない。以下、詳細に説明する。
 まず、通常のセンサ駆動周期(=45秒)で、図4のT1の区間内(0~15秒)にセンサ駆動タイミングとなった場合を考えると、T1区間では、第1基準濃度を超えていないためガス漏れ警報は行わない。そして、センサ駆動周期は45秒周期であるので次のセンサ駆動タイミングは今回の駆動時から45秒後となり、図4のT4区間内(45~60秒)に次のセンサ駆動タイミングとなる。T4区間では、ガス濃度は第1基準濃度を超えているため、ガス漏れ警報を発する。従って、通常のセンサ駆動周期(45秒)の場合でもT1区間内にセンサ駆動タイミングがあれば、次の駆動タイミングはガス漏れ発生時点から60秒以内となり次の駆動タイミングで第1基準濃度を超えたガス濃度を検出することができるため、1分以内でガス漏れ警報を発することができる。
 次に、通常のセンサ駆動周期(=45秒)で、図4のT3の区間内(34~45秒)にセンサ駆動タイミングとなった場合を考えると、このタイミングでのガス検知では、ガスセンサ11内のガス濃度は既に第1基準濃度を超えており、ガス漏れ警報を即時に発することができる。
 最後に、通常のセンサ駆動周期(=45秒)で、図4のT2の区間内(15~34秒)にセンサ駆動タイミングとなった場合を考えると、そのときのガス濃度は第1基準濃度を超えておらず、従ってガス漏れ警報は行われない。そして、そのままセンサ駆動周期45秒とすると、次のセンサ駆動タイミングは、T5(60~79秒)となり、図示の例では約6000ppmを超えており(当然、ガス濃度は既に第1基準濃度を超えており)、ガス漏れ警報を発することになるが、これはガス漏れ発生から60秒経過後にガス漏れ警報を発することになり、1分以内に警報を発するという要求を満足できない。
 一方、上記条件を本例のガス警報器10に適用すると、図5に示すようにどの様な場合でも1分以内にガス漏れ警報を行えるようになる。尚、本例のガス警報器10の場合も、上記T1やT3の区間内にセンサ駆動タイミングとなった場合には、当然、従来と同様に1分以内でガス漏れ警報を発することができる。そして、本例のガス警報器10の場合には、更に、上記T2の区間内にセンサ駆動タイミングとなった場合でも、1分以内にガス漏れ警報を発することができる。
 尚、図5に示す例では、計測されるガス濃度変化は図4の例と同じであり、警報レベル(第1基準濃度)も図4の例と同じである。そして、本手法のガス警報器10では、警報レベル(第1基準濃度)よりも低い閾値(第2基準濃度)も設定されており、図5に示す例ではガス漏れ発生から15秒経過時点(T2区間の始まり)で計測ガス濃度が第2基準濃度を超えている。
 以下、図5に示す例に沿って上記T2の区間内にセンサ駆動タイミングとなった場合について説明する。
 まず、従来と同様に通常のセンサ駆動周期(=45秒)でT2区間内にセンサ駆動タイミングとなった場合、計測ガス濃度は第2基準濃度を超えているので、ここでセンサ駆動周期が上記通常周期(45秒周期)から短周期(20秒周期)に変更される。検出周期(駆動周期)が20秒となるため、次のセンサ駆動タイミングは図5のT6区間内(35~54秒)となる。よって、次のセンサ駆動タイミングでは、測定ガス濃度が第1基準濃度を超えているので、1分以内でのガス漏れ警報を行うことができる。
 上述したように、本例のガス警報器10のセンサ駆動方法では、通常時は45秒周期であり、余分な電力を消費することなくガスセンサの駆動ができるため、電池使用量を低減することができる。そして、ガス漏れの可能性がある場合(第2基準濃度を超えた場合)のみ、通常の駆動周期(45秒周期)から短い駆動周期(20秒周期)に切り替えを行い、通常よりも早いセンサ駆動間隔でガス検知を行うようにする。この様にするため、消費電流の増加を最小限に抑えつつ、早期にガス漏れの警報を発することができる。特に1分以内にガス漏れ警報を発することが要求される状態において、電力消費を抑えつつ1分以内に確実にガス漏れ警報を発することができるようになり、信頼性の高い警報器の提供が可能となる。
 尚、図4、図5のメタンガス濃度と経過時間の関係は一例であり、警報器本体のセンサ室構造やガスセンサ構造、ガスセンサのフィルタ種類などによりガス濃度と経過時間との関係は異なるものであり、通常よりも短い駆動周期の時間や短周期駆動の回数は、これらの関係により設計者等が適宜に決定するものである。
