WO2012099185A1 - 多孔質シリカ粒子の製造方法、反射防止膜用樹脂組成物、反射防止膜を有する物品及び反射防止フィルム - Google Patents

多孔質シリカ粒子の製造方法、反射防止膜用樹脂組成物、反射防止膜を有する物品及び反射防止フィルム Download PDF

Info

Publication number
WO2012099185A1
WO2012099185A1 PCT/JP2012/051030 JP2012051030W WO2012099185A1 WO 2012099185 A1 WO2012099185 A1 WO 2012099185A1 JP 2012051030 W JP2012051030 W JP 2012051030W WO 2012099185 A1 WO2012099185 A1 WO 2012099185A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica particles
porous silica
liquid
meth
acrylate
Prior art date
Application number
PCT/JP2012/051030
Other languages
English (en)
French (fr)
Inventor
寛樹 所
洋三 山科
高野 聖史
知代 下垣
穣 田淵
朋枝 出口
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to CN2012800061540A priority Critical patent/CN103328382A/zh
Priority to KR1020137019076A priority patent/KR20140005209A/ko
Priority to US13/980,358 priority patent/US20140011954A1/en
Priority to JP2012540198A priority patent/JP5152444B2/ja
Publication of WO2012099185A1 publication Critical patent/WO2012099185A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/006Anti-reflective coatings
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds

Definitions

  • the present invention relates to a production method capable of producing a large amount of porous silica particles having a particle diameter as small as, for example, 100 to 250 nm and having fine pores on the surface with respect to the mass of the reaction system (a high yield can be produced).
  • the porous silica particles are silica particles having pores on the particle surface.
  • the porous silica particles those having a pore size of 2 to 50 nm in the mesopore region are called mesoporous silica particles.
  • Porous silica particles contain air in their pores and have excellent optical and electrical properties, and are therefore used as materials for antireflection films, interlayer insulating films, and the like.
  • the porous silica particles are used for the antireflection film
  • the low-refractive index property of the porous silica particles can be used as a material for the low refractive index layer.
  • the ideal film thickness of the low refractive layer that efficiently prevents reflection of visible light is set to 100 to 250 nm. Therefore, when porous silica particles are used for the antireflection film, the porous silica particles need to have an average particle diameter of the same or less than this film thickness.
  • the HMS method includes, for example, ethanol and water as a solvent, tetraethoxysilane added to a mixed solution containing alkylamine such as dodecylamine as a pore template, and the tetraethoxysilane is self-condensed to produce silica particles. Then, the template is removed from the particles by washing with a solvent such as toluene or acetone or baking at a temperature of about 300 to 800 ° C. (see, for example, Patent Document 1).
  • the particle diameter of the porous silica particles obtained by this method is usually as large as about 1 ⁇ m. Therefore, there is a problem that the porous silica particles obtained by the HMS method are too large for use in the antireflection film.
  • an anionic surfactant that is considered to aggregate alcohol and a hydrolyzate of the silane compound in a mixture of silane compound such as tetramethoxysilane and trimethoxysilane and water
  • a mixture with an alkaline compound such as ammonia water or amine functioning as a catalyst for hydrolysis is added to obtain a mixed aqueous solution containing a silica particle precursor, and then sodium aluminate is added to the mixed aqueous solution (for example, , See Patent Document 2).
  • This method does not use a hole template like the HMS method.
  • the inside is not completely cured, and the sodium aluminate that dissolves the silica particles penetrates into the silica particle precursor, and a part of the silica-based component is absorbed. It is considered that porous silica particles can be obtained by elution from the particles.
  • the silica fine particles obtained by the method disclosed in Patent Document 2 have a particle size of 4 to 8 ⁇ m and cannot be used for antireflection coatings.
  • a quaternary ammonium salt cationic surfactant used as a pore template water, a polyhydric alcohol having two or more hydroxyl groups, and aqueous ammonia are mixed with tetra After adding ethoxysilane and alkoxysilane having an amino group, tetraethoxysilane and alkoxysilane having an amino group are cohydrolyzed to obtain silica particles, and then the silica particles are immersed in an acid solution to form a quaternary.
  • a method for extracting and removing the ammonium salt cationic surfactant from the silica particles has been proposed. For example, see Patent Document 3.
  • the problem to be solved by the present invention is to provide a production method capable of producing a large amount of porous silica particles having a particle diameter as small as 100 to 250 nm, and using the porous silica fine particles obtained by this production method.
  • An object of the present invention is to provide a resin composition for an antireflection film, and to provide an article having an antireflection film obtained by using this composition, particularly an antireflection film.
  • the inventors of the present invention obtained tetraalkoxysilane as a silane compound and mixed it with alcohol and alkylamine instead of mixing with water as in Patent Document 2 above.
  • the obtained mixed solution is added to a mixed solution containing alcohol, water and ammonia, subjected to hydrolysis and condensation reaction of tetraalkoxysilane, and then the resulting silica particles are baked to remove organic substances in the silica particles.
  • the inventors have found that particles having a mesopore region pore size of 100 to 250 nm can be produced in a high yield, and the present invention has been completed.
  • the present invention adds a liquid mixture (liquid A) containing tetraalkoxysilane, alkylamine and alcohol to a liquid mixture (liquid B) containing ammonia, alcohol and water, and performs hydrolysis and condensation reaction of tetraalkoxysilane.
  • liquid A liquid mixture
  • liquid B liquid mixture
  • the present invention provides a method for producing porous silica particles having pores on the surface, which comprises a step of obtaining silica particles and a step of removing alkylamine from the silica particles.
  • the present invention provides a porous silica particle and a binder obtained by the method for producing a porous silica particle, which comprises a step of modifying the surface of the obtained silica particle after the step of removing alkylamine from the silica particle in the production method.
  • a resin composition for an antireflective film, comprising the resin, and the present invention further comprises an antireflective film formed by coating the antireflective film composition.
  • the present invention provides an antireflection film comprising an antireflection film formed by applying the antireflection film composition on at least one surface of a base film. It is.
  • porous silica particles having a particle diameter as small as 100 to 250 nm, for example can be produced. Further, the production method of the present invention has a large yield of porous silica particles obtained with respect to the volume of the reaction solution, and the production efficiency of the porous silica particles is good.
  • the porous silica particles obtained by the production method of the present invention have pores having an average pore diameter in the range of 1 to 4 nm on the particle surface, and therefore have a low refractive index due to the air present in the pores. Can be used as an antireflection film.
  • porous silica particles have a low dielectric constant, they can also be used as a material for an interlayer insulating film of a semiconductor or a printed board.
  • various catalysts with metal catalyst and photocatalyst supported in pores materials for ink-jet ink and toner receiving layers, fillers for various paints, molecular sensors utilizing the property of adsorbing specific molecules, separation and absorption of hydrogen gas Material, heat insulating material using heat insulation obtained by including air in pores, light diffusion film of backlight unit such as liquid crystal display using light diffusion, printing original plate, antibacterial agent carried in pores Antibacterial materials, adsorbents, filter media, separation membranes that use pore adsorptivity, wallpaper with moisture-adjusting properties that use water absorption and hygroscopicity by pores, various cosmetics, and pigments supported on pores Highly weather-resistant colorants and color conversion filters, various batteries such as fuel cells with electrolytes carried in pores, UV shielding materials with ultraviolet shielding agents such as zinc oxide carried in pores, liquid
  • the composition for antireflective coating of the present invention has high mechanical properties of the porous silica particles, which are low refractive index materials, and therefore it can be applied even if dispersion treatment is applied with high force during preparation. Even if a coating apparatus in which pressure is applied to the coating material at the time of construction is used, the porous silica particles are not destroyed, so that there is an advantage that the antireflection property is not lowered at the time of preparation and coating. Therefore, when the antireflection film is formed on the article surface, any coating method can be used, and a stable and excellent antireflection film can be formed on the article surface.
  • the antireflective film in which the base material is a film and the antireflective film is formed with the composition for antireflective film of the present invention is a low refractive index whose thickness is controlled so that antireflection can be efficiently realized on the outermost surface. Since the rate layer is formed, it has excellent antireflection properties. Therefore, external light is reflected on the surface of a display screen of an image display device such as a liquid crystal display (LCD), an organic EL display (OELD), a plasma display (PDP), a surface electric field display (SED), or a field emission display (FED). Therefore, it is possible to use an antireflection film that prevents a decrease in contrast and image reflection caused by the above.
  • LCD liquid crystal display
  • OELD organic EL display
  • PDP plasma display
  • SED surface electric field display
  • FED field emission display
  • FIG. 1 is an observation photograph of the porous silica particles obtained in Example 1 at a magnification of 50,000 with a field emission scanning electron microscope (FE-SEM).
  • FIG. 2 is a photograph of the porous silica particles obtained in Example 2 observed at a magnification of 50,000 with a field emission scanning electron microscope (FE-SEM).
  • FIG. 3 is a photograph of the porous silica particles obtained in Example 3 observed at a magnification of 50,000 with a field emission scanning electron microscope (FE-SEM).
  • FIG. 4 is an observation photograph of the porous silica particles obtained in Example 4 at a magnification of 50,000 with a field emission scanning electron microscope (FE-SEM).
  • FIG. 1 is an observation photograph of the porous silica particles obtained in Example 1 at a magnification of 50,000 with a field emission scanning electron microscope (FE-SEM).
  • FIG. 2 is a photograph of the porous silica particles obtained in Example 2 observed at a magnification of 50,000 with a
  • FIG. 5 is an observation photograph of the cross section of the antireflection film formed from the composition for antireflection film of Example 12 at a magnification of 50,000 with a field emission scanning electron microscope (FE-SEM).
  • FIG. 6 is an observation photograph of the cross section of the antireflection film formed from the composition for antireflection film of Example 13 at a magnification of 50,000 with a field emission scanning electron microscope (FE-SEM).
  • 7 is a photograph of the cross section of the antireflection film formed from the composition for antireflection film of Example 14 observed at 100,000 times by a field emission scanning electron microscope (FE-SEM).
  • FIG. 8 is an observation photograph of the cross section of the antireflection film formed from the composition for antireflection film of Example 15 at a magnification of 50,000 with a field emission scanning electron microscope (FE-SEM).
  • a mixed liquid (liquid A) containing tetraalkoxysilane, alkylamine and alcohol is added to a mixed liquid (liquid B) containing ammonia, alcohol and water. It includes a step of performing a hydrolysis and condensation reaction to obtain silica particles, and a step of firing the silica particles.
  • Examples of the tetraalkoxysilane that is a component of the liquid A and is a raw material for the porous silica particles include tetramethoxysilane, tetraethoxysilane, and tetrapropoxysilane. Among these, tetramethoxysilane is preferable because of its high reactivity. These tetraalkoxysilanes can be used alone or in combination of two or more.
  • the alkylamine which is a component of the liquid A, functions as a so-called template for creating pores on the surface of the silica particles, the number, size, and shape of the pores can be controlled by the type and amount of addition.
  • Alkylamine also acts as a catalyst for hydrolysis and condensation reaction of tetraalkoxysilane together with ammonia described later.
  • an amine compound having an alkyl group having 6 to 18 carbon atoms has good solubility in an alcohol serving as a solvent of the liquid A or the liquid B, and porous silica fine particles having a particle diameter of, for example, 100 to 250 nm are used. It is preferable because it is easy to obtain.
  • amine compound having an alkyl group having 6 to 18 carbon atoms include octylamine, decylamine, laurylamine, tetradecylamine, oleylamine and the like. These alkylamines can be used alone or in combination of two or more.
  • the ratio of tetraalkoxysilane and alkylamine (tetraalkoxysilane / alkylamine) described later may be decreased.
  • an alkylamine having a large number of carbon atoms may be used.
  • Alcohol which is a component of liquid A, acts as a solvent, and has an effect of dissolving alkylamine and making it easy to obtain liquid A that is uniformly mixed.
  • alcohol what is miscible with water is preferable.
  • those having the same number of carbon atoms as the alkoxy sites of the tetraalkoxysilane used are particularly preferred. Specific examples include methanol, ethanol, propanol and the like.
  • the ratio of tetraalkoxysilane and alkylamine in solution A is in the range of 1 / 0.05 to 1/5 in molar ratio, and has pores on the surface,
  • the molar ratio is more preferably 1 / 0.1 to 1 / 3.0, and the molar ratio is further preferably 1 / 0.1 to 1 / 2.0.
  • the content of tetraalkoxysilane in the liquid A is preferably 10 to 60 parts by mass in 100 parts by mass of the liquid A because it can produce a large yield, and more preferably 25 to 45 parts by mass.
  • Ammonia which is a component of liquid B, acts as a catalyst for hydrolysis and condensation reaction of tetraalkoxysilane.
  • the ammonia to be used may be added as aqueous ammonia or ammonia may be introduced into the reaction solution in the form of a gas. However, it is preferable to use aqueous ammonia because the amount used can be easily controlled.
  • the alcohol used for preparing the liquid A can be used.
  • the alcohol used may be the same as the alcohol used for preparing the liquid A, or may be different. Moreover, you may use by only 1 type and may use 2 or more types together.
  • water used as a solvent in the production method of the present invention as a component of the liquid B it is preferable to use pure water in order to avoid impurities from being mixed into the reaction system as much as possible.
  • the ratio of ammonia to water in the liquid B is in the range of 1/1 to 1/20 in terms of molar ratio. Particles having pores on the surface and primary particles being spherical It is preferable to obtain Furthermore, since the reaction operation can be facilitated using aqueous ammonia, the molar ratio of ammonia to water is more preferably 1 / 2.5 to 1/20.
  • the mass of water in the B liquid is preferably 1 to 40 parts by mass and more preferably 2 to 30 parts by mass with respect to 100 parts by mass of the B liquid because the particle diameter of the porous silica fine particles can be easily controlled.
  • the liquid A is added to the liquid B, and tetraalkoxysilane is hydrolyzed and condensed to obtain silica particles (hereinafter abbreviated as step 1). And a step of removing alkylamine from the silica particles (hereinafter abbreviated as step 2).
  • Step 1 is a step of forming silica particles by hydrolyzing and condensing tetraalkoxysilane.
  • the amount of ammonia acting as a catalyst for the hydrolysis and condensation reaction of tetraalkoxysilane is such that the pH of the liquid mixture (reaction system) of liquid A and liquid B is 8 to 12. It is preferable to mix the liquid A and the liquid B so that the amount is in the range because it is easy to obtain particles whose primary particles are spherical, and the liquids A and B so that the pH is in the range of 9 to 11. More preferably, the liquids are mixed.
  • the A liquid may be added dropwise from the top of the container containing the B liquid, or a conduit nozzle is placed in the container containing the B liquid. Liquid A may be added to liquid B by flowing liquid A out of the conduit nozzle. Moreover, when adding A liquid to B liquid, you may inject A liquid there, stirring B liquid.
  • the temperature at the time of mixing the liquid A and the liquid B is preferably in the range of 5 to 80 ° C. in order to obtain solubility of the reaction raw material in the reaction system and particles in which the primary particles are spherical.
  • the injection time of the liquid A into the liquid B is preferably in the range of 0 to 240 minutes, more preferably in the range of 30 to 150 minutes.
  • 0 minutes represents that the A liquid is charged into the B liquid all at once.
  • silica particles that are the basis of the porous silica particles are obtained.
  • step 1 liquid A is added to liquid B, and then a mixed liquid (A 'liquid) containing tetraalkoxysilane and alcohol is further added, so that other compounds, for example, solvent and resin enter the pores of the resin. Porous silica particles that can be suppressed are obtained.
  • the A ′ solution may be added immediately after adding the A solution to the B solution, or may be added after the A solution is added to the B solution and then allowed to stand or stir.
  • step 2 the alkylamine is removed from the silica particles obtained in step 1 above.
  • the method for removing the alkylamine include a method of washing the silica particles with an acid, a method of spraying the silica particles to a high temperature, and a method of firing the silica particles.
  • the silica particles When removing alkylamine from the silica particles, the silica particles may be washed in advance.
  • a method for washing the silica particles for example, first, the silica particles are centrifuged from the reaction solution obtained in step 1 to take out the silica particles. Alcohol is added to the silica particles and stirred to form a suspension, and the suspension is centrifuged again to extract the silica particles. By performing this step several times, the silica particles are washed with alcohol.
  • the alcohol used at this time is preferably the same type as the alcohol used in the preparation of the liquid A and liquid B.
  • a method of taking out silica particles from a reaction solution and alcohol suspension it is not restricted to centrifugation, For example, you may use ultrafiltration. Moreover, you may implement an washing
  • Examples of the acid used in the method for washing the silica particles with an acid include hydrochloric acid, nitric acid, sulfuric acid, acetic acid and the like.
  • these acids inorganic acids are preferable because the neutralized salt is water-soluble.
  • the silica particles are preferably washed in the presence of alcohol in addition to water when washed with an acid.
  • the alcohol used may be the same type as the alcohol used in the liquid A and liquid B.
  • the extraction of the alkylamine is preferably performed by heating, and the temperature range is preferably near the boiling point of the alcohol used because of high extraction efficiency.
  • a commercially available spray dryer that can spray the silica particles in an atmosphere of about 270 to 800 ° C. may be used.
  • the silica particles may be washed with the alcohol or acid.
  • the silica particles may be washed with the alcohol or acid.
  • the drying temperature for drying the silica fine particles is preferably in the range of 60 to 150 ° C., more preferably in the range of 80 to 130 ° C.
  • the firing temperature is preferably in the range of 400 to 1,000 ° C, more preferably in the range of 500 to 800 ° C.
  • baking time it is preferable that it is 30 minutes or more, and it is more preferable that it is 1 hour or more.
  • the particles are aggregated after firing, it is preferable to grind.
  • the pulverizer used for pulverization include a ball mill, a colloid mill, a conical mill, a disk mill, an edge mill, a milling mill, a hammer mill, a mortar, a pellet mill, a jet mill, a vertical axis impactor (VSI) mill, a wheelie mill, and a roller mill. It is done.
  • the hydroxyl group of the silanol group present on the surface of the porous silica particles obtained after the baking step is a surface treatment agent. It is preferable to replace the surface with a hydrophobic group.
  • a method for performing this surface treatment for example, a method of immersing porous silica in a solution in which a surface treatment agent is dissolved in a solvent, and heating as necessary may be mentioned.
  • Examples of the solvent used for the surface treatment include methanol, ethanol, isopropyl alcohol, benzene, toluene, xylene, N, N-dimethylformamide, hexamethyldisiloxane, and the like.
  • Surface treatment agents used for surface modification include silane compounds and silazane compounds such as methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, and hexyl.
  • porous silica particles whose surface is modified with the silazane compound can be obtained.
  • the step 2 step of removing the alkylamine from the silica particles
  • the surface is modified with the silazane compound by including in the production method of the present invention the step of modifying the surface of the resulting porous silica particles.
  • Porous silica particles can be obtained.
  • the silazane compound used here hexamethyldisilazane is preferable.
  • a catalyst when the surface of the porous silica particles is modified with a silazane compound.
  • the catalyst include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid; organic acids such as oxalic acid, acetic acid, formic acid, methanesulfonic acid and toluenesulfonic acid; inorganic bases such as sodium hydroxide, potassium hydroxide and ammonia; triethylamine And organic bases such as pyridine; metal alkoxides such as triisopropoxyaluminum and tetrabutoxyzirconium.
  • acid catalysts inorganic acids and organic acids
  • inorganic acids such as hydrochloric acid and sulfuric acid
  • organic acids such as methanesulfonic acid, oxalic acid, phthalic acid, malonic acid, and acetic acid are preferable, and acetic acid is particularly preferable.
  • Examples of the method for modifying the surface of the porous silica particles include a method of immersing the porous silica in a solution in which a surface modifier is dissolved in a solvent and heating as necessary.
  • Examples of the solvent used for the surface modification include methanol, ethanol, isopropyl alcohol, benzene, toluene, xylene, N, N-dimethylformamide, acetone, methyl ethyl ketone, and methyl isobutyl ketone.
  • the amount of the surface modifier used in the surface modification of the porous silica particles is such that the porous silica particles (E) are not agglomerated and stable as primary particles.
  • the surface modifier is preferably in the range of 0.3 to 60 parts by mass, more preferably in the range of 0.5 to 50 parts by mass relative to parts by mass.
