WO2012091012A1 - 積層構造体および加工品の製造方法 - Google Patents

積層構造体および加工品の製造方法 Download PDF

Info

Publication number
WO2012091012A1
WO2012091012A1 PCT/JP2011/080210 JP2011080210W WO2012091012A1 WO 2012091012 A1 WO2012091012 A1 WO 2012091012A1 JP 2011080210 W JP2011080210 W JP 2011080210W WO 2012091012 A1 WO2012091012 A1 WO 2012091012A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective film
molded body
film
fine concavo
meth
Prior art date
Application number
PCT/JP2011/080210
Other languages
English (en)
French (fr)
Inventor
祐介 中井
中村 雅
牧野 伸治
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to KR1020137016615A priority Critical patent/KR20130097225A/ko
Priority to JP2012502366A priority patent/JP5133465B2/ja
Priority to KR1020157009799A priority patent/KR20150048896A/ko
Priority to CN2011800631588A priority patent/CN103314312A/zh
Priority to US13/997,463 priority patent/US20130280489A1/en
Publication of WO2012091012A1 publication Critical patent/WO2012091012A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • B29C33/424Moulding surfaces provided with means for marking or patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/06Embossing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/18Handling of layers or the laminate
    • B32B38/1866Handling of layers or the laminate conforming the layers or laminate to a convex or concave profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0215Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having a regular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0268Diffusing elements; Afocal elements characterized by the fabrication or manufacturing method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/26Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/28Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2905/00Use of metals, their alloys or their compounds, as mould material
    • B29K2905/02Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/704Crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/16Drying; Softening; Cleaning
    • B32B38/162Cleaning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1043Subsequent to assembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24364Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.] with transparent or protective coating