 ここで、図6に、ガス濃度が緩やかに増加する場合におけるセンサ駆動のタイムチャート図を示す。
 図示の通り、この場合には、計測ガス濃度が第2基準濃度を超えてから5回計測しても(短周期検知カウンタ≧5となっても)第1基準濃度を超えていないので、45秒周期に戻り、その後、第1基準濃度を超えた時点で警報を発することになる。尚、上記のように60秒以内のガス漏れ検知は、高濃度(12500ppm)のガス中試験における条件であり、図6のような例(ガス濃度が緩やかに増加する)では関係ない。よって、図6の例では60秒以内のガス漏れ検知が行えていないが、特に問題はない。
 また、図7は、S10,S11を実行しない変形例におけるセンサ駆動のタイムチャート図である。
 すなわち、図3に示す処理例は、一例であり、この例に限らない。例えば、S10,S11を実行しないようにしてもよい。この場合、S10,S11の代わりに、S4,S5,S6,S9と同じ処理を実行する。つまり、第1基準濃度を超えたら直ちに45秒周期に戻るのではなく、計測ガス濃度が第2基準濃度を超えてから所定回数分(短周期検知カウンタ=5)、短周期(20秒)駆動するようにしてもよい。換言すれば、第2基準濃度を超えた場合には、その後に第1基準濃度を超えたか否かに関係なく必ず、所定の複数回分(短周期検知カウンタ=5)、短周期(20秒)駆動するようにしてもよい。
 以上、変形例として一例を示したが、他の変形例であってもよい。何れにしても、本発明は、上述した図1~図5に示す一実施形態に限定されるものではない。
 このように本発明の警報器は、通常時ではガス検出の為のパルス通電の駆動周期を長くして電池使用量を低減しつつ、検出対象ガスのガス濃度が、警報レベル未満の所定の濃度(第2基準濃度)を超えた場合に、センサ駆動周期を短くして早期のガス検出を実現させる。尚、センサ駆動周期を短くするのは、所定の複数回までとするようにしてもよい。また、ガス濃度が警報レベルを超えた場合には直ちにセンサ駆動周期を元に戻すようにしてもよい。このようにすることにより、消費電流の増加を最小限に抑えつつ、早期にガス漏れの警報を発することができる。
 急激なガス濃度変化に対して検知遅れすることなく、所定のガス濃度において、警報を発することができるようになり、信頼性の高いガス警報器を提供することができる。
 余分な電力を消費することなく、ガスセンサの駆動ができるため、電池使用量を低減することができ、電池本数の削減によるコスト抑制や機器の小型化・軽量化が可能となる。
 尚、上記制御回路部12が上記アプリケーションプログラム等を実行することにより、本例のガス警報器10は、以下に記す各種機能部を備えるものと言うこともできる。
 すなわち、検知対象ガスのガス濃度に応じて電気的特性が変化するガスセンサの出力に基づいてガス漏れ検知する、電池を電源とする電池式ガス警報器である上記ガス警報器10は、以下の各種機能部を備える。
 すなわち、まず、任意の駆動周期でパルス通電することでガスセンサを駆動する機能部であって、通常時は第1の駆動周期でガスセンサを駆動するセンサ駆動機能部を有する。
 また、該センサ駆動時のガスセンサの出力に基づいてガス濃度を算出するガス濃度算出機能部と、該算出したガス濃度が所定の第1閾値を超えたときに警報を行う警報機能部とを有する。
 更に、ガス濃度算出機能部が算出したガス濃度(測定ガス濃度)が、第1閾値よりも低い閾値である第2閾値を超えたか否かを判定し、測定ガス濃度が該第2閾値を超えた場合にはセンサ駆動機能部に第1の駆動周期よりも短い第2の駆動周期でガスセンサを駆動させる駆動周期変更機能部を有する。
 また、例えば、上記駆動周期変更機能部は、第2の駆動周期でのガスセンサの駆動回数が予め設定される所定回数に達した場合、または測定ガス濃度が第1閾値を超える前に第2の駆動周期でのガスセンサの駆動回数が予め設定される所定回数に達した場合には、センサ駆動機能部のセンサ駆動周期を第1の駆動周期に戻すようにしてもよい。
 また、例えば、上記駆動周期変更機能部は、測定ガス濃度が第1閾値を超えた場合には、センサ駆動機能部の駆動周期を第1の駆動周期に戻すようにしてもよい。
 本発明の電池式ガス警報器、その制御装置等によれば、電池を電源とする電池式ガス警報器において、省電力化を実現して電池消耗を抑えつつ、急激なガス濃度上昇に対しても検知遅れなく早期にガス漏れ警報を発することができる。
 