  • the porous silica particles can be obtained through the above steps 1 and 2.
  • the particle shape, average particle diameter, average pore diameter and specific surface area of the obtained porous silica particles can be measured by the following measuring method.
  • the particle shape can be confirmed by observation using a field emission scanning electron microscope (FE-SEM) (for example, “JSM6700” manufactured by JEOL Ltd.).
  • FE-SEM field emission scanning electron microscope
  • the average particle diameter can be confirmed by observation using a field emission scanning electron microscope (FE-SEM) (for example, “JSM6700” manufactured by JEOL Ltd.).
  • FE-SEM field emission scanning electron microscope
  • the average pore diameter can be measured using a pore distribution measuring device (for example, Shimadzu Corporation “ASAP2020”).
  • the specific surface area can be measured by a BET method using a pore distribution measuring device (for example, Shimadzu Corporation “ASAP2020”).
  • the particle shape, average particle diameter, average pore diameter, and specific surface area of the porous silica particles obtained by the method for producing porous silica particles of the present invention can be measured.
  • porous silica particles having a substantially spherical appearance are obtained, and the average particle diameter is controlled by adjusting the amount of ammonia used as described above. In the range of 50 to 300 nm, preferably 100 to 250 nm can be obtained.
  • the average pore diameter and specific surface area of the porous silica particles can be controlled by the type and amount of alkylamine used.
  • the average pore diameter is in the range of 1 to 4 nm. In the range of 40 to 900 m 2 / g.
  • the resin composition for an antireflective film of the present invention is a porous silica particle obtained by the production method of the present invention. After the step of removing alkylamine from the silica particle, the resulting silica particle is treated with a surface modifier (D). Porous silica particles obtained by a production method including a step of surface modification with [hereinafter abbreviated as porous silica particles (E). And a binder resin (F).
  • a low refractive index layer can be simultaneously formed on a high refractive index layer, particularly by a single coating, drying and curing process on a substrate. The film thickness of the low refractive index layer is controlled so that antireflection can be efficiently realized, and an antireflection film can be formed without depending on the coating apparatus.
  • composition for an antireflective film of the present invention can be formed as an antireflective layer in which porous silica particles (E) are substantially arranged in a single layer on the surface of the coating film made of the binder resin (F). .
  • a film including both the antireflection layer composed of the porous silica particles (E) and the coating layer composed substantially of the binder resin (F) is referred to as an antireflection film.
  • the volume average diameter of the porous silica particles (E) is preferably in the range of 80 to 150 nm, A range of 90 to 120 nm is more preferable.
  • the coefficient of variation (CV) which is an index indicating the particle size distribution of the porous silica particles (E)
  • CV the coefficient of variation
  • the lower limit of the coefficient of variation is preferably 5%, more preferably 10%, further preferably 15%, and particularly preferably 20%.
  • the variation coefficient is calculated by the following formula (1), and the standard deviation in the following formula (1) is calculated by the following formula (2).
  • d84% represents the 84% diameter in the volume particle size distribution
  • d16% represents the 16% diameter in the volume particle size distribution.
  • the porous silica particles (E) having the volume average diameter and the coefficient of variation as described above are obtained by modifying the silica particles obtained after the step 2 (step of removing alkylamine from the silica particles) with a surface modifier. It can be obtained by including the step of surface modification with the production method of the present invention.
  • the particle shape and specific surface area of the obtained porous silica particles (E) can be measured by the above methods, and the volume average diameter, the coefficient of variation and the peak of the pore size distribution can be measured by the following measuring methods.
  • volume average diameter and coefficient of variation The volume average diameter can be measured using a particle size distribution meter using a laser Doppler method (for example, “Zeta potential / particle size measurement system ELSZ-2” manufactured by Otsuka Electronics Co., Ltd.).
  • the coefficient of variation is obtained by the above formula (1) from the volume average diameter and standard deviation measured with the same apparatus.
  • the peak of the pore size distribution is a peak value of the obtained pore size distribution that can be measured using a pore distribution measuring device (for example, Shimadzu Corporation “ASAP2020”).
  • the composition for an antireflection film of the present invention contains the porous silica particles (E) and the binder resin (F). Since the mixed layer of the porous silica particles (E) and the binder resin (F) forms a low refractive index layer, the binder resin (F) preferably forms a low refractive index coating film, Specifically, those having a refractive index of 1.30 to 1.60 are preferable.
  • the binder resin (F) include polyvinyl acetate and its copolymer resin, ethylene-acetic acid copolymer resin, vinyl chloride-vinyl acetate copolymer resin, urethane resin, vinyl chloride resin, and chlorinated polypropylene.
  • Solvent-soluble resins such as resins, polyamide resins, acrylic resins, maleic resins, cyclized rubber resins, polyolefin resins, polystyrene resins, ABS resins, polyester resins, nylon resins, polycarbonate resins, cellulose resins, polylactic acid resins
  • a thermosetting resin such as a phenol resin, an unsaturated polyester resin, or an epoxy resin; an active energy ray curable resin; Among these, an active energy ray-curable resin having high productivity is preferable because a coating film can be formed at a relatively low temperature and a coating film can be formed in a short time.
  • the active energy ray-curable resin includes an active energy ray-curable resin (b1), which will be described later, and an active energy ray-curable monomer (b2), which may be used alone, It doesn't matter.
  • the active energy ray-curable resin (b1) is a urethane (meth) acrylate resin, an unsaturated polyester resin, an epoxy (meth) acrylate resin, a polyester (meth) acrylate resin, an acrylic (meth) acrylate resin, or a resin having a maleimide group. Etc.
  • the urethane (meth) acrylate resin used here is a resin having a urethane bond and a (meth) acryloyl group obtained by reacting an aliphatic polyisocyanate compound or an aromatic polyisocyanate compound with a (meth) acrylate compound having a hydroxyl group. Is mentioned.
  • Examples of the aliphatic polyisocyanate compound include tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, heptamethylene diisocyanate, octamethylene diisocyanate, decamethylene diisocyanate, 2-methyl-1,5-pentane diisocyanate, 3-methyl- 1,5-pentane diisocyanate, dodecamethylene diisocyanate, 2-methylpentamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, isophorone diisocyanate, norbornane diisocyanate, hydrogenated diphenylmethane diisocyanate , Hydrogenated tolylene diisocyanate, hydrogenated xylylene Diisocyanate, hydrogenated tetramethylxylylene diisocyanate, cyclohexyl diisocyanate
  • Examples of the acrylate compound having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 1,5 -Monohydric alcohols such as pentanediol mono (meth) acrylate, 1,6-hexanediol mono (meth) acrylate, neopentyl glycol mono (meth) acrylate, and hydroxypivalic acid neopentyl glycol mono (meth) acrylate.
  • a compound having a group, or a polyfunctional (meth) acrylate having a hydroxyl group obtained by further modifying the compound with ⁇ -caprolactone; dipropylene glycol mono (meth) acrylate, diethylene glycol mono (meth) acrylate, poly (Meth) acrylate compounds having an oxyalkylene chain such as propylene glycol mono (meth) acrylate and polyethylene glycol mono (meth) acrylate; polyethylene glycol-polypropylene glycol mono (meth) acrylate, polyoxybutylene-polyoxypropylene mono (meth) (Meth) acrylate compounds having block structure oxyalkylene chains such as acrylate; random structures such as poly (ethylene glycol-tetramethylene glycol) mono (meth) acrylate and poly (propylene glycol-tetramethylene glycol) mono (meth) acrylate And (meth) acrylate compounds having an oxyalkylene chain.
  • urethanization catalysts that can be used here include amines such as pyridine, pyrrole, triethylamine, diethylamine, and dibutylamine, phosphines such as triphenylphosphine and triethylphosphine, dibutyltin dilaurate, octyltin trilaurate, and octyl.
  • organotin compounds such as tin diacetate, dibutyltin diacetate, and tin octylate, and organometallic compounds such as zinc octylate.
  • urethane (meth) acrylate resins those obtained by reacting an aliphatic polyisocyanate compound with a (meth) acrylate compound having a hydroxyl group are excellent in transparency of the cured coating film and sensitive to active energy rays. Is preferable since it is excellent in curability.
  • a polyfunctional (meth) acrylate compound having a plurality of (meth) acryloyl groups is preferable because the hardness of the cured coating film is excellent.
  • the unsaturated polyester resin is a curable resin obtained by polycondensation of ⁇ , ⁇ -unsaturated dibasic acid or its acid anhydride, aromatic saturated dibasic acid or its acid anhydride, and glycols.
  • ⁇ , ⁇ -unsaturated dibasic acid or its acid anhydride include maleic acid, maleic anhydride, fumaric acid, itaconic acid, citraconic acid, chloromaleic acid, and esters thereof.
  • aromatic saturated dibasic acid or acid anhydride thereof phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid, nitrophthalic acid, tetrahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, halogenated phthalic anhydride and these Examples include esters.
  • the aliphatic or alicyclic saturated dibasic acid include oxalic acid, malonic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, glutaric acid, hexahydrophthalic anhydride, and esters thereof.
  • glycols include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, 1,3-butanediol, 1,4-butanediol, 2-methylpropane-1,3-diol, neopentyl glycol, triethylene glycol, Examples include tetraethylene glycol, 1,5-pentanediol, 1,6-hexanediol, bisphenol A, hydrogenated bisphenol A, ethylene glycol carbonate, 2,2-di- (4-hydroxypropoxydiphenyl) propane, etc.
  • oxides such as ethylene oxide and propylene oxide can be used in the same manner.
  • epoxy vinyl ester resin (meth) acrylic acid is reacted with an epoxy group of an epoxy resin such as a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a phenol novolac type epoxy resin, or a cresol novolak type epoxy resin. What is obtained is mentioned.
  • an epoxy resin such as a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a phenol novolac type epoxy resin, or a cresol novolak type epoxy resin. What is obtained is mentioned.
  • the resin having a maleimide group includes a bifunctional maleimide urethane compound obtained by urethanizing N-hydroxyethylmaleimide and isophorone diisocyanate, and a bifunctional maleimide ester compound obtained by esterifying maleimide acetic acid and polytetramethylene glycol.
  • Examples thereof include tetrafunctional maleimide ester compounds obtained by esterification of maleimidocaproic acid and a tetraethylene oxide adduct of pentaerythritol, and polyfunctional maleimide ester compounds obtained by esterification of maleimide acetic acid and a polyhydric alcohol compound.
  • These active energy ray-curable resins (b1) can be used alone or in combination of two or more.
  • Examples of the active energy ray-curable monomer (b2) include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, and a number average molecular weight in the range of 150 to 1,000.
  • trimethylolpropane tri (meth) acrylate trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, pentaerythritol tetra
  • a trifunctional or higher polyfunctional (meth) acrylate such as (meth) acrylate is preferred.
  • active energy ray-curable monomers can be used alone or in combination of two or more.
  • the blending amount of the porous silica particles (E) with respect to the binder resin (F) used in the present invention is such that a single layer of porous silica particles can be formed on the coating film surface of the composition for an antireflection film of the present invention. It may be sufficient and it is preferable to adjust according to the coating amount to the base material of the composition for antireflection films of the present invention. For example, when 4.75 parts by mass of the porous silica particles (E) are added to 100 parts by mass of the binder resin (F), a single layer composed of the porous silica particles (E) is formed on the surface of the hard coat having a thickness of 5 ⁇ m at 100 nm. It corresponds to the amount that can be formed.
  • Examples of the base material of an article that can form an antireflection film on the surface thereof using the composition for antireflection film of the present invention include materials made of metal, glass, plastic, etc. May have a smooth surface on which an image is reflected. What has the anti-reflective film formed by coating the said composition for anti-reflective films on at least one surface of these base materials becomes the article
  • the antireflection film of the present invention has an antireflection film formed by coating the antireflection film composition on at least one surface of a base material as a film.
  • a manufacturing method in the case where an active energy ray-curable resin is used for the binder resin (F) as the antireflection film composition will be described.
  • the composition for antireflection film is cured to irradiate with active energy rays to form an antireflection film as a coating film.
  • the active energy rays include ionizing radiation such as ultraviolet rays, electron beams, ⁇ rays, ⁇ rays, and ⁇ rays.
  • a photopolymerization initiator When irradiating ultraviolet rays as active energy rays to form a cured coating film, it is preferable to add a photopolymerization initiator to the active energy ray curable composition to improve curability. Further, if necessary, a photosensitizer can be further added to improve curability. On the other hand, when using ionizing radiation such as electron beam, ⁇ ray, ⁇ ray, ⁇ ray, etc., it cures quickly without using a photopolymerization initiator or photosensitizer. There is no need to add a sensitizer.
  • Examples of the photopolymerization initiator include intramolecular cleavage type photopolymerization initiators and hydrogen abstraction type photopolymerization initiators.
  • Examples of the intramolecular cleavage type photopolymerization initiator include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy.
  • examples of the hydrogen abstraction type photopolymerization initiator include benzophenone, methyl 4-phenylbenzophenone o-benzoylbenzoate, 4,4′-dichlorobenzophenone, hydroxybenzophenone, 4-benzoyl-4′-methyl-diphenyl sulfide.
  • Benzophenone compounds such as acrylated benzophenone, 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone, 3,3′-dimethyl-4-methoxybenzophenone; 2-isopropylthioxanthone, 2,4 -Thioxanthone compounds such as dimethylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone; Aminobenzophenone compounds such as Michler-ketone, 4,4'-diethylaminobenzophenone; -2-chloro acridone, 2-ethyl anthraquinone, 9,10-phenanthrenequinone, camphorquinone, and the like.
  • the photosensitizer examples include amines such as aliphatic amines and aromatic amines, ureas such as o-tolylthiourea, sodium diethyldithiophosphate, s-benzylisothiouronium-p-toluenesulfonate, and the like. And sulfur compounds.
  • photopolymerization initiators and photosensitizers are preferably used in an amount of 0.01 to 20 parts by weight, preferably 0.1 to 15% by weight, based on 100 parts by weight of the nonvolatile component in the composition for antireflection film. Is more preferable, and 0.3 to 7 parts by mass is even more preferable.
  • composition for an antireflective film of the present invention can be used for adjusting the viscosity and refractive index, adjusting the color tone of the coating film, etc.
  • Various compounding materials for the purpose of adjusting coating properties and coating film properties such as various organic solvents, acrylic resins, phenol resins, polyester resins, polystyrene resins, urethane resins, urea resins, melamine resins, alkyd resins, epoxy resins, Various resins such as polyamide resin, polycarbonate resin, petroleum resin, fluororesin, various organic or inorganic particles such as PTFE (polytetrafluoroethylene), polyethylene, polypropylene, carbon, titanium oxide, alumina, copper, silica fine particles, polymerization start Agent, polymerization inhibitor, antistatic agent, antifoaming agent, viscosity modifier, light stabilizer, weather stabilizer, heat stabilizer Antioxidants, rust inhibitors, slip agents, waxes, gloss modifiers, mold release agents, compatibil
  • the organic solvent is useful for appropriately adjusting the solution viscosity of the composition for an antireflective film of the present invention, and it is particularly easy to adjust the film thickness for thin film coating. It becomes.
  • the organic solvent that can be used here include aromatic hydrocarbons such as toluene and xylene; alcohols such as methanol, ethanol, isopropanol and t-butanol; esters such as ethyl acetate and propylene glycol monomethyl ether acetate; methyl ethyl ketone, Examples thereof include ketones such as methyl isobutyl ketone and cyclohexanone. These solvents can be used alone or in combination of two or more.
  • the amount of the organic solvent to be used varies depending on the intended use and the intended film thickness and viscosity, but is preferably in the range of 0.5 to 4 times the mass of the total mass of the curing component.
  • the active energy ray for curing the composition for antireflection film of the present invention is ionizing radiation such as ultraviolet ray, electron beam, ⁇ ray, ⁇ ray, ⁇ ray, etc., but a specific energy source or hardening.
  • the apparatus include germicidal lamps, fluorescent lamps for ultraviolet rays, carbon arc, xenon lamps, high pressure mercury lamps for copying, medium or high pressure mercury lamps, ultrahigh pressure mercury lamps, electrodeless lamps, metal halide lamps, ultraviolet rays using natural light as a light source, Or the electron beam by a scanning type and a curtain type electron beam accelerator etc. are mentioned. Since the apparatus is simple, it is preferable to use an apparatus that generates ultraviolet rays.
  • the base film used in the antireflection film of the present invention may be a film or a sheet, and the thickness is preferably in the range of 20 to 500 ⁇ m.
  • the material of the base film is preferably a highly transparent resin, for example, a polyester resin such as polyethylene terephthalate, polybutylene terephthalate, or polyethylene naphthalate; a polyolefin resin such as polypropylene, polyethylene, or polymethylpentene-1.
  • Cellulose acetates such as cellulose acetate (diacetyl cellulose, triacetyl cellulose, etc.), cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate propionate butyrate, cellulose acetate phthalate, cellulose nitrate, etc .; polymethyl methacrylate, etc.
  • Acrylic resin Vinyl chloride resin such as polyvinyl chloride and polyvinylidene chloride; Polyvinyl alcohol; Ethylene-vinyl acetate copolymer; Poly Polyethylene; Polysulfone; Polyethersulfone; Polyetheretherketone; Polyimide resin such as polyimide and polyetherimide; Norbornene resin (for example, “ZEONOR” manufactured by Nippon Zeon Co., Ltd.), modified norbornene resin (for example, (“Arton” manufactured by JSR Corporation), cyclic olefin copolymers (for example, “Appel” manufactured by Mitsui Chemicals, Inc.), etc. Further, two or more types of base materials made of these resins are bonded together. May be used.
  • Examples of the method for coating the antireflection film composition of the present invention on a substrate include, for example, a gravure coater, roll coater, comma coater, knife coater, air knife coater, curtain coater, kiss coater, shower coater, wheeler coater, and spin coater. , Coating methods using dipping, screen printing, spraying, applicators, bar coaters and the like. Among these, even when a coating apparatus to which pressure such as a gravure coater or a roll coater is applied is used, the porous silica particles (A) used in the present invention are not destroyed. An antireflection film having a stable antireflection property can be obtained without lowering.
  • the organic solvent when an organic solvent is contained in the composition for antireflection film of the present invention, the organic solvent is volatilized after application of the composition for antireflection film to the substrate film and before irradiation with active energy rays.
  • the porous silica (F) In order to cause the porous silica (F) to segregate on the coating film surface, it is preferable to heat or dry at room temperature.
  • the conditions for heat drying are not particularly limited as long as the organic solvent volatilizes, but it is usually preferable to heat dry at a temperature in the range of 50 to 100 ° C. and a time in the range of 1 to 10 minutes.
  • the antireflection film of the present invention can be obtained by operating as described above.
  • FE-SEM field emission scanning electron microscope
  • Average pore size The average pore diameter was measured using a pore distribution measuring apparatus (for example, Shimadzu Corporation “ASAP2020”).
  • the specific surface area was measured by a BET method using a pore distribution measuring apparatus (for example, Shimadzu Corporation “ASAP2020”).
  • volume average diameter and coefficient of variation The volume average diameter was measured using a particle size distribution meter (“Zeta potential / particle size measurement system ELSZ-2” manufactured by Otsuka Electronics Co., Ltd.) using a laser Doppler method.
  • the coefficient of variation was determined by the following formula (1) from the volume average diameter and standard deviation measured with the same apparatus.
  • the standard deviation in following formula (1) was calculated
  • d84% represents the 84% diameter in the volume particle size distribution
  • d16% represents the 16% diameter in the volume particle size distribution.
  • the peak of the pore size distribution was defined as the peak value of the pore distribution obtained by measurement using a pore distribution measuring device (Shimadzu Corporation “ASAP2020”).
