WO2012091011A1 - 回転ツール - Google Patents

回転ツール Download PDF

Info

Publication number
WO2012091011A1
WO2012091011A1 PCT/JP2011/080209 JP2011080209W WO2012091011A1 WO 2012091011 A1 WO2012091011 A1 WO 2012091011A1 JP 2011080209 W JP2011080209 W JP 2011080209W WO 2012091011 A1 WO2012091011 A1 WO 2012091011A1
Authority
WO
WIPO (PCT)
Prior art keywords
friction stir
stir welding
substrate
welding tool
base material
Prior art date
Application number
PCT/JP2011/080209
Other languages
English (en)
French (fr)
Inventor
森口 秀樹
慶春 内海
博香 宮崎
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN201180030276.9A priority Critical patent/CN102958639B/zh
Priority to KR1020127030122A priority patent/KR101361986B1/ko
Priority to US13/696,876 priority patent/US20130087604A1/en
Priority to EP11853889.1A priority patent/EP2564968A4/en
Publication of WO2012091011A1 publication Critical patent/WO2012091011A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1245Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding characterised by the apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/14Soldering, e.g. brazing, or unsoldering specially adapted for soldering seams
    • B23K1/18Soldering, e.g. brazing, or unsoldering specially adapted for soldering seams circumferential seams, e.g. of shells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1245Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding characterised by the apparatus
    • B23K20/1255Tools therefor, e.g. characterised by the shape of the probe
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/04Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/26Alloys of Nickel and Cobalt and Chromium

