WO2012090979A1 - 複合酸化物触媒及びその製造方法 - Google Patents

複合酸化物触媒及びその製造方法 Download PDF

Info

Publication number
WO2012090979A1
WO2012090979A1 PCT/JP2011/080152 JP2011080152W WO2012090979A1 WO 2012090979 A1 WO2012090979 A1 WO 2012090979A1 JP 2011080152 W JP2011080152 W JP 2011080152W WO 2012090979 A1 WO2012090979 A1 WO 2012090979A1
Authority
WO
WIPO (PCT)
Prior art keywords
dry powder
firing
composite oxide
catalyst
temperature
Prior art date
Application number
PCT/JP2011/080152
Other languages
English (en)
French (fr)
Inventor
悠輔 石井
加藤 高明
Original Assignee
旭化成ケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成ケミカルズ株式会社 filed Critical 旭化成ケミカルズ株式会社
Priority to JP2012550956A priority Critical patent/JP5694379B2/ja
Priority to CN2011800613857A priority patent/CN103269790A/zh
Priority to KR1020137015613A priority patent/KR101506828B1/ko
Priority to US13/992,031 priority patent/US9855546B2/en
Priority to RU2013128139/04A priority patent/RU2562606C2/ru
Priority to EP11853903.0A priority patent/EP2659965A4/en
Publication of WO2012090979A1 publication Critical patent/WO2012090979A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/24Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/06Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms of an acyclic and unsaturated carbon skeleton
    • C07C255/07Mononitriles
    • C07C255/08Acrylonitrile; Methacrylonitrile
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/215Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of saturated hydrocarbyl groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a composite oxide catalyst used for gas phase catalytic oxidation or gas phase catalytic ammoxidation reaction of propane or isobutane, a method for producing the same, and a method for producing an unsaturated acid or unsaturated nitrile using the composite oxide catalyst.
  • the ammoxidation catalyst is generally a metal oxide obtained by mixing, drying and calcining molybdenum, vanadium, antimony, niobium or the like as required. Since the composition of the metal contained in the metal oxide directly affects the catalyst performance, various composition ratios have been studied. Furthermore, in recent years, it has been found that physical properties of metal oxides that are not expressed only by the composition ratio can also affect the catalyst performance. For example, Patent Document 1 describes a metal oxide containing molybdenum, vanadium, antimony and niobium, having a reduction rate of 8 to 12% and a specific surface area of 5 to 30 m 2 / g.
  • Patent Document 2 describes that a substance that inhibits the protruding fluidity is generated on the surface of the ammoxidation catalyst. According to Patent Document 2, it is said that an unsaturated acid and an unsaturated nitrile can be produced while maintaining the target product yield by removing this substance from the catalyst surface.
  • an object of the present invention is a composite oxide catalyst used for gas phase catalytic oxidation or gas phase catalytic ammoxidation reaction of propane or isobutane, and after undergoing a step of removing protrusions present on the particle surface, It is an object of the present invention to provide a composite oxide catalyst in which the constituent metal has an appropriate composition ratio and a method for producing the same.
  • V / Sb is a composition ratio of vanadium and antimony among the composition of the composite oxide, and vanadium and niobium. It has been found that the composition ratio V / Nb is greatly affected. And it discovered that the catalyst containing the complex oxide which has a suitable metal composition ratio was obtained by optimizing a preparation composition in a raw material preparation stage, and reached
  • a composite oxide catalyst used for a gas phase catalytic oxidation reaction or a gas phase catalytic ammoxidation reaction of propane or isobutane comprising a composite oxide represented by the following composition formula (1).
  • component Z represents at least one element selected from La, Ce, Pr, Yb, Y, Sc, Sr, and Ba, and a, b, c, d, e, and n are each Mo1.
  • composition formula (1) Mo 1 V a Sb b Nb c W d Z e O n ⁇ (1)
  • component Z represents at least one element selected from La, Ce, Pr, Yb, Y, Sc, Sr, and Ba, and a, b, c, d, e, and n are each Mo1.
  • a method for producing a composite oxide catalyst containing a composite oxide comprising the following steps (I) to (V): (I) containing Mo, V, Sb, Nb, W, and Z, atomic ratio a of V to Mo1 atom, atomic ratio b of Sb, atomic ratio c of Nb, atomic ratio d of W, atomic ratio of Z e is 0.1 ⁇ a ⁇ 0.5, 0.1 ⁇ b ⁇ 0.5, 0.01 ⁇ c ⁇ 0.5, 0 ⁇ d ⁇
  • a step of preparing a raw material preparation liquid (II) drying the raw material preparation liquid to obtain a dry powder; (III) a step of pre-baking the dry powder to obtain a pre-fired body, (IV) main firing the pre-stage fired body to obtain a fired body having protrusions on the particle surface, and (V) removing the protrusions present on the particle surface of the fired body by airflow,
  • the production method wherein the reduction rate of the pre-stage calcined product is 8 to 12%, and the specific surface area of the calcined product is 7 to 20 m 2 / g.
  • the step (I) includes the following steps (a) to (d): (A) preparing an aqueous mixture containing Mo, V, Sb and component Z; (B) a step of adding silica sol and hydrogen peroxide solution to the aqueous mixture obtained in the step (a), (C) mixing the solution obtained in the step (b) with an aqueous solution containing Nb, dicarboxylic acid and hydrogen peroxide and a W compound; and (d) obtaining the step (c).
  • the (III) pre-stage firing step and / or the (IV) main firing step is the following steps (i) and (ii): (I) a step of giving an impact to a calciner in which the pre-stage calcined body and / or the calcined body is baked, and (ii) the pre-stage calcined body and / or the calcined body at a temperature lower than a calcination temperature in the main calcination.
  • the present invention it is possible to provide a composite oxide catalyst in which the constituent metal composition ratio is optimized. Since the metal composition ratio of the composite oxide catalyst of the present invention is optimized, it exhibits good catalyst performance.
  • FIG. 2 shows an XX cross section of the protrusion removing device of FIG.
  • An example of the branched chain in the protrusion removal apparatus of this embodiment is shown.
  • An example of the protrusion removal apparatus of this embodiment is shown roughly.
  • An example of the protrusion removal apparatus of this embodiment is shown roughly.
  • An example of the protrusion removal apparatus of this embodiment is shown roughly.
  • An example of the protrusion removal apparatus of this embodiment is shown roughly.
  • An example of the protrusion removal apparatus of this embodiment is shown roughly.
  • An example of the protrusion removal apparatus of this embodiment is shown roughly.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • this invention is not limited to the following embodiment, It can implement in various deformation
  • the same elements are denoted by the same reference numerals, and redundant description is omitted.
  • the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified.
  • the dimensional ratios of the devices and members are not limited to the illustrated ratios.
  • the composite oxide catalyst of the present embodiment is A composite oxide catalyst used for a gas phase catalytic oxidation reaction or a gas phase catalytic ammoxidation reaction of propane or isobutane, which is a catalyst containing a composite oxide represented by the following composition formula (1).
  • component Z represents at least one element selected from La, Ce, Pr, Yb, Y, Sc, Sr, and Ba
  • a, b, c, d, e, and n are each Mo1.
  • the atomic ratio of each element to the atom is shown, and 0.1 ⁇ a ⁇ 0.4, 0.1 ⁇ b ⁇ 0.4, 0.01 ⁇ c ⁇ 0.3, 0 ⁇ d ⁇ 0.2, 0 ⁇ e ⁇ 0.1, and the atomic ratios a / b and a / c are 0.85 ⁇ a / b ⁇ 1.0 and 1.4 ⁇ a / c ⁇ 2.3.
  • the method for producing the composite oxide catalyst of the present embodiment is not particularly limited, but it is preferably produced by a method including the following steps (I) to (V).
  • (I) containing Mo, V, Sb, Nb, W, and Z, atomic ratio a of V to Mo1 atom, atomic ratio b of Sb, atomic ratio c of Nb, atomic ratio d of W, atomic ratio of Z e is 0.1 ⁇ a ⁇ 0.5, 0.1 ⁇ b ⁇ 0.5, 0.01 ⁇ c ⁇ 0.5, 0 ⁇ d ⁇ 0.4, and 0 ⁇ e ⁇ 0.2, respectively.
  • a step of preparing a raw material preparation liquid (II) drying the raw material preparation liquid to obtain a dry powder; (III) A step of pre-firing the dried powder to obtain a pre-fired body, and (IV) A step of obtaining a fired body having a protrusion on the particle surface by subjecting the pre-fired body to main firing (V) the fired body.
  • the reduction ratio of the pre-stage fired body is 8 to 12%, and the specific surface area of the fired body is 7 to 20 m 2 / g.
  • Step (I) contains Mo, V, Sb, Nb, W, and Z, the atomic ratio a of V to the Mo1 atom, the atomic ratio b of Sb, the atomic ratio c of Nb, and the atomic ratio d of Z, W Atomic ratios e of 0.1 ⁇ a ⁇ 0.5, 0.1 ⁇ b ⁇ 0.5, 0.01 ⁇ c ⁇ 0.5, 0 ⁇ d ⁇ 0.4, and 0 ⁇ e ⁇ , respectively. It is a process of preparing the raw material preparation liquid which is 0.2. In the present specification, “preparation” and “preparation” are synonymous with each other.
  • the constituent elements of the composite oxide catalyst are dissolved or dispersed in a solvent and / or dispersion medium at a specific ratio to obtain a raw material preparation liquid.
  • An aqueous medium is preferable as the solvent of the raw material preparation liquid, and water can be usually used.
  • the raw material preparation liquid contains Mo, V, Sb, Nb, W, and Z (Z represents at least one element selected from La, Ce, Pr, Yb, Y, Sc, Sr, and Ba).
  • a salt or a compound containing a constituent element of the composite oxide catalyst can be used as a raw material of the raw material preparation liquid.
  • the atomic ratio a of V to Mo1 atom, the atomic ratio b of Sb, the atomic ratio c of Nb, the atomic ratio d of W, and the atomic ratio e of Z are 0.1 ⁇ a ⁇ 0. 5
  • the raw material preparation liquid is prepared so that 0.1 ⁇ b ⁇ 0.5, 0.01 ⁇ c ⁇ 0.5, 0 ⁇ d ⁇ 0.4, and 0 ⁇ e ⁇ 0.2.
  • This composition ratio is set to a value different from the composition ratio of the finally obtained composite oxide catalyst.
  • the protrusions of the catalyst described later have a composition different from that of the catalyst main body, and by removing this from the main body, the composition ratio of the entire catalyst deviates from the composition ratio in the raw material preparation step. is there.
  • the “projection” refers to a material that has exuded and / or adhered to the surface of the fired body obtained by the main firing described later, and refers to an object that protrudes from or adheres to the surface of the fired body.
  • most of the protrusions are protruding oxide crystals and other impurities.
  • an oxide having a composition different from that of a crystal that forms most of the fired body may be formed in a shape that exudes from the fired body body.
  • the protrusions are often formed in the shape of a plurality of protrusions (for example, a height of 0.1 ⁇ m to 20 ⁇ m) on the surface of a sphere-like fired body (for example, a diameter of 30 to 150 ⁇ m). The composition of the protrusion and the removal process will be described in detail later.
  • ammonium heptamolybdate (NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O]
  • molybdenum trioxide MoO 3
  • phosphomolybdic acid H 3 PMo 12 O 40
  • silicomolybdic acid H 4 SiMo 12 O 40
  • molybdenum pentachloride MoCl 5
  • ammonium heptamolybdate (NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O] is particularly preferable.
  • ammonium metavanadate [NH 4 VO 3 ] vanadium pentoxide [V 2 O 5 ], vanadium chloride [VCl 4 , VCl 3 ] or the like can be used, and in particular, ammonium metavanadate [NH 4 VO]. 3 ] is preferred.
  • niobic acid As a raw material of Nb, niobic acid, an inorganic acid salt of niobium and an organic acid salt of niobium can be used, and niobic acid is particularly preferable.
  • Niobic acid is represented by Nb 2 O 5 .nH 2 O and is also referred to as niobium hydroxide or niobium oxide hydrate.
  • the Nb raw material is preferably used in the form of an Nb raw material liquid having a dicarboxylic acid / niobium molar ratio of 1 to 4, and oxalic acid is preferred as the dicarboxylic acid.
  • the raw materials for W include ammonium salt, nitrate, carboxylate, ammonium carboxylate, peroxocarboxylate, ammonium peroxocarboxylate, ammonium halide salt, halide, acetylacetonate, alkoxide, triphenyl compound, poly Tungsten salts such as oxometalate, polyoxometalate ammonium salt, tungsten trioxide, tungsten dioxide, tungstic acid, ammonium metatungstate aqueous solution, ammonium paratungstate, silicotungstic acid, silictungsto molybdic acid, silicotungstic acid, etc. Among them, an aqueous solution of ammonium metatungstate is preferable.
  • the raw material of Z (at least one element selected from La, Ce, Pr, Yb, Y, Sc, Sr, Ba) is not particularly limited as long as it is a substance containing these elements, and these elements are not limited. It is possible to use compounds containing these compounds, or those obtained by solubilizing the metals of these elements with an appropriate reagent.