  • Example 1 A 500 mL four-necked flask equipped with a thermometer and stirring blades was charged with 213.2 g of methanol, 61.3 g of pure water and 27.4 g of 28% by mass ammonia water, and mixed uniformly by stirring (liquid B). Was kept at 20 ° C.
  • liquid B tetramethoxysilane
  • TMOS tetramethoxysilane
  • 45.1 g of methanol 45.1 g of methanol
  • 6.5 g of octylamine were uniformly mixed (solution A). While keeping the inside of the flask at 20 ° C. and stirring, the liquid A was poured into the liquid B over 120 minutes. The reaction was continued at 20 ° C. for 60 minutes after the end of the injection of the liquid A. After completion of the reaction, the reaction solution was centrifuged at 10,000 rpm for 10 minutes, and then the supernatant was discarded and the precipitate was taken out.
  • Example 2 A 500 mL four-necked flask equipped with a thermometer and stirring blades was charged with 213.2 g of methanol, 61.3 g of pure water and 27.4 g of 28% by mass ammonia water, and mixed uniformly by stirring (liquid B). Was kept at 20 ° C. In another container, 34.3 g of TMOS, 45.1 g of methanol, and 39.3 g of decylamine were mixed uniformly (solution A). While keeping the inside of the flask at 20 ° C. and stirring, the liquid A was poured into the liquid B over 120 minutes. The reaction was continued at 20 ° C. for 60 minutes after the end of the injection of the liquid A. After completion of the reaction, the reaction solution was centrifuged at 10,000 rpm for 10 minutes, and then the supernatant was discarded and the precipitate was taken out.
  • Example 3 A 500 mL four-necked flask equipped with a thermometer and stirring blades was charged with 213.2 g of methanol, 61.3 g of pure water and 27.4 g of 28% by mass ammonia water, and mixed uniformly by stirring (liquid B). Was kept at 20 ° C. In another container, 34.3 g of TMOS, 45.1 g of methanol, and 9.3 g of laurylamine were uniformly mixed (solution A). While keeping the inside of the flask at 20 ° C., the liquid A was poured into the liquid B over 120 minutes. The reaction was continued at 20 ° C. for 60 minutes after the end of the injection of the liquid A. After completion of the reaction, the reaction solution was centrifuged at 10,000 rpm for 10 minutes, and then the supernatant was discarded and the precipitate was taken out.
  • Example 4 A 500 mL four-necked flask equipped with a thermometer and stirring blades was charged with 213.2 g of methanol, 61.3 g of pure water and 27.4 g of 28% by mass ammonia water, and mixed uniformly by stirring (liquid B). Was kept at 20 ° C. In another container, 34.3 g of TMOS, 45.1 g of methanol, and 13.4 g of oleylamine were uniformly mixed (solution A). While keeping the inside of the flask at 20 ° C. and stirring, the liquid A was poured into the liquid B over 120 minutes. The reaction was continued at 20 ° C. for 60 minutes after the end of the injection of the liquid A. After completion of the reaction, the reaction solution was centrifuged at 10,000 rpm for 10 minutes, and then the supernatant was discarded and the precipitate was taken out.
  • Example 5 A 500 mL four-necked flask equipped with a thermometer and stirring blades was charged with 213.2 g of ethanol, 77.9 g of pure water and 4.4 g of 28% by mass ammonia water, and mixed uniformly by stirring (liquid B). Was kept at 27 ° C.
  • TEOS tetraethoxysilane
  • 45.0 g of ethanol 45.0 g of ethanol
  • 13.4 g of laurylamine were mixed uniformly (liquid A).
  • the liquid A was poured into the liquid B at a time while stirring the flask at 27 ° C. After completion of injection of solution A, the reaction was carried out at 27 ° C. for 5 hours.
  • the temperature in the flask was raised to 65 ° C., and the reaction was further continued for 9 hours. After completion of the reaction, the reaction solution was centrifuged at 10,000 rpm for 10 minutes, and then the supernatant was discarded and the precipitate was taken out.
  • the particle shape was spherical. Moreover, the average particle diameter of the obtained porous silica particles was 118 nm, the average pore diameter was 1.8 nm, and the specific surface area by the BET method was 235 m 2 / g.
  • Comparative Example 1 A 500 mL four-necked flask equipped with a thermometer and stirring blades was charged with 213.2 g of methanol, 61.3 g of pure water and 27.4 g of 28% by mass ammonia water, and mixed uniformly by stirring (liquid B). Was kept at 20 ° C. In another container, 34.3 g of TMOS and 45.1 g of methanol were mixed uniformly (solution A). While keeping the inside of the flask at 20 ° C. and stirring, the liquid A was poured into the liquid B over 120 minutes. After completion of the injection, the reaction was continued at 20 ° C. for 60 minutes. After completion of the reaction, the reaction solution was centrifuged at 10,000 rpm for 10 minutes, and then the supernatant was discarded and the precipitate was taken out.
  • the particle shape was spherical.
  • the average particle diameter of the obtained silica particle was 112 nm, and the specific surface area by BET method was 29 m ⁇ 2 > / g.
  • the pore was not confirmed on the surface of the obtained silica particle.
  • Comparative Example 2 A 500 mL four-necked flask equipped with a thermometer and a stirring blade was charged with 83.2 g of ethanol, 106 g of pure water and 0.527 g of laurylamine, and mixed uniformly by stirring to keep the internal temperature at 25 ° C. While stirring the flask at 25 ° C., 5.2 g of TEOS was charged all at once into the flask. After completion of the injection, the reaction was continued at 25 ° C. for 3 hours, and then the stirring was stopped and the mixture was allowed to stand for 18 hours. Subsequently, after centrifuging the reaction liquid at 10,000 rpm for 10 minutes, the supernatant liquid was discarded and the precipitate was taken out.
  • the particle shape was spherical.
  • the average particle diameter of the obtained porous silica particles was 1,230 nm
  • the average pore diameter was 3.6 nm
  • the specific surface area by the BET method was 589 m 2 / g.
  • Comparative Example 3 In a 500 mL four-necked flask equipped with a thermometer and stirring blades, 138.7 g of ethanol, 106 g of pure water and 1.3 g of laurylamine were charged and mixed uniformly by stirring, and the internal temperature was kept at 25 ° C. While stirring the flask at 25 ° C., 5.24 g of TEOS was charged all at once into the flask. After completion of the injection, the reaction was continued at 25 ° C. for 3 hours, and then the stirring was stopped and the mixture was allowed to stand for 18 hours. Subsequently, after centrifuging the reaction liquid at 10,000 rpm for 10 minutes, the supernatant liquid was discarded and the precipitate was taken out.
  • the particle shape was spherical. Moreover, the average particle diameter of the obtained porous silica particles was 405 nm, the average pore diameter was 3.6 nm, and the specific surface area by the BET method was 668 m 2 / g.
  • Comparative Example 4 The same operation as in Example 3 was performed except that ammonia water was not used. After completion of the reaction, the reaction solution was centrifuged at 10,000 rpm for 10 minutes, but it was not separated into a supernatant and a precipitate. Subsequently, the mixture was further centrifuged at 10,000 rpm for 30 minutes, but the supernatant and the precipitate were not separated. When this reaction solution was allowed to stand at 25 ° C. for 24 hours, it gelled.
  • Comparative Example 5 3290.4 g of pure water was put into a container having an internal volume of 5 liters, and the temperature of this pure water was cooled to about 0 ° C. (temperature near 0 ° C. at which water does not freeze) while stirring at a speed of 50 rpm. Next, 375.0 g of vinyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.) previously adjusted to a temperature of about 5 ° C. was gently added to the pure water, and a vinyltrimethoxysilane layer (upper part) and an aqueous layer (lower part) were added. A two-layer separation liquid consisting of was prepared. Further, the vinyltrimethoxysilane layer was cooled while being stirred at a speed of 50 rpm until the temperature of the vinyltrimethoxysilane layer reached about 1 ° C.
  • the mixed solution is stirred for 50 seconds in the aqueous layer while stirring at a speed of 50 rpm so that the organic silicon compound layer located on the upper part of the two-layer separation liquid and the aqueous layer located on the lower part are not completely mixed.
  • the addition was performed by putting a conduit to the lower part of the aqueous layer and letting the mixed solution flow out from the tip nozzle of the conduit.
  • the aqueous layer (mixed aqueous solution) to which the mixed solution has been added is maintained at a temperature of about 1 ° C., and about 4.5 hours until hydrolysis of the organosilicon compound proceeds and the organosilicon compound layer disappears, Stirring was continued at a speed of 50 rpm.
  • the pH of the aqueous layer (mixed aqueous solution) was about 8.8 on average.
  • the mixed aqueous solution in which the organosilicon compound layer disappeared was allowed to stand at a temperature of about 15 ° C. for 3 hours while gently stirring at a speed of 50 rpm.
  • a mixed aqueous solution containing a silica-based particle precursor composed of a partially hydrolyzed vinylmethoxysilane and / or hydrolyzed product in the aqueous layer was obtained.
  • the sodium aluminate aqueous solution was added from the upper part of the liquid surface of the mixed aqueous solution. During this time, the mixed aqueous solution was kept at a temperature of about 18 ° C. Further, this mixed aqueous solution was allowed to stand at a temperature of about 18 ° C. for 15 hours while gently stirring at a speed of 200 rpm. As a result, part of the silica-based component contained in the silica-based particle precursor was eluted, and a mixed aqueous solution containing silica-based particles having pores or voids inside the particles was obtained.
  • the silica-based particles were separated by applying 3643 g of the mixed aqueous solution obtained in the above step to a centrifuge (manufactured by Kokusan Co., Ltd., Sakai H-900). Further, the obtained cake-like substance was stirred while adding pure water to prepare a dispersion, and the same centrifugation operation was repeated three times. Silica-based particles (cake-like substance) sufficiently washed in this way were dried at 110 ° C. for 12 hours. As a result, 63 g of porous silica-based particles having pores or voids inside the particles and having the surface (outer peripheral portion) covered with a silica-based coating layer were obtained. The average particle diameter of the silica particles was 4.7 ⁇ m.
  • Example 1 to 5 and Comparative Examples 1 to 3 the amount of solvent used in the production of silica particles (volume of reaction solution), the yield of silica particles, and the yield of silica particles per amount of solvent (%) (silica particles
  • the percentage of the value obtained by dividing the yield by the amount of solvent is shown in Table 1 (note that the amount of solvent includes water in ammonia water).
  • Table 1 also shows the characteristic values of the silica particles obtained in Examples 1 to 5 and Comparative Examples 1 to 3.
  • the porous silica particles obtained by the method for producing porous silica particles of the present invention are particles having a very small particle size with an average particle size of about 100 nm and an extremely small particle size with an average pore size of 1.5 to 2.2 nm. It was found to be porous silica particles having very small pores. Therefore, it was found that the material is optimal as a material for the low refractive index layer of the antireflection film.
  • Comparative Example 1 is an example in which no alkylamine was used, but the particle shape and average particle diameter were similar to those in Examples 1 to 3 obtained by the production method of the present invention. It has been found that there is a problem that pores do not exist on the surface of the obtained silica particles.
  • Comparative Example 2 is an example in which ammonia water was not used, but the yield per solvent amount was as low as 0.72%, and the average particle diameter of the obtained porous silica particles was very large at 1,230 nm. I found out that
  • Comparative Example 3 is an example in which the amount of alkylamine used was increased compared to Comparative Example 2 without using aqueous ammonia, but the yield per solvent amount was very low at 0.57%, and the resulting porous It has been found that there is a problem that the average particle diameter of the porous silica particles is as large as 405 nm.
  • Comparative Example 4 is an example performed in the same manner as in Example 1 except that ammonia water was not used. Although very small particles are generated after the reaction is completed, the reaction with the reaction solvent is very small. It was found that there was a problem that separation was difficult and the storage stability was extremely poor because of high reactivity, and porous silica particles could not be obtained by gelation.
  • Comparative Example 5 is an example in which silica particles are produced by the method described in Patent Document 2 (Japanese Patent Laid-Open No. 2006-176343), but only silica fine particles having a large particle size of 4.7 ⁇ m can be produced. There wasn't.
  • Example 6 Synthesis of porous silica fine particles surface-modified with silazane compound
  • 5 g of the porous silica particles obtained in Example 1 were mixed with 44.5 g of isopropanol, and dispersed using an ultrasonic homogenizer (“US-600T” manufactured by Nippon Seiki Seisakusho Co., Ltd.) at an output of 300 W for 5 minutes.
  • an ultrasonic homogenizer (“US-600T” manufactured by Nippon Seiki Seisakusho Co., Ltd.) at an output of 300 W for 5 minutes.
  • 0.5 g of acetic acid and 0.5 g of hexamethyldisilazane (hereinafter abbreviated as “HMDS”) are added to the liquid, and the mixture is treated using a wet jet mill (“Nanojet Val JN-10” manufactured by Joko Co., Ltd.).
  • Dispersion was performed at a pressure of 130 MPa for 30 minutes.
  • the obtained dispersion was charged into a 200 mL four-necked flask equipped with a thermometer and stirring blades, and heated to reflux for 60 minutes.
  • the reaction solution was centrifuged at 10,000 rpm for 10 minutes, and then the supernatant was discarded to obtain a precipitate.
  • 50 g of isopropanol was added to the precipitate, and the mixture was dispersed for 5 minutes at an output of 300 W using an ultrasonic homogenizer (“US-600T” manufactured by Nippon Seiki Seisakusho Co., Ltd.). Filtration was performed using 5C filter paper and Kiriyama funnel (manufactured by Kiriyama Mfg. Co., Ltd.) to obtain a dispersion of porous silica particles (E1) having a solid content of 7.9% by mass.
  • the volume average diameter of the porous silica particles (E1) in the dispersion of the porous silica particles (E1) obtained above was 102 nm, and the coefficient of variation was 28%.
  • Example 7 (same as above) 5 g of the porous silica particles obtained in Example 2 were mixed with 44.5 g of isopropanol, and dispersed using an ultrasonic homogenizer (“US-600T” manufactured by Nippon Seiki Seisakusho Co., Ltd.) at an output of 300 W for 5 minutes. Acetic acid (0.5 g) and HMDS (0.5 g) were added to the liquid, and the mixture was dispersed for 30 minutes at a treatment pressure of 130 MPa using a wet jet mill (“Nanojet Val JN-10”, manufactured by Joko Corporation). The obtained dispersion was charged into a 200 mL four-necked flask equipped with a thermometer and stirring blades, and heated to reflux for 60 minutes.
  • an ultrasonic homogenizer (“US-600T” manufactured by Nippon Seiki Seisakusho Co., Ltd.) at an output of 300 W for 5 minutes.
  • Acetic acid (0.5 g) and HMDS (0.5 g) were added to
  • the reaction solution was centrifuged at 10,000 rpm for 10 minutes, and then the supernatant was discarded to obtain a precipitate.
  • the volume average diameter of the porous silica particles (E2) in the dispersion of the obtained porous silica particles (E2) was 148 nm, and the coefficient of variation was 28%.
  • Example 8 (same as above) 5 g of the porous silica particles obtained in Example 3 were mixed with 44.5 g of isopropanol, and dispersed using an ultrasonic homogenizer (“US-600T” manufactured by Nippon Seiki Seisakusho Co., Ltd.) at an output of 300 W for 5 minutes. Acetic acid (0.5 g) and HMDS (0.5 g) were added to the liquid, and the mixture was dispersed for 30 minutes at a treatment pressure of 130 MPa using a wet jet mill (“Nanojet Val JN-10”, manufactured by Joko Corporation). The obtained dispersion was charged into a 200 mL four-necked flask equipped with a thermometer and stirring blades, and heated to reflux for 60 minutes.
  • an ultrasonic homogenizer (“US-600T” manufactured by Nippon Seiki Seisakusho Co., Ltd.) at an output of 300 W for 5 minutes.
  • Acetic acid (0.5 g) and HMDS (0.5 g) were added to
  • the reaction solution was centrifuged at 10,000 rpm for 10 minutes, and then the supernatant was discarded to obtain a precipitate.
  • 50 g of isopropanol was added to the precipitate, and the mixture was dispersed for 5 minutes at an output of 300 W using an ultrasonic homogenizer (“US-600T” manufactured by Nippon Seiki Seisakusho Co., Ltd.). Filtration was performed using 5C filter paper and Kiriyama funnel (manufactured by Kiriyama Seisakusho Co., Ltd.) to obtain a dispersion of porous silica particles (E3) having a solid content of 7.9% by mass.
  • the volume average diameter of the porous silica particles (E3) in the dispersion of the obtained porous silica particles (E3) was 139 nm, and the coefficient of variation was 22%.
  • Example 9 (same as above) 5 g of the fired porous silica particles obtained in Example 3 were mixed with 44.5 g of isopropanol, and dispersed for 5 minutes at an output of 300 W using an ultrasonic homogenizer (“US-600T” manufactured by Nippon Seiki Seisakusho Co., Ltd.). Thereafter, 0.5 g of acetic acid and 2.1 g of HMDS were added to the dispersion, and the mixture was dispersed for 30 minutes at a treatment pressure of 130 MPa using a wet jet mill (“Nanojet Val JN-10” manufactured by Joko Corporation).
  • the obtained dispersion was charged into a 200 mL four-necked flask equipped with a thermometer and stirring blades, and heated to reflux for 60 minutes.
  • the reaction solution was centrifuged at 10,000 rpm for 10 minutes, and then the supernatant was discarded to obtain a precipitate.
  • 50 g of isopropanol was added to the precipitate, and the mixture was dispersed for 5 minutes at an output of 300 W using an ultrasonic homogenizer (“US-600T” manufactured by Nippon Seiki Seisakusho Co., Ltd.). Filtration was performed using 5C filter paper and Kiriyama funnel (manufactured by Kiriyama Seisakusho Co., Ltd.) to obtain a dispersion of porous silica particles (E4) having a solid content of 8.0% by mass.
  • the volume average diameter of the porous silica particles (E4) in the dispersion of the obtained porous silica particles (E4) was 127 nm, and the coefficient of variation was 32%.
  • Example 10 (same as above) 5 g of the fired porous silica particles obtained in Example 3 were mixed with 44.5 g of isopropanol, and dispersed for 5 minutes at an output of 300 W using an ultrasonic homogenizer (“US-600T” manufactured by Nippon Seiki Seisakusho Co., Ltd.). Thereafter, 0.5 g of acetic acid and 0.03 g of HMDS were added to the dispersion, and the mixture was dispersed for 30 minutes at a treatment pressure of 130 MPa using a wet jet mill (“Nanojet Val JN-10”, manufactured by Joko Corporation).
  • the obtained dispersion was charged into a 200 mL four-necked flask equipped with a thermometer and stirring blades, and heated to reflux for 60 minutes.
  • the reaction solution was centrifuged at 10,000 rpm for 10 minutes, and then the supernatant was discarded to obtain a precipitate.
  • 50 g of isopropanol was added to the precipitate, and the mixture was dispersed for 5 minutes at an output of 300 W using an ultrasonic homogenizer (“US-600T” manufactured by Nippon Seiki Seisakusho Co., Ltd.). Filtration was performed using 5C filter paper and Kiriyama funnel (manufactured by Kiriyama Seisakusho Co., Ltd.) to obtain a dispersion of porous silica particles (E5) having a solid content of 8.0% by mass.
  • the volume average diameter of the porous silica particles (E5) in the dispersion of the obtained porous silica particles (E5) was 110 nm, and the coefficient of variation was 33%.
  • Example 11 722 parts by mass of a dispersion of porous silica particles (E1) obtained in Example 1 (containing 57 parts by mass of porous silica particles (E1)), hexafunctional urethane acrylate (2 mol of pentaerythritol in 1 mol of isophorone diisocyanate) 1,200 parts by mass of triacrylate reacted), photopolymerization initiator (“Irgacure 754” manufactured by BASF Japan Ltd.); oxyphenylacetic acid photopolymerization initiator: 2- [2-oxo-2-phenylacetoxyethoxy A mixture of ethyl ester and 2- (2-hydroxyethoxy) ethyl ester) 60 parts by mass and 4,118 parts by mass of isopropanol were uniformly mixed to obtain an antireflection film composition (1).
  • Example 12 instead of 722 parts by mass of the dispersion of porous silica particles (E1) used in Example 11, 731 parts by mass of the dispersion of porous silica particles (E2) obtained in Example 7 (porous silica particles (E2 The composition for antireflection film (2) was obtained in the same manner as in Example 6, except that 4,118 parts by mass of isopropanol was changed to 4,109 parts by mass.
  • Example 13 Instead of 722 parts by mass of the dispersion of porous silica particles (E1) used in Example 11, 722 parts by mass of the dispersion of porous silica particles (E3) obtained in Example 8 (porous silica particles (E3 ) 9 parts by mass) was carried out in the same manner as in Example 6 to obtain an antireflection film composition (3).
  • Example 14 Instead of 722 parts by mass of the dispersion of porous silica particles (E1) used in Example 11, 713 parts by mass of the dispersion of porous silica particles (E4) obtained in Example 9 (porous silica particles (E4 ) 57 mass parts contained), and the same procedure as in Example 6 was carried out except that 4,118 parts by mass of isopropanol was changed to 4,127 parts by mass to obtain an antireflection film composition (4).
  • Example 15 Instead of 722 parts by mass of the dispersion of porous silica particles (E1) used in Example 11, 713 parts by mass of the dispersion of porous silica particles (E5) obtained in Example 10 (porous silica particles (E5 ) 57 parts by mass) was used in the same manner as in Example 6 except that 4,118 parts by mass of isopropanol were changed to 4,127 parts by mass to obtain an antireflection film composition (5).
  • the composition (1) to (5) for the antireflection film obtained above was coated on a surface-adhesive polyethylene terephthalate film (hereinafter abbreviated as “PET film”) having a thickness of 188 ⁇ m, respectively. After coating with # 22 and drying at 25 ° C. for 1 minute, it was dried with a dryer at 60 ° C. for 5 minutes. Then, it was cured using an ultraviolet curing device (in an air atmosphere, a metal halide lamp, an ultraviolet irradiation amount of 2 kJ / m 2 ) to produce an antireflection film.
  • PET film surface-adhesive polyethylene terephthalate film