Claims (4)

  1.  検知対象ガスのガス濃度に応じて電気的特性が変化するガスセンサの出力に基づいてガス漏れ検知する、電池を電源とする電池式ガス警報器であって、
     任意の駆動周期でパルス通電することで前記ガスセンサを駆動する手段であって、通常時は第1の駆動周期で前記ガスセンサを駆動するセンサ駆動手段と、
     該駆動時の前記ガスセンサの出力に基づいてガス濃度を算出するガス濃度算出手段と、
     該算出したガス濃度が所定の第1閾値を超えたときに警報を行う警報手段と、
     前記ガス濃度算出手段が算出したガス濃度が、前記第1閾値よりも低い閾値である第2閾値を超えたか否かを判定し、ガス濃度が該第2閾値を超えた場合には前記センサ駆動手段に前記第1の駆動周期よりも短い第2の駆動周期で前記ガスセンサを駆動させる駆動周期変更手段と、
     と有することを特徴とする電池式ガス警報器。
  2.  前記駆動周期変更手段は、前記第2の駆動周期での前記ガスセンサの駆動回数が予め設定される所定回数に達した場合、または前記算出したガス濃度が前記第1閾値を超える前に前記第2の駆動周期での前記ガスセンサの駆動回数が予め設定される所定回数に達した場合には、前記センサ駆動手段の駆動周期を前記第1の駆動周期に戻すことを特徴とする請求項1記載の電池式ガス警報器。
  3.  前記駆動周期変更手段は、前記算出したガス濃度が前記第1閾値を超えた場合には、前記センサ駆動手段の駆動周期を前記第1の駆動周期に戻すことを特徴とする請求項1記載の電池式ガス警報器。
  4.  検知対象ガスのガス濃度に応じて電気的特性が変化するガスセンサの出力に基づいてガス漏れ検知する、電池を電源とする電池式ガス警報器における制御装置であって、
     任意の駆動周期でパルス通電することで前記ガスセンサを駆動する手段であって、通常時は第1の駆動周期で前記ガスセンサを駆動するセンサ駆動手段と、
     該駆動時の前記ガスセンサの出力に基づいてガス濃度を算出するガス濃度算出手段と、
     該算出したガス濃度が所定の第1閾値を超えたときに警報を行わせる警報制御手段と、
     前記ガス濃度算出手段が算出したガス濃度が、前記第1閾値よりも低い閾値である第2閾値を超えたか否かを判定し、ガス濃度が該第2閾値を超えた場合には前記センサ駆動手段に前記第1の駆動周期よりも短い第2の駆動周期で前記ガスセンサを駆動させる駆動周期変更手段と、
     と有することを特徴とする電池式ガス警報器における制御装置。
     
PCT/JP2012/051725 2011-02-04 2012-01-26 電池式ガス警報器、その制御装置 WO2012105423A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280004395.1A CN103299350B (zh) 2011-02-04 2012-01-26 电池式燃气报警器、其控制装置
JP2012555830A JP5662484B2 (ja) 2011-02-04 2012-01-26 電池式ガス警報器、その制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011023326 2011-02-04
JP2011-023326 2011-02-04

Publications (1)

Publication Number Publication Date
WO2012105423A1 true WO2012105423A1 (ja) 2012-08-09

Family

ID=46602640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051725 WO2012105423A1 (ja) 2011-02-04 2012-01-26 電池式ガス警報器、その制御装置

Country Status (4)

