WO2012091097A1 - ガスバリア性プラスチック成形体及びその製造方法 - Google Patents
ガスバリア性プラスチック成形体及びその製造方法 Download PDFInfo
- Publication number
- WO2012091097A1 WO2012091097A1 PCT/JP2011/080408 JP2011080408W WO2012091097A1 WO 2012091097 A1 WO2012091097 A1 WO 2012091097A1 JP 2011080408 W JP2011080408 W JP 2011080408W WO 2012091097 A1 WO2012091097 A1 WO 2012091097A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas barrier
- gas
- plastic molded
- content
- thin film
- Prior art date
Links
- 229920003023 plastic Polymers 0.000 title claims abstract description 166
- 239000004033 plastic Substances 0.000 title claims abstract description 166
- 238000004519 manufacturing process Methods 0.000 title claims description 22
- 239000010409 thin film Substances 0.000 claims abstract description 153
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 67
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 57
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 32
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 27
- 239000001301 oxygen Substances 0.000 claims abstract description 27
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 22
- 239000001257 hydrogen Substances 0.000 claims abstract description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000000470 constituent Substances 0.000 claims abstract description 8
- 239000010703 silicon Substances 0.000 claims abstract description 8
- 239000007789 gas Substances 0.000 claims description 364
- 230000004888 barrier function Effects 0.000 claims description 183
- 238000010438 heat treatment Methods 0.000 claims description 176
- 239000010408 film Substances 0.000 claims description 127
- 238000000034 method Methods 0.000 claims description 73
- 239000002994 raw material Substances 0.000 claims description 48
- 239000000463 material Substances 0.000 claims description 31
- 238000010137 moulding (plastic) Methods 0.000 claims description 28
- 229910052751 metal Inorganic materials 0.000 claims description 27
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 23
- 239000002184 metal Substances 0.000 claims description 21
- 239000013626 chemical specie Substances 0.000 claims description 19
- 229910052750 molybdenum Inorganic materials 0.000 claims description 19
- -1 silane compound Chemical class 0.000 claims description 19
- 238000005229 chemical vapour deposition Methods 0.000 claims description 18
- 239000000126 substance Substances 0.000 claims description 18
- 229910052715 tantalum Inorganic materials 0.000 claims description 18
- 229910052721 tungsten Inorganic materials 0.000 claims description 16
- 239000000956 alloy Substances 0.000 claims description 15
- 229910045601 alloy Inorganic materials 0.000 claims description 15
- 229910052735 hafnium Inorganic materials 0.000 claims description 14
- UKRDPEFKFJNXQM-UHFFFAOYSA-N vinylsilane Chemical compound [SiH3]C=C UKRDPEFKFJNXQM-UHFFFAOYSA-N 0.000 claims description 14
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 13
- 229910003468 tantalcarbide Inorganic materials 0.000 claims description 12
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 12
- 238000005259 measurement Methods 0.000 claims description 10
- 239000011733 molybdenum Substances 0.000 claims description 10
- 229910052726 zirconium Inorganic materials 0.000 claims description 10
- 230000015556 catabolic process Effects 0.000 claims description 9
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 9
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 9
- 229910039444 MoC Inorganic materials 0.000 claims description 8
- 229910052758 niobium Inorganic materials 0.000 claims description 8
- 239000010937 tungsten Substances 0.000 claims description 8
- 229910052720 vanadium Inorganic materials 0.000 claims description 8
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 claims description 6
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims description 6
- QIJNJJZPYXGIQM-UHFFFAOYSA-N 1lambda4,2lambda4-dimolybdacyclopropa-1,2,3-triene Chemical compound [Mo]=C=[Mo] QIJNJJZPYXGIQM-UHFFFAOYSA-N 0.000 claims description 5
- OFIDJMJLBNOBIL-UHFFFAOYSA-N 2-silylethynylsilane Chemical group [SiH3]C#C[SiH3] OFIDJMJLBNOBIL-UHFFFAOYSA-N 0.000 claims description 5
- 150000002431 hydrogen Chemical class 0.000 claims description 5
- 229910000077 silane Inorganic materials 0.000 claims description 5
- VJIFBECQKOBRHM-UHFFFAOYSA-N 2-silylethanamine Chemical compound NCC[SiH3] VJIFBECQKOBRHM-UHFFFAOYSA-N 0.000 claims description 3
- 238000004611 spectroscopical analysis Methods 0.000 claims description 3
- 238000003763 carbonization Methods 0.000 claims description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 abstract 1
- 230000015572 biosynthetic process Effects 0.000 description 66
- 230000008569 process Effects 0.000 description 37
- 230000008929 regeneration Effects 0.000 description 34
- 238000011069 regeneration method Methods 0.000 description 34
- 238000004458 analytical method Methods 0.000 description 31
- 230000000052 comparative effect Effects 0.000 description 27
- 229920000139 polyethylene terephthalate Polymers 0.000 description 27
- 239000005020 polyethylene terephthalate Substances 0.000 description 27
- 239000010410 layer Substances 0.000 description 25
- 239000011347 resin Substances 0.000 description 25
- 229920005989 resin Polymers 0.000 description 25
- 230000035699 permeability Effects 0.000 description 18
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 16
- 239000000498 cooling water Substances 0.000 description 15
- 238000007664 blowing Methods 0.000 description 14
- 229910010271 silicon carbide Inorganic materials 0.000 description 13
- 239000000758 substrate Substances 0.000 description 13
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 12
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 11
- 238000000137 annealing Methods 0.000 description 8
- 230000005587 bubbling Effects 0.000 description 8
- 125000004432 carbon atom Chemical group C* 0.000 description 8
- 239000012159 carrier gas Substances 0.000 description 8
- 238000001816 cooling Methods 0.000 description 8
- 239000010955 niobium Substances 0.000 description 8
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 8
- 229910052814 silicon oxide Inorganic materials 0.000 description 8
- 238000001228 spectrum Methods 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 7
- 230000001590 oxidative effect Effects 0.000 description 7
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 229910052581 Si3N4 Inorganic materials 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 6
- 239000007858 starting material Substances 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 235000014171 carbonated beverage Nutrition 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- WHJFNYXPKGDKBB-UHFFFAOYSA-N hafnium;methane Chemical compound C.[Hf] WHJFNYXPKGDKBB-UHFFFAOYSA-N 0.000 description 4
- 230000020169 heat generation Effects 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 229910000027 potassium carbonate Inorganic materials 0.000 description 4
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 3
- 239000004713 Cyclic olefin copolymer Substances 0.000 description 3
- 229910008045 Si-Si Inorganic materials 0.000 description 3
- 229910006411 Si—Si Inorganic materials 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 235000013361 beverage Nutrition 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 239000010948 rhodium Substances 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 238000003421 catalytic decomposition reaction Methods 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- UBHZUDXTHNMNLD-UHFFFAOYSA-N dimethylsilane Chemical compound C[SiH2]C UBHZUDXTHNMNLD-UHFFFAOYSA-N 0.000 description 2
- ZLNAFSPCNATQPQ-UHFFFAOYSA-N ethenyl-dimethoxy-methylsilane Chemical compound CO[Si](C)(OC)C=C ZLNAFSPCNATQPQ-UHFFFAOYSA-N 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 235000015203 fruit juice Nutrition 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 238000004050 hot filament vapor deposition Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- UIUXUFNYAYAMOE-UHFFFAOYSA-N methylsilane Chemical compound [SiH3]C UIUXUFNYAYAMOE-UHFFFAOYSA-N 0.000 description 2
- 229910003465 moissanite Inorganic materials 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 238000009751 slip forming Methods 0.000 description 2
- 235000014214 soft drink Nutrition 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 235000013616 tea Nutrition 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- PQDJYEQOELDLCP-UHFFFAOYSA-N trimethylsilane Chemical compound C[SiH](C)C PQDJYEQOELDLCP-UHFFFAOYSA-N 0.000 description 2
- IVSPVXKJEGPQJP-UHFFFAOYSA-N 2-silylethylsilane Chemical compound [SiH3]CC[SiH3] IVSPVXKJEGPQJP-UHFFFAOYSA-N 0.000 description 1
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 229910017107 AlOx Inorganic materials 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- YZCKVEUIGOORGS-UHFFFAOYSA-N Hydrogen atom Chemical compound [H] YZCKVEUIGOORGS-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 229910052774 Proactinium Inorganic materials 0.000 description 1
- YZCKVEUIGOORGS-IGMARMGPSA-N Protium Chemical compound [1H] YZCKVEUIGOORGS-IGMARMGPSA-N 0.000 description 1
- 229910018540 Si C Inorganic materials 0.000 description 1
- 229910018557 Si O Inorganic materials 0.000 description 1
- 229910004205 SiNX Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 241001122767 Theaceae Species 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 229920001893 acrylonitrile styrene Polymers 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229920006026 co-polymeric resin Polymers 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 150000001925 cycloalkenes Chemical class 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 229920000554 ionomer Polymers 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005001 rutherford backscattering spectroscopy Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 235000021055 solid food Nutrition 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B9/00—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D1/00—Rigid or semi-rigid containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material or by deep-drawing operations performed on sheet material
- B65D1/40—Details of walls
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/04—Coating on selected surface areas, e.g. using masks
- C23C16/045—Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/32—Carbides
- C23C16/325—Silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/401—Oxides containing silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/42—Silicides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4401—Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
- C23C16/4404—Coatings or surface treatment on the inside of the reaction chamber or on parts thereof
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/505—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
- Y10T428/269—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension including synthetic resin or polymer layer or component
Definitions
- the present invention relates to a gas barrier plastic molding and a method for producing the same.
- Patent Document 1 discloses a method in which an organic silicon compound is used as a raw material and a gas barrier thin film mainly composed of an inorganic oxide is laminated on the inner surface of a plastic container.
- plasma CVD damages the surface of the film during the formation of the thin film, and the film density tends to be impaired, which can be an obstacle to improving the gas barrier property or ensuring the adhesion of the thin film.
- the plasma CVD method decomposes and ionizes the source gas with plasma and forms a thin film by colliding ions accelerated by an electric field with the surface of the plastic container, so a high frequency power source and a high frequency power matching device are always required.
- the cost of the apparatus has to be high.
- the present applicant decomposed the raw material gas by contacting the generated heating element with a raw material gas, and after the reaction of the generated chemical species directly or in the gas phase, a thin film is formed on the substrate.
- a gas barrier is formed on the surface of the plastic container by using a CVD method called a heating element CVD method, a Cat-CVD method or a hot wire CVD method (hereinafter referred to as a heating element CVD method).
- a technique for forming a conductive thin film is disclosed (for example, see Patent Document 2 or 3).
- Patent Document 2 discloses a technique for forming an AlOx thin film or a SiOx thin film as an oxide thin film by using a mixed gas of ozone when the material gas is a non-pyrophoric raw material and a flat panel display substrate. is doing.
- Patent Document 3 discloses a technique relating to a heating element CVD method capable of forming, for example, a hydrogen-containing SiNx thin film, a hydrogen-containing DLC thin film, a hydrogen-containing SiOx thin film, or a hydrogen-containing SiCxNy thin film by combining a plurality of gases as source gases. is suggesting.
- SiN silicon nitride
- SiN silicon nitride
- SiN silicon nitride
- a raw material gas using a nitrogen-containing gas and a silane-based gas by a heating element CVD method on the surface of a base material made of a thermoplastic resin.
- a technique for forming a SiON (silicon oxynitride) thin film is disclosed (for example, see Patent Document 4).
- a gas barrier thin film for example, a chemical species generated by bringing a source gas into contact with a heating element heated to 800 to 2000 ° C.
- Patent Document 5 discloses a method of depositing a thin film using a gas obtained by mixing a plurality of gases.
- a gas barrier property improving technique using a SiCN film using a silazane-based source gas is disclosed (see, for example, Patent Document 7).
- the conventional heating element CVD method is a method in which a mixed gas in which two or more gases are combined according to the constituent elements of the target thin film is used as a raw material gas.
- control of the supply amount of each gas is complicated, and it has been difficult to stably obtain a thin film having a high gas barrier property.
- chemical species different from the intended chemical species may be generated, and there is a limit to the improvement of gas barrier properties.
- even if the thin film has the same constituent element it does not necessarily show the same gas barrier property, and the thin film has a gas barrier property between the elements in the deposited thin film. It depends on the bonding state and the state of the voids in the thin film.
- an object of the present invention is to provide a gas barrier plastic molding having a high gas barrier property.
- the second object of the present invention is to provide a method for producing a plastic molded body having a gas barrier thin film that can be performed by a production apparatus that does not require expensive equipment using a single material gas with high safety. Is to provide.
- the C content represented by (Expression 2) of the Si-containing layer is preferably 22.8 to 45.5%.
- C content [%] ⁇ (C content [atomic%]) / (total content of Si, O and C [atomic%]) ⁇ ⁇ 100
- the content of Si, O, or C is the content in the breakdown of the three elements of Si, O, and C.
- the O content represented by (Expression 3) of the Si-containing layer is preferably 2.0 to 35.8%.
- O content [%] ⁇ (O content [atomic%]) / (total content of Si, O and C [atomic%]) ⁇ ⁇ 100
- the content of Si, O, or C is the content in the breakdown of the three elements of Si, O, and C.