Abstract

 本発明は、粒子径が小さく、また製造において反応溶液の容量に対する収量が多い多孔質シリカ粒子の製造方法を提供することを目的とし、この目的を達成すべくテトラアルコキシシラン、アルキルアミン及びアルコールを含む混合液(A液)を、アンモニア、アルコール及び水を含む混合液(B液)に加え、テトラアルコキシシランの加水分解及び縮合反応を行い、シリカ粒子を得る工程と、該シリカ粒子からアルキルアミンを除去する工程とを含むことを特徴とする表面に細孔を有する多孔質シリカ粒子の製造方法を提供する。

Description

多孔質シリカ粒子の製造方法、反射防止膜用樹脂組成物、反射防止膜を有する物品及び反射防止フィルム
 本発明は、粒子径が、例えば100~250nmと小さく、表面に細孔を有する多孔質シリカ粒子を、反応系の質量に対して多く製造できる(収量を多く製造できる)製造方法に関する。
 多孔質シリカ粒子は、その粒子表面に細孔を有するシリカ粒子である。この多孔質シリカ粒子の中でも、細孔のサイズがメソポア領域である2~50nmのものはメソポーラスシリカ粒子といわれている。多孔質シリカ粒子は、その細孔に空気が含まれており、光学的、電気的に優れた性質を有するため、反射防止膜、層間絶縁膜等の材料として利用されている。多孔質シリカ粒子を反射防止膜に用いる場合、多孔質シリカ粒子が有する低屈折率の性質を利用して低屈折率層の材料として利用できる。一般に、可視光の反射を効率的に防止する低屈折層の理想の膜厚としては、100~250nmとされている。従って、多孔質シリカ粒子を反射防止膜に用いる場合、この膜厚と同程度かそれ以下の平均粒子径を有する多孔質シリカ粒子である必要がある。
 多孔質シリカ粒子の製造方法としては、HMS法と呼ばれる方法が知られている。HMS法は、具体的には、例えば、溶媒としてエタノール及び水を、孔の鋳型としてドデシルアミン等のアルキルアミンを含む混合液にテトラエトキシシランを添加し該テトラエトキシシランを自己縮合させてシリカ粒子を得た後、該粒子から前記鋳型を、トルエンやアセトンなどの溶媒による洗浄や300~800℃程度での温度での焼成により除去する方法である(例えば、特許文献1参照。)。この方法で得られる多孔質シリカ粒子の粒子径は、通常1μm前後と比較的大きい。従って、HMS法で得られる多孔質シリカ粒子は反射防止膜に用いるには大き過ぎるという問題がある。
 また、多孔質シリカ粒子の製造方法としてテトラメトキシシランやトリメトキシシラン等のシラン化合物と水との混合物に、アルコールと、シラン化合物の加水分解物を凝集させると考えられるアニオン性界面活性剤と、加水分解の触媒として機能するアンモニア水やアミン等のアルカリ化合物との混合物を添加し、シリカ粒子前駆体を含む混合水溶液を得た後、該混合水溶液にアルミン酸ナトリウムを添加する方法もある(例えば、特許文献2参照)。この方法では、前記HMS法のように孔の鋳型となるものは使用していない。そして、シリカ粒子前駆体を得た時点では、その内部まで完全硬化していないと考えられ、シリカ粒子を溶解するアルミン酸ナトリウムが前記シリカ粒子前駆体中に浸透し、シリカ系成分の一部を粒子外に溶出させることにより多孔質シリカ粒子が得られると考えられる。しかしながら、特許文献2に開示された方法で得られるシリカ微粒子も粒子径は4~8μmもあり、反射防止膜用途に用いることはできない。
 粒子径が小さい多孔質シリカ粒子を得る方法として、孔の鋳型となる4級アンモニウム塩カチオン性界面活性剤、水、2つ以上の水酸基を有する多価アルコール及びアンモニア水を含む混合溶液に、テトラエトキシシランとアミノ基を有するアルコキシシランを添加し、テトラエトキシシランとアミノ基を有するアルコキシシランを共加水分解反応させてシリカ粒子を得た後、該シリカ粒子を酸溶液に浸漬させることにより4級アンモニウム塩カチオン性界面活性剤を該シリカ粒子から抽出し除去する方法が提案されている。例えば、特許文献3参照。)。この特許文献3の方法では、直径が1~10nm程度の細孔を有する粒子径が20~200nm程度のシリカ粒子が得られる。しかしながら、特許文献3に記載された製造方法はアルコキシシランの量に対して前記混合溶液の量が圧倒的に過多の条件、具体的には、アルコキシシラン1質量部に対して、水と多価アルコールの合計質量が120倍程度となる条件で行う必要がある為、多孔質シリカ微粒子の収量が少なく非常に製造効率が悪いという問題があった。
特開2007-185656号公報 特開2006-176343号公報 特開2008-280193号公報
 本発明が解決しようとする課題は、粒子径が100~250nmと小さい多孔質シリカ粒子を、収量を多く製造できる製造方法を提供し、また、この製造方法により得られる多孔質シリカ微粒子を用いて反射防止膜用樹脂組成物を提供し、この組成物を用いて得た反射防止膜を有する物品、特に反射防止フィルムを提供することである。
 本発明者らは、鋭意研究した結果、シラン化合物としてテトラアルコキシシランを用い、該テトラアルコキシシランを前記特許文献2のように水と混合するのではなく、アルコールとアルキルアミンとに混合し、得られた混合液をアルコール、水及びアンモニアを含む混合液に添加し、テトラアルコキシシランの加水分解と縮合反応を行った後、得られるシリカ粒子を焼成し、該シリカ粒子中の有機物を除去することにより、メソポア領域の細孔を有する100~250nmの粒子を、収量を多く製造できること等を見出し、本発明を完成するに至った。
 即ち、本発明は、テトラアルコキシシラン、アルキルアミン及びアルコールを含む混合液(A液)を、アンモニア、アルコール及び水を含む混合液(B液)に加え、テトラアルコキシシランの加水分解及び縮合反応を行い、シリカ粒子を得る工程と、該シリカ粒子からアルキルアミンを除去する工程とを含むことを特徴とする表面に細孔を有する多孔質シリカ粒子の製造方法を提供するものである。
 また、本発明は、前記製造方法において、シリカ粒子からアルキルアミンを除去する工程の後、得られるシリカ粒子を表面修飾する工程を含む多孔質シリカ粒子の製造方法により得られる多孔質シリカ粒子とバインダー樹脂とを含有することを特徴とする反射防止膜用樹脂組成物を提供し、更に、本発明は、前記反射防止膜用組成物を塗工して形成した反射防止膜を有することを特徴とする物品を提供し、更に本発明は、基材フィルムの少なくとも一面に、前記反射防止膜用組成物を塗工して形成した反射防止膜を有することを特徴とする反射防止フィルムを提供するものである。
 本発明の製造方法を用いれば、粒子径が、例えば100~250nmと小さな多孔質シリカ粒子を製造できる。また、本発明の製造方法は反応溶液の容量に対して得られる多孔質シリカ粒子の収量が多く、多孔質シリカ粒子の生産効率が良好である。そして、本発明の製造方法により得られた多孔質シリカ粒子は、粒子表面に平均細孔径1~4nmの範囲の細孔を有するため、この細孔中に存在する空気により低屈折率であることを利用して反射防止膜として用いることができる。また、該多孔質シリカ粒子は、低誘電率であるため半導体やプリント基板の層間絶縁膜の材料としても用いることかできる。その他、細孔に金属触媒、光触媒を担持された各種触媒、インクジェットインクやトナーの受理層の材料、各種塗料のフィラー、特定の分子を吸着する性質を利用した分子センサー、水素ガスの分離・吸収材、細孔に空気を含むことから得られる断熱性を利用した断熱材、光を拡散することを利用した液晶ディスプレイ等のバックライトユニットの光拡散フィルム、印刷原版、細孔に抗菌剤を担持させた抗菌材、細孔の吸着性を利用した吸着材・ろ過材・分離膜、細孔による吸水・吸湿性を利用した調湿性を付与した壁紙、各種化粧品、細孔に色素を担持させた耐候性の高い着色剤や色変換フィルター、細孔に電解質を担持させた燃料電池等の各種電池、細孔に酸化亜鉛等の紫外線遮蔽剤を担持させた紫外線遮蔽材、液晶配向膜等にも用いることができる。
 そして、本発明の反射防止膜用組成物は、使用している低屈折率物質である多孔質シリカ粒子の機械的物性が高いことから、調製時に高い力が加わる分散処理をしても、塗工時に塗材に圧力が加わる塗工装置を用いても、多孔質シリカ粒子が破壊することがないため、調製時及び塗工時に反射防止性が低下することない利点がある。したがって、物品表面に反射防止膜を形成する際に、あらゆる塗工方法が用いることができ、安定した優れた反射防止性を有する反射防止膜を物品表面に形成することができる。
 特に、基材をフィルムとして、本発明の反射防止膜用組成物で反射防止膜を形成した反射防止フィルムは、その最表面に反射防止を効率的に実現できるように膜厚制御された低屈折率層を形成されるため、優れた反射防止性を有する。したがって、液晶ディスプレイ(LCD)、有機ELディスプレイ(OELD)、プラズマディスプレイ(PDP)、表面電界ディスプレイ(SED)、フィールドエミッションディスプレイ(FED)等の画像表示装置の表示画面の表面に外光が反射することによって生じるコントラストの低下や像の映り込みを防止する反射防止フィルム用いることができる。
図1は、実施例1で得られた多孔質シリカ粒子の電界放射型走査電子顕微鏡(FE-SEM)による5万倍での観察写真である。 図2は、実施例2で得られた多孔質シリカ粒子の電界放射型走査電子顕微鏡(FE-SEM)による5万倍での観察写真である。 図3は、実施例3で得られた多孔質シリカ粒子の電界放射型走査電子顕微鏡(FE-SEM)による5万倍での観察写真である。 図4は、実施例4で得られた多孔質シリカ粒子の電界放射型走査電子顕微鏡(FE-SEM)による5万倍での観察写真である。 図5は、実施例12の反射防止膜用組成物で形成した反射防止膜の断面の電界放射型走査電子顕微鏡(FE-SEM)による5万倍での観察写真である。 図6は、実施例13の反射防止膜用組成物で形成した反射防止膜の断面の電界放射型走査電子顕微鏡(FE-SEM)による5万倍での観察写真である。 図7は、実施例14の反射防止膜用組成物で形成した反射防止膜の断面の電界放射型走査電子顕微鏡(FE-SEM)による10万倍での観察写真である。 図8は、実施例15の反射防止膜用組成物で形成した反射防止膜の断面の電界放射型走査電子顕微鏡(FE-SEM)による5万倍での観察写真である。
 本発明の多孔質シリカ粒子の製造方法は、テトラアルコキシシラン、アルキルアミン及びアルコールを含む混合液(A液)を、アンモニア、アルコール及び水を含む混合液(B液)に加え、テトラアルコキシシランの加水分解及び縮合反応を行い、シリカ粒子を得る工程と、該シリカ粒子を焼成する工程とを含むことを特徴とする。
 A液の構成成分で多孔質シリカ粒子の原料となるテトラアルコキシシランとしては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン等が挙げられる。これらの中でも、反応性が高いことからテトラメトキシシランが好ましい。また、これらのテトラアルコキシシランは、1種類のみで用いることも2種以上併用することもできる。
 A液の構成成分であるアルキルアミンはシリカ粒子の表面に細孔を作るいわゆる鋳型として働くため、その種類及び添加量によって、細孔の数や大きさや形状を制御することが可能である。また、アルキルアミンは、後述するアンモニアとともにテトラアルコキシシランの加水分解及び縮合反応の触媒としても作用する。アルキルアミンとしては、炭素原子数6~18のアルキル基を有するアミン化合物がA液やB液の溶媒となるアルコールへの溶解性が良好で、粒径が例えば100~250nmの多孔質シリカ微粒子が得やすくなることから好ましい。炭素原子数6~18のアルキル基を有するアミン化合物の具体例としては、例えば、オクチルアミン、デシルアミン、ラウリルアミン、テトラデシルアミン、オレイルアミン等が挙げられる。これらのアルキルアミンは、1種類のみで用いることも2種以上併用することもできる。
 シリカ粒子の細孔の数を増やすには、例えば、後述するテトラアルコキシシランとアルキルアミンの比率〔テトラアルコキシシラン/アルキルアミン〕を少なくすればよい。また、シリカ粒子の細孔の大きさを大きくするには、例えば、炭素原子数が多いアルキルアミンを用いればよい。
 A液の構成成分であるアルコールは、溶媒として働き、アルキルアミンを溶解し、均一に混合されたA液を得やすくする効果を奏する。アルコールとしては、水と混和するものが好ましい。さらに、アルコキシシランとアルコールの交換反応により反応系が複雑化することを防止する観点から、使用するテトラアルコキシシランのアルコキシ部位と同数の炭素原子数を有するものが特に好ましい。具体例としては、メタノール、エタノール、プロパノール等が挙げられる。
 A液中のテトラアルコキシシランとアルキルアミンの比率〔テトラアルコキシシラン/アルキルアミン〕としては、モル比で1/0.05~1/5の範囲であることが、細孔を表面に有し、かつ一次粒子が球状である粒子を得るために好ましく、モル比で1/0.1~1/3.0がより好ましく、モル比で1/0.1~1/2.0が更に好ましい。
 また、A液中のテトラアルコキシシランの含有量としては、A液100質量部中10~60質量部が、収量を多く製造できることから好ましく、25~45質量部がより好ましい。
 B液の構成成分であるアンモニアは、テトラアルコキシシランの加水分解及び縮合反応の触媒として作用する。用いるアンモニアは、アンモニア水として加えても、反応溶液中にアンモニアを気体で導入しても良いが、使用量をコントロールしやすいことから、アンモニア水で用いるのが好ましい。
 B液の構成成分であるアルコールは、例えば、前記A液の調製に用いるアルコールを用いることができる。用いるアルコールはA液の調製に用いたアルコールと同じものを使用しても良いし、異なるものを使用しても良い。また、1種類のみで用いても良いし、2種以上を併用しても良い。
 B液の構成成分で、本発明の製造方法において溶媒として用いる水としては、反応系中に不純物が混入することを極力避けるため、純水を用いることが好ましい。
 B液中のアンモニアと水の比率〔アンモニア/水〕としては、モル比で1/1~1/20の範囲であることが、細孔を表面に有し、かつ一次粒子が球状である粒子を得るために好ましい。さらに、アンモニア水を用いて反応操作の容易できることから、アンモニアと水のモル比が1/2.5~1/20であることがより好ましい。
 また、B液中の水の質量としては、多孔質シリカ微粒子の粒径が制御しやすいことからB液100質量部に対して1~40質量部が好ましく、2~30質量部がより好ましい。
 本発明の表面に細孔を有する多孔質シリカ粒子の製造方法は前記A液をB液に加え、テトラアルコキシシランの加水分解及び縮合反応を行い、シリカ粒子を得る工程(以下、工程1と略記する。)と、シリカ粒子からアルキルアミンを除去する工程(以下、工程2と略記する。)を含む。
 以下に上記工程を詳細に説明する。工程1は、テトラアルコキシシランの加水分解及び縮合させ、シリカ粒子を形成する工程である。A液とB液とを混合させる際は、テトラアルコキシシランの加水分解及び縮合反応の触媒として作用するアンモニアの量が、A液とB液の混合液(反応系)のpHを8から12の範囲とする量となるようにA液とB液を混合させるのが一次粒子が球状である粒子を得やすいことから好ましく、pHを9から11の範囲とする量となるようにA液とB液を混合させるのがより好ましい。
 A液をB液に加えるには、例えば、B液が入っている容器の上からA液を滴下することにより加えても良いし、B液が入っている容器内に導管ノズルを入れて、導管ノズルからA液を流出することでB液にA液加えても良い。また、A液をB液に加える際にはB液を撹拌しながら、そこへA液を注入してもよい。
 前記A液及びB液の混合時の温度としては、5~80℃の範囲が、反応原料の反応系への溶解性及び一次粒子が球状である粒子を得るために好ましい。
 前記B液へのA液の注入時間としては、0~240分の範囲が好ましく、30~150分の範囲がより好ましい。ここでいう0分とは、A液をB液へ一括で投入することを表す。また、A液の注入後、5~80℃の温度範囲で、10分以上さらに撹拌反応することが好ましい。この工程1によって、多孔質シリカ粒子の元となるシリカ粒子が得られる。
 工程1において、A液をB液に加えたあと、更にテトラアルコキシシラン及びアルコールを含む混合液(A´液)を加えることにより、他の化合物、例えば溶剤や、樹脂の細孔への浸入を抑制しうる多孔質シリカ粒子が得られる。A´液は、A液をB液へ加えた後速やかに添加しても良いし、A液をB液へ加え、その後、静置または撹拌後添加しても良い。
 上記の工程1で得られたシリカ粒子からアルキルアミンを除去するのが工程2である。アルキルアミンを除去する方法としては、例えば、該シリカ粒子を酸で洗浄する方法、該シリカ粒子を高温中に噴霧する方法、該シリカ粒子を焼成する方法等が挙げられる。
 シリカ粒子からアルキルアミンを除去する際に、事前にシリカ粒子を洗浄しておいても良い。シリカ粒子を洗浄する方法としては、例えば、まず、工程1で得られた反応溶液からシリカ粒子を遠心分離し、シリカ粒子を取り出す。このシリカ粒子にアルコールを加えて撹拌して懸濁液とし、この懸濁液を再度遠心分離してシリカ粒子を取り出す。この工程を数回行うことで、アルコールによってシリカ粒子を洗浄する。この際使用するアルコールは、前記A液及びB液の調製に用いたアルコールと同種のものが好ましい。なお、シリカ粒子を反応溶液及びアルコール懸濁液から取り出す方法としては、遠心分離に限られず、例えば、限外ろ過を用いても構わない。また、限外ろ過装置を使用し、連続的に洗浄工程を実施しても構わない。
 前記シリカ粒子を酸で洗浄する方法で用いる酸としては、例えば、塩酸、硝酸、硫酸、酢酸等が挙げられる。これらの酸の中でも、中和塩が水溶性であることから、無機酸が好ましい。
 前記シリカ粒子を酸で洗浄する際は、水の他、アルコール存在下で行うことが好ましい。この際、用いるアルコールとしては、前記A液及びB液で用いたアルコールと同種のもので良い。さらに、アルキルアミンの抽出は、加熱して行うことが好ましく、その温度範囲としては、抽出効率が高いことから、使用するアルコールの沸点付近であることが好ましい。
 該シリカ粒子を高温中に噴霧するには、例えば、270~800℃程度の雰囲気下で該シリカ粒子を噴霧できる市販のスプレードライヤーを用いればよい。ここで、該シリカ粒子を高温中に噴霧する際は、シリカ粒子の上記アルコールによる洗浄や酸による洗浄を行っていても良い。
 前記シリカ粒子を焼成する方法においてもシリカ粒子の上記アルコールによる洗浄や酸による洗浄を行っていても良い。
 必要により、上記洗浄を行ったあと、シリカ微粒子を乾燥させる乾燥温度は、60~150℃の範囲が好ましく、80~130℃の範囲がより好ましい。
 乾燥したシリカ粒子を焼成し、シリカ粒子に残留する有機物をすべて除去する。これにより鋳型として用いたアルキルアミンが除去される。焼成工程の条件としては、焼成温度は400~1,000℃の範囲が好ましく、500~800℃の範囲がより好ましい。また、焼成時間としては、30分以上であることが好ましく、1時間以上であることがより好ましい。この焼成工程を行うことで、シリカ粒子に残留する有機物をすべて除去できるため、シリカ粒子表面に細孔を有する多孔質シリカとすることができる。
 焼成後、粒子が凝集している場合には粉砕することが好ましい。粉砕に用いる粉砕機としては、ボールミル、コロイドミル、コニカルミル、ディスクミル、エッジミル、製粉ミル、ハンマーミル、乳鉢、ペレットミル、ジェットミル、縦軸インパクタ(VSI)ミル、ウィリーミル、ローラーミル等が挙げられる。
 また、シリカ粒子の自己凝集を防止でき、有機溶剤や樹脂への分散性が向上することから、前記焼成工程後に得られた多孔質シリカ粒子の表面に存在するシラノール基のヒドロキシル基を表面処理剤により表面処理して疎水基と置換することが好ましい。この表面処理を行う方法としては、例えば、表面処理剤を溶媒に溶解させた溶液に多孔質シリカを浸漬し、必要に応じて加熱する方法が挙げられる。この表面処理に用いる溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコール、ベンゼン、トルエン、キシレン、N,N-ジメチルホルムアミド、ヘキサメチルジシロキサン等が挙げられる。また、表面修飾に使用する表面処理剤としてはシラン化合物やシラザン化合物、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、デシルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン、ヘキサメチルジシロキサン、トリメチルメトキシシラン、エチルトリメトキシシラン、トリメチルエトキシシラン、ジメチルジエトキシシラン、ヘキサメチルジシラザン、メトキシシラン末端を有するパーフルオロポリエーテルである「Dow Corning 2634 Coating」(東レ・ダウコーニング株式会社製)、エトキシシラン末端を有するパーフルオロポリエーテルである「フルオロリンク S10」(ソルベイソレクシス社製)等が挙げられる。特に、前記シラザン化合物で表面処理することにより、シラザン化合物で表面修飾されている多孔質シリカ粒子を得ることができる。具体的には、前記工程2(シリカ粒子からアルキルアミンを除去する工程)の後、得られる多孔質シリカ粒子を表面修飾する工程を本発明の製造方法に含ませることによりシラザン化合物で表面修飾されている多孔質シリカ粒子を得ることができる。ここで用いるシラザン化合物としては、ヘキサメチルジシラザンが好ましい。
 多孔質シリカ粒子の表面をシラザン化合物により表面修飾する際に、触媒を用いることが好ましい。この触媒としては、塩酸、硫酸、硝酸等の無機酸類;シュウ酸、酢酸、ギ酸、メタンスルホン酸、トルエンスルホン酸等の有機酸類;水酸化ナトリウム、水酸化カリウム、アンモニア等の無機塩基類;トリエチルアミン、ピリジン等の有機塩基類;トリイソプロポキシアルミニウム、テトラブトキシジルコニウム等の金属アルコキシド類などが挙げられる。これらの中でも、多孔質シリカ粒子(A)の分散液の製造安定性や保存安定性が良好となることから、酸触媒(無機酸類、有機酸類)が用いられる。無機酸では塩酸、硫酸など、有機酸ではメタンスルホン酸、シュウ酸、フタル酸、マロン酸、酢酸が好ましく、酢酸が特に好ましい。
 多孔質シリカ粒子の表面の修飾を行う方法としては、例えば、表面修飾剤を溶媒に溶解させた溶液に多孔質シリカを浸漬し、必要に応じて加熱する方法が挙げられる。この表面修飾に用いる溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコール、ベンゼン、トルエン、キシレン、N,N-ジメチルホルムアミド、アセトン、メチルエチルケトン、メチルイソブチルケトン等が挙げられる。
 前記多孔質シリカ粒子の表面修飾の際の表面修飾剤の使用量は、多孔質シリカ粒子(E)が二次凝集せず、一次粒子として安定なものとするために、前記多孔質シリカ粒子100質量部に対して、表面修飾剤を0.3~60質量部の範囲が好ましいが、0.5~50質量部の範囲がより好ましい。
 さらに、上記の表面修飾を行う際に同時に多孔質シリカ粒子の凝集した粒子を粉砕して一次粒子状態の分散液とすることが好ましい。
 上記の工程1及び2を経ることで、多孔質シリカ粒子を得ることができる。得られた多孔質シリカ粒子の粒子形状、平均粒子径、平均細孔径及び比表面積は、下記の測定方法により、測定できる。
 [粒子形状]
 粒子形状は、電界放射型走査電子顕微鏡(FE-SEM)(例えば、日本電子社製「JSM6700」)を用いて観察することで確認できる。
 [平均粒子径]
 平均粒子径は、電界放射型走査電子顕微鏡(FE-SEM)(例えば、日本電子社製「JSM6700」)を用いて観察することで確認できる。
 [平均細孔径]
 平均細孔径は、細孔分布測定装置(例えば、株式会社島津製作所「ASAP2020」)を用いて測定できる。
 [比表面積]
 比表面積は、細孔分布測定装置(例えば、株式会社島津製作所「ASAP2020」)を用いてBET法により測定できる。
 上記の測定方法により、本発明の多孔質シリカ粒子の製造方法により得られた多孔質シリカ粒子の粒子形状、平均粒子径、平均細孔径及び比表面積を測定することができる。本発明の多孔質シリカ粒子の製造方法の特徴としては、ほぼ球形の外観を有する多孔質シリカ粒子が得られ、平均粒子径は上述したように、アンモニアの使用量を調整することで制御することができ、50~300nmの範囲、好ましくは100~250nmのものを得ることができる。また、多孔質シリカ粒子の平均細孔径及び比表面積は、アルキルアミンの種類及び使用量により制御することができ、平均細孔径については、1~4nmの範囲のものが得られ、比表面積については、40~900m/gの範囲のものが得られる。
 本発明の反射防止膜用樹脂組成物は、本発明の製造方法で得られる多孔質シリカ粒子の中でも、シリカ粒子からアルキルアミンを除去する工程の後、得られるシリカ粒子を表面修飾剤(D)で表面修飾する工程を含む製造方法で得られる多孔質シリカ粒子〔以下、多孔質シリカ粒子(E)と略記する。〕とバインダー樹脂(F)とを含有することを特徴とする。本発明の反射防止膜用樹脂組成物を用いることにより、特に、また、基材上への1回の塗布、乾燥、硬化工程により、低屈折率層を高屈折率層の上に同時に形成でき、該低屈折率層の膜厚が反射防止を効率的に実現できるように膜厚制御され、塗工装置に依らずに反射防止膜の形成が可能となる。
 本発明の反射防止膜用組成物は、前記バインダー樹脂(F)からなる塗膜表面に多孔質シリカ粒子(E)が実質的に単層で並んだ反射防止層として形成することが可能である。なお、本発明においては、前記多孔質シリカ粒子(E)からなる反射防止層及び実質的にバインダー樹脂(F)のみからなる塗膜層の両方を含んだものを反射防止膜という。
 前記多孔質シリカ粒子(E)からなる反射防止層を100nm程度の効率的に反射防止できる膜厚とするために、多孔質シリカ粒子(E)の体積平均径が80~150nmの範囲が好ましく、90~120nmの範囲がより好ましい。
 また、前記多孔質シリカ粒子(E)からなる反射防止層の膜厚は、より均一である方が好ましいことから、多孔質シリカ粒子の粒度分布は狭い方が好ましい。そのために、前記多孔質シリカ粒子(E)の粒度分布を示す指数である変動係数(CV)は、0~40%の範囲が好ましく、0~35%の範囲がより好ましい。また、前記多孔質シリカ粒子(E)の製造のしやすさを考慮すると、変動係数の下限は5%が好ましく、10%がより好ましく、15%がさらに好ましく、20%が特に好ましい。なお、変動係数とは、下記式(1)によって算出されるものであり、下記式(1)中の標準偏差は、下記式(2)で算出されるものである。また、下記式(2)中のd84%は体積粒度分布における84%径を表し、d16%は体積粒度分布における16%径を表す。