  • the compounds containing these elements are usually ammonium salts, nitrates, carboxylates, ammonium carboxylates, peroxocarboxylates, ammonium peroxocarboxylates, ammonium halides, halides, acetylacetonates, alkoxides, etc.
  • water-soluble raw materials such as nitrates and carboxylates are used.
  • raw materials there are no particular limitations on the procedure for dissolving, mixing or dispersing the raw materials for the catalyst constituent elements.
  • the raw materials may be dissolved, mixed or dispersed in the same aqueous medium, or the aqueous medium may be mixed after the raw materials are individually dissolved, mixed or dispersed in the aqueous medium.
  • you may heat and / or stir as needed.
  • the component Z is uniformly distributed in the catalyst particles, and the catalyst is preferably in such a state.
  • “uniform” means that there is no bias in the distribution of component Z in the catalyst particles.
  • 80% or more (mass ratio) of the oxide particles containing component Z is present in the catalyst particles as fine particles having a particle size of 1 ⁇ m or less.
  • “homogeneous” means that the dispersion value of the signal intensity ratio between the component Z and Si (when the composition of the cross section of the catalyst particle is analyzed) ( The value obtained by dividing the standard deviation by the average value) is in the range of 0 to 0.5.
  • the dispersion value is indicated by “Dx”.
  • EPMA a general composition analysis method such as SEM-EDX, XPS, SIMS, EPMA or the like can be used.
  • EPMA is a common name of Electron Probe X-ray Microanalyzer (sometimes called by omitting this X-ray), and this analyzer irradiates a substance with an accelerated electron beam. By observing characteristic X-rays obtained in this way, the apparatus can perform composition analysis of a minute region (spot) irradiated with an electron beam.
  • This EPMA generally provides information on the concentration distribution and composition change of a specific element with respect to the cross section of solid particles such as catalyst particles and carrier particles.
  • the dispersion value (Dx) of the intensity ratio of the component Z and Si by the above-mentioned EPMA is as follows according to the surface analysis method by EPMA of the particle cross section performed in the normal catalyst field for the cross section of the particle to be measured. Measured and calculated. That is, first, the distribution of the X-ray peak intensity (count number ISi) of Si at an arbitrary position (x, y) in the catalyst particle cross section is measured so as to cover the entire area of the catalyst particle cross section. Next, similarly, the distribution of the X-ray peak intensity (count number IX) is also measured for the component Z so as to cover the entire region of the catalyst particle cross section.
  • IR peak intensity ratio
  • Dx dispersion value
  • catalyst composite oxide catalyst
  • the area corresponding to 10% of the cross sectional area in the cross section of the catalyst particle and excluding the area corresponding to the outer peripheral portion of the particle is excluded. It is preferable to calculate data in an area 90% from the center as an effective area.
  • the inside of the cross section of the catalyst particle excluding the region corresponding to 10% of the outer periphery of the particle may be subjected to the above surface analysis by EPMA, and the dispersion value Dx may be obtained from the data.
  • the particles to be measured are embedded in a suitable matrix resin, polished, and the whole is shaved until a cross section of the embedded catalyst particles is visible.
  • EPMA measurement is performed on the catalyst particles whose cross section is visible as follows. (1) The position of the sample is set so that the cross section of the catalyst particle comes within the observation field of view in EPMA measurement. (2) The cross section of the catalyst particles is irradiated with an electron beam, the intensity of the characteristic X-rays of Si or component Z coming out from the portion irradiated with the electron beam is counted, and the surface to be analyzed is scanned with the electron beam. Perform analysis.
  • the composite oxide catalyst in the present embodiment is a silica-containing catalyst, preferably a silica-supported catalyst supported on silica
  • Silica sol can be used as the silica raw material, but powdered silica can also be used for a part or all of the silica raw material.
  • the content of silica contained in the catalyst preferably the content of carrier silica, is 20% by mass from the viewpoint of improving the strength of the catalyst with respect to the total mass of the catalyst containing the composite oxide and silica in terms of SiO 2. From the viewpoint of imparting sufficient activity, it is preferably 70% by mass or less. The content thereof is more preferably 40 to 65% by mass with respect to the total mass of the catalyst.
  • the silica sol preferably contains nitrate ions of 10 to 270 wtppm, more preferably 10 to 270 wtppm, with respect to the mass of SiO 2 in the silica sol.
  • the factor is not limited to this. That is, the aggregation state of the silica sol can be appropriately adjusted by adjusting the nitrate ion concentration in the silica sol, which is the silica carrier raw material, to a specific range.
  • silica sol as a carrier raw material, a yield of the target product is improved and a silica-supported catalyst having excellent physical strength can be obtained.
  • the nitrate ion concentration relative to the silica in the silica sol can be determined by ion chromatography.
  • the measurement apparatus and measurement conditions are shown below.
  • a measuring device a device manufactured by Tosoh Corporation (trade name “IC-2001”) can be used.
  • the column uses TSKgel superIC-AZ (trade name) and TSKguardcolumn superIC-AZ (trade name) as the guard column.
  • TSKsuppress A (trade name) is used as the suppressor valve cleaning solution, and the eluent is a mixture of 1.9 mmol / L NaHCO 3 aqueous solution and 3.2 mmol / LNa 2 CO 3 aqueous solution.
  • the flow rate at that time is 0.8 mL / min.
  • Industrial production methods of silica sol include (1) dialysis after water glass neutralization, (2) electrodialysis, (3) dissolution of metal silicon in ammonia or amine solution, (4) peptization of silica gel, (5) There is a method of removing Na from water glass with an ion exchange resin. Among them, the most common method for producing silica sol is (5) a method using an ion exchange resin (ion exchange resin method).
  • the silica sol produced by the ion exchange resin method LiOH, NaOH, KOH or the like is added as a stabilizer in order to enhance the stability under high concentration. Therefore, generally, the stable pH range of silica sol is about 8-10.
  • the silica particles in the sol need to repel each other.
  • a stabilizer is added to adsorb OH 2 ⁇ on the surface of the silica particles to exhibit a stabilizing effect due to negative charges, thereby preventing gelation.
  • silica sol for example, in the Snowtex series of Nissan Chemical Industry Co., Ltd., Snowtex 30 having a silica sol concentration of 30%, Snowtex C used for applications that may cause gelation, volatile weak base SNOWTEX N, which is intended to prevent alkali residue from being used as a stabilizer, and SNOWTEX O suitable for applications that require use in an acidic environment (Reference: Catalyst Engineering Course 10). Catalyst handbook by element (issued February 25, 1967).
  • the surface of the silica particles of the silica sol obtained by the above-mentioned production method it is classified into an acidic type and an alkaline type.
  • any type there are almost no nitrate ions in the silica sol.
  • hydrogen ions are mainly used as a stabilizer
  • sodium ions or ammonium ions are used as a stabilizer.
  • acidic type counter anion SO 4 2 ⁇ , Cl ⁇ and the like are used
  • OH ⁇ is generally used.
  • silica sol in which the mass ratio of nitrate ions is 10 to 270 wtppm with respect to the mass of silica, water glass, which is a general silica sol manufacturing method, is used.
  • nitrate such as nitric acid or ammonium nitrate to adjust the amount of nitrate ions relative to silica to 10 to 270 wtppm.
  • anions and nitrate ions in the aqueous water glass solution may be exchanged by ion exchange.
  • the amount of nitrate ions may be adjusted by adding nitrate ions to a ready-made silica sol with a dropper or the like.
  • the nitric acid source may be nitric acid or a salt such as ammonium nitrate.
  • the primary particles of the silica sol are generally spherical, but a non-spherical silica sol or a sol in which spheres are connected in a bead shape may be used.
  • the raw material of the silica carrier may be only silica sol, but a part of it can be replaced with powder silica.
  • powder silica as a raw material for the silica carrier, effects such as improvement in catalyst activity and / or yield of the target product can be expected.
  • the wear resistance of the catalyst Remarkably low.
  • the term “powdered silica” refers to solid SiO 2 fine particles. If the primary particle size of the powder silica is too large, the resulting catalyst tends to become brittle, and therefore nanometer-sized powder silica is preferred.
  • the powder silica is preferably produced by a high heat method.
  • preferable powdered silica examples include Aerosil 200 (trade name) manufactured by Nippon Aerosil Co., Ltd.
  • the powder silica is preferably dispersed in water in advance.
  • the method for dispersing the powdered silica in water is not particularly limited, and it can be dispersed using a general homogenizer, homomixer, ultrasonic vibrator, or the like alone or in combination.
  • the primary shape of the powdered silica at this time may be a sphere or a non-sphere.
  • silica sol and powdered silica are used in combination as raw materials for the silica carrier, it is preferable that 20 to 70% by mass of the total amount of silica sol and powdered silica be powdered silica. If the powder silica exceeds 70% by mass, the wear resistance of the catalyst tends to be low, and if it is less than 20% by mass, the catalyst activity and / or the yield of the target product tends to be low. In addition, the powder silica does not need to contain nitrate ions.
  • the concentration of nitrate ions in the silica sol (the mass ratio of nitrate ions to the mass of silica) is adjusted to 10 to 270 wtppm with respect to SiO 2 for the purpose of increasing the yield and / or physical strength of the target product. There is no need to adjust nitrate ions contained in the powder silica.
  • the raw material preparation step is an example of preparing a raw material preparation solution of a silica-supported catalyst containing Mo compound, V compound, Sb compound, Nb compound, W compound and Z compound using water as a solvent and / or dispersion medium.
  • the raw material preparation step is not limited to this.
  • an aqueous mixed solution containing Mo, V, Sb and component Z is prepared. More specifically, the Mo compound, V compound, Sb compound, and component Z compound are added to water and heated to prepare an aqueous mixture (A).
  • the heating temperature and heating time during preparation of the aqueous mixture (A) are preferably adjusted so that the raw material compound can be sufficiently dissolved.
  • the heating temperature is preferably 70 ° C.
  • the heating time is preferably Is 30 minutes to 5 hours.
  • the number of rotations of stirring during heating can be adjusted to an appropriate number of rotations in which the raw material is easily dissolved.
  • the raw material is a metal salt
  • the inside of the container may be an air atmosphere, but from the viewpoint of adjusting the oxidation number of the obtained composite oxide catalyst, a nitrogen atmosphere can also be used.
  • the state after the heating of the aqueous mixture (A) is referred to as an aqueous mixture (A ′).
  • the temperature of the aqueous mixed solution (A ′) is preferably maintained at 20 ° C. or higher and 80 ° C.
  • the temperature of the aqueous mixed solution (A ′) is less than 20 ° C., the metal species dissolved in the aqueous mixed solution (A ′) may be precipitated.
  • silica sol is added to the aqueous mixed solution (A) or the aqueous mixed solution (A ′) after the heating is completed.
  • Silica sol functions as a carrier.
  • the temperature when adding the silica sol is preferably 80 ° C. or less.
  • silica sol is added at a temperature exceeding 80 ° C., the stability of the silica sol becomes weak and the raw material preparation liquid may be gelled.
  • the timing of adding the silica sol may be at the start of ripening described later, during ripening, or just before drying the raw material mixture. However, it is preferable to add silica sol to the aqueous mixed solution (A ′).
  • the amount of hydrogen peroxide added is preferably 0.01 to 5 as H 2 O 2 / Sb (molar ratio). More preferably, it is 0.5 to 3, particularly preferably 1 to 2.5.
  • the temperature is preferably 30 ° C. to 70 ° C., and the heating time is preferably 5 minutes to 4 hours.
  • the rotation speed of the stirring at the time of heating can be adjusted to an appropriate rotation speed at which the liquid-phase oxidation reaction with the hydrogen peroxide solution easily proceeds. From the viewpoint of sufficiently proceeding the liquid phase oxidation reaction with hydrogen peroxide, it is preferable to keep the stirring state during heating.
  • the aqueous mixture thus prepared is referred to as (A ′′).
  • the Nb compound and dicarboxylic acid are heated and stirred in water to prepare a mixed solution (B 0 ).
  • the dicarboxylic acid include oxalic acid [(COOH) 2 ].
  • H 2 O 2 / Nb (molar ratio) is formed by forming a complex with the Nb compound and stabilizing it in a dissolved state, appropriately adjusting the redox state of the catalyst constituent elements, and the resulting catalyst From the viewpoint of making the catalyst performance of the catalyst appropriate, it is preferably 0.5 to 20, and more preferably 1 to 10.
  • an aqueous mixed solution (A ′′), an aqueous mixed solution (C), a W compound, and powdered silica are suitably mixed according to the target composition to obtain an aqueous mixed solution (D).
  • the obtained aqueous mixed liquid (D) is subjected to aging treatment to obtain a raw material preparation liquid.
  • the powder silica used here is added to the solution obtained by mixing the aqueous mixed solution (A ′′), the aqueous mixed solution (C) and the W compound, thereby making the catalyst performance of the resulting catalyst appropriate. It is preferable from the viewpoint.
  • Powdered silica can be added as it is, but more preferably, it is preferably added as a liquid in which powdered silica is dispersed in water, that is, a powdered silica-containing suspension.