- the hydrogen content of the Si-containing layer is 21 to 46 atomic%.
- the density of the gas barrier thin film is preferably 1.30 to 1.47 g / cm 3 .
- the Si-containing layer is subjected to X-ray electron spectroscopic analysis (hereinafter sometimes referred to as XPS analysis) under the condition (1), the peak appearance position of the bond energy between Si and Si. It is preferable to contain a region where the main peak is observed.
- XPS analysis X-ray electron spectroscopic analysis
- the measurement range is 95 to 105 eV. A gas barrier thin film having more excellent gas barrier properties can be obtained.
- the Si-containing layer when the Si-containing layer is subjected to X-ray photoelectron spectroscopy analysis under the condition (2), it is preferable that no peak is observed at the peak appearance position of the bond energy between Si and Si.
- Condition (2) The measurement range is 120 to 150 eV. It can be confirmed that Si-H bonds exist in the Si-containing layer.
- the gas barrier thin film is preferably formed by a heating element CVD method.
- the thickness of the gas barrier thin film is preferably 5 nm or more. A gas barrier thin film having more excellent gas barrier properties can be obtained.
- the gas barrier plastic molding according to the present invention includes a form in which the plastic molding is a container, a film or a sheet.
- the method for producing a gas barrier plastic molded body according to the present invention comprises bringing a raw material gas into contact with a heated heating element, decomposing the raw material gas to generate chemical species, and reaching the chemical species to the surface of the plastic molded body.
- a material containing one or more metal elements selected from the group consisting of Mo, W, Zr, Ta, V, Nb, and Hf a material containing one or more metal elements selected from the group consisting of Mo, W, Zr, Ta, V, Nb, and Hf, and the heating temperature of the heating element is 1550 to 2400 ° C. It is characterized by doing.
- the organosilane compound represented by the general formula (Chemical Formula 1) is preferably vinylsilane, disilabutane, disilylacetylene, or 2-aminoethylsilane. A thin film having better gas barrier properties can be efficiently formed.
- metal tantalum, a tantalum base alloy or tantalum carbide is used as the heating element, metal tungsten, tungsten base alloy or tungsten carbide is used, metal molybdenum, molybdenum base alloy or It is preferable to use molybdenum carbide or metal hafnium, a hafnium-based alloy, or hafnium carbide. Since these materials have high catalytic activity, the source gas can be decomposed more efficiently. Further, it is possible to efficiently generate chemical species and to form a thin film having high gas barrier properties.
- the present invention is to provide a gas barrier plastic molded article having a high gas barrier property.
- the second object of the present invention is to provide a method for producing a plastic molded body having a gas barrier thin film that can be performed by a production apparatus that does not require expensive equipment using a single material gas with high safety. Can be provided.
- FIG. 1 is a cross-sectional view showing a basic configuration of a gas barrier plastic molding according to the present embodiment.
- the gas barrier plastic molded body according to the present embodiment is a gas barrier plastic molded body 90 including a plastic molded body 91 and a gas barrier thin film 92 provided on the surface of the plastic molded body 91.
- the gas barrier thin film 92 includes silicon as a constituent element. It has a Si-containing layer containing (Si), carbon (C), oxygen (O) and hydrogen (H) and having a Si content represented by (Equation 1) of 40.1% or more.
- Si content [%] ⁇ (Si content [atomic%]) / (total content of Si, O and C [atomic%]) ⁇ ⁇ 100
- the content of Si, O, or C is the content in the breakdown of the three elements of Si, O, and C.
- Examples of the resin constituting the plastic molded body 91 include polyethylene terephthalate resin (PET), polybutylene terephthalate resin, polyethylene naphthalate resin, polyethylene resin, polypropylene resin (PP), and cycloolefin copolymer resin (COC, cyclic olefin copolymer).
- PET polyethylene terephthalate resin
- PP polypropylene resin
- COC cycloolefin copolymer resin
- Ionomer resin poly-4-methylpentene-1 resin, polymethyl methacrylate resin, polystyrene resin, ethylene-vinyl alcohol copolymer resin, acrylonitrile resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyamide resin, polyamideimide resin , Polyacetal resin, polycarbonate resin, polysulfone resin, or tetrafluoroethylene resin, acrylonitrile-styrene resin, acrylonitrile-butadiene-styrene resin That.
- One of these may be used as a single layer, or two or more may be used as a laminate, but a single layer is preferable in terms of productivity.
- the type of resin is more preferably PET.
- the gas barrier plastic molded body 90 includes a form in which the plastic molded body 91 is a container, a film, or a sheet.
- the shape can be appropriately set according to the purpose and application, and is not particularly limited.
- the container includes a container that is used with a lid, a stopper, or a seal, or a container that is used without being used.
- the size of the opening can be appropriately set according to the contents.
- the plastic container includes a plastic container having a predetermined thickness having moderate rigidity and a plastic container formed by a sheet material having no rigidity. The present invention is not limited to the manufacturing method of the container.
- the contents are, for example, beverages such as water, tea beverages, soft drinks, carbonated beverages or fruit juice beverages, liquids, viscous bodies, powders or solid foods.
- the container may be either a returnable container or a one-way container.
- the film or sheet includes a long sheet-like material and a cut sheet. It does not matter whether the film or sheet is stretched or unstretched.
- the present invention is not limited to the method for manufacturing the plastic molded body 91.
- the thickness of the plastic molded body 91 can be appropriately set according to the purpose and application, and is not particularly limited.
- the thickness of the bottle is preferably 50 to 500 ⁇ m, more preferably 100 to 350 ⁇ m.
- the thickness of the film is preferably 3 to 300 ⁇ m, more preferably 10 to 100 ⁇ m.
- the film thickness is preferably 25 to 200 ⁇ m, more preferably 50 to 100 ⁇ m.
- the thickness of the sheet is preferably 50 to 500 ⁇ m, more preferably 100 to 350 ⁇ m.
- the gas barrier thin film 92 is provided on one or both of the inner wall surface and the outer wall surface. Further, when the plastic molded body 91 is a film, the gas barrier thin film 92 is provided on one side or both sides.
- the gas barrier thin film 92 contains silicon (Si), carbon (C), oxygen (O) and hydrogen (H) as constituent elements, and the Si content represented by (Equation 1) is 40.1%.
- the Si-containing layer is as described above.
- the Si content of the Si-containing layer is more preferably 40.7% or more.
- the upper limit of the Si content of the Si-containing layer is preferably 57.7%. More preferably, it is 55.7%. If the Si content of the Si-containing layer is less than 40.1%, gas barrier properties may be insufficient.
- the gas barrier thin film 92 has a Si-containing layer having a Si content of 40.1% or more, the gas barrier thin film 92 has other layers such as a low Si-containing layer in the upper layer or the lower layer or both of the Si-containing layer. It may be. Further, the entire gas barrier thin film 92 may be the Si-containing layer.
- the C content represented by (Expression 2) of the Si-containing layer is preferably 22.8 to 45.5%. More preferably, it is 24.8 to 45.4%.
- C content [%] ⁇ (C content [atomic%]) / (total content of Si, O and C [atomic%]) ⁇ ⁇ 100
- the content of Si, O, or C is the content in the breakdown of the three elements of Si, O, and C.
- the O content represented by (Equation 3) of the Si-containing layer is preferably 2.0 to 35.8%. More preferably, it is 6.0 to 33.8%.
- O content [%] ⁇ (O content [atomic%]) / (total content of Si, O and C [atomic%]) ⁇ ⁇ 100
- the content of Si, O, or C is the content in the breakdown of the three elements of Si, O, and C.
- Si content rate, C content rate, or O content rate can be measured by XPS analysis of the gas barrier thin film 92, for example.
- the hydrogen content of the Si-containing layer is preferably 21 to 46 atomic% (at.%, Atomic%). More preferably, 25 to 42 at. %.
- the hydrogen content can be measured by Rutherford backscattering analysis (hereinafter referred to as RBS analysis).
- RBS analysis Rutherford backscattering analysis
- the silicon content of the gas barrier thin film by RBS analysis is 20 to 38 at. % Is preferred. More preferably, 22 to 36 at. %.
- the carbon content of the gas barrier thin film by RBS analysis is 15 to 25 at. % Is preferred. More preferably, 18 to 22 at. %.
- the oxygen content of the gas barrier thin film by RBS analysis is 12-26 at. % Is preferred. More preferably, 15 to 21 at. %.
- the gas barrier thin film 92 may contain other elements in addition to Si, C, O, and H.
- the other element is, for example, a metal element derived from a heating element such as Mo (molybdenum), N (nitrogen).
- the density of the gas barrier thin film is preferably 1.30 to 1.47 g / cm 3 . More preferably, it is 1.33 to 1.46 g / cm 3 , and particularly preferably 1.35 to 1.40 g / m 3 .
- Si-containing layer when the Si-containing layer is subjected to XPS analysis under the condition (1), a main peak is observed at the peak appearance position of the bond energy between Si and Si (hereinafter, Si and Si).
- the peak observed at the peak appearance position of the binding energy with the silicon is sometimes referred to as a Si peak.
- the measurement range is 95 to 105 eV.
- a main peak is observed at the peak appearance position of the bond energy between Si and Si.
- the main peak means a peak having the highest intensity among the peaks observed by peak separation under the condition (1).
- the bonding state assumed from the peak appearing at the peak appearance position of the bond energy between Si and Si is a Si—Si bond or a Si—H bond.
- the main bond of the Si peak is a Si—H bond.
- the bonding mode of the compound contained in the gas barrier thin film 92 is, for example, Si—C bond, Si—O bond, C—H bond, C—C bond, C— They are an O bond, a Si-OC bond, a COC bond, and an OCO bond.
- the Si-containing layer when the Si-containing layer is subjected to XPS analysis under the condition (2), it is preferable that no peak is observed at the peak appearance position of the bond energy between Si and Si.
- Condition (2) The measurement range is 120 to 150 eV. Whether the Si peak is mainly Si-Si bond or Si-H bond can be confirmed by performing XPS analysis under the conditions (1) and (2). That is, the condition (1) has a peak at the peak appearance position of the bond energy between Si and Si, and the condition (2) has no peak at the peak appearance position of the bond energy between Si and Si. Thus, it can be confirmed that the Si peak shows a Si—H bond.
- the barrier property improvement rate (Barrier Improvement Factor, hereinafter referred to as BIF) obtained by (Equation 4) can be set to 6 or more.
- BIF [Oxygen permeability of plastic molding without thin film] / [Oxygen permeability of gas barrier plastic molding]
- the gas barrier thin film 92 has a gradient composition in which the bond between Si and H (Si—H bond) is unevenly distributed on the surface of the thin film. Is preferred. It can be confirmed that the gas barrier thin film 92 has a gradient composition by performing argon ion etching in the XPS analysis under the condition (1). According to this analysis result, the Si peak is the main peak on the surface of the gas barrier thin film 92, and the main peak shifts to the higher binding energy side toward the plastic molded body.
- the composition gradually changes from SiC and SiOC having more carbon than oxygen to SiOC having more oxygen than carbon, It is presumed that it becomes SiOx at the interface of the plastic molded body.
- SiO-based compounds such as SiO 2 or SiOx are deposited at the interface of the plastic molded body due to the influence of oxygen derived from the plastic molded body during the film formation process. From the vicinity of 5 nm from the interface of the plastic molded body, the influence of the plastic molded body is reduced, the O content decreases, and the deposited compound becomes a SiC-based compound such as from SiOC to SiC. It is presumed that the surface contains many Si—H bonds.
- the thickness of the gas barrier thin film 92 is preferably 5 nm or more. More preferably, it is 10 nm or more. If it is less than 5 nm, gas barrier properties may be insufficient.
- the upper limit value of the thickness of the gas barrier thin film 92 is preferably 200 nm. More preferably, it is 100 nm. If the thickness of the gas barrier thin film 92 exceeds 200 nm, cracks are likely to occur due to internal stress.
- the gas barrier thin film 92 is preferably formed by a heating element CVD method.
- a heating element CVD method a raw material gas is brought into contact with a heating element heated by energization heating in a vacuum chamber and decomposed, and a generated chemical species is subjected to a reaction process directly or in a gas phase, and then formed as a thin film on a substrate. It is a method of depositing.
- the heating element varies depending on the softening temperature, it generally generates heat at 200 to 2200 ° C. However, the temperature of the substrate should be kept from room temperature to a low temperature of about 200 ° C by providing a gap between the substrate and the heating element.
- a thin film can be formed without damaging a heat-sensitive substrate such as plastic.
- the apparatus is simple and the cost of the apparatus itself can be reduced as compared with other chemical vapor deposition methods such as plasma CVD or physical vapor deposition (PVD) methods such as vacuum vapor deposition, sputtering, and ion plating.
- plasma CVD chemical vapor deposition
- PVD physical vapor deposition
- a gas barrier thin film is formed by deposition of chemical species, a dense film having a higher bulk density can be obtained as compared with the wet method.
- FIG. 2 is a schematic view showing an embodiment of the film forming apparatus.
- FIG. 2 shows an apparatus that uses a plastic container 11 as the plastic molded body 91 and forms a gas barrier thin film 92 on the inner surface of the plastic container 11.
