WO2012093482A1 - 全有機体炭素測定装置 - Google Patents

全有機体炭素測定装置 Download PDF

Info

Publication number
WO2012093482A1
WO2012093482A1 PCT/JP2011/050099 JP2011050099W WO2012093482A1 WO 2012093482 A1 WO2012093482 A1 WO 2012093482A1 JP 2011050099 W JP2011050099 W JP 2011050099W WO 2012093482 A1 WO2012093482 A1 WO 2012093482A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
carrier gas
flow path
supply
syringe pump
Prior art date
Application number
PCT/JP2011/050099
Other languages
English (en)
French (fr)
Inventor
信介 井上
紀幸 能登
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to CN201180069091.9A priority Critical patent/CN103415768B/zh
Priority to PCT/JP2011/050099 priority patent/WO2012093482A1/ja
Priority to EP11854568.0A priority patent/EP2662690B1/en
Priority to US13/995,292 priority patent/US9194850B2/en
Priority to JP2012551775A priority patent/JP5817738B2/ja
Publication of WO2012093482A1 publication Critical patent/WO2012093482A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/12Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using combustion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/005Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods investigating the presence of an element by oxidation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1806Biological oxygen demand [BOD] or chemical oxygen demand [COD]

Definitions

  • the present invention converts the carbon component in the collected sample water into carbon dioxide in the oxidation reaction part, then transports the gas containing the carbon dioxide to the sample cell by the carrier gas, and the carbon dioxide concentration in the sample gas flowing through the sample cell
  • the present invention relates to a total organic carbon measuring device (TOC meter) that detects the amount of water using a detector.
  • TOC meter total organic carbon measuring device
  • FIG. 6 shows a flow path configuration of a conventional TOC meter.
  • the syringe pump 4 is connected to a common port of the multi-port valve 2, and the other port connected to the common port is connected to a tube for collecting a sample, dilution water, acid, a combustion tube 6, A pure water trap 10 and the like are connected to each other.
  • a flow path from the carrier gas supply unit 100 is connected to the syringe pump 4 via a three-way electromagnetic valve 34.
  • the sample water collected by the syringe pump 4 is injected into the sample injection part 6 a at the upper part of the combustion tube 6 after the carbon dioxide gas is degassed in the syringe pump 4.
  • the sample water injected into the sample injection part 6a of the combustion pipe 6 is supplied from the carrier gas supply part 100, guided into the combustion pipe 6 by the humidified carrier gas, and burned in the presence of the catalyst in the combustion pipe 6. As a result, the carbon component contained in the sample water is converted to carbon dioxide.
  • Gas (carbon dioxide and water vapor) generated in the combustion pipe 6 is cooled in the cooling pipe 8, and the carbon dioxide is guided to the dehumidifying electronic cooler 36 via the pure water trap 10 to further remove moisture, and the halogen scrubber 40. Then, the halogen component is removed, filtered by the membrane filter 42 and introduced into the sample cell 44. Then, infrared light from the light source 46 is irradiated into the sample cell 44, and a signal proportional to the concentration of carbon dioxide is obtained from the detector 48. Carbon dioxide discharged from the sample cell 44 is adsorbed by the CO 2 absorber 50.
  • the carrier gas supply unit 100 includes an electromagnetic valve 102, a pressure regulating valve 104, a pressure sensor 106, a mass flow controller 108, and a flow meter 110 in order from the carrier gas inlet side. After the pressure and flow rate of the passage are set to predetermined values, they are configured to be kept constant.
  • the carrier gas supply part of the conventional TOC meter generally has the same structure (for example, refer to Patent Document 1).
  • the downstream channel of the carrier gas supply unit 100 is branched into a channel connected to the sample injection unit 6a of the combustion tube 6 and a channel connected to the switching valve 34, and the carrier gas is always in a constant ratio in both channels. Flows. For example, when the supply amount of the carrier gas supply unit 100 is set to 230 mL / min, a carrier gas of 150 mL / min flows on the combustion pipe 6 side and 80 mL / min on the switching valve 34 side.
  • the carrier gas flowing toward the switching valve 34 is introduced into the syringe pump 4 by the switching valve 34, or merges with the carrier gas introduced into the sample cell 44 through the combustion pipe 6.
  • the carrier gas introduced into the syringe pump 4 is used as a sparge gas for removing IC (inorganic carbon) of sample water sucked into the syringe pump 4.
  • the flow rate of the carrier gas introduced into the sample cell 44 is different between the sparged state in which the sparging is performed in the syringe pump 4 and the normal state in which the sparging is not performed.
  • the flow rate of the carrier gas introduced into the sample cell 44 is 230 mL / min in the normal state and 150 mL / min in the sparged state.
  • the baseline level of the detection signal obtained by the detector 48 also changes, and when the sparge state is switched to the normal state, the detection signal baseline fluctuates. Since the measurement of the sample is performed in the normal state, it seems that there is no influence of the fluctuation of the baseline, but in fact, even if the sparge state is switched to the normal state, the detection signal baseline is immediately changed to the normal state. It takes time to stabilize at the normal level without returning. If the measurement starts before the baseline stabilizes and a peak appears before the baseline stabilizes, the rise of the peak becomes distorted, making it difficult to detect the peak start point. It may be a factor to make it worse. Therefore, in order to prevent the measurement accuracy from deteriorating, it is necessary to delay the start of measurement and wait until the baseline is stabilized.
  • an object of the present invention is to shorten the time until the baseline of the detection signal is stabilized when switching between the sparge state and the normal state in the syringe pump.
  • a TOC meter includes a syringe pump for collecting sample water, a combustion tube for oxidatively decomposing carbon components in the sample water collected by the syringe pump to convert them into carbon dioxide, and heating the combustion tube
  • An oxidation reaction section equipped with a heating furnace, a sample cell connected to the outlet of the combustion tube and flowing a sample gas containing carbon dioxide generated in the combustion tube, and carbon dioxide in the sample gas flowing through the sample cell
  • a measuring unit having a detector for measuring the concentration, a carrier gas introduction channel for introducing carrier gas, one end connected to the downstream end of the carrier gas introduction channel and the other end of the syringe pump In addition to the first supply flow path and the first supply flow path connected so as to be conductive, one end is connected to the downstream end of the carrier gas introduction flow path and the other end is in contact with the combustion pipe.
  • the first flow rate adjusting mechanism and the second flow rate adjusting mechanism are controlled by the flow rate control unit so that the carrier gas flows at a predetermined flow rate in the first supply flow path and the second supply flow rate.
  • the flow rate control unit includes a flow rate of the carrier gas introduced into the sample cell when the carrier gas is supplied from the first supply channel into the syringe pump, and a syringe pump from the first supply channel.
  • the switching between the sparged state and the normal state is performed by connecting the other end of the first supply flow path to the syringe pump in the sparged state, and in the normal state, the combustion tube and the sample cell. May be performed by switching a flow path switching mechanism configured to merge with the flow path between the two.
  • the flow rate of the carrier gas introduced into the sample cell is the same as the total flow rate of the carrier gas flowing through both the first supply channel and the second supply channel in the normal state, and the sparging is performed. In the state, it is the same as the flow rate flowing through the second supply flow path.
  • the first flow rate adjustment mechanism and the second flow rate adjustment mechanism adjust the carrier gas flow rate according to the opening degree of a valve provided on each flow path.
  • the first opening that is preset as the opening of each valve in the state and the second opening that is preset as the opening of each valve in the sparge state are maintained.
  • Each valve of the first flow rate adjustment mechanism and the second flow rate adjustment mechanism may be configured to have a first opening degree in a normal state and a second opening degree in a spurge state. .