  • the concentration of powder silica in the suspension containing powder silica is preferably 1 to 30% by mass, more preferably 3 to 20% by mass.
  • the concentration of the powder silica is less than 1% by mass, the viscosity of the slurry is too low, and the resulting particle shape may be distorted, and the catalyst particles may be easily dented. .
  • the aging of the aqueous mixture (D) means that the aqueous mixture (D) is allowed to stand for a predetermined time or is stirred.
  • the aging time is preferably 90 minutes to 50 hours, more preferably 90 minutes to 6 hours.
  • the aqueous mixed liquid (D) having a suitable redox state (potential) is hardly formed, and the catalytic performance of the resulting composite oxide tends to be lowered.
  • the processing speed of the spray dryer is usually limited, and after a part of the aqueous mixture (D) is spray-dried, It takes time to finish the spray drying of all the mixed solutions.
  • the aging time includes not only the aging time before drying in step (II) described later but also the time from the start to the end of drying.
  • the aging temperature is preferably 25 ° C. or higher from the viewpoint of preventing condensation of the Mo component and precipitation of metal oxides due to V and other metal species or a plurality of metals. Further, the aging temperature is preferably 65 ° C. or less from the viewpoint of preventing hydrolysis of the complex containing Nb and hydrogen peroxide from occurring excessively and forming a slurry in a preferable form. From the above viewpoint, the aging temperature is preferably 25 ° C. or more and 65 ° C. or less, and more preferably 30 ° C. or more and 60 ° C. or less.
  • the atmosphere in the container at the time of aging has a sufficient oxygen concentration. If the oxygen concentration is not sufficient, a substantial change in the aqueous mixture (D) may not easily occur. More specifically, the gas phase oxygen concentration in the container is preferably 1 vol% or more, and can be aged in an air atmosphere, for example.
  • the gas phase oxygen concentration can be measured by a general measurement method, for example, a measurement method using a zirconia oxygen analyzer.
  • the place where the gas phase oxygen concentration is measured is preferably near the interface between the aqueous mixture (D) and the gas phase. For example, it is preferable to measure the gas-phase oxygen concentration at the same point three times within 1 minute, and use the average value of the three measurement results as the gas-phase oxygen concentration.
  • the diluent gas for reducing the gas phase oxygen concentration is not particularly limited, and examples thereof include nitrogen, helium, argon, carbon dioxide, and water vapor. Industrially, nitrogen is preferable.
  • the gas for increasing the gas phase oxygen concentration is preferably pure oxygen or air with a high oxygen concentration.
  • the potential 600 mV / AgCl of the aqueous mixture (C) is dominant with respect to the redox potential of the aqueous mixture (D).
  • the redox potential of the aqueous mixture (D) is preferably 450 to 530 mV / AgCl, more preferably 470 to 510 mV / AgCl.
  • the oxygen concentration during aging is preferably 1 vol% or more.
  • the oxygen concentration during aging is 25 vol% or less from the viewpoint of preventing the raw material preparation liquid from being overoxidized due to excessive progress of the oxidation-reduction reaction.
  • the range is preferably 5 to 23 vol%, more preferably 10 to 22 vol%.
  • a multistage blade for stirring during ripening, for example, a multistage blade, an anchor blade, a spiral shaft blade, a spiral belt blade, or the like can be used as a general stirring blade, a stirring blade, or the like.
  • a stirring blade for low viscosity liquids a propeller, a disk turbine, a fan turbine, a curved blade fan turbine, an arrow blade turbine, an angled blade turbine, etc. can be used, for example.
  • the power (hereinafter referred to as “Pv”) applied to the raw material preparation liquid per unit volume from the stirring blade of the stirring device is preferably 0.005 to 300 kW / m 3 . More preferably 0.01 to 280 kW / m 3 , still more preferably 0.1 to 250 kW / m 3 .
  • the raw material preparation liquid is stirred with a stirring power of less than 0.005 kW / m 3 , the raw material preparation liquid is gelled, and it becomes difficult to obtain a dry powder by clogging in the pipe, and the catalyst performance is lowered.
  • This Pv value is represented by the following formula (A), and can be controlled by adjusting the liquid density, the raw material preparation liquid amount, the rotational speed of the stirring blade, and the like.
  • Np power number ( ⁇ ) which is a dimensionless number related to power required for stirring
  • liquid density (kg / m 3 )
  • n rotation speed of stirring blade (s ⁇ 1 )
  • d stirring blade Diameter (m)
  • V Raw material preparation liquid amount (m 3 )
  • the Np value can be calculated using the following calculation formula (B1).
  • b represents the width (m) of the stirring blade
  • d represents the stirring blade diameter (m)
  • D represents the stirring tank diameter (m)
  • Z represents the liquid depth (m)
  • represents the stirring blade diameter. Indicates the tilt angle (°) from the horizontal.
  • the viscosity at room temperature (25 ° C.) of the obtained raw material preparation liquid prevents the raw material preparation liquid from gelling, obstructing the inside of the piping and making it difficult to obtain a dry powder, and further, the catalyst performance is improved.
  • the catalyst performance is improved from the viewpoint of suppressing the decrease, and from the viewpoint of suppressing the formation of dents in the catalyst particles after spray drying or the deformation of the catalyst particles into a distorted particle shape, etc., preferably 1 to 100 cp, more preferably 2 to 90 cp, More preferably, it is 2.5 to 80 cp.
  • the viscosity of the raw material preparation liquid can be measured by, for example, a method of measuring using a commercially available viscometer or a method of measuring a pressure loss in a pipe through which the raw material preparation liquid is circulated.
  • a method of measuring using a commercially available viscometer or a method of measuring a pressure loss in a pipe through which the raw material preparation liquid is circulated.
  • the viscosity may gradually change when measured using a commercially available viscometer. Therefore, from the viewpoint of the reproducibility of the measured value, it is preferable to measure the viscosity by a method of measuring the pressure loss in the pipe through which the raw material preparation liquid is circulated.
  • the liquid viscosity can be calculated by the following calculation formula (C1).
  • liquid viscosity (cp)
  • ⁇ P pressure loss in the pipe (mmH 2 O)
  • u liquid flow average speed (m / s)
  • L pipe length (m)
  • D pipe diameter (m)
  • the upper limit of each Pv when each raw material liquid is prepared is not particularly limited.
  • the lower limit of Pv is not particularly limited, but it may be set to a Pv value or higher so that all or most of the solid particles flow away from the tank bottom of the apparatus for obtaining the raw material liquid. preferable.
  • stirring may be stopped after substantially all the solid particles in each raw material liquid are dissolved.
  • an acid and / or alkali may be added to the raw material preparation liquid as necessary.
  • the composite oxide catalyst is a silica-supported catalyst, from the viewpoint of sufficiently dissolving and / or dispersing the compound containing the catalyst constituent element, from the viewpoint of appropriately adjusting the oxidation-reduction state of the catalyst constituent element, the resulting catalyst particle shape and / or From the viewpoint of making the strength a preferable state and the viewpoint of improving the catalyst performance of the resulting composite oxide, it is preferable to prepare the raw material preparation liquid so as to contain silica sol.
  • Silica sol can be added as appropriate.
  • a part of silica sol can be used as an aqueous dispersion of powdered silica, and an aqueous dispersion of powdered silica can also be added as appropriate.
  • the above raw material preparation step can be repeatedly performed according to the production amount.
  • the raw material preparation step in the present embodiment preferably includes the following steps (a) to (d).
  • (C) The solution obtained in step (b) is mixed with an aqueous solution containing Nb, dicarboxylic acid and hydrogen peroxide and a W compound, and (d) the solution obtained in step (c)
  • Step (II) is a step of drying the raw material preparation liquid to obtain a dry powder.
  • Dry powder is obtained by drying the slurry-like raw material preparation liquid obtained through the raw material preparation step. Drying can be performed by a known method, for example, spray drying or evaporation to dryness.
  • spray drying When adopting a fluidized bed reaction method in a gas phase catalytic oxidation reaction or a gas phase catalytic ammoxidation reaction, it is preferable to obtain a microspherical dry powder from the viewpoint of making the fluidity in the reactor favorable. Therefore, it is preferable to employ spray drying.
  • the atomization in the spray drying method may be any of a centrifugal method, a two-fluid nozzle method, or a high-pressure nozzle method.
  • the drying heat source air heated by steam, an electric heater or the like can be used.
  • the temperature of the drying heat source at the inlet of the dryer of the spray dryer (hereinafter, also referred to as “the inlet temperature of the dryer”) is determined from the viewpoint of obtaining the catalyst particle shape and / or strength in a preferable state, and the resulting composite oxide From the standpoint of improving the catalyst performance, 150 to 300 ° C. is preferable.
  • the exhaust temperature at the outlet of the dryer (hereinafter also referred to as “dryer outlet temperature”) is preferably 100 to 160 ° C.
  • the average particle size of the dry powder is preferably 5 ⁇ m to 200 ⁇ m, more preferably 10 to 150 ⁇ m.
  • the average particle size of the dry powder should be determined by measuring the particle size distribution according to JIS R 1629-1997 “Method for measuring particle size distribution of fine ceramic raw materials by laser diffraction / scattering method” and averaging on a volume basis. Can do. More specifically, a part of the dry powder is baked at 400 ° C. for 1 hour in the air, and the obtained particles are measured using a laser diffraction scattering method particle size distribution measuring apparatus BECKMAN COULTER LS230 (trade name). Is done.
  • the average particle diameter is measured after a part of the dry powder is “baked in air at 400 ° C. for 1 hour” in order to prevent the dry powder from being dissolved in water. That is, “calcination in air at 400 ° C. for 1 hour” is exclusively for measurement, and is not related to the later-described firing step. It may be considered that the particle diameter does not substantially change before and after the firing.
  • the average particle size of the dry powder is measured as follows according to the manual attached to the laser diffraction / scattering particle size distribution measuring apparatus (manufactured by BECKMAN COULTER, trade name “LS230”). First, after background measurement (RunSpeed 60), 0.2 g of particles are weighed into a screw tube of an appropriate size, and 10 cc of water is added. The screw tube is covered (sealed) and shaken well to disperse the particles in water. An ultrasonic wave of 300 W is applied by the apparatus, and the screw tube is sufficiently shaken again. Thereafter, while continuing to apply ultrasonic waves, the particles dispersed in water are injected into the apparatus main body using a dropper so as to have an appropriate concentration (concentration 10, PIDS60). When the concentration display is stabilized, the application of ultrasonic waves is stopped, and after standing for 10 seconds, measurement is started (measurement time 90 seconds). The median diameter value (D50) of the measurement result is defined as the average particle diameter.
  • the composite oxide catalyst for example, changes its oxidation-reduction degree by heating during the drying process, and the performance of the resulting composite oxide catalyst is affected. The prediction of will be described.
  • a part of the dry powder adheres and accumulates on the wall surface and / or bottom of the apparatus and is long in the apparatus.
  • the redox degree of the dry powder tends to affect the performance of the composite oxide catalyst.
  • the preparation method is optimized taking into account the redox degree of the composite oxide catalyst, the performance deteriorates as a matter of course if the redox degree of the dry powder is outside the preferred range. There is a tendency.
  • the color of the dry powder changes as the redox degree changes.
  • the performance of the composite oxide catalyst tends to deteriorate, particularly as the dry powder turns black. This may be because, for example, the organic component or inorganic component contained in the dry powder is thermally decomposed by unintentional heating, thereby reducing the surrounding metal elements or causing a redox reaction between the metal elements. It is done. Therefore, the absorption or reflection spectrum of the dry powder can be monitored to determine the degree of discoloration, and the performance of the composite oxide catalyst can be predicted.
  • the method for measuring the absorption or reflection spectrum is not particularly limited, and can be determined, for example, by the absorbance of the dry powder measured using a visible / ultraviolet spectrophotometer.
  • the absorbance at an arbitrary wavelength in the wavelength range of 500 nm or more, preferably 500 nm or more and 800 nm or less can be selected and used as an index for monitoring.
  • continuously measuring means measuring at a frequency of at least once every three months. More preferably, it is measured once a month, more preferably once a week, particularly preferably once a day or more. The more frequently the absorption or reflection spectrum is measured, the lower the risk of producing a large amount of dry powder with an inappropriate redox degree. However, depending on the manufacturing conditions, the absorption or reflection spectrum of the dry powder is difficult to change, and frequent measurement may not be necessary. Therefore, the frequency of measurement may be set as appropriate.
  • the means is not limited for the purpose of preventing the accumulation of the dry powder in the spray drying apparatus, but it is preferable to attach a vibrator for giving vibration to the spray drying apparatus or an air knocker for giving an impact. It is also preferable that spray drying is temporarily stopped at an appropriate frequency and the inside of the apparatus is washed with water or the like.
  • the measurement of the absorption spectrum or the reflection spectrum of the dry powder is preferably performed immediately after the step (II) where unintended heating is likely to occur.
  • the operating conditions of the air knocker installed in the drying device can be arbitrarily adjusted according to the size of the device, the wall thickness, the degree of peeling of deposits, and the like.