- the gas barrier plastic container manufacturing apparatus 100 shown in FIG. 2 includes a vacuum chamber 6 that houses a plastic container 11 as a plastic molded body 91, an exhaust pump (not shown) that evacuates the vacuum chamber 6, and a plastic container 11.
- the raw material gas supply pipe 23 made of an insulating and heat-resistant material that is detachably disposed inside the plastic container 11 and supplies the raw material gas to the inside of the plastic container 11, and the heat generation supported by the raw material gas supply pipe 23. It has a body 18 and a heater power supply 20 that energizes the heating element 18 to generate heat.
- the vacuum chamber 6 has a space for accommodating a plastic container 11 formed therein, and the space serves as a reaction chamber 12 for forming a thin film.
- the vacuum chamber 6 includes a lower chamber 13 and an upper chamber 15 that is detachably attached to the upper portion of the lower chamber 13 and seals the inside of the lower chamber 13 with an O-ring 14.
- the upper chamber 15 has an upper and lower drive mechanism (not shown) and moves up and down as the plastic container 11 is carried in and out.
- the internal space of the lower chamber 13 is formed to be slightly larger than the outer shape of the plastic container 11 accommodated therein.
- the inside of the vacuum chamber 6, particularly the inside of the lower chamber 13, has an inner surface 28 that is a black inner wall or an inner surface that has a surface roughness (Rmax) in order to prevent reflection of light emitted as the heating element 18 generates heat. ) It is preferable to have irregularities of 0.5 ⁇ m or more.
- the surface roughness (Rmax) is measured, for example, using a surface roughness measuring instrument (DEKTAX 3 manufactured by ULVAC TECHNO).
- a plating process such as black nickel plating and black chrome plating
- a chemical film treatment such as radiant and black dyeing
- a method of coloring by applying a black paint are a plating process such as black nickel plating and black chrome plating, or a method of coloring by applying a black paint.
- a cooling means 29 such as a cooling pipe through which the cooling water flows inside or outside the vacuum chamber 6 to prevent the temperature of the lower chamber 13 from rising.
- the lower chamber 13 is particularly targeted because when the heating element 18 is inserted into the plastic container 11, the vacuum chamber 6 is in a state of being accommodated in the inner space of the lower chamber 13. By preventing light reflection and cooling the vacuum chamber 6, the temperature rise of the plastic container 11 and the accompanying thermal deformation can be suppressed.
- a chamber 30 made of a transparent material through which the emitted light generated from the energized heating element 18 can pass for example, a glass chamber, is disposed inside the lower chamber 13, the temperature of the glass chamber in contact with the plastic container 11 rises. Therefore, the thermal influence on the plastic container 11 can be further reduced.
- the source gas supply pipe 23 is supported so as to hang downward at the center of the inner ceiling surface of the upper chamber 15.
- the raw material gas 33 flows into the raw material gas supply pipe 23 through the flow rate adjusters 24a and 24b and the valves 25a to 25c.
- the source gas 33 can be supplied by a bubbling method when the starting material is liquid. That is, the bubbling gas is supplied to the starting material 41a accommodated in the material tank 40a while controlling the flow rate by the flow rate controller 24a, and the starting material 41a is vaporized and supplied as the material gas 33.
- the raw material gas supply pipe 23 preferably has a cooling pipe and is integrally formed.
- a structure of such a source gas supply pipe 23 for example, there is a double pipe structure.
- the inner pipe line of the double pipe is a source gas channel 17, one end of which is connected to the gas supply port 16 provided in the upper chamber 15, and the other end is a gas blowout. It is a hole 17x.
- the source gas is blown out from the gas blowing hole 17x at the tip of the source gas flow path 17 connected to the gas supply port 16.
- the outer pipe line of the double pipe is a cooling water flow path 27 for cooling the source gas supply pipe 23, and plays a role as a cooling pipe.
- the cooling water circulates in the cooling water passage 27. That is, at one end of the cooling water flow path 27, cooling water is supplied from a cooling water supply means (not shown) connected to the upper chamber 15, and at the same time, the cooled cooling water is returned to the cooling water supply means. On the other hand, the other end of the cooling water passage 27 is sealed in the vicinity of the gas blowing hole 17x, and here, the cooling water is folded back. The entire raw material gas supply pipe 23 is cooled by the cooling water passage 27. By cooling, the thermal influence on the plastic container 11 can be reduced.
- the material of the source gas supply pipe 23 is preferably an insulator and has a high thermal conductivity.
- a ceramic tube made of a material mainly containing aluminum nitride, silicon carbide, silicon nitride, or aluminum oxide, or a surface made of a material mainly containing aluminum nitride, silicon carbide, silicon nitride, or aluminum oxide Is preferably a coated metal tube.
- the heating element can be stably energized, has durability, and can efficiently exhaust heat generated by the heating element by heat conduction.
- the raw material gas supply pipe 23 may be configured as follows as another form (not shown). That is, the source gas supply pipe is a double pipe, the outer pipe is used as a source gas flow path, and a hole, preferably a plurality of holes, is formed in the side wall of the outer pipe.
- the inner pipe of the double pipe of the source gas supply pipe is formed by a dense pipe, and the cooling water flows as a cooling water flow path.
- the heating element is wired along the side wall of the source gas supply pipe, but the source gas that has passed through the hole provided in the side wall of the outer pipe contacts the heating element in the portion along the side wall to efficiently generate chemical species. Can be made.
- the length of the source gas supply pipe 23 is preferably formed such that the distance L1 from the gas blowing hole 17x to the bottom of the plastic container 11 is 5 to 50 mm.
- the uniformity of the film thickness is improved.
- a uniform thin film can be formed on the inner surface of the plastic container 11 at a distance of 5 to 50 mm. If the distance is larger than 50 mm, it may be difficult to form a thin film on the bottom of the plastic container 11. Further, if the distance is less than 5 mm, it may be difficult to blow out the source gas, or the film thickness distribution may be non-uniform. This fact can be grasped theoretically.
- the intermediate flow is 0.106 Pa ⁇ pressure ⁇ 10.6 Pa.
- the gas flow changes from an intermediate flow to a viscous flow, and there is an optimum condition for the distance between the gas blowing hole 17x and the bottom of the plastic container 11.
- the heating element 18 promotes decomposition of the raw material gas.
- the heating element 18 is formed in a wiring shape, and is connected to one end of the heating element 18 at a connection portion 26 a provided below the fixed portion in the upper chamber 15 of the source gas supply pipe 23 and serving as a connection point between the wiring 19 and the heating element 18. Is connected. And it is supported with the insulating ceramic member 35 provided in the gas blowing hole 17x which is a front-end
- FIG. 2 shows the case where the heating element 18 is disposed along the periphery of the source gas supply pipe 23 so as to be parallel to the axis of the source gas supply pipe 23, the source gas supply pipe starts from the connecting portion 26 a. 23 may be spirally wound around the side surface of 23 and supported by the insulating ceramics 35 fixed in the vicinity of the gas blowing hole 17x, and then folded back toward the connecting portion 26b.
- the heating element 18 is fixed to the source gas supply pipe 23 by being hooked on the insulating ceramic 35.
- FIG. 2 the case where the heating element 18 is arranged on the outlet side of the gas blowing hole 17x in the vicinity of the gas blowing hole 17x of the source gas supply pipe 23 is shown.
- the source gas blown out from the gas blowing holes 17x can easily come into contact with the heating element 18, so that the source gas can be activated efficiently.
- the heating element 18 is preferably disposed slightly apart from the side surface of the source gas supply pipe 23. This is to prevent a rapid temperature rise of the source gas supply pipe 23.
- the opportunity of contact with the source gas blown out from the gas blowing hole 17x and the source gas in the reaction chamber 12 can be increased.
- the outer diameter of the source gas supply pipe 23 including the heating element 18 needs to be smaller than the inner diameter of the mouth portion 21 of the plastic container. This is because the source gas supply pipe 23 including the heating element 18 is inserted from the mouth portion 21 of the plastic container.
- the lateral width of the heating element 18 is suitably 10 mm or more and (inner diameter of the mouth part -6) mm or less in consideration of positional deviation when inserted from the mouth part 21 of the plastic container.
- the inner diameter of the mouth portion 21 is approximately 21.7 to 39.8 mm.
- the heating element 18 Since the heating element 18 has conductivity, it can generate heat when energized, for example.
- a heater power source 20 is connected to the heating element 18 via connection portions 26 a and 26 b and wiring 19.
- the heater 18 generates heat when electricity is supplied to the heater 18 by the heater power source 20.
- the present invention is not limited to the heating method of the heating element 18.
- the draw ratio at the time of molding of the plastic container 11 is small from the mouth portion 21 of the plastic container to the shoulder of the container, if the heating element 18 that generates heat at a high temperature is disposed nearby, the plastic container 11 is likely to be deformed by heat.
- the shoulder portion of the plastic container 11 is thermally deformed unless the positions of the connection portions 26a and 26b, which are the connection points between the wiring 19 and the heating element 18, are separated from the lower end of the mouth portion 21 of the plastic container by 10 mm or more. When the thickness exceeded 50 mm, it was difficult to form a thin film on the shoulder portion of the plastic container 11.
- the heating element 18 is preferably arranged so that its upper end is positioned 10 to 50 mm below the lower end of the mouth portion 21 of the plastic container. That is, it is preferable that the distance L2 between the connecting portions 26a and 26b and the lower end of the mouth portion 21 is 10 to 50 mm. Thermal deformation of the shoulder portion of the container can be suppressed.
- An exhaust pipe 22 communicates with the internal space of the upper chamber 15 via a vacuum valve 8 so that air in the reaction chamber 12 inside the vacuum chamber 6 is exhausted by an exhaust pump (not shown). .
- a method for manufacturing a gas barrier plastic molded body according to this embodiment will be described by taking as an example the case of forming a gas barrier thin film on the inner surface of the gas barrier plastic container 11.
- the raw material gas 33 is brought into contact with the heat generating body 18 that has generated heat, the raw material gas 33 is decomposed to generate chemical species 34, and the surface of the plastic molded body (see FIG.
- the general formula (Chemical Formula 1) a material containing one or more metal elements selected from the group of Mo, W, Zr, Ta, V, Nb, and Hf as the heating element 18
- the heating temperature of the heating element 18 is set to 1550 to 2400 ° C.
- the plasma CVD method is used to reduce the oxygen permeability of a 500 ml PET bottle to about a half. It can only be suppressed to a practical level and is insufficient as a practical performance. It is known that when a thin film made of DLC or SiOx is formed by plasma CVD, the oxygen permeability of a 500 ml PET bottle can be reduced to 1/10 or less. However, when a carbonated beverage is filled, the bottle expands. As a result, the gas barrier properties decrease.
- a 500 ml PET bottle (resin amount 23 g) formed with a DLC film or SiOx film by plasma CVD is filled with 4 GV (gas volume) of carbonated water, and the condition is 5 at 38 ° C. If kept for one day, the capacity of PET bottles will normally expand to 18 to 21 cm3 (22 to 26 cm3 for PET bottles without film), and the oxygen permeability after expansion will increase 1.5 to 2.9 times. To do. This is a result of the comprehensive appearance of the damage of the thin film due to the expansion and expansion of the PET bottle.
- the oxygen transmission rate in a 500 ml PET bottle is, for example, It can be reduced to 1/10 or less, and sufficient practical performance can be obtained.
- the carbonated beverage is filled, the expansion of the bottle can be effectively suppressed, and the gas barrier property is not substantially lowered.
- a 500 ml PET bottle (resin amount 23 g) formed using the heating element CVD method is filled with carbonated water of 4 GV (gas volume) and kept at 38 ° C. for 5 days.
- the bottle capacity expands only from 13 to 17 cm 3 (22 to 26 cm 3 in the case of a non-film-formed bottle), and the oxygen permeability after expansion only increases by 1.2 to 1.3 times.
- a vent (not shown) is opened to open the vacuum chamber 6 to the atmosphere.
- a plastic container 11 as a plastic molded body 91 is inserted and accommodated from the upper opening of the lower chamber 13.
- the positioned upper chamber 15 is lowered, and the source gas supply pipe 23 attached to the upper chamber 15 and the heating element 18 fixed thereto are inserted into the plastic container 11 from the opening 21 of the plastic container.
- the upper chamber 15 is brought into contact with the lower chamber 13 via the O-ring 14, whereby the reaction chamber 12 is made a sealed space.
- the distance between the inner wall surface of the lower chamber 13 and the outer wall surface of the plastic container 11 is kept substantially uniform, and the distance between the inner wall surface of the plastic container 11 and the heating element 18 is also substantially uniform. It is kept in.
- the heating element 18 is caused to generate heat by energization, for example.
- the material of the heating element 18 is one selected from the group consisting of Mo (molybdenum), W (tungsten), Zr (zirconium), Ta (tantalum), V (vanadium), Nb (niobium), and Hf (hafnium). Alternatively, it is a material containing two or more metal elements. More preferably, the material contains one or more metal elements selected from the group consisting of Mo, W, Zr, and Ta.
- the heating temperature of the heating element 18 is 1550 to 2400 ° C. More preferably, it is 1700-2100 ° C.
- the material containing the metal element used for the heating element 18 is preferably a pure metal, an alloy, or a metal carbide.