Definitions

  • the present invention relates to a laminated structure having a fine concavo-convex structure on the surface and a method for producing a processed product.
  • an antireflection film may be attached to the surface of an object. Therefore, the antireflection film is required to have low reflectance and wavelength dependency of reflectance.
  • an antireflection film a film having a structure in which several layers of films having different refractive indexes are laminated so that reflected light on the film surface and reflected light on the interface between the film and the object cancel each other due to interference is known. ing.
  • the reflectance and the wavelength dependency of the reflectance tend to decrease.
  • These films are usually produced by methods such as sputtering, vapor deposition, and coating.
  • a material having a lower refractive index has been demanded.
  • a fine concavo-convex structure called a Moth-Eye structure becomes an effective antireflection means by continuously increasing from the refractive index of air to the refractive index of a material.
  • Patent Document 1 discloses an antireflection film manufactured by using anodized porous alumina having a fine concavo-convex structure with a pore period of 50 to 300 nm formed on the surface as a mold.
  • the molded object such as a film with a fine concavo-convex structure formed on the surface is processed for the purpose of preventing the surface from being contaminated and maintaining (protecting) the shape of the fine concavo-convex structure.
  • a protective film is stuck on the surface on which the fine concavo-convex structure is formed until it is used after the process or shipment.
  • Patent Document 1 in a molded body in which a fine concavo-convex structure having a period equal to or less than the wavelength of visible light on the surface of anodized porous alumina is transferred and a fine concavo-convex structure having a Moth-Eye structure is formed on the surface.
  • the interval between the convex portions is narrow, and the adhesion area between the convex portion tip and the protective film is small. Therefore, it is difficult to attach a protective film generally used for anti-glare (AG) structures and prism structures whose concavo-convex structure is longer than the wavelength of visible light to the surface of the fine concavo-convex structure of the Moth-Eye structure. Met. That is, with a general protective film, it is difficult to obtain sufficient adhesion, or conversely, the adhesion is likely to be excessive.
  • the molded body with a protective film (laminated structure) described in Patent Document 2 is not considered to be processed into a desired shape by NC cutting or the like. Therefore, when such a molded body with a protective film (laminated structure) is processed by NC cutting or the like, the protective film is peeled off during the processing, and the position of the molded body during processing or the surface of the molded body is damaged. It became clear that problems such as sticking occurred. In addition, it has been clarified that the above-described problem becomes particularly significant when processing a molded body having a fine uneven structure on both sides or processing a formed body having a fine uneven structure on the entire surface.
  • a protective film having a strong adhesive force may be used.
  • the adhesive of the protective film is a concave portion of the fine uneven structure of the molded body. It has become clear that a phenomenon (residue residue) remains in the film. If there is adhesive residue in the recesses, the optical performance of the molded body tends to deteriorate. In particular, when a protective film was applied to the surface of the fine uneven structure of the Moth-Eye structure, the adhesive was likely to remain in the recesses after the protective film was peeled off.
  • the present invention has been made in view of the above circumstances, a laminated structure having a molded body having a fine uneven structure on the surface and a protective film in contact with the surface, and a protective film when processing the laminated structure
  • the present invention provides a method for producing a processed product that can be easily processed without being peeled off inadvertently and has little adhesive residue.
  • the present inventors can suppress the peeling of the protective film during the processing of the laminated structure by using the protective film having a specific adhesion strength and performing the washing step after the processing step, As a result, it becomes possible to protect the fine concavo-convex structure even during processing, and it has been found that a processed product having a complicated shape with few scratches and dirt can be easily manufactured while suppressing adhesive residue, and the present invention is completed. It came to.
  • the first aspect of the present invention is a laminated structure having a molded body having a fine concavo-convex structure on the surface and a protective film in contact with the surface of the molded body on the fine concavo-convex structure side, wherein the fine concavo-convex structure
  • the laminated structure is characterized in that the average distance between the convex portions in the film is not more than the visible light wavelength, and the adhesion strength when the protective film is attached to the fine concavo-convex structure is 0.1 to 1.7 N / 25 mm About the body.
  • the protective film protects the surface on the surface having the fine concavo-convex structure of the molded body.
  • the manufacturing method of the processed goods characterized by including the sticking process which sticks, and the process process which processes the said protective film and the said molded object into a defined shape. It is preferable that after the said process process, the said protective film is peeled from the said laminated structure, and the washing
  • the cleaning process is preferably a wet cleaning process using a cleaning liquid.
  • the laminated structure of the present invention it is possible to provide a laminated structure for producing a processed product that can be easily processed without causing the protective film to be inadvertently peeled and that has little adhesive residue.
  • the protective film when processing a laminated structure having a fine concavo-convex structure on the surface, to which the protective film is attached, the protective film can be easily processed without being carelessly removed, and Processed products with little glue residue can be manufactured.
  • FIG. 1 is a longitudinal sectional view showing an example of a molded body (laminated structure) 1 with a double-sided protective film used in the method for producing a processed product of the present invention.
  • the molded body with a double-sided protective film 1 in this example is configured by laminating a molded body with a single-sided protective film (laminated structure) 1 ′ on both surfaces of the first substrate 10.
  • the protective film 30 is stuck on the surface of the molded object 20.
  • FIGS. 1 to 4 the same components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof may be omitted.
  • the scale of each member is different in order to make each member recognizable on the drawing.
  • “(meth) acrylate” means acrylate and methacrylate
  • “active energy ray” means visible light, ultraviolet ray, electron beam, plasma, heat ray (infrared ray, etc.) and the like.
  • the “molded body” means an article in which a fine concavo-convex structure is formed
  • the “laminated structure” means that a protective film is attached to the surface of the molded body.
  • the material used for the first substrate 10 is not particularly limited as long as it transmits light. Examples thereof include polycarbonate, polystyrene resin, polyester, polyether sulfone, polysulfone, polyether ketone, polyurethane, acrylic resin, and glass.
  • the first substrate 10 may be formed by any method of injection molding, extrusion molding, and cast molding.
  • the shape of the first base material 10 is not particularly limited, and can be appropriately selected according to the shape of the molded body 20 described later.
  • the molded body 20 is an antireflection film or the like, a sheet shape or a film shape Is preferred.
  • a molded body 20 shown in FIG. 1 includes a second base material 21 and a cured product 22 of an active energy ray-curable resin composition formed on one surface (surface) of the second base material 21.
  • the material used for the second substrate 21 is not particularly limited as long as it transmits light.
  • methyl methacrylate (co) polymer polycarbonate, styrene (co) polymer, methyl methacrylate-styrene copolymer, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, polyester, polyamide, polyimide, polyethersulfone, polysulfone , Polypropylene, polymethylpentene, polyvinyl chloride, polyvinyl acetal, polyether ketone, polyurethane, and glass.
  • the second substrate 21 may be formed by any method of injection molding, extrusion molding, and cast molding.
  • the second substrate 21 may be provided with a pressure-sensitive adhesive layer and a separate film (both not shown) on the surface (back surface) on which the cured product 22 is not formed. By providing the pressure-sensitive adhesive layer, it can be easily attached to the first substrate 10.
  • the surface of the second base material 21 is coated with various coatings or coronas, for example. A discharge treatment may be performed.
  • the molded body 20 has a fine uneven structure on the surface.
  • the fine concavo-convex structure may be formed in the whole surface, and the fine concavo-convex structure may be formed in a part of surface.
  • a portion where the fine uneven structure is formed is referred to as an uneven portion 23.
  • the fine concavo-convex structure of the concavo-convex part 23 has a plurality of convex parts made of a cured product 22 of the active energy ray-curable resin composition described later, and is formed by transferring the fine concavo-convex structure on the surface of the anodized alumina. .
  • the fine concavo-convex structure is preferably a so-called Moth-Eye structure in which a plurality of protrusions (convex portions) having a substantially conical shape or a pyramid shape are arranged.
  • the Moth-Eye structure in which the distance between the convex portions is equal to or less than the wavelength of visible light is an effective antireflection means by continuously increasing the refractive index from the refractive index of air to the refractive index of the material. Become.
  • the average interval between the convex portions is preferably 400 nm or less, more preferably 350 nm or less, and particularly preferably 250 nm or less.
  • the average interval between the convex portions is not more than the wavelength of visible light, that is, not more than 400 nm, a molded article having a low visible light reflectance can be obtained.
  • the average interval between the convex portions is not more than the wavelength of visible light, that is, not more than 400 nm, the molded body 20 having a low reflectance and a small wavelength dependency of the reflectance can be obtained.
  • the average distance between the convex portions is preferably 25 nm or more, and more preferably 80 nm or more from the viewpoint of easy formation of the convex portions.
  • the average interval between the convex portions was measured by measuring 10 points between the adjacent convex portions (distance W 1 from the center of the convex portion 23a to the center of the adjacent convex portion 23a in FIG. 2) by electron microscope observation. Is the average of the values.
  • the average interval between the convex portions is preferably 25 to 400 nm, and more preferably 80 to 250 nm.
  • the height of the convex portion is preferably 100 to 400 nm, and more preferably 150 to 300 nm. If the height of the convex portion is 100 nm or more, the reflectance is sufficiently low, and the wavelength dependence of the reflectance is reduced. If the height of the convex portion is 400 nm or less, the scratch resistance of the convex portion is good.
  • the height of the convex portion is the height of ten convex portions (vertical distance d 1 from the tip of the convex portion 23a to the bottom of the concave portion 23b adjacent to the convex portion 23a in FIG. 2) by electron microscope observation. Measured and averaged.
  • the aspect ratio of the convex portion (height of the convex portion / length of the bottom surface of the convex portion) is preferably 1 to 5, more preferably 1.2 to 4, and particularly preferably 1.5 to 3.
  • the aspect ratio of the convex portion is 1 or more, the reflectance is sufficiently low.
  • the aspect ratio of the convex portion is 5 or less, the scratch resistance of the convex portion is good.
  • the "length of the bottom surface of the convex portion" in FIG. 2 is that the length d 2 of the bottom in the cross section obtained by cutting the convex portion 23a from the tip in the height direction of the projections 23a.
  • the shape of the convex part is a shape in which the convex sectional area in the direction perpendicular to the height direction continuously increases in the depth direction from the outermost surface, that is, the sectional shape in the height direction of the convex part is a triangle, trapezoid, A shape such as a bell shape is preferred.
  • the molded body 20 is suitable as an anti-reflection article such as an optical application molded body, particularly an anti-reflection film or a three-dimensional anti-reflection body.
  • an antireflection film for example, an image display device such as a liquid crystal display device, a plasma display panel, an electroluminescence display, a cathode tube display device, a lens, a show window, an instrument window, a daylighting member, It is used by being attached to the surface of an object such as a spectacle lens, a half-wave plate, and a low-pass filter.
  • an antireflection body is manufactured in advance using a transparent substrate having a shape according to the application, and this is used as a member constituting the surface of the object. It can also be used. Further, when the object is an image display device, an antireflection film may be attached to the front plate, not limited to the surface thereof, or the front plate itself may be formed from the molded body (laminated structure) of the present invention. ).
  • examples of the usage of the molded body 20 include optical molded bodies such as optical waveguides, relief holograms, polarization separation elements, and crystal devices, cell culture sheets, super water-repellent films, and super hydrophilic films. Is mentioned.
  • the protective film 30 protects the surface of the molded body 20, and is attached to the surface of the molded body 20, that is, the concavo-convex portion 23 having a fine concavo-convex structure as shown in FIG. Thereby, even if the surface of the molded body 20 comes into contact with another object, it is difficult to be scratched. Furthermore, impurities such as dust are less likely to enter the interface between the molded body 20 and the protective film 30, and dirt and the like are less likely to adhere to the surface of the molded body 20.
  • the protective film has a pressure-sensitive adhesive layer 32 containing a pressure-sensitive adhesive layered on a film substrate 31.
  • the material used for the film substrate 31 is not particularly limited.
  • propylene resins such as block copolymers with ethylene, olefin resins such as poly (1-butene) and poly (4-methyl-1-pentene), polymethyl acrylate, polymethyl methacrylate, ethylene -Acrylic resins such as ethyl acrylate copolymer, butadiene-styrene copolymer, acrylonitrile-styrene copolymer, polystyrene resin, styrene-butadiene-styrene block copolymer, styrene-isoprene-styrene block copolymer, styrene -Acrylic acid copolymer Styrenic resin such as styrene resin, vinyl chloride resin, polyvinyl fluoride resin such as polyvinyl fluoride and polyvinylidene fluoride, polyamide resin such as nylon 6, nylon 66 and nylon 12, saturated esters such
  • the thickness of the film substrate 31 can be appropriately selected within a range that does not impair the adhesiveness and the like, and is generally 3 to 500 ⁇ m, preferably 5 to 200 ⁇ m. If the thickness of the film substrate 31 is less than 3 ⁇ m, wrinkles and the like are likely to occur in the manufacturing process of the protective film 30, and it may be difficult to stick to the molded body 20. On the other hand, when the thickness of the film substrate 31 exceeds 500 ⁇ m, it may be difficult to handle the protective film 30.
  • the film base 31 may be subjected to antifouling treatment, acid treatment, alkali treatment, primer treatment, anchor coat treatment, corona treatment, plasma treatment, ultraviolet treatment, and antistatic treatment as necessary. Good.
  • the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer 32 is not particularly limited.
  • pressure-sensitive adhesives may be used alone or in combination of two or more. Moreover, you may mix
  • the thickness of the pressure-sensitive adhesive layer 32 can be appropriately selected within a range that does not impair the adhesiveness and the like, and is generally 1 to 100 ⁇ m, preferably 3 to 50 ⁇ m, more preferably 5 to 30 ⁇ m. .
  • a release film (not shown) may be laminated on the adhesive layer 32 on the surface opposite to the surface on which the film base material 31 is laminated.
  • resin used for a peeling film For example, various resin etc. which were illustrated previously in description of the film base material 31 are mentioned. Among these, from the viewpoint of peelability, polystyrene resin, saturated ester resin, and polyamide resin are preferable, and polyethylene terephthalate and polyamide resin are more preferable.
  • the layer configuration or the number of layers is not particularly limited, but is usually about 2 to 7 layers.
  • Specific examples of the layer structure of the protective film 30 include, for example, a film base / pressure-sensitive adhesive layer, a film base / pressure-sensitive adhesive layer / release film, a film base / pressure-sensitive adhesive layer / film base / pressure-sensitive adhesive layer, and a film. Substrate / adhesive layer / film substrate / adhesive layer / release film and the like.
  • Examples of the method for producing the protective film 30 include appropriate development methods such as a coextrusion molding method, a laminate molding method, a casting method, and a coating method.
  • a coextrusion molding method for example, a film base 31 and an adhesive layer 32 are extruded in a molten state and laminated by a known method such as a T-die molding method or an inflation molding method, and then a cooling roll or the like. The method of cooling with a cooling means is mentioned.
  • a lamination molding method for example, a film base 31 is prepared in advance by an extrusion molding method, and the pressure-sensitive adhesive layer 32 is extruded in a molten state and laminated thereon, followed by cooling means such as a cooling roll.
  • the method of cooling by is mentioned.
  • a casting method or a coating method for example, a base polymer or the like is dissolved or dispersed in a solvent composed of an appropriate solvent alone or a mixture such as toluene and ethyl acetate to prepare an adhesive solution of about 10 to 40% by mass.