  • the operating conditions include air knocker impact strength, impact frequency, increase / decrease in the number of installed air knockers, change of installation position, and the like.
  • the impact strength of the air knocker is preferably such a strength that the wall surface and / or other drying device parts are not deformed or broken even during long-term operation.
  • the hit frequency is preferably once or more per minute, more preferably once or more per 10 seconds.
  • the number of installed air knockers and the installation position it is preferable to increase the number of the air knockers with respect to the site where the adhesion is severe in internal observation after long-term operation, or to move the knocker at the site with little adhesion to the site where the adhesion is severe.
  • step (A) for determining each condition in the steps (I) and (II) can be performed according to the absorption or reflection spectrum measured as described above.
  • step (A) the performance of the composite oxide catalyst finally obtained from the measured absorption or reflection spectrum of the dry powder is predicted, and the operating conditions in each step are determined based on the predicted performance of the composite oxide catalyst. It is a process to be controlled, and by performing this process (A), it becomes possible to efficiently obtain a catalyst with even better performance.
  • the absorption of the dry powder obtained under different raw material preparation conditions and / or dry conditions can be used.
  • a correlation diagram between the reflection spectrum and the performance of the composite oxide catalyst obtained from the dry powder can be used.
  • the absorption or reflection spectrum of the dry powder obtained under the conditions of preparing different raw materials and / or under the dry condition it is preferable to use the absorbance for a specific wavelength obtained using an ultraviolet-visible spectrophotometer.
  • the dry powder obtained under different raw material preparation conditions means, for example, when the raw material of the catalyst constituent element is dissolved or dispersed in the aqueous medium, the dissolution procedure or the mixing procedure is changed, or the oxidation It is a dry powder obtained by further changing the state of the raw material preparation liquid such as the oxidation-reduction degree of the catalyst component by adding an agent or a reducing agent, and further through the step (II). More specifically, for example, in the step (I), the raw material preparation liquid is obtained by a method such as increasing or decreasing the amount of dicarboxylic acid, adjusting the solid content concentration of the solution, extending the processing time, or changing the processing temperature. It is a dry powder obtained by changing the state of the above and further undergoing step (II).
  • the dry powder obtained under different drying conditions includes, for example, the supply amount of the raw material preparation liquid per unit time in step (II), the supply drying heat source amount (for example, supply air amount) per unit time, and the drying heat source temperature (for example, it is a dry powder obtained by changing operating conditions and the like of the supply air temperature) and / or a dry powder accumulation preventing device attached to the drying device.
  • the atomization is a centrifugal method
  • dry powder can be obtained by changing conditions such as the rotational speed of the disk and the disk diameter.
  • the absorption or reflection spectrum of the dry powder obtained under different raw material preparation conditions and / or dry conditions can be measured in the same manner as described above. Furthermore, the catalyst performance when conducting vapor phase catalytic oxidation or gas phase catalytic ammoxidation reaction of propane or isobutane using a composite oxide catalyst obtained by firing each under the same conditions is examined. Examples of the catalyst performance to be investigated include yield, activity, conversion rate, yield of by-products, and the like, and these may be combined.
  • operating conditions in the above-mentioned (I) raw material preparation step and (II) drying step are determined according to the monitored absorption or reflection spectrum. From the viewpoint of ease of control, it is preferable to determine the operating conditions in the (II) drying step according to the absorption or reflection spectrum.
  • Step (A-1) is a step of determining the preparation conditions in step (I) according to the measured absorption or reflection spectrum.
  • the absorption or reflection spectrum of the dry powder obtained in step (II) from the raw material mixture obtained in different preparation conditions in step (I), and the composite oxide obtained from the dry powder Using the correlation diagram of the catalyst performance, the preparation conditions are determined so that the performance of the finally obtained composite oxide catalyst is good.
  • the means for “determining the preparation conditions” in this step is not particularly limited, but the degree of redox of the catalyst component is controlled by the dissolution procedure or the mixing procedure when the raw material of the catalyst constituent element is dissolved or dispersed in the aqueous medium.
  • the method, the method of adding an oxidizing agent or a reducing agent, etc. are mentioned.
  • the adjustment conditions can be determined by methods such as increasing or decreasing the amount of dicarboxylic acid, adjusting the solid content concentration of the solution, extending the processing time, or changing the processing temperature.
  • Step (A-2) is a step of determining the drying conditions in step (II) according to the measured absorption or reflection spectrum. In this step, the correlation between the absorption or reflection spectrum of the dry powder obtained under different drying conditions in step (II) and the performance of the composite oxide catalyst obtained from the dry powder is finally obtained. The drying conditions are determined so that the performance of the resulting composite oxide catalyst is good.
  • the means for “determining the drying conditions” in this step is not particularly limited.
  • the supply amount of aqueous raw material (raw material preparation liquid) per unit time the supply drying heat source amount per unit time (For example, supply air amount), drying heat source temperature (for example, supply air temperature), and a method for changing operation conditions of a dry powder accumulation preventing device attached to the drying device.
  • a method of changing the operating conditions of the dry powder deposition preventing apparatus is more preferable.
  • the atomization is a centrifugal method
  • the rotational speed of the disk and the disk diameter may be changed. Moreover, you may combine these.
  • the dry powder has a particle content of a particle size of 25 ⁇ m or less, preferably 20% by mass or less, more preferably 15% by mass or less, still more preferably 10% by mass or less, still more preferably 5% by mass or less, and particularly preferably 2%. Prepare so that it may become below mass%.
  • the content of particles having a particle size of 25 ⁇ m or less exceeds 20% by mass, the performance of the resulting catalyst is deteriorated, and the yield of the target product in the fluidized bed reactor tends to decrease.
  • the “pre-stage calcined product” refers to a compound produced by the pre-stage calcining step described later.
  • a catalyst having the same performance for example, the yield of the target product
  • the manufacturing method of the present embodiment even with continuous firing, it is possible to obtain a product with performance similar to that of batch firing.
  • the factors are not limited to the above.
  • the catalyst when the catalyst contains Mo, Sb or the like, a low melting point compound is likely to be generated during the firing. Since particles having a particle size of 25 ⁇ m or less have a larger surface ratio than particles having a particle size of more than 25 ⁇ m, it is considered that fixation is more likely to occur. If the amount of fixing becomes too large, problems such as inability to obtain a sufficient firing temperature for the catalyst layer and inability to secure the production amount occur. Therefore, it is preferable to reduce the proportion of particles having a particle size of 25 ⁇ m or less before firing.
  • the average particle size of the dry powder is more preferably 35 to 75 ⁇ m, still more preferably 40 to 65 ⁇ m, and particularly preferably 45 to 60 ⁇ m.
  • the composite oxide catalyst is used for a fluidized bed type catalytic reaction, if the average particle size is less than 35 ⁇ m, the fluidity is deteriorated and the yield of the target product is lowered, or it is easily scattered from the fluidized bed reactor. There is a risk that the loss of the catalyst amount becomes large.
  • the average particle diameter exceeds 75 ⁇ m, the fluidity is deteriorated, and the contact efficiency with the reaction gas is deteriorated, so that the yield of the target product may be lowered.
  • the reduction rate of the pre-stage calcined product can be adjusted to a preferable range in the firing step.
  • the present inventors consider this mechanism as follows.
  • the dry powder usually contains an ammonium root, an organic acid, and an inorganic acid.
  • the catalyst constituent elements When firing with an inert gas flowing, the catalyst constituent elements are reduced when they are evaporated, decomposed, or the like.
  • the ammonium root evaporates to ammonia gas, and the pre-stage calcined particles are reduced from the gas phase.
  • the reduction rate of the pre-stage calcined product varies depending on the firing time and the calcining temperature in the pre-stage firing described below.
  • the firing time is long or when the firing temperature is high, the reduction easily proceeds and the reduction rate becomes high.
  • the average particle diameter is typically less than 35 ⁇ m, or when the particle content of particle diameters of 25 ⁇ m or less exceeds 20% by mass, entrained with an inert gas or calcined
  • a tube there are many small particles that move up with the rotation of the firing tube and go back through the firing tube. As a result, there are particles that stay in the firing tube for longer than the desired time, making it difficult to bring the reduction rate into a preferred range.
  • the small particles have many surfaces that come into contact with ammonia gas and are easily reduced.
  • the average particle diameter exceeds 75 ⁇ m, the particles are large, so that the surface in contact with the ammonia gas is small and the reduction is difficult. As a result, it is considered difficult to adjust the reduction rate to a preferable range.
  • the particle content of particles having a particle diameter of 25 ⁇ m or less is obtained by applying 20 g of dry powder to a sieve having an opening of 25 ⁇ m and a diameter of 20 cm, applying a vibrator for 3 minutes (for example, National Panabrator), and passing the sieve. And the mass of particles remaining on the sieve can be measured and calculated using the following equation.
  • (Particle content (%) of particle diameter of 25 ⁇ m or less) (mass of particles passing through a sieve) ⁇ ⁇ (mass of particles passing through a sieve) + (mass of particles remaining on the sieve) ⁇ ⁇ 100
  • the reason why the content of particles having a particle diameter of 25 ⁇ m or less is measured after “baking in air at 400 ° C. for 1 hour” is to prevent the dry powder from being dissolved in water. That is, “calcination in air at 400 ° C. for 1 hour” is exclusively for measurement, and is not related to the later-described firing step. It may be considered that the particle diameter does not substantially change before and after the firing. The reduction rate of the calcined sample may be different from other dry powders. However, since the amount of the sample is usually very small, the performance of the entire catalyst is hardly affected whether or not it is subjected to the calcining step described later. In addition, the measurement object of an average particle diameter does not necessarily need to be a dry powder, You may measure the average particle diameter of the pre-stage baking body baked as needed.
  • spray drying conditions such as atomizer speed, spray drying temperature, and raw material mixing
  • spray drying conditions such as atomizer speed, spray drying temperature, and raw material mixing
  • Examples thereof include a method for adjusting the supply amount of the liquid and a method for classifying the dry powder.
  • the method for classifying the dry powder is not particularly limited, and for example, general methods such as a centrifugal classifier, an air classifier, a gravity classifier, an inertia classifier, a sieve, and a cyclone can be used.
  • a dry classifier can be suitably used from the viewpoint of preventing elution of the catalyst constituent elements into the solvent and not adversely affecting the catalyst performance.
  • the dry powder recovery rate in the classification operation is preferably adjusted to a condition such that it is 75% by mass or more, more preferably 80% by mass or more, or such a condition is adjusted. It is preferable to select and use a filling device.
  • Step (III) is a step in which the dried powder is pre-fired to obtain a pre-fired body.
  • Step (IV) is a step of subjecting the pre-stage calcined product to main calcination to obtain a calcined product having protrusions on the particle surface.
  • the step (III) and the step (IV) are collectively referred to as a “firing step”.
  • the dry powder obtained in the drying step is fired. Conditions such as the firing temperature, time, and atmosphere may be determined as appropriate from the viewpoint of removal of organic components contained in the dry powder and crystal growth of the composite oxide, and are not particularly limited. In the manufacturing method of this embodiment, conditions such as temperature are changed as described later, and multi-stage firing is performed as pre-stage firing and main firing.
  • a baking apparatus for baking the dry powder for example, a rotary furnace (rotary kiln) can be used.
  • the shape of the calciner for calcining the dry powder is not particularly limited, but a tubular shape (firing tube) is preferable from the viewpoint of continuous firing, and is particularly cylindrical. Is preferred.
  • the heating method is preferably an external heating type from the viewpoint of easy adjustment of the firing temperature so as to have a preferable temperature rise pattern, and an electric furnace can be suitably used.
  • the size and material of the firing tube an appropriate one can be selected according to the firing conditions and the production amount.
  • the inner diameter of the calcining tube is preferably 70 to 2000 mm, more preferably 100 to 1200 mm, from the viewpoints of preventing unevenness in the calcining temperature distribution in the catalyst layer and adjusting the calcining time and production amount to appropriate values. It is.
  • the length of the calcining tube is determined based on the residence time of the dry powder and catalyst precursor particles in the calcining tube, that is, the viewpoint of making the distribution of the calcining time as narrow as possible, the viewpoint of preventing distortion of the calcining pipe, the calcining time and the production amount. From the viewpoint of adjusting to an appropriate value, etc., the thickness is preferably 200 to 10,000 mm, more preferably 800 to 8000 mm.
  • the thickness is preferably 2 mm or more, more preferably 4 mm or more from the viewpoint of having a sufficient thickness so as not to be damaged by the impact. Further, from the viewpoint that the impact is sufficiently transmitted to the inside of the firing device, the thickness is preferably 100 mm or less, more preferably 50 mm or less.
  • the material of the calciner is not particularly limited as long as it is preferably heat-resistant and has a strength that does not break due to impact. For example, SUS can be suitably used.
  • the “catalyst precursor” refers to a compound produced in the middle of the firing process.
  • the firing tube it is also possible to divide the firing tube into two or more areas by providing a weir plate having a hole for the passage of the powder in the center of the firing tube perpendicular to (or substantially perpendicular to) the powder flow. .