Definitions

  • the present invention relates to a friction stir welding tool.
  • friction stir welding technology for joining metal materials such as aluminum alloys was established. This technique generates frictional heat by rotating while pressing a cylindrical friction stir welding tool having a small-diameter protrusion formed at the tip on the joining surface between metal materials intended for joining, This is a technique of joining metal materials by softening and plastically flowing the metal material of the joint portion by the frictional heat.
  • the “joining portion” refers to a joining interface portion where joining of metal materials is desired by abutting metal materials or placing metal materials in an overlapping manner.
  • the metal material In the vicinity of the bonding interface, the metal material is softened to cause plastic flow.
  • the bonding interface disappears and bonding is performed.
  • dynamic recrystallization occurs simultaneously in the metal material, the metal material in the vicinity of the bonding interface is atomized by the dynamic recrystallization, and the metal materials can be bonded with high strength.
  • the friction stir welding technique is mainly applied to non-ferrous metals that cause plastic flow at a relatively low temperature, such as aluminum alloys and magnesium alloys.
  • a friction stir welding technique is superior to the resistance welding method in terms of the cost and time required for joining, the strength of the joined portion, and the like. For this reason, there is a need to apply not only to joining materials that cause plastic flow at low temperatures, but also to joining copper alloys and steel materials that cause plastic flow at high temperatures of 1000 ° C. or higher.
  • Patent Document 1 As an attempt to solve such a problem, for example, in Japanese Patent Application Laid-Open No. 2003-326372 (Patent Document 1), a portion of the surface of a friction stir welding tool that is in contact with a material to be joined is coated with a diamond film. As a result, the surface hardness is increased and the welding of the low melting point light alloy components such as Al alloy and Mg alloy to the friction stir welding tool is suppressed.
  • a technique for extending the service life is disclosed.
  • the friction stir welding tool disclosed in Patent Document 1 is able to improve the wear resistance of the surface of a light alloy having a low melting point such as an Al alloy or Mg alloy. The life can be extended.
  • Such a diamond film exhibits excellent wear resistance in bonding at low temperatures, when a material having a melting point exceeding 1000 ° C. such as a steel material is friction stir bonded, it easily oxidizes and has sufficient wear resistance. There was a problem that could not be demonstrated.
  • Patent Document 2 Japanese Patent Publication No. 2003-532542
  • cBN cubic boron nitride
  • the cBN sintered body is an expensive material in the first place, it is considered that a tool for friction stir welding using the sintered body is unlikely to be put into practical use from the viewpoint of cost.
  • Patent Document 3 discloses another attempt to suppress the deterioration of the surface of the friction stir welding tool by providing a base layer on the base material, A friction stir welding tool provided with an adhesion prevention film made of TiN, TiAlN or the like is disclosed. Since such a tool for friction stir welding can prevent the metal component (aluminum) of the material to be bonded from adhering even when used for a long time, it can continue stable processing.
  • the friction stir welding tool disclosed in Patent Document 3 is used for joining difficult-to-join materials having a melting point of 1000 ° C. or higher such as steel, the surface temperature of the friction stir welding tool is 1000 ° C. or higher.
  • the materials to be joined such as Al alloy and Mg alloy are subjected to friction stir welding, the wear progressed much faster and the tool life was shorter.
  • the present invention has been made in view of the current situation as described above, and the object of the present invention is to provide a friction stir welding tool having excellent wear resistance and high bonding strength even in the bonding of difficult-to-bond materials. Is to provide.
  • the friction stir welding tool of the present invention is used for friction stir welding, and includes a base material, the base material includes a hard phase and a binder phase, and the hard phase includes TiCN. And one or more metals selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and W, and one or more metals selected from the group consisting of nitrogen, carbon, boron, and oxygen.
  • a compound comprising an element or a solid solution of the compound, the binder phase is made of an iron group metal, and the mass ratio B s of the binder phase to the substrate in a region of 20 ⁇ m or less from the surface of the substrate is the surface of the substrate. To a mass ratio B i of the binder phase with respect to the base material in a region exceeding 20 ⁇ m.
  • the mass ratio B s / B i of B s to the above B i is preferably 0 to 0.9.
  • the mass ratio of the Ti compound to the substrate in the region of 20 ⁇ m or less from the surface of the substrate is preferably higher than the mass ratio of the Ti compound to the substrate in a region exceeding 20 ⁇ m from the surface of the substrate.
  • the surface roughness Ra of the portion in contact with the material to be joined of the base material is preferably 0.3 ⁇ m or less.
  • the friction stir welding tool includes a base material and a coating layer formed on the base material.
  • the coating layer preferably has oxidation resistance of 1000 ° C. or higher.
  • the friction stir welding process using the friction stir welding tool described above is preferably point welding.
  • the present invention is a method of joining materials to be joined using the friction stir welding tool described above, wherein the joining is performed on a material to be joined having a melting point of 1000 ° C. or higher.
  • the friction stir welding tool of the present invention has the above-described configuration, and thus has an effect of being excellent in wear resistance and having high bonding strength of the material to be bonded even in the bonding of difficult-to-bond materials.
  • FIG. 1 is a schematic cross-sectional view of the friction stir welding tool of the present invention.
  • the friction stir welding tool 1 of the present invention includes a probe portion 2 having a small diameter (for example, a diameter of 2 mm or more and 8 mm or less) and a cylindrical portion 3 having a large diameter (for example, a diameter of 4 mm or more and 20 mm or less).
  • a probe portion 2 having a small diameter (for example, a diameter of 2 mm or more and 8 mm or less) and a cylindrical portion 3 having a large diameter (for example, a diameter of 4 mm or more and 20 mm or less).
  • FSW Friction Stir Welding
  • spot joint spot joint
  • the member to be joined is joined by rotating the probe portion 2 in a state where it is inserted or pressed into the joining portion of the material to be joined.
  • the probe portion 2 is pressed or inserted into two materials to be bonded that are laminated or line contacted, and the rotating probe portion 2 is linear with respect to the laminated or butted portion.
  • the probe part 2 is continuously rotated at that location, thereby joining Join materials together.
  • the present invention also relates to a method of joining materials to be joined using a friction stir welding tool, and joining can be performed on materials to be joined having a melting point of 1000 ° C. or higher.
  • the friction stir welding tool of the present invention is capable of bonding even to a material to be joined having a melting point of 1000 ° C. or higher, which has been conventionally considered difficult to join with a friction stir welding tool, and is an extremely excellent industry. It has the above usability.
  • the friction stir welding tool 1 of the present invention can be used for various applications, it can be suitably used particularly for joining high-strength steels that have been mainly used in the resistance welding method in the past. . That is, the friction stir welding tool 1 of the present invention provides a means to replace the conventional resistance welding method in such high-strength steel joining applications. In addition to joining the joining material, dynamic recrystallization occurs at the joint, so the structure becomes finer, and the joining material is joined compared to the conventional resistance welding method in which the joined material becomes a liquid phase during joining. The strength of the portion is improved.
  • the friction stir welding tool of the present invention can be very effectively used for joining high-strength steels having high specific strength, particularly ultra-high-strength steels of 980 MPa or more. Moreover, even when such ultra-high-strength steel is spot-joined, the friction stir welding tool is not easily damaged.
  • the friction stir welding tool of the present invention as described above can be suitably used for joining materials to be joined made of high melting point materials.
  • the tool can also be used as a friction stir process.
  • the friction stir welding tool 1 of the present invention includes a base material, the base material includes a hard phase and a binder phase, and is in a region of 20 ⁇ m or less from the surface of the base material (hereinafter also referred to as “base material surface portion”).
  • the mass ratio B s of the binder phase to the substrate is smaller than the mass ratio B i of the binder phase to the substrate in a region exceeding 20 ⁇ m from the surface of the substrate (hereinafter also referred to as “inside of the substrate”). To do.
  • the mass ratio B s of the binder phase of the substrate surface portion to the substrate is smaller than the mass ratio of the binder phase inside the substrate to the substrate, the hard phase constituting the substrate surface portion is relatively This increases the hardness of the substrate surface, and improves the wear resistance and plastic deformation resistance of the friction stir welding tool.
  • the frictional heat generated by the rotation of the friction stir welding tool makes the surface difficult to oxidize even when the surface of the friction stir welding tool becomes hot, thereby improving the oxidation resistance and improving the bonding quality. Can be made.
  • the binder phase in the substrate surface portion is relatively reduced, the thermal conductivity of the substrate surface portion is lower than the thermal conductivity inside the substrate, and serves as a heat insulating layer. Friction heat generated during joining is less likely to be transferred to the inside of the base material. As a result, an effect peculiar to the friction stir welding tool that the frictional heat generated at the time of joining is effectively consumed for the plastic flow of the material to be joined appears, leading to energy saving.
  • a compressive residual stress of about 0.2 to 2 GPa can be generated on the surface of the base material. It can also improve the performance.
  • the mass ratio B s / B i of B s to the above B i is preferably 0 to 0.9.
  • B s / B i is more preferably 0 to 0.7, and still more preferably 0 to 0.5.
  • B s / B i exceeds 0.9, the effect brought about by the reduction in the mass ratio of the binder phase on the surface of the substrate is lowered, and sufficient wear resistance and oxidation resistance can be obtained. become unable.
  • the mass ratio B s / B i of the binder phase described above is obtained by measuring the cross-section of the friction stir welding tool in the region of 20 ⁇ m or less from the surface of the base material using an electron probe micro analyzer (EPMA). The value calculated based on the value obtained by quantitatively analyzing the mass ratio of the binder phase to the base material and the mass ratio of the binder phase to the base material in the region exceeding 20 ⁇ m from the surface of the base material is adopted.
  • EPMA electron probe micro analyzer
  • the mass ratio of the Ti compound to the substrate in the substrate surface portion is preferably higher than the mass ratio of the Ti compound to the substrate inside the substrate. Since the Ti compound is excellent in oxidation resistance, it is possible to improve the wear resistance and oxidation resistance of the friction stir welding tool by increasing the mass ratio of the Ti compound on the substrate surface to the substrate.
  • variation of the mass ratio of Ti compound in a base material is evaluated by analyzing the cross section of a base material with an electron beam microanalyzer (EPMA).
  • EPMA electron beam microanalyzer
  • the surface roughness Ra of the base material surface part may become too rough in the process of increasing or decreasing the proportion of the binder phase between the base material surface part and the base material inside.
  • the surface roughness of the surface portion of the base material that comes into contact with the material to be joined is smoothed by polishing or blasting, and specifically, the surface roughness of the portion of the base material that contacts the material to be joined.
  • Ra is preferably 0.3 ⁇ m or less.
  • the hard phase is included in the base material in order to increase the hardness and plastic deformation resistance of the base material.
  • a hard phase contains TiCN, and at least one metal selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and W, and nitrogen, carbon, boron, and oxygen.
  • a compound comprising one or more elements selected from the group consisting of, or a solid solution of the compound, for example, TiC, ZrCN, HfC, VC, NbC, TaC, Cr 3 C 2 , Mo 2 C, WC (Ti, Mo) (C, N), (Ti, W, Mo) (C, N), (Ti, W, Ta, Nb, Mo) (C, N), and the like.
  • a hard phase is preferably contained in an amount of 75% by mass to 98% by mass with respect to the base material. If the hard phase is less than 75% by mass, the hardness will be low, so that various properties such as plastic deformation resistance cannot be obtained sufficiently, and if it exceeds 98% by mass, the strength may be insufficient.
  • the binder phase is included in the base material in order to bond the hard phases to each other.
  • a binder phase may be anything as long as it is made of an iron group metal.
  • the iron group metal used for the binder phase include Co and Ni, and the respective composition ratios thereof can be arbitrarily changed.
  • the material used for the binder phase is not limited to Co and Ni, and Fe can be used, and the elements constituting the hard phase and Cr may be dissolved.