  • the opening degree of each valve of the first flow rate adjustment mechanism and the second flow rate adjustment mechanism in the normal state and the sparging state is set in advance, and each valve is set to the opening degree according to the state. If the control is performed, the feedback control is performed rather than performing the feedback control so that the flow rate becomes a predetermined flow rate while measuring the flow rate of the carrier gas flowing through the first supply flow channel, the second supply flow channel, and the sample cell. Configuration is simplified.
  • the first flow rate adjusting mechanism that adjusts the flow rate of the first supply flow path and the second flow rate adjustment mechanism that adjusts the flow rate of the second supply flow path can adjust the flow rate independently of each other.
  • the flow rate control unit that controls these adjusting mechanisms is configured so that the carrier gas having the same flow rate is introduced into the sample cell in both the normal state and the sparge state.
  • the cell flow rate control means for controlling the second flow rate adjustment mechanism the fluctuation of the baseline of the detection signal when the sparge state is switched to the normal state is suppressed, and the baseline of the detection signal is stabilized at an early stage. be able to. Thereby, the distortion which arises in a peak shape by the fluctuation
  • the TOC meter of this embodiment is collected by the syringe pump 4 and sparged in the syringe pump 4 to remove inorganic carbon (IC), and then the sample after IC removal is injected into the sample injection portion 6 a of the combustion tube 6. Then, it is introduced into the combustion tube 6 by the carrier gas from the carrier gas supply unit 12 and burned in the presence of the catalyst accommodated in the combustion tube 6 to convert the carbon component into carbon dioxide. The sample gas containing the converted carbon dioxide is further guided to the sample cell 44 by the carrier gas.
  • IC inorganic carbon
  • the sample gas introduced into the sample cell 44 is irradiated with infrared rays from the light source 46, and the carbon dioxide concentration is calculated based on the detection signal obtained by the detector 48 at that time, and is included in the sample from the carbon dioxide concentration.
  • the syringe pump 4 is connected to the common port of the multiport valve 2.
  • the flow path for collecting the sample (sample water), the flow path from the autosampler (ASI), the dilution water, the acid, and the sample water to the combustion pipe are connected to the other port of the multi-port valve 2
  • a flow path 52 for injection is connected.
  • the syringe pump 4 has a sparge gas inlet for introducing a carrier gas at the bottom of the barrel.
  • a first supply channel 56 from the carrier gas supply unit 12 is connected to the sparge gas inlet of the syringe pump 4 via a three-way solenoid valve 34, and the carrier gas from the carrier gas supply unit 12 is used as a sparge gas.
  • carbon dioxide (inorganic carbon) in the sample water can be degassed in the syringe pump 4.
  • the three-way solenoid valve 34 can switch the connection destination of the first supply channel 56 from the carrier gas supply unit 12 between the channel leading to the syringe pump 4 and the bypass channel 58.
  • the bypass channel 58 is connected to a channel 59 connected to a channel 54 that leads to the sample cell 44.
  • One port of the multi-port valve 2 is connected to a sample injection part 6 a provided on the upper part of the combustion tube 6 through a flow path 52.
  • the combustion tube 6 includes an oxidation catalyst made of a metal oxide or a noble metal for converting all the carbon components in the sample into carbon dioxide.
  • An electric furnace 7 is provided around the combustion tube 6, and the inside of the combustion tube 6 can be heated to a high temperature (for example, 680 ° C.).
  • the other second supply channel 57 from the carrier gas supply unit 12 is connected to the sample injection unit 6 a of the combustion tube 6 via the check valve 26.
  • the sample outlet provided at the lower part of the combustion tube 6 is connected to the upper part of the pure water trap 10 via the cooling pipe 8 and the flow path 53, and the outlet of the pure water trap 10 is non-dispersed by the flow path 54.
  • the sample cell 44 is connected to an infrared analysis method (NDIR). At both ends of the sample cell 44, a light source 46 and a detector 48 are arranged to face each other.
  • the flow path 54 includes a dehumidifier 36 for dehumidifying the sample, a halogen scrubber 40 for removing halogen components, and a membrane filter 42 for removing foreign substances in order from the upstream side.
  • a drain pot 38 for removing water is connected to the dehumidifier 36.
  • a bypass flow path 59 is connected between the pure water trap 10 in the flow path 54 and the dehumidifier 36.
  • the carrier gas introduction channel 55 of the carrier gas supply unit 12 is branched into a first supply channel 56 and a second supply channel 57, and a part of the carrier gas introduced from the carrier gas inlet is supplied to the first supply channel. It supplies to 56 side, and it is comprised so that the remaining carrier gas may be supplied to the 2nd supply flow path 57 side.
  • a pressure regulating valve 14 and a pressure sensor 16 are provided on the carrier gas introduction channel 55 from the upstream side.
  • the first supply flow path 56 branched from the carrier gas introduction flow path 55 has a flow rate control valve 28, a pressure sensor 30 and a flow path resistance 32 as a first flow rate adjustment mechanism capable of controlling the flow rate by adjusting the opening degree from the upstream side.
  • the downstream end is connected to one port of the three-way solenoid valve 34.
  • a flow path leading to the syringe pump 4 and a bypass flow path 58 are connected to the other port of the three-way electromagnetic valve 34, and any one of these flows is made possible by switching the three-way electromagnetic valve 34. Can be connected to the road.
  • the other second supply flow channel 57 branched from the carrier gas introduction flow channel 55 is a flow rate control valve 18, pressure sensor 20, and flow channel as a second flow rate adjustment mechanism capable of controlling the flow rate by adjusting the opening degree from the upstream side.
  • the resistor 22 and the humidifier 24 are provided, and the downstream end is connected to the sample injection part 6 a of the combustion pipe 6 through a check valve 26.
  • the sample is measured in a state where the first supply channel 56 is connected to the bypass channel 58 by the three-way solenoid valve 34.
  • this state is referred to as a “normal state”.
  • the carrier gas that has passed through the first supply flow path 56, the bypass flow path 58, the flow path 59, and the flow path 54, and the second supply flow path 57, the combustion pipe 6, the flow path 53, and the flow path 54 have passed.
  • a carrier gas is introduced into the sample cell 44. That is, in the normal state, the carrier gas having the total flow rate of the carrier gas flowing from the carrier gas supply unit 12 toward the first supply flow path 56 and the carrier gas flowing toward the second supply flow path 57 is introduced into the sample cell 44. Is done. Therefore, the flow rate of the carrier gas introduced into the sample cell 44 is equal to the flow rate of the carrier gas flowing through the carrier gas introduction channel 55.
  • IC removal by sparging of the sample water sucked into the syringe pump 4 is performed in a state where the first supply channel 56 is electrically connected to the syringe pump 4 by the three-way electromagnetic valve 34.
  • This state is referred to as a “sparge state”.
  • this sparged state only the carrier gas that has passed through the second supply flow path 57, the combustion pipe 6, the flow path 53, and the flow path 54 is introduced into the sample cell 44.
  • the carrier gas supply unit 12 is controlled so that the flow rate of the carrier gas introduced into the sample cell 44 is always constant.
  • An example of the flow rate control will be described assuming that the carrier gas flow rate introduced into the sample cell 44 is 230 mL / min.
  • the flow rate control valve 18 and the carrier gas flow from the carrier gas supply unit 12 to the first supply channel 56 side at 80 mL / min and the carrier gas to the second supply channel 57 side at 150 mL / min.
  • the opening degree of 28 is adjusted.
  • the carrier gas flowing through the first supply channel 56 is introduced into the syringe pump 4 as the sparge gas at 80 mL / min.
  • the multiport valve 2 is in a state where the tip of the syringe pump 4 is connected to the drain, and the carrier gas discharged from the syringe pump 4 is discharged to the drain.
  • the opening degree of the flow control valve 18 is also changed so that the carrier gas flows at 230 mL / min to the second supply flow path 57 side.
  • the pressure regulating valve 14 is controlled based on the measured value of the pressure sensor 16 so that the pressure in the carrier gas introduction channel 55 is always constant.
  • FIG. 2 shows an example of the control system of this TOC meter.
  • Each element of the TOC meter is connected to an arithmetic processing unit 60 realized by, for example, a personal computer (PC) via a system controller 62.