  • the number of weir plates may be one or more.
  • the material of the barrier plate is preferably a metal, and the same material as the firing tube can be suitably used. The height of the weir plate can be adjusted according to the residence time to be secured.
  • the height of the weir plate is preferably 5 to 50 mm, more preferably 10 It is ⁇ 40 mm, more preferably 13 to 35 mm.
  • the thickness of the weir plate is not particularly limited and is preferably adjusted according to the size of the firing tube.
  • the thickness of the barrier plate is preferably 0.3 mm or more and 30 mm or less, more preferably 0.5 mm or more and 15 mm or less.
  • the rotation speed of the firing tube is preferably 0.1 to 30 rpm, more preferably 0.5 to 20 rpm, and still more preferably 1 to 10 rpm.
  • the furnace is preferably inclined in a direction perpendicular to the rotation direction. More preferably, the rotary furnace is inclined with the supply side being high and the powder discharge side after firing being low. The angle is preferably from 0.3 ° to 15 °, more preferably from 0.3 ° to 5 °, as viewed from the powder discharge side.
  • the heating of the dry powder from a temperature lower than 400 ° C., and continuously or intermittently raise the temperature to a temperature within the range of 550 to 700 ° C. .
  • the firing atmosphere may be an air atmosphere or an air flow, but from the viewpoint of adjusting to a preferable redox state, at least a part of the firing is performed while circulating an inert gas substantially free of oxygen such as nitrogen. It is preferable to do.
  • the supply amount of the inert gas is 50 N liter / hr or more per 1 kg of the dry powder from the viewpoint of adjusting to a preferable redox state. It is preferably 50 to 5000 N liter / hr, more preferably 50 to 3000 N liter / hr.
  • N liters means liters measured at standard temperature and pressure conditions, that is, at 0 ° C. and 1 atm.
  • the supply amount of the inert gas is 50 N liters or more per 1 kg of the dry powder from the viewpoint of adjusting to a preferable redox state.
  • the amount is preferably 50 to 5000 N liters, more preferably 50 to 3000 N liters.
  • the inert gas and the dry powder may be countercurrent or cocurrent, but countercurrent contact is preferable in consideration of a gas component generated from the dry powder and a small amount of air mixed with the dry powder.
  • a method including adding a hydrogen peroxide solution to the aqueous mixed solution (A) and oxidizing molybdenum, vanadium, and antimony in the solution to the highest possible oxidation number.
  • a hydrogen peroxide solution to the aqueous mixed solution (A) and oxidizing molybdenum, vanadium, and antimony in the solution to the highest possible oxidation number.
  • Dry powder usually contains ammonium root, organic acid, inorganic acid, etc. in addition to moisture.
  • the catalyst constituent elements are reduced when they are evaporated, decomposed or the like.
  • the catalyst constituent element in the dry powder has almost the highest oxidation number, in order to bring the reduction rate of the catalyst into the desired range, it is only necessary to carry out the reduction in the calcination step, which is industrially simple.
  • an oxidizing component or a reducing component may be added to the firing atmosphere so that the reduction rate of the pre-stage fired body is within a desired range.
  • the reduction rate of the obtained pre-stage calcined product is 8 to 12%, preferably 9 to 11%, more preferably 9.5 to 11%.
  • the firing is preferably performed so that the specific surface area of the fired body is 7 to 20 m 2 / g, and the specific surface area is more preferably 10 to 16 m 2 / g.
  • the dry powder is baked, and the heating temperature of the dry powder is started from a temperature lower than 400 ° C., continuously or intermittently to a temperature in the range of 450 to 700 ° C.
  • the baking is carried out under a temperature increase.
  • the firing conditions are adjusted so that the reduction rate of the pre-stage fired body during firing when the heating temperature reaches 400 ° C. is 8 to 12%.
  • the amount of organic components such as oxalic acid contained in the dry powder In the case of firing in an inert gas atmosphere, the amount of the inert gas is affected. In the case of firing in an air atmosphere, the temperature and time are affected.
  • the temperature starts from a temperature lower than 400 ° C., decomposes the oxalate root, ammonium root, etc. in the dry powder, and generates gas. It is important that the reduction rate of the pre-stage calcined product during firing when the heating temperature reaches 400 ° C. is almost 8 to 12%.
  • the specific surface area of the fired body is affected by the final firing (heating) temperature and time, and the amount of silica supported when the catalyst is supported on silica, but when the heating temperature reaches 400 ° C.
  • the reduction rate and final firing temperature have a particularly great influence.
  • the final stage of firing is performed at 450 ° C. to 700 ° C. for 0.5 to 20 hours.
  • the specific surface area tends to be smaller as the final baking temperature is higher and the time is longer.
  • the reduction rate when the heating temperature reaches 400 ° C. is low, the specific surface area of the fired body becomes small, and when the reduction rate when the heating temperature reaches 400 ° C. is high, the specific surface area tends to increase.
  • the component gas that reduces the pre-stage calcined product during firing is quickly discharged out of the system, so the pre-stage calcined product is less susceptible to reduction, and as a result, the specific surface area of the calcined product is considered to be small It is done. Conversely, if the amount of nitrogen is reduced, the reduction rate increases and the specific surface area of the fired body increases.
  • the reduction rate when the heating temperature reaches 400 ° C. is within the range of 8 to 12%, and the final firing temperature is 450 ° C. It is preferable to set the temperature to 700 ° C.
  • the calcination step includes a pre-firing step and a main-firing step, and the pre-firing is preferably performed in a temperature range of 250 to 400 ° C., and the main baking is preferably performed in a temperature range of 450 to 700 ° C.
  • the pre-baking and the main baking may be performed continuously, or the pre-baking may be once completed and then the main baking may be performed again.
  • each of pre-stage baking and main baking may be divided into several stages.
  • the sample When measuring the reduction rate of the pre-stage calcined product during firing, the sample may be taken out from the firing device at that temperature, but it may be oxidized by contact with air at a high temperature, and the reduction rate may change. After cooling to room temperature, the sample taken out from the baking apparatus is preferably used as the representative sample.
  • a method of controlling the reduction rate when the heating temperature reaches 400 ° C. to a desired range specifically, a method of changing the pre-stage firing temperature, an oxidizing component such as oxygen is added to the atmosphere during firing Or a method of adding a reducing component to the atmosphere during firing. Moreover, you may combine these.
  • the method of changing the pre-stage baking temperature is a method of changing the reduction rate when the heating temperature reaches 400 ° C. by changing the baking temperature in the pre-stage baking.
  • the reduction rate can be controlled by changing the pre-stage firing temperature.
  • increase or decrease the amount of nitrogen to be supplied increase or decrease the amount of dry powder to be supplied, and in firing using a rotary kiln, control the reduction rate by increasing or decreasing the number of revolutions. Is possible.
  • the components to be oxidized evaporated from the dry powder by heating the furnace are not oxidized by the metal oxide present in the firing furnace (the metal oxide is reduced) and discharged outside the system. It is considered that the reduction of the fired body is difficult to proceed because the ratio of the heat generated is high.
  • the dry powder supplied decreases, in a rotary kiln, it is considered that the reduction proceeds because the residence time of the catalyst is extended. Further, in the case of a rotary kiln, if the number of revolutions is decreased, the moving speed of the catalyst in the kiln is lowered, so that it takes a longer time for contact with more oxidizable components, so that the reduction proceeds.
  • the method of adding an oxidizing component such as oxygen to the atmosphere during firing can be used to lower the reduction rate.
  • the firing in this stage is a pre-stage firing.
  • the oxidizing component added in the atmosphere at the time of baking means the oxidizing component in the inert gas supplied to a baking apparatus.
  • the addition amount of the oxidizing component is controlled by the concentration in the inert gas entering the baking apparatus.
  • the reduction rate can be controlled by adding an oxidizing component.
  • the oxidizing component is oxygen
  • air or an inert gas containing air
  • oxygen in the air can be used as the oxidizing component.
  • the method of adding a reducing component to the atmosphere during firing is a method that can be used to increase the reduction rate.
  • the reducing component added in the atmosphere at the time of baking means the reducing component in the inert gas supplied to a baking apparatus.
  • the amount of the reducing component added is controlled by the concentration in the inert gas entering the baking apparatus.
  • the reduction rate can be controlled.
  • the reducing component include hydrogen, hydrocyanic acid, methane, ethane, propane, carbon monoxide, nitrogen monoxide and ammonia.
  • a gas mainly composed of ammonia is preferable to add.
  • the necessary oxidizing substance is determined from the difference between the actual reduction rate and the desired reduction rate.
  • the total amount of the reducing substance can be calculated and added to the firing atmosphere.
  • an oxidizing component for example, oxygen
  • a reducing component for example, ammonia
  • the value of (n 0 -n) can be determined by oxidation-reduction titration for both the pre-stage calcined body before the end of firing and the fired body after the end of firing.
  • the measurement by oxidation-reduction titration has different conditions for the pre-fired body before the end of the main firing and the fired body after the end of the main firing.
  • An example of the measurement method is shown below for each of the pre-stage calcined body before the end of the main calcination and the calcined body after the main calcination.
  • the pre-stage calcined product before the end of firing is measured as follows. About 200 mg of the pre-stage calcined product is precisely weighed in a beaker. Further, an excessive amount of a KMnO 4 aqueous solution having a known concentration is added. Further, 150 mL of pure water at 70 ° C., 2 mL of 1: 1 sulfuric acid (that is, sulfuric acid aqueous solution obtained by mixing concentrated sulfuric acid and water at a volume ratio of 1/1) was added, and the beaker was capped with a watch glass. The sample is oxidized by stirring for 1 hour in a hot water bath at 2 ° C.
  • the fired body after the completion of the main firing is measured as follows.
  • a beaker about 200 mg of a fired body crushed in a mortar made of agate is precisely weighed.
  • 150 mL of pure water at 95 ° C. and 4 mL of 1: 1 sulfuric acid (that is, a sulfuric acid aqueous solution obtained by mixing concentrated sulfuric acid and water at a volume ratio of 1/1) are added.
  • Stirring is continued while the liquid temperature is maintained at 95 ° C. ⁇ 2 ° C., and titration is performed with an aqueous KMnO 4 solution having a known concentration.
  • both the pre-stage calcined body before the end of the main calcination and the calcined body after the end of the main calcination can be measured as follows. Heating to a temperature higher than the firing temperature at which the pre-stage calcined body or calcined body was calcined under the condition that the constituent elements of the sample do not volatilize or escape, complete oxidation with oxygen, and increased mass (amount of bound oxygen) From this, the value of (n 0 -n) is obtained, and the reduction rate is obtained based on this value.
  • the method for performing the firing atmosphere in an inert gas or a preferable oxidizing / reducing atmosphere is not particularly limited. However, it is preferable to use a baking apparatus that has an appropriate sealing structure and can sufficiently block contact with outside air.
  • the pre-stage calcination temperature is preferably 250 ° C. to 400 ° C., more preferably in the presence of an inert gas flow, from the viewpoint of easily adjusting the obtained catalyst to a preferable redox state and improving the catalyst performance. Is performed in the range of 300 ° C to 400 ° C.
  • the pre-stage calcination temperature is preferably maintained at a constant temperature within a temperature range of 250 ° C. to 400 ° C., but even if the temperature fluctuates within the range of 250 ° C. to 400 ° C. or the temperature is raised or lowered gradually. Good.
  • the holding time of the heating temperature is preferably 30 minutes or more, more preferably 3 to 12 hours, from the viewpoint of easy adjustment of the obtained catalyst to a preferable redox state and improvement of catalyst performance.
  • the temperature pattern until reaching the pre-stage firing temperature may be a linear temperature rising pattern, or may be a temperature rising pattern that draws an upward or downward convex arc. Further, there may be a time for the temperature to drop during the temperature rise, and the temperature rise and the temperature fall may be repeated. Furthermore, an endothermic reaction may occur due to components contained in the dry powder and / or catalyst precursor during the temperature raising process, and the temperature may be temporarily lowered.
  • the average rate of temperature increase at the time of temperature increase until reaching the pre-stage calcination temperature is usually 0. It is about 1 to 15 ° C./min, preferably 0.5 to 5 ° C./min, more preferably 1 to 2 ° C./min.
  • the main calcination is preferably performed under an inert gas flow, preferably from the viewpoint of easily adjusting the obtained catalyst to a preferable specific surface area, sufficiently forming a crystal structure active in reaction, and improving catalyst performance. It can be carried out at 450 to 700 ° C, more preferably 620 to 700 ° C.
  • the firing temperature in the main firing (main firing temperature) is preferably maintained at a constant temperature within the temperature range of 620 to 700 ° C., but the temperature fluctuates within the range of 620 to 700 ° C., or the temperature is raised or lowered gradually. It doesn't matter.
  • the temperature may be lowered during the temperature increase, or the temperature increase / decrease may be repeated.
  • An endothermic reaction may occur due to the components contained in the pre-stage calcined product during the temperature raising process, and as a result, a pattern of temperature lowering may be included.
  • Protrusions are generated on the particle surface of the fired product that has undergone the main firing step.