- an alloy mainly composed of Mo, W, Zr, Ta, V, Nb, or Hf is used as the heating element 18, the alloy has a content of components other than the metal as a main component of 25% by mass or less. It is preferable. More preferably, it is 10 mass% or less, More preferably, it is 1 mass% or less.
- tantalum carbide (TaC x ) is used as the heating element 18, the ratio of carbon atoms in tantalum carbide (TaC x ) is preferably more than 0% by mass and 6.2% by mass or less.
- hafnium carbide (HfC x ) is used as the heating element 18, the ratio of carbon atoms in the hafnium carbide (HfC x ) is preferably more than 0% by mass and 6.3% by mass or less. More preferably, it is 3.2 mass% or more and 6.3 mass% or less.
- hafnium carbide (HfC x ) is used as the heating element 18, the ratio of carbon atoms in the hafnium carbide (HfC x ) is preferably more than 0% by mass and 6.3% by mass or less. More preferably, it is 3.2 mass% or more and 6.3 mass% or less.
- tungsten carbide (WC x ) is used as the heating element 18, the ratio of carbon atoms in the tungsten carbide (WC x ) is preferably more than 0% by mass and 6.1% by mass or less. More preferably, it is 3.0 mass% or more and 6.1 mass% or less.
- the ratio of carbon atoms in molybdenum carbide (MoC x ) is preferably more than 0% by mass and 5.9% by mass or less. More preferably, it is 2.9 mass% or more and 5.9 mass% or less.
- an organosilane compound represented by the general formula (Formula 1) is supplied as the source gas 33.
- the bond between carbons in the hydrocarbon structure corresponding to Cn may be a single bond, a double bond, or a triple bond.
- a linear structure is more preferable.
- examples of embodiments of Cn include an embodiment in which C—C is a single bond (C 2 H 4 ), an embodiment in which C—C is a double bond (C 2 H 2 ), This is an embodiment (C 2 ) in which CC is a triple bond.
- examples of Cn include, for example, an embodiment in which CC is a single bond (C 3 H 6 ), an embodiment in which CC is a single bond and a double bond (C 3 H 4 ) , CC is a single bond and a triple bond (C 3 H 2 ).
- the organosilane compound represented by the general formula (Chemical Formula 1) is, for example, vinylsilane (H 3 SiC 2 H 3 ), disilabutane (H 3 SiC 2 H 4 SiH 3 ), disilylacetylene (H 3 SiC 2 SiH 3 ), 2-aminoethylsilane (H 3 SiC 2 H 4 NH 2 ). Of these, vinylsilane, disilabutane, or disilylacetylene is preferable.
- the raw material gas 33 is supplied after the flow rate is controlled by the gas flow rate regulator 24a. Further, the carrier gas is mixed with the source gas 33 before the valve 25c while the flow rate of the carrier gas is controlled by the gas flow rate regulator 24b as necessary.
- the carrier gas is an inert gas such as argon, helium or nitrogen.
- the source gas 33 is supplied to the source gas supply pipe 23 in the plastic container 11 whose pressure is reduced to a predetermined pressure in a state where the flow rate is controlled by the gas flow rate regulator 24a or in a state where the flow rate is controlled by the carrier gas.
- the gas is blown out from the gas blowing hole 17x toward the heating element 18 that has generated heat.
- the source gas 33 When the source gas 33 is a liquid, it can be supplied by a bubbling method.
- the bubbling gas used for the bubbling method is, for example, an inert gas such as nitrogen, argon, or helium, and nitrogen gas is more preferable. That is, when the starting material 41a in the material tank 40a is bubbled using bubbling gas while controlling the flow rate with the gas flow rate regulator 24a, the starting material 41a is vaporized and taken into the bubbles.
- the source gas 33 is supplied in a state of being mixed with the bubbling gas. Further, the carrier gas is mixed with the raw material gas 33 in front of the valve 25c while controlling the flow rate with the gas flow rate regulator 24b.
- the raw material gas 33 is directed toward the heating element 18 that generates heat from the gas blowing hole 17x of the raw material gas supply pipe 23 in the plastic container 11 whose pressure is reduced to a predetermined pressure while the flow rate is controlled by the carrier gas. Blown out.
- the flow rate of the bubbling gas is preferably 3 to 50 sccm, and more preferably 5 to 15 sccm.
- the flow rate of the carrier gas is not particularly limited, but is preferably 0 to 80 sccm. More preferably, it is 5 to 50 sccm.
- the pressure in the plastic container 11 can be adjusted to 20 to 80 Pa depending on the flow rate of the carrier gas.
- the time during which the heating element 18 is heated in the film forming step and the source gas is sprayed onto the heating element 18 is preferably 1.0 to 20 seconds, more preferably 1.0 to 8.5 seconds.
- the pressure in the vacuum chamber during film formation is preferably reduced until it reaches, for example, 1.0 to 100 Pa. More preferably, it is 1.4 to 50 Pa.
- an organic silane compound other than the organic silane compound represented by the general formula (Formula 1) for example, monomethylsilane, dimethylsilane, trimethylsilane, tetramethylsilane
- Formula (1) an organic silane compound other than the organic silane compound represented by the general formula (Formula 1) (for example, monomethylsilane, dimethylsilane, trimethylsilane, tetramethylsilane)
- the surface of the thin film formed using dimethoxymethylvinylsilane was subjected to XPS analysis under the condition (1), no Si peak was observed, and a main peak based on SiO, SiC or SiOC was observed.
- the plastic molded object provided with this thin film confirmed that BIF was less than 3, and it was not possible to obtain a thin film having high gas barrier properties with a single kind of gas.
- the heating element 18 a metal other than Mo, W, Zr, Ta, V, Nb or Hf (for example, Ir (iridium), Re (rhenium), Pt (platinum), Rh (rhodium), Ti (titanium). , Cr (chromium)), even if an organic silane compound represented by the general formula (Chemical Formula 1) is used as the source gas 33, the film forming efficiency is poor and the productivity is inferior. It was. When the surface of the obtained ultrathin thin film was analyzed by XPS under the condition (1), the Si peak was not observed, and the main peak based on SiO 2 was slightly observed.
- the gas barrier plastic molding according to the present embodiment uses an organosilane compound represented by the general formula (Chemical Formula 1) as the raw material gas 33, and further uses Mo, W, Zr as the material of the heating element 18. , Ta, V, Nb, and Hf, a material containing one or two or more metal elements is used. Therefore, even if the source gas 33 is a single type of gas, the BIF has a high gas barrier property of 15 or more. It was possible to form a thin film having the same.
- organosilane compound represented by the general formula (Chemical Formula 1) as the raw material gas 33
- Mo, W, Zr as the material of the heating element 18.
- Ta, V, Nb, and Hf a material containing one or two or more metal elements is used. Therefore, even if the source gas 33 is a single type of gas, the BIF has a high gas barrier property of 15 or more. It was possible to form a thin film having the same.
- metal molybdenum, molybdenum-based alloy or molybdenum carbide (MoC x ) as a material containing Hf or using metal hafnium, hafnium-based alloy or hafnium carbide (HfC x ) as a material containing hafnium element, these materials Since the catalytic activity is high, the raw material gas can be decomposed more efficiently. Moreover, since the chemical species 34 is efficiently generated and a dense film is deposited, a thin film having high gas barrier properties can be formed.
- the adhesion between the plastic container 11 and the gas barrier thin film is very good.
- the hydrogen gas is activated by a catalytic decomposition reaction with the heating element 18, and the surface of the plastic container 11 can be cleaned by this active species. More specifically, a hydrogen abstraction reaction or etching action by activated hydrogen H * or hydrogen radical (atomic hydrogen) H can be expected.
- surface treatment for modifying and stabilizing the surface of the plastic container 11 can be performed by active species generated by catalytic decomposition reaction with the heating element 18. More specifically, addition of a nitrogen-containing functional group to the surface and a crosslinking reaction of a plastic polymer chain can be expected.
- the film thickness of the gas barrier thin film depends on the material of the heating element 18, the pressure of the raw material gas in the plastic container 11, the supply gas flow rate, the film forming time, and the like. In order to achieve both durability and transparency, the thickness is preferably 5 to 200 nm. More preferably, it is 10 to 100 nm.
- the gas barrier plastic molded article thus obtained can have a BIF of 6 or more.
- the oxygen permeability is set to 0.1. It can be 0058 cc / container / day or less.
- the oxygen permeability is 0.0082 cc / container / day It can be as follows.
- a thermal annealing process may be performed.
- the thermal annealing step can be performed after the thin film reaches a predetermined thickness, the supply of the source gas 33 is stopped, and the reaction chamber is evacuated for a certain time. Through the thermal annealing process, the oxygen permeability of the gas barrier film can be further reduced.
- the heating temperature of the heating element 18 in the thermal annealing step is preferably 1450 ° C. or higher, and more preferably 1950 ° C. or higher. If it is less than 1450 degreeC, the effect of a thermal annealing process may not be acquired.
- the upper limit of the heat generation temperature is preferably lower than the softening temperature of the heat generator 18.
- the time during which the heating element 18 is heated in the thermal annealing step is preferably 1.0 to 5.0 seconds, and more preferably 1.5 to 2.0 seconds.
- energization to the heating element 18 is terminated after the thermal annealing process.
- a regeneration process of the heating element 18 in which an oxidizing gas is added to the atmosphere to heat the heating element after the film forming process.
- an organosilane compound as a source gas
- carbonization proceeds on the surface of the heating element 18 in about 30 times, and the gas barrier property of the gas barrier thin film 92 may be reduced.
- the carbon component can be easily removed from the surface of the heating element 18 by bringing the oxidizing gas into contact with the heated heating element 18 in the vacuum chamber 6 adjusted to a predetermined pressure.
- the gas barrier property of the gas barrier thin film 92 after the continuous film formation can be suppressed from decreasing.
- the oxidizing gas is preferably carbon dioxide.
- the regeneration process of the heating element 18 may be performed every time the film forming process is performed, or may be performed after the film forming process is performed a plurality of times.
- the regeneration process of the heating element 18 is preferably performed after the plastic molding is taken out from the vacuum chamber 6 after the film forming process.
- the heating temperature of the heating element 18 is preferably 1900 ° C. or higher and 2500 ° C. or lower. More preferably, it is 2000 degreeC or more and 2400 degrees C or less.
- the heating time is preferably 0.5 to 3.0 times the film formation time.
- the pressure in the vacuum chamber in the regeneration process of the heating element 18 (hereinafter sometimes referred to as the vacuum pressure during regeneration) is 1.3 Pa or more and less than 14 Pa. Is preferred. More preferably, it is 1.4 Pa or more and 13 Pa or less.
- the vacuum pressure at the time of regeneration is more than 1 and less than 9 times the partial pressure of the source gas 33 in the vacuum chamber at the time of film formation (hereinafter sometimes referred to as the partial pressure of the source gas at the time of film formation). It is preferable that When the vacuum pressure during regeneration is less than 1 times the partial pressure of the raw material gas during film formation, the accumulation rate of carbide exceeded the removal rate, and when the film was continuously formed on a plurality of molded bodies, the film was formed in the latter half. In some cases, the gas barrier property of the material is lower than that of the film formed in the first half.
- the vacuum pressure during regeneration exceeds 9 times the partial pressure of the raw material gas during film formation, oxidation of the surface of the heating element 18 occurs in addition to removal of carbides, and oxidation components are mixed into the gas barrier thin film. Due to the exhaustion of the heating element 18 due to evaporation, the gas barrier property of the film formed in the latter half of the continuous film formation may deteriorate.
- the supply path of the oxidizing gas into the vacuum chamber 6 in the regeneration process of the heating element 18 may be the same as the supply path of the source gas in the film forming process or may be different from the supply path of the source gas. .
- the heating element is metal tantalum having a purity of 99.5% by mass.
- the analysis of the surface of the heating element was performed by observing an elemental composition having a depth of 1 ⁇ m from the surface of the heating element using a scanning electron microscope (manufactured by Hitachi, Ltd., SU1510), and energy dispersive X-ray attached to the apparatus.
- An analysis apparatus Horiba Seisakusho, EMAX ENERGY
- the elemental concentration of carbon is 1 at.
- the gas barrier thin film 92 that can improve the gas barrier property by 10 times or more is formed. Can do.
- the control for adjusting the applied voltage in response to a sudden change in electrical resistance on the surface of the heating element in a mass production process is complicated. Therefore, by performing the regeneration process of the heating element 18, complicated control of the applied voltage is not required, and a thin film having a high gas barrier property can be continuously formed even if the film formation process is continuously performed.
- the film forming apparatus shown in FIG. Can do the film forming apparatus is not limited to the apparatus shown in FIG. 2, and various modifications can be made as shown in Patent Document 2 or 3, for example.
- the plastic molded body is a plastic container
- the present invention is not limited to this, and the plastic molded body can be a film or a sheet.
- Example 1 As a plastic molding, on the inner surface of a 500 ml PET bottle (height 133 mm, body outer diameter 64 mm, mouth outer diameter 24.9 mm, mouth inner diameter 21.4 mm, wall thickness 300 ⁇ m and resin amount 29 g), FIG. A gas barrier thin film was formed using the film forming apparatus shown. The PET bottle was accommodated in the vacuum chamber 6 and decompressed until it reached 1.0 Pa. Next, two molybdenum wires having a diameter of ⁇ 0.5 mm and a length of 44 cm were used as the heating element 18, 24 V was applied to the heating element 18 to generate heat at 2000 ° C.