  • Such a binder phase preferably includes 3% by mass or more and 28% by mass or less based on the base material. If the binder phase is less than 3% by mass, the strength may be insufficient, which is not preferable. If it exceeds 28% by mass, the volume ratio of the hard phase is relatively reduced, and various properties such as hardness and plastic deformation resistance are obtained. The characteristics may not be obtained sufficiently.
  • a substrate manufactured as follows First, the raw material powder constituting the hard phase and the raw material powder constituting the binder phase are mixed, ethanol is further added, and the mixture is stirred for about 4 to 10 hours using an attritor. Then, after volatilizing ethanol, uniaxial pressing is performed at a pressure of 100 MPa, and sintering is performed at 1200 to 1700 ° C. for about 1 to 3 hours to obtain a sintered body. After grinding this sintered body with a diamond grindstone or the like, a blasting process is performed to prepare the surface to prepare a friction stir welding tool.
  • the heating rate during sintering, the atmospheric gas, and the pressure, or the cooling rate after sintering, the atmospheric gas It is effective to appropriately control the pressure and the like. Among them, it is effective to increase nitrogen partial pressure by introducing nitrogen during firing, and it is preferable to set the nitrogen partial pressure to 10 to 500 Torr.
  • the cooling rate can be controlled in a vacuum atmosphere or in a reduced-pressure nitrogen or inert gas atmosphere. It is effective and is preferably cooled at a cooling rate of about 3 to 30 ° C./min.
  • FIG. 2 is a schematic sectional view showing another embodiment of the friction stir welding tool of the present invention.
  • the friction stir welding tool of the present invention preferably includes a coating layer 5 formed on a substrate 4 as shown in FIG.
  • the coating layer 5 may be composed of only one layer having a single composition, or may be composed of a laminate of two or more layers having different compositions. By providing such a coating layer, it is possible to impart an effect of improving various properties such as wear resistance, oxidation resistance, and toughness.
  • the base material of the present invention has a relatively small amount of binder phase having a high thermal expansion coefficient in the base material surface portion, so that the thermal expansion coefficient of the base material surface portion is lower than the thermal expansion coefficient inside the base material.
  • the thermal expansion coefficient of the coating layer is approached. As a result, in friction stir welding applications that are heated to a temperature of 1000 ° C. or higher and then cooled, peeling or chipping of the coating layer can be suppressed, which greatly contributes to extending the life of the friction stir welding tool. To do.
  • Such a coating layer is provided in order to give the above-mentioned characteristics.
  • various properties such as coloring properties for identifying used probes of the friction stir welding tool 1 can be used.
  • action which improves a characteristic can be provided.
  • the coating layer 5 is preferably formed so as to cover the entire surface of the substrate 4, but a part of the substrate is not covered by the coating layer,
  • the composition of the coating layer may be different in any part on the material.
  • the coating layer in this invention may coat
  • the coating layer preferably has oxidation resistance of 1000 ° C. or higher.
  • “having oxidation resistance of 1000 ° C. or higher” means that when the coating layer is evaluated in the atmosphere by a thermal analysis-differential thermogravimetric simultaneous measurement (TG / DTA: Thermogravimetry / Differential Thermal Analysis) apparatus. It means that the temperature at which the weight increase of the coating layer occurs is 1000 ° C. or higher.
  • the coating layer is preferably made of a material having a thermal expansion coefficient of 7 ⁇ 10 ⁇ 6 or more and 9 ⁇ 10 ⁇ 6 or less, and Ti, Al, Cr, Si, Hf, Zr, Mo, More preferably, it is made of a nitride of at least one metal selected from the group consisting of Nb, Ta, V and W.
  • a nitride layer may contain oxygen or carbon. By containing oxygen, oxidation resistance can be improved, and by containing carbon, wear resistance can be improved.
  • the composition of the nitride layer having oxidation resistance of 1000 ° C. or more includes TiMoSiN, TiSiN, AlWN, AlWSiN, AlTaN, AlTaSiN, AlHfN, AlHfSiN, AlMoN, AlMoSiN, AlNbSiN, AlZrN, AlZrSiN, AlSiN, VSiN, CrVN.
  • the coating layer of the present invention preferably has a thickness of 1 ⁇ m to 50 ⁇ m.
  • the thickness of the coating layer of the present invention is more preferably 5 ⁇ m or more and 40 ⁇ m or less, and further preferably 10 ⁇ m or more and 20 ⁇ m or less. Thereby, the tool life can be further extended and the chipping resistance can be improved.
  • the thickness of the coating layer refers to the thickness of the coating layer in any part of the surface of the friction stir welding tool.
  • the probe portion of the thickness of the coating layer formed on the base material of the friction stir welding tool This is the thickness of the coating layer at the tip.
  • the coating layer 5 of the present invention needs to be coated so as to have high adhesion to the substrate 4. For this reason, it is preferable to form by the film-forming process with high adhesiveness with the base material 4.
  • a film forming process any conventionally known film forming process can be used. For example, a PVD (physical vapor deposition) method, a CVD (chemical vapor deposition) method, or the like can be used. These film forming processes may be combined.
  • the PVD method is particularly preferable to use the PVD method from the viewpoint that oxidation resistance can be improved by preventing cracks in the coating layer after coating the coating layer 5.
  • the coating layer cracks when the friction stir welding tool is exposed to a high temperature of 1000 ° C. or higher in the joining process, oxygen reaches the base material through the crack, and the base material is oxidized to damage the tool. Since it accelerates, it is extremely important not to form cracks in the coating layer.
  • the PVD method is very advantageous as compared with the CVD method.
  • the PVD method can form the coating layer 5 at a low temperature and can form a film while applying strain to the coating layer 5, so that the crystal grains tend to be finely divided and the coating layer is worn. Sometimes it has the advantage that the size of the wear powder is small.
  • PVD method suitably used in the present invention
  • a conventionally known PVD method can be used without any particular limitation.
  • PVD methods include sputtering, arc ion plating, and vapor deposition.
  • the friction stir welding tool shown in FIG. 1 was produced.
  • the friction stir welding tool of the present embodiment includes a cylindrical portion 3 having a substantially cylindrical shape with a diameter of 10 mm and a height of 20 mm, and a probe portion 2 projecting concentrically with the cylindrical portion 3 at the center of the tip of the cylindrical portion 3.
  • the probe section 2 has a substantially cylindrical shape with a diameter of 4 mm and a height of 2 mm.
  • mixed powder was obtained by mixing the raw material powder constituting the hard phase and the raw material powder constituting the binder phase at the mass ratio shown in Table 1 below.
  • Example 1 the sintered compact raw material was filled in a cemented carbide alloy mold and uniaxially pressed at a pressure of 100 MPa to obtain a pressure molded body.
  • the pressure-molded body was sintered in a vacuum at a temperature of 1500 ° C. for 1 hour to obtain a sintered body.
  • the outer peripheral portion of the sintered body was ground with a diamond grindstone.
  • the probe part and the shoulder part that are in contact with the material to be joined are subjected to blasting using alumina powder without being ground and smoothed until the surface roughness Ra becomes 0.25 ⁇ m.
  • a stir welding tool was prepared.
  • Example 8 the mass ratio of B s / B i and the increase in the Ti compound were the same as the base material of the friction stir welding tool of Example 3, but the probe portion and shoulder portion A light smoothing treatment was performed with a surface roughness Ra of 0.5 ⁇ m.
  • each example and each comparative example were sintered in an atmosphere with a nitrogen partial pressure of 1 to 500 Torr at a temperature increase rate of 1 to 5 ° C./min during the sintering, and after sintering, By cooling in a vacuum or an inert gas atmosphere at a cooling rate of 1 to 30 ° C./minute, the mass ratio (B s / B i ) of the binder phase on the surface of the substrate to the substrate and the substrate of the Ti compound Friction stir welding tools were prepared so that the mass ratio to the difference was different.
  • the friction stir welding tools of Examples 1 to 8 thus manufactured include a base material, and the base material includes a hard phase and a binder phase in a region exceeding 20 ⁇ m from the surface of the base material.
  • the ratio B s / B i of the mass ratio B s of the binder phase to the substrate in the region of 20 ⁇ m or less from the surface of the substrate relative to the mass ratio B i of the binder phase to the substrate was 0 to 0.9.
  • the mass ratio of the Ti compound to the substrate in the region where the mass ratio of the Ti compound to the substrate in the region of 20 ⁇ m or less from the surface of the substrate exceeds 20 ⁇ m from the surface of the substrate. The ratio was low.
  • the friction stir welding tool of each example and each comparative example obtained above was mirror-polished, and the crystal structure constituting the friction stir welding tool in an arbitrary region was scanned with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • carbide, carbonitride, and nitride of a hard phase in a cross section (surface perpendicular to the tip direction of the probe portion) of the friction stir welding tool were mapped.
  • the hard phase carbide, carbonitride, nitride, and binder phase are identified using image processing software while confirming the components.
  • the Ti compound on the substrate surface portion and the Ti compound inside the substrate were evaluated by EPMA, and it was evaluated whether the substrate surface portion contained more Ti compound than the inside of the substrate.
  • the substrate surface portion contains a large amount of Ti compound as compared to the inside of the substrate, “Yes” is indicated in the column “Increase in Ti compound”, and the substrate surface portion contains Ti compound as compared with the inside of the substrate.
  • the amount is small or equivalent, “None” is indicated in the “Ti compound increase” column.
  • Example 9 The base material of the tool for friction stir welding in Example 2 was coated with a coating layer made of Al 0.6 Ti 0.35 Si 0.05 N with a thickness of 10 ⁇ m using the cathode arc ion plating method. This produced the friction stir welding tool of Example 9 having the shape shown in FIG.
  • the coating layer made of Al 0.6 Ti 0.35 Si 0.05 N had an oxidation start temperature of 1130 ° C. The oxidation start temperature was obtained by measuring the temperature at which the weight of the coating layer increased with a TG / DTA apparatus (product name: TG-DTA2020SA (Bruker Co., Ltd.)).
  • Example 10 A friction stir welding tool of Example 10 was produced in the same manner as in Example 9, except that the composition of the coating layer in Example 9 was changed to that of Ti 0.5 Al 0.5 N.
  • the coating layer made of Ti 0.5 Al 0.5 N had an oxidation start temperature of 970 ° C.
  • the coating layer is formed by the cathode arc ion plating method, but the coating layer can also be formed by, for example, a balanced or unbalanced sputtering method.
  • the thickness of the coating layer in an Example was measured by observing the cross section directly using SEM and TEM.
  • the friction stir welding tool is immersed in hydrochloric acid and heated for 10 minutes to remove the adhering material adhering to the surface, and using a caliper, the friction stir welding tool
  • the outer diameter of the shoulder part and the probe part was measured.
  • the difference between the outer diameters of the shoulder portion and the probe portion before and after performing point bonding in this way was evaluated as the amount of wear, and is shown in the column “Wear amount (mm)” in Table 3. The smaller the amount of wear, the better the wear resistance.
  • the mass ratio of the binder phase to the base material in the surface portion of the base material was equal to the mass ratio of the binder phase to the base material inside the base material.
  • the wear resistance and oxidation resistance of the tool for use could not be improved.
  • the friction stir welding tool of Comparative Example 2 had a value of B s / B i of 0.95 and exceeded 0.9, so that the wear resistance and oxidation resistance were low, and the bonding quality was poor. It became clear.
  • the friction stir welding tool of Comparative Example 3 uses Al which is not an iron group metal as a material constituting the binder phase, it is clear that the wear resistance and the oxidation resistance are low and the bonding quality is poor. It became.
  • Example 2 exhibited superior wear resistance and bonding quality as compared with that of Example 7.
  • the performance of the friction stir welding tool of Example 2 was excellent because the friction stir welding tool of Example 2 had an increase in Ti compound on the surface of the base material, whereas Example 7 This friction stir welding tool is considered to be due to the fact that there was no increase in the Ti compound on the surface of the base material, but instead the WC increased.
  • the friction stir welding tool of Example 9 showed superior wear resistance compared to that of Example 10.
  • the abrasion resistance of the friction stir welding tool of Example 9 was excellent because the oxidation start temperature of the coating layer of the friction stir welding tool of Example 9 exceeded 1000 ° C. It is considered a thing.
  • the coating layer of the friction stir welding tool of Example 10 is considered to have resulted in inferior wear resistance compared to Example 9 because its oxidation start temperature is lower than 1000 ° C.
  • Friction stir welding tool 2 cylindrical part, 3 probe part, 4 base material, 5 coating layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