  • the adhesive layer 32 is formed on the release film according to the method in which the film is directly attached on the film substrate 31 by an appropriate development method such as a casting method or a coating method, or the film substrate is formed as described above.
  • the system etc. which move on 31 are mentioned.
  • the protective film 30 used in the present invention has an adhesion strength with respect to the fine concavo-convex structure of 0.1 to 1.7 N / 25 mm. More preferably, it is 0.1 to 0.2 N / 25 mm. If the adhesion strength to the fine concavo-convex structure is 0.1 N / 25 mm or more, the protective film 30 is not lifted or peeled off from the molded body 20 in the course of cutting the molded body 1 with a double-sided protective film into a desired shape, It is difficult for the position of the molded body 20 being processed to be displaced or the surface of the molded body 20 to be damaged.
  • a commercially available film can be used as the protective film satisfying the above-described adhesion strength.
  • the method for producing a processed product according to the present invention includes a step of attaching a protective film for protecting the surface to a surface having a fine concavo-convex structure of a molded body, and processing the protective film and the molded body into a predetermined shape.
  • the predetermined shape means a desired shape or an arbitrary shape.
  • a protective film 30 for protecting the surface is stuck on the surface of the molded body 20 having a fine uneven structure.
  • the method for adhering the protective film 30 to the molded body 20 is not particularly limited. For example, as will be described later, a method of supplying and bonding the molded body 20 and the protective film 30 between a pair of nip rolls may be mentioned. It is done. Moreover, although mentioned later in detail, you may perform the manufacture and sticking process of the molded object 20 continuously.
  • the protective film 30 was affixed on the molded object 20 by the method etc. which were mentioned above, and two molded object 1 'with a single-sided protective film was produced. Thereafter, these may be bonded to both surfaces of the first substrate 10 by a laminating method or the like.
  • the processing step the molded body with double-sided protective film 1 produced by the sticking step is processed into a predetermined shape.
  • NC cutting is preferable. NC cutting is to control the machine tool with numerical information, and the position of the tool, the path, the rotation of the spindle, and the position of the workpiece can be controlled by programming. As a result, high-precision and efficient processing can be performed in small-lot, multi-product production. In particular, end milling using an end mill as an NC cutting tool is used for surface and contour cutting, and in addition to grooving, stepping, bottom processing, and hole processing can be easily performed.
  • the surface of the molded body 20 is processed with a protective film 30 attached for the purpose of preventing scratches on the surface of the molded body 20 and preventing cutting dust (chips) and dirt from adhering. It is common. According to the present invention, since the protective film 30 is stuck on the surface of the molded body 20 in the sticking step and then processed, scratches and dirt are less likely to adhere to the surface of the molded body 20.
  • a backup sheet 3 may be interposed between them for the purpose of fixing the molded body 1 with double-sided protective film to the work table 2. And when processing the molded object 1 with a double-sided protective film, the backup sheet 3 is not completely penetrated but half-cut to the middle of the backup sheet 3. This prevents the cutting tool from hitting the work table 2 and prevents tool spills and scratches on the table.
  • the backup sheet 3 generally uses a protective film composed of a base material and an adhesive layer.
  • the film thickness of the base material of the backup sheet 3 is preferably 50 to 1000 ⁇ m. When the thickness of the substrate is 50 ⁇ m or more, half-cutting is facilitated, and the cutting tool does not come into contact with the work table 2 to cause blade spillage. If the film thickness of the base material is within 1000 ⁇ m, the base material cost is not high and the handleability is good.
  • the adhesion strength of the pressure-sensitive adhesive layer of the backup sheet 3 to the film substrate 31 of the protective film 30 is preferably 0.2 to 5 N / 25 mm. When the adhesion strength is 0.2 N / 25 mm or more, it becomes easy to hold the molded body 1 with a double-sided protective film during processing, and the positional deviation of the molded body 1 with a double-sided protective film hardly occurs.
  • the protective film 30 when the adhesive strength of the protective film 30 is weak, the protective film 30 is floated or peeled off during processing, and the molded body 20 is displaced. In addition, cutting waste (chip) enters between the molded body 20 and the protective film 30, resulting in scratches and dirt, causing problems. To solve these problems, a method of simply increasing the adhesive strength of the protective film 30 is conceivable. However, the component (adhesive) of the adhesive layer 32 migrates to the fine concavo-convex structure of the molded body 20 and causes contamination. Or adhesive residue may be generated in the concave portions of the fine concavo-convex structure.
  • the protective film 30 having the above-mentioned specific adhesion strength, a processed product that can be easily processed without causing the protective film 30 to be inadvertently peeled off during processing and has little adhesive residue. Can be manufactured.
  • the protective film 30 constituting the molded body 1 with double-sided protective film can also serve as the backup sheet 3. Further, for the purpose of being firmly fixed by the work table 2, the double-sided protective film-formed molded body 1 may be vacuum-adsorbed to the work table 2 via the backup sheet 3.
  • the protective film 30 is peeled off from the double-sided protective film-formed molded body 1 processed in the processing step, and the molded body 20 laminated on both surfaces of the first substrate 10 is cleaned.
  • the protective film 30 needs to have an adhesive force (adhesion strength) that prevents the molded body 20 from being displaced in the processing step.
  • adhesion strength of the protective film 30 is increased, when the protective film 30 is peeled off from the molded body 1 with the double-sided protective film after the processing step, adhesive residue is generated in the concave portions of the fine concavo-convex structure of the molded body 20. There is. In order to remove the adhesive residue, a cleaning process is performed.
  • a method for cleaning the molded body 20 is not particularly limited, and examples include dry cleaning in which the object to be cleaned is exposed to a gas phase atmosphere such as ozone and plasma, and wet cleaning in which the object to be cleaned is exposed to a liquid such as an organic solvent or a cleaning liquid.
  • Wet cleaning is preferable from the viewpoint of ease of handling and less damage to the fine uneven structure of the molded body 20 during cleaning.
  • wiping, ultrasonic cleaning, immersion cleaning, jet water flow cleaning and the like are preferable.
  • the cleaning liquid used for wet cleaning is preferably an organic solvent or an aqueous cleaning liquid.
  • the cleaning liquid include, for example, a cleaning liquid in which an acidic, neutral, or alkaline surfactant is blended in water, an organic solvent such as ethanol, methanol, and acetone. More specifically, “Semi-clean series” manufactured by Yokohama Oil & Fat Co., Ltd., “Toho Clean Series” manufactured by Toho Chemical Co., Ltd., “GC Series” manufactured by BEX, and the like. These cleaning liquids may be used alone or in combination of two or more.
  • the temperature of the cleaning liquid is preferably 10 to 70 ° C., and the cleaning time is preferably 1 to 60 minutes. Further, after cleaning with the cleaning liquid, it is preferable to rinse and remove cleaning liquid components (such as a surfactant) adhering to the surface of the molded body 20 using water or an organic solvent.
  • cleaning liquid components such as a surfactant
  • a processed product having a fine concavo-convex structure processed into a predetermined shape through the above-described cleaning step is preferably attached with a protective film for the purpose of protecting the fine concavo-convex structure from scratches and dirt during subsequent handling.
  • the protective film used for the processed product is preferably a film that hardly causes adhesive residue when peeled off, and the adhesion strength of the protective film to the acrylic resin plate is preferably 0.1 N / 25 mm or more and less than 0.2 N / 25 mm.
  • molded body 1 with a double-sided protective film is obtained by using, for example, a molded body 1 ′ with a single-sided protective film manufactured using a manufacturing apparatus 40 for a molded body with a single-sided protective film shown in FIG. Can be manufactured by laminating together.
  • FIG. 3 is a schematic configuration diagram illustrating an example of a manufacturing apparatus 40 for a molded body with a single-sided protective film.
  • the manufacturing apparatus 40 in this example includes a roll-shaped mold 41 having a fine concavo-convex structure on the surface, and active energy ray curable.
  • a tank 42 for containing the resin composition 22 ′, a nip roll 44 having a pneumatic cylinder 43, an active energy ray irradiation device 45, a peeling roll 46, and a pair of nip rolls 48 having a pneumatic cylinder 47 are provided.
  • the manufacturing apparatus 40 of the molded object with a single-sided protective film shown in FIG. 3 is an apparatus which manufactures molded object 1 'with a single-sided protective film continuously.
  • the roll-shaped mold 41 is a mold for transferring the fine concavo-convex structure to the active energy ray-curable resin composition 22 ′, and has anodized alumina on the surface.
  • a mold having an anodized alumina on the surface can increase the area, and a roll mold can be easily produced.
  • Anodized alumina is a porous oxide film (alumite) of aluminum and has a plurality of pores (concave portions) on the surface.
  • a mold having an anodized alumina on the surface can be produced, for example, through the following steps (a) to (e).
  • (A) A step of forming an oxide film by anodizing roll-shaped aluminum in an electrolytic solution under a constant voltage.
  • (B) A step of removing the oxide film and forming pore generation points for anodic oxidation.
  • (C) A step of anodizing the roll-shaped aluminum again in the electrolytic solution to form an oxide film having pores at the pore generation points.
  • D A step of enlarging the diameter of the pores.
  • (E) A step of repeatedly performing the steps (c) and (d).
  • (A) Process As shown in FIG. 4, when the aluminum 50 is anodized, an oxide film 52 having pores 51 is formed.
  • the purity of aluminum is preferably 99% or more, more preferably 99.5% or more, and particularly preferably 99.8% or more.
  • the purity of aluminum is low, when anodized, an uneven structure having a size to scatter visible light may be formed due to segregation of impurities, or the regularity of pores obtained by anodization may be lowered.
  • the electrolytic solution include sulfuric acid, oxalic acid, and phosphoric acid.
  • the concentration of oxalic acid is preferably 0.7 M or less. When the concentration of oxalic acid exceeds 0.7M, the current value becomes too high, and the surface of the oxide film may become rough. When the formation voltage is 30 to 60 V, anodized alumina having highly regular pores with a period of 100 nm can be obtained. Regardless of whether the formation voltage is higher or lower than this range, the regularity tends to decrease.
  • the temperature of the electrolytic solution is preferably 60 ° C. or lower, and more preferably 45 ° C. or lower. When the temperature of the electrolytic solution exceeds 60 ° C., a so-called “burn” phenomenon occurs, and the pores may be broken, or the surface may melt and the regularity of the pores may be disturbed.
  • the concentration of sulfuric acid is preferably 0.7M or less. If the concentration of sulfuric acid exceeds 0.7M, the current value may become too high to maintain a constant voltage. When the formation voltage is 25 to 30 V, anodized alumina having highly regular pores with a period of 63 nm can be obtained. The regularity tends to decrease whether the formation voltage is higher or lower than this range.
  • the temperature of the electrolytic solution is preferably 30 ° C. or lower, and more preferably 20 ° C. or lower. When the temperature of the electrolytic solution exceeds 30 ° C., a so-called “burn” phenomenon occurs, and the pores may be broken or the surface may melt and the regularity of the pores may be disturbed.
  • (C) Process As shown in FIG. 4, when the aluminum 50 from which the oxide film has been removed is anodized again, an oxide film 52 having cylindrical pores 51 is formed. Anodization may be performed under the same conditions as in step (a). Deeper pores can be obtained as the anodic oxidation time is lengthened.
  • the pore diameter expansion treatment is a treatment for expanding the diameter of the pores obtained by anodic oxidation by immersing in a solution dissolving the oxide film.
  • a solution dissolving the oxide film examples include a phosphoric acid aqueous solution of about 5% by mass. The longer the pore diameter expansion processing time, the larger the pore diameter.
  • the surface of the anodized alumina may be treated with a release agent so that separation from the cured product 22 is easy.
  • the treatment method include a method of coating a silicone resin or a fluorine-containing polymer, a method of depositing a fluorine-containing compound, a method of coating a fluorine-containing silane coupling agent or a fluorine-containing silicone-based silane coupling agent, and the like.
  • Examples of the shape of the pore 51 include a substantially conical shape, a pyramid shape, a cylindrical shape, and the like, and the cross-sectional area of the pore in a direction perpendicular to the depth direction, such as a conical shape and a pyramid shape, is deep from the outermost surface. A shape that continuously decreases in the direction is preferred.
  • the average interval between the pores 51 is preferably 400 nm or less, and more preferably 350 nm or less. In particular, when the average interval between the pores 51 is 400 nm or less, the molded body 20 having a low reflectance and a low wavelength dependency of the reflectance can be obtained.
  • the depth of the pore 51 is preferably 100 to 400 nm, and more preferably 150 to 300 nm.
  • the aspect ratio (pore height / pore opening length) of the pores 51 is preferably 1 to 5, more preferably 1.2 to 4, and particularly preferably 1.5 to 3.
  • the length of the opening part of a pore is the length of the opening in a cut surface when a pore is cut
  • the tank 42 contains the active energy ray-curable resin composition 22 ′, and the active energy is between the roll-shaped mold 41 and the strip-shaped second base material 21 that moves along the surface of the roll-shaped mold 41.
  • a line curable resin composition 22 ' is supplied.
  • the nip roll 44 is disposed to face the roll-shaped mold 41.
  • the nip roll 44 nips the second base material 21 and the active energy ray curable resin composition 22 ′ together with the roll-shaped mold 41.
  • the nip pressure is adjusted by a pneumatic cylinder 43 provided in the nip roll 44.
  • the active energy ray irradiating device 45 is installed below the roll-shaped mold 41 and irradiates active energy rays to fill the space between the second base material 21 and the roll-shaped mold 41 with an active energy ray-curable resin composition.
  • the object 22 ' is cured.
  • a cured product 22 is formed on the second substrate 21, onto which the fine uneven structure of the roll-shaped mold 41 is transferred.
  • the active energy ray irradiation device 45 a high-pressure mercury lamp, a metal halide lamp, or the like can be used.
  • the amount of light irradiation energy is preferably 100 to 10,000 mJ / cm 2 .
  • the peeling roll 46 is disposed on the downstream side of the active energy ray irradiation device 45 and peels the second base material 21 having the cured product 22 formed on the surface thereof from the roll-shaped mold 41.
  • the pair of nip rolls 48 is disposed on the downstream side of the peeling roll 46 and attaches the protective film 30 to the molded body 20.
  • the pair of nip rolls 48 includes an elastic roll 48a whose outer peripheral surface is formed of an elastic member such as rubber, and a rigid roll 48b whose outer peripheral surface is formed of a member having high rigidity such as metal.
  • the nip pressure is adjusted by a pneumatic cylinder 47 provided in the elastic roll 48a.
  • the active energy ray-curable resin composition 22 ′ appropriately contains a monomer, oligomer, or reactive polymer having a radical polymerizable bond and / or a cationic polymerizable bond in the molecule, and contains a non-reactive polymer. You may do it.
  • the monomer having a radical polymerizable bond can be used without any particular limitation.
  • Bifunctional monomer pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane ethylene oxide modified tri (meth) acrylate, trimethylolpropane propylene oxide modified triacrylate, trimethylolpropane ethylene oxide modified triacrylate , Trifunctional monomers such as isocyanuric acid ethylene oxide modified tri (meth) acrylate, succinic acid / Multifunctional such as dimethylolethane / acrylic acid condensation reaction mixture, dipentaerystol hexa (meth) acrylate, dipentaerystol penta (meth) acrylate, ditrimethylolpropane tetraacrylate, tetramethylolmethane tetra (meth) acrylate Examples include monomers, bifunctional or higher urethane acrylates, and bifunctional or higher polyester acrylates. These may be used alone or in combination of two or more.
  • the monomer which has an epoxy group an oxetanyl group, an oxazolyl group, a vinyloxy group etc. is mentioned, Among these, the monomer which has an epoxy group is especially preferable.
  • oligomers and reactive polymers examples include unsaturated polyesters such as unsaturated dicarboxylic acid and polyhydric alcohol condensates, polyester (meth) acrylates, polyether (meth) acrylates, polyol (meth) acrylates, epoxy (meth) ) Acrylates, urethane (meth) acrylates, cationic polymerization type epoxy compounds, and single or copolymer polymers of the above-mentioned monomers having a radical polymerizable bond in the side chain.
  • unsaturated polyesters such as unsaturated dicarboxylic acid and polyhydric alcohol condensates
  • polyester (meth) acrylates polyether (meth) acrylates, polyol (meth) acrylates, epoxy (meth) ) Acrylates, urethane (meth) acrylates, cationic polymerization type epoxy compounds, and single or copolymer polymers of the above-mentioned monomers having a radical polymerizable bond in the side