Figure JPOXMLDOC01-appb-M000001
 上記のような体積平均径及び変動係数を有する多孔質シリカ粒子(E)は、前記の通り、前記工程2(シリカ粒子からアルキルアミンを除去する工程)の後、得られるシリカ粒子を表面修飾剤で表面修飾する工程を本発明の製造方法に含ませることにより得ることができる。得られた多孔質シリカ粒子(E)の粒子形状、比表面積は前記の方法で測定でき、また、体積平均径、変動係数及び細孔径分布のピークは、下記の測定方法により測定できる。
 [体積平均径及び変動係数]
 体積平均径は、レーザードップラー法を用いた粒度分布計(例えば、大塚電子株式会社製「ゼータ電位・粒径測定システム ELSZ-2」)を用いて測定できる。また、変動係数は、同装置で測定した体積平均径及び標準偏差から、上記式(1)によって求められる。
 [細孔径分布のピーク]
 細孔径分布のピークは、細孔分布測定装置(例えば、株式会社島津製作所「ASAP2020」)を用いて測定でき、得られた細孔径分布のピーク値である。
 本発明の反射防止膜用組成物は、前記多孔質シリカ粒子(E)及びバインダー樹脂(F)を含有する。前記多孔質シリカ粒子(E)と前記バインダー樹脂(F)の混合層が低屈折率層を形成するため、前記バインダー樹脂(F)としては、低屈折率の塗膜を形成するものが好ましく、具体的には1.30~1.60の屈折率を有するものが好ましい。また、前記バインダー樹脂(F)の具体例としては、ポリ酢酸ビニルとその共重合樹脂、エチレン-酢酸共重合樹脂、塩化ビニル-酢酸ビニル共重合樹脂、ウレタン樹脂、塩化ビニル樹脂、塩素化ポリプロピレン系樹脂、ポリアミド系樹脂、アクリル系樹脂、マレイン酸系樹脂、環化ゴム系樹脂、ポリオレフィン樹脂、ポリスチレン樹脂、ABS樹脂、ポリエステル樹脂、ナイロン樹脂、ポリカーボネート樹脂、セルロース樹脂、ポリ乳酸樹脂等の溶剤可溶性樹脂;フェノール樹脂、不飽和ポリエステル樹脂、エポキシ樹脂等の熱硬化性樹脂;活性エネルギー線硬化性樹脂などが挙げられる。これらの中でも、比較的低温で塗膜形成ができ、短時間で塗膜が形成できることから生産性も高い活性エネルギー線硬化性樹脂が好ましい。
 前記活性エネルギー線硬化性樹脂としては、後述する活性エネルギー線硬化性樹脂(b1)の他、活性エネルギー線硬化性単量体(b2)も含まれ、それぞれ単独で用いてもよいが、併用しても構わない。
 前記活性エネルギー線硬化性樹脂(b1)は、ウレタン(メタ)アクリレート樹脂、不飽和ポリエステル樹脂、エポキシ(メタ)アクリレート樹脂、ポリエステル(メタ)アクリレート樹脂、アクリル(メタ)アクリレート樹脂、マレイミド基を有する樹脂等が挙げられる。
 ここで用いるウレタン(メタ)アクリレート樹脂は、脂肪族ポリイソシアネート化合物又は芳香族ポリイソシアネート化合物と水酸基を有する(メタ)アクリレート化合物とを反応させて得られるウレタン結合と(メタ)アクリロイル基とを有する樹脂が挙げられる。
 前記脂肪族ポリイソシアネート化合物としては、例えば、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ヘプタメチレンジイソシアネート、オクタメチレンジイソシアネート、デカメチレンジイソシアネート、2-メチル-1,5-ペンタンジイソシアネート、3-メチル-1,5-ペンタンジイソシアネート、ドデカメチレンジイソシアネート、2-メチルペンタメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ノルボルナンジイソシアネート、水素添加ジフェニルメタンジイソシアネート、水素添加トリレンジイソシアネート、水素添加キシリレンジイソシアネート、水素添加テトラメチルキシリレンジイソシアネート、シクロヘキシルジイソシアネート等が挙げられ、また、芳香族ポリイソシアネート化合物としては、トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、1,5-ナフタレンジイソシアネート、トリジンジイソシアネート、p-フェニレンジイソシアネート等が挙げられる。
 前記水酸基を有するアクリレート化合物としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、1,5-ペンタンジオールモノ(メタ)アクリレート、1,6-ヘキサンジオールモノ(メタ)アクリレート、ネオペンチルグリコールモノ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールモノ(メタ)アクリレート等の2価アルコールのモノ(メタ)アクリレート;トリメチロールプロパンジ(メタ)アクリレート、エトキシ化トリメチロールプロパン(メタ)アクリレート、プロポキシ化トリメチロールプロパンジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ビス(2-(メタ)アクリロイルオキシエチル)ヒドロキシエチルイソシアヌレート等の3価のアルコールのモノ又はジ(メタ)アクリレート、あるいは、これらのアルコール性水酸基の一部をε-カプロラクトンで変性した水酸基を有するモノ及びジ(メタ)アクリレート;ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等の1官能の水酸基と3官能以上の(メタ)アクリロイル基を有する化合物、あるいは、該化合物をさらにε-カプロラクトンで変性した水酸基を有する多官能(メタ)アクリレート;ジプロピレングリコールモノ(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート等のオキシアルキレン鎖を有する(メタ)アクリレート化合物;ポリエチレングリコール-ポリプロピレングリコールモノ(メタ)アクリレート、ポリオキシブチレン-ポリオキシプロピレンモノ(メタ)アクリレート等のブロック構造のオキシアルキレン鎖を有する(メタ)アクリレート化合物;ポリ(エチレングリコール-テトラメチレングリコール)モノ(メタ)アクリレート、ポリ(プロピレングリコール-テトラメチレングリコール)モノ(メタ)アクリレート等のランダム構造のオキシアルキレン鎖を有する(メタ)アクリレート化合物等が挙げられる。
 上記した脂肪族ポリイソシアネート化合物又は芳香族ポリイソシアネート化合物と水酸基を有する(メタ)アクリレート化合物との反応は、ウレタン化触媒の存在下、常法により行うことができる。ここで使用し得るウレタン化触媒は、具体的には、ピリジン、ピロール、トリエチルアミン、ジエチルアミン、ジブチルアミンなどのアミン類、トリフェニルホスフィン、トリエチルホスフィンなどのホフィン類、ジブチル錫ジラウレート、オクチル錫トリラウレート、オクチル錫ジアセテート、ジブチル錫ジアセテート、オクチル酸錫などの有機錫化合物、オクチル酸亜鉛などの有機金属化合物が挙げられる。
 これらのウレタン(メタ)アクリレート樹脂の中でも特に脂肪族ポリイソシアネート化合物と水酸基を有する(メタ)アクリレート化合物とを反応させて得られるものが硬化塗膜の透明性に優れ、かつ、活性エネルギー線に対する感度が良好で硬化性に優れることから好ましい。また、前記水酸基を有する(メタ)アクリレート化合物としては、(メタ)アクリロイル基を複数有する多官能(メタ)アクリレート化合物が、硬化塗膜の硬度に優れることから好ましい。
 次に、不飽和ポリエステル樹脂は、α,β-不飽和二塩基酸又はその酸無水物、芳香族飽和二塩基酸又はその酸無水物、及び、グリコール類の重縮合によって得られる硬化性樹脂であり、α,β-不飽和二塩基酸又はその酸無水物としては、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、シトラコン酸、クロロマレイン酸、及びこれらのエステル等が挙げられる。芳香族飽和二塩基酸又はその酸無水物としては、フタル酸、無水フタル酸、イソフタル酸、テレフタル酸、ニトロフタル酸、テトラヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、ハロゲン化無水フタル酸及びこれらのエステル等が挙げられる。脂肪族あるいは脂環族飽和二塩基酸としては、シュウ酸、マロン酸、コハク酸、アジピン酸、セバシン酸、アゼライン酸、グルタル酸、ヘキサヒドロ無水フタル酸及びこれらのエステル等が挙げられる。グリコール類としては、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、2-メチルプロパン-1,3-ジオール、ネオペンチルグリコール、トリエチレングリコール、テトラエチレングリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ビスフェノールA、水素化ビスフェノールA、エチレングリコールカーボネート、2,2-ジ-(4-ヒドロキシプロポキシジフェニル)プロパン等が挙げられ、その他にエチレンオキサイド、プロピレンオキサイド等の酸化物も同様に使用できる。
 次に、エポキシビニルエステル樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のエポキシ樹脂のエポキシ基に(メタ)アクリル酸を反応させて得られるものが挙げられる。
 また、マレイミド基を有する樹脂としては、N-ヒドロキシエチルマレイミドとイソホロンジイソシアネートとをウレタン化して得られる2官能マレイミドウレタン化合物、マレイミド酢酸とポリテトラメチレングリコールとをエステル化して得られる2官能マレイミドエステル化合物、マレイミドカプロン酸とペンタエリスリトールのテトラエチレンオキサイド付加物とをエステル化して得られる4官能マレイミドエステル化合物、マレイミド酢酸と多価アルコール化合物とをエステル化して得られる多官能マレイミドエステル化合物等が挙げられる。これらの活性エネルギー線硬化性樹脂(b1)は、単独で用いることも2種以上併用することもできる。
 前記活性エネルギー線硬化性単量体(b2)としては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、数平均分子量が150~1000の範囲にあるポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、数平均分子量が150~1000の範囲にあるポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ヒドロキシピバリン酸エステルネオペンチルグリコールジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスルトールトリ(メタ)アクリレート、ジペンタエリスルトールヘキサ(メタ)アクリレート、ペンタエリスルトールテトラ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ジペンタエリスルトールペンタ(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、メチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート等の脂肪族アルキル(メタ)アクリレート、グリセロール(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、グリシジル(メタ)アクリレート、アリル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、2-(ジエチルアミノ)エチル(メタ)アクリレート、2-(ジメチルアミノ)エチル(メタ)アクリレート、γ-(メタ)アクリロキシプロピルトリメトキシシラン、2-メトキシエチル(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリプロピレングリコール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジプロピレングルリコール(メタ)アクリレート、フェノキシポリプロピレングリコール(メタ)アクリレート、ポリブタジエン(メタ)アクリレート、ポリエチレングリコール-ポリプロピレングリコール(メタ)アクリレート、ポリエチレングリコール-ポリブチレングリコール(メタ)アクリレート、ポリスチリルエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、メトキシ化シクロデカトリエン(メタ)アクリレート、フェニル(メタ)アクリレート;マレイミド、N-メチルマレイミド、N-エチルマレイミド、N-プロピルマレイミド、N-ブチルマレイミド、N-ヘキシルマレイミド、N-オクチルマレイミド、N-ドデシルマレイミド、N-ステアリルマレイミド、N-フェニルマレイミド、N-シクロヘキシルマレイミド、2-マレイミドエチル-エチルカーボネート、2-マレイミドエチル-プロピルカーボネート、N-エチル-(2-マレイミドエチル)カーバメート、N,N-ヘキサメチレンビスマレイミド、ポリプロピレングリコール-ビス(3-マレイミドプロピル)エーテル、ビス(2-マレイミドエチル)カーボネート、1,4-ジマレイミドシクロヘキサン等のマレイミド類などが挙げられる。
 これらの中でも特に硬化塗膜の硬度に優れることから、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスルトールトリ(メタ)アクリレート、ジペンタエリスルトールヘキサ(メタ)アクリレート、ペンタエリスルトールテトラ(メタ)アクリレート等の3官能以上の多官能(メタ)アクリレートが好ましい。これらの活性エネルギー線硬化性単量体は、単独で用いることも2種以上併用することもできる。
 本発明で用いる前記バインダー樹脂(F)に対する前記多孔質シリカ粒子(E)の配合量は、本発明の反射防止膜用組成物の塗膜表面に多孔質シリカ粒子の単層を形成できる量であればよく、本発明の反射防止膜用組成物の基材への塗工量に応じて、調整することが好ましい。例えば、バインダー樹脂(F)100質量部に対し多孔質シリカ粒子(E)4.75質量部を添加すると、厚さ5μmのハードコートの表面100nmに多孔質シリカ粒子(E)からなる単層が形成できる量に相当する。
 本発明の反射防止膜用組成物を用いて、その表面に反射防止膜を形成し得る物品の基材としては、その材質として金属、ガラス、プラスチック等からなるものが挙げられ、その表面形状としては像が映り込む滑らかな面を有するものが挙げられる。これらの基材の少なくとも一面に、前記反射防止膜用組成物を塗工して形成した反射防止膜を有するものが、本発明の物品となる。
 本発明の反射防止フィルムは、基材をフィルムとして、その少なくとも一面に、前記反射防止膜用組成物を塗工して形成した反射防止膜を有するものである。ここで、前記反射防止膜用組成物として、前記バインダー樹脂(F)に活性エネルギー線硬化性樹脂を用いた場合の製造方法について説明する。まず、前記反射防止膜用組成物を基材フィルムに塗工した後、反射防止膜用組成物を硬化することにより塗膜である反射防止膜を形成するために活性エネルギー線を照射する。この活性エネルギー線としては、紫外線、電子線、α線、β線、γ線等の電離放射線が挙げられる。活性エネルギー線として紫外線を照射して硬化塗膜とする場合には、前記活性エネルギー線硬化性組成物に光重合開始剤を添加し、硬化性を向上することが好ましい。また、必要であればさらに光増感剤を添加して、硬化性を向上することもできる。一方、電子線、α線、β線、γ線等の電離放射線を用いる場合には、光重合開始剤や光増感剤を用いなくても速やかに硬化するので、特に光重合開始剤や光増感剤を添加する必要はない。
 前記光重合開始剤としては、分子内開裂型光重合開始剤及び水素引き抜き型光重合開始剤が挙げられる。分子内開裂型光重合開始剤としては、例えば、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシル-フェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン、2-[2-オキソ-2-フェニルアセトキシエトキシ]エチルエステル、2-(2-ヒドロキシエトキシ)エチルエステル等のアセトフェノン系化合物;ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル等のベンゾイン類;2,4,6-トリメチルベンゾインジフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキシド等のアシルホスフィンオキシド系化合物;ベンジル、メチルフェニルグリオキシエステル等が挙げられる。
 一方、水素引き抜き型光重合開始剤としては、例えば、ベンゾフェノン、o-ベンゾイル安息香酸メチル-4-フェニルベンゾフェノン、4,4’-ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニルサルファイド、アクリル化ベンゾフェノン、3,3’,4,4’-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’-ジメチル-4-メトキシベンゾフェノン等のベンゾフェノン系化合物;2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン等のチオキサントン系化合物;ミヒラ-ケトン、4,4’-ジエチルアミノベンゾフェノン等のアミノベンゾフェノン系化合物;10-ブチル-2-クロロアクリドン、2-エチルアンスラキノン、9,10-フェナンスレンキノン、カンファーキノン等が挙げられる。
 また、前記光増感剤としては、例えば、脂肪族アミン、芳香族アミン等のアミン類、o-トリルチオ尿素等の尿素類、ナトリウムジエチルジチオホスフェート、s-ベンジルイソチウロニウム-p-トルエンスルホネート等の硫黄化合物などが挙げられる。
 これらの光重合開始剤及び光増感剤の使用量は、反射防止膜用組成物中の不揮発成分100質量部に対し、各々0.01~20質量部が好ましく、0.1~15質量%がより好ましく、0.3~7質量部がさらに好ましい。
 さらに、本発明の反射防止膜用組成物には、用途、特性等の目的に応じ、本発明の効果を損なわない範囲で、粘度や屈折率の調整、あるいは、塗膜の色調の調整やその他の塗料性状や塗膜物性の調整を目的に各種の配合材料、例えば、各種有機溶剤、アクリル樹脂、フェノール樹脂、ポリエステル樹脂、ポリスチレン樹脂、ウレタン樹脂、尿素樹脂、メラミン樹脂、アルキド樹脂、エポキシ樹脂、ポリアミド樹脂、ポリカーボネート樹脂、石油樹脂、フッ素樹脂等の各種樹脂、PTFE(ポリテトラフルオロエチレン)、ポリエチレン、ポリプロピレン、カーボン、酸化チタン、アルミナ、銅、シリカ微粒子等の各種の有機又は無機粒子、重合開始剤、重合禁止剤、帯電防止剤、消泡剤、粘度調整剤、耐光安定剤、耐候安定剤、耐熱安定剤、酸化防止剤、防錆剤、スリップ剤、ワックス、艶調整剤、離型剤、相溶化剤、導電調整剤、顔料、染料、分散剤、分散安定剤、シリコーン系、炭化水素系界面活性剤等を配合することができる。
 上記の各配合成分中、有機溶媒は、本発明の反射防止膜用組成物の溶液粘度を適宜調整する上で有用であり、特に薄膜コーティングを行うためには、膜厚を調整することが容易となる。ここで使用できる有機溶媒としては、例えば、トルエン、キシレン等の芳香族炭化水素;メタノール、エタノール、イソプロパノール、t-ブタノール等のアルコール類;酢酸エチル、プロピレングリコールモノメチルエーテルアセテート等のエステル類;メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類などが挙げられる。これらの溶剤は、単独で用いることも、2種以上を併用することもできる。
 ここで有機溶媒の使用量は、用途や目的とする膜厚や粘度によって異なるが、硬化成分の全質量に対して、質量基準で、0.5~4倍量の範囲であることが好ましい。
 本発明の反射防止膜用組成物を硬化させる活性エネルギー線としては、上記の通り、紫外線、電子線、α線、β線、γ線等の電離放射線であるが、具体的なエネルギー源又は硬化装置としては、例えば、殺菌灯、紫外線用蛍光灯、カーボンアーク、キセノンランプ、複写用高圧水銀灯、中圧又は高圧水銀灯、超高圧水銀灯、無電極ランプ、メタルハライドランプ、自然光等を光源とする紫外線、又は走査型、カーテン型電子線加速器による電子線等が挙げられる。装置が簡便なことから、紫外線を発生する装置を用いることが好ましい。
 本発明の反射防止フィルムで用いる前記基材フィルムは、フィルム状でもシート状でもよく、その厚さは、20~500μmの範囲が好ましい。また、前記基材フィルムの材質としては、透明性の高い樹脂が好ましく、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリプロピレン、ポリエチレン、ポリメチルペンテン-1等のポリオレフィン系樹脂;セルロースアセテート(ジアセチルセルロース、トリアセチルセルロース等)、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートプロピオネートブチレート、セルロースアセテートフタレート、硝酸セルロース等のセルロース系樹脂;ポリメチルメタクリレート等のアクリル系樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン等の塩化ビニル系樹脂;ポリビニルアルコール;エチレン-酢酸ビニル共重合体;ポリスチレン;ポリアミド;ポリカーボネート;ポリスルホン;ポリエーテルスルホン;ポリエーテルエーテルケトン;ポリイミド、ポリエーテルイミド等のポリイミド系樹脂;ノルボルネン系樹脂(例えば、日本ゼオン株式会社製「ゼオノア」)、変性ノルボルネン系樹脂(例えば、(JSR株式会社製「アートン」)、環状オレフィン共重合体(例えば、三井化学株式会社製「アペル」)などが挙げられる。さらに、これらの樹脂からなる基材を2種以上貼り合わせたものを用いても構わない。
 本発明の反射防止膜用組成物の基材への塗工方法としては、例えば、グラビアコーター、ロールコーター、コンマコーター、ナイフコーター、エアナイフコーター、カーテンコーター、キスコーター、シャワーコーター、ホイーラーコーター、スピンコーター、ディッピング、スクリーン印刷、スプレー、アプリケーター、バーコーター等を用いた塗工方法が挙げられる。これらの中でも、グラビアコーター、ロールコーター等の圧力が加わる塗工装置を用いた場合にも、本発明で用いる多孔質シリカ粒子(A)は破壊されることがないため、塗工により反射防止性が低下することなく安定した反射防止性を有する反射防止フィルムを得ることができる。
 また、本発明の反射防止膜用組成物中に有機溶媒を含む場合は、反射防止膜用組成物を基材フィルムへの塗工した後、活性エネルギー線を照射する前に、有機溶媒を揮発させ、また、前記多孔質シリカ(F)を塗膜表面に偏析させるために、加熱又は室温乾燥することが好ましい。加熱乾燥の条件としては、有機溶剤が揮発する条件であれば、特に限定しないが、通常は、温度50~100℃の範囲で、時間は1~10分の範囲で加熱乾燥することが好ましい。
 上記のように操作することで、本発明の反射防止フィルムが得られる。
 以下に実施例及び比較例を挙げて、本発明をさらに詳しく説明する。なお、合成した多孔質シリカ粒子の特性値については、下記の方法により測定した。
 [粒子形状]
 粒子形状は、電界放射型走査電子顕微鏡(FE-SEM)(例えば、日本電子社製「JSM6700」)を用いて、5万倍で観察することで確認した。
 [平均粒子径]
 電界放射型走査電子顕微鏡(FE-SEM)(例えば、日本電子社製「JSM6700」)を用いて、5万倍で観察して同一視野内に見える粒子の粒子径を測定し、測定値を平均したものを平均粒子径とした。
 [平均細孔径]
 平均細孔径は、細孔分布測定装置(例えば、株式会社島津製作所「ASAP2020」)を用いて測定した。
 [比表面積]
 比表面積は、細孔分布測定装置(例えば、株式会社島津製作所「ASAP2020」)を用いてBET法により測定した。
 [体積平均径及び変動係数]
 体積平均径は、レーザードップラー法を用いた粒度分布計(大塚電子株式会社製「ゼータ電位・粒径測定システム ELSZ-2」)を用いて測定した。また、変動係数は、同装置で測定した体積平均径及び標準偏差から、下記式(1)によって求めた。なお、下記式(1)中の標準偏差は、下記式(2)で求めた。また、下記式(2)中のd84%は体積粒度分布における84%径を表し、d16%は体積粒度分布における16%径を表す。
Figure JPOXMLDOC01-appb-M000002
 [細孔径分布のピーク]
 細孔径分布のピークは、細孔分布測定装置(株式会社島津製作所「ASAP2020」)を用いて測定して得られた細孔分布のピーク値とした。
 実施例1
 温度計、攪拌羽根を備えた500mLの4口フラスコに、メタノール213.2g、純水61.3g及び28質量%アンモニア水27.4gを仕込み、攪拌により均一に混合し(B液)、内温を20℃に保った。また、別の容器でテトラメトキシシラン(以下、「TMOS」と略記する。)34.3g、メタノール45.1g及びオクチルアミン6.5gを均一に混合した(A液)。フラスコ内を20℃に保って撹拌しながら、A液を120分かけてB液中へ注入した。A液の注入終了後、20℃で60分間反応を継続した。反応終了後、反応液を10,000rpmで10分間遠心分離した後、上澄み液を廃棄して沈殿物を取り出した。
 上記で得られた沈殿物にメタノール200gを加えて撹拌混合し懸濁液を得た。この懸濁液を10,000rpmで10分間遠心分離し、上澄みを廃棄して沈殿物をメタノール洗浄した。このメタノール洗浄をさらに2度繰り返した。このようにして得た沈殿物を120℃で6時間乾燥させて白色粉末を得た。得られた白色粉末を電気炉に入れ、空気雰囲気下、25℃から2℃/分の昇温速度で600℃まで昇温し、600℃で3時間焼成した。焼成した粉末を冷却した後、乳鉢で粉砕することで、白色の多孔質シリカ粒子12.5gを得た。得られた多孔質シリカ粒子を電界放射型走査電子顕微鏡(FE-SEM)により観察したところ、粒子形状は球状であった。また、得られた多孔質シリカ粒子の平均粒子径は101nmであり、平均細孔径は1.5nmであり、BET法による比表面積は43m/gであった。なお、この多孔質シリカ粒子の電界放射型走査電子顕微鏡(FE-SEM)による5万倍での観察写真は図1に示す。
 実施例2
 温度計、攪拌羽根を備えた500mLの4口フラスコに、メタノール213.2g、純水61.3g及び28質量%アンモニア水27.4gを仕込み、攪拌により均一に混合し(B液)、内温を20℃に保った。また、別の容器でTMOS34.3g、メタノール45.1g及びデシルアミン39.3gを均一に混合した(A液)。フラスコ内を20℃に保って撹拌しながら、A液を120分かけてB液中へ注入した。A液の注入終了後、20℃で60分間反応を継続した。反応終了後、反応液を10,000rpmで10分間遠心分離した後、上澄み液を廃棄して沈殿物を取り出した。