 難接合材の接合加工においても、耐摩耗性に優れ、かつ接合強度が高い摩擦攪拌接合用ツール(1)を提供する。本発明の摩擦攪拌接合用ツール(1)は、摩擦攪拌接合加工に使用するものであって、基材(4)を含み、該基材(4)は、硬質相と、結合相とを含み、該硬質相は、TiCNを含み、結合相は、鉄族金属からなり、基材(4)の表面から20μm以下の領域における結合相の基材(4)に対する質量比Bsは、基材(4)の表面から20μmを超える領域における結合相の基材(4)に対する質量比Biよりも小さいことを特徴とする。

Description

回転ツール
 本発明は、摩擦攪拌接合用ツールに関する。
 1991年の英国において、アルミニウム合金などの金属材料同士を接合する摩擦攪拌接合技術が確立された。本技術は、接合を目的とする金属材料同士の接合面において、先端に小径突起部が形成された円柱状の摩擦攪拌接合用ツールを押圧しながら回転させることにより、摩擦熱を発生させて、当該摩擦熱により接合部分の金属材料を軟化させて塑性流動させることにより、金属材料同士を接合するという技術である。
 ここで、「接合部分」とは、金属材料を突き合わせたり、金属材料を重ねて設置させたりすることにより、それらの金属材料の接合が所望される接合界面部分をいう。この接合界面付近において、金属材料が軟化されて塑性流動が起こり、その金属材料が攪拌されることによってその接合界面が消滅し、接合が行なわれる。さらに、同時にその金属材料に動的再結晶が起こるので、この動的再結晶により接合界面付近の金属材料が微粒化することとなり、金属材料同士を高強度に接合することができる。
 このような金属材料としてアルミニウム合金を用いる場合、500℃程度の比較的低温で塑性流動が生じるため、安価な工具鋼からなる摩擦攪拌接合用ツールを用いても、その傷みが少なく頻繁にツールを交換しなくてもよい。このため摩擦攪拌接合技術は、アルミニウム合金を接合するのに要するコストが低廉であることから、アルミニウム合金を溶融させて接合する抵抗溶接法に代わる接合方法として、鉄道車両や自動車、飛行機の構造部品の接合技術として既に様々な用途で実用化されている。
 現在のところ、摩擦攪拌接合技術は、アルミニウム合金、マグネシウム合金等のような比較的低温で塑性流動が生じる非鉄金属に主として適用されている。このような摩擦攪拌接合技術は、接合に要するコストおよび時間、接合部分の強度等の面で、抵抗溶接法に比して優れている。このため、低温で塑性流動が生じる材料の接合のみに留まらず、1000℃以上の高温で塑性流動が生じるような銅合金や鉄鋼材料の接合にも適用したいというニーズがある。
 しかし、摩擦攪拌接合技術を鉄鋼材料に適用した場合、摩擦攪拌接合用ツール自体も接合時に高温に晒されることとなり、摩擦攪拌接合用ツールに塑性変形が起こるとともに、摩擦攪拌接合用ツールの被接合材に接触する部分が容易に酸化されて摩耗し、ツール寿命が非常に短くなるという問題があった。
 このような問題を解決するための試みとして、たとえば特開2003-326372号公報(特許文献1)には、摩擦攪拌接合用ツールの表面のうち被接合材と接触する部分にダイヤモンド膜を被覆することにより、その表面硬度を高めるとともに被接合材であるAl合金、Mg合金等の低融点の軽合金成分が摩擦攪拌接合用ツールに溶着することを抑制し、以って摩擦攪拌接合用ツールを長寿命化する技術が開示されている。特許文献1に開示される摩擦攪拌接合用ツールは、たしかにAl合金、Mg合金等の低融点の軽合金の接合において、その表面の耐摩耗性を向上させることができ、摩擦攪拌接合用ツールを長寿命化することができる。
 かかるダイヤモンド膜は低温時の接合においては抜群の耐摩耗性を発揮するものの、鉄鋼材料のように1000℃を超える融点を有する材料を摩擦攪拌接合すると、容易に酸化してしまい、十分な耐摩耗性を発揮できない問題があった。
 そこで、高温時の接合にも対応できる摩擦攪拌接合用ツールとして、特表2003-532542号公報(特許文献2)では、工具鋼に代えて、立方晶窒化硼素(以下、「cBN」とも記す)焼結体などの超高圧焼結体を摩擦攪拌接合用ツールに適用することが提案されている。しかしながら、そもそもcBN焼結体は高価な材料であるため、これを用いた摩擦攪拌接合用ツールはコストの観点から実用化が進みにくいと考えられている。
 また、特開2005-152909号公報(特許文献3)には、摩擦攪拌接合ツールの表面の劣化を抑制するための別の試みとして、基材上に、下地層を設け、該下地層上にTiN、TiAlN等からなる付着阻止皮膜を設けた摩擦攪拌接合用ツールが開示されている。このような摩擦攪拌接合用ツールは、長時間使用しても被接合材の金属成分(アルミニウム)が凝着することを防止できることから、安定した加工を継続することができる。
特開2003-326372号公報 特表2003-532542号公報 特開2005-152909号公報
 しかしながら、特許文献3に開示される摩擦攪拌接合用ツールを、鋼のような融点が1000℃以上の難接合材の接合に用いた場合には、摩擦攪拌接合用ツールの表面温度が1000℃以上の高温に曝され、Al合金、Mg合金などの被接合材を摩擦攪拌接合する場合に比して、格段に摩耗の進行が早く、ツール寿命が短いものであった。
 本発明は、上記のような現状に鑑みなされたものであって、その目的とするところは、難接合材の接合加工においても、耐摩耗性に優れ、かつ接合強度が高い摩擦攪拌接合用ツールを提供することである。
 本発明の摩擦攪拌接合用ツールは、摩擦攪拌接合加工に使用するものであって、基材を含み、該基材は、硬質相と、結合相とを含み、該硬質相は、TiCNを含み、さらにTi、Zr、Hf、V、Nb、Ta、Cr、MoおよびWからなる群より選ばれた一種以上の金属と、窒素、炭素、硼素、および酸素からなる群より選ばれた一種以上の元素とからなる化合物、または該化合物の固溶体を含み、結合相は、鉄族金属からなり、基材の表面から20μm以下の領域における結合相の基材に対する質量比Bsは、基材の表面から20μmを超える領域における結合相の基材に対する質量比Biよりも小さいことを特徴とする。
 上記のBiに対するBsの質量比Bs/Biは、0~0.9であることが好ましい。基材の表面から20μm以下の領域におけるTi化合物の基材に対する質量比は、基材の表面から20μmを超える領域におけるTi化合物の基材に対する質量比よりも高いことが好ましい。基材の被接合材と接する部分の表面粗さRaは、0.3μm以下であることが好ましい。
 摩擦攪拌接合用ツールは、基材と、該基材上に形成された被覆層とを備えることが好ましい。該被覆層は、1000℃以上の耐酸化性を有することが好ましい。
 上記の摩擦攪拌接合用ツールを用いた摩擦攪拌接合加工は、点接合であることが好ましい。
 本発明は、上記の摩擦攪拌接合用ツールを用いた被接合材の接合方法であって、該接合は、融点が1000℃以上の被接合材に対して行なうことを特徴とするものである。
 本発明の摩擦攪拌接合用ツールは、上記のような構成を有することにより、難接合材の接合加工においても、耐摩耗性に優れ、かつ被接合材の接合強度が高いという効果を示す。
本発明の摩擦攪拌接合用ツールの一例を示す概略断面図である。 本発明の摩擦攪拌接合用ツールの他の一例を示す概略断面図である。
 以下、本発明についてさらに詳細に説明する。
 <摩擦攪拌接合用ツール>
 図1は、本発明の摩擦攪拌接合用ツールの概略断面図である。本発明の摩擦攪拌接合用ツール1は、図1に示されるように、小径(たとえば直径2mm以上8mm以下)のプローブ部2と、大径(たとえば直径4mm以上20mm以下)の円柱部3とを備えた形状を有するものであり、たとえば線接合(FSW:Friction Stir Welding)用途、点接合(スポットFSW)用途等に極めて有用に用いることができる。
 本発明の摩擦攪拌接合用ツールを接合に用いる場合、プローブ部2が被接合材の接合部分に挿入または押圧された状態で回転されることにより、被接合材が接合されることとなる。この場合、線接合用途では、積層もしくは線接触状に突き合わされた2つの被接合材にプローブ部2を押圧もしくは挿入させ、回転するプローブ部2を当該積層もしくは突き合わされた部分に対して直線状に移動させることにより被接合材同士を接合する。一方、点接合用途では、上下に積層、もしくは突き合わされた2つの被接合材の所望の接合箇所に回転するプローブ部2を押圧し、その場所でプローブ部2を引き続き回転させることにより、被接合材同士を接合する。
 本発明は、摩擦攪拌接合用ツールを用いた被接合材を接合する方法にも係わり、接合は、融点が1000℃以上の被接合材に対して行なうことができる。本発明の摩擦攪拌接合用ツールは、従来では摩擦攪拌接合用ツールによる接合が困難と考えられていた融点が1000℃以上の被接合材に対しても接合を行なうことができ、極めて優れた産業上の利用性を有するものである。
 このように本発明の摩擦攪拌接合用ツール1は、各種用途に用いることができるものであるが、とりわけ従来において抵抗溶接法が主として用いられていた高張力鋼の接合に好適に用いることができる。すなわち、本発明の摩擦攪拌接合用ツール1は、このような高張力鋼の接合用途において、従来の抵抗溶接法に代替する手段を提供するものであり、摩擦攪拌接合では、固相状態で被接合材が接合される上に、接合部分に動的再結晶が生じることから、組織が微細化し、以って接合中に被接合材が液相となる従来の抵抗溶接法に比し、接合部分の強度を向上させたものである。したがって、本発明の摩擦攪拌接合用ツールは、高比強度の高張力鋼、特に980MPa以上の超高張力鋼の接合に極めて有効に使用し得るものである。しかも、このような超高張力鋼を点接合する場合にも、摩擦攪拌接合用ツールに欠損が生じにくい。以上のような本発明の摩擦攪拌接合用ツールは、高融点の材料からなる被接合材の接合に好適に用いることができる。また、本ツールは摩擦攪拌プロセスとしても使用可能である。
 <基材>
 本発明の摩擦攪拌接合用ツール1は基材を含み、該基材は、硬質相と結合相を含み、基材の表面から20μm以下の領域(以下において「基材表面部」とも記す)における結合相の基材に対する質量比Bsは、基材の表面から20μmを超える領域(以下において「基材内部」とも記す)における結合相の基材に対する質量比Biよりも小さいことを特徴とする。このように基材表面部の結合相の基材に対する質量比Bsが基材内部の結合相の基材に対する質量比よりも小さいことにより、基材表面部を構成する硬質相が相対的に多くなり、基材表面の硬度が上昇するとともに、摩擦攪拌接合用ツールの耐摩耗性および耐塑性変形性が向上する。