  • the monomer, oligomer, and reactive polymer having a cationic polymerizable bond in the present invention are not particularly limited as long as they are compounds having a cationic polymerizable functional group (cationic polymerizable compound), and monomers, oligomers, and prepolymers are not limited. Either may be sufficient.
  • Many types of cationically polymerizable functional groups are known. Among them, as functional groups having high practicality, cyclic ether groups such as epoxy groups and oxetanyl groups; vinyl ether groups; carbonate groups (O—CO—O groups) ) Etc. can be illustrated.
  • Representative cationic polymerizable compounds include cyclic ether compounds such as epoxy compounds and oxetane compounds; vinyl ether compounds; carbonate compounds such as cyclic carbonate compounds and dithiocarbonate compounds.
  • non-reactive polymers examples include acrylic resins, styrene resins, polyurethane resins, cellulose resins, polyvinyl butyral resins, polyester resins, and thermoplastic elastomers.
  • the active energy ray-curable composition usually contains a polymerization initiator for curing. It does not specifically limit as a polymerization initiator, A well-known thing can be used.
  • the photopolymerization initiator When utilizing a photoreaction, the photopolymerization initiator includes a radical polymerization initiator and a cationic polymerization initiator.
  • the radical polymerization initiator can be used without particular limitation as long as it generates an acid upon irradiation with a known active energy ray, specifically, an acetophenone-based photopolymerization initiator, a benzoin-based photopolymerization initiator, a benzophenone-based initiator. Examples include photopolymerization initiators, thioxanthone photopolymerization initiators, and acylphosphine oxide photopolymerization initiators.
  • acetophenone photopolymerization initiator As the acetophenone photopolymerization initiator, acetophenone, p- (tert-butyl) -1 ′, 1 ′, 1′-trichloroacetophenone, chloroacetophenone, 2 ′, 2′-diethoxyacetophenone, hydroxyacetophenone, 2,2 -Dimethoxy-2'-phenylacetophenone, 2-aminoacetophenone, dialkylaminoacetophenone and the like.
  • Benzoin photopolymerization initiators include benzyl, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-2- Examples include methylpropan-1-one, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, and benzyldimethyl ketal.
  • Benzophenone photopolymerization initiators include benzophenone, benzoylbenzoic acid, methyl benzoylbenzoate, methyl-o-benzoylbenzoate, 4-phenylbenzophenone, hydroxybenzophenone, hydroxypropylbenzophenone, acrylic benzophenone, and 4,4′-bis ( And dimethylamino) benzophenone.
  • Examples of the thioxanthone photopolymerization initiator include thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, diethylthioxanthone, and dimethylthioxanthone.
  • acylphosphine oxide photopolymerization initiator examples include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, benzoyldiethoxyphosphine oxide, and bis2,4,6-trimethylbenzoylphenylphosphine oxide.
  • radical polymerization initiators include ⁇ -acyl oxime ester, benzyl- (o-ethoxycarbonyl) - ⁇ -monooxime, glyoxy ester, 3-ketocoumarin, 2-ethylanthraquinone, camphorquinone, tetramethylthiuram. Examples thereof include sulfide, azobisisobutyronitrile, benzoyl peroxide, dialkyl peroxide, and tert-butyl peroxypivalate. These radical polymerization initiators may be used alone or in combination of two or more.
  • the cationic polymerization initiator can be used without particular limitation as long as it generates an acid upon irradiation with a known active energy ray, and examples thereof include a sulfonium salt, an iodonium salt, and a phosphonium salt.
  • sulfonium salt examples include triphenylsulfonium hexafluorophosphate, triphenylsulfonium hexafluoroantimonate, bis (4- (diphenylsulfonio) -phenyl) sulfide-bis (hexafluorophosphate), bis (4- (diphenylsulfo).
  • the iodonium salt include diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, and bis (dodecylphenyl) iodonium tetrakis (pentafluorophenyl) borate. Examples
  • thermal polymerization initiator examples include methyl ethyl ketone peroxide, benzoyl peroxide, dicumyl peroxide, t-butyl hydroperoxide, cumene hydroperoxide, and t-butyl peroxy octoate. , T-butylperoxybenzoate, lauroyl peroxide and other organic peroxides; azo-based compounds such as azobisisobutyronitrile; N, N-dimethylaniline, N, N-dimethyl-p -A redox polymerization initiator combined with an amine such as toluidine.
  • the addition amount of the polymerization initiator is 0.1 to 10 parts by mass with respect to 100 parts by mass of the active energy ray-curable composition. When it is 0.1 part by mass or more, polymerization is likely to proceed, and when it is 10 parts by mass or less, the obtained cured product is not colored or mechanical strength is not lowered.
  • the active energy ray-curable composition is added with an antistatic agent, a release agent, an additive such as a fluorine compound for improving antifouling property, fine particles, a small amount of solvent, and the like. It may be.
  • the molded body 20 is produced. Specifically, as shown in FIG. 3, the belt-shaped second base material 21 is transported along the surface of the rotating roll-shaped mold 41, and the second base material 21 and the roll-shaped mold 41 are interposed. Then, the active energy ray-curable resin composition 22 ′ is supplied from the tank 42.
  • the second substrate 21 and the active energy ray-curable resin composition 22 ′ are nipped between the roll-shaped mold 41 and the nip roll 44 whose nip pressure is adjusted by the pneumatic cylinder 43, and active energy ray curing is performed.
  • the conductive resin composition 22 ′ is uniformly distributed between the second base material 21 and the roll-shaped mold 41, and at the same time, filled into the concave portions of the fine concavo-convex structure of the roll-shaped mold 41.
  • the active energy ray curable resin composition 22 ′ is irradiated with active energy rays from the active energy ray irradiating device 45 installed below the roll-shaped mold 41 through the second substrate 21, thereby activating the active energy rays.
  • the resin composition 22 ′ By curing the resin composition 22 ′, a cured product 22 to which the fine uneven structure on the surface of the roll-shaped mold 41 is transferred is formed.
  • the molded body 20 is obtained by peeling the second substrate 21 having the cured product 22 formed on the surface by the peeling roll 46.
  • the surface of the cured product 22 formed by transferring the pores 51 as shown in FIG. 4 has a so-called Moth-Eye structure.
  • the protective film 30 is stuck on the surface of the obtained molded body 20.
  • the molded body 20 obtained previously is passed between a pair of nip rolls 48, and at the same time, the protective film 30 fed from a protective film feeding machine (not shown) is placed on the side where the fine concavo-convex structure is formed. It is supplied between the molded body 20 and the pair of nip rolls 48 so as to stick to the surface of the sheet.
  • the molded body 20 is formed between the elastic roll 48a and the rigid roll 48b so that the back surface (the surface on which the fine uneven structure is not formed) of the molded body 20 is in contact with the rigid roll 48b. Is sent in.
  • the protective film 30 is such that the pressure-sensitive adhesive layer 32 is in contact with the surface of the molded body 20 (the surface on the side where the fine concavo-convex structure is formed), and the film substrate 31 is in contact with the elastic roll 48a. It is fed between 48a and the molded body 20.
  • the molded body 20 and the protective film 30 are sandwiched between the elastic roll 48 a and the rigid roll 48 b, and a pair of pneumatic cylinders 47 are used.
  • the protective film 30 is adhered to the molded body 20 while adjusting the nip pressure of the nip roll 48.
  • the protective film 30 since the surface of the molded body 20 comes into contact with the elastic roll 48a via the protective film 30, the fine concavo-convex structure is unlikely to be deformed or damaged.
  • a film produced separately by the method described above may be used, or a commercially available film may be used.
  • the molded body 1 ′ with a single-side protective film is manufactured by continuously pasting the protective film 30 after producing the molded body 20 as described above.
  • the present invention is not limited to this. However, it is not limited to this, and after forming a molded body, the molded body is once collected, transferred to another production line, and a protective film 30 is attached. May be.
  • the protective film 30 is not prepared in the middle of processing by using the protective film having a specific adhesion strength and performing the cleaning step after the processing step. Can be easily processed without peeling off, and a processed product with little adhesive residue can be produced. Further, according to the present invention, it is possible to protect the fine concavo-convex structure of the molded body in the processing step, and therefore it is possible to easily manufacture a processed product having a complicated shape with few scratches and dirt. Therefore, the present invention is particularly suitable for processing a molded body having a fine concavo-convex structure on both sides where the position shift of the molded body during processing appears to be conspicuous.
  • the manufacturing method of the processed product of the present invention is not limited to the above-described method.
  • the molded body 1 with a double-sided protective film shown in FIG. 1 is processed, but the object to be processed is not limited to the molded body 1 with a double-sided protective film in the illustrated example.
  • the adhesion strength of the protective film with respect to the fine concavo-convex structure was measured by performing a 180 ° peeling test at a place where the surface on the side where the fine concavo-convex structure was formed and the protective film were adhered.
  • Example 1 ⁇ Production of roll mold> A 99.90% pure aluminum ingot was forged and subjected to a blanket polishing treatment on a cylindrical aluminum prototype without rolling marks cut to a diameter of 200 mm, an inner diameter of 155 mm, and a thickness of 350 mm. Then, it was electropolished in an ethanol mixed solution (volume ratio 1: 4) to make a mirror surface. Next, the aluminum master having a mirror-finished surface was anodized in a 0.3 M oxalic acid aqueous solution at a bath temperature of 16 ° C. under a direct current of 40 V for 30 minutes to form an oxide film having a thickness of 3 ⁇ m (process) (A)).
  • step (b) The formed oxide film was once dissolved and removed in a 6% by mass phosphoric acid and 1.8% by mass chromic acid mixed aqueous solution (step (b)), and then again under the same conditions as in step (a). Anodized for 2 seconds to form an oxide film (step (c)). Thereafter, the substrate was immersed in a 5% by mass phosphoric acid aqueous solution (30 ° C.) for 8 minutes, and subjected to a pore diameter expansion treatment (step (d)) for expanding the pores of the oxide film. Further, the step (c) and the step (d) are repeated, and these are added five times in total (step (e)), so that the length of the pore opening portion is 100 nm and the depth is 230 nm.
  • a roll-shaped mold having anodized alumina having tapered pores on the surface was obtained. Subsequently, a roll mold was dipped in a 0.1% by mass solution of “OPTOOL DSX (trade name)” manufactured by Daikin Industries, Ltd., which is a mold release agent, and air-dried for 24 hours for release treatment, and an oxide film The surface was fluorinated.
  • OPTOOL DSX trade name
  • the obtained roll-shaped mold is installed in the manufacturing apparatus 40 for a molded body with a single-sided protective film shown in FIG. 3, and the molded body 20 is manufactured as follows, and the molded body 1 ′ with a single-sided protective film is continuously manufactured. did.
  • the roll-shaped mold 41 was fitted into a shaft made of carbon steel for mechanical structure in which a flow path for cooling water was provided.
  • a second base material Mitsubishi Rayon
  • nip roll 44 and the roll-shaped mold 41 through the supply nozzle of the active energy ray-curable resin composition 22 ′ having the following composition from the tank 42 at room temperature.
  • the active energy ray-curable resin composition 22 ′ is 240 W while being sandwiched between the roll mold 41 and the second substrate 21.
  • the release roll 46 peels off the roll mold 41, As shown in FIG. 2, a molded body (transparent sheet) 20 having an uneven portion 23 having a fine uneven structure on the surface was obtained.
  • the concavo-convex portion 23 was formed with convex portions having a pore opening length of 100 nm and a height of 230 nm, and the fine concavo-convex structure of the roll-shaped mold was satisfactorily transferred. The formed fine uneven structure was formed.
  • the molded body 20 was fed between the elastic roll 48a and the rigid roll 48b so that the back surface (the surface on which the fine uneven structure is not formed) of the molded body 20 is in contact with the rigid roll 48b.
  • the adhesive surface (adhesive layer) of the protective film (manufactured by Nitto Denko Corporation, “HR-6010”) 30 is brought into contact with the surface of the molded body 20 (the surface on which the fine uneven structure is formed). Then, the protective film 30 was fed between the elastic roll 48 a and the molded body 20.
  • the protective film 30 is adhered to the surface of the molded body 20, and the single-side protective film as shown in FIG.
  • the attached molded body 1 ′ was obtained.
  • the adhesive strength with respect to the fine concavo-convex structure of the protective film 30 was 0.36 N / 25 mm.
  • the molded body 1 with double-sided protective film was cut into a width and a width of 5 cm, and a test piece having a size of 5 ⁇ 5 cm was cut out (processing step) and evaluated according to the following evaluation criteria. .
  • the results are shown in Table 1.
  • The protective film is not peeled off and can be cut almost satisfactorily, and no burrs are generated on the cut surface.
  • X The protective film peeled off during the cutting process. Or, chipping (burrs) occurred on the cut surface.
  • haze measurement of processed products The haze of the processed product was measured using a haze meter (manufactured by Suga Test Instruments Co., Ltd.) according to JIS K7361-1.
  • the protective film 30 is peeled off from the test piece cut out from the molded body 1 with a double-sided protective film, and the molded body 20 laminated on both surfaces of the first substrate 10 is ultrasonically cleaned using an alkaline cleaning liquid. (Washing process) to obtain a processed product.
  • the obtained processed product was visually and microscopically observed for the presence of foreign matter, and adhesive residue was determined according to the following evaluation criteria.
  • the results are shown in Table 1.
  • The adhesive residue can be removed by washing with alkali.
  • No glue residue that cannot be removed even after alkaline cleaning: No change in reflectance, less than 0.05, change in haze less than 0.2, no foreign matter observed visually and under a microscope
  • Example 2 A molded article with a protective film was produced in the same manner as in Example 1 except that a protective film having an adhesion strength to the fine concavo-convex structure of 0.38 N / 25 mm (manufactured by Nitto Denko Corporation, “RB-200S”) was used. Processed and evaluated. The results are shown in Table 1.
  • Example 3 A molded article with a protective film was produced and processed in the same manner as in Example 1 except that a protective film having an adhesion strength of 0.83 N / 25 mm to the fine concavo-convex structure (“Sumilon Co., Ltd.,“ EC-625 ”) was used. And evaluated. The results are shown in Table 1.
  • Example 4 A molded body with a protective film was produced in the same manner as in Example 1 except that a protective film (Nitto Denko Corporation, “R-200”) having an adhesion strength of 0.95 N / 25 mm to the fine uneven structure was used. Processed and evaluated. The results are shown in Table 1.
  • Example 5 A molded article with a protective film was produced in the same manner as in Example 1 except that a protective film having an adhesion strength of 0.19 N / 25 mm to the fine concavo-convex structure (manufactured by Sanei Kaken Co., Ltd., “SAT HC1138T10-J”) was used. ⁇ Processed and evaluated. The results are shown in Table 1.
  • Example 6 A molded article with a protective film was prepared in the same manner as in Example 1 except that a protective film having an adhesion strength of 0.12 N / 25 mm to the fine concavo-convex structure (“FM-125” manufactured by Daio Paper Industries Co., Ltd.) was used. Manufactured, processed and evaluated. The results are shown in Table 1.
  • Example 1 A molded body with a protective film is produced in the same manner as in Example 1 except that a protective film (Hitachi Chemical Industry Co., Ltd., “P-3020”) having an adhesion strength of 3.80 N / 25 mm to the fine uneven structure is used. ⁇ Processed and evaluated. The results are shown in Table 1.
  • Example 2 A molded article with a protective film was produced in the same manner as in Example 1 except that a protective film (Hitachi Chemical Industry Co., Ltd., “P-3030”) having an adhesion strength to a fine relief structure of 3.15 N / 25 mm was used. ⁇ Processed and evaluated. The results are shown in Table 1.
  • Example 3 A molded body with a protective film was produced in the same manner as in Example 1 except that a protective film (Hitachi Chemical Industry Co., Ltd., “P-3040”) having an adhesion strength of 1.80 N / 25 mm to the fine uneven structure was used. ⁇ Processed and evaluated. The results are shown in Table 1.
  • Example 4 A molded body with a protective film was produced in the same manner as in Example 1 except that a protective film (SAF-300M, manufactured by Phutamura Chemical Co., Ltd.) having an adhesion strength to the fine concavo-convex structure of 1.80 N / 25 mm was used. Processed and evaluated. The results are shown in Table 1.
  • a protective film SAF-300M, manufactured by Phutamura Chemical Co., Ltd.
  • Example 5 A molded body with a protective film was produced in the same manner as in Example 1 except that a protective film (NITTO DENKO Co., Ltd., “RB-100S”) having an adhesion strength to the fine concavo-convex structure of 0.05 N / 25 mm was used. Processed and evaluated. The results are shown in Table 1.
  • the laminated structure of the present invention it is possible to provide a laminated structure for producing a processed product that can be easily processed without causing the protective film to be inadvertently peeled off and that has little adhesive residue.
  • the method for producing a processed product of the present invention when processing a molded article having a fine concavo-convex structure on the surface, to which the protective film is adhered, the protective film can be easily processed without being peeled inadvertently, and the paste Processed products with little remaining can be manufactured.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

本発明は、微細凹凸構造を表面に有する成形体と、前記成形体の微細凹凸構造側の表面に接する保護フィルムとを有する積層構造体であって、前記微細凹凸構造における凸部間の平均間隔が可視光波長以下であり、前記保護フィルムを前記微細凹凸構造に貼着したときの密着強度が0.1~1.7N/25mmであることを特徴とする積層構造体に関する。本発明によれば、保護フィルムが不用意に剥がれることなく容易に加工でき、かつ糊残りが少ない加工品を製造するための積層構造体を提供することができる。

Description

積層構造体および加工品の製造方法
 本発明は、表面に微細凹凸構造を有する積層構造体および加工品の製造方法に関する。
 本願は、2010年12月27日に、日本に出願された特願2010-290959号に基づき優先権を主張し、その内容をここに援用する。
 各種ディスプレー、レンズ、ショーウィンドーなどにおける、空気と接する界面(表面)では、太陽光や照明等が表面で反射することによる視認性の低下が問題点となっていた。
 反射を減らすために、例えば反射防止フィルムを対象物の表面に貼着することがある。
 従って、反射防止フィルムには、反射率や反射率の波長依存性が低いことが求められる。
 反射防止フィルムとしては、フィルム表面での反射光と、フィルムと対象物の界面での反射光とが干渉によって打ち消し合うように、屈折率の異なる数層のフィルムが積層した構造のものが知られている。通常、フィルムの積層数を増やすと、反射率や反射率の波長依存性が低くなる傾向にある。
 これらのフィルムは、通常、スパッタリング、蒸着、およびコーティング等の方法で製造される。しかし、このような方法では、フィルムの積層数を増やしても反射率および反射率の波長依存性の低下には限界があった。また、製造コスト削減を目的としてフィルムの積層数を減らすためには、より低屈折率の材料が求められていた。
 材料の屈折率を下げるためには、何らかの方法で材料中に空気を導入することが有効であるが、その一つとして、例えばフィルムの表面に微細凹凸構造を形成する方法が知られている。特に、Moth-Eye構造と呼ばれる微細凹凸構造は、空気の屈折率から材料の屈折率に連続的に増大していくことで有効な反射防止の手段となる。
 材料表面に微細凹凸構造を形成する方法としては、材料の表面を直接加工する方法、微細凹凸構造に対応した反転構造を有する鋳型を用いて、この構造を転写する転写法などがあり、生産性、経済性の点から、後者の方法が優れている。鋳型に反転構造を形成する方法としては、電子線描画法、レーザー光干渉法等が知られているが、近年、より簡便に製造できる鋳型として、陽極酸化により形成された微細凹凸構造を有するアルミナが注目されている(例えば、特許文献1参照。)。特許文献1には、細孔周期が50~300nmの微細凹凸構造が表面に形成された陽極酸化ポーラスアルミナを鋳型として用いて製造した反射防止膜が開示されている。
 通常、表面に微細凹凸構造が形成されたフィルムなどの成形体には、表面に汚れ等が付着するのを防いだり、微細凹凸構造の形状を維持(保護)したりすることを目的として、加工工程や出荷後から使用されるまでの間、微細凹凸構造が形成された表面に保護フィルムが貼着される。
 しかし、特許文献1に記載のように、陽極酸化ポーラスアルミナの表面の可視光の波長以下の周期の微細凹凸構造を転写して、表面にMoth-Eye構造の微細凹凸構造を形成した成形体では、通常の微細凹凸構造に比べて凸部間の間隔が狭く、凸部先端と保護フィルムとの接着面積が小さい。そのため、凹凸構造の周期が可視光の波長より大きいアンチグレア(AG)構造やプリズム構造に対して一般的に用いられる保護フィルムを、Moth-Eye構造の微細凹凸構造の表面に貼着するのは困難であった。すなわち、一般的な保護フィルムでは、十分な密着力が得られにくかったり、逆に密着力が過剰になったりしやすかった。
 そこで、保護フィルムを貼着しやすく、かつ貼着した保護フィルムが不用意に剥がれず、さらに意図的に剥がそうとすれば容易に剥離できるようにするために、微細凹凸構造を有する凹凸部と、微細凹凸構造を有さない非凹凸部が表面に形成された成形体の表面に、凹凸部に対する初期密着強度が0.03N/25mm以下の保護フィルムを貼着する方法が提案されている(特許文献2参照。)。
特開2005-156695号公報 特開2010-107858号公報
 しかしながら、特許文献2に記載の保護フィルム付き成形体(積層構造体)は、NC切削などにより所望の形状に加工することは考慮されていない。そのため、このような保護フィルム付き成形体(積層構造体)をNC切削等により加工すると、加工中に保護フィルムが剥がれてしまい、加工中の成形体の位置ずれや、成形体の表面に傷がつくといった問題が生じることが明らかになった。
 また、両面に微細凹凸構造を有する成形体の加工や、表面全面に微細凹凸構造を有する成形体を加工する場合に、上述のような問題が特に顕著となることが明らかになった。
 加工中に保護フィルムが剥がれないようにするには、粘着力の強い保護フィルムを用いればよいが、この場合、保護フィルムを剥離した後に、保護フィルムの粘着剤が成形体の微細凹凸構造の凹部に残留する現象(糊残り)が起こることが明らかとなった。凹部に糊残りがあると、成形体の光学性能が低下しやすくなる。
 特に、Moth-Eye構造の微細凹凸構造の表面に保護フィルムを貼着すると、保護フィルムを剥離した後に、凹部に粘着剤が残留しやすかった。
 本発明は上記事情に鑑みてなされたもので、表面に微細凹凸構造を有する成形体と、その表面に接する保護フィルムとを有する積層構造体、および前記積層構造体を加工する際に、保護フィルムが不用意に剥がれることなく容易に加工でき、かつ糊残りが少ない加工品を製造する方法を提供する。
 本発明者らは鋭意検討した結果、特定の密着強度を有する保護フィルムを用い、かつ加工工程の後に洗浄工程を行うことで、積層構造体の加工中に保護フィルムが剥離するのを抑制でき、その結果、加工中でも微細凹凸構造を保護することが可能となり、キズや汚れの付着が少ない複雑な形状の加工品を、糊残りを抑制しつつ、容易に製造できることを見出し、本発明を完成するに至った。
すなわち、本発明の第一の態様は、微細凹凸構造を表面に有する成形体と、前記成形体の微細凹凸構造側の表面に接する保護フィルムとを有する積層構造体であって、前記微細凹凸構造における凸部間の平均間隔が可視光波長以下であり、前記保護フィルムを前記微細凹凸構造に貼着したときの密着強度が0.1~1.7N/25mmであることを特徴とする積層構造体に関する。
本発明の第二の態様は、第一の態様の積層構造体を、所定の形状の加工品に加工する方法において、前記成形体の微細凹凸構造を有する表面に、前記表面を保護する保護フィルムを貼着する貼着工程と、前記保護フィルムと前記成形体とを所定の形状に加工する加工工程とを含むことを特徴とする加工品の製造方法に関する。
前記加工工程の後、前記積層構造体から前記保護フィルムを剥離し、前記成形体を洗浄する洗浄工程を含むことが好ましい。
前記洗浄工程が、洗浄液を用いたウェット洗浄工程であることが好ましい。
 本発明の積層構造体によれば、保護フィルムが不用意に剥がれることなく容易に加工でき、かつ糊残りが少ない加工品を製造するための積層構造体を提供することができる。
 本発明の加工品の製造方法によれば、保護フィルムが貼着した、表面に微細凹凸構造を有する積層構造体を加工する際に、保護フィルムが不用意に剥がれることなく容易に加工でき、かつ糊残りが少ない加工品を製造できる。
本発明に用いる、表面に微細凹凸構造を有する成形体に保護フィルムが貼着した両面保護フィルム付き成形体(積層構造体)の一例を示す縦断面図である。 図1に示す両面保護フィルム付き成形体(積層構造体)に用いる成形体の一例を示す縦断面図である。 図1に示す両面保護フィルム付き成形体(積層構造体)を構成する、片面保護フィルム付き成形体(積層構造体)の製造装置の一例を示す構成図である。 表面に陽極酸化アルミナを有するモールドの製造工程を示す断面図である。
 以下、本発明を詳細に説明する。
 図1は、本発明の加工品の製造方法に用いる両面保護フィルム付き成形体(積層構造体)1の一例を示す縦断面図である。この例の両面保護フィルム付き成形体1は、第一の基材10の両面に片面保護フィルム付き成形体(積層構造体)1’が積層して構成されている。また、片面保護フィルム付き成形体1’は、成形体20の表面に保護フィルム30が貼着されている。
 なお、図2~3において、図1と同じ構成要素には同一の符号を付して、その説明を省略する場合がある。また、図1~4においては、各部材を図面上で認識可能な程度の大きさとするため、各部材毎に縮尺を異ならせてある。
 また、本明細書において、「(メタ)アクリレート」は、アクリレートおよびメタクリレートを意味し、「活性エネルギー線」は、可視光線、紫外線、電子線、プラズマ、および熱線(赤外線等)等を意味する。
また、本明細書において「成形体」とは、微細凹凸構造が形成された物品を意味し、「積層構造体」とは、成形体の表面に保護フィルムが貼着したものを意味する。
[両面保護フィルム付き成形体(積層構造体)]
<第一の基材>
 第一の基材10に用いられる材料としては、光を透過するものであれば特に限定されない。例えばポリカーボネート、ポリスチレン系樹脂、ポリエステル、ポリエーテルスルフォン、ポリスルフォン、ポリエーテルケトン、ポリウレタン、アクリル系樹脂、およびガラスなどが挙げられる。
 第一の基材10は射出成形、押し出し成形、およびキャスト成形のいずれの方法によって作成してもよい。
 第一の基材10の形状については特に制限されず、後述する成形体20の形状に応じて適宜選択できるが、例えば成形体20が反射防止フィルムなどである場合には、シート状またはフィルム状が好ましい。
<成形体>
 図1に示す成形体20は、第二の基材21と、前記第二の基材21の一方の面(表面)に形成された、活性エネルギー線硬化性樹脂組成物の硬化物22とを有する。
 第二の基材21に用いられる材料としては、光を透過するものであれば特に限定されない。例えばメチルメタクリレート(共)重合体、ポリカーボネート、スチレン(共)重合体、メチルメタクリレート-スチレン共重合体、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、ポリエステル、ポリアミド、ポリイミド、ポリエーテルスルフォン、ポリスルフォン、ポリプロピレン、ポリメチルペンテン、ポリ塩化ビニル、ポリビニルアセタール、ポリエーテルケトン、ポリウレタン、およびガラスなどが挙げられる。
 第二の基材21は射出成形、押し出し成形、およびキャスト成形のいずれの方法によって作成してもよい。
 第二の基材21の形状には特に制限はなく、製造する成形体20に応じて適宜選択できるが、例えば成形体20が反射防止フィルムなどである場合には、シート状またはフィルム状が好ましい。
 第二の基材21は、硬化物22が形成されない側の面(裏面)に粘着剤層およびセパレートフィルム(何れも図示略)を設けてもよい。粘着剤層を設けることで第一の基材10に容易に貼付けられる。
 また、活性エネルギー線硬化性樹脂組成物との密着性や、帯電防止性、耐擦傷性、および耐候性等の改良のために、第二の基材21の表面には、例えば各種コーティングやコロナ放電処理が施されていてもよい。
 成形体20は、表面に微細凹凸構造を有する。成形体20は、表面全体に微細凹凸構造が形成されていてもよく、表面の一部に微細凹凸構造が形成されていてもよい。なお、微細凹凸構造が形成されている部分を凹凸部23という。
 凹凸部23の微細凹凸構造は、後述する活性エネルギー線硬化性樹脂組成物の硬化物22からなる複数の凸部を有するもので、陽極酸化アルミナの表面の微細凹凸構造を転写して形成される。
 微細凹凸構造としては、略円錐形状、角錐形状等の突起(凸部)が複数並んだ、いわゆるMoth-Eye構造が好ましい。表面に、微細凹凸構造を有する凹凸部23を備えることで、防汚性に優れた成形体20が得られる。特に、凸部間の間隔が可視光の波長以下であるMoth-Eye構造は、空気の屈折率から材料の屈折率に連続的に屈折率が増大していくことで有効な反射防止の手段となる。
 凸部間の平均間隔は、400nm以下が好ましく、350nm以下がより好ましく、250nm以下が特に好ましい。凸部間の平均間隔が可視光の波長以下、すなわち400nm以下であれば、可視光の反射率が少ない成形体が得られる。特に、凸部間の平均間隔が可視光の波長以下、すなわち400nm以下であれば、反射率が低く、かつ反射率の波長依存性が少ない成形体20が得られる。
 凸部間の平均間隔は、凸部の形成のしやすさの点から、25nm以上が好ましく、80nm以上がより好ましい。
 凸部間の平均間隔は、電子顕微鏡観察によって隣接する凸部間の間隔(図2中、凸部23aの中心から隣接する凸部23aの中心までの距離W)を10点測定し、これらの値を平均したものである。
すなわち、凸部間の平均間隔は、25~400nmが好ましく、80~250nmがより好ましい。
 凸部の高さは、100~400nmが好ましく、150~300nmがより好ましい。
 凸部の高さが100nm以上であれば、反射率が十分に低くなり、かつ反射率の波長依存性が少なくなる。凸部の高さが400nm以下であれば、凸部の耐擦傷性が良好となる。
 凸部の高さは、電子顕微鏡観察によって10個の凸部の高さ(図2中、凸部23aの先端から、この凸部23aに隣接する凹部23bの底部までの垂直距離d)を測定し、これらの値を平均したものである。
 凸部のアスペクト比(凸部の高さ/凸部の底面の長さ)は、1~5が好ましく、1.2~4がより好ましく、1.5~3が特に好ましい。凸部のアスペクト比が1以上であれば、反射率が十分に低くなる。凸部のアスペクト比が5以下であれば、凸部の耐擦傷性が良好となる。
 なお、「凸部の底面の長さ」とは、図2中、凸部23aの先端から高さ方向に凸部23aを切断したときの断面における底部の長さdのことである。
 凸部の形状は、高さ方向と直交する方向の凸部断面積が最表面から深さ方向に連続的に増加する形状、すなわち、凸部の高さ方向の断面形状が、三角形、台形、および釣鐘型等の形状が好ましい。
 成形体20は、表面に微細凹凸構造を有する凹凸部23を備えるので、光学用途成形体、特に反射防止フィルムや立体形状の反射防止体などの反射防止物品として好適である。
 成形体20が反射防止フィルムである場合には、例えば、液晶表示装置、プラズマディスプレイパネル、エレクトロルミネッセンスディスプレイ、陰極管表示装置のような画像表示装置、レンズ、ショーウィンドー、計器窓、採光部材、眼鏡レンズ、1/2波長板、およびローパスフィルター等の対象物の表面に貼り付けて使用される。
 成形体20が立体形状の反射防止体である場合には、あらかじめ用途に応じた形状の透明基材を用いて反射防止体を製造しておき、これを上記対象物の表面を構成する部材として使用することもできる。
 また、対象物が画像表示装置である場合には、その表面に限らず、その前面板に対して反射防止フィルムを貼り付けてもよいし、前面板そのものを本発明の成形体(積層構造体)から構成することもできる。
 その他にも、このような成形体20の用途としては、光導波路、レリーフホログラム、偏光分離素子、水晶デバイスなどの光学用途成形体や、細胞培養シート、超撥水性フィルム、および超親水性フィルムなどが挙げられる。
<保護フィルム>
 保護フィルム30は、成形体20の表面を保護するものであり、図1に示すように成形体20の表面、すなわち微細凹凸構造を有する凹凸部23に貼着する。これにより、成形体20表面が他の物体と接触してもキズが付きにくくなる。さらに、成形体20と保護フィルム30との界面にゴミ等の不純物がより侵入しにくく、成形体20の表面に汚れ等がより付着しにくくなる。
 保護フィルムは、例えば図1に示すように、フィルム基材31上に、粘着剤を含む粘着剤層32が積層している。
 フィルム基材31に用いられる材質は特に限定されず、例えば結晶性エチレン系樹脂、結晶性プロピレン単独重合体、プロピレンとα-オレフィンおよび/またはエチレンとのランダム共重合体や、プロピレンとα-オレフィンおよび/またはエチレンとのブロック共重合体などの結晶性プロピレン系樹脂、ポリ(1-ブテン)、ポリ(4-メチル-1-ペンテン)などのオレフィン系樹脂、ポリメチルアクリレート、ポリメチルメタクリレート、エチレン-エチルアクリレート共重合体などのアクリル系樹脂、ブタジエン-スチレン共重合体、アクリロニトリル-スチレン共重合体、ポリスチレン樹脂、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、スチレン-アクリル酸共重合体などのスチレン系樹脂、塩化ビニル系樹脂、ポリフッ化ビニル、ポリフッ化ビニリデンなどのフッ化ビニル系樹脂、ナイロン6、ナイロン66、ナイロン12などのポリアミド系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどの飽和エステル系樹脂、ポリカーボネ-ト、ポリフェニレンオキサイド、ポリアセタール、ポリフェニレンスルフィド、シリコーン樹脂、熱可塑性ウレタン樹脂、ポリエーテルエーテルケトン、ポリエーテルイミド、各種熱可塑性エラストマー、あるいはこれらの架橋物等が挙げられる。
 フィルム基材31の厚さは、粘着性等を損なわない範囲で適宜選択することができ、一般的には3~500μmであり、好ましくは5~200μmである。フィルム基材31の厚さが3μm未満であると、保護フィルム30の製造工程でシワ等が発生しやすくなり、成形体20に貼着しにくくなる場合がある。一方、フィルム基材31の厚さが500μmを超えると、保護フィルム30のハンドリングが困難な場合がある。
 フィルム基材31には、必要に応じて、例えば、防汚処理や、酸処理、アルカリ処理、プライマー処理、アンカーコート処理、コロナ処理、プラズマ処理、紫外線処理、および静電防止処理を施してもよい。
 粘着剤層32を形成する粘着剤としては、特に限定されるものではないが、例えばエチレン-酢酸ビニル共重合体(EVA)、直鎖状低密度ポリエチレン(LLDPE)、エチレン-α-オレフィン共重合体、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、スチレン-エチレン-ブチレン-スチレンブロック共重合体、スチレン-ブタジエンランダム共重合体、水添スチレン-ブタジエンランダム共重合体、およびアクリル系ポリマー等が挙げられる。
 これら粘着剤は1種単独で用いてもよいし、2種以上を併用してもよい。
 また、粘着剤には、必要に応じて、架橋剤、架橋触媒、粘着性付与剤、充填剤、顔料、着色剤、および酸化防止剤などの慣用の添加剤を配合してもよい。
 粘着剤層32の厚さは、粘着性等を損なわない範囲で適宜選択することができ、一般的には1~100μmであり、好ましくは3~50μmであり、より好ましくは5~30μmである。
 粘着剤層32には、耐防汚を目的として、フィルム基材31が積層した面の反対側の表面に剥離フィルム(図示略)が積層されていてもよい。
 剥離フィルムに用いられる樹脂としては特に限定されず、例えばフィルム基材31の説明において先に例示した各種樹脂などが挙げられる。これらの中でも、剥離性の観点から、ポリスチレン樹脂、飽和エステル系樹脂、およびポリアミド系樹脂が好ましく、ポリエチレンテレフタレート、およびポリアミド系樹脂がより好ましい。
 また、剥離フィルムの剥離性を上げるため、粘着剤層32に接する剥離フィルム面に、発明の効果を損なわない範囲で、必要に応じて、シリコーン等の剥離処理を行ってもよい。
 保護フィルム30は、少なくとも1層のフィルム基材31、および少なくとも1層の粘着剤層32を含んでいれば、層構成または積層数は特に限定されないが、通常2~7層程度である。
 保護フィルム30の層構成の具体例としては、例えば、フィルム基材/粘着剤層、フィルム基材/粘着剤層/剥離フィルム、フィルム基材/粘着剤層/フィルム基材/粘着剤層、フィルム基材/粘着剤層/フィルム基材/粘着剤層/剥離フィルムなどが挙げられる。
 保護フィルム30の製造方法としては、共押出成形法やラミネ-ト成形法、流延法や塗工法等の適宜な展開方式が挙げられる。
 共押出成形法としては、例えばTダイ成形法またはインフレ-ション成形法などの公知の方法により、フィルム基材31および粘着剤層32を溶融状態で押出し、積層した後、冷却ロ-ルなどの冷却手段により冷却する方法が挙げられる。
 ラミネ-ト成形法としては、例えばフィルム基材31を予め押出成形法により作製しておき、その上に、粘着剤層32を溶融状態で押出し、積層した後、冷却ロ-ルなどの冷却手段により冷却する方法が挙げられる。
 流延法や塗工法としては、例えばトルエンや酢酸エチル等の適宜な溶剤の単独物または混合物からなる溶媒に、ベースポリマー等を溶解または分散させて10~40質量%程度の粘着剤液を調製し、それを流延方式や塗工方式等の適宜な展開方式でフィルム基材31上に直接付設する方式、あるいは前記に準じ剥離フィルム上に粘着剤層32を形成してそれをフィルム基材31上に移着する方式などが挙げられる。
本発明に用いる保護フィルム30は、微細凹凸構造に対する密着強度が0.1~1.7N/25mmである。より好ましくは0.1~0.2N/25mmである。微細凹凸構造に対する密着強度が0.1N/25mm以上であれば、両面保護フィルム付き成形体1を所望の形状に切削加工する途中で、保護フィルム30が成形体20から浮き上がったり剥がれたりせず、加工中の成形体20の位置がずれたり、成形体20の表面に傷がついたりしにくい。また、微細凹凸構造に対する密着強度が1.7N/25mm以下であると、後述する加工工程の後に洗浄工程を行う場合、成形体20の微細凹凸構造の凹部に糊残りが発生しにくい。また、成形体20から保護フィルムを剥がす際の作業性も良好である。
 上述した密着強度を満たす保護フィルムとしては、市販のものを用いることができる。
 例えば日東電工株式会社製の「E-MASKシリーズ」、株式会社サンエー化研製のポリオレフィン系フィルム「PACシリーズ」、PETベースマスキング「SATシリーズ」、株式会社スミロン製の「ECシリーズ」、藤森工業株式会社製の「マスタックシリーズ」、日立化成工業株式会社製「ヒタレックスシリーズ」、およびフタムラ化学株式会社製「SAFシリーズ」等が挙げられる。
[加工品の製造方法]
 本発明の加工品の製造方法は、成形体の微細凹凸構造を有する表面に、前記表面を保護する保護フィルムを貼着する貼着工程と、保護フィルムと成形体とを所定の形状に加工する加工工程と、加工された積層構造体から保護フィルムを剥離し、成形体を洗浄する洗浄工程とを含む。
ここで、所定の形状とは、所望の形状又は任意の形状のことを意味する。
 以下、上述した両面保護フィルム付き成形体1を用い、本発明の加工品の製造方法の一例について説明する。
<貼着工程>
 貼着工程では、成形体20の微細凹凸構造を有する表面に、前記表面を保護する保護フィルム30を貼着する。
 成形体20に保護フィルム30を貼着する方法としては、特に制限されないが、例えば後述するように、一対のニップロールの間に成形体20と保護フィルム30とを供給して貼り合わせる方法などが挙げられる。また、詳しくは後述するが、成形体20の製造と貼着工程とを連続して行ってもよい。
 なお、図1に示す両面保護フィルム付き成形体1を作製する場合には、上述した方法などによって成形体20に保護フィルム30を貼着して片面保護フィルム付き成形体1’を2つ作製した後、これらを第一の基材10の両面にラミネート法などによって貼り合わせればよい。
<加工工程>
 加工工程では、貼着工程により作製した両面保護フィルム付き成形体1を所定の形状に加工する。
 加工方法としては特に制限されないが、NC切削が好ましい。NC切削は、工作機械の制御を数値情報で行うことであり、プログラミングにより、工具の位置、経路、主軸の回転、被工作物の位置制御が可能になる。これにより少量多品種生産において、高精度かつ効率的に加工が行える。中でも、NC切削の工具にエンドミルを用いたエンドミル加工は表面および輪郭削りに利用され、溝加工の他、段付け、底面加工、穴加工も容易に行うことができる。
 NC切削機で例えばシート状の成形体20を加工する場合、成形体20の表面のキズ防止、切削屑(切粉)や汚れ付着防止を目的として、表面に保護フィルム30をつけて加工するが一般的である。
 本発明によれば、貼着工程において成形体20の表面に保護フィルム30を貼着してから加工するので、成形体20の表面にキズや汚れが付着しにくい。
 また、加工工程では、図1に示すように、両面保護フィルム付き成形体1を作業台2に固定する目的で、これらの間にバックアップシート3を介在させてもよい。そして、両面保護フィルム付き成形体1を加工する際は、バックアップシート3を完全に貫通させず、バックアップシート3の途中までハーフカットする。これにより、切削工具が作業台2に当たるのを避け、工具の刃こぼれや台の傷付きを防止する。
 バックアップシート3は一般に基材と粘着剤層からなる保護フィルムを用いる。
 バックアップシート3の基材の膜厚は50~1000μmが好ましい。基材の膜厚が50μm以上であると、ハーフカットが容易になり、切削工具が作業台2に接触して刃こぼれの原因となることもない。基材の膜厚が1000μm以内であれば、基材費用が高額にならず、取り扱い性も良好である。
 保護フィルム30のフィルム基材31に対する、バックアップシート3の粘着剤層の密着強度は0.2~5N/25mmが好ましい。密着強度が0.2N/25mm以上であると、加工中に両面保護フィルム付き成形体1を保持しやすくなり、両面保護フィルム付き成形体1の位置ずれが起こりにくい。
 ところで、上述したように、保護フィルム30の粘着力が弱いと、加工途中に保護フィルム30に浮きや剥がれが発生し、成形体20の位置ずれが生じる。また、切削屑(切粉)が成形体20と保護フィルム30の間に侵入し、キズおよび汚れとなって不具合が発生する。これらの問題を解消するには、単に保護フィルム30の粘着力を上げる方法が考えられるが、粘着剤層32の成分(粘着剤)が成形体20の微細凹凸構造に移行して汚染の原因となったり、微細凹凸構造の凹部に糊残りが発生したりする。
 しかし、本発明であれば、上述した特定の密着強度を有する保護フィルム30を用いることで、加工途中に保護フィルム30が不用意に剥がれることなく容易に加工でき、かつ糊残りが少ない加工品を製造できる。
 なお、本発明においては、両面保護フィルム付き成形体1を構成する保護フィルム30で、バックアップシート3を兼ねることも可能である。
 また、作業台2により強固に固定する目的で、両面保護フィルム付き成形体1をバックアップシート3を介して作業台2に真空吸着させてもよい。
<洗浄工程>
 洗浄工程では、加工工程により加工された両面保護フィルム付き成形体1から保護フィルム30を剥離し、第一の基材10の両面に積層した成形体20を洗浄する工程である。
 上述したように、保護フィルム30には、加工工程において成形体20が位置ずれしない程度の粘着力(密着強度)を有している必要がある。しかしながら、保護フィルム30の密着強度を強くすると、加工工程の後、両面保護フィルム付き成形体1から保護フィルム30を剥離した際に、成形体20の微細凹凸構造の凹部に糊残りが発生する場合がある。この糊残りを除去するために、洗浄工程を行う。
 成形体20の洗浄方法は特に限定されないが、オゾン、およびプラズマ等の気相雰囲気に被洗浄物を曝すドライ洗浄や、有機溶剤や洗浄液などの液体に被洗浄物を曝すウェット洗浄が挙げられる。取扱いの容易さや、洗浄時における成形体20の微細凹凸構造へのダメージが少ない点からウェット洗浄が好ましい。
 ウェット洗浄としては、拭取り、超音波洗浄、浸漬洗浄、およびジェット水流洗浄等が好ましい。
 ウェット洗浄に用いる洗浄液は、有機溶剤、または水系の洗浄液が好ましい。洗浄液の具体例としては、例えば水や、エタノール、メタノール、およびアセトン等の有機溶剤に、酸性、中性、およびアルカリ性の界面活性剤を配合した洗浄液などが挙げられる。より具体的には横浜油脂工業株式会社製の「セミクリーンシリーズ」、東邦化学工業株式会社製の「トーホークリーンシリーズ」、およびBEX社製の「GCシリーズ」等が挙げられる。
 これら洗浄液は1種単独で用いてもよく、2種以上を併用してもよい。
 ウェット洗浄の条件としては、洗浄液の温度は10~70℃が好ましく、洗浄時間は1~60分が好ましい。
 また、洗浄液で洗浄した後は、水または有機溶剤を用いて、成形体20の表面に付着した洗浄液成分(界面活性剤など)をリンス・除去することが好ましい。
<その他の工程>
 上述した洗浄工程を経て、所定の形状に加工された微細凹凸構造を有する加工品は、その後の取扱い時にキズ・汚れから微細凹凸構造を保護する目的で、保護フィルムを貼り付けることが好ましい。
 加工品に用いる保護フィルムとしては、剥がした際に糊残りが起こりにくいものが好ましく、保護フィルムのアクリル樹脂板に対する密着強度は0.1N/25mm以上0.2N/25mm未満が好ましい。
[両面保護フィルム付き成形体の製造]
 上述した両面保護フィルム付き成形体1は、例えば図3に示す片面保護フィルム付き成形体の製造装置40を用いて製造される片面保護フィルム付き成形体1’を、第一の基材10の両面にラミネート等によって貼り合わせることで製造できる。
<片面保護フィルム付き成形体の製造装置>
 図3は、片面保護フィルム付き成形体の製造装置40の一例を示す概略構成図であり、この例の製造装置40は、表面に微細凹凸構造を有するロール状モールド41と、活性エネルギー線硬化性樹脂組成物22’を収容するタンク42と、空気圧シリンダ43を備えたニップロール44と、活性エネルギー線照射装置45と、剥離ロール46と、空気圧シリンダ47を備えた一対のニップロール48とを具備する。
 なお、図3に示す片面保護フィルム付き成形体の製造装置40は、成形体20を製造した後に、連続して片面保護フィルム付き成形体1’を製造する装置である。
(ロール状モールド)
 ロール状モールド41は、活性エネルギー線硬化性樹脂組成物22’に微細凹凸構造を転写させるモールドであり、表面に陽極酸化アルミナを有する。表面に陽極酸化アルミナを有するモールドは、大面積化が可能であり、ロール状モールドの作製が簡便である。
 陽極酸化アルミナは、アルミニウムの多孔質の酸化皮膜(アルマイト)であり、表面に複数の細孔(凹部)を有する。
 表面に陽極酸化アルミナを有するモールドは、例えば、下記(a)~(e)工程を経て製造できる。
(a)ロール状のアルミニウムを電解液中、定電圧下で陽極酸化して酸化皮膜を形成する工程。
(b)酸化皮膜を除去し、陽極酸化の細孔発生点を形成する工程。
(c)ロール状のアルミニウムを電解液中、再度陽極酸化し、細孔発生点に細孔を有する酸化皮膜を形成する工程。
(d)細孔の径を拡大させる工程。
(e)前記(c)工程と(d)工程を繰り返し行う工程。
(a)工程:
 図4に示すように、アルミニウム50を陽極酸化すると、細孔51を有する酸化皮膜52が形成される。
 アルミニウムの純度は、99%以上が好ましく、99.5%以上がより好ましく、99.8%以上が特に好ましい。アルミニウムの純度が低いと、陽極酸化した時に、不純物の偏析により可視光を散乱する大きさの凹凸構造が形成されたり、陽極酸化で得られる細孔の規則性が低下したりすることがある。
 電解液としては、硫酸、シュウ酸、およびリン酸等が挙げられる。
シュウ酸を電解液として用いる場合:
 シュウ酸の濃度は、0.7M以下が好ましい。シュウ酸の濃度が0.7Mを超えると、電流値が高くなりすぎて酸化皮膜の表面が粗くなることがある。
 化成電圧が30~60Vの時、周期が100nmの規則性の高い細孔を有する陽極酸化アルミナを得ることができる。化成電圧がこの範囲より高くても低くても規則性が低下する傾向にある。
 電解液の温度は、60℃以下が好ましく、45℃以下がより好ましい。電解液の温度が60℃を超えると、いわゆる「ヤケ」といわれる現象がおこり、細孔が壊れたり、表面が溶けて細孔の規則性が乱れたりすることがある。
硫酸を電解液として用いる場合:
 硫酸の濃度は0.7M以下が好ましい。硫酸の濃度が0.7Mを超えると、電流値が高くなりすぎて定電圧を維持できなくなることがある。
 化成電圧が25~30Vの時、周期が63nmの規則性の高い細孔を有する陽極酸化アルミナを得ることができる。化成電圧がこの範囲より高くても低くても規則性が低下する傾向がある。
 電解液の温度は、30℃以下が好ましく、20℃以下がよりに好ましい。電解液の温度が30℃を超えると、いわゆる「ヤケ」といわれる現象がおこり、細孔が壊れたり、表面が溶けて細孔の規則性が乱れたりすることがある。
(b)工程:
 図4に示すように、酸化皮膜52を一旦除去し、これを陽極酸化の細孔発生点53にすることで細孔の規則性を向上できる。
(c)工程:
 図4に示すように、酸化皮膜を除去したアルミニウム50を再度、陽極酸化すると、円柱状の細孔51を有する酸化皮膜52が形成される。
 陽極酸化は、(a)工程と同様な条件で行えばよい。陽極酸化の時間を長くするほど深い細孔を得ることができる。
(d)工程:
 図4に示すように、細孔51の径を拡大させる処理(以下、細孔径拡大処理と記す。)を行う。細孔径拡大処理は、酸化皮膜を溶解する溶液に浸漬して陽極酸化で得られた細孔の径を拡大させる処理である。このような溶液としては、例えば、5質量%程度のリン酸水溶液等が挙げられる。
 細孔径拡大処理の時間を長くするほど、細孔径は大きくなる。
(e)工程:
 図4に示すように、(c)工程の陽極酸化と、(d)工程の細孔径拡大処理を繰り返すと、直径が開口部から深さ方向に連続的に減少する形状の細孔51を有する陽極酸化アルミナが形成され、表面に陽極酸化アルミナを有するモールド(ロール状モールド41)が得られる。
 繰り返し回数は、合計で3回以上が好ましく、5回以上がより好ましい。繰り返し回数が2回以下では、非連続的に細孔の直径が減少するため、このような細孔を有する陽極酸化アルミナを用いて製造された硬化物22の反射率低減効果は不十分である。
 陽極酸化アルミナの表面は、硬化物22との分離が容易になるように、離型剤で処理されていてもよい。処理方法としては、例えば、シリコーン樹脂またはフッ素含有ポリマーをコーティングする方法、フッ素含有化合物を蒸着する方法、フッ素含有シランカップリング剤またはフッ素含有シリコーン系シランカップリング剤をコーティングする方法等が挙げられる。
 細孔51の形状としては、略円錐形状、角錐形状、円柱形状等が挙げられ、円錐形状、角錐形状等のように、深さ方向と直交する方向の細孔断面積が最表面から深さ方向に連続的に減少する形状が好ましい。
 細孔51間の平均間隔は、400nm以下が好ましく、350nm以下がより好ましい。特に、細孔51間の平均間隔が400nm以下であれば、反射率が低く、かつ反射率の波長依存性が少ない成形体20が得られる。
 細孔51の深さは、100~400nmが好ましく、150~300nmがより好ましい。
 細孔51のアスペクト比(細孔の高さ/細孔の開口部の長さ)は、1~5が好ましく、1.2~4がより好ましく、1.5~3が特に好ましい。
 なお、細孔の開口部の長さとは、細孔の最深部から深さ方向に細孔を切断したときの切断面における開口の長さのことである。
(タンク)
 タンク42は、活性エネルギー線硬化性樹脂組成物22’ を収容し、ロール状モールド41と、ロール状モールド41の表面に沿って移動する帯状の第二の基材21との間に、活性エネルギー線硬化性樹脂組成物22’を供給する。
(ニップロール)
 ニップロール44は、ロール状モールド41に対向して配置される。ニップロール44は、ロール状モールド41と共に第二の基材21および活性エネルギー線硬化性樹脂組成物22’をニップする。
 ニップ圧は、ニップロール44に備わる空気圧シリンダ43によって調整する。
(活性エネルギー線照射装置)
 活性エネルギー線照射装置45は、ロール状モールド41の下方に設置され、活性エネルギー線を照射して、第二の基材21とロール状モールド41の間に充填された活性エネルギー線硬化性樹脂組成物22’を硬化させる。活性エネルギー線硬化性樹脂組成物22’が硬化されることにより、第二の基材21上に、ロール状モールド41の微細凹凸構造が転写された硬化物22が形成される。
 活性エネルギー線照射装置45としては、高圧水銀ランプ、およびメタルハライドランプ等を使用できる。この場合の光照射エネルギー量は、100~10000mJ/cmが好ましい。
(剥離ロール)
 剥離ロール46は、活性エネルギー線照射装置45よりも下流側に配置され、表面に硬化物22が形成された第二の基材21をロール状モールド41から剥離する。
(一対のニップロール)
 一対のニップロール48は、剥離ロール46の下流側に配置され、成形体20に保護フィルム30を貼着させる。
 一対のニップロール48は、外周面がゴム等の弾性部材で形成された弾性ロール48aと、外周面が金属等の剛性が高い部材で形成された剛性ロール48bとからなる。
 ニップ圧は、弾性ロール48aに備わる空気圧シリンダ47によって調整する。
(活性エネルギー線硬化性樹脂組成物)
 活性エネルギー線硬化性樹脂組成物22’は、分子中にラジカル重合性結合および/またはカチオン重合性結合を有するモノマー、オリゴマー、反応性ポリマーを適宜含有するものであり、非反応性のポリマーを含有するものでもよい。
 ラジカル重合性結合を有するモノマーとしては、特に限定されることなく使用できる。
 例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、s-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、アルキル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、グリシジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、アリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレートなどの(メタ)アクリレート誘導体、(メタ)アクリル酸、(メタ)アクリロニトリル、スチレン、α-メチルスチレンなどのスチレン誘導体、(メタ)アクリルアミド、N-ジメチル(メタ)アクリルアミド、N-ジエチル(メタ)アクリルアミド、ジメチルアミノプロピル(メタ)アクリルアミドなどの(メタ)アクリルアミド誘導体等の単官能モノマー、エチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、イソシアヌール酸エチレンオキサイド変性ジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,5-ペンタンジオールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、ポリブチレングリコールジ(メタ)アクリレート、2,2-ビス(4-(メタ)アクリロキシポリエトキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロキシエトキシフェニル)プロパン、2,2-ビス(4-(3-(メタ)アクリロキシ-2-ヒドロキシプロポキシ)フェニル)プロパン、1,2-ビス(3-(メタ)アクリロキシ-2-ヒドロキシプロポキシ)エタン、1,4-ビス(3-(メタ)アクリロキシ-2-ヒドロキシプロポキシ)ブタン、ジメチロールトリシクロデカンジ(メタ)アクリレート、ビスフェノールAのエチレンオキサイド付加物ジ(メタ)アクリレート、ビスフェノールAのプロピレンオキサイド付加物ジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ジビニルベンゼン、メチレンビスアクリルアミド等の二官能性モノマー、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエチレンオキサイド変性トリ(メタ)アクリレート、トリメチロールプロパンプロピレンオキシド変性トリアクリレート、トリメチロールプロパンエチレンオキシド変性トリアクリレート、イソシアヌール酸エチレンオキサイド変性トリ(メタ)アクリレート、等の三官能モノマー、コハク酸/トリメチロールエタン/アクリル酸の縮合反応混合物、ジペンタエリストールヘキサ(メタ)アクリレート、ジペンタエリストールペンタ(メタ)アクリレート、ジトリメチロールプロパンテトラアクリレート、テトラメチロールメタンテトラ(メタ)アクリレート等の多官能のモノマー、二官能以上のウレタンアクリレート、および二官能以上のポリエステルアクリレートなどが挙げられる。これらは、単独で用いても、二種類以上を組み合わせて用いてもよい。
 カチオン重合性結合を有するモノマーとしては特に限定はないが、エポキシ基、オキセタニル基、オキサゾリル基、およびビニルオキシ基などを有するモノマーが挙げられ、これらの中でも特にエポキシ基を有するモノマーが好ましい。
 オリゴマーおよび反応性ポリマーの例としては、不飽和ジカルボン酸と多価アルコールの縮合物などの不飽和ポリエステル類、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ポリオール(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、カチオン重合型エポキシ化合物、および側鎖にラジカル重合性結合を有する上述のモノマーの単独または共重合ポリマー等が挙げられる。
 本発明におけるカチオン重合性結合を有するモノマー、オリゴマー、および反応性ポリマーは、カチオン重合性の官能基を有する化合物(カチオン重合性化合物)であれば特に限定されず、モノマー、オリゴマー、およびプレポリマーのいずれであってもよい。
 カチオン重合性の官能基は、多くの種類が知られているが、中でも実用性の高い官能基として、エポキシ基やオキセタニル基などの環状エーテル基;ビニルエーテル基;カーボネート基(O-CO-O基)等が例示できる。
 代表的なカチオン重合性化合物としては、エポキシ化合物やオキセタン化合物などの環状エーテル化合物;ビニルエーテル化合物;環状カーボネート化合物、ジチオカーボネート化合物などのカーボネート系化合物等が挙げられる。
 非反応性のポリマーとしては、アクリル樹脂、スチレン系樹脂、ポリウレタン樹脂、セルロース樹脂、ポリビニルブチラール樹脂、ポリエステル樹脂、および熱可塑性エラストマーなどが挙げられる。
 活性エネルギー線硬化性組成物は、通常、硬化のための重合開始剤を含有する。重合開始剤としては特に限定されず、公知のものが使用できる。
 光反応を利用する場合、光重合開始剤としてはラジカル重合開始剤、カチオン重合開始剤が挙げられる。
 ラジカル重合開始剤としては、公知の活性エネルギー線を照射して酸を発生するものであれば特に制限なく利用でき、具体的にはアセトフェノン系光重合開始剤、ベンゾイン系光重合開始剤、ベンゾフェノン系光重合開始剤、チオキサントン系光重合開始剤、およびアシルホスフィンオキサイド系光重合開始剤などが挙げられる。
 アセトフェノン系光重合開始剤としては、アセトフェノン、p-(tert-ブチル)-1’,1’,1’-トリクロロアセトフェノン、クロロアセトフェノン、2’,2’-ジエトキシアセトフェノン、ヒドロキシアセトフェノン、2,2-ジメトキシ-2’-フェニルアセトフェノン、2-アミノアセトフェノン、およびジアルキルアミノアセトフェノン等が挙げられる。
 ベンゾイン系光重合開始剤としては、ベンジル、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-2-メチルプロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、およびベンジルジメチルケタール等が挙げられる。
 ベンゾフェノン系光重合開始剤としては、ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、メチル-o-ベンゾイルベンゾエート、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノン、ヒドロキシプロピルベンゾフェノン、アクリルベンゾフェノン、および4,4’-ビス(ジメチルアミノ)ベンゾフェノン等が挙げられる。
 チオキサントン系光重合開始剤としては、チオキサントン、2-クロロチオキサントン、2-メチルチオキサントン、ジエチルチオキサントン、およびジメチルチオキサントン等が挙げられる。
 アシルホスフィンオキサイド系光重合開始剤としては、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、ベンゾイルジエトキシフォスフィンオキサイド、およびビス2,4,6-トリメチルベンゾイルフェニルフォスフィンオキサイド等が挙げられる。
 また、その他のラジカル重合開始剤としては、α-アシルオキシムエステル、ベンジル-(o-エトキシカルボニル)-α-モノオキシム、グリオキシエステル、3-ケトクマリン、2-エチルアンスラキノン、カンファーキノン、テトラメチルチウラムスルフィド、アゾビスイソブチロニトリル、ベンゾイルペルオキシド、ジアルキルペルオキシド、およびtert-ブチルペルオキシピバレート等が挙げられる。
 これらラジカル重合開始剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 カチオン重合開始剤としては、公知の活性エネルギー線を照射して酸を発生するものであれば特に制限なく利用できるが、例えば、スルホニウム塩、ヨードニウム塩、およびホスホニウム塩等を挙げることができる。
 スルホニウム塩としては、例えば、トリフェニルスルホニウムヘキサフルオロホスフェート、トリフェニルスルホニウムヘキサフルオロアンチモネート、ビス(4-(ジフェニルスルホニオ)-フェニル)スルフィド-ビス(ヘキサフルオロホスフェート)、ビス(4-(ジフェニルスルホニオ)-フェニル)スルフィド-ビス(ヘキサフルオロアンチモネート)、4-ジ(p-トルイル)スルホニオ-4′-tert-ブチルフェニルカルボニル-ジフェニルスルフィドヘキサフルオロアンチモネート、7-ジ(p-トルイル)スルホニオ-2-イソプロピルチオキサントンヘキサフルオロホスフェート、および7-ジ(p-トルイル)スルホニオ-2-イソプロピルチオキサントンヘキサフルオロアンチモネート等を挙げることができる。
 ヨードニウム塩としては、例えば、ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムヘキサフルオロアンチモネート、およびビス(ドデシルフェニル)ヨードニウムテトラキス(ペンタフルオロフェニル)ボレート等を挙げることができる。
 ホスホニウム塩としては、例えば、テトラフルオロホスホニウムヘキサフルオロホスフェート、およびテトラフルオロホスホニウムヘキサフルオロアンチモネート等を挙げることができる。
 熱反応を利用する場合、熱重合開始剤の具体例としては、例えばメチルエチルケトンパーオキサイド、ベンゾイルパーオキサイド、ジクミルパーオキサイド、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ブチルパーオキシオクトエート、t-ブチルパーオキシベンゾエート、ラウロイルパーオキサイド等の有機過酸化物;アゾビスイソブチロニトリル等のアゾ系化合物;前記有機過酸化物にN,N-ジメチルアニリン、N,N-ジメチル-p-トルイジン等のアミンを組み合わせたレドックス重合開始剤等が挙げられる。
 重合開始剤の添加量は活性エネルギー線硬化性組成物100質量部に対して0.1~10質量部である。0.1質量部以上であると、重合が進行しやすく、10質量部以下であると、得られる硬化物が着色したり、機械強度が低下したりすることがない。
 また、活性エネルギー線硬化性組成物には、上述したもの以外に、帯電防止剤、離型剤、防汚性を向上させるためのフッ素化合物などの添加剤、微粒子、少量の溶剤などが添加されていてもよい。
<片面保護フィルム付き成形体の製造>
 上述した片面保護フィルム付き成形体の製造装置40を用いて、片面保護フィルム付き成形体1’を製造する方法の一例を説明する。
(成形体の作製)
 まず、成形体20を作製する。
 具体的には、図3に示すように、回転するロール状モールド41の表面に沿うように帯状の第二の基材21を搬送させ、第二の基材21とロール状モールド41との間に、タンク42から活性エネルギー線硬化性樹脂組成物22’を供給する。
 さらに、ロール状モールド41と、空気圧シリンダ43によってニップ圧が調整されたニップロール44との間で、第二の基材21および活性エネルギー線硬化性樹脂組成物22’をニップし、活性エネルギー線硬化性樹脂組成物22’を、第二の基材21とロール状モールド41との間に均一に行き渡らせると同時に、ロール状モールド41の微細凹凸構造の凹部内に充填する。
 ついで、ロール状モールド41の下方に設置された活性エネルギー線照射装置45から、第二の基材21を通して活性エネルギー線硬化性樹脂組成物22’に活性エネルギー線を照射し、活性エネルギー線硬化性樹脂組成物22’を硬化させることによって、ロール状モールド41の表面の微細凹凸構造が転写された硬化物22を形成する。
 ついで、剥離ロール46により、表面に硬化物22が形成された第二の基材21を剥離することによって、成形体20を得る。
 図4に示すような細孔51転写して形成された硬化物22の表面は、いわゆるMoth-Eye構造となる。
(保護フィルムの貼着)
 次に、得られた成形体20の表面に、保護フィルム30を貼着する。
 具体的には、先に得られた成形体20を一対のニップロール48の間に通過させると同時に、保護フィルム繰り出し機(図示略)から繰り出される保護フィルム30を、微細凹凸構造が形成された側の表面に貼着するように、成形体20と一対のニップロール48の間に供給する。
 このとき、成形体20は、成形体20の裏面(微細凹凸構造が形成されていない側の面)が剛性ロール48bに接触するように、弾性ロール48aと剛性ロール48bとの間に成形体20を送り込まれる。
 一方、保護フィルム30は、粘着剤層32が成形体20の表面(微細凹凸構造が形成された側の面)に接触し、フィルム基材31が弾性ロール48aと接触するようにして、弾性ロール48aと成形体20の間に送り込まれる。
 ついで、成形体20の表面に保護フィルム30の粘着剤層32が接触した状態で、成形体20と保護フィルム30を弾性ロール48aと剛性ロール48bとの間で挟持し、空気圧シリンダ47によって一対のニップロール48のニップ圧を調整しながら、成形体20に保護フィルム30を貼着する。こうして、図1に示すような、成形体20の表面、すなわち凹凸部23に保護フィルム30が接着した片面保護フィルム付き成形体1’を得る。
 なお、成形体20の表面は、保護フィルム30を介して弾性ロール48aと接触することになるので、微細凹凸構造が変形したり破損したりしにくい。
 保護フィルム30としては、特定の密着強度を有していれば、上述したような方法で別途作製したものを用いてもよく、市販のものを用いてもよい。
 片面保護フィルム付き成形体1’は、上述したように成形体20を作製した後に連続して保護フィルム30を貼着して製造するのが、保護フィルム30の貼着目的(汚れ付着の防止や、微細凹凸構造の形状維持)や製造コストを考慮すると好ましいが、これに限定されず、成形体を作製した後、成形体を一旦回収し、別の製造ラインに移して保護フィルム30を貼着してもよい。
[作用効果]
 以上説明したように、本発明の加工品の製造方法によれば、特定の密着強度を有する保護フィルムを用い、かつ加工工程の後に洗浄工程を行うことで、加工途中に保護フィルム30が不用意に剥がれることなく容易に加工でき、糊残りが少ない加工品を製造できる。
 また、本発明によれば、加工工程において成形体の微細凹凸構造を保護することが可能となるため、キズや汚れの付着が少ない、複雑な形状の加工品を容易に製造できる。
 従って、本発明は、特に加工中の成形体の位置ずれが顕著に現れるとされている両面に微細凹凸構造を有する成形体の加工に好適である。
[他の実施形態]
 本発明の加工品の製造方法は、上述した方法に限定されない。上述した方法では、図1に示す両面保護フィルム付き成形体1を加工しているが、加工の対象となるものは図示例の両面保護フィルム付き成形体1に限定されない。例えば図1に示す片面保護フィルムつき成形体1’を加工してもよい。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。
(2)微細凹凸構造(被着体)に対する保護フィルムの密着強度の測定
 ラミネーターを用い、0.3MPaの条件で保護フィルムを微細凹凸構造が形成された側の表面に貼り付けた。密着強度の測定は、テンシロン試験機(ORIENTEC社製、「テンシロンRTC‐1210」)に保護フィルム付き成形体(積層構造体)をセットし、10Nのロードセルを使用して、JIS Z-0237に準拠して、微細凹凸構造が形成された側の表面と保護フィルムが接着している箇所において180°引き剥がし試験を行うことで、微細凹凸構造に対する保護フィルムの密着強度を測定した。
[実施例1]
<ロール状モールドの作製>
 純度99.90%のアルミニウムインゴットに鍛造処理を施して、直径200mm、内径155mm、厚さ350mmに切断した圧延痕のない円筒状アルミニウム原型に羽布研磨処理を施した後、これを過塩素酸、エタノール混合溶液中(体積比1:4)で電解研磨し鏡面化した。
 ついで、表面が鏡面化されたアルミニウム原型を、0.3Mシュウ酸水溶液中で、浴温16℃において直流40Vの条件下で30分間陽極酸化を行い、厚さ3μmの酸化皮膜を形成した(工程(a))。形成された酸化皮膜を、6質量%のリン酸と1.8質量%のクロム酸混合水溶液中で一旦溶解除去した(工程(b))後、再び工程(a)と同一条件下において、30秒間陽極酸化を行い、酸化皮膜を形成した(工程(c))。その後、5質量%リン酸水溶液(30℃)中に8分間浸漬して、酸化皮膜の細孔を拡径する孔径拡大処理(工程(d))を施した。
 さらに工程(c)と工程(d)を繰り返し、これらを合計で5回追加実施することで(工程(e))、細孔の開口部の長さ:100nm、深さ:230nmの略円錐形状のテーパー状細孔を有する陽極酸化アルミナが表面に形成されたロール状モールドを得た。
 ついで、離形剤であるダイキン工業株式会社製、「オプツールDSX(商品名)」の0.1質量%溶液にロール状モールドを10分間ディッピングし、24時間風乾して離形処理し、酸化皮膜表面のフッ素化処理を行った。
<片面保護フィルム付き成形体の製造>
 得られたロール状モールドを図3に示す片面保護フィルム付き成形体の製造装置40に設置し、以下のようにして成形体20を作製し、連続して片面保護フィルム付き成形体1’を製造した。
 まず、図3に示すように、ロール状モールド41を冷却水用の流路を内部に設けた機械構造用炭素鋼製の軸芯にはめ込んだ。ついで、下記の組成の活性エネルギー線硬化性樹脂組成物22’をタンク42から室温で供給ノズルを介して、ニップロール44とロール状モールド41の間にニップされている第二の基材(三菱レイヨン株式会社製のアクリルフィルム、「アクリプレン」、フィルム幅340mm、長さ400m)21上に供給した。
 この際、空気圧シリンダ43によりニップ圧が調整されたニップロール44によりニップされ、ロール状モールド41の凹部内にも活性エネルギー線硬化性組成物22’が充填される。
 ついで、毎分7.0mの速度でロール状モールド41を回転させながら、活性エネルギー線硬化性樹脂組成物22’がロール状モールド41と第二の基材21の間に挟まれた状態で240W/cmの紫外線照射装置45から紫外線を照射し、活性エネルギー線硬化性樹脂組成物22’を硬化・賦型して硬化物22とした後、剥離ロール46によりロール状モールド41から剥離して、図2に示すような、表面に微細凹凸構造を有する凹凸部23を備えた成形体(透明シート)20を得た。
 この成形体20の表面をSEMで観察したところ、凹凸部23には細孔の開口部の長さ:100nm、高さ230nmの凸部が形成され、ロール状モールドの微細凹凸構造が良好に転写された微細凹凸構造が形成されていた。
 ついで、成形体20の裏面(微細凹凸構造が形成されていない側の面)が剛性ロール48bに接触するように、成形体20を弾性ロール48aと剛性ロール48bの間に送り込んだ。
 一方、保護フィルム(日東電工株式会社製、「HR-6010」)30の粘着面(粘着剤層)が、成形体20の表面(微細凹凸構造が形成された側の面)に接触するようにして、保護フィルム30を弾性ロール48aと成形体20の間に送り込んだ。
 そして、空気圧シリンダ47によって一対のニップロール48のニップ圧を調整(0.1MPa~0.5MPa)しながら、成形体20の表面に保護フィルム30を貼着し、図1に示すような片面保護フィルム付き成形体1’を得た。
 なお、保護フィルム30の微細凹凸構造に対する密着強度は0.36N/25mmであった。
(活性エネルギー線硬化性樹脂組成物)
トリメチロールエタンアクリル酸・無水コハク酸縮合エステル:75質量部、
東亞合成株式会社製、「アロニックスM206」:20質量部、
アクリル酸メチル:5質量部、
チバ・スペシャリティケミカルズ株式会社、「イルガキュア184」:1.0質量部、
チバ・スペシャリティケミカルズ株式会社製、「イルガキュア819」:0.1質量部。
<評価>
(切削加工性の評価)
 ラミネーターを用い、得られた片面保護フィルム付き成形体1’を、第一の基材10(三菱レイヨン株式会社製のアクリルシート、「アクリライトL」、厚さ0.15cm、縦横20×30cm)の両面にラミネートし、両面に微細凹凸構造が形成された両面保護フィルム付き成形体1を得た。
 さらに、図1に示すように、両面保護フィルム付き成形体1の片面にバックアップフィルム3をラミネートした後、バックアップフィルム3側をNC加工機の作業台2に真空吸着によって固定した。
 ついで、エンドミルを用い、両面保護フィルム付き成形体1を縦横5cm幅に切削加工して、1片の大きさが5×5cmの試験片を切り出し(加工工程)、以下の評価基準にて評価した。結果を表1に示す。
 ○:保護フィルムが剥がれることなく、ほぼ良好に切削加工でき、かつ切削面にカケ(バリ)が生じていない。
 ×:切削加工中に保護フィルムが剥がれた。または切削面にカケ(バリ)が生じた。
(加工品のヘイズ測定)
加工品のヘイズは、JIS K7361-1に準拠し、ヘイズメーター(スガ試験機社製)を用いて測定した。
(加工品の反射率)
分光光度計(日立製作所社製、U-4000)を用い、入射角:5°、波長380~780nmの範囲で硬化樹脂膜の表面の相対反射率を測定し、JIS R3106に準拠して可視光反射率を算出した。
(糊残りの評価)
 上述した加工工程により、両面保護フィルム付き成形体1から切り出した試験片から保護フィルム30を剥離し、第一の基材10の両面にラミネートした成形体20を、アルカリ洗浄液を用いて超音波洗浄し(洗浄工程)、加工品を得た。得られた加工品を目視および顕微鏡で異物の有無を観察し、以下の評価基準にて糊残りを判定した。結果を表1に示す。
◎:アルカリ洗浄を行わなくても糊残りがない                     
○:アルカリ洗浄することで糊残りを除去できる                   
×:アルカリ洗浄を行っても糊残りを除去できない
糊残りなし:反射率の変化が0.05未満、ヘイズの変化が0.2未満、目視および顕微鏡観察で異物がみられない 
[実施例2]
 微細凹凸構造に対する密着強度が0.38N/25mmである保護フィルム(日東電工株式会社製、「RB-200S」)を用いた以外は、実施例1と同様にして保護フィルム付き成形体を製造・加工し、評価した。結果を表1に示す。
[実施例3]
 微細凹凸構造に対する密着強度が0.83N/25mmである保護フィルム(株式会社スミロン製、「EC-625」)を用いた以外は、実施例1と同様にして保護フィルム付き成形体を製造・加工し、評価した。結果を表1に示す。
[実施例4]
微細凹凸構造に対する密着強度が0.95N/25mmである保護フィルム(日東電工株式会社製、「R-200」)を用いた以外は、実施例1と同様にして保護フィルム付き成形体を製造・加工し、評価した。結果を表1に示す。
[実施例5]
微細凹凸構造に対する密着強度が0.19N/25mmである保護フィルム(株式会社サンエー化研製、「SAT HC1138T10-J」)を用いた以外は、実施例1と同様にして保護フィルム付き成形体を製造・加工し、評価した。結果を表1に示す。
[実施例6]
微細凹凸構造に対する密着強度が0.12N/25mmである保護フィルム(大王加工紙工業株式会社製、「FM-125」)を用いた以外は、実施例1と同様にして保護フィルム付き成形体を製造・加工し、評価した。結果を表1に示す。
[比較例1]
 微細凹凸構造に対する密着強度が3.80N/25mmである保護フィルム(日立化成工業株式会社製、「P-3020」)を用いた以外は、実施例1と同様にして保護フィルム付き成形体を製造・加工し、評価した。結果を表1に示す。
[比較例2]
微細凹凸構造に対する密着強度が3.15N/25mmである保護フィルム(日立化成工業株式会社製、「P-3030」)を用いた以外は、実施例1と同様にして保護フィルム付き成形体を製造・加工し、評価した。結果を表1に示す。
[比較例3]
微細凹凸構造に対する密着強度が1.80N/25mmである保護フィルム(日立化成工業株式会社製、「P-3040」)を用いた以外は、実施例1と同様にして保護フィルム付き成形体を製造・加工し、評価した。結果を表1に示す。
[比較例4]
微細凹凸構造に対する密着強度が1.80N/25mmである保護フィルム(フタムラ化学株式会社製、「SAF-300M」)を用いた以外は、実施例1と同様にして保護フィルム付き成形体を製造・加工し、評価した。結果を表1に示す。
[比較例5]
微細凹凸構造に対する密着強度が0.05N/25mmである保護フィルム(日東電工株式会社製、「RB-100S」)を用いた以外は、実施例1と同様にして保護フィルム付き成形体を製造・加工し、評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1より明らかなように、微細凹凸構造に対する密着強度が0.1~1.7N/25mmの保護フィルムを用いた実施例1~6の場合、加工中に保護フィルムと成形体が剥離する等の問題が発生することなく、エンドミルを用いたNC切削加工が可能であった。また、洗浄後の加工品には糊残りがなかった。なお、実施例5および6の場合、アルカリ洗浄を行う前の状態であっても、糊残りがなかった。
 一方、アクリル樹脂板に対する密着強度が1.7N/25mmを超える保護フィルムを用いた比較例1~4の場合、NC切削加工は可能であったが、保護フィルムの密着強度が強すぎるため、洗浄後の加工品には糊残りがあった。
 アクリル樹脂板に対する密着強度が0.1N/25mm未満の保護フィルムを用いた比較例5の場合、保護フィルムの密着強度が弱すぎるため、NC切削加工中に保護フィルムと成形体とが剥離してしまい、成形体の性能を保ちながら所望の形状にNC切削加工を行うことができなかった。従って、糊残りの評価は行わなかった。
 本発明の積層構造体によれば、保護フィルムが不用意に剥がれることなく容易に加工でき、かつ糊残りが少ない加工品を製造するための積層構造体を提供することができる。
本発明の加工品の製造方法によれば、保護フィルムが貼着した、表面に微細凹凸構造を有する成形体を加工する際に、保護フィルムが不用意に剥がれることなく容易に加工でき、かつ糊残りが少ない加工品を製造できる。
 1 両面保護フィルム付き成形体(積層構造体)
 1’ 片面保護フィルム付き成形体(積層構造体)
 10 第一の基材
 20 成形体
 21 第二の基材
 22 硬化物
 23 凹凸部
 23a 凸部
 23b 凹部
 30 保護フィルム
 31 フィルム基材
 32 粘着剤層