  • the system controller 62 controls the operation of each element such as the multi-port valve 2, the syringe pump 4, the three-way electromagnetic valve 34, and the carrier gas supply unit 12 in accordance with a command from the arithmetic processing device 60.
  • the detector 48 is also connected to the arithmetic processing device 60 via the system controller 62, and a detection signal obtained by the detector 48 is transmitted to the arithmetic processing device 60 via the system controller 62, and the arithmetic processing device 60 is detected. The calculation of the peak area of the detection signal and the conversion from the peak area value to the TOC value are performed.
  • the system controller 62 includes a valve opening holding unit 64 and cell flow rate control means 66, and realizes a flow rate control unit.
  • the valve opening holding unit 64 determines the opening (first opening) of the flow control valves 18 and 28 in the normal state and the opening (second opening) of the flow control valves 18 and 28 in the sparging state. It is something to keep.
  • the first opening degree of the flow control valves 18 and 28 is set in order to set the flow rate of the carrier gas introduced into the sample cell 44 in the normal state to a predetermined flow rate.
  • the second opening degree of the flow control valve 28 is set to set the supply amount of the sparge gas to the syringe pump 4 in the sparge state to a predetermined flow rate, and the second opening degree of the flow control valve 18 is This is set so that the flow rate of the carrier gas introduced into the sample cell 44 in the spurge state is the same as that in the normal state.
  • the cell flow rate control means 66 is for controlling the carrier gas supply unit 12 so that the carrier gas flow rate introduced into the sample cell 44 is always kept constant.
  • the cell flow control means 66 controls the opening of the flow control valves 18 and 28 to the first opening when in a normal state such as at the start of measurement, and controls the flow when in the sparging state in which the sparging is performed in the syringe pump 4.
  • the opening degree of the valves 18 and 28 is controlled to the second opening degree.
  • the opening degree of the flow control valve 28 may be maintained constant. In this case, the supply amount of the sparge gas when performing the sparge in the syringe pump 4 cannot be adjusted, but the flow rate control between the normal state and the sparge state is performed only by adjusting the opening degree of the flow rate control valve 18.
  • the control system of the carrier gas supply unit 12 can be simplified.
  • the three-way solenoid valve 34 is in a state where the first supply flow path 56 is connected to the bypass flow path 58, and the carrier gas supply unit 12 is 230 mL / liter from the carrier gas inlet.
  • Min carrier gas is introduced.
  • the opening degree of the flow control valves 18 and 28 is set to the first opening degree, and the carrier gas flows at 80 mL / min on the first supply flow path 56 side and 150 mL / min on the second supply flow path 57 side. .
  • Carrier gas is introduced into the sample cell 44 at a total flow rate of 230 mL / min.
  • a predetermined amount of sample water is collected in the syringe pump 4 (step S1).
  • a sparge for removing IC in the sample water is started in the syringe pump 4 (step S2).
  • the three-way solenoid valve 34 connects the first supply flow path 56 to the inside of the syringe pump 4 to set the sparging state, and at the same time, the flow control valves 18 and 28 are each opened to the second opening.
  • the opening degree of the flow rate control valve 18 By setting the opening degree of the flow rate control valve 18 to the second opening degree, the flow rate of the carrier gas flowing through the second supply channel 57 is increased to 230 mL / min, and the flow rate of the carrier gas introduced into the sample cell 44 is 230 mL. / Min.
  • the sparger gas is supplied into the syringe pump 4 at a flow rate of 80 mL / min.
  • the first supply flow path 56 is connected to the bypass flow path 58 by the three-way solenoid valve 34 to bring it into a normal state, and at the same time, the opening degree of the flow control valves 18 and 28 is returned to the first opening degree. (Step S3).
  • the flow path configuration is returned to the normal state, and the opening amounts of the flow rate control valves 18 and 28 are also returned to the first opening degree, so that the flow rate of the carrier gas introduced into the sample cell 44 is also maintained at 230 mL / min. .
  • step S4 measurement is started (step S4).
  • the sample water in the syringe pump 4 is introduced into the sample injection part 6 a of the combustion tube 6.
  • the sample water introduced into the sample injection part 6a is guided into the combustion pipe 6 by the carrier gas from the second supply channel 57 and burned in the presence of the catalyst, so that all the carbon components are converted into carbon dioxide.
  • the sample gas containing carbon dioxide converted in the combustion pipe 6 is guided to the flow path 54 through the cooling pipe 8, the flow path 53 and the pure water trap 10 together with the carrier gas.
  • the first supply channel 56 from the carrier gas supply unit 12 is connected to the bypass channel 58 after the deaeration in the syringe pump 4 is completed, and the carrier gas that has transported the sample gas from the combustion tube 6.
  • the carrier gas from the flow path 59 joins and flows through the flow path 54.
  • the sample gas introduced into the flow path 54 is introduced into the sample cell 44 through the dehumidifier 36, the halogen scrubber 40, and the membrane filter 42. Then, infrared light from the light source 46 is irradiated into the sample cell 44, and a signal corresponding to the concentration of carbon dioxide is obtained from the detector 48. Carbon dioxide discharged from the sample cell 44 is adsorbed by the CO 2 absorber 50.
  • the arithmetic processing unit 60 calculates the TOC based on the signal obtained by the detector 48, and ends the measurement (step S7).
  • step S5 When there is sample water to be measured next (step S5), the next sample water is sucked into the syringe pump 4 during the measurement.
  • the timing for sucking the next sample water is, for example, immediately after the sample water is introduced from the syringe pump 4 into the combustion tube 6 and the inside of the syringe pump 4 is washed. Then, after the measurement of the previous sample is completed, the operation after the sparging is performed on the next sample. If there is no sample water to be measured next, the operation is terminated along with the end of the TOC measurement (step S7).
  • FIG. 4A schematically shows an example of the waveform of the detection signal obtained by the conventional TOC meter
  • FIG. 4B schematically shows an example of the waveform of the detection signal obtained by the TOC meter of the above embodiment.
  • FIG. 4A conventionally, since the flow rate of the carrier gas introduced into the sample cell 44 during the sparging in the syringe pump 4 decreases, the baseline of the detection signal increases. After that, when the measurement is started, a peak may appear before the baseline of the detection signal returns to the normal state. In this case, the peak start point becomes distorted and the peak start point Detection becomes difficult and affects the calculation of the peak area value.
  • the flow rate of the carrier gas introduced into the sample cell 44 is always kept constant as in the above embodiment, the baseline of the detection signal will fluctuate as shown in FIG. 4B. It is suppressed, deformation of the peak shape is prevented, and the accuracy of TOC measurement can be increased.
  • the carrier gas flowing through the first supply channel 56 and the carrier gas flowing through the second supply channel 57 are both introduced into the sample cell 44 in the normal state. It is also possible to configure the supply channel 56 as a dedicated channel for supplying the sparge gas to the syringe pump 4. An embodiment of the TOC meter configured as described above is shown in FIG.
  • the first supply flow path 56 is always in communication with the syringe pump 4. For this reason, the flow rate control valve 28 is opened to a certain degree of opening only when the carrier gas is supplied into the syringe pump 4 and sparging is performed, and the flow rate control valve 28 is closed during the normal state where sparging is not performed. . Since the carrier gas introduced into the sample cell 44 is only the carrier gas that has passed through the second supply flow path 57, the carrier introduced into the sample cell 44 can be maintained only by maintaining the flow rate control valve 18 at a constant opening degree. The gas flow rate can be kept constant.
  • Multi-port valve 4 Sampling syringe 6 Combustion pipe 6a Sample injection part 7 Electric furnace 8 Cooling pipe 10 Pure water trap 12 Carrier gas supply part 14 Pressure regulation valve 16, 20, 30 Pressure sensor 18, 28 Flow control valve 22, 32 Flow path Resistor 34 Solenoid valve 36 Dehumidifier 38 Drain pot 40 Halogen scrubber 42 Membrane filter 44 Cell 46 Light source 48 Detector 50 CO 2 absorber 56 First supply flow channel 57 Second supply flow channel 60 Arithmetic processing unit 62 System controller 64 Valve opening Holding unit 66 Cell flow rate control means