 また、摩擦攪拌接合用ツールの回転によって生じた摩擦熱で、摩擦攪拌接合用ツールの表面が高温になっても、表面が酸化しにくくなり、もって耐酸化性を向上させるとともに、接合品位を向上させることができる。その上、基材表面部における結合相が相対的に減少していることにより、基材表面部の熱伝導率が基材内部の熱伝導率よりも低下して断熱層の働きをするため、接合時に発生する摩擦熱が基材内部に伝熱しにくくなる。その結果、接合時に発生する摩擦熱が被接合材の塑性流動に有効に消費されるという摩擦攪拌接合用ツール特有の効果が表れ、省エネルギーに繋がる。さらに、上記のように基材表面部の結合相の基材に対する質量比を調整することにより、基材表面部に0.2~2GPa程度の圧縮残留応力を発生させることができ、もって耐欠損性を向上させることもできる。
 上記のBiに対するBsの質量比Bs/Biは、0~0.9であることが好ましい。これにより摩擦攪拌接合用ツールの耐摩耗性および耐酸化性を向上させることができる。Bs/Biは、0~0.7であることがより好ましく、さらに好ましくは0~0.5である。一方、Bs/Biが0.9を超えると、基材表面部の結合相の質量比が低減することによってもたらされる効果が低下し、耐摩耗性および耐酸化性を十分に得ることができなくなる。なお、上記の結合相の質量比Bs/Biは、摩擦攪拌接合用ツールの断面を電子線マイクロアナライザ(EPMA:Electron Probe Micro Analyzer)によって、基材の表面から20μm以下の領域における結合相の基材に対する質量比、および基材の表面から20μmを超える領域における結合相の基材に対する質量比を定量分析して得られた値に基づいて算出した値を採用するものとする。
 基材表面部におけるTi化合物の基材に対する質量比は、基材内部におけるTi化合物の基材に対する質量比よりも高いことが好ましい。Ti化合物は、耐酸化性に優れるため、基材表面部のTi化合物の基材に対する質量比を高めることにより、摩擦攪拌接合用ツールの耐摩耗性および耐酸化性を向上させることができる。なお、基材におけるTi化合物の質量比の変動は、基材の断面を電子線マイクロアナライザ(EPMA)によって分析することによって評価する。なお、本発明の基材は、基材表面部と基材内部とで結合相の占める割合を増減させる過程で、基材表面部の表面粗さRaが粗くなりすぎることがある。このため、被接合材と接触する基材表面部の表面粗さは、磨き処理やブラスト処理などで平滑化することが好ましく、具体的には基材の被接合材に接する部分の表面粗さRaで0.3μm以下とすることが好ましい。このような表面粗さとすることにより、接合初期に基材の表面に摩擦熱を発生しにくくすることができ、もって摩擦攪拌接合用ツールを長寿命化することができる。一方、基材の被接合材に接する部分の表面粗さRaが0.3μmを超えると、接合初期に過大な摩擦熱が発生し、摩擦攪拌接合用ツールの寿命を低下するため好ましくない。
 基材として超硬合金を使用する場合、そのような超硬合金は、組織中に遊離炭素やη相と呼ばれる異常相を含んでいても本発明の効果は示される。
 <硬質相>
 本発明において、硬質相は、基材の硬度および耐塑性変形性を高めるために基材に含むものである。このような硬質相は、TiCNを含み、さらにTi、Zr、Hf、V、Nb、Ta、Cr、MoおよびWからなる群より選ばれた一種以上の金属と、窒素、炭素、硼素、および酸素からなる群より選ばれた一種以上の元素とからなる化合物、または該化合物の固溶体を含むものであり、たとえばTiC、ZrCN、HfC、VC、NbC、TaC、Cr32、Mo2C、WC、(Ti,Mo)(C,N)、(Ti,W,Mo)(C,N)、(Ti,W,Ta,Nb,Mo)(C,N)等を挙げることができる。かかる硬質相は、基材に対し、75質量%以上98質量%以下含むことが好ましい。硬質相が75質量%未満であると、硬度が低くなるため、耐塑性変形性等の諸特性を十分に得られず、98質量%を超えると強度が不足する場合があるため好ましくない。
 <結合相>
 本発明において、結合相は、硬質相同士を結合するために基材に含むものである。このような結合相は、鉄族金属からなるものであればいかなるものであってもよい。結合相に用いられる鉄族金属としては、CoやNiを挙げることができ、これらの各組成比は、任意に変更することができる。また、結合相に用いられる材料は、CoおよびNiのみに限られるものではなく、Feを用いることができる他、硬質相を構成する元素やCrを固溶していてもよい。かかる結合相は、基材に対し、3質量%以上28質量%以下を含むことが好ましい。結合相が3質量%未満であると、強度が不足する場合があるため好ましくなく、28質量%を超えると、硬質相の体積比率が相対的に低下し、硬度および耐塑性変形性等の諸特性を十分に得られない場合がある。
 <基材の製造方法>
 本発明の摩擦攪拌接合用ツールに用いられる基材は、以下のようにして作製されたものを用いることが好ましい。まず、硬質相を構成する原料粉末と、結合相を構成する原料粉末とを混合し、さらにエタノールを添加して、アトライターを用いて4~10時間程度攪拌する。そして、エタノールを揮発させた上で、100MPaの圧力で単軸加圧し、1200~1700℃で1~3時間程度焼結することにより焼結体を得る。この焼結体をダイヤモンド砥石などによって研削加工した上で、ブラスト処理をして表面を整えて摩擦攪拌接合用ツールを作製する。
 上記で作製する基材において、基材表面部におけるTi化合物の質量比を高めるためには、焼結時の昇温速度、雰囲気ガス、および圧力など、もしくは焼結後の冷却速度、雰囲気ガス、および圧力などを適宜制御することが有効である。中でも、焼成時に窒素を導入して窒素分圧を高めることが有効であり、窒素分圧を10~500Torrとすることが好ましい。また、基材表面部での結合相の質量比を減少させるためには、たとえば焼成後の冷却過程において、真空雰囲気下、もしくは減圧窒素か不活性ガス雰囲気下で、冷却速度を制御することが有効であり、3~30℃/分程度の冷却速度で冷却することが好ましい。
 <被覆層>
 図2は、本発明の摩擦攪拌接合用ツールの他の一形態を示す概略断面図である。本発明の摩擦攪拌接合用ツールは、図2に示されるように、基材4上に形成された被覆層5を備えていることが好ましい。かかる被覆層5は、単一組成の1層のみから構成されていてもよいし、互いに組成の異なる2層以上の積層体によって構成されていてもよい。このような被覆層を備えることにより、耐摩耗性、耐酸化性、靭性等の諸特性を向上させる作用を付与することができる。特に、本発明の基材は、基材表面部において、熱膨張係数が高い結合相の量が相対的に少ないため、基材表面部の熱膨張係数が基材内部の熱膨張係数よりも低く、被覆層の熱膨張係数に近づくことになる。これにより1000℃以上の温度まで加熱されて、その後に冷却される摩擦攪拌接合の用途において、被覆層の剥離もしくはチッピングを抑制することができ、もって摩擦攪拌接合用ツールの長寿命化に大きく寄与する。
 このような被覆層は、上記のような特性を付与するために設けられるものであるが、この特性以外にも摩擦攪拌接合用ツール1の使用済みプローブの識別のための色付性等の諸特性を向上させる作用を付与することができる。また、被覆層5は、図2に示されるように、基材4の全面を覆うようにして形成されていることが好ましいが、基材の一部が被覆層により覆われていなかったり、基材上のいずれかの部分において被覆層の構成が異なっていてもよい。なお、本発明における被覆層は、接合加工時に酸化が顕著に生じやすいショルダー部のみを被覆していてもよい。
 さらに、上記の被覆層は、1000℃以上の耐酸化性を有することが好ましい。ここで、「1000℃以上の耐酸化性を有する」とは、熱分析-示差熱熱重量同時測定(TG/DTA:Thermogravimetry/Differential Thermal Analysis)装置によって、大気中で被覆層を評価したときに、被覆層の重量増加が生じた温度が1000℃以上であることを意味する。
 ここで、被覆層は、熱膨張係数が7×10-6以上9×10-6以下の熱膨張係数を有する材料からなることが好ましく、Ti、Al、Cr、Si、Hf、Zr、Mo、Nb、Ta、V及びWからなる群より選ばれた1種以上の金属の窒化物からなることがより好ましい。かかる窒化物層は、酸素を含んでいてもよいし、炭素を含んでいてもよい。酸素を含むことにより、耐酸化性を向上させることができるし、炭素を含むことにより、耐摩耗性を向上させることができる。
 特に、1000℃以上の耐酸化性を有する窒化物層の組成としては、TiMoSiN、TiSiN、AlWN、AlWSiN、AlTaN、AlTaSiN、AlHfN、AlHfSiN、AlMoN、AlMoSiN、AlNbSiN、AlZrN、AlZrSiN、AlSiN、VSiN、CrVN、CrMoN、CrSiN、CrZrN、CrAlN、CrWSiN、CrTiSiN、AlTiSiN、AlTiCrN、CrAlN、CrAlSiN、TiHfSiN、TiWSiN、TiAlSiN等を挙げることができる。
 本発明の被覆層は、1μm以上50μm以下の厚みを有することが好ましい。このように1μm以上の厚みとすることにより耐摩耗性が向上し、ツール寿命を大幅に延長することが可能となる。本発明の被覆層の厚みは、5μm以上40μm以下とすることがより好ましく、さらに好ましくは10μm以上20μm以下とすることである。これにより、ツール寿命をさらに延長することができるとともに、耐欠損性にも優れたものとすることができる。
 本発明において、被覆層の厚みは、透過型電子顕微鏡(TEM:Transmission Electron Microscope)を用いて算出した値を採用するものとする。被覆層の厚みとは、摩擦攪拌接合用ツールの表面のいずれかの部分における被覆層の厚みをいい、たとえば摩擦攪拌接合用ツールの基材上に形成された被覆層の厚みのうち、プローブ部の先端における被覆層の厚みをいう。
 <被覆層の形成方法>
 本発明の被覆層5は、基材4との密着性が高いように被覆されている必要がある。このため、基材4との密着性が高い成膜プロセスにより形成されていることが好ましい。このような成膜プロセスとしては、従来公知のいかなる成膜プロセスをも用いることができ、たとえばPVD(物理蒸着)法、CVD(化学蒸着)法等を用いることができる他、2以上の従来公知の成膜プロセスを組み合わせてもよい。
 これらの成膜プロセスの中でも、被覆層5をコーティングした後に被覆層中に亀裂が入りにくいことにより、耐酸化性を向上させることができるという観点から、PVD法を用いることが特に好ましい。被覆層に亀裂が入ると、接合工程において摩擦攪拌接合用ツールが1000℃以上の高温に曝されたときに、亀裂を介して酸素が基材に到達し、基材が酸化されて工具損傷を加速させてしまうことから、被覆層中に亀裂を形成しないようにすることが極めて重要である。その点でPVD法は、CVD法に比して非常に有利である。さらに、PVD法は、低温で被覆層5を形成することができるとともに、被覆層5に歪みを与えながら成膜することができるため、結晶粒を微粒子化しやすい傾向があり、被覆層が摩耗したときでも摩耗粉のサイズが小さいという利点を有する。