Claims (4)

  1. 微細凹凸構造を表面に有する成形体と、前記成形体の微細凹凸構造側の表面に接する保護フィルムとを有する積層構造体であって、
    前記微細凹凸構造における凸部間の平均間隔が可視光波長以下であり、
    前記保護フィルムを前記微細凹凸構造に貼着したときの密着強度が0.1~1.7N/25mmであることを特徴とする積層構造体。
  2. 請求項1に記載の前記積層構造体を、所定の形状の加工品に加工する方法において、
    前記成形体の微細凹凸構造を有する表面に、前記表面を保護する保護フィルムを貼着する貼着工程と、
    前記保護フィルムと前記成形体とを所定の形状に加工する加工工程と、
    を含むことを特徴とする加工品の製造方法。
  3. 請求項2に記載の加工工程の後、前記積層構造体から前記保護フィルムを剥離し、前記成形体を洗浄する洗浄工程を含むことを特徴とする請求項2に記載の加工品の製造方法。
  4. 前記洗浄工程が、洗浄液を用いたウェット洗浄工程であることを特徴とする請求項3に記載の加工品の製造方法。
PCT/JP2011/080210 2010-12-27 2011-12-27 積層構造体および加工品の製造方法 WO2012091012A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020137016615A KR20130097225A (ko) 2010-12-27 2011-12-27 적층 구조체 및 가공품의 제조방법
JP2012502366A JP5133465B2 (ja) 2010-12-27 2011-12-27 積層構造体および加工品の製造方法
KR1020157009799A KR20150048896A (ko) 2010-12-27 2011-12-27 적층 구조체 및 가공품의 제조방법
CN2011800631588A CN103314312A (zh) 2010-12-27 2011-12-27 层积结构体以及加工品的制造方法
US13/997,463 US20130280489A1 (en) 2010-12-27 2011-12-27 Laminated structure and manufacturing method of processed product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-290959 2010-12-27
JP2010290959 2010-12-27

Publications (1)

Publication Number Publication Date
WO2012091012A1 true WO2012091012A1 (ja) 2012-07-05

Family

ID=46383103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080210 WO2012091012A1 (ja) 2010-12-27 2011-12-27 積層構造体および加工品の製造方法

Country Status (6)

Country Link
US (1) US20130280489A1 (ja)
JP (1) JP5133465B2 (ja)
KR (2) KR20150048896A (ja)
CN (1) CN103314312A (ja)
TW (1) TWI519409B (ja)
WO (1) WO2012091012A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191169A1 (ja) * 2012-06-20 2013-12-27 三菱レイヨン株式会社 積層体の製造方法、積層体、および物品
JP2014073610A (ja) * 2012-10-03 2014-04-24 Asahi Kasei E-Materials Corp 保護部材付き成形体
WO2016063915A1 (ja) * 2014-10-24 2016-04-28 王子ホールディングス株式会社 光学素子、光学複合素子及び保護フィルム付光学複合素子

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6362105B2 (ja) * 2014-08-27 2018-07-25 キヤノン株式会社 反射防止膜を有する光学素子、光学系、光学機器
CN104456412A (zh) * 2014-12-23 2015-03-25 合肥鑫晟光电科技有限公司 一种光学膜片、背光源及显示设备
KR101647812B1 (ko) * 2015-06-10 2016-08-11 박동민 열전도 감소형 정전기 방지 봉투 및 이의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005156695A (ja) * 2003-11-21 2005-06-16 Kanagawa Acad Of Sci & Technol 反射防止膜及びその製造方法、並びに反射防止膜作製用スタンパ及びその製造方法
JP2010091604A (ja) * 2008-10-03 2010-04-22 Mitsubishi Rayon Co Ltd 保護フィルム付き成形体、およびその製造方法
JP2010107858A (ja) * 2008-10-31 2010-05-13 Mitsubishi Rayon Co Ltd 保護フィルム付き成形体
JP2010120348A (ja) * 2008-11-21 2010-06-03 Mitsubishi Rayon Co Ltd 保護フィルム、および保護フィルム付き成形体

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4197100B2 (ja) * 2002-02-20 2008-12-17 大日本印刷株式会社 反射防止物品
JP2005298630A (ja) * 2004-04-09 2005-10-27 Hitachi Chem Co Ltd 表面保護用粘着フィルム
JP2008087170A (ja) * 2006-09-29 2008-04-17 Sumitomo Chemical Co Ltd 熱成形品の製造方法
KR101107875B1 (ko) * 2007-02-09 2012-01-25 미츠비시 레이온 가부시키가이샤 투명 성형체 및 이것을 이용한 반사 방지 물품
CN101679815B (zh) * 2007-05-28 2014-01-29 Dic株式会社 再剥离用粘着片
EP2031424B1 (en) * 2007-08-28 2011-03-09 Nissan Motor Co., Ltd. Antireflective structure and antireflective moulded body
BRPI0818826A2 (pt) * 2007-10-25 2015-04-22 Mitsubishi Rayon Co Carimbo, método para produção do mesmo, método para produzir material moldado, e protótipo de molde de alumínio para carimbo
JP2009126929A (ja) * 2007-11-22 2009-06-11 Cheil Industries Inc 粘着剤組成物及び光学部材、表面保護シート
JP5406456B2 (ja) * 2008-02-01 2014-02-05 株式会社日本触媒 電離放射線硬化性再剥離用粘着剤組成物及びその用途
CN101952106B (zh) * 2008-03-04 2016-08-31 夏普株式会社 光学元件、辊型纳米压印装置以及模具辊的制造方法
JP5205186B2 (ja) * 2008-09-10 2013-06-05 旭化成イーマテリアルズ株式会社 積層体の保管方法
JP5466852B2 (ja) * 2008-12-01 2014-04-09 出光ユニテック株式会社 表面保護フィルム
KR100983026B1 (ko) * 2008-12-18 2010-09-17 주식회사 엘지화학 점착제 조성물, 편광판 및 액정표시장치
WO2010113868A1 (ja) * 2009-03-30 2010-10-07 シャープ株式会社 表示装置及び光学フィルム
US20130011611A1 (en) * 2010-03-24 2013-01-10 Tokio Taguchi Laminate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005156695A (ja) * 2003-11-21 2005-06-16 Kanagawa Acad Of Sci & Technol 反射防止膜及びその製造方法、並びに反射防止膜作製用スタンパ及びその製造方法
JP2010091604A (ja) * 2008-10-03 2010-04-22 Mitsubishi Rayon Co Ltd 保護フィルム付き成形体、およびその製造方法
JP2010107858A (ja) * 2008-10-31 2010-05-13 Mitsubishi Rayon Co Ltd 保護フィルム付き成形体
JP2010120348A (ja) * 2008-11-21 2010-06-03 Mitsubishi Rayon Co Ltd 保護フィルム、および保護フィルム付き成形体

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191169A1 (ja) * 2012-06-20 2013-12-27 三菱レイヨン株式会社 積層体の製造方法、積層体、および物品
CN104411494A (zh) * 2012-06-20 2015-03-11 三菱丽阳株式会社 层叠体的制造方法、层叠体以及物品
CN104411494B (zh) * 2012-06-20 2016-06-08 三菱丽阳株式会社 层叠体的制造方法、层叠体、微细凹凸结构体以及保护薄膜
JP2014073610A (ja) * 2012-10-03 2014-04-24 Asahi Kasei E-Materials Corp 保護部材付き成形体
WO2016063915A1 (ja) * 2014-10-24 2016-04-28 王子ホールディングス株式会社 光学素子、光学複合素子及び保護フィルム付光学複合素子
JPWO2016063915A1 (ja) * 2014-10-24 2017-08-03 王子ホールディングス株式会社 光学素子、光学複合素子及び保護フィルム付光学複合素子
US10444407B2 (en) 2014-10-24 2019-10-15 Oji Holdings Corporation Optical element including a plurality of concavities

Also Published As

Publication number Publication date
US20130280489A1 (en) 2013-10-24
JP5133465B2 (ja) 2013-01-30
TW201233537A (en) 2012-08-16
JPWO2012091012A1 (ja) 2014-06-05
CN103314312A (zh) 2013-09-18
KR20150048896A (ko) 2015-05-07
KR20130097225A (ko) 2013-09-02
TWI519409B (zh) 2016-02-01

Similar Documents

Publication Publication Date Title
JP6052164B2 (ja) 積層構造体
JP5133465B2 (ja) 積層構造体および加工品の製造方法
JP5243188B2 (ja) 保護フィルム付き成形体
US20150231854A1 (en) Layered structure and method for manufacturing same, and article
US9519082B2 (en) Microscopic roughness structure with protective film and method thereof
KR101349593B1 (ko) 필름의 제조 방법
KR20140018998A (ko) 미세 요철 구조를 표면에 갖는 물품 및 이것을 구비한 영상 표시 장치
JP5376913B2 (ja) 保護フィルム、および保護フィルム付き成形体
KR101740072B1 (ko) 아크릴계 수지 필름 및 그 제조 방법, 그리고 그것을 사용하여 이루어지는 편광판
JP2011026449A (ja) 積層体、およびこれを有する物品
JP2012143936A (ja) 保護フィルム、および保護フィルム付き成形体
JP5133190B2 (ja) 保護フィルム付き成形体、およびその製造方法
WO2013172448A1 (ja) フィルムとその製造方法、板状物、画像表示装置、太陽電池
JP2016210150A (ja) 積層体およびその製造方法と、物品
JP2015163995A (ja) 保護フィルム付き成形体
JP5768833B2 (ja) 保護フィルム付き成形体
JP2022100552A (ja) 展示台、展示ケース、並びに物品の展示方法
JP2018126890A (ja) 保護フィルム付き金型及び凹凸構造を有する物品の製造方法
JP2019065278A (ja) 透明粘着フィルム
WO2019065874A1 (ja) 透明粘着フィルム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012502366

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853759

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13997463

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137016615

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11853759

Country of ref document: EP

Kind code of ref document: A1