  • the composition of the raw material preparation liquid to be prepared is designed on the assumption that this protrusion is removed. And it is important in order to optimize the composition of the catalyst finally obtained to produce a protrusion enough in a baking process, and to remove it enough.
  • the degree of formation of the protrusion has a correlation with the specific surface area of the fired body, and there is no clear reason, but when the specific surface area is small, the amount of the protrusion tends to be large. is there.
  • the performance of the catalyst is improved by removing the component of the protrusion that easily causes a side reaction. Therefore, it is preferable to adjust so as to generate an appropriate amount of protrusions in the firing step so that sufficient removal can be performed in the protrusion removal step described later. Further, it is preferable to adjust so that a composite oxide having the same composition as the protrusion does not remain in the interior and to obtain a fired body with an appropriate specific surface area that does not deteriorate catalyst performance by reducing the surface area.
  • a catalyst adjusted with an appropriate specific surface area can maintain not only a short-term catalyst performance but also a high performance stably over a long period of time. The clear reason is not clear, but if the protrusions cannot be removed sufficiently, some or all of the protrusion components remaining in the catalyst or on the surface during the reaction melt due to the low melting point, It is conceivable that the fluidity of the catalyst may decrease and the performance may decrease due to clogging of the surface pores.
  • the specific surface area can be adjusted by the maximum firing temperature during the main firing and the supply amount of the pre-stage fired body to be used for the main firing.
  • the specific surface area of the fired body is preferably adjusted to 7 to 20 m 2 / g, more preferably 10 to 16 m 2 / g.
  • the specific surface area is determined by the BET 1-point method using Gemini 2360 (trade name) manufactured by MICROMETRICS.
  • the specific surface area of the fired body can be adjusted by the firing temperature. In order to obtain a fired body having a specific surface area, it is possible to increase or decrease the specific surface area depending on the temperature of the previous stage firing. This is a preferred embodiment for obtaining a fired body having a specific surface area.
  • the firing time is preferably 0.5 to 20 hours, more preferably 1 to 15 hours.
  • at least two of the pre-stage fired body and / or the fired body are preferably 2 to 20, more preferably, from the viewpoint of securing a suitable residence time in the fired tube such as a dry powder. Passes continuously through 4-15 zones.
  • the temperature can be controlled by using one or more controllers, but in order to obtain the desired firing pattern, a heater and a controller can be installed and controlled for each section separated by these weirs. preferable.
  • the pre-stage firing body and / or the main firing body It is preferable that the set temperature is controlled by a heater and a controller in which eight zones are installed for each zone so that the temperature becomes the desired firing temperature pattern.
  • a heater and a controller in which eight zones are installed for each zone so that the temperature becomes the desired firing temperature pattern.
  • the temperature of the thermocouple inserted in the central part of the area of the pre-stage calcined body staying in the calciner is counted from the supply side of the pre-stage calcined body, zone 1: 120 to 280 ° C., zone 2: 180-330 ° C, Zone 3: 250-350 ° C, Zone 4: 270-380 ° C, Zone 5: 300-380 ° C, Zone 6: 300-390 ° C, Zone 7: 320-390 ° C, Zone 8: 260- It is preferable to adjust so that it may become 380 degreeC.
  • zone 1 360 to 560 ° C.
  • zone 2 450 to 650 ° C.
  • zone 3 600 to 700 ° C.
  • zone 4 620 to 700 ° C.
  • zone 5 580 to 700 ° C.
  • zone 6 480 It is preferable that the temperature is adjusted to ⁇ 690 ° C.
  • zone 7 450 to 630 ° C.
  • zone 8 370 to 580 ° C.
  • the feed composition is Mo 1 V 0.209 Sb 0.236 Nb 0.091 W 0.027 Ce 0.005 O x and the content of silica as a carrier is 47.0% by mass in the total dry powder.
  • the fired body having a specific surface area of 7 to 20 m 2 / g has a large number of protrusions on the outer surface of the particles, and more protrusions can be removed in the protrusion removal process. Therefore, it is easy to make the composition of the finally obtained catalyst the optimum value as designed.
  • the maximum firing temperature in the previous firing is set to 350 ° C. while rotating at 6 rpm.
  • the dry powder is supplied at a rate of 35 kg / hr while the amount of inert gas (nitrogen gas) in the system is circulated at a total of 1050 NL / min to perform pre-stage firing, and then the same SUS-made firing tube is rotated at 6 rpm.
  • the main firing tube (firing tube for performing the main firing) using a hammer or the like was hit at 6 times / minute, the maximum firing temperature in the main firing was set to 650 ° C., and the inert gas (nitrogen gas) in the system )
  • the pre-stage calcined product is supplied at a rate of 20 kg / hr and the main calcination is performed while circulating the total amount of 667 NL / min
  • the reduction rate of the pre-stage calcined product is 8 to 12% and the specific surface area of the calcined product is 7%.
  • ⁇ 20m 2 / g More preferably it is possible to 10 ⁇ 16m 2 / g.
  • the reduction rate of the pre-stage calcined body is 8 to 12%
  • the specific surface area of the calcined body is 7 to 20 m 2 / g, more preferably In order to achieve 10 to 16 m 2 / g, for example, it is preferable to change the conditions as follows.
  • the inert gas introduced into the system is set to 400 to 800 NL in order to reduce the reduction rate to 8 to 12%. It is preferable to reduce to / min. If you do not want to reduce the amount of inert gas supplied, dry powder in the firing tube by reducing the height of the weir, reducing the number of weirs, shortening the length of the firing tube, or narrowing the inner diameter of the firing tube. It is preferable to shorten the time during which the body stays. It is also preferable to lower the maximum firing temperature in the pre-stage firing.
  • the rotational speed of the rotary kiln When the rotational speed of the rotary kiln is increased, the time until the dry powder near the interface with the gas circulating in the firing tube moves to the lower part of the powder layer where it is difficult to come into contact with the circulating gas is shortened. It is considered that the reduction reaction by the reducing gas does not easily proceed at the upper part of the layer. Therefore, the reduction rate of the pre-stage calcined product can be lowered by increasing the rotational speed of the rotary kiln.
  • the specific surface area of the pre-stage fired body is not as large as the specific surface area of the fired body, but can be adjusted to some extent according to the pre-stage firing conditions. Although a clear reason is not certain, since the reduction rate and the specific surface area are in a proportional relationship, it is easy to optimize the range of the specific surface area by performing the same management as described above. However, the adjustment of the specific surface area of the fired body largely depends on the firing method of the main firing.
  • the maximum firing temperature in the main firing is set to 650 ° C. while rotating a SUS firing tube having an inner diameter of 500 mm, a length of 4500 mm, and a wall thickness of 20 mm and provided with a weir plate in 8 equal parts at 6 rpm,
  • the pre-fired body is supplied at a rate of 20 kg / hr while the amount of inert gas (nitrogen gas) in the system is circulated at a total of 667 NL / min, the specific surface area of the fired body is 7 to 20 m 2.
  • the following operation is preferably performed.
  • the inert gas (nitrogen gas) amount is 250 to 400 NL / min in order to maintain an appropriate specific surface area range. It is preferable to adjust.
  • reduce the height of the weir reduce the diameter of the firing tube, shorten the length of the firing tube, increase the inclination of the installation angle of the firing tube (however, lower the downstream side)
  • the length of the maximum temperature range indicates a temperature range of 300 to 390 ° C.
  • the specific surface area can be more easily adjusted within the target range by adjusting the width in the vertical direction, reducing the maximum temperature in the main firing, or the like in combination or in any combination.
  • the amount of inert gas is preferably adjusted to 1000 to 1600 NL / min.
  • the firing temperature of 650 ° C. greatly exceeds the melting point of the constituent metal oxide, a large amount of oxide adheres to the wall surface of the fired tube. Therefore, hitting the main firing tube with a hammer or the like, or increasing the number of times of hitting, or increasing the number of rotations of the rotary kiln (rotary furnace), etc., to extend the residence time of the pre-stage fired body. It is preferable.
  • the rate of increase in the number of hits and the number of rotations can be arbitrarily set based on the mass balance between the amount of the pre-stage fired body supplied to the main firing tube and the amount of the fired body discharged from the main firing tube. .
  • an oxidizing component for example, oxygen
  • a reducing component for example, ammonia
  • the temperature rising pattern until reaching the main firing temperature may be increased linearly, or the temperature may be increased by drawing an upward or downward convex arc. Further, a time for lowering the temperature may be entered during the temperature increase, and the temperature increase / decrease may be repeated. An endothermic reaction may occur due to components remaining in the pre-stage calcined body during the temperature raising process, and a pattern of temperature lowering may enter as a result.
  • the average rate of temperature increase at the time of temperature increase until reaching the main firing temperature is not particularly limited, but is preferably 0.5 to 8 ° C./min.
  • the average temperature-decreasing rate after the completion of the main calcination is preferably 0.05 to 50 ° C./min, more preferably 0 from the viewpoints of easily forming a crystal structure active in the reaction and improving the catalyst performance. .05 to 20 ° C./min.
  • the holding time is preferably 0.5 hours or more, more preferably 1 hour or more, still more preferably 3 hours or more, and particularly preferably 10 hours or more.
  • the fired body may be annealed after the main firing.
  • the low temperature treatment can be performed before the main baking.
  • the time required for low-temperature treatment that is, the time required for raising the temperature to the firing temperature after lowering the temperature of the pre-stage calcined body and / or calcined body is the size, thickness, material, catalyst of the calciner It can be appropriately adjusted depending on the production amount, a series of periods in which the pre-stage calcined body and / or the calcined body are continuously fired, the fixing speed, the fixing amount, and the like.
  • the time required is preferably within 30 days, more preferably within 15 days, even more preferably within 3 days, and particularly preferably within 2 days during a series of periods in which the fired body is continuously fired.
  • the oxide layer temperature refers to a temperature measured by a particulate pre-stage calcined body and / or a thermocouple inserted in the main calcined body deposited in the calciner.
  • the pre-stage calcined body is supplied at a speed of 35 kg / hr while rotating at 6 rpm by a rotary furnace having a SUS calcining tube having an inner diameter of 500 mm, a length of 4500 mm, and a wall thickness of 20 mm.
  • the temperature can be lowered to 400 ° C. after the pre-stage firing, and then the temperature can be raised to 645 ° C. in about one day.
  • continuous firing for one year by performing such a low temperature treatment once a month, it is possible to perform firing while stably maintaining the oxide layer temperature.
  • the impact applied to the calciner is the depth of the layer of the pre-stage calcined body supplied into the calciner, the diameter, length, thickness and material of the calciner (eg, calcined tube), and the material, type and shape of the device that applies the impact. Since it depends on the position and the frequency of impact, etc., it is preferable to set appropriately.
  • the vibration acceleration at the location where impact is applied (hereinafter also referred to as impact point) is preferably 0.1 m / s 2 or more, more preferably 10 m / s. 2 or more. Further, from the viewpoint of preventing breakage of the calciner and not disturbing the flow of the powder flowing through the calciner, it is preferably 3000 m / s 2 or less, more preferably 300 m / s 2 or less. .
  • the “vibration acceleration” of the impact applied to the calciner means that when the calciner is a calcining tube, the L from the calciner powder inlet is parallel to the powder flow direction with respect to the calciner full length L. / 4, 3L / 8, mean the average value of the values measured at the distance of L / 2.
  • the measurement position is the same position as the impact point in the cross-sectional direction of the calciner.
  • the vibration acceleration can be measured with a vibrometer attached to the baking machine.
  • MD220 (trade name) manufactured by Asahi Kasei Techno System Co., Ltd. can be used.
  • the method for applying the impact is not particularly limited, and an air knocker, hammer, hammering device, or the like can be suitably used.
  • the material of the portion that directly contacts the firing device at the tip of the impact is not particularly limited as long as the material has sufficient heat resistance, for example, a general resin that can withstand impact, metal, etc. can be used, Of these, metals are preferred.
  • the metal preferably has a hardness that does not damage or deform the calciner, and can be suitably made of copper or SUS.
  • the location to which the impact is applied is not particularly limited and can be performed at a location convenient for operation. However, since the impact can be directly applied to the calciner without waste, it is applied to the location not covered with the heating furnace of the calciner. It is preferable.
  • the location where the impact is applied may be one location or multiple locations.
  • a firing tube is used as the firing device, it is preferable to apply the impact from a direction perpendicular to the rotation axis of the firing tube in order to efficiently transmit vibration.
  • the frequency at which the impact is applied is not particularly limited, but it is preferable that the impact is steadily applied to the calciner because the adhesion in the calciner tends to be reduced more favorably.
  • “constantly applying an impact” preferably means applying an impact once every 1 second or more and 1 hour or less, more preferably once every 1 second or more and 1 minute or less.
  • the frequency at which the impact is applied is the vibration acceleration, the depth of the layer of the pre-stage fired body supplied into the firing machine, the diameter / length / thickness / material of the firing machine (for example, firing tube), and the material / type of the device that applies the impact. -It is preferable to adjust appropriately according to the shape.