 上記で得られた沈殿物にメタノール200gを加えて撹拌混合し懸濁液を得た。この懸濁液を10,000rpmで10分間遠心分離し、上澄みを廃棄して沈殿物をメタノール洗浄した。このメタノール洗浄をさらに2度繰り返した。このようにして得た沈殿物を120℃で6時間乾燥させて白色粉末を得た。得られた白色粉末を電気炉に入れ、空気雰囲気下、25℃から2℃/分の昇温速度で600℃まで昇温し、600℃で3時間焼成した。焼成した粉末を冷却した後、乳鉢で粉砕することで、白色の多孔質シリカ粒子12.1gを得た。得られた多孔質シリカ粒子を電界放射型走査電子顕微鏡(FE-SEM)により観察したところ、粒子形状は球状であった。また、得られた多孔質シリカ粒子の平均粒子径は139nmであり、平均細孔径は1.8nmであり、BET法による比表面積は757m/gであった。なお、この多孔質シリカ粒子の電界放射型走査電子顕微鏡(FE-SEM)による5万倍での観察写真は図2に示す。
 実施例3
 温度計、攪拌羽根を備えた500mLの4口フラスコに、メタノール213.2g、純水61.3g及び28質量%アンモニア水27.4gを仕込み、攪拌により均一に混合し(B液)、内温を20℃に保った。また、別の容器でTMOS34.3g、メタノール45.1g及びラウリルアミン9.3gを均一に混合した(A液)。フラスコ内を20℃に保ちながら、A液を120分かけてB液中へ注入した。A液の注入終了後、20℃で60分間反応を継続した。反応終了後、反応液を10,000rpmで10分間遠心分離した後、上澄み液を廃棄して沈殿物を取り出した。
 上記で得られた沈殿物にメタノール200gを加えて混合し懸濁液を得た。この懸濁液を10,000rpmで10分間遠心分離し、上澄みを廃棄して沈殿物をメタノール洗浄した。このメタノール洗浄をさらに2度繰り返した。このようにして得た沈殿物を120℃で6時間乾燥させて白色粉末を得た。得られた白色粉末を電気炉に入れ、空気雰囲気下、25℃から2℃/分の昇温速度で600℃まで昇温し、600℃で3時間焼成した。焼成した粉末を冷却した後、乳鉢で粉砕することで、白色の多孔質シリカ粒子12.0gを得た。得られた多孔質シリカ粒子を電界放射型走査電子顕微鏡(FE-SEM)により観察したところ、粒子形状は球状であった。また、得られた多孔質シリカ粒子の平均粒子径は122nmであり、平均細孔径は1.8nmであり、BET法による比表面積は216m/gであった。なお、この多孔質シリカ粒子の電界放射型走査電子顕微鏡(FE-SEM)による5万倍での観察写真は図3に示す。
 実施例4
 温度計、攪拌羽根を備えた500mLの4口フラスコに、メタノール213.2g、純水61.3g及び28質量%アンモニア水27.4gを仕込み、攪拌により均一に混合し(B液)、内温を20℃に保った。また、別の容器でTMOS34.3g、メタノール45.1g及びオレイルアミン13.4gを均一に混合した(A液)。フラスコ内を20℃に保って撹拌しながら、A液を120分かけてB液中へ注入した。A液の注入終了後、20℃で60分間反応を継続した。反応終了後、反応液を10,000rpmで10分間遠心分離した後、上澄み液を廃棄して沈殿物を取り出した。
 上記で得られた沈殿物にメタノール200gを加えて撹拌混合し懸濁液を得た。この懸濁液を10,000rpmで10分間遠心分離し、上澄みを廃棄して沈殿物をメタノール洗浄した。このメタノール洗浄をさらに2度繰り返した。このようにして得た沈殿物を120℃で6時間乾燥させて白色粉末を得た。得られた白色粉末を電気炉に入れ、空気雰囲気下、25℃から2℃/分の昇温速度で600℃まで昇温し、600℃で3時間焼成した。焼成した粉末を冷却した後、乳鉢で粉砕することで、白色の多孔質シリカ粒子12.6gを得た。得られた多孔質シリカ粒子を電界放射型走査電子顕微鏡(FE-SEM)により観察したところ、粒子形状はほぼ球状であった。また、得られた多孔質シリカ粒子の平均粒子径は171nmであり、平均細孔径は2.2nmであり、BET法による比表面積は583m/gであった。なお、この多孔質シリカ粒子の電界放射型走査電子顕微鏡(FE-SEM)による5万倍での観察写真は図4に示す。
 実施例5
 温度計、攪拌羽根を備えた500mLの4口フラスコに、エタノール213.2g、純水77.9g及び28質量%アンモニア水4.4gを仕込み、攪拌により均一に混合し(B液)、内温を27℃に保った。また、別の容器でテトラエトキシシラン(以下、「TEOS」と略記する。)28.6g、エタノール45.0g及びラウリルアミン13.4gを均一に混合した(A液)。フラスコ内を27℃に保って撹拌しながら、A液を一括でB液中へ注入した。A液の注入終了後、27℃で5時間反応した。引続きフラスコ内を65℃まで昇温し、さらに9時間反応を継続した。反応終了後、反応液を10,000rpmで10分間遠心分離した後、上澄み液を廃棄して沈殿物を取り出した。
 上記で得られた沈殿物にメタノール200gを加えて撹拌混合し懸濁液を得た。この懸濁液を10,000rpmで10分間遠心分離し、上澄みを廃棄して沈殿物をメタノール洗浄した。このメタノール洗浄をさらに2度繰り返した。このようにして得た沈殿物を120℃で6時間乾燥させて白色粉末を得た。得られた白色粉末を電気炉に入れ、空気雰囲気下、25℃から2℃/分の昇温速度で600℃まで昇温し、600℃で3時間焼成した。焼成した粉末を冷却した後、乳鉢で粉砕することで、白色の多孔質シリカ粒子12.0gを得た。得られた多孔質シリカ粒子を電界放射型走査電子顕微鏡(FE-SEM)により観察したところ、粒子形状は球状であった。また、得られた多孔質シリカ粒子の平均粒子径は118nmであり、平均細孔径は1.8nmであり、BET法による比表面積は235m/gであった。
 比較例1
 温度計、攪拌羽根を備えた500mLの4口フラスコに、メタノール213.2g、純水61.3g及び28質量%アンモニア水27.4gを仕込み、攪拌により均一に混合し(B液)、内温を20℃に保った。また、別の容器でTMOS34.3g及びメタノール45.1gを均一に混合した(A液)。フラスコ内を20℃に保って撹拌しながら、A液を120分かけてB液中へ注入した。注入終了後、20℃で60分間反応を継続した。反応終了後、反応液を10,000rpmで10分間遠心分離した後、上澄み液を廃棄して沈殿物を取り出した。
 上記で得られた沈殿物にメタノール200gを加えて撹拌混合し懸濁液を得た。この懸濁液を10,000rpmで10分間遠心分離し、上澄みを廃棄して沈殿物をメタノール洗浄した。このメタノール洗浄をさらに2度繰り返した。このようにして得た沈殿物を120℃で6時間乾燥させて白色粉末を得た。得られた白色粉末を電気炉に入れ、空気雰囲気下、25℃から2℃/分の昇温速度で600℃まで昇温し、600℃で3時間焼成した。焼成した粉末を冷却した後、乳鉢で粉砕することで、白色のシリカ粒子13.3gを得た。得られた多孔質シリカ粒子を電界放射型走査電子顕微鏡(FE-SEM)により観察したところ、粒子形状は球状であった。また、得られたシリカ粒子の平均粒子径は112nmであり、BET法による比表面積は29m/gであった。なお、得られたシリカ粒子の表面に細孔は確認できなかった。
 比較例2
 温度計、攪拌羽根を備えた500mLの4口フラスコに、エタノール83.2g、純水106g及びラウリルアミン0.527gを仕込み、撹拌により均一に混合し、内温を25℃に保った。フラスコ内を25℃に保って撹拌しながら、TEOS5.2gを一括でフラスコ内に投入した。注入終了後、25℃で3時間反応を継続した後、攪拌を停止して18時間静置した。次いで、反応液を10,000rpmで10分間遠心分離した後、上澄み液を廃棄して沈殿物を取り出した。
 上記で得られた沈殿物にエタノール200gを加えて撹拌混合し懸濁液を得た。この懸濁液を10,000rpmで15分間遠心分離し、上澄みを廃棄して沈殿物をエタノール洗浄した。このエタノール洗浄をさらに4度繰り返した。次いで、エタノール洗浄した沈殿物を35℃で48時間乾燥させて白色粉末を得た。得られた白色粉末を電気炉に入れ、空気雰囲気下、25℃から2℃/分の昇温速度で600℃まで昇温し、600℃で3時間焼成した。焼成した粉末を冷却した後、乳鉢で粉砕することで、白色の多孔質シリカ粒子1.4gを得た。得られた多孔質シリカ粒子を電界放射型走査電子顕微鏡(FE-SEM)により観察したところ、粒子形状は球状であった。また、得られた多孔質シリカ粒子の平均粒子径は1,230nmであり、平均細孔径は3.6nmであり、BET法による比表面積は589m/gであった。
 比較例3
 温度計、攪拌羽根を備えた500mLの4口フラスコに、エタノール138.7g、純水106g及びラウリルアミン1.3gを仕込み、撹拌により均一に混合し、内温を25℃に保った。フラスコ内を25℃に保って撹拌しながら、TEOS5.24gを一括でフラスコ内に投入した。注入終了後、25℃で3時間反応を継続した後、攪拌を停止して18時間静置した。次いで、反応液を10,000rpmで10分間遠心分離した後、上澄み液を廃棄して沈殿物を取り出した。
 上記で得られた沈殿物にエタノール200gを加えて撹拌混合し懸濁液を得た。この懸濁液を10,000rpmで15分間遠心分離し、上澄みを廃棄して沈殿物をエタノール洗浄した。このエタノール洗浄をさらに4度繰り返した。次いで、エタノール洗浄した沈殿物を35℃で48時間乾燥させて白色粉末を得た。得られた白色粉末を電気炉に入れ、空気雰囲気下、25℃から2℃/分の昇温速度で600℃まで昇温し、600℃で3時間焼成した。焼成した粉末を冷却した後、乳鉢で粉砕することで、白色の多孔質シリカ粒子1.4gを得た。得られた多孔質シリカ粒子を電界放射型走査電子顕微鏡(FE-SEM)により観察したところ、粒子形状は球状であった。また、得られた多孔質シリカ粒子の平均粒子径は405nmであり、平均細孔径は3.6nmであり、BET法による比表面積は668m/gであった。
 比較例4
 アンモニア水を用いなかった以外は実施例3と同様に操作した。反応終了後、反応液を10,000rpmで10分間遠心分離したが、上澄みと沈殿物に分離しなかった。次いで、さらに10,000rpmで30分間遠心分離したが、上澄みと沈殿物に分離しなかった。この反応液を25℃で24時間静置したところ、ゲル化した。
 比較例5
 内容積5リットルの容器に純水3290.4gを入れ、50rpmの速度で攪拌しながらこの純水の温度を約0℃(水が凍らない0℃近傍の温度)に冷却した。次いで、この純水に、予め約5℃の温度に調節したビニルトリメトキシシラン(信越化学(株)製)375.0gを静かに加え、ビニルトリメトキシシラン層(上部)と水層(下部)からなる二層分離液を調製した。さらに、このビニルトリメトキシシラン層の温度が約1℃になるまで、50rpmの速度で攪拌しながら冷却した。
 また、内容積100ccの容器に純水41.9gを入れ、これに100rpmの速度で攪拌しながらn-ブチルアルコール(関東化学(株)製)1.05gおよび28重量%濃度のアンモニア水0.4gを加え、さらにアニオン系界面活性剤であるアルキルジフェニルエーテルジスルホン酸ナトリウム(花王(株)製)3.75gを加えた混合液を調製した。さらに、この混合液の温度が約5℃になるまで、100rpmの速度で攪拌しながら冷却した。
 次いで、この混合液を、前記二層分離液の上部に位置する有機珪素化合物層と下部に位置する水層が完全に混合しない程度に50rpmの速度で攪拌しながら、前記水層中に50秒かけて添加した。ここで、前記添加は、水層下部まで導管を入れ、該導管の先端ノズルから前記混合液を流出させることによって行った。その後、この混合液を添加した前記水層(混合水溶液)を約1℃の温度に保持し、前記有機珪素化合物の加水分解反応が進んで前記有機珪素化合物層がなくなるまで約4.5時間、50rpmの速度で攪拌を続けた。この時、該水層(混合水溶液)のpHは、平均で約8.8であった。
 さらに、前記有機珪素化合物層がなくなった前記混合水溶液を、50rpmの速度で静かに攪拌しながら、約15℃の温度条件下で3時間、放置した。これにより、前記水層(混合水溶液)の中にビニルメトキシシランの部分加水分解物および/または加水分解物からなるシリカ系粒子前駆体を含む混合水溶液が得られた。
 前記混合水溶液3712.5gに、メタアルミン酸ナトリウムをAl2O3換算基準で22.12重量%含むアルミン酸ナトリウム水溶液(触媒化成工業(株)製)42.7gを200rpmの速度で攪拌しながら、60秒かけて添加した。ここで、このアルミン酸ナトリウムをAl2O3で表し前記有機珪素化合物(ビニルトリメトキシシラン)をSiO2で表したとき、その重量比(Al2O3/SiO2)は、5/95であった。
 なお、前記アルミン酸ナトリウム水溶液の添加は、前記混合水溶液の液面上部から行った。この間、前記混合水溶液は、約18℃の温度に保持されていた。さらに、この混合水溶液を、200rpmの速度で静かに攪拌しながら、約18℃の温度条件下で15時間、放置した。これにより、前記シリカ系粒子前駆体中に含まれる一部のシリカ系成分が溶出され、粒子内部に空孔部または空隙部を有するシリカ系粒子を含む混合水溶液が得られた。
 前記工程で得られた前記混合水溶液3643gを、遠心分離器(コクサン(株)製 H-900)にかけて前記シリカ系粒子を分離した。さらに、得られたケーキ状物質に純水を添加しながら攪拌して分散液を調製し、同様な遠心分離操作を繰り返し3回、行った。このようにして十分に洗浄されたシリカ系粒子(ケーキ状物質)を110℃で12時間かけて乾燥した。これにより、粒子内部に空孔または空隙を有し、さらにその表面(外周部)がシリカ系成分の被覆層で覆われた多孔質シリカ系粒子63gが得られた。このシリカ粒子の平均粒子径は4.7μmであった。
 実施例1~5及び比較例1~3において、シリカ粒子の製造で使用した溶媒量(反応溶液の容量)及びシリカ粒子の収量、並びに溶媒量当たりのシリカ粒子の収率(%)(シリカ粒子の収量を溶媒量で除した値の百分率)を表1に示す(なお、溶媒量にはアンモニア水中の水も含む。)。また、実施例1~5及び比較例1~3で得られたシリカ粒子の特性値についても表1に示す。
Figure JPOXMLDOC01-appb-T000003
 表1に示したように、本発明の多孔質シリカ粒子の製造方法である実施例1~5では、溶媒量当たりの多孔質シリカ粒子の収率が3.54~3.71%であり、比較例2及び3の0.72%及び0.57%と比較して、約5~7倍も収率が高いことが分かった。このことから、本発明の多孔質シリカ粒子の製造方法は、非常に効率よく多孔質シリカを製造できるという特長を有することが分かった。
 また、本発明の多孔質シリカ粒子の製造方法で得られた多孔質シリカ粒子は、平均粒子径100nm前後の非常に小さい粒径の粒子であり、平均細孔径1.5~2.2nmの非常に微小な細孔を有する多孔質シリカ粒子であることが分かった。したがって、反射防止膜の低屈折率層の材料として最適であることが分かった。
 一方、比較例1は、アルキルアミンを用いなかった例であるが、粒子形状及び平均粒子径については、本発明の製造方法によって得られた実施例1~3のものと同程度であったが、得られたシリカ粒子の表面に細孔が存在しないという問題があることが分かった。
 比較例2は、アンモニア水を用いなかった例であるが、溶媒量当たりの収率が0.72%と低く、得られた多孔質シリカ粒子の平均粒子径が1,230nmと非常に大きい問題があることが分かった。
 比較例3は、アンモニア水を用いずに比較例2と比べアルキルアミンの使用量を増加させた例であるが、溶媒量当たりの収率が0.57%と非常に低く、得られた多孔質シリカ粒子の平均粒子径が405nmと大きい問題があることが分かった。
 比較例4は、アンモニア水を用いなかった以外は実施例1と同様に行った例であるが、反応終了後、非常に小さな粒子を生成するものの、非常に小さな粒子のため、反応溶媒との分離が困難であり、また反応性が高いために保存安定性が極めて悪く、ゲル化して多孔質シリカ粒子が得られないという問題があることが分かった。
 比較例5は特許文献2(特開2006-176343)に記載された方法によりシリカ粒子を製造した例であるが、得られる粒子の粒径が4.7μmと大きな粒径のシリカ微粒子しか製造できなかった。
 実施例6 (シラザン化合物で表面修飾されている多孔質シリカ微粒子の合成)
 実施例1で得られた多孔質シリカ粒子5gをイソプロパノール44.5gと混合し、超音波ホモジナイザー(株式会社日本精機製作所製「US-600T」)を用いて、出力300Wで5分間分散後、分散液に酢酸0.5g及びヘキサメチルジシラザン(以下、「HMDS」と略記する。)0.5gを加え、湿式ジェットミル(株式会社常光製「ナノジェットバル JN-10」)を用いて、処理圧力130MPaにて30分間分散した。得られた分散液を、温度計、攪拌羽根を備えた200mLの4口フラスコに仕込み、60分間加熱還流した。反応液を10,000rpmで10分間遠心分離した後、上澄み液を廃棄し、沈殿物を得た。沈殿物にイソプロパノール50gを加え、超音波ホモジナイザー(株式会社日本精機製作所製「US-600T」)を用いて、出力300Wで5分間分散した後、分散液をNo.5C濾紙と桐山ロート(有限会社桐山製作所製)を用いてろ過し、固形分7.9質量%の多孔質シリカ粒子(E1)の分散液を得た。
 上記で得られた多孔質シリカ粒子(E1)の分散液中の多孔質シリカ粒子(E1)の体積平均径は102nmであり、変動係数は28%であった。
 実施例7(同上)
 実施例2で得られた多孔質シリカ粒子5gをイソプロパノール44.5gと混合し、超音波ホモジナイザー(株式会社日本精機製作所製「US-600T」)を用いて、出力300Wで5分間分散後、分散液に酢酸0.5g及びHMDS0.5gを加え、湿式ジェットミル(株式会社常光製「ナノジェットバル JN-10」)を用いて、処理圧力130MPaにて30分間分散した。得られた分散液を、温度計、攪拌羽根を備えた200mLの4口フラスコに仕込み、60分間加熱還流した。反応液を10,000rpmで10分間遠心分離した後、上澄み液を廃棄し、沈殿物を得た。沈殿物にイソプロパノール50.0gを加え、超音波ホモジナイザー(株式会社日本精機製作所製「US-600T」)を用いて、出力300Wで5分間分散した後、分散液をNo.5C濾紙と桐山ロート(有限会社桐山製作所製)を用いてろ過し、固形分7.8質量%の多孔質シリカ粒子(E2)の分散液を得た。
 得られた多孔質シリカ粒子(E2)の分散液中の多孔質シリカ粒子(E2)の体積平均径は148nmであり、変動係数は28%であった。
 実施例8(同上)
 実施例3で得られた多孔質シリカ粒子5gをイソプロパノール44.5gと混合し、超音波ホモジナイザー(株式会社日本精機製作所製「US-600T」)を用いて、出力300Wで5分間分散後、分散液に酢酸0.5g及びHMDS0.5gを加え、湿式ジェットミル(株式会社常光製「ナノジェットバル JN-10」)を用いて、処理圧力130MPaにて30分間分散した。得られた分散液を、温度計、攪拌羽根を備えた200mLの4口フラスコに仕込み、60分間加熱還流した。反応液を10,000rpmで10分間遠心分離した後、上澄み液を廃棄し、沈殿物を得た。沈殿物にイソプロパノール50gを加え、超音波ホモジナイザー(株式会社日本精機製作所製「US-600T」)を用いて、出力300Wで5分間分散した後、分散液をNo.5C濾紙と桐山ロート(有限会社桐山製作所製)を用いてろ過し、固形分7.9質量%の多孔質シリカ粒子(E3)の分散液を得た。
 得られた多孔質シリカ粒子(E3)の分散液中の多孔質シリカ粒子(E3)の体積平均径は139nmであり、変動係数は22%であった。
 実施例9(同上)
 実施例3で得られた焼成後の多孔質シリカ粒子5gをイソプロパノール44.5gと混合し、超音波ホモジナイザー(株式会社日本精機製作所製「US-600T」)を用いて、出力300Wで5分間分散後、分散液に酢酸0.5g及びHMDS2.1gを加え、湿式ジェットミル(株式会社常光製「ナノジェットバル JN-10」)を用いて、処理圧力130MPaにて30分間分散した。得られた分散液を、温度計、攪拌羽根を備えた200mLの4口フラスコに仕込み、60分間加熱還流した。反応液を10,000rpmで10分間遠心分離した後、上澄み液を廃棄し、沈殿物を得た。沈殿物にイソプロパノール50gを加え、超音波ホモジナイザー(株式会社日本精機製作所製「US-600T」)を用いて、出力300Wで5分間分散した後、分散液をNo.5C濾紙と桐山ロート(有限会社桐山製作所製)を用いてろ過し、固形分8.0質量%の多孔質シリカ粒子(E4)の分散液を得た。
 得られた多孔質シリカ粒子(E4)の分散液中の多孔質シリカ粒子(E4)の体積平均径は127nmであり、変動係数は32%であった。
 実施例10(同上)
 実施例3で得られた焼成後の多孔質シリカ粒子5gをイソプロパノール44.5gと混合し、超音波ホモジナイザー(株式会社日本精機製作所製「US-600T」)を用いて、出力300Wで5分間分散後、分散液に酢酸0.5g及びHMDS0.03gを加え、湿式ジェットミル(株式会社常光製「ナノジェットバル JN-10」)を用いて、処理圧力130MPaにて30分間分散した。得られた分散液を、温度計、攪拌羽根を備えた200mLの4口フラスコに仕込み、60分間加熱還流した。反応液を10,000rpmで10分間遠心分離した後、上澄み液を廃棄し、沈殿物を得た。沈殿物にイソプロパノール50gを加え、超音波ホモジナイザー(株式会社日本精機製作所製「US-600T」)を用いて、出力300Wで5分間分散した後、分散液をNo.5C濾紙と桐山ロート(有限会社桐山製作所製)を用いてろ過し、固形分8.0質量%の多孔質シリカ粒子(E5)の分散液を得た。
 得られた多孔質シリカ粒子(E5)の分散液中の多孔質シリカ粒子(E5)の体積平均径は110nmであり、変動係数は33%であった。
Figure JPOXMLDOC01-appb-T000004
 実施例11
 実施例1で得られた多孔質シリカ粒子(E1)の分散液722質量部(多孔質シリカ粒子(E1)57質量部含有)、6官能ウレタンアクリレート(1モルのイソホロンジイソシアネートに2モルのペンタエリスリトールトリアクリレートを反応させたもの)1,200質量部、光重合開始剤(BASFジャパン株式会社製「イルガキュア754」;オキシフェニル酢酸系光重合開始剤:2-[2-オキソ-2-フェニルアセトキシエトキシ]エチルエステルと2-(2-ヒドロキシエトキシ)エチルエステルとの混合物)60質量部及びイソプロパノール4,118質量部を均一に混合して、反射防止膜用組成物(1)を得た。
 実施例12
 実施例11で用いた多孔質シリカ粒子(E1)の分散液722質量部に代えて、実施例7で得られた多孔質シリカ粒子(E2)の分散液731質量部(多孔質シリカ粒子(E2)57質量部含有)を用いて、イソプロパノール4,118質量部を4,109質部に変更した他は実施例6と同様に行い、反射防止膜用組成物(2)を得た。
 実施例13
 実施例11で用いた多孔質シリカ粒子(E1)の分散液722質量部に代えて、実施例8で得られた多孔質シリカ粒子(E3)の分散液722質量部(多孔質シリカ粒子(E3)9質量部含有)を用いた他は実施例6と同様に行い、反射防止膜用組成物(3)を得た。
 実施例14
 実施例11で用いた多孔質シリカ粒子(E1)の分散液722質量部に代えて、実施例9で得られた多孔質シリカ粒子(E4)の分散液713質量部(多孔質シリカ粒子(E4)57質量部含有)を用いて、イソプロパノール4,118質量部を4,127質量部に変更した他は実施例6と同様に行い、反射防止膜用組成物(4)を得た。
 実施例15
 実施例11で用いた多孔質シリカ粒子(E1)の分散液722質量部に代えて、実施例10で得られた多孔質シリカ粒子(E5)の分散液713質量部(多孔質シリカ粒子(E5)57質量部含有)を用いて、イソプロパノール4,118質量部を4,127質量部に変更した他は実施例6と同様に行い、反射防止膜用組成物(5)を得た。
 [反射率の測定]
 上記で得られた硬化塗膜について、分光光度計(株式会社日立ハイテクノロジーズ製「U-4100形」)を用いて、開始波長800nm~終了波長350nmをスキャンスピード300nm/分で走査し、サンプリング間隔0.50nmの測定条件で反射率を測定した。なお、反射率は、最も反射率が低い部分(ボトム)とした。反射率の測定結果は、表3に示す。
Figure JPOXMLDOC01-appb-T000005
 [断面形状観察用の反射防止フィルムの作製]
 上記で得られた反射防止膜用組成物(1)~(5)を、それぞれ厚さ188μmの表面易接着処理ポリエチレンテレフタレートフィルム(以下、「PETフィルム」と略記する。)上に、ワイヤーバーコーター#22を用いて塗工し、25℃で1分間乾燥した後、60℃の乾燥機で5分間乾燥した。その後、紫外線硬化装置(空気雰囲気下、メタルハライド灯、紫外線照射量2kJ/m)を用いて硬化させ、反射防止フィルムを作製した。
 [反射防止フィルムの断面観察]
 上記で得られた反射防止フィルムをウルトラミクロトームで超薄切片を作製し、透過電子顕微鏡(日本電子株式会社製「JEM-2200FS」)を使用し、加速電圧200kVで、5万倍又は10万倍で観察した。観察結果は下記の通りであった。
 (反射防止膜用組成物(1)を用いた反射防止フィルムの断面観察結果)
 PETフィルム(基材)と反対側の表面に多孔質シリカ粒子(E1)がほぼ単層で配列した層が厚さ約100nmで形成されていた。
 (反射防止膜用組成物(2)を用いた反射防止フィルムの断面観察結果)
 PETフィルム(基材)と反対側の表面に多孔質シリカ粒子(E2)がほぼ単層で配列した層が厚さ約150nmで形成されていた。断面写真は、図5に示す。なお、写真左側が基材側である。
 (反射防止膜用組成物(3)を用いた反射防止フィルムの断面観察結果)
 PETフィルム(基材)と反対側の表面に多孔質シリカ粒子(E3)がほぼ単層で配列した層が厚さ約140nmで形成されていた。断面写真は、図6に示す。なお、写真左側が基材側である。
 (反射防止膜用組成物(4)を用いた反射防止フィルムの断面観察結果)
 PETフィルム(基材)と反対側の表面に多孔質シリカ粒子(E4)がほぼ単層で配列した層が厚さ約140nmで形成されていた。断面写真は、図7に示す。なお、写真右側が基材側である。
 (反射防止膜用組成物(5)を用いた反射防止フィルムの断面観察結果)
 PETフィルム(基材)と反対側の表面に多孔質シリカ粒子(E5)がほぼ単層で配列した層が厚さ約140nmで形成されていた。断面写真は、図8に示す。なお、写真左側が基材側である。

Claims (14)

  1.  テトラアルコキシシラン、アルキルアミン及びアルコールを含む混合液(A液)を、アンモニア、アルコール及び水を含む混合液(B液)に加え、テトラアルコキシシランの加水分解及び縮合反応を行い、シリカ粒子を得る工程と、該シリカ粒子からアルキルアミンを除去する工程とを含むことを特徴とする表面に細孔を有する多孔質シリカ粒子の製造方法。
  2.  前記アルキルアミンが、炭素原子数6~18のアルキル基を有するアミン化合物である請求項1記載の多孔質シリカ粒子の製造方法。
  3.  前記アルコールが、メタノール、エタノール及びプロパノールからなる群から選ばれる1種以上のアルコールである請求項1記載の多孔質シリカ粒子の製造方法。
  4.  前記テトラアルコキシシランが、テトラメトキシシラン、テトラエトキシシラン及びテトラプロポキシシランからなる群から選ばれる1種以上のテトラアルコキシシランである請求項1~3のいずれか1項記載の多孔質シリカ粒子の製造方法。
  5.  前記シリカ粒子を得る工程が、前記A液をB液に加えた後、更にテトラアルコキシシラン及びアルコールを含む混合液(A´液)を加える工程である請求項1~4のいずれか1項記載の多孔質シリカ粒子の製造方法。
  6.  前記アルキルアミンを除去する工程が、該シリカ粒子を加熱する事により除去する工程である請求項1記載の多孔質シリカ粒子の製造方法。
  7.  前記A液中のテトラアルコキシシランとアルキルアミンの比率〔テトラアルコキシシラン/アルキルアミン〕が、モル比で1/0.05~1/5の範囲である請求項1記載の多孔質シリカ粒子の製造方法。
  8.  A液中のテトラアルコキシシランの含有量が、A液100質量部中10~60質量部である請求項1記載の多孔質シリカ粒子の製造方法。
  9.  前記A液中のテトラアルコキシシランとB液中の水の量がモル比〔(水)/(テトラアルコキシシラン)〕で0.5~25である請求項1記載の多孔質シリカ粒子の製造方法。
  10.  前記シリカ粒子からアルキルアミンを除去する工程の後、得られるシリカ粒子を表面修飾する工程を含む請求項1記載の多孔質シリカ粒子の製造方法。
  11.  前記表面修飾に使用する表面処理剤がヘキサメチルジシラザンである請求項10記載の多孔質シリカ粒子の製造方法。
  12.  請求項11に記載の製造方法により得られる多孔質シリカ粒子とバインダー樹脂とを含有することを特徴とする反射防止膜用樹脂組成物。
  13.  基材上に、請求項12に記載の反射防止膜用組成物を塗工して形成した反射防止膜を有することを特徴とする物品。
  14.  基材フィルムの少なくとも一面に、請求項12に記載の反射防止膜用組成物を塗工して形成した反射防止膜を有することを特徴とする反射防止フィルム。
PCT/JP2012/051030 2011-01-21 2012-01-19 多孔質シリカ粒子の製造方法、反射防止膜用樹脂組成物、反射防止膜を有する物品及び反射防止フィルム WO2012099185A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2012800061540A CN103328382A (zh) 2011-01-21 2012-01-19 多孔质二氧化硅颗粒的制造方法、防反射膜用树脂组合物、具有防反射膜的物品以及防反射薄膜
KR1020137019076A KR20140005209A (ko) 2011-01-21 2012-01-19 다공질 실리카 입자의 제조 방법, 반사 방지막용 수지 조성물, 반사 방지막을 갖는 물품 및 반사 방지 필름
US13/980,358 US20140011954A1 (en) 2011-01-21 2012-01-19 Method for producing porous silica particle, resin composition for antireflection coating, and article and antireflection film having antireflection coating
JP2012540198A JP5152444B2 (ja) 2011-01-21 2012-01-19 多孔質シリカ粒子の製造方法、反射防止膜用樹脂組成物、反射防止膜を有する物品及び反射防止フィルム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011010877 2011-01-21
JP2011-010877 2011-01-21

Publications (1)

Publication Number Publication Date
WO2012099185A1 true WO2012099185A1 (ja) 2012-07-26

Family

ID=46515807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051030 WO2012099185A1 (ja) 2011-01-21 2012-01-19 多孔質シリカ粒子の製造方法、反射防止膜用樹脂組成物、反射防止膜を有する物品及び反射防止フィルム

Country Status (6)

Country Link
US (1) US20140011954A1 (ja)
JP (1) JP5152444B2 (ja)
KR (1) KR20140005209A (ja)
CN (1) CN103328382A (ja)
TW (1) TW201235299A (ja)
WO (1) WO2012099185A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014046463A (ja) * 2012-08-29 2014-03-17 Mitsubishi Plastics Inc 透明積層フィルム
CN104448954A (zh) * 2013-09-25 2015-03-25 华楙生技股份有限公司 多功能多孔质复合粉体
JP2016130290A (ja) * 2015-01-14 2016-07-21 リコーイメージング株式会社 塗工液及びその製造方法
JP2020066680A (ja) * 2018-10-24 2020-04-30 大阪ガスケミカル株式会社 ポリシロキサン粒子、体質顔料、充填材、および、ポリシロキサン粒子の製造方法
CN113716573A (zh) * 2021-09-08 2021-11-30 宁波卿甬新材料科技有限公司 不对称多孔二氧化硅二维材料的制备方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6079023B2 (ja) * 2012-07-19 2017-02-15 Dic株式会社 活性エネルギー線硬化性組成物及びフィルムの製造方法
KR101523819B1 (ko) 2012-09-04 2015-05-28 (주)엘지하우시스 실록산 화합물을 포함하는 반사 방지 코팅 조성물, 이를 이용한 반사 방지 필름
JP6152812B2 (ja) * 2014-03-17 2017-06-28 ブラザー工業株式会社 インクジェット記録用顔料、インクジェット記録用顔料インク及びインクジェット記録用顔料の製造方法
WO2015182878A1 (ko) * 2014-05-30 2015-12-03 (주)석경에이티 중공실리카 입자의 제조방법, 중공실리카 입자 및 그를 포함하는 조성물 및 단열 시트
JP6532228B2 (ja) * 2014-12-10 2019-06-19 キヤノン株式会社 光学部材及び光学部材の製造方法
CN104528741B (zh) * 2014-12-17 2016-08-24 北京科技大学 一种有机改性纳米孔二氧化硅气凝胶及其制备方法
WO2016140316A1 (ja) * 2015-03-04 2016-09-09 国立大学法人九州大学 シリカガラス前駆体製造方法、シリカガラス前駆体、シリカガラス製造方法、及びシリカガラス
EP3330223A4 (en) * 2015-07-31 2018-08-01 Fujimi Incorporated Method for producing silica sol
EP3141934B1 (en) 2015-09-11 2020-10-07 Canon Kabushiki Kaisha Optical member comprising an antireflective film including a porous layer and method for manufacturing the same
EP3471875A1 (de) * 2016-06-20 2019-04-24 Covestro Deutschland AG Speichermaterial und verfahren zur chlorspeicherung
CN107758674B (zh) * 2016-08-19 2021-03-23 陈建宏 气凝胶颗粒制备方法
KR101847624B1 (ko) * 2017-03-31 2018-04-10 성균관대학교산학협력단 소수성 다공성 실리카의 제조 방법
KR102477336B1 (ko) 2017-05-31 2022-12-13 닛토덴코 가부시키가이샤 폴리테트라플루오로에틸렌 및 충전제를 함유하는 판형의 복합 재료
WO2018221556A1 (ja) 2017-05-31 2018-12-06 日東電工株式会社 ポリテトラフルオロエチレン及び充填剤を含有する板状の複合材料
CN109950139A (zh) * 2017-12-20 2019-06-28 上海新微技术研发中心有限公司 一种光刻方法和制造半导体器件的方法
WO2019148469A1 (zh) * 2018-02-02 2019-08-08 深圳前海优容科技有限公司 一种涂布机烘箱、二氧化硅复合绝热材料及其制备方法
WO2020036564A2 (en) * 2018-06-28 2020-02-20 Turkiye Sise Ve Cam Fabrikalari Anonim Sirketi Hydrophilic anti-reflective coating which can be tempered and has high corrosion resistance
CN108878739B (zh) * 2018-06-29 2021-04-06 安徽省徽腾智能交通科技有限公司 一种纳米微孔电池隔膜的制备方法
CN108878750B (zh) * 2018-06-29 2021-04-06 安徽省徽腾智能交通科技有限公司 一种纳米微孔电池隔膜及其应用
CN108862289B (zh) * 2018-07-26 2021-10-15 南京邮电大学 一种小粒径大孔径的介孔二氧化硅纳米粒子及其制备方法
JP6973360B2 (ja) * 2018-11-26 2021-11-24 信越化学工業株式会社 吸湿性シリコーン樹脂組成物、有機el用透明封止材、有機el用透明乾燥材、及びその使用方法
EP3943449A4 (en) * 2019-04-15 2022-05-25 Mazda Motor Corporation THERMAL INSULATION MATERIAL, MOTOR WITH THERMAL INSULATION MATERIAL, NANOPARTICLE DISPERSION LIQUID AND METHOD OF MANUFACTURING A THERMAL INSULATION MATERIAL
CN114634705A (zh) * 2022-04-12 2022-06-17 张影 一种车用隔热隔音毯及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239015A (ja) * 1988-03-22 1989-09-25 Nippon Shokubai Kagaku Kogyo Co Ltd 多孔質球状シリカ微粒子の製造法
JP2003261318A (ja) * 2002-03-11 2003-09-16 Mitsui Chemicals Inc 多孔質球状粒子の製造方法、及びその用途
JP2006016480A (ja) * 2004-07-01 2006-01-19 Sumitomo Chemical Co Ltd 硬化性組成物及びその硬化被膜を有する透明基材
JP2006209050A (ja) * 2004-12-28 2006-08-10 Jsr Corp 反射防止膜
WO2007122930A1 (ja) * 2006-04-20 2007-11-01 Asahi Glass Company, Limited コアシェル型シリカおよびその製造方法
JP2010120812A (ja) * 2008-11-19 2010-06-03 Panasonic Electric Works Co Ltd メソポーラスシリカ微粒子の製造方法、メソポーラスシリカ微粒子分散液、メソポーラスシリカ微粒子含有組成物、及びメソポーラスシリカ微粒子含有成型物

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD232031B1 (de) * 1984-07-13 1987-08-12 Leuna Werke Veb Verfahren zur herstellung poroeser sphaerischer silikagele
DE3616133A1 (de) * 1985-09-25 1987-11-19 Merck Patent Gmbh Kugelfoermige sio(pfeil abwaerts)2(pfeil abwaerts)-partikel
US6808768B2 (en) * 2000-06-26 2004-10-26 Asani Kasei Kabushiki Kaisha Porous, fine inorganic particles
JP4440639B2 (ja) * 2001-09-21 2010-03-24 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 耐摩耗性SiO2反射防止層を製造するための新規な混成ゾル
DE102004011110A1 (de) * 2004-03-08 2005-09-22 Merck Patent Gmbh Verfahren zur Herstellung monodisperser SiO2-Partikel
CN1262476C (zh) * 2004-11-03 2006-07-05 武汉理工大学 单分散二氧化硅微孔微球及其制备方法
JP5076377B2 (ja) * 2006-07-03 2012-11-21 トヨタ自動車株式会社 排ガス浄化触媒
WO2008115812A2 (en) * 2007-03-16 2008-09-25 Cabot Corporation Aerogel particles and methods of making same
JP4961369B2 (ja) * 2008-02-27 2012-06-27 富士フイルム株式会社 光学フィルム、偏光板、画像表示装置および光学フィルムの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239015A (ja) * 1988-03-22 1989-09-25 Nippon Shokubai Kagaku Kogyo Co Ltd 多孔質球状シリカ微粒子の製造法
JP2003261318A (ja) * 2002-03-11 2003-09-16 Mitsui Chemicals Inc 多孔質球状粒子の製造方法、及びその用途
JP2006016480A (ja) * 2004-07-01 2006-01-19 Sumitomo Chemical Co Ltd 硬化性組成物及びその硬化被膜を有する透明基材
JP2006209050A (ja) * 2004-12-28 2006-08-10 Jsr Corp 反射防止膜
WO2007122930A1 (ja) * 2006-04-20 2007-11-01 Asahi Glass Company, Limited コアシェル型シリカおよびその製造方法
JP2010120812A (ja) * 2008-11-19 2010-06-03 Panasonic Electric Works Co Ltd メソポーラスシリカ微粒子の製造方法、メソポーラスシリカ微粒子分散液、メソポーラスシリカ微粒子含有組成物、及びメソポーラスシリカ微粒子含有成型物

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014046463A (ja) * 2012-08-29 2014-03-17 Mitsubishi Plastics Inc 透明積層フィルム
CN104448954A (zh) * 2013-09-25 2015-03-25 华楙生技股份有限公司 多功能多孔质复合粉体
CN104448954B (zh) * 2013-09-25 2016-09-28 华楙生技股份有限公司 多功能多孔质复合粉体
JP2016130290A (ja) * 2015-01-14 2016-07-21 リコーイメージング株式会社 塗工液及びその製造方法
JP2020066680A (ja) * 2018-10-24 2020-04-30 大阪ガスケミカル株式会社 ポリシロキサン粒子、体質顔料、充填材、および、ポリシロキサン粒子の製造方法
JP7187261B2 (ja) 2018-10-24 2022-12-12 大阪ガスケミカル株式会社 体質顔料、および、ポリシロキサン粒子の製造方法
CN113716573A (zh) * 2021-09-08 2021-11-30 宁波卿甬新材料科技有限公司 不对称多孔二氧化硅二维材料的制备方法
CN113716573B (zh) * 2021-09-08 2022-04-12 宁波卿甬新材料科技有限公司 不对称多孔二氧化硅二维材料的制备方法

Also Published As

Publication number Publication date
JP5152444B2 (ja) 2013-02-27
KR20140005209A (ko) 2014-01-14
US20140011954A1 (en) 2014-01-09
TW201235299A (en) 2012-09-01
CN103328382A (zh) 2013-09-25
JPWO2012099185A1 (ja) 2014-06-30

Similar Documents

Publication Publication Date Title
JP5152444B2 (ja) 多孔質シリカ粒子の製造方法、反射防止膜用樹脂組成物、反射防止膜を有する物品及び反射防止フィルム
JP5733564B2 (ja) 反射防止膜用組成物、それを用いた物品及び反射防止フィルム
JP5057199B2 (ja) 中空状SiO2微粒子分散液の製造方法、塗料組成物及び反射防止塗膜付き基材
JP5078620B2 (ja) 中空シリカ微粒子、それを含む透明被膜形成用組成物、および透明被膜付基材
US11214492B2 (en) Silica particles
EP3009480B1 (en) Silica-containing resin composition and method for producing same, and molded article produced from silica-containing resin composition
KR20110110221A (ko) 복합 입자 및 그 제조 방법, 중공 입자, 그 제조 방법 및 용도
TWI448433B (zh) 附硬塗膜之基材及硬塗膜形成用塗佈液
KR20100038170A (ko) 구상 유기 폴리머-실리콘 화합물 복합 입자, 중공 입자 및 그들의 제조 방법
JP5700903B2 (ja) ハードコート膜付基材およびハードコート膜形成用塗布液
JP5241199B2 (ja) 繊維状中空シリカ微粒子の製造方法および反射防止被膜付基材
JP2014024219A (ja) ハードコートフィルム及び粘着フィルム
JP5530158B2 (ja) 透明被膜付基材および透明被膜形成用塗布液
JP2010120812A (ja) メソポーラスシリカ微粒子の製造方法、メソポーラスシリカ微粒子分散液、メソポーラスシリカ微粒子含有組成物、及びメソポーラスシリカ微粒子含有成型物
JP2015143297A (ja) コアシェル型酸化物微粒子の分散液、その製造方法、およびその用途
JP2011136871A (ja) リン含有金属酸化物微粒子およびその製造方法、該リン含有金属酸化物微粒子を含む透明被膜形成用塗布液ならびに透明被膜付基材
JP6079023B2 (ja) 活性エネルギー線硬化性組成物及びフィルムの製造方法
JP5837155B2 (ja) マイクロリング状無機酸化物粒子の製造方法
KR20080095773A (ko) 코팅 조성물 및 광학부재
JP2011110787A (ja) 透明被膜付基材および透明被膜形成用塗布液
EP3141533A1 (en) Glass article
JP5501117B2 (ja) 透明被膜付基材および透明被膜形成用塗布液
JPH06264009A (ja) 導電塗料組成物及び導電塗膜の製造法
TWI823345B (zh) 表面改質的中空二氧化矽及表面改質的中空二氧化矽分散液
JP2010031146A (ja) 無機有機複合コーティング組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012540198

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12737086

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137019076

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13980358

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12737086

Country of ref document: EP

Kind code of ref document: A1