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Biomedical Technology (AREA)
  • Emergency Medicine (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

第1流量調整機構(18)及び第2流量調整機構(28)は流量制御部(62)によって第1供給流路(56)及び第2供給流量(57)において所定の流量でキャリアガスが流れるように制御される。この流量制御部(62)は、第1供給流路(56)からシリンジポンプ(4)内にキャリアガスが供給される状態であるスパージ状態のときの試料セル(44)に導入されるキャリアガスの流量と、第1供給流路(56)からシリンジポンプ(4)内にキャリアガスが供給されない状態である通常状態のときの試料セル(44)に導入されるキャリアガスの流量とが等しくなるように第1流量調整機構(56)及び第2流量調整機構(57)を制御するセル流量制御手段(66)を備えている。

Description

全有機体炭素測定装置
 本発明は、採取した試料水中の炭素成分を酸化反応部において二酸化炭素に変換した後、その二酸化炭素を含むガスをキャリアガスによって試料セルへ搬送し、試料セルを流れる試料ガス中の二酸化炭素濃度を検出器によって検出する全有機体炭素測定装置(TOC計)に関するものである。
 図6に従来のTOC計の流路構成を示す。
 多ポートバルブ2の共通のポートにシリンジポンプ4が接続されているとともに、共通ポートに切り替えて接続される他のポートにはサンプル、希釈水、酸を採取するためのチューブや、燃焼管6、純水トラップ10などがそれぞれ接続されている。シリンジポンプ4には、キャリアガス供給部100からの流路が3方電磁弁34を介して接続されている。
 シリンジポンプ4により採取された試料水はシリンジポンプ4内で炭酸ガスが脱気された後、燃焼管6上部の試料注入部6aに注入される。燃焼管6の試料注入部6aに注入された試料水はキャリアガス供給部100から供給され、加湿されたキャリアガスによって燃焼管6内に導かれ、燃焼管6内の触媒の存在下で燃焼されることにより試料水中に含まれる炭素成分が二酸化炭素に変換される。
 燃焼管6で発生したガス(二酸化炭素と水蒸気)は冷却管8で冷却され、二酸化炭素は純水トラップ10を経由して除湿用電子クーラ36に導かれてさらに水分が除去され、ハロゲンスクラバ40でハロゲン成分が除かれ、メンブレンフィルタ42により濾過されて、試料セル44に導入される。そして、光源46からの赤外光が、試料セル44中に照射され、二酸化炭素の濃度に比例した信号が検出器48から得られる。試料セル44から排出された二酸化炭素はCO2アブソーバ50に吸着される。
 キャリアガス供給部100は、キャリアガス入口側から順に電磁弁102、調圧弁104、圧力センサ106、マスフローコントローラ108及び流量計110を備えており、測定開始前に測定者がキャリアガスを供給する流路の圧力及び流量を所定値に設定した後は一定に維持されるように構成されている。従来のTOC計のキャリアガス供給部は同様の構造をもつものが一般的であった(例えば、特許文献1参照。)。
 キャリアガス供給部100の下流側の流路は燃焼管6の試料注入部6aに繋がる流路と切替弁34に繋がる流路とに分岐しており、両流路には常に一定の割合でキャリガスが流れる。例えばキャリアガス供給部100の供給量が230mL/minに設定されていると、燃焼管6側には150mL/min、切替弁34側には80mL/minのキャリガスが流れる。切替弁34側に流れるキャリアガスは切替弁34によってシリンジポンプ4内に導入されるか、又は燃焼管6を経て試料セル44に導入されるキャリガスに合流するように構成されている。シリンジポンプ4に導入されたキャリアガスはシリンジポンプ4内に吸入された試料水のIC(無機炭素)を除去するためのスパージガスとして利用される。
特開2007-93029号公報
 図6の例のように、従来では、シリンジポンプ4内でスパージを行なっているスパージ状態と行なっていない通常状態とで試料セル44に導入されるキャリアガスの流量が異なってしまう。上記の例では、試料セル44に導入されるキャリアガスの流量は通常状態で230mL/min、スパージ状態で150mL/minである。
 試料セル44に導入されるキャリガス流量が変化すると検出器48で得られる検出信号のベースラインのレベルも変化し、スパージ状態から通常状態に切り替えると検出信号のベースラインが変動する。試料の測定は通常状態で行なわれるため、ベースラインの変動の影響がないように思われるが、実際にはスパージ状態から通常状態に切り替わっても検出信号のベースラインはすぐには通常の状態に戻らず、通常状態のレベルで安定するまでに時間がかかる。ベースラインが安定する前に測定を開始し、ベースラインが安定する前にピークが出てしまうと、ピークの立ち上がりが歪な形状になり、ピーク開始点の検出が困難になるなど、測定精度を悪化させる要因となることがある。そのため、測定精度の悪化を防ぐには測定の開始を遅らせてベースラインが安定するまで待機する必要があった。
 そこで、本発明は、シリンジポンプ内でスパージ状態と通常状態との間で切り替えたときの検出信号のベースラインが安定するまでの時間を短縮することを目的とするものである。
 本発明にかかるTOC計は、試料水を採取するためのシリンジポンプと、シリンジポンプにより採取された試料水中の炭素成分を酸化分解して二酸化炭素に変換するための燃焼管及び前記燃焼管を加熱するための加熱炉を備えた酸化反応部と、燃焼管の出口部に接続され燃焼管内で発生した二酸化炭素を含む試料ガスを流通させるための試料セル及び試料セルを流れる試料ガス中の二酸化炭素濃度を測定するための検出器を備えた測定部と、キャリアガスを導入するためのキャリアガス導入流路、一端がキャリアガス導入流路の下流端に接続されているとともに他端がシリンジポンプと導通し得るように接続されている第1供給流路、第1供給流路とは別にキャリアガス導入流路の下流端に一端が接続されているとともに他端が燃焼管に接続されている第2供給流路、第1供給流路を流れるキャリアガスの流量を調整するための第1流量調整機構、及び第2供給流路を流れるキャリアガスの流量を第1流量調整機構とは独立して調整するための第2流量調整機構を備えたキャリアガス供給部と、を備えている。第1流量調整機構及び第2流量調整機構は流量制御部によって第1供給流路及び第2供給流量において所定の流量でキャリアガスが流れるように制御される。この流量制御部は、第1供給流路からシリンジポンプ内にキャリアガスが供給される状態であるスパージ状態のときの試料セルに導入されるキャリアガスの流量と、第1供給流路からシリンジポンプ内にキャリアガスが供給されない状態である通常状態のときの試料セルに導入されるキャリアガスの流量とが等しくなるように第1流量調整機構及び第2流量調整機構を制御するセル流量制御手段を備えている。
 本発明のTOC計では、スパージ状態と通常状態との間の切替えは、第1供給流路の他端を、スパージ状態のときはシリンジポンプと導通させ、通常状態のときは燃焼管と試料セルとの間の流路に合流させるように構成された流路切替機構の切替えにより行なうものであってもよい。この場合、試料セルに導入されるキャリアガスの流量は、通常状態のときは、第1供給流路と第2供給流路の両流路を流れるキャリアガスの合計の流量と同じであり、スパージ状態のときは、第2供給流路を流れる流量と同じである。
 さらに、本発明のTOC計では、第1流量調整機構及び第2流量調整機構はそれぞれの流路上に設けられたバルブの開度によってキャリアガス流量を調整するものであり、流量制御部は、通常状態のときの各バルブの開度として予め設定された第1開度及びスパージ状態のときの各バルブの開度として予め設定された第2開度を保持しており、セル流量制御手段は、第1流量調整機構及び第2流量調整機構の各バルブを、通常状態のときに第1開度にし、スパージ状態のときに第2開度にするように構成されているものであってもよい。このように、通常状態及びスパージ状態のときの第1流量調整機構及び第2流量調整機構の各バルブの開度を予め設定しておいて、状態に応じて各バルブをその開度になるように制御するようにすれば、第1供給流路や第2供給流路、試料セルを流れるキャリアガス流量を測定しながらその流量が所定の流量になるようにフィードバック制御を行なうよりも、装置の構成が簡単になる。
 本発明のTOC計では、第1供給流路の流量を調整する第1流量調整機構と第2供給流路の流量を調整する第2流量調整機構とが互いに独立して流量調整を行なうことができるように構成されており、これらの調整機構を制御する流量制御部は、通常状態のときとスパージ状態のときのいずれのときも等しい流量のキャリアガスが試料セルに導入されるように第1及び第2流量調整機構を制御するセル流量制御手段を備えているので、スパージ状態から通常状態に切り替わったときの検出信号のベースラインの変動が抑制され、検出信号のベースラインを早期に安定させることができる。これにより、ベースラインの変動によってピーク形状に生じる歪みが抑制され、測定精度の悪化を防止することができる。
TOC計の一実施例を示す流路構成図である。 同実施例のキャリアガス供給部の制御系統を示すブロック図である。 同実施例の動作の一例を示すフローチャートである。 従来のTOC計で得られる検出信号の一例を示す図である。 (B)は同実施例のTOC計で得られる検出信号の一例を示す図である。 TOC計の他の実施例を示す流路構成図である。 従来のTOC計の一例を示す流路構成図である。
 以下に本発明の一実施例について図1を用いて説明する。
 この実施例のTOC計は、シリンジポンプ4により採取し、シリンジポンプ4内でスパージすることによって無機炭素(IC)を除去した後、IC除去後の試料を燃焼管6の試料注入部6aに注入し、キャリアガス供給部12からのキャリアガスによって燃焼管6の内部に導入して燃焼管6内に収納されている触媒の存在下で燃焼させて炭素成分を二酸化炭素に変換する。変換した二酸化炭素を含む試料ガスをさらにキャリアガスによって試料セル44へ導く。試料セル44内に導入した試料ガスに対して光源46から赤外線を照射し、そのときに検出器48で得られる検出信号に基づいて二酸化炭素濃度を算出し、その二酸化炭素濃度から試料中に含まれていた有機体炭素濃度(TOC)を求める。
 シリンジポンプ4は多ポートバルブ2の共通ポートに接続されている。多ポートバルブ2の他のポートに、ドレイン流路のほか、サンプル(試料水)を採取するための流路、オートサンプラ(ASI)からの流路、希釈水、酸及び燃焼管へ試料水を注入するための流路52などが接続されている。
 シリンジポンプ4は、バレル下部にキャリアガスを導入するためのスパージガス入口を備えている。シリンジポンプ4のスパージガス入口には、3方電磁弁34を介してキャリアガス供給部12からの第1供給流路56が接続されており、キャリアガス供給部12からのキャリアガスをスパージガスとして利用してシリンジポンプ4内で試料水中の炭酸ガス(無機体炭素)の脱気を行なうことができる。3方電磁弁34はキャリアガス供給部12からの第1供給流路56の接続先をシリンジポンプ4に通じる流路とバイパス流路58との間で切り替えることができる。バイパス流路58は試料セル44へと通じる流路54に接続された流路59に接続されている。
 多ポートバルブ2の1つのポートは流路52を介して燃焼管6の上部に設けられた試料注入部6aに接続されている。燃焼管6は、内部に試料中の炭素成分の全てを二酸化炭素に変換するための金属酸化物や貴金属からなる酸化触媒を備えている。燃焼管6の周囲に電気炉7が設けられており、燃焼管6内を高温(例えば、680℃)にすることができる。燃焼管6の試料注入部6aにはキャリアガス供給部12からの他方の第2供給流路57が逆止弁26を介して接続されている。
 燃焼管6の下部に設けられた試料出口部は冷却管8及び流路53を介して純水トラップ10の上部に接続されており、純水トラップ10の出口は流路54により、非分散形赤外分析方式(NDIR)の試料セル44に接続されている。試料セル44の両端には、光源46及び検出器48が対向配置されている。流路54は、試料の除湿を行なうための除湿器36、ハロゲン成分を除去するためのハロゲンスクラバ40及び異物を除去するためのメンブレンフィルタ42を上流側から順に備えている。除湿器36には水分を除去するためのドレインポット38が接続されている。流路54の純水トラップ10と除湿器36の間にバイパス流路59が接続されている。
 キャリアガス供給部12のキャリアガス導入流路55は第1供給流路56と第2供給流路57に分岐しており、キャリアガス入口から導入されたキャリアガスの一部を第1供給流路56側へ供給し、残りのキャリアガスを第2供給流路57側へ供給するように構成されている。キャリアガス導入流路55上には上流側から調圧弁14と圧力センサ16が設けられている。
 キャリアガス導入流路55から分岐した第1供給流路56は、上流側から、開度の調整により流量を制御できる第1流量調整機構としての流量制御バルブ28、圧力センサ30及び流路抵抗32を備え、下流端が3方電磁弁34の1つのポートに接続されている。3方電磁弁34の他のポートにはシリンジポンプ4に通じる流路とバイパス流路58が接続されており、3方電磁弁34の切替えによって第1供給流路56をこれらのいずれかの流路に接続することができる。
 キャリアガス導入流路55から分岐した他方の第2供給流路57は、上流側から、開度の調整により流量を制御できる第2流量調整機構としての流量制御バルブ18、圧力センサ20、流路抵抗22及び加湿器24を備え、下流端が逆止弁26を介して燃焼管6の試料注入部6aに接続されている。
 このTOC計では、試料の測定は、3方電磁弁34によって第1供給流路56をバイパス流路58に接続した状態で行なう。以下において、この状態を「通常状態」とする。この通常状態では、第1供給流路56、バイパス流路58、流路59及び流路54を経たキャリアガスと、第2供給流路57、燃焼管6、流路53及び流路54を経たキャリアガスが、試料セル44に導入される。すなわち、通常状態では、キャリアガス供給部12から第1供給流路56側へ流れたキャリアガスと第2供給流路57側へ流れたキャリアガスの合計の流量のキャリアガスが試料セル44に導入される。したがって、試料セル44に導入されるキャリアガスの流量はキャリアガス導入流路55を流れるキャリアガスの流量と等しくなる。
 他方で、シリンジポンプ4内に吸引した試料水のスパージによるIC除去は、3方電磁弁34によって第1供給流路56をシリンジポンプ4と導通させた状態で行なう。この状態を「スパージ状態」とする。このスパージ状態では、第2供給流路57、燃焼管6、流路53及び流路54を経たキャリアガスのみが、試料セル44に導入される。
 このTOC計では、試料セル44に導入されるキャリアガスの流量を常時一定にするようにキャリアガス供給部12が制御される。試料セル44に導入されるキャリアガス流量を230mL/minとしてその流量制御の一例を説明する。通常状態では、キャリアガス供給部12から第1供給流路56側にキャリアガスが80mL/minで流れ、第2供給流路57側にキャリアガスが150mL/minで流れるように流量制御バルブ18及び28の開度が調整される。
 上記通常状態からスパージ状態に切り替えられると、第1供給流路56を流れるキャリアガスはスパージガスとして80mL/minでシリンジポンプ4内に導入される。スパージ状態のときは、多ポートバルブ2がシリンジポンプ4の先端をドレインに接続した状態にされており、シリンジポンプ4から出たキャリアガスはドレインへ排出される。通常状態からスパージ状態に切り替わったと同時に、第2供給流路57側にキャリアガスが230mL/minで流れるように流量制御バルブ18の開度も変更される。上記のように、スパージ状態では、第2供給流路57側へ流れるキャリアガスのみが試料セル44に導入されるため、試料セル44に導入されるキャリアガス流量が230mL/minで維持される。なお、調圧弁14は、圧力センサ16の測定値に基づいてキャリアガス導入流路55内の圧力が常に一定になるように制御される。
 図2にこのTOC計の制御系統の一例を示す。
 このTOC計の各要素は、例えばパーソナルコンピュータ(PC)によって実現される演算処理装置60にシステムコントローラ62を介して接続されている。システムコントローラ62は演算処理装置60からの指令に応じて、多ポートバルブ2、シリンジポンプ4、3方電磁弁34及びキャリアガス供給部12などの各要素の動作の制御を行なうものである。また、検出器48もシステムコントローラ62を介して演算処理装置60と接続されており、検出器48で得られた検出信号がシステムコントローラ62を介して演算処理装置60に送信され、演算処理装置60において検出信号のピーク面積の演算やピーク面積値からTOC値への換算などが行なわれる。
 システムコントローラ62はバルブ開度保持部64及びセル流量制御手段66を備え、流量制御部を実現している。バルブ開度保持部64は、通常状態のときの流量制御バルブ18及び28の開度(第1開度)、スパージ状態のときの流量制御バルブ18及び28の開度(第2開度)を保持しておくものである。流量制御バルブ18及び28の第1開度は、通常状態のときの試料セル44に導入されるキャリアガスの流量を所定の流量にするために設定されたものである。流量制御バルブ28の第2開度は、スパージ状態のときのシリンジポンプ4へのスパージガス供給量を所定の流量にするために設定されたものであり、流量制御バルブ18の第2開度は、スパージ状態のときの試料セル44に導入されるキャリアガスの流量を通常状態のときと同じ流量にするために設定されたものである。
 セル流量制御手段66は、試料セル44に導入されるキャリアガス流量を常時一定に維持するようにキャリアガス供給部12を制御するためのものである。セル流量制御手段66は、測定開始時など通常状態にするときは流量制御バルブ18及び28の開度を第1開度に制御し、シリンジポンプ4内でスパージを行なうスパージ状態のときは流量制御バルブ18及び28の開度を第2開度に制御する。
 なお、流量制御バルブ28の開度は一定で維持されるようになっていてもよい。その場合、シリンジポンプ4内でスパージを行なう際のスパージガスの供給量を調整することはできないが、通常状態とスパージ状態との間の流量制御を流量制御バルブ18の開度の調整のみによって行なうことができ、キャリアガス供給部12の制御系統を簡単にすることができる。
 図1及び図3を用いてこの実施例のTOC計の動作について説明する。
 この装置の初期状態(=通常状態)として、3方電磁弁34は第1供給流路56をバイパス流路58と接続した状態にされており、キャリアガス供給部12はキャリアガス入口から230mL/minのキャリアガスを導入している。流量制御バルブ18及び28の開度はそれぞれ第1開度にされており、第1供給流路56側に80mL/min、第2供給流路57側に150mL/minでキャリアガスが流れている。試料セル44にはその合計の流量230mL/minでキャリアガスが導入されている。
 まず、シリンジポンプ4内に所定量の試料水が採取される(ステップS1)。シリンジポンプ4内の試料水に酸が添加された後、シリンジポンプ4内において試料水中のICを除去するためのスパージを開始する(ステップS2)。スパージを開始する際は3方電磁弁34によって第1供給流路56をシリンジポンプ4内と導通させてスパージ状態とし、同時に流量制御バルブ18及び28の開度をそれぞれ第2開度にする。流量制御バルブ18の開度を第2開度にすることにより、第2供給流路57を流れるキャリアガスの流量が230mL/minに増大し、試料セル44に導入されるキャリアガスの流量は230mL/minで維持される。流量制御バルブ28の第1開度と第2開度が同じであるときは、シリンジポンプ4内に80mL/minの流量でスパージガスが供給される。なお、流量制御バルブ28の第2開度を第1開度よりも大きく設定しておくことで、スパージガス流量を増大させてスパージの効率を上昇させ、スパージ時間の短縮化を図ることも可能である。
 スパージを終了する際は、3方電磁弁34によって第1供給流路56をバイパス流路58と接続して通常状態とし、同時に流量制御バルブ18及び28の開度をそれぞれ第1開度に戻す(ステップS3)。流路構成が通常状態に戻り、流量制御バルブ18及び28の開度もそれぞれ第1開度に戻されたことで、試料セル44に導入されるキャリアガスの流量も230mL/minで維持される。
 この状態で、測定を開始する(ステップS4)。シリンジポンプ4内の試料水を燃焼管6の試料注入部6aに導入する。試料注入部6aに導入された試料水は第2供給流路57からのキャリアガスによって燃焼管6の内部に導かれて触媒の存在下で燃焼されることにより炭素成分が全て二酸化炭素に変換される。燃焼管6において変換された二酸化炭素を含む試料ガスはキャリアガスとともに冷却管8、流路53及び純水トラップ10を経て流路54へ導かれる。
 ここで、キャリアガス供給部12からの第1供給流路56は、シリンジポンプ4内での脱気が終了した後にバイパス流路58に接続され、燃焼管6から試料ガスを搬送してきたキャリアガスに流路59からのキャリアガスが合流して流路54を流れる。
 流路54に導かれた試料ガスは除湿器36、ハロゲンスクラバ40及びメンブレンフィルタ42を経て試料セル44に導入される。そして、光源46からの赤外光が試料セル44中に照射され、二酸化炭素の濃度に応じた信号が検出器48から得られる。試料セル44から排出された二酸化炭素はCO2アブソーバ50に吸着される。演算処理装置60は検出器48で得られる信号に基づいてTOCを算出し、測定を終了する(ステップS7)。
 次に測定すべき試料水がある場合(ステップS5)には、上記測定の最中に次の試料水をシリンジポンプ4内に吸引しておく。次の試料水を吸引するタイミングは、例えば試料水をシリンジポンプ4から燃焼管6に導入し、シリンジポンプ4内を洗浄した直後である。そして、前の試料の測定が終了した後で、次の試料に対してスパージ以降の動作を行なう。次に測定すべき試料水がない場合は、TOC測定の終了(ステップS7)に伴なって動作を終了する。
 図4Aに従来のTOC計で得られる検出信号の波形の一例を、図4Bに上記実施例のTOC計で得られる検出信号の波形の一例をそれぞれ概略的に示す。
 図4Aに示されているように、従来では、シリンジポンプ4内でのスパージの際に試料セル44に導入されるキャリアガスの流量が低下するため、検出信号のベースラインが上昇する。そして、その後、測定を開始すると、検出信号のベースラインが通常の状態に戻りきる前にピークが出てしまうことがあり、その場合はピークの開始点が歪な形状になってピーク開始点の検出が困難になり、ピーク面積値の算出に影響を与える。これに対し、上記実施例のように試料セル44に導入されるキャリアガスの流量を常に一定に維持するようにすれば、図4Bに示されているように、検出信号のベースラインの変動が抑制され、ピーク形状の変形が防止され、TOC測定の精度を高めることができる。
 上記実施例では、通常状態において、第1供給流路56を流れるキャリアガス、第2供給流路57を流れるキャリアガスのいずれも試料セル44に導入されるように構成されているが、第1供給流路56をシリンジポンプ4へスパージガスを供給するための専用の流路として構成することも可能である。そのように構成したTOC計の一実施例を図5に示す。
 図5の実施例では、第1供給流路56が常時シリンジポンプ4と導通している。そのため、シリンジポンプ4内にキャリアガスを供給してスパージを行なうスパージ状態のときのみ流量制御バルブ28を一定の開度まで開き、スパージを行なわない通常状態のときは流量制御バルブ28を閉じておく。試料セル44に導入されるキャリアガスは第2供給流路57を経たキャリアガスのみであるので、流量制御バルブ18を一定の開度で維持しておくだけで、試料セル44に導入されるキャリアガスの流量を一定で維持することができる。
   2   多ポートバルブ
   4   サンプリングシリンジ
   6   燃焼管
   6a  試料注入部
   7   電気炉
   8   冷却管
  10   純水トラップ
  12   キャリアガス供給部
  14   調圧弁
  16,20,30  圧力センサ
  18,28  流量制御バルブ
  22,32  流路抵抗
  34   電磁弁
  36   除湿器
  38   ドレインポット
  40   ハロゲンスクラバ
  42   メンブレンフィルタ
  44   セル
  46   光源
  48   検出器
  50   CO2アブソーバ
  56   第1供給流路
  57   第2供給流路
  60   演算処理部
  62   システムコントローラ
  64   バルブ開度保持部
  66   セル流量制御手段

Claims (3)

  1.  試料水を採取するためのシリンジポンプと、
     前記シリンジポンプにより採取された試料水中の炭素成分を酸化分解して二酸化炭素に変換するための燃焼管及び前記燃焼管を加熱するための加熱炉を備えた酸化反応部と、
     前記燃焼管の出口部に接続され前記燃焼管内で発生した二酸化炭素を含む試料ガスを流通させるための試料セル及び前記試料セルを流れる試料ガス中の二酸化炭素濃度を測定するための検出器を備えた測定部と、
     キャリアガスを導入するためのキャリアガス導入流路、一端が前記キャリアガス導入流路の下流端に接続されているとともに他端が前記シリンジポンプと導通し得るように接続されている第1供給流路、前記第1供給流路とは別に前記キャリアガス導入流路の下流端に一端が接続されているとともに他端が前記燃焼管に接続されている第2供給流路、前記第1供給流路を流れるキャリアガスの流量を調整するための第1流量調整機構、及び前記第2供給流路を流れるキャリアガスの流量を前記第1流量調整機構とは独立して調整するための第2流量調整機構を備えたキャリアガス供給部と、
     前記第1供給流路及び第2供給流量において所定の流量でキャリアガスが流れるように前記第1流量調整機構及び第2流量調整機構を制御する流量制御部であって、前記第1供給流路から前記シリンジポンプ内にキャリアガスが供給される状態であるスパージ状態のときの前記試料セルに導入されるキャリアガスの流量と、前記第1供給流路から前記シリンジポンプ内にキャリアガスが供給されない状態である通常状態のときの前記試料セルに導入されるキャリアガスの流量と、が等しくなるように前記第1流量調整機構及び第2流量調整機構を制御するセル流量制御手段を有する流量制御部と、を備えていることを特徴とする全有機体炭素測定装置。
  2.  前記スパージ状態と通常状態との間の切替えは、前記第1供給流路の他端を、前記スパージ状態のときは前記シリンジポンプと導通させ、前記通常状態のときは前記燃焼管と前記試料セルとの間の流路に合流させるように構成された流路切替機構の切替えにより行なうものである請求項1に記載の全有機体炭素測定装置。
  3.  前記第1流量調整機構及び前記第2流量調整機構はそれぞれの流路上に設けられたバルブの開度によってキャリアガス流量を調整するものであり、
     前記流量制御部は、前記通常状態のときの各バルブの開度として予め設定された第1開度及び前記スパージ状態のときの各バルブの開度として予め設定された第2開度を保持しており、
     前記セル流量制御手段は、前記第1流量調整機構及び前記第2流量調整機構の各バルブを、前記通常状態のときに前記第1開度にし、前記スパージ状態のときに前記第2開度にするように構成されている請求項1又は2に記載の全有機体炭素測定装置。
PCT/JP2011/050099 2011-01-06 2011-01-06 全有機体炭素測定装置 WO2012093482A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180069091.9A CN103415768B (zh) 2011-01-06 2011-01-06 总有机碳测量装置
PCT/JP2011/050099 WO2012093482A1 (ja) 2011-01-06 2011-01-06 全有機体炭素測定装置
EP11854568.0A EP2662690B1 (en) 2011-01-06 2011-01-06 Measurement device for total organic carbon and its use
US13/995,292 US9194850B2 (en) 2011-01-06 2011-01-06 Measurement device for total organic carbon
JP2012551775A JP5817738B2 (ja) 2011-01-06 2011-01-06 全有機体炭素測定装置及び方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/050099 WO2012093482A1 (ja) 2011-01-06 2011-01-06 全有機体炭素測定装置

Publications (1)

Publication Number Publication Date
WO2012093482A1 true WO2012093482A1 (ja) 2012-07-12

Family

ID=46457348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050099 WO2012093482A1 (ja) 2011-01-06 2011-01-06 全有機体炭素測定装置

Country Status (5)

Country Link
US (1) US9194850B2 (ja)
EP (1) EP2662690B1 (ja)
JP (1) JP5817738B2 (ja)
CN (1) CN103415768B (ja)
WO (1) WO2012093482A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015096811A (ja) * 2013-11-15 2015-05-21 株式会社島津製作所 炭素測定装置
WO2020021712A1 (ja) * 2018-07-27 2020-01-30 株式会社島津製作所 分析装置
KR20200038287A (ko) * 2017-08-07 2020-04-10 오.아이. 코포레이션 고온 연소를 이용하는 전 유기 탄소 분석기(toca)를 위한 펄스 주입 기술을 가진 정지 유동
WO2020137147A1 (ja) * 2018-12-26 2020-07-02 株式会社堀場製作所 元素分析装置、元素分析装置用プログラム、及び元素分析方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9040306B2 (en) * 2010-08-27 2015-05-26 Lanxess Deutschland Gmbh High-temperature furnace, use of a spinel ceramic and method for carrying out T(O)C measurements of samples
CN104297197A (zh) * 2014-09-22 2015-01-21 江苏骏龙电力科技股份有限公司 水污染采集装置及方法
DE102014118138A1 (de) * 2014-12-08 2016-06-09 Lar Process Analysers Ag Analyseanordnung zur Wasser- und Abwasseranalyse
CN104849423A (zh) * 2015-03-19 2015-08-19 信发集团有限公司 水中综合有机污染指标快速测定方法
DE102015118586A1 (de) * 2015-10-30 2017-05-04 Lar Process Analysers Ag Probenverdünnung
JP6631817B2 (ja) * 2018-03-30 2020-01-15 株式会社エコロ Toc計測方法及びそれに使用するtoc計測装置
WO2020129347A1 (ja) * 2018-12-21 2020-06-25 株式会社島津製作所 水質分析計
US11808744B2 (en) * 2019-08-29 2023-11-07 Shimadzu Corporation Liquid sample injection mechanism for an instrument for elemental analysis

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650956A (ja) * 1992-07-29 1994-02-25 Shimadzu Corp 全有機体炭素測定装置
JPH0943245A (ja) * 1995-07-28 1997-02-14 Shimadzu Corp 自動分析計の自動校正方法
JPH11326170A (ja) * 1998-05-19 1999-11-26 Yokogawa Electric Corp 水中臭気物質測定装置
JP2000121626A (ja) * 1998-10-16 2000-04-28 Shimadzu Corp 水質分析計
JP2000155117A (ja) * 1998-11-18 2000-06-06 Shimadzu Corp 燃焼酸化方式元素分析計
JP2000298096A (ja) * 1999-04-14 2000-10-24 Shimadzu Corp 水質分析計
JP2001318089A (ja) * 2000-05-10 2001-11-16 Shimadzu Corp 全有機体炭素計
JP2007093029A (ja) 2005-09-27 2007-04-12 Sumisho Metalex Corp 床暖房用温水マットの折畳構造
JP2007093209A (ja) * 2005-09-26 2007-04-12 Shimadzu Corp 水質分析計
JP2007163309A (ja) * 2005-12-14 2007-06-28 Shimadzu Corp 全有機体炭素・全窒素測定方法およびその装置
JP2009294139A (ja) * 2008-06-06 2009-12-17 Shimadzu Corp オートサンプラ及び全有機体炭素計

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9203642D0 (en) * 1992-02-19 1992-04-08 Fluid Dynamics Sales Ltd Carbon analyser
US5994146A (en) * 1995-02-10 1999-11-30 Isco, Inc. Water impurity analysis method
CN2826430Y (zh) 2005-08-19 2006-10-11 徐滋秋 实验室总有机碳测定仪
GB2445184B (en) * 2006-12-29 2009-05-06 Thermo Fisher Scientific Inc Combustion analyser sample introduction apparatus and method
CN201307110Y (zh) * 2008-11-03 2009-09-09 北京安控科技股份有限公司 一种水质总有机碳的监测仪
CN201488944U (zh) 2009-08-10 2010-05-26 重庆川仪自动化股份有限公司 一种总有机碳(toc)分析仪
CN101907558A (zh) * 2010-03-31 2010-12-08 浙江环茂自控科技有限公司 总有机碳在线分析仪及分析总有机碳的方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650956A (ja) * 1992-07-29 1994-02-25 Shimadzu Corp 全有機体炭素測定装置
JPH0943245A (ja) * 1995-07-28 1997-02-14 Shimadzu Corp 自動分析計の自動校正方法
JPH11326170A (ja) * 1998-05-19 1999-11-26 Yokogawa Electric Corp 水中臭気物質測定装置
JP2000121626A (ja) * 1998-10-16 2000-04-28 Shimadzu Corp 水質分析計
JP2000155117A (ja) * 1998-11-18 2000-06-06 Shimadzu Corp 燃焼酸化方式元素分析計
JP2000298096A (ja) * 1999-04-14 2000-10-24 Shimadzu Corp 水質分析計
JP2001318089A (ja) * 2000-05-10 2001-11-16 Shimadzu Corp 全有機体炭素計
JP2007093209A (ja) * 2005-09-26 2007-04-12 Shimadzu Corp 水質分析計
JP2007093029A (ja) 2005-09-27 2007-04-12 Sumisho Metalex Corp 床暖房用温水マットの折畳構造
JP2007163309A (ja) * 2005-12-14 2007-06-28 Shimadzu Corp 全有機体炭素・全窒素測定方法およびその装置
JP2009294139A (ja) * 2008-06-06 2009-12-17 Shimadzu Corp オートサンプラ及び全有機体炭素計

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2662690A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015096811A (ja) * 2013-11-15 2015-05-21 株式会社島津製作所 炭素測定装置
KR20200038287A (ko) * 2017-08-07 2020-04-10 오.아이. 코포레이션 고온 연소를 이용하는 전 유기 탄소 분석기(toca)를 위한 펄스 주입 기술을 가진 정지 유동
KR102585346B1 (ko) 2017-08-07 2023-10-05 오.아이. 코포레이션 고온 연소를 이용하는 전 유기 탄소 분석기(toca)를 위한 펄스 주입 기술을 가진 정지 유동
WO2020021712A1 (ja) * 2018-07-27 2020-01-30 株式会社島津製作所 分析装置
JPWO2020021712A1 (ja) * 2018-07-27 2021-06-24 株式会社島津製作所 分析装置
JP7211421B2 (ja) 2018-07-27 2023-01-24 株式会社島津製作所 分析装置
WO2020137147A1 (ja) * 2018-12-26 2020-07-02 株式会社堀場製作所 元素分析装置、元素分析装置用プログラム、及び元素分析方法

Also Published As

Publication number Publication date
US20140004003A1 (en) 2014-01-02
EP2662690A4 (en) 2014-09-17
JPWO2012093482A1 (ja) 2014-06-09
EP2662690A1 (en) 2013-11-13
US9194850B2 (en) 2015-11-24
EP2662690B1 (en) 2016-09-14
CN103415768B (zh) 2015-10-07
JP5817738B2 (ja) 2015-11-18
CN103415768A (zh) 2013-11-27

Similar Documents

Publication Publication Date Title
JP5817738B2 (ja) 全有機体炭素測定装置及び方法
JP2012202887A (ja) 分析装置
JP2007093209A (ja) 水質分析計
JP4413160B2 (ja) 排気ガス成分分析装置
JP5533641B2 (ja) 分析装置
JP2013160594A (ja) 元素分析装置
WO2019059008A1 (ja) 排ガス希釈装置、排ガス分析システム、及び排ガス希釈方法
JP2008209396A (ja) 分析装置用連続濃縮装置
JP2006284502A (ja) ガス分析装置及び水素炎イオン化検出器の制御方法
JP2009145171A (ja) 揮発性有機物測定システム
JP4179189B2 (ja) ガスクロマトグラフ装置
US20210318267A1 (en) Element analysis device and element analysis method
JP4790436B2 (ja) 水素炎イオン化形分析計
CN109342131B (zh) 一种低浓度汞检测系统和检测方法
JP3129840U (ja) 揮発性有機化合物測定装置
JP2020118531A (ja) 窒素酸化物測定装置
JP4247985B2 (ja) 流路切換式分析計およびこれを用いた測定装置
WO2021059905A1 (ja) ガス分析方法及びガス分析装置
JP4504721B2 (ja) 液体クロマトグラフィー装置
JP3129841U (ja) 揮発性有機化合物測定装置
KR100983102B1 (ko) 세정액에 포함된 플루오린화수소산의 농도를 측정하는 장치 및 방법
CN217484270U (zh) 用于直接测量非甲烷总烃含量的检测装置
JP2007248122A (ja) 分析計
JP2007278897A (ja) 排気ガス測定装置
CN105372359B (zh) 一种进样分流口气路控制系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854568

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012551775

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011854568

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011854568

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13995292

Country of ref document: US