  • the step (V) in the production method of the present embodiment is a step of removing the protrusions present on the particle surface of the fired body with an air stream. Projecting protrusions exist on the particle surface of the fired body after the firing step. In the step (V), this protrusion is removed, and the amount of the protrusion included in the fired body is preferably 2% by mass or less with respect to the total mass of the fired body.
  • Several methods can be considered as a method for removing the protrusions, and among these, a method of removing the protrusions by contacting the fired bodies under a gas flow is preferable.
  • a method of circulating gas in a hopper or the like for storing the fired body and a method of putting the fired body in a fluidized bed reactor and causing the gas to flow therethrough.
  • the method using a fluidized bed reactor is a preferred embodiment in that a special apparatus for removing protrusions is not necessary, but it is not an apparatus originally designed with the intention of contacting calcined bodies (catalysts). Therefore, unless a measure such as adding a small amount of fired body and allowing it to flow over time, the protrusions cannot be sufficiently removed depending on the conditions such as the amount of fired body charged, the flow time and gas amount, etc. There is.
  • the protrusion can be efficiently removed by bringing an air flow having a sufficient flow velocity into contact with the fired body having the protrusion.
  • Providing an apparatus having a structure in which an appropriate flow rate can be brought into contact with the fired body enables efficient removal of the protrusions even on a large scale.
  • it has a main body for containing the fired body, a fired body recovery means provided on the upper part of the main body, and a return means for the fired body connected to the recovery means, and the return means has an air flow at the lower end. A part of the fired body that is in contact with the airflow in the main body is recovered by the recovery means and returned to the main body by the return means to efficiently remove the protrusion even on a large scale. sell.
  • the fired body comes into contact with each other, and the protruding protrusions are removed. Since the protrusion separated from the fired body is much smaller than the fired body, it flows out of the fluidized bed reactor together with the flowing gas. At this time, it is preferable to fill the fired body in the apparatus so that the density of the fired body is 300 to 1300 kg / m 3 .
  • the cross-sectional area of the body portion of the apparatus to be used is preferably 0.1 to 100 m 2 , more preferably 0.2 to 85 m 2 .
  • the gas to be circulated is preferably an inert gas such as nitrogen or air.
  • the linear velocity (linear velocity) of the gas flowing through the body portion of the apparatus filled with a fired body such as a hopper or a fluidized bed reactor is preferably 0.03 m / s to 5 m / s, more preferably 0.05. ⁇ 1 m / s.
  • the gas circulation time is preferably 1 to 168 hours.
  • the protrusion removing device of the present embodiment includes a main body, and the fired body accommodated in the main body is brought into contact with the airflow, or the particles that have flowed by the airflow come into contact with each other on the surface of the fired body.
  • An apparatus for removing a protrusion from a fired body wherein the airflow length in the direction in which the airflow flows is 55 mm or more, and the average airflow velocity is converted to a linear velocity at 15 degrees Celsius and 1 atm. It is preferably 80 m / s or more and 500 m / s or less.
  • the fluidity of the catalyst is likely to deteriorate.
  • the catalyst is unevenly distributed in the reactor, and as a result, the heat removal efficiency is reduced, and heat is accumulated to cause an abnormal reaction.
  • the decomposition reaction may be accelerated.
  • the protrusion is partly peeled due to mutual contact between the calcined bodies in the apparatus for removing the protrusion such as a fluidized bed reactor, etc., and discharged from the apparatus outside the system, It is conceivable that the load of the process increases due to mixing in the next process. Therefore, it is preferable that the fired body and the protrusions are not mixed in the apparatus.
  • FIG. 1 schematically shows an example of an apparatus suitable for removing protrusions from a fired body on a large scale.
  • the apparatus shown in FIG. 1 includes a main body 1, a gas introduction pipe 2 penetrating the side surface of the main body 1, and an outlet pipe 3 provided on the upper surface of the main body 1 and connected to a cyclone 4.
  • the main body 1 has a substantially cylindrical shape, and the lower portion has a conical shape in the opposite direction.
  • the amount of the fired body accommodated is the highest position in the vertical direction of the gas introduction tube 2 in the main body 1 in a stationary state from the viewpoint of efficiently removing the protrusions. It is preferable to put the gas until it is immersed in the gas inlet. A large amount of the fired body may be accommodated in the main body 1, but in that case, it is necessary to consider the separation performance of a separation device such as a cyclone.
  • the gas introduction pipe 2 is horizontally introduced at a height about half that of the main body 1, and is branched near the center of the main body 1 as shown in FIG.
  • the plurality of branch chains 21 of the gas introduction pipe 2 are provided downward in the vertical direction, but the direction of the branch chains 21 is not limited to this, and may be upward or in both upper and lower directions. It may be horizontal or horizontal.
  • each branch chain 21 has a plurality of nozzles 210, and the gas supplied through the gas introduction pipe 2 is ejected from each nozzle 210. Note that the structure of the branched chain 21 is not limited to that having the nozzle 210, and as shown in FIG.
  • the branched chain 21 may have a plurality of openings 211, or FIG.
  • a rebranching portion 22 perpendicular to the branch chain 21 is provided, and the rebranching portion 22 may have a plurality of openings 220.
  • a plurality of lower gas introduction nozzles 6 are fitted in the lower part of the conical body.
  • the gas introduction nozzle 6 is L-shaped, and after being introduced perpendicularly to the main body, is opened obliquely downward, so that the fired body accumulated in the main body is separated from the nozzle 6. The introduced gas is caused to flow downward under the main body 1.
  • the shape of the gas introduction nozzle tip 61 is not limited to the L shape, and may be an I shape, or may be a state in which there is no nozzle protruding from the inner surface of the main body 1 and the wall surface is open. Also, in the case of an L-shaped nozzle, it is not necessary to open downward, and the correlation with the direction of the gas supplied from the other second gas introduction pipe 7, the upward horizontal direction, etc. depending on the shape of the main body 1, etc. It can be set appropriately.
  • One end of the outlet pipe 3 is attached to the center of the upper surface of the main body 1, and the other end is connected to the cyclone 4.
  • the cyclone 4 separates the fired body and the protrusions peeled from the fired body by centrifugal force.
  • the relatively large fired particles from which the protrusions have been removed return to the main body 1 through the return pipe 5 from the lower end of the cyclone.
  • the protrusions are light, they are removed through the discharge line 8 opened on the upper surface of the cyclone.
  • a filter (not shown) is provided at the tip of the discharge line 8 so as to capture the discharged protrusion.
  • the apparatus shown in FIG. 4 is the same as the example shown in FIG. 1 except that a fired body circulation line 71 is provided at the lower end of the main body 1. Since the other end of the circulation line 71 is open on the side surface of the main body 1, the fired body that has flowed into the circulation line 71 is transported in gas by providing a newer or the like in the line 71 and returned to the inside of the main body 1.
  • the apparatus shown in FIG. 5 is the same as the apparatus shown in FIG. 1 except that the second cyclone 42 is connected to the outlet pipe 41 of the first cyclone 4.
  • Return pipes 51 and 52 provided at the lower ends of the first cyclone 4 and the second cyclone 42 are respectively connected to the side surfaces of the main body 1, and the recovered surface bodies are returned to the main body 1.
  • the apparatus shown in FIG. 6 has a double structure in which the main body 1 is composed of an outer tube 11 and an inner tube 12, and gas is introduced from the gas introduction tube 2 between the outer tube 11 and the inner tube 12. Since the apparatus is substantially the same as the apparatus shown in FIG.
  • the inner tube 12 has a plurality of openings 13, and the gas supplied between the outer tube 11 and the inner tube 12 is ejected from the openings 13 into the main body 1.
  • the inner pipe 12 opens to the outlet pipe 3 and the return pipe 5, but the outer pipe 11 is not connected to these, so the fired body does not enter between the outer pipe 11 and the inner pipe 12, and the outlet pipe 3.
  • the second gas introduction tube 7 is also opened only to the inner tube 12, and an appropriate amount of gas can be supplied from the gas introduction tube 7 so that the fired body does not collect on the bottom of the main body 1.
  • the gas introduction pipe 2 having a plurality of branch chains 21 is not provided, but the gas having the branch chains 21 as shown in FIG. An introduction pipe 2 may be provided.
  • the outlet pipe 3 is composed of an outer pipe 31 and an inner pipe 32, and gas is supplied from the nozzle 33 therebetween
  • the return pipe 5 is composed of an outer pipe 53 and an inner pipe 54, and gas is passed from the nozzle 55 between them. Is supplied.
  • the apparatus shown in FIG. 7 may be used in combination with the apparatus shown in FIG.
  • the airflow distribution port may be provided by directly making a hole in the wall surface of the main body for containing the fired body and making contact with the airflow, or making a hole in the pipe, pipe, etc. through the pipe, pipe, etc. inside the main body A distribution port may be provided.
  • the fired bodies when the airflows contact each other, the fired bodies also come into contact with each other, and the fired bodies may be broken or chipped. From the viewpoint of preventing the fired body from cracking and the piping and the main body from being worn, it is preferable that the air current does not directly contact the pipe or the wall of the main body.
  • the airflow distribution port has an airflow length of 55 mm or more in the direction in which the airflow flows, and an average flow velocity of the airflow of 80.0 m / s or more and 500 m / s as a linear velocity at 15 degrees Celsius and 1 atmosphere. s or less indicates a hole into which the airflow enters the inside of the main body.
  • the size of the air flow port is preferably about 0.04 mm to 20 cm in diameter, and more preferably about 0.04 mm to 5 cm, but the shape of the flow port may be any. Moreover, the hole diameter of the airflow may not be uniform. Furthermore, although it is preferable that the number of airflow circulation ports is large, as described above, when a hole is provided at a distance where the airflows contact each other, the fired bodies may come into contact with each other and the fired body may break. . Therefore, in consideration of the airflow diameter, the airflow length, the airflow volume, and the like calculated by the equations described in the following Horio et al. (1) and YATES et al. It is desirable to open a space between the distribution ports.
  • the length of the airflow in the direction in which the airflow flows at this time is preferably 55 mm or more from the viewpoint of contact efficiency and catalyst fluidity unless the main body wall, pipe, etc. are in contact with the apparatus.
  • the airflow length can be calculated using the equation of YATES et al.
  • the airflow diameter can be calculated using the equation of Horio et al.
  • the flow velocity of the air flow is calculated by the area of the air flow circulation port and the flow rate of the gas, but in order to efficiently peel the protrusions from the surface of the fired body, the average flow velocity of the air flow from each circulation port is 15 degrees Celsius, When converted as a linear velocity at 1 atm, it is 80 m / s or more and 500 m / s or less, preferably 200 m / s or more and 341 m / s or less.
  • the ejection flow rate Y (m 3 / h) and the flow velocity u (m / s) of the air flow are expressed as follows: the internal pressure of the nozzle pipe is a (kg / cm 2 G), and the nozzle pressure is b (kg / cm 2 G).
  • the temperature of the gas at that time is k (° C.)
  • the area of the gas flow port is S (m 2 )
  • the average flow velocity of the air current can be obtained by averaging the obtained linear velocities.
  • the time during which the gas is brought into contact with the fired body at the linear velocity is preferably 10 hours or more and 100 hours or less.
  • the contact time between the gas and the fired body is preferably 15 hours or longer and 60 hours or shorter.
  • a mechanism may be provided in which the fired body is conveyed and circulated by a pneumatic or the like and brought into contact with the airflow. Further, the contact efficiency with the airflow may be increased by introducing a propeller-like rotating body or a rotating rod-like object into the main body of the apparatus, and rotating and stirring the apparatus.
  • a high-speed gas air stream
  • the air stream and the fired body are brought into contact
  • the fired body is fluidized
  • the protrusion on the surface of the fired body is removed by air flow shearing.
  • the inert gas such as dried air or nitrogen, is preferable.
  • the present inventors consider that the value obtained by multiplying the airflow volume (V) and the number of holes (K) in the airflow distribution port reflects the total volume that the airflow can give the fired body a speed.
  • the sintered body amounts to u 2 ⁇ V ⁇ K (M )
  • the correlation between the value divided by the above and the time required to remove a sufficient amount of protrusions from the surface of the fired body was examined.
  • u 2 ⁇ V ⁇ K / M was almost inversely proportional to the time required for processing, suggesting that it is appropriate as an index of energy (hereinafter, u 2 ⁇ V ⁇ K). / M is also referred to as “energy conversion value”).
  • the time required for each step falls within a certain range in view of ease of work, etc. For example, it is easy to drive if the processing time is set to end within one day.
  • the energy conversion value is in an inversely proportional relationship with the time required for the removal process, by increasing the energy conversion value to some extent, the removal process time having an approximately inversely proportional relationship with this is within a preferable time.
  • the present inventors experimentally examined a preferable energy conversion value. As a result, the air flow velocity u (m / s) passed through the air flow circulation port.
  • the energy conversion value is u 2 ⁇ V ⁇ K / M ⁇ 100 It was found that it is preferable to set each numerical value so as to satisfy. That is, the following formula (X) 14 ⁇ u 2 ⁇ V ⁇ K / M ⁇ 100 (X) By satisfying the above, it has been found that the processing time of the removal step can be suppressed within a certain range and destruction of the fired body can be prevented, so that the protrusions can be more efficiently removed from the surface of the fired body.
  • the suitable value of the energy conversion value depends on the factor of the removal device, and changes depending on the shape, size, orientation of the nozzle, contact with the wall, etc. It is more preferable to satisfy 20 ⁇ u 2 ⁇ V ⁇ K / M ⁇ 90, and it is even more preferable to satisfy 30 ⁇ u 2 ⁇ V ⁇ K / M ⁇ 80.
  • the protrusion peeled off from the fired body by the protrusion removing device is much smaller than the spherical catalyst and flows out with the flowing gas, so it can be collected by a filter or the like. However, at the same time, fine catalyst particles (but larger than the protrusions) may also be collected by the filter. Therefore, it is preferable to increase the separation efficiency using a separation device such as a cyclone.
  • a plurality of separation devices such as a cyclone may be provided, or different separation devices may be used in combination.
  • a mechanism that can be separately collected outside the system by installing, for example, a three-way valve at the bottom of the cyclone May be provided.
  • the separated catalyst component is again transported into the main body, and at that time, it is preferable to return the catalyst component to a position where the catalyst contacts the airflow again. For example, if the overall gas flow eventually goes upward, the catalyst will also rise along this gas flow, so a return port for the catalyst separated below the air flow port should be provided. Is preferred.
  • the angle of repose of the protrusion is large or the protrusion has viscosity, it may not only adhere to the wall surface inside the main body but also adhere to the pipe and block the pipe. It is preferable to introduce purge air or the like into the system. Furthermore, in order to remove the protrusion adhering to the piping, a mechanism for cleaning with a liquid such as water or alcohol may be provided.
  • the following equipment When removing protrusions on a gram scale, the following equipment can be used. That is, a vertical tube having a perforated plate having one or more holes at the bottom and a paper filter at the top can be used. By putting the fired body into this vertical tube and allowing air to flow from the lower part, an airflow flows from each hole to promote contact between the fired bodies, and the protrusions are removed.
  • the composite oxide catalyst obtained after removing the protrusions is represented by the following formula (1): Mo 1 V a Sb b Nb c W d Z e O n ⁇ (1)
  • component Z is at least one element selected from La, Ce, Pr, Yb, Y, Sc, Sr, and Ba, and a, b, c, d, e, and n are each Mo1.
  • the atomic ratio of each element to the atom is shown, and 0.1 ⁇ a ⁇ 0.4, 0.1 ⁇ b ⁇ 0.4, 0.01 ⁇ c ⁇ 0.3, 0 ⁇ d ⁇ 0.2, 0 ⁇ e ⁇ 0.1, and the atomic ratios a / b and a / c are 0.85 ⁇ a / b ⁇ 1.0 and 1.4 ⁇ a / c ⁇ 2.3.)
  • the composite oxide which has the composition represented by these is included.
  • the atomic ratio a / c satisfies 1.4 ⁇ a / c ⁇ 2.3, thereby promoting the growth of a crystalline reaction field for proper ammoxidation.
  • Nb is small, The crystalline ammoxidation reaction field decreases, and if there is too much Nb, there is a possibility of promoting the growth of a crystal phase other than the reaction field.
  • the crystallite diameter of the catalyst is preferably 20 to 250 nm. In the case where the crystallite diameter is smaller than 20 nm, the catalyst active points are reduced due to the small crystal particles. Moreover, since it is expected that other crystal systems and amorphous substances that may originally become active species are likely to cause side reactions. When the crystallite diameter of the catalyst exceeds 250 nm, the active species of the catalyst are active species of the catalyst on one side and also promote side reactions on the other side. , The tendency to promote side reactions increases. From the same viewpoint, the crystallite diameter of the catalyst is more preferably 40 to 150 nm. In general, the size of a crystal can be measured using X-ray diffraction.
  • the crystallite diameter (L) of the catalyst is a value determined by the following Scherrer equation using RINT2500VHF (trade name) manufactured by Rigaku Corporation.
  • L K ⁇ / ( ⁇ Cos ⁇ )
  • K is a constant and is 0.9.
  • is the wavelength of the X-ray, 1.5418 mm
  • is the half width at that angle (unit: radians)
  • the half width B is a value obtained by subtracting 0.1).
  • ⁇ and ⁇ are input in radians.
  • the growth of crystal grains is largely related to the firing temperature and the catalyst composition. When the active species of this catalyst have the same composition, it is possible to increase the crystallite size of the active species by increasing the calcination temperature.
  • the crystallite size is increased by slowing the rate of temperature decrease when the temperature is lowered from the main firing temperature, while the crystallite size is decreased when the temperature is rapidly decreased. Furthermore, if the oxidation / reduction conditions at the time of firing, the composition of the raw material charge, for example, the content of elements such as Nb is increased, the crystallite size decreases. Thus, by adjusting various conditions, The size can be controlled.
  • the composite oxide catalyst in the present embodiment includes a composite oxide having a composition represented by the above formula (1) at a stage before being subjected to a gas phase catalytic oxidation reaction or a gas phase catalytic ammoxidation reaction of propane or isobutane. .
  • the metal composition ratio changes due to sublimation of a metal element such as Mo, addition of a new catalyst, etc., but at the stage before starting the reaction, it has a composition represented by the formula (1). It is important to show favorable reaction performance in the initial stage and in the continuous reaction. That is, since the composition expressed by the formula (1) is optimized for the composite oxide before the start of the reaction, even if it becomes a different composition thereafter, it has the composition at the start of the reaction. Just do it.
  • the gas phase catalytic oxidation reaction of this embodiment is a method for producing an unsaturated acid using the composite oxide catalyst in a method for producing a corresponding unsaturated acid by subjecting propane or isobutane to a gas phase catalytic oxidation reaction.
  • the gas phase catalytic ammoxidation reaction of this embodiment is a method for producing an unsaturated nitrile using the composite oxide catalyst in a method for producing a corresponding unsaturated nitrile by subjecting propane or isobutane to a gas phase catalytic ammoxidation reaction. It is.
  • Propane, isobutane and ammonia feedstocks do not necessarily have to be high purity, and industrial grade gases can be used.
  • As the supply oxygen source air, pure oxygen, or air enriched with pure oxygen can be used.
  • helium, neon, argon, carbon dioxide gas, water vapor, nitrogen or the like may be supplied as a dilution gas.
  • the gas phase catalytic oxidation reaction of propane or isobutane can be performed under the following conditions.
  • the molar ratio of oxygen supplied to the reaction to propane or isobutane is preferably 0.1 to 6, more preferably 0.5 to 4.
  • the reaction temperature is preferably 300 to 500 ° C, more preferably 350 to 500 ° C.
  • the reaction pressure is preferably 5 ⁇ 10 4 to 5 ⁇ 10 5 Pa, more preferably 1 ⁇ 10 5 to 3 ⁇ 10 5 Pa.
  • the contact time is preferably 0.1 to 10 (sec ⁇ g / cc), more preferably 0.5 to 5 (sec ⁇ g / cc).
  • the contact time is defined by the following equation.
  • Contact time (sec ⁇ g / cc) (W / F) ⁇ 273 / (273 + T)
  • W, F, and T are defined as follows.
  • W filled catalyst amount (g)
  • F Raw material mixed gas flow rate (Ncc / sec) in standard state (0 ° C., 1.013 ⁇ 10 5 Pa)
  • T reaction temperature (° C.)
  • the gas phase catalytic ammoxidation reaction of propane or isobutane can be performed under the following conditions.
  • the molar ratio of oxygen supplied to the reaction to propane or isobutane is preferably 0.1 to 6, more preferably 0.5 to 4.
  • the molar ratio of ammonia to propane or isobutane supplied to the reaction is preferably 0.3 to 1.5, more preferably 0.7 to 1.2.
  • the reaction temperature is preferably 350 to 500 ° C, more preferably 380 to 470 ° C.
  • the reaction pressure is preferably 5 ⁇ 10 4 to 5 ⁇ 10 5 Pa, more preferably 1 ⁇ 10 5 to 3 ⁇ 10 5 Pa.
  • the contact time is preferably 0.1 to 10 (sec ⁇ g / cc), more preferably 0.5 to 5 (sec ⁇ g / cc).
  • reaction method in the gas phase oxidation reaction and the gas phase ammoxidation reaction a conventional method such as a fixed bed, a fluidized bed, and a moving bed can be adopted, but a fluidized bed reactor in which reaction heat can be easily removed is preferable.
  • the gas phase ammoxidation reaction may be a single flow type or a recycle type.
  • Method for measuring the reduction rate of the pre-stage calcined product About 200 mg of the pre-stage calcined product was precisely weighed in a beaker. An excessive amount of KMnO 4 aqueous solution having a known concentration was added thereto. Further, 150 mL of pure water at 70 ° C. and 2 mL of 1: 1 sulfuric acid (that is, an aqueous sulfuric acid solution obtained by mixing concentrated sulfuric acid and water at a volume ratio of 1/1, the same applies hereinafter) were added. The beaker was then capped with a watch glass and stirred in a 70 ° C. ⁇ 2 ° C. water bath for 1 hr to oxidize the sample.
  • 1: 1 sulfuric acid that is, an aqueous sulfuric acid solution obtained by mixing concentrated sulfuric acid and water at a volume ratio of 1/1, the same applies hereinafter
  • the specific surface area of the fired body was determined by the BET 1-point method using Gemini 2360 (trade name) manufactured by MICROMETRICS.
  • niobium mixed solution was prepared by the following method. Niobic acid 1.530 kg containing 79.8% by mass as Nb 2 O 5 and oxalic acid dihydrate [H 2 C 2 O 4 .2H 2 O] 5.266 kg were mixed with 10 kg of water. The molar ratio of charged oxalic acid / niobium was 5.0, and the concentration of charged niobium was 0.50 (mol-Nb / kg-solution). This solution was heated and stirred at 95 ° C. for 2 hours to obtain a mixed solution in which niobium was dissolved.
  • the mixture was allowed to stand and ice-cooled, and then the solid was separated by suction filtration to obtain a uniform niobium mixture.
  • the molar ratio of oxalic acid / niobium in this niobium mixture was 2.68 according to the following analysis. 10 g of this niobium mixed solution was precisely weighed in a crucible, dried overnight at 95 ° C., and then heat-treated at 600 ° C. for 1 hour to obtain 0.7895 g of Nb 2 O 5 . From this result, the niobium concentration was 0.594 (mol-Nb / kg-solution).
  • niobium mixed liquid (B 0 ) was used as a niobium raw material liquid in the production of the composite oxide catalysts of Examples 1 to 14 below.
  • Example 1 (Preparation of dry powder) A dry powder (D 1 ) was produced as follows. In 1.557 kg of water, 432.1 g of ammonium heptamolybdate [(NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O], 59.9 g of ammonium metavanadate [NH 4 VO 3 ], antimony trioxide [Sb 2 O 3] was 84.3 g, further cerium nitrate [Ce (NO 3) 3 ⁇ 6H 2 O ] was added 4.8 g, was prepared aqueous feed solution (a 1) was heated with stirring for 1 hour at 95 ° C. .
  • an aqueous raw material liquid (B 1 ), an aqueous solution of ammonium metatungstate 31.0 g (purity 50%), and a dispersion obtained by dispersing 211.5 g of powdered silica in 2.855 kg of water were sequentially added, and then 50 The mixture was aged and stirred at a temperature of 2.5 ° C. for 2.5 hours to obtain a slurry-like aqueous mixture (C 1 ) as a raw material mixture.
  • the obtained aqueous mixed liquid (C 1 ) was supplied to a centrifugal spray dryer (drying heat source is air, the same applies hereinafter) and dried to obtain a microspherical dry powder (D 1 ).
  • the dryer inlet temperature was 210 ° C.
  • the obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product.
  • the obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.2% by mass and an average particle size of 54 ⁇ m.
  • the particle content and the average particle size were measured by LS230 (trade name) manufactured by BECKMAN COULTER (the same applies hereinafter).
  • Air knockers were installed at both ends of the SUS calcining tube, and the air knocker was hit at a frequency of 10 hits per minute.
  • the air pressure at the air knocker inlet was set so that the vibration acceleration of the surface of the SUS fired tube due to impact was 50 m / s 2 .
  • Vibration acceleration was measured using a vibrometer (MD-220 (trade name) manufactured by Asahi Kasei Technosystem Co., Ltd., the same applies hereinafter). While rotating the firing tube at a rate of 4 revolutions / minute, the temperature is raised to 370 ° C., which is the maximum firing temperature, over 4 hours, and the furnace temperature is set so that the temperature can be maintained at 370 ° C. for 1 hour. It was.
  • a small amount of the pre-stage calcined body collected at the calcining tube outlet was sampled and heated to 400 ° C. in a nitrogen atmosphere, and then the reduction rate was measured to be 10.2%.
  • the recovered pre-stage calcined body was fed at a supply rate of 60 g / hr to a continuous SUS calcining tube having a diameter of 3 inches and a length of 89 cm in a rotary furnace. In the firing tube, 1.1 