 本発明において好適に用いられるPVD法としては、従来公知のPVD法を特に限定することなく用いることができる。このようなPVD法としては、たとえばスパッタリング法、アークイオンプレーティング法、蒸着法等を挙げることができる。特に、アークイオンプレーティング法またはマグネトロンスパッタリング法を採用することが好ましい。
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
 <実施例1~8、比較例1~3>
 実施例1~8および比較例1~3では、図1に示される摩擦攪拌接合用ツールを作製した。本実施例の摩擦攪拌接合用ツールは、直径10mmで高さが20mmの略円柱形状の円柱部3と、該円柱部3の先端中央部に円柱部3と同心に突設されたプローブ部2とを有しており、当該プローブ部2は、直径4mmで高さが2mmの略円柱形状のものである。
 まず、硬質相を構成する原料粉末と、結合相を構成する原料粉末とを、下記の表1に示す質量比率で混合することにより混合粉末を得た。ここで、硬質相を構成する原料粉末としては、平均粒子径が1.5μmのTiCN(質量比でTiC/TiN=1)と、平均粒子径が1.5μmのTiC粉末と、平均粒子径が0.8μmのWC粉末と、平均粒子径が1μmのNbC粉末と、平均粒子径が1μmのTaC粉末と、平均粒子径が1μmのMo2C粉末とを用い、結合相を構成する原料粉末としては、平均粒子径が1.5μmのNi粉末および平均粒子径が1.5μmのCo粉末を用いた。
 上記混合粉末にエタノールを添加し、アトライターを用いて7時間攪拌することにより、硬質相の材料と結合相の材料とを混合したスラリーを得た。そして、このスラリーに含まれるエタノールを揮発させることにより、焼結体原料を得た。
 たとえば実施例1においては、上記の焼結体原料を、超硬合金製の金型に充填して100MPaの圧力で単軸加圧することにより加圧成型体を得た。この加圧成型体を真空において1500℃の温度で1時間焼結することにより、焼結体を得た。この焼結体の外周部をダイヤモンド砥石によって研削加工を行なった。一方、被接合材に接するプローブ部およびショルダー部には研削加工を施さずに、アルミナ粉を用いたブラスト処理を行なって、表面粗さRaが0.25μmになるまで平滑化することにより、摩擦攪拌接合用ツールを作製した。なお、実施例8においては、実施例3の摩擦攪拌接合用ツールの基材と同様のBs/Biの質量比およびTi化合物の増加を有したものであるが、プローブ部およびショルダー部の表面粗さRaを0.5μmとして軽めの平滑化処理を行なった。
 なお、各実施例および各比較例は、上記の焼結時の昇温速度を1~5℃/分として、1~500Torrの窒素分圧となる雰囲気下で焼結したとともに焼結後は、真空または不活性ガス雰囲気下として、1~30℃/分の冷却速度で冷却したことによって、基材表面部の結合相の基材に対する質量比(Bs/Bi)やTi化合物の基材に対する質量比が異なるように、摩擦攪拌接合用ツールを作製した。
Figure JPOXMLDOC01-appb-T000001
 このようにして作製された実施例1~8の摩擦攪拌接合用ツールは、基材を含み、該基材は、硬質相と、結合相とを含み、基材の表面から20μmを超える領域における結合相の基材に対する質量比Biに対する基材の表面から20μm以下の領域における結合相の基材に対する質量比Bsの比Bs/Biが、0~0.9であった。特に、実施例1~6の摩擦攪拌接合用ツールは、基材の表面から20μm以下の領域におけるTi化合物の基材に対する質量比が、基材の表面から20μmを超える領域におけるTi化合物の基材に対する質量比よりも高いものであった。
 一方、実施例7の摩擦攪拌接合用ツールは、基材の表面から20μm以下の領域におけるTi化合物の基材に対する質量比が、基材の表面から20μmを超える領域におけるTi化合物の基材に対する質量比に比して低いものであった。
 上記で得られた各実施例および各比較例の摩擦攪拌接合用ツールを鏡面研磨し、任意の領域の摩擦攪拌接合用ツールを構成する結晶組織を走査型電子顕微鏡(SEM:Scanning Electron Microscope)を用いて10000倍で写真撮影し、それに付属のEPMAを用いて摩擦攪拌接合用ツールの断面(プローブ部の先端方向に対し垂直な面)中における硬質相の炭化物、炭窒化物、および窒化物、ならびに結合相の成分のマッピングを行なった。そして、上記で撮影された10000倍の写真に対し、成分を確認しながら画像処理ソフトを用いて硬質相の炭化物、炭窒化物、および窒化物、ならびに結合相を識別し、同写真の硬質相の炭化物、炭窒化物、および窒化物、ならびに結合相のそれぞれの合計面積を算出し、その写真中の摩擦攪拌接合用ツールに占める硬質相、結合相のそれぞれの割合の百分率を算出し、それぞれの成分に応じた質量に基づいて質量比を算出した。その結果、上記の各原材料の配合比と、最終的に得られる摩擦攪拌接合用ツールを構成する各組成の質量比とはほぼ同一とみなし得た。
 また、上記で得られた各実施例および各比較例の摩擦攪拌接合用ツールの断面を研磨し、その研磨した面に対し、EPMAによる定量分析を行なうことにより、基材の表面から20μm以下の領域における結合相の基材に対する質量比Bsと、基材の表面から20μmを超える領域における結合相の基材に対する質量比Biとを測定し、これらのBsおよびBiの値に基づいて、Bs/Biを算出した。その結果を表1の「Bs/Bi」の欄に示す。
 また、基材表面部におけるTi化合物と、基材内部におけるTi化合物とをEPMAにより評価し、基材表面部が基材内部に比して、Ti化合物を多く含むか否かを評価した。基材表面部が基材内部に比してTi化合物を多く含む場合は、「Ti化合物の増加」の欄に「あり」と示し、基材表面部が基材内部に比してTi化合物を少ないか、または同等である場合は、「Ti化合物の増加」の欄に「なし」と示した。
 <実施例9>
 実施例2の摩擦攪拌接合用ツールの基材に対し、カソードアークイオンプレーティング法を用いてAl0.6Ti0.35Si0.05Nからなる被覆層を10μmの厚みで被覆した。これにより、図2に示される形状の実施例9の摩擦攪拌接合用ツールを作製した。Al0.6Ti0.35Si0.05Nからなる被覆層は、酸化開始温度が1130℃のものであった。かかる酸化開始温度は、被覆層の重量が増加する温度を、TG/DTA装置(製品名:TG-DTA2020SA(ブルカー株式会社製)で測定することにより得た。
 <実施例10>
 実施例9における被覆層の組成を、Ti0.5Al0.5Nからなる被覆層に代えたことが異なる他は、実施例9と同様の方法によって、実施例10の摩擦攪拌接合用ツールを作製した。Ti0.5Al0.5Nからなる被覆層は、酸化開始温度が970℃のものであった。
 上記の実施例9~10においては、被覆層をカソードアークイオンプレーティング法により形成しているが、たとえばバランスドまたはアンバランスドスパッタリング法によっても被覆層を形成することは可能である。なお、実施例中の被覆層の厚みは、SEMやTEMを用いて、その断面を直接観察することにより測定した。
 <摩擦攪拌接合用ツールの評価>
 上記で作製した各実施例および各比較例の摩擦攪拌接合用ツールのそれぞれについて、下記の表2に示す条件による点接合(スポットFSW)を3000スポット行なった。なお、比較例3においては、1000スポットを接合するまでに欠損が生じたため、5000スポットまで接合をせず途中で中断した。
Figure JPOXMLDOC01-appb-T000002
 上記において、5000スポットの点接合を行なった後、摩擦攪拌接合用ツールを塩酸に浸して10分間加熱しながら、その表面に付着した凝着物を除去し、ノギスを用いて摩擦攪拌接合用ツールのショルダー部およびプローブ部の外径を測定した。このようにして点接合を行なう前後のショルダー部およびプローブ部の外径の差を摩耗量として評価し、表3の「摩耗量(mm)」の欄に示した。摩耗量が少ないものほど、耐摩耗性が優れることを示している。
Figure JPOXMLDOC01-appb-T000003
 また、表3の「バリの高さ」の欄には、接合後に被接合材の表面から最も突出しているバリの高さを示した。バリの高さが小さいほど、接合品質が優れることを示している。
 <摩擦攪拌接合用ツールの評価結果>
 表3から明らかなように、実施例1~7の本発明に係る摩擦攪拌接合用ツールは、比較例1~3のそれに比し、プローブ部およびショルダー部の摩耗量が少ないため、摩擦攪拌接合用ツールの耐摩耗性および耐酸化性が向上していることが明らかとなった。また、実施例1~7の摩擦攪拌接合用ツールは、比較例1~3のそれに比し、バリの高さが低いため、摩擦攪拌接合用ツールの接合品質を向上していることが明らかとなった。
 一方、比較例1の摩擦攪拌接合用ツールは、基材表面部における結合相の基材に対する質量比と、基材内部における結合相の基材に対する質量比とが同等であったため、摩擦攪拌接合用ツールの耐摩耗性および耐酸化性を向上させることができなかった。また、比較例2の摩擦攪拌接合用ツールは、Bs/Biの値が0.95であり、0.9を超えていたため、耐摩耗性および耐酸化性が低く、かつ接合品質が悪いことが明らかとなった。さらに、比較例3の摩擦攪拌接合用ツールは、結合相を構成する材料として鉄族金属ではないAlを用いているため、耐摩耗性および耐酸化性が低く、かつ接合品質が悪いことが明らかとなった。
 また、実施例2の摩擦攪拌接合用ツールは、実施例7のそれに比して、優れた耐摩耗性および接合品質を示すことが明らかとなった。このように実施例2の摩擦攪拌接合用ツールの性能が優れていたのは、実施例2の摩擦攪拌接合用ツールが基材表面部にTi化合物の増加があったのに対し、実施例7の摩擦攪拌接合用ツールは、基材表面部にもTi化合物の増加がなく、代わりにWCが増加したことによるものと考えられる。
 実施例9および10の摩擦攪拌接合用ツールは、実施例2のそれに比して、優れた耐摩耗性および接合品質を示すことが明らかとなった。これは、実施例9および10の摩擦攪拌接合用ツールは、被覆層で表面を被覆したのに対し、実施例2の摩擦攪拌接合用ツールは、表面を被覆層で被覆しなかったことによるものと考えられる。
 実施例9の摩擦攪拌接合用ツールは、実施例10のそれに比して、優れた耐摩耗性を示すことが明らかとなった。このように実施例9の摩擦攪拌接合用ツールの耐摩耗性が優れていたのは、実施例9の摩擦攪拌接合用ツールの被覆層は、その酸化開始温度が1000℃を超えていたことによるものと考えられる。一方、実施例10の摩擦攪拌接合用ツールの被覆層は、その酸化開始温度が1000℃よりも低いため、耐摩耗性が実施例9に比して劣る結果になったものと考えられる。
 以上のように本発明の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせることも当初から予定している。
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 摩擦攪拌接合用ツール、2 円柱部、3 プローブ部、4 基材、5 被覆層。