Country Link
JP (1) JP5662484B2 (ja)
CN (1) CN103299350B (ja)
TW (1) TWI475522B (ja)
WO (1) WO2012105423A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015184264A (ja) * 2014-03-26 2015-10-22 新コスモス電機株式会社 接触燃焼式ガスセンサおよびその駆動方法
JP2015194846A (ja) * 2014-03-31 2015-11-05 富士電機株式会社 電池式ガス警報器、その制御装置
JP2015194845A (ja) * 2014-03-31 2015-11-05 富士電機株式会社 電池式ガス警報器、その制御装置
EP3462139A1 (en) * 2015-12-30 2019-04-03 Iltron, Inc. Gas leak detection and location determination
CN113252252A (zh) * 2021-07-13 2021-08-13 苏州华智诚精工科技有限公司 一种基于检测环境进行电池检测的检测设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10112486B2 (en) 2016-09-21 2018-10-30 Hyundai Motor Company Apparatus for detecting gas leakage of a vehicle equipped with a fuel cell system
CN106887119A (zh) * 2017-05-03 2017-06-23 山东科技大学 一种基于物联网的智能厨房报警器
DE102017011683A1 (de) * 2017-12-18 2019-06-19 Dräger Safety AG & Co. KGaA Gasmessvorrichtung
CN112087331B (zh) * 2020-09-03 2023-04-25 北京陶乐科技有限公司 基于大数据的告警管理系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189156U (ja) * 1984-11-16 1986-06-10
JPS6210658U (ja) * 1985-07-04 1987-01-22
JPH03233699A (ja) * 1990-02-09 1991-10-17 Yazaki Corp ガス検知装置
JPH04361148A (ja) * 1991-06-07 1992-12-14 Yazaki Corp ガス検知装置
JP2002090328A (ja) * 2000-09-14 2002-03-27 Riken Keiki Co Ltd 熱線式ガスセンサーを用いたガス検知警報装置
JP2003067867A (ja) * 2001-08-24 2003-03-07 Osaka Gas Co Ltd 電池駆動型ガス警報器の動作方法及びガス警報器
JP2003141658A (ja) * 2001-08-24 2003-05-16 Osaka Gas Co Ltd ガス警報器の動作方法及びガス警報器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4008A (en) * 1845-04-22 Improvement w the manufacture of oil from resin
JP3932504B2 (ja) * 2001-10-31 2007-06-20 能美防災株式会社 火災感知器
CN1457210A (zh) * 2003-03-17 2003-11-19 张惠生 测量可燃气体的手机
JP5330703B2 (ja) * 2008-01-31 2013-10-30 アズビル株式会社 差圧発信器
CN101846988B (zh) * 2010-04-30 2013-04-24 深圳职业技术学院 一种燃气的监控方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189156U (ja) * 1984-11-16 1986-06-10
JPS6210658U (ja) * 1985-07-04 1987-01-22
JPH03233699A (ja) * 1990-02-09 1991-10-17 Yazaki Corp ガス検知装置
JPH04361148A (ja) * 1991-06-07 1992-12-14 Yazaki Corp ガス検知装置
JP2002090328A (ja) * 2000-09-14 2002-03-27 Riken Keiki Co Ltd 熱線式ガスセンサーを用いたガス検知警報装置
JP2003067867A (ja) * 2001-08-24 2003-03-07 Osaka Gas Co Ltd 電池駆動型ガス警報器の動作方法及びガス警報器
JP2003141658A (ja) * 2001-08-24 2003-05-16 Osaka Gas Co Ltd ガス警報器の動作方法及びガス警報器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015184264A (ja) * 2014-03-26 2015-10-22 新コスモス電機株式会社 接触燃焼式ガスセンサおよびその駆動方法
JP2015194846A (ja) * 2014-03-31 2015-11-05 富士電機株式会社 電池式ガス警報器、その制御装置
JP2015194845A (ja) * 2014-03-31 2015-11-05 富士電機株式会社 電池式ガス警報器、その制御装置
EP3462139A1 (en) * 2015-12-30 2019-04-03 Iltron, Inc. Gas leak detection and location determination
US10515530B2 (en) 2015-12-30 2019-12-24 Itron, Inc. Gas leak detection and location determination
CN113252252A (zh) * 2021-07-13 2021-08-13 苏州华智诚精工科技有限公司 一种基于检测环境进行电池检测的检测设备

Also Published As

Publication number Publication date
CN103299350B (zh) 2015-12-23
TWI475522B (zh) 2015-03-01
CN103299350A (zh) 2013-09-11
JP5662484B2 (ja) 2015-01-28
TW201246138A (en) 2012-11-16
JPWO2012105423A1 (ja) 2014-07-03

Similar Documents

Publication Publication Date Title
WO2012105423A1 (ja) 電池式ガス警報器、その制御装置
JP5148324B2 (ja) 警報装置
JP5974537B2 (ja) 電池式警報器
JP5034387B2 (ja) 電池式警報器
JP6454978B2 (ja) 電池式ガス警報器、その制御装置
JP4885999B2 (ja) 警報器
JP6364877B2 (ja) 電池式ガス警報器、その制御装置
JP6229383B2 (ja) ガス警報器
JP4466783B2 (ja) 二酸化炭素濃度判定回路
JP5804835B2 (ja) 警報器
JP5608761B2 (ja) 電池式警報器
JP6632182B2 (ja) 警報器
JP6400417B2 (ja) 火災警報器
JP2010073045A (ja) 火災警報器
JP2005094885A (ja) バッテリ充電装置
JP5202182B2 (ja) 感知器
JP2015046160A (ja) ガス警報器、その制御装置
JP2008134680A (ja) 火災警報器
JP2002039980A (ja) ガス警報器及びガス警報方法
JP6446772B2 (ja) ガス警報器
JP6379411B2 (ja) 警報器
JP2009295095A (ja) ガス漏れ警報器
JP5074936B2 (ja) ヘモグロビン濃度変化予測装置及び警報器
JP2011175416A (ja) 警報器
JP2013065332A (ja) 警報器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12741535

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012555830

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12741535

Country of ref document: EP

Kind code of ref document: A1