- vinylsilane was supplied as a source gas from the gas flow regulator 24a while adjusting the valve opening, and a gas barrier thin film was deposited on the inner surface of the PET bottle.
- the piping from the gas flow rate regulator 24a to the gas supply port 16 was composed of 1/4 inch piping made of alumina, and the flow rate of the source gas was 50 sccm.
- the pressure during film formation (total pressure) was 1.4 Pa.
- the film formation time was 6 seconds.
- the partial pressure of vinylsilane (partial pressure of the raw material gas at the time of film formation) was equal to the pressure at the time of film formation (total pressure) and was 1.4 Pa.
- Example 2 A gas barrier plastic molded article was obtained in the same manner as in Example 1 except that the direct current applied to the heating element 18 was adjusted to set the heating temperature to 1550 ° C.
- Example 3 a gas barrier plastic molded body was obtained in the same manner as in Example 1 except that the direct current applied to the heating element 18 was adjusted to set the heating temperature to 2200 ° C.
- Example 4 In Example 1, a gas barrier plastic molded article was obtained according to Example 1 except that 1,4-disilabutane was used instead of vinylsilane as the raw material gas. The film formation time was 6 seconds.
- Example 5 a gas barrier plastic molded article was obtained according to Example 1 except that disilylacetylene was used instead of vinylsilane as the raw material gas.
- the film formation time was 6 seconds.
- Example 6 In Example 1, a gas barrier plastic molded article was obtained in the same manner as in Example 1 except that the heating element 18 was replaced with a tungsten wire instead of the molybdenum wire. The film formation time was 6 seconds.
- Example 7 In Example 1, except that the heating element 18 is a zirconium wire instead of the molybdenum wire, the direct current applied to the heating element 18 is adjusted, the heating temperature is 1700 ° C., and the film formation time is 6 seconds. A gas barrier plastic molding was obtained according to Example 1.
- Example 8 In Example 1, a gas barrier plastic molded article was obtained according to Example 1 except that the heating element 18 was replaced with a tantalum wire instead of the molybdenum wire.
- Example 9 In Example 1, a gas barrier plastic molding was obtained according to Example 1 except that the heating element 18 was replaced with a tantalum wire instead of the molybdenum wire, and the film formation time of 8 seconds was repeated 5 times.
- TaC x (X 1, mass ratio of carbon atoms in TaC x is 6.2 mass%, element of carbon atoms in TaC x The concentration was 50 at.%)
- Patent Document 6 A thin film was formed using the manufacturing apparatus shown in FIG. The PET bottle was accommodated in the external electrode, and the pressure in the external electrode was reduced by a vacuum pump until 5 Pa was reached. Thereafter, vinylsilane as a source gas was supplied to the inside of the PET bottle while adjusting the flow rate to 80 sccm in the source gas supply pipe.
- Example 2 (Comparative Example 2) In Example 1, a thin film was formed on the surface of the plastic molded body according to Example 1, except that monomethylsilane was used instead of vinylsilane as the source gas. The film formation time was 6 seconds.
- Example 3 (Comparative Example 3) In Example 1, a thin film was formed on the surface of the plastic molded body according to Example 1 except that dimethylsilane was used instead of vinylsilane as the source gas. The film formation time was 6 seconds.
- Example 4 (Comparative Example 4) In Example 1, a thin film was formed on the surface of the plastic molded body according to Example 1 except that trimethylsilane was used instead of vinylsilane as the source gas. The film formation time was 6 seconds.
- Example 5 (Comparative Example 5) In Example 1, a thin film was formed on the surface of the plastic molded body according to Example 1 except that tetramethylsilane was used instead of vinylsilane as the raw material gas. The film formation time was 6 seconds.
- Example 6 (Comparative Example 6)
- a thin film was formed on the surface of the plastic molded body according to Example 1 except that dimethoxymethylvinylsilane was used instead of vinylsilane as the raw material gas.
- the film formation time was 6 seconds.
- Example 7 (Comparative Example 7)
- a thin film was formed on the surface of the plastic molded body according to Example 1 except that the heating element 18 was replaced with an iridium wire instead of the molybdenum wire.
- the film formation time was 6 seconds.
- Example 8 In Example 1, a thin film was formed on the surface of the plastic molded body according to Example 1 except that instead of the molybdenum wire as the heating element 18, a rhenium wire was used. The film formation time was 6 seconds.
- Example 9 (Comparative Example 9) In Example 1, instead of the molybdenum wire as the heating element 18, a platinum wire was used, and a plastic molding was performed in accordance with Example 1 except that the heating temperature was set to 1500 ° C. by adjusting the direct current applied to the heating element 18. A thin film was formed on the surface of the body. The film formation time was 6 seconds.
- Example 10 (Comparative Example 10) In Example 1, instead of the molybdenum wire as the heating element 18, a rhodium wire was used, and a plastic molding was performed in accordance with Example 1 except that the heating temperature was set to 1500 ° C. by adjusting the direct current applied to the heating element 18. A thin film was formed on the surface of the body. The film formation time was 6 seconds.
- Example 11 In Example 1, instead of the molybdenum wire as the heating element 18, a titanium wire was used, and a plastic molding was performed according to Example 1 except that the heating temperature was 1500 ° C. by adjusting the direct current applied to the heating element 18. A thin film was formed on the surface of the body. The film formation time was 6 seconds.
- Example 12 In Example 1, a thin film was formed on the surface of the plastic molded body according to Example 1 except that the direct current applied to the heating element 18 was adjusted to set the heating temperature to 1500 ° C. The film formation time required for setting the thickness of the thin film to 30 nm was 25 seconds.
- XPS analysis The surfaces of the thin films formed in Examples 1 to 8, 10, 11 and Comparative Examples 1 to 4 and 6 were analyzed using an XPS apparatus (model: QUANTERASXM, manufactured by PHI). Table 1 shows the ratio of constituent elements on the surface of the thin film.
- the conditions of XPS analysis are as follows. X-ray source: Monochromated Al (1486.6 ev) Detection area: 100 ⁇ m ⁇ Sputtering conditions: Ar + 1.0 kv
- FIG. 3 is a diagram in which observed peaks are separated by waveform analysis in the spectrum obtained by XPS analysis of the thin film surface of Example 1 under condition (1).
- FIG. 4 is a diagram showing a spectrum obtained by XPS analysis of the thin film surface of Example 1 under condition (2).
- FIG. 5 is a diagram in which observed peaks are separated by waveform analysis in the spectrum obtained by XPS analysis of the thin film surface of Example 4 under condition (1).
- FIG. 6 is a diagram in which observed peaks are separated by waveform analysis in the spectrum obtained by XPS analysis of the thin film surface of Comparative Example 2 under condition (1).
- FIG. 3 is a diagram in which observed peaks are separated by waveform analysis in the spectrum obtained by XPS analysis of the thin film surface of Example 1 under condition (1).
- FIG. 4 is a diagram showing a spectrum obtained by XPS analysis of the thin film surface of Example 1 under condition (2).
- FIG. 5 is a diagram in which observed peaks are separated by waveform analysis in the spectrum obtained by XPS
- Si1 Si peak (Si-Si bonds or Si-H bonds)
- Si2 SiC, SiO 1 C 3, Si 2 O
- si3 SiO 2 C 2
- SiO Si4
- Si5 a SiO 2.
- Example 1 As shown in FIG. 3, a peak is observed at the peak appearance position of the bond energy between Si and Si under the condition (1), and as shown in FIG. No peak was observed at the peak appearance position of the bond energy between Si and Si. From this, it can be presumed that the thin film of Example 1 has a Si—H bond. In addition, the same peak was obtained also about the other Example. Furthermore, from FIG. 3, it was confirmed that the peak of Example 1 was Si1 (Si peak) as the main peak. As shown in FIG. 5, also in Example 4, it was confirmed that Si1 (Si peak) was the main peak.
- Comparative Example 2 As shown in FIG. 6, no peak is observed at the peak appearance position of the bond energy between Si and Si in condition (1), and the peak appearance of SiC, SiOC, SiOx, or SiO 2 appears. A peak was observed at the position. Furthermore, from FIG. 6, it was confirmed that the peak of Comparative Example 2 was Si3 as the main peak. Comparative Examples 1 and 3 to 8 also did not have Si1, and the main peak was Si2 in Comparative Example 1, Si3 in Comparative Examples 3 to 6, and Si5 in Comparative Examples 7 to 11.
- the film thickness is a value measured using a stylus type step meter (model: ⁇ -step, manufactured by KLA-Eten). The evaluation results are shown in Table 3.
- oxygen permeability (Oxygen permeability) The oxygen permeability was measured under the conditions of 23 ° C. and 90% RH using an oxygen permeability measuring device (model: Oxtran 2/20, manufactured by Modern Control), conditioned for 24 hours from the start of measurement, and then started measurement. The value after 72 hours had passed.
- an oxygen permeability measuring device model: Oxtran 2/20, manufactured by Modern Control
- the oxygen permeability of the PET bottle before the thin film formation was measured and shown in the table as an undeposited bottle.
- the evaluation results are shown in Table 3.
- BIF In BIF, in Formula 1, the value of oxygen permeability of an undeposited bottle is defined as the oxygen permeability of a plastic molded body with no thin film formed, and the value of oxygen permeability of the plastic container obtained in the example or comparative example is defined as gas barrier plastic. The oxygen permeability of the molded body was calculated. The evaluation results are shown in Table 3.
- the film pieces were stirred in 100 ml of various potassium carbonate aqueous solutions, and the floating and sinking after 15 minutes was visually observed.
- the film piece was obtained by applying a commercially available oil-based pen ink in a PET bottle, forming a film with a film thickness of 50 ⁇ m on the PET bottle according to the conditions of Examples 1, 4 and 5, and then swab dipped in ethanol. Used to remove from PET bottle.
- the film piece floating on the water surface of the potassium carbonate aqueous solution is determined to have a density smaller than the density of the aqueous solution (O), and the film piece sinking to the bottom surface of the potassium carbonate aqueous solution has a density higher than the density of the aqueous solution.
- the film piece that was determined to be large ( ⁇ ) and floated between the water surface and the bottom surface of the potassium carbonate aqueous solution was determined to be equivalent ( ⁇ ) to the density of the aqueous solution, and the range of ⁇ determination was the density range. .
- Table 4 shows the density of various concentrations and the evaluation results.
- the gas barrier thin films of Examples 1 to 11 have Si-H bonds in the thin films and have a Si-containing layer having a Si content of 40.1% or more. It was confirmed that a thin film having a low gas permeability, a BIF of 6 or more, and a high gas barrier property can be formed with a single kind of source gas.
- Comparative Example 1 since the thin film was formed by the plasma CVD method, the Si content in the thin film was low and the gas barrier property was inferior.
- Comparative Examples 7 to 11 since heat generation elements other than Mo, W, Zr, Ta, V, Nb, or Hf were used, the film formation efficiency was poor and the gas barrier property was poor.
- Comparative Example 12 since the heat generation temperature of the heating element was low, the film formation efficiency was poor and the gas barrier property was poor.
- Example 12 According to Example 8, film formation was performed 100 times, and a heating element regeneration process was performed every time film formation was completed.
- a heating element regeneration process was performed every time film formation was completed.
- CO 2 is supplied as an oxidizing gas to the vacuum chamber 6 and the vacuum pressure is set to 12.5 Pa (source gas at the time of film formation).
- the partial pressure of 1.4 Pa was 9.0 times the vacuum pressure), and the heating element 18 was heated at 2000 ° C. for 6 seconds.
- Example 13 According to Example 8, film formation was performed 100 times, and a heating element regeneration process was performed every time film formation was completed 10 times. Each regeneration step was performed under the same conditions as in Example 12 except that the heating time of the heating element was set to 60 seconds.
- Example 14 Film formation was performed 100 times according to Example 10, and a heating element regeneration step was performed every time film formation was completed. Each regeneration step was performed under the same conditions as in Example 12.
- Example 15 Film formation was performed 100 times in accordance with Example 10, and a heating element regeneration step was performed every time film formation was completed 10 times. Each regeneration step was performed under the same conditions as in Example 13.
- Example 12 is the same as Example 12 except that CO 2 is supplied to the vacuum chamber 6 and the vacuum pressure is 1.4 Pa (1.0 times the partial pressure of the raw material gas during film formation is 1.0 times the vacuum pressure).
- the heating element regeneration step was performed under the same conditions.
- Example 17 In Example 12, except 1.3Pa vacuum pressure by supplying CO 2 to the vacuum chamber 6 (0.93 times the vacuum pressure of the partial pressure 1.4Pa of the source gas during film formation) is that of Example 12
- the heating element regeneration step was performed under the same conditions.
- Example 12 is the same as Example 12 except that CO 2 is supplied to the vacuum chamber 6 and the vacuum pressure is 14.0 Pa (a vacuum pressure that is 10.0 times the partial pressure of the raw material gas at the time of film formation of 1.4 Pa).
- the heating element regeneration step was performed under the same conditions.
- BIF measurement For Examples 20 to 25 and Reference Examples 1 to 3, BIFs at the first and 100th film formation were measured, respectively.
- the measurement method of BIF was the method described in “Gas barrier property evaluation—BIF”.
- the criteria for gas barrier evaluation are as follows.
- the measurement result of BIF is shown in FIG. Criteria for evaluating gas barrier properties: BIF is 8 or more: Practical level BIF is 5 or more and less than 8: Practical level BIF is 2 or more and less than 5: Practical lower limit level BIF is less than 2: Practical inappropriate level
- BIF was at a practical level in both the first time and the 100th time.
- the BIF at the 100th time was 8 or more.
- the gas barrier property was good in the first film formation, but the gas barrier property was greatly lowered in the 100th film formation.
- the gas barrier plastic molding according to the present invention is suitable as a packaging material.
- the gas barrier container which consists of a gas barrier plastic molding which concerns on this invention is suitable as containers for drinks, such as water, a tea drink, a soft drink, a carbonated drink, and a fruit juice drink.
- Vacuum chamber 8 Vacuum valve 11 Plastic container 12 Reaction chamber 13 Lower chamber 14 O-ring 15 Upper chamber 16 Gas supply port 17 Raw material gas flow path 17x Gas blowing hole 18 Heating element 19 Wiring 20 Heater power supply 21 Plastic container port 22 Exhaust Pipe 23
- Source gas supply pipes 24a, 24b Flow rate regulators 25a, 25b, 25c Valves 26a, 26b Connection portion 27 Cooling water flow path 28 Inner surface 29 of vacuum chamber Cooling means 30 Chamber made of transparent body 33
- Source gas 34 Chemical species 35 Insulating ceramics Member 40a, 40b Raw material tank 41a, 41b Starting material 90 Gas barrier plastic molded body 91 Plastic molded body 92 Gas barrier thin film 100 Film forming apparatus
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical Vapour Deposition (AREA)
- Laminated Bodies (AREA)
Abstract
Description
(数1)Si含有率[%]={(Si含有量[atomic%])/(Si,O及びCの合計含有量[atomic%])}×100
数1において、Si,O又はCの含有量は、Si,O及びCの3元素の内訳における含有量である。
(数2)C含有率[%]={(C含有量[atomic%])/(Si,O及びCの合計含有量[atomic%])}×100
数2において、Si,O又はCの含有量は、Si,O及びCの3元素の内訳における含有量である。
(数3)O含有率[%]={(O含有量[atomic%])/(Si,O及びCの合計含有量[atomic%])}×100
数3において、Si,O又はCの含有量は、Si,O及びCの3元素の内訳における含有量である。
条件(1)測定範囲を95~105eVとする。
よりガスバリア性に優れたガスバリア薄膜とすることができる。
条件(2)測定範囲を120~150eVとする。
Si含有層にSi‐H結合が存在することを確認することができる。
(化1)H3Si‐Cn‐X
化1において、nは2又は3であり、XはSiH3,H又はNH2である。
(数1)Si含有率[%]={(Si含有量[atomic%])/(Si,O及びCの合計含有量[atomic%])}×100
数1において、Si,O又はCの含有量は、Si,O及びCの3元素の内訳における含有量である。
(数2)C含有率[%]={(C含有量[atomic%])/(Si,O及びCの合計含有量[atomic%])}×100
数2において、Si,O又はCの含有量は、Si,O及びCの3元素の内訳における含有量である。
(数3)O含有率[%]={(O含有量[atomic%])/(Si,O及びCの合計含有量[atomic%])}×100
数3において、Si,O又はCの含有量は、Si,O及びCの3元素の内訳における含有量である。
条件(1)測定範囲を95~105eVとする。
条件(2)測定範囲を120~150eVとする。
Siピークが、Si‐Si結合又はSi‐H結合のいずれが主要であるかは、条件(1)及び条件(2)でXPS分析を行うことで確認することができる。すなわち、条件(1)では、SiとSiとの結合エネルギーのピーク出現位置に、ピークを有し、条件(2)では、SiとSiとの結合エネルギーのピーク出現位置に、ピークを有さないことで、SiピークがSi‐H結合を示すと確認できる。これによって、(数4)で求める、バリア性改良率(Barrier Improvement Factor,以降、BIFという。)を6以上とすることができる。
(数4)BIF=[薄膜未形成のプラスチック成形体の酸素透過度]/[ガスバリア性プラスチック成形体の酸素透過度]
(化1)H3Si‐Cn‐X
化1において、nは2又は3であり、XはSiH3,H又はNH2である。
まず、ベント(不図示)を開いて真空チャンバ6内を大気開放する。反応室12には、上部チャンバ15を外した状態で、下部チャンバ13の上部開口部からプラスチック成形体91としてのプラスチック容器11が差し込まれて、収容される。この後、位置決めされた上部チャンバ15が降下し、上部チャンバ15につけられた原料ガス供給管23とそれに固定された発熱体18がプラスチック容器の口部21からプラスチック容器11内に挿入される。そして、上部チャンバ15が下部チャンバ13にOリング14を介して当接することで、反応室12が密閉空間とされる。このとき、下部チャンバ13の内壁面とプラスチック容器11の外壁面との間隔は、ほぼ均一に保たれており、かつ、プラスチック容器11の内壁面と発熱体18との間の間隔も、ほぼ均一に保たれている。
次いでベント(不図示)を閉じたのち、排気ポンプ(不図示)を作動させ、真空バルブ8を開とすることにより、反応室12内の空気が排気される。このとき、プラスチック容器11の内部空間のみならずプラスチック容器11の外壁面と下部チャンバ13の内壁面との間の空間も排気されて、真空にされる。すなわち、反応室12全体が排気される。そして反応室12内が必要な圧力、例えば1.0~100Paに到達するまで減圧することが好ましい。より好ましくは、1.4~50Paである。1.0Pa未満では、排気時間がかかる場合がある。また、100Paを超えると、プラスチック容器11内に不純物が多くなり、バリア性の高い容器を得ることができない場合がある。大気圧から、1.4~50Paに到達するように減圧すると、適度な真空圧とともに、大気、装置及び容器に由来する適度な残留水蒸気圧を得ることができ、簡易にバリア性のある薄膜を形成できる。
次に発熱体18を、例えば通電することで発熱させる。発熱体18の材料は、Mo(モリブデン),W(タングステン),Zr(ジルコニウム),Ta(タンタル),V(バナジウム),Nb(ニオブ),Hf(ハフニウム)の群の中から選ばれる一つ又は二つ以上の金属元素を含む材料である。より好ましくは、Mo,W,Zr,Taの群の中から選ばれる一つ又は二つ以上の金属元素を含む材料である。発熱体18の発熱温度は、1550~2400℃とする。より好ましくは、1700~2100℃である。1550℃未満では、原料ガスを効率的に分解することができず、成膜に時間がかかり作業効率に劣る。2400℃を超えると、発熱温度が過剰となり、不経済である。また、発熱体18の材料によっては変形する場合がある。プラスチック成形体への熱ダメージが懸念される。
この後、原料ガス33として、一般式(化1)で表される有機シラン系化合物を供給する。化1において、Cnに相当する炭化水素構造における炭素間の結合は、単結合、二重結合又は三重結合のいずれでもよい。より好ましくは直鎖状の構造である。また、水素含有量の少ない二重結合又は三重結合を有することが好ましい。例えば、n=2のときは、Cnの態様例は、C‐C間が単結合である態様(C2H4),C‐C間が二重結合である態様(C2H2),C‐C間が三重結合である態様(C2)である。n=3のときは、Cnの態様例は、C‐C間が単結合である態様(C3H6),C‐C間が単結合及び二重結合である態様(C3H4),C‐C間が単結合及び三重結合である態様(C3H2)である。具体的には、一般式(化1)で表される有機シラン系化合物は、例えば、ビニルシラン(H3SiC2H3)、ジシラブタン(H3SiC2H4SiH3)、ジシリルアセチレン(H3SiC2SiH3)、2‐アミノエチルシラン(H3SiC2H4NH2)である。この中で、ビニルシラン、ジシラブタン又はジシリルアセチレンであることが好ましい。
原料ガス33が発熱体18と接触すると化学種34が生成される。この化学種34が、プラスチック容器11の内壁に到達することで、ガスバリア薄膜を堆積することになる。成膜工程において発熱体18を発熱させて原料ガスを発熱体18に吹き付ける時間(以降、成膜時間ということもある。)は、1.0~20秒であることが好ましく、より好ましくは、1.0~8.5秒である。成膜時の真空チャンバ内の圧力は、例えば1.0~100Paに到達するまで減圧することが好ましい。より好ましくは、1.4~50Paである。
薄膜が所定の厚さに達したところで、原料ガス33の供給を止め、反応室12内を再度排気した後、図示していないリークガスを導入して、反応室12を大気圧にする。この後、上部チャンバ15を開けてプラスチック容器11を取り出す。このようにして得られたガスバリア性プラスチック成形体は、BIFを6以上とすることができる。具体例としては、500mlのペットボトル(高さ133mm、胴外径64mm、口部外径24.9mm、口部内径21.4mm、肉厚300μm及び樹脂量29g)において、酸素透過度を0.0058cc/容器/日以下とすることができる。720mlのペットボトル(高さ279mm、胴外径70mm、口部外径24.9mm、口部内径21.4mm、肉厚509μm及び樹脂量38g)において、酸素透過度を0.0082cc/容器/日以下とすることができる。
プラスチック成形体として、500mlのペットボトル(高さ133mm、胴外径64mm、口部外径24.9mm、口部内径21.4mm、肉厚300μm及び樹脂量29g)の内表面に、図2に示す成膜装置を用いてガスバリア薄膜を形成した。ペットボトルを真空チャンバ6内に収容し、1.0Paに到達するまで減圧した。次いで、発熱体18として、φ0.5mm、長さ44cmのモリブデンワイヤーを2本用い、発熱体18に直流電流を24V印加し、2000℃に発熱させた。その後、ガス流量調整器24aから原料ガスとしてビニルシランを、バルブ開度を調整しながら供給し、ペットボトルの内表面にガスバリア薄膜を堆積させた。ここで、ガス流量調整器24aからガス供給口16の配管は、アルミナ製の1/4インチ配管で構成し、原料ガスの流量は、50sccmとした。成膜時の圧力(全圧)を1.4Paとした。成膜時間は、6秒間とした。このとき、ビニルシランの分圧(成膜時の原料ガスの分圧)は、成膜時の圧力(全圧)に等しく、1.4Paであった。
実施例1において、発熱体18に印加する直流電流を調整して発熱温度を1550℃とした以外は、実施例1に準じてガスバリア性プラスチック成形体を得た。
実施例1において、発熱体18に印加する直流電流を調整して発熱温度を2200℃とした以外は、実施例1に準じてガスバリア性プラスチック成形体を得た。
実施例1において、原料ガスとして、ビニルシランに替えて、1,4‐ジシラブタンとした以外は、実施例1に準じてガスバリア性プラスチック成形体を得た。成膜時間は6秒間とした。
実施例1において、原料ガスとして、ビニルシランに替えて、ジシリルアセチレンとした以外は、実施例1に準じてガスバリア性プラスチック成形体を得た。成膜時間は、6秒間とした。
実施例1において、発熱体18として、モリブデンワイヤーに替えて、タングステンワイヤーとした以外は、実施例1に準じてガスバリア性プラスチック成形体を得た。成膜時間は、6秒間とした。
実施例1において、発熱体18として、モリブデンワイヤーに替えて、ジルコニウムワイヤーとし、発熱体18に印加する直流電流を調整して発熱温度を1700℃とし、成膜時間を6秒間とした以外は、実施例1に準じてガスバリア性プラスチック成形体を得た。
実施例1において、発熱体18として、モリブデンワイヤーに替えて、タンタルワイヤーとした以外は、実施例1に準じてガスバリア性プラスチック成形体を得た。
実施例1において、発熱体18として、モリブデンワイヤーに替えて、タンタルワイヤーとし、成膜時間8秒間を5回繰り返した以外は、実施例1に準じてガスバリア性プラスチック成形体を得た。
実施例1において、発熱体18として、モリブデンワイヤーに替えて、炭化タンタル(TaCx(X=1、TaCx中の炭素原子の質量比率は6.2質量%、TaCx中の炭素原子の元素濃度は50at.%))ワイヤーとし、発熱体18に印加する直流電流を調整して発熱温度を2400℃とした以外は、実施例1に準じてプラスチック成形体の表面に薄膜を形成した。
実施例1において、発熱体18として、モリブデンワイヤーに替えて、炭化タングステン(WCx(X=1、WCx中の炭素原子の質量比率は6.1質量%、WCx中の炭素原子の元素濃度は50at.%))ワイヤーとし、発熱体18に印加する直流電流を調整して発熱温度を2400℃とした以外は、実施例1に準じてプラスチック成形体の表面に薄膜を形成した。
プラスチック成形体として、500mlのペットボトル(高さ133mm、胴外径64mm、口部外径24.9mm、口部内径21.4mm、肉厚300μm及び樹脂量29g)の内表面に、特許文献6の図1に示した製造装置を用いて薄膜を形成した。ペットボトルを外部電極内に収容し、真空ポンプで外部電極内を5Paに達するまで減圧した。この後、原料ガス供給管に原料ガスとしてビニルシランを、流量80sccmに調整しながら、ペットボトルの内部へ供給した。原料ガスの供給後、外部電極に整合器を介して高周波電源から電力を投入し、外部電極と内部電極との間に、13.5MHz、800Wの高周波電圧を印加し、プラズマを発生させた。そして、原料ガスのプラズマを発生させた状態で、2秒間保持して、ペットボトルの内表面に薄膜を形成した。
実施例1において、原料ガスとして、ビニルシランに替えて、モノメチルシランとした以外は、実施例1に準じてプラスチック成形体の表面に薄膜を形成した。成膜時間は、6秒間とした。
実施例1において、原料ガスとして、ビニルシランに替えて、ジメチルシランとした以外は、実施例1に準じてプラスチック成形体の表面に薄膜を形成した。成膜時間は、6秒間とした。
実施例1において、原料ガスとして、ビニルシランに替えて、トリメチルシランとした以外は、実施例1に準じてプラスチック成形体の表面に薄膜を形成した。成膜時間は、6秒間とした。
実施例1において、原料ガスとして、ビニルシランに替えて、テトラメチルシランとした以外は、実施例1に準じてプラスチック成形体の表面に薄膜を形成した。成膜時間は、6秒間とした。
実施例1において、原料ガスとして、ビニルシランに替えて、ジメトキシメチルビニルシランとした以外は、実施例1に準じてプラスチック成形体の表面に薄膜を形成した。成膜時間は、6秒間とした。
実施例1において、発熱体18として、モリブデンワイヤーに替えて、イリジウムワイヤーとした以外は、実施例1に準じてプラスチック成形体の表面に薄膜を形成した。成膜時間は、6秒間とした。
実施例1において、発熱体18として、モリブデンワイヤーに替えて、レニウムワイヤーとした以外は、実施例1に準じてプラスチック成形体の表面に薄膜を形成した。成膜時間は、6秒間とした。
実施例1において、発熱体18として、モリブデンワイヤーに替えて、白金ワイヤーとし、発熱体18に印加する直流電流を調整して発熱温度を1500℃とした以外は、実施例1に準じてプラスチック成形体の表面に薄膜を形成した。成膜時間は、6秒間とした。
実施例1において、発熱体18として、モリブデンワイヤーに替えて、ロジウムワイヤーとし、発熱体18に印加する直流電流を調整して発熱温度を1500℃とした以外は、実施例1に準じてプラスチック成形体の表面に薄膜を形成した。成膜時間は、6秒間とした。
実施例1において、発熱体18として、モリブデンワイヤーに替えて、チタンワイヤーとし、発熱体18に印加する直流電流を調整して発熱温度を1500℃とした以外は、実施例1に準じてプラスチック成形体の表面に薄膜を形成した。成膜時間は、6秒間とした。
実施例1において、発熱体18に印加する直流電流を調整して発熱温度を1500℃とした以外は、実施例1に準じてプラスチック成形体の表面に薄膜を形成した。薄膜の膜厚を30nmとするのに要した成膜時間は、25秒であった。
実施例1~8、10、11、比較例1~4及び6で形成した薄膜の表面をXPS装置(型式:QUANTERASXM、PHI社製)を用いて分析した。薄膜表面の構成元素の比率を表1に示す。XPS分析の条件は、次の通りである。
X線源:単色化Al(1486.6ev)
検出領域:100μmφ
スパッタ条件:Ar+1.0kv
実施例1~8で形成した薄膜を、高分解能RBS装置(型式:HRBS500、神戸製鋼所社製)を用いて分析した。薄膜の構成元素の比率を表2に示す。
膜厚は、触針式段差計(型式:α‐ステップ、ケーエルエーテン社製)を用いて測定した値である。評価結果を表3に示す。
酸素透過度は、酸素透過度測定装置(型式:Oxtran 2/20、Modern Control社製)を用いて、23℃、90%RHの条件にて測定し、測定開始から24時間コンディションし、測定開始から72時間経過後の値とした。参考として、薄膜形成前のペットボトルの酸素透過度を測定し、未成膜ボトルとして表に示した。評価結果を表3に示す。
BIFは、数1において、未成膜ボトルの酸素透過度の値を薄膜未形成のプラスチック成形体の酸素透過度とし、実施例又は比較例で得たプラスチック容器の酸素透過度の値をガスバリア性プラスチック成形体の酸素透過度として算出した。評価結果を表3に示す。
膜密度は、各種濃度の炭酸カリウム水溶液100mlに、膜片を攪拌し、15分後の浮沈を目視で観察した。膜片は、市販の油性ペンのインクをPETボトル内に塗り、その上に実施例1、4及び5の条件に準じて、50μmの膜厚で成膜した後に、エタノールをしみ込ませた綿棒を用いて、PETボトルから取り出した。炭酸カリウム水溶液の水面に浮いた膜片は、当該水溶液の密度よりも密度が小さい(○)と判定し、また、炭酸カリウム水溶液の底面に沈んだ膜片は、当該水溶液の密度よりも密度が大きい(×)と判定し、炭酸カリウム水溶液の水面と底面との間で浮遊していた膜片は、当該水溶液の密度と同等(△)と判定し、△判定の範囲を密度の範囲とした。各種濃度の密度及び評価結果を、表4に示す。
実施例8に準じて成膜を100回行い、成膜が1回終了するごとに発熱体の再生工程を行った。各再生工程は、真空チャンバ6内の圧力が1.0Paの真空圧に到達した時点で、酸化ガスとしてCO2を真空チャンバ6に供給して真空圧を12.5Pa(成膜時の原料ガスの分圧1.4Paの9.0倍の真空圧)とし、発熱体18を2000℃で6秒間加熱した。
実施例8に準じて成膜を100回行い、成膜が10回終了するごとに、発熱体の再生工程を行った。各再生工程は、発熱体の加熱時間を60秒とした以外は実施例12と同条件で行った。
実施例10に準じて成膜を100回行い、成膜が1回終了するごとに発熱体の再生工程を行った。各再生工程は、実施例12と同条件で行った。
実施例10に準じて成膜を100回行い、成膜が10回終了するごとに発熱体の再生工程を行った。各再生工程は、実施例13と同条件で行った。
実施例12において、CO2を真空チャンバ6に供給して真空圧を1.4Pa(成膜時の原料ガスの分圧1.4Paの1.0倍の真空圧)以外は、実施例12と同条件で発熱体の再生工程を行った。
実施例12において、CO2を真空チャンバ6に供給して真空圧を1.3Pa(成膜時の原料ガスの分圧1.4Paの0.93倍の真空圧)以外は、実施例12と同条件で発熱体の再生工程を行った。
実施例12において、CO2を真空チャンバ6に供給して真空圧を14.0Pa(成膜時の原料ガスの分圧1.4Paの10.0倍の真空圧)以外は、実施例12と同条件で発熱体の再生工程を行った。
実施例8に準じて成膜を100回行い、発熱体の再生工程は行わなかった。
実施例10に準じて成膜を100回行い、発熱体の再生工程は行わなかった。
実施例20~実施例25及び参考例1~参考例3について、成膜が1回目及び100回目のBIFをそれぞれ測定した。BIFの測定方法は、「ガスバリア性評価-BIF」に記載の方法とした。ガスバリア性評価の判定基準は、次のとおりである。BIFの測定結果を図7に示す。
ガスバリア性評価の判定基準:
BIFが8以上である:実用レベル
BIFが5以上8未満である:実用レベル
BIFが2以上5未満である:実用下限レベル
BIFが2未満である:実用不適レベル
8 真空バルブ
11 プラスチック容器
12 反応室
13 下部チャンバ
14 Oリング
15 上部チャンバ
16 ガス供給口
17 原料ガス流路
17x ガス吹き出し孔
18 発熱体
19 配線
20 ヒータ電源
21 プラスチック容器の口部
22 排気管
23 原料ガス供給管
24a,24b 流量調整器
25a,25b,25c バルブ
26a,26b 接続部
27 冷却水流路
28 真空チャンバの内面
29 冷却手段
30 透明体からなるチャンバ
33 原料ガス
34 化学種
35 絶縁セラミックス部材
40a,40b 原料タンク
41a,41b 出発原料
90 ガスバリア性プラスチック成形体
91 プラスチック成形体
92 ガスバリア薄膜
100 成膜装置
Claims (13)
- プラスチック成形体と、該プラスチック成形体の表面に設けたガスバリア薄膜とを備えるガスバリア性プラスチック成形体において、
前記ガスバリア薄膜は、構成元素として珪素(Si),炭素(C),酸素(O)及び水素(H)を含有し、かつ、(数1)で表されるSi含有率が、40.1%以上であるSi含有層を有することを特徴とするガスバリア性プラスチック成形体。
(数1)Si含有率[%]={(Si含有量[atomic%])/(Si,O及びCの合計含有量[atomic%])}×100
数1において、Si,O又はCの含有量は、Si,O及びCの3元素の内訳における含有量である。 - 前記Si含有層の(数2)で表されるC含有率が、22.8~45.5%であることを特徴とする請求項1に記載のガスバリア性プラスチック成形体。
(数2)C含有率[%]={(C含有量[atomic%])/(Si,O及びCの合計含有量[atomic%])}×100
数2において、Si,O又はCの含有量は、Si,O及びCの3元素の内訳における含有量である。 - 前記Si含有層の(数3)で表されるO含有率が、2.0~35.8%であることを特徴とする請求項1又は2に記載のガスバリア性プラスチック成形体。
(数3)O含有率[%]={(O含有量[atomic%])/(Si,O及びCの合計含有量[atomic%])}×100
数3において、Si,O又はCの含有量は、Si,O及びCの3元素の内訳における含有量である。 - 前記Si含有層の水素含有率が、21~46atomic%であることを特徴とする請求項1~3のいずれか一つに記載のガスバリア性プラスチック成形体。
- 前記ガスバリア薄膜の密度が、1.30~1.47g/cm3であることを特徴とする請求項1~4のいずれか一つに記載のガスバリア性プラスチック成形体。
- 前記Si含有層を条件(1)でX線電子分光分析すると、SiとSiとの結合エネルギーのピーク出現位置に、メインピークが観察される領域を含有することを特徴とする請求項1~5のいずれか一つに記載のガスバリア性プラスチック成形体。
条件(1)測定範囲を95~105eVとする。 - 前記Si含有層を条件(2)でX線光電子分光分析すると、SiとSiとの結合エネルギーのピーク出現位置に、ピークが観察されないことを特徴とする請求項1~6のいずれか一つに記載のガスバリア性プラスチック成形体。
条件(2)測定範囲を120~150eVとする。 - 前記ガスバリア薄膜が、発熱体CVD法によって形成されることを特徴とする請求項1~7のいずれか一つに記載のガスバリア性プラスチック成形体。
- 前記ガスバリア薄膜の膜厚が、5nm以上であることを特徴とする請求項1~8のいずれか一つに記載のガスバリア性プラスチック成形体。
- 前記プラスチック成形体が、容器、フィルム又はシートであることを特徴とする請求項1~9のいずれか一つに記載のガスバリア性プラスチック成形体。
- 発熱した発熱体に原料ガスを接触させて、該原料ガスを分解して化学種を生成させ、プラスチック成形体の表面に前記化学種を到達させることによってガスバリア薄膜を形成する成膜工程を有するガスバリア性プラスチック成形体の製造方法において、
前記原料ガスとして、一般式(化1)で表される有機シラン系化合物を用い、
かつ、前記発熱体として、Mo,W,Zr,Ta,V,Nb,Hfの群の中から選ばれる一つ又は二つ以上の金属元素を含む材料を用い、
該発熱体の発熱温度を、1550~2400℃とすることを特徴とするガスバリア性プラスチック成形体の製造方法。
(化1)H3Si‐Cn‐X
化1において、nは2又は3であり、XはSiH3,H又はNH2である。 - 前記一般式(化1)で表される有機シラン系化合物が、ビニルシラン、ジシラブタン又はジシリルアセチレン又は2‐アミノエチルシランであることを特徴とする請求項11に記載のガスバリア性プラスチック成形体の製造方法。
- 前記発熱体として、金属タンタル、タンタル基合金若しくは炭化タンタルを用いる、金属タングステン、タングステン基合金若しくは炭化タングステンを用いる、金属モリブデン、モリブデン基合金若しくは炭化モリブデンを用いる、又は金属ハフニウム、ハフニウム基合金若しくは炭化ハフニウムを用いることを特徴とする請求項11又は12に記載のガスバリア性プラスチック成形体の製造方法。
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR112013015633A BR112013015633A2 (pt) | 2010-12-28 | 2011-12-28 | produto de plástico moldado de barreira de gás e método para produzir um produto de plástico moldado de barreira de gás |
CN201180062978.5A CN103338928B (zh) | 2010-12-28 | 2011-12-28 | 阻气性塑料成型体及其制造方法 |
NZ612583A NZ612583A (en) | 2010-12-28 | 2011-12-28 | Gas-barrier plastic molded product and manufacturing process therefor |
PH1/2013/501404A PH12013501404A1 (en) | 2010-12-28 | 2011-12-28 | Gas-barrier plastic molded product and manufacturing process therefor |
US13/996,229 US9410245B2 (en) | 2010-12-28 | 2011-12-28 | Gas-barrier plastic molded product and manufacturing process therefor |
SG2013046685A SG191213A1 (en) | 2010-12-28 | 2011-12-28 | Gas-barrier plastic molded product and manufacturing process therefor |
CA2822599A CA2822599C (en) | 2010-12-28 | 2011-12-28 | Gas-barrier plastic molded product and manufacturing process therefor |
AU2011350429A AU2011350429B2 (en) | 2010-12-28 | 2011-12-28 | Gas-barrier plastic molded product and manufacturing process therefor |
EP11854452.7A EP2660049B1 (en) | 2010-12-28 | 2011-12-28 | Method for making a barrier layer |
JP2012551046A JP5684288B2 (ja) | 2010-12-28 | 2011-12-28 | ガスバリア性プラスチック成形体及びその製造方法 |
KR1020137019902A KR101523455B1 (ko) | 2010-12-28 | 2011-12-28 | 가스 배리어성 플라스틱 성형체 및 그의 제조 방법 |
TW101123442A TWI576242B (zh) | 2011-12-28 | 2012-06-28 | Gas barrier plastic molded body and manufacturing method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010293646 | 2010-12-28 | ||
JP2010-293646 | 2010-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012091097A1 true WO2012091097A1 (ja) | 2012-07-05 |
Family
ID=46383185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/080408 WO2012091097A1 (ja) | 2010-12-28 | 2011-12-28 | ガスバリア性プラスチック成形体及びその製造方法 |
Country Status (13)
Country | Link |
---|---|
US (1) | US9410245B2 (ja) |
EP (1) | EP2660049B1 (ja) |
JP (2) | JP5684288B2 (ja) |
KR (1) | KR101523455B1 (ja) |
CN (1) | CN103338928B (ja) |
AU (1) | AU2011350429B2 (ja) |
BR (1) | BR112013015633A2 (ja) |
CA (1) | CA2822599C (ja) |
MY (1) | MY166453A (ja) |
NZ (1) | NZ612583A (ja) |
PH (1) | PH12013501404A1 (ja) |
SG (1) | SG191213A1 (ja) |
WO (1) | WO2012091097A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016094507A (ja) * | 2014-11-12 | 2016-05-26 | 中山 弘 | 表面改質高分子フィルムの製造方法、高親水性フィルムの製造方法および高撥水性フィルムの製造方法 |
WO2016167152A1 (ja) * | 2015-04-17 | 2016-10-20 | キリン株式会社 | ガスバリア性プラスチック成形体及びその製造方法 |
JP2019155704A (ja) * | 2018-03-13 | 2019-09-19 | 東レエンジニアリング株式会社 | バリアフィルムおよび光変換部材 |
WO2024147339A1 (ja) * | 2023-01-05 | 2024-07-11 | 東亞合成株式会社 | SiC含有膜、及びその製造方法 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11326254B2 (en) * | 2014-03-03 | 2022-05-10 | Picosun Oy | Protecting an interior of a gas container with an ALD coating |
JP6415857B2 (ja) * | 2014-05-30 | 2018-10-31 | 株式会社吉野工業所 | 合成樹脂製容器およびその製造方法 |
US9725802B2 (en) * | 2014-11-11 | 2017-08-08 | Graham Packaging Company, L.P. | Method for making pet containers with enhanced silicon dioxide barrier coating |
SG11201706481RA (en) * | 2015-02-18 | 2017-09-28 | Kirin Co Ltd | Heat generation element and method for producing same |
CN107848657B (zh) * | 2015-07-02 | 2020-08-14 | 东洋制罐集团控股株式会社 | 杯型多层容器 |
JP6663243B2 (ja) * | 2016-02-16 | 2020-03-11 | イビデン株式会社 | 透光板及びその製造方法 |
JP6663244B2 (ja) * | 2016-02-16 | 2020-03-11 | イビデン株式会社 | 透光板及びその製造方法 |
JP6863732B2 (ja) * | 2016-12-26 | 2021-04-21 | 株式会社マーレ フィルターシステムズ | ハニカム吸着材ならびにその製造方法およびキャニスタ |
RU2661320C1 (ru) * | 2017-04-26 | 2018-07-13 | Закрытое акционерное общество Научно-инженерный центр "ИНКОМСИСТЕМ" | Способ гидрофобизации субстрата |
JP6660647B1 (ja) * | 2019-04-03 | 2020-03-11 | 竹本容器株式会社 | 複合酸化珪素膜又は複合金属酸化膜を有する樹脂製包装容器、及びその製造方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05195228A (ja) * | 1991-09-18 | 1993-08-03 | Air Prod And Chem Inc | 低温化学蒸着法 |
WO2006126677A1 (ja) * | 2005-05-27 | 2006-11-30 | Kirin Beer Kabushiki Kaisha | ガスバリア性プラスチック容器の製造装置、その容器の製造方法及びその容器 |
JP2008127053A (ja) * | 2006-11-20 | 2008-06-05 | Kirin Brewery Co Ltd | 酸化物薄膜を被膜したプラスチック容器の製造方法 |
JP2010219533A (ja) * | 2009-03-13 | 2010-09-30 | Air Products & Chemicals Inc | 誘電体膜形成方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6340314A (ja) | 1986-08-05 | 1988-02-20 | Hiroshima Univ | 触媒cvd法による薄膜の製造法とその装置 |
JPH0853116A (ja) | 1994-08-11 | 1996-02-27 | Kirin Brewery Co Ltd | 炭素膜コーティングプラスチック容器 |
JP2003104352A (ja) * | 2001-09-28 | 2003-04-09 | Toppan Printing Co Ltd | バリア性プラスチック容器 |
JP2005200043A (ja) | 2004-01-14 | 2005-07-28 | Dainippon Printing Co Ltd | プラスチック製容器 |
WO2006023437A2 (en) * | 2004-08-18 | 2006-03-02 | Dow Corning Corporation | Sioc:h coated substrates and methods for their preparation |
JP4357434B2 (ja) * | 2005-02-25 | 2009-11-04 | 株式会社東芝 | 半導体装置の製造方法 |
JP4663381B2 (ja) * | 2005-04-12 | 2011-04-06 | 富士フイルム株式会社 | ガスバリア性フィルム、基材フィルムおよび有機エレクトロルミネッセンス素子 |
JP4312785B2 (ja) * | 2006-10-30 | 2009-08-12 | Necエレクトロニクス株式会社 | 半導体装置 |
JP5008420B2 (ja) | 2007-02-23 | 2012-08-22 | 三井化学東セロ株式会社 | 薄膜、及びその薄膜製造方法 |
WO2008121478A2 (en) * | 2007-03-28 | 2008-10-09 | Dow Corning Corporation | Roll-to-roll plasma enhanced chemical vapor deposition method of barrier layers comprising silicon and carbon |
US8637396B2 (en) * | 2008-12-01 | 2014-01-28 | Air Products And Chemicals, Inc. | Dielectric barrier deposition using oxygen containing precursor |
JP5470969B2 (ja) | 2009-03-30 | 2014-04-16 | 株式会社マテリアルデザインファクトリ− | ガスバリアフィルム、それを含む電子デバイス、ガスバリア袋、およびガスバリアフィルムの製造方法 |
-
2011
- 2011-12-28 SG SG2013046685A patent/SG191213A1/en unknown
- 2011-12-28 US US13/996,229 patent/US9410245B2/en active Active
- 2011-12-28 CN CN201180062978.5A patent/CN103338928B/zh active Active
- 2011-12-28 MY MYPI2013701080A patent/MY166453A/en unknown
- 2011-12-28 BR BR112013015633A patent/BR112013015633A2/pt not_active IP Right Cessation
- 2011-12-28 AU AU2011350429A patent/AU2011350429B2/en not_active Ceased
- 2011-12-28 PH PH1/2013/501404A patent/PH12013501404A1/en unknown
- 2011-12-28 NZ NZ612583A patent/NZ612583A/en not_active IP Right Cessation
- 2011-12-28 EP EP11854452.7A patent/EP2660049B1/en active Active
- 2011-12-28 CA CA2822599A patent/CA2822599C/en not_active Expired - Fee Related
- 2011-12-28 KR KR1020137019902A patent/KR101523455B1/ko not_active Expired - Fee Related
- 2011-12-28 JP JP2012551046A patent/JP5684288B2/ja active Active
- 2011-12-28 WO PCT/JP2011/080408 patent/WO2012091097A1/ja active Application Filing
-
2015
- 2015-01-14 JP JP2015005268A patent/JP5894303B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05195228A (ja) * | 1991-09-18 | 1993-08-03 | Air Prod And Chem Inc | 低温化学蒸着法 |
WO2006126677A1 (ja) * | 2005-05-27 | 2006-11-30 | Kirin Beer Kabushiki Kaisha | ガスバリア性プラスチック容器の製造装置、その容器の製造方法及びその容器 |
JP2008127053A (ja) * | 2006-11-20 | 2008-06-05 | Kirin Brewery Co Ltd | 酸化物薄膜を被膜したプラスチック容器の製造方法 |
JP2010219533A (ja) * | 2009-03-13 | 2010-09-30 | Air Products & Chemicals Inc | 誘電体膜形成方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2660049A4 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016094507A (ja) * | 2014-11-12 | 2016-05-26 | 中山 弘 | 表面改質高分子フィルムの製造方法、高親水性フィルムの製造方法および高撥水性フィルムの製造方法 |
WO2016167152A1 (ja) * | 2015-04-17 | 2016-10-20 | キリン株式会社 | ガスバリア性プラスチック成形体及びその製造方法 |
JP2016204685A (ja) * | 2015-04-17 | 2016-12-08 | キリン株式会社 | ガスバリア性プラスチック成形体及びその製造方法 |
US10487397B2 (en) | 2015-04-17 | 2019-11-26 | Kirin Holdings Kabushiki Kaisha | Gas-barrier plastic molded product and method for manufacturing same |
JP2019155704A (ja) * | 2018-03-13 | 2019-09-19 | 東レエンジニアリング株式会社 | バリアフィルムおよび光変換部材 |
WO2019176936A1 (ja) * | 2018-03-13 | 2019-09-19 | 東レエンジニアリング株式会社 | バリアフィルムおよび光変換部材 |
JP7163041B2 (ja) | 2018-03-13 | 2022-10-31 | 東レエンジニアリング株式会社 | バリアフィルムおよび光変換部材 |
WO2024147339A1 (ja) * | 2023-01-05 | 2024-07-11 | 東亞合成株式会社 | SiC含有膜、及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5894303B2 (ja) | 2016-03-23 |
US20130316108A1 (en) | 2013-11-28 |
JP5684288B2 (ja) | 2015-03-11 |
CA2822599A1 (en) | 2012-07-05 |
AU2011350429A1 (en) | 2013-07-18 |
AU2011350429B2 (en) | 2015-02-26 |
EP2660049A1 (en) | 2013-11-06 |
KR101523455B1 (ko) | 2015-05-27 |
NZ612583A (en) | 2015-02-27 |
CA2822599C (en) | 2015-11-24 |
PH12013501404A1 (en) | 2013-08-28 |
SG191213A1 (en) | 2013-07-31 |
US9410245B2 (en) | 2016-08-09 |
KR20130097238A (ko) | 2013-09-02 |
JP2015092027A (ja) | 2015-05-14 |
JPWO2012091097A1 (ja) | 2014-06-05 |
MY166453A (en) | 2018-06-27 |
EP2660049A4 (en) | 2016-10-19 |
CN103338928B (zh) | 2015-04-15 |
BR112013015633A2 (pt) | 2016-10-11 |
EP2660049B1 (en) | 2017-12-06 |
CN103338928A (zh) | 2013-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5894303B2 (ja) | ガスバリア性プラスチック成形体及びその製造方法 | |
JP5695673B2 (ja) | ガスバリア性プラスチック成形体の製造方法 | |
JP5260050B2 (ja) | ガスバリア性プラスチック容器の製造装置及びその容器の製造方法 | |
JP6009243B2 (ja) | 炭酸飲料用ボトル及びその製造方法 | |
JP5706777B2 (ja) | ガスバリア性プラスチック成形体 | |
JP5566334B2 (ja) | ガスバリア性プラスチック成形体及びその製造方法 | |
TWI576242B (zh) | Gas barrier plastic molded body and manufacturing method thereof | |
TWI537415B (zh) | Production method of gas barrier plastic molded body | |
JP2012188700A (ja) | ガスバリア性プラスチック成形体及びその製造方法 | |
JP4595487B2 (ja) | Cvd法によるガスバリア性酸化珪素薄膜の成膜方法 | |
JP2012122089A (ja) | ガスバリア薄膜を備えるプラスチック成形体及びその製造方法 | |
JP2012219290A (ja) | 蒸着用プラスチック成形体の製造方法及びガスバリア性プラスチック成形体の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11854452 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012551046 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2822599 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12013501404 Country of ref document: PH |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2011350429 Country of ref document: AU Date of ref document: 20111228 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011854452 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20137019902 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13996229 Country of ref document: US |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112013015633 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112013015633 Country of ref document: BR Kind code of ref document: A2 Effective date: 20130620 |