Claims (8)

  1.  摩擦攪拌接合加工に使用する摩擦攪拌接合用ツール(1)であって、
     前記摩擦攪拌接合用ツール(1)は、基材(4)を含み、
     前記基材(4)は、硬質相と、結合相とを含み、
     前記硬質相は、TiCNを含み、さらにTi、Zr、Hf、V、Nb、Ta、Cr、MoおよびWからなる群より選ばれた一種以上の金属と、窒素、炭素、硼素、および酸素からなる群より選ばれた一種以上の元素とからなる化合物、または該化合物の固溶体を含み、
     前記結合相は、鉄族金属からなり、
     前記基材(4)の表面から20μm以下の領域における前記結合相の基材(4)に対する質量比Bsは、前記基材(4)の表面から20μmを超える領域における前記結合相の基材(4)に対する質量比Biよりも小さい、摩擦攪拌接合用ツール(1)。
  2.  前記Biに対する前記Bsの質量比Bs/Biは、0~0.9である、請求項1に記載の摩擦攪拌接合用ツール(1)。
  3.  前記基材(4)の表面から20μm以下の領域におけるTi化合物の基材(4)に対する質量比は、前記基材(4)の表面から20μmを超える領域におけるTi化合物の基材(4)に対する質量比よりも高い、請求項1に記載の摩擦攪拌接合用ツール(1)。
  4.  前記基材(4)の被接合材と接する部分の表面粗さRaは、0.3μm以下である、請求項1に記載の摩擦攪拌接合用ツール(1)。
  5. 前記摩擦攪拌接合用ツール(1)は、前記基材(4)と、該基材(4)上に形成された被覆層(5)とを備える、請求項1に記載の摩擦攪拌接合用ツール(1)。
  6.  前記被覆層(5)は、1000℃以上の耐酸化性を有する、請求項5に記載の摩擦攪拌接合用ツール(1)。
  7.  前記摩擦攪拌接合用ツール(1)を用いた摩擦攪拌接合加工が、点接合である、請求項1に記載の摩擦攪拌接合用ツール(1)。
  8.  請求項1に記載の摩擦攪拌接合用ツール(1)を用いた被接合材の接合方法であって、
     前記接合は、融点が1000℃以上の被接合材に対して行なう、被接合材の接合方法。
PCT/JP2011/080209 2010-12-28 2011-12-27 回転ツール WO2012091011A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180030276.9A CN102958639B (zh) 2010-12-28 2011-12-27 旋转工具
KR1020127030122A KR101361986B1 (ko) 2010-12-28 2011-12-27 회전 툴
US13/696,876 US20130087604A1 (en) 2010-12-28 2011-12-27 Rotary tool
EP11853889.1A EP2564968A4 (en) 2010-12-28 2011-12-27 Rotation tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-292364 2010-12-28
JP2010292364A JP2012139696A (ja) 2010-12-28 2010-12-28 回転ツール

Publications (1)

Publication Number Publication Date
WO2012091011A1 true WO2012091011A1 (ja) 2012-07-05

Family

ID=46383102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080209 WO2012091011A1 (ja) 2010-12-28 2011-12-27 回転ツール

Country Status (6)

Country Link
US (1) US20130087604A1 (ja)
EP (1) EP2564968A4 (ja)
JP (1) JP2012139696A (ja)
KR (1) KR101361986B1 (ja)
CN (1) CN102958639B (ja)
WO (1) WO2012091011A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2656959A4 (en) * 2010-12-22 2017-07-26 Sumitomo Electric Industries, Ltd. Rotating tool
JP2012130948A (ja) * 2010-12-22 2012-07-12 Sumitomo Electric Ind Ltd 回転ツール
JP2012130947A (ja) * 2010-12-22 2012-07-12 Sumitomo Electric Ind Ltd 回転ツール
US20140299651A1 (en) * 2013-03-12 2014-10-09 Edison Welding Institute Molybdenum-based friction stir welding tools
JP6107630B2 (ja) * 2013-12-11 2017-04-05 トヨタ自動車株式会社 摩擦攪拌接合用ツール
CN103934566B (zh) * 2014-04-29 2016-05-04 长春三友汽车部件制造有限公司 一种提高搅拌摩擦焊接高强铝合金的搅拌头耐磨性的方法
JP6491031B2 (ja) * 2014-06-24 2019-03-27 株式会社神戸製鋼所 積層型硬質皮膜および切削工具
JP6276739B2 (ja) * 2015-10-21 2018-02-07 川崎重工業株式会社 摩擦撹拌点接合装置及び摩擦撹拌点接合方法
CN105525201A (zh) * 2016-03-02 2016-04-27 李逸博 一种汽车导航系统中高精密陀螺仪用气体轴承
EP3498415B1 (en) * 2016-08-09 2022-01-12 Osaka University Friction stir welding tool member and friction stir welding device using same, and friction stir welding method
JP2018030167A (ja) * 2016-08-26 2018-03-01 株式会社山本金属製作所 摩擦攪拌接合用回転ツール
CN111777418B (zh) * 2020-06-11 2022-06-17 中国兵器科学研究院宁波分院 一种搅拌摩擦焊用超硬复合材料搅拌头及制备方法
CN115319085B (zh) * 2022-08-23 2024-03-05 中国科学院金属研究所 基于粉末搅拌摩擦加工制备铜基金刚石复合材料的方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003532542A (ja) 2000-05-08 2003-11-05 ブリガム ヤング ユニバーシティ 高耐摩耗性工具を使用する金属基複合材料、鉄合金、非鉄合金及び超合金の摩擦撹拌接合
JP2003326372A (ja) 2002-05-10 2003-11-18 Nachi Fujikoshi Corp 摩擦攪拌接合用ツール
JP2005152909A (ja) 2003-11-21 2005-06-16 Mitsubishi Heavy Ind Ltd 回転ツール及び摩擦撹拌接合装置及び摩擦撹拌接合方法
JP2005199281A (ja) * 2004-01-13 2005-07-28 Dijet Ind Co Ltd 摩擦攪拌接合用ツール
JP2008133509A (ja) * 2006-11-28 2008-06-12 Kyocera Corp サーメット
JP2009220267A (ja) * 2008-02-18 2009-10-01 Sumitomo Electric Ind Ltd 切削工具
JP2009241085A (ja) * 2008-03-28 2009-10-22 Nippon Steel Corp 接合強度特性に優れたラミネート鋼板の接合方法
JP2010005729A (ja) * 2008-06-26 2010-01-14 Kyocera Corp 表面被覆部材
JP2010520810A (ja) * 2006-08-21 2010-06-17 ハー.ツェー.スタルク リミテッド 摩擦撹拌接合用の高融点金属工具
JP2010194591A (ja) * 2009-02-26 2010-09-09 Kyocera Corp 摩擦攪拌接合用工具および摩擦攪拌接合装置
JP2010264479A (ja) * 2009-05-14 2010-11-25 Osg Corp 摩擦攪拌接合用ツール
JP2010274346A (ja) * 2009-05-27 2010-12-09 Kyocera Corp 切削工具

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6776328B2 (en) * 2002-09-17 2004-08-17 The Boeing Company Radiation assisted friction welding
JP5004145B2 (ja) * 2004-06-09 2012-08-22 株式会社タンガロイ サーメットおよび被覆サーメット並びにそれらの製造方法
US7857188B2 (en) * 2005-03-15 2010-12-28 Worldwide Strategy Holding Limited High-performance friction stir welding tools
CN101415518A (zh) * 2006-01-31 2009-04-22 杰出金属实业公司 高性能搅拌摩擦焊工具
BRPI0707371A2 (pt) * 2006-01-31 2011-05-03 Genius Metal Inc ferramentas de solda de agitação por atrito com alto desempenho
JP5055814B2 (ja) * 2006-04-13 2012-10-24 マツダ株式会社 接合方法及び接合装置
AT506133B1 (de) * 2007-11-16 2009-11-15 Boehlerit Gmbh & Co Kg Reibrührschweisswerkzeug
US8361178B2 (en) * 2008-04-21 2013-01-29 Smith International, Inc. Tungsten rhenium compounds and composites and methods for forming the same
EP2514552A4 (en) * 2009-12-17 2017-04-05 Sumitomo Electric Industries, Ltd. Coated rotary tool

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003532542A (ja) 2000-05-08 2003-11-05 ブリガム ヤング ユニバーシティ 高耐摩耗性工具を使用する金属基複合材料、鉄合金、非鉄合金及び超合金の摩擦撹拌接合
JP2003326372A (ja) 2002-05-10 2003-11-18 Nachi Fujikoshi Corp 摩擦攪拌接合用ツール
JP2005152909A (ja) 2003-11-21 2005-06-16 Mitsubishi Heavy Ind Ltd 回転ツール及び摩擦撹拌接合装置及び摩擦撹拌接合方法
JP2005199281A (ja) * 2004-01-13 2005-07-28 Dijet Ind Co Ltd 摩擦攪拌接合用ツール
JP2010520810A (ja) * 2006-08-21 2010-06-17 ハー.ツェー.スタルク リミテッド 摩擦撹拌接合用の高融点金属工具
JP2008133509A (ja) * 2006-11-28 2008-06-12 Kyocera Corp サーメット
JP2009220267A (ja) * 2008-02-18 2009-10-01 Sumitomo Electric Ind Ltd 切削工具
JP2009241085A (ja) * 2008-03-28 2009-10-22 Nippon Steel Corp 接合強度特性に優れたラミネート鋼板の接合方法
JP2010005729A (ja) * 2008-06-26 2010-01-14 Kyocera Corp 表面被覆部材
JP2010194591A (ja) * 2009-02-26 2010-09-09 Kyocera Corp 摩擦攪拌接合用工具および摩擦攪拌接合装置
JP2010264479A (ja) * 2009-05-14 2010-11-25 Osg Corp 摩擦攪拌接合用ツール
JP2010274346A (ja) * 2009-05-27 2010-12-09 Kyocera Corp 切削工具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2564968A4

Also Published As

Publication number Publication date
US20130087604A1 (en) 2013-04-11
CN102958639A (zh) 2013-03-06
EP2564968A1 (en) 2013-03-06
CN102958639B (zh) 2015-06-24
KR20130027514A (ko) 2013-03-15
JP2012139696A (ja) 2012-07-26
EP2564968A4 (en) 2017-08-16
KR101361986B1 (ko) 2014-02-11

Similar Documents

Publication Publication Date Title
WO2012091011A1 (ja) 回転ツール
US8936186B2 (en) Rotary tool
WO2012086490A1 (ja) 回転ツール
WO2011074530A1 (ja) 被覆回転ツール
WO2012086489A1 (ja) 回転ツール
WO2012172895A1 (ja) 被覆回転ツール
JP6064987B2 (ja) 被覆回転ツールおよびその製造方法
JP2018070987A (ja) 硬質材料および摩擦撹拌接合用ツール
JP5853543B2 (ja) 被覆回転ツール
JP2012139695A (ja) 被覆回転ツール
JP2015107525A (ja) 回転ツール
JP6036795B2 (ja) 回転ツール
JP2015131347A (ja) 回転ツール
JP2012139694A (ja) 被覆回転ツール
JP5708105B2 (ja) 回転ツール
JP6039004B2 (ja) 回転ツール
JP2012166219A (ja) 回転ツール
JP6193651B2 (ja) 抵抗溶接用電極
JP2016055350A (ja) 被覆回転ツール
JP2012166220A (ja) 回転ツール
JP2018069328A (ja) 摩擦撹拌接合用ツール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180030276.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853889

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 9487/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13696876

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127030122

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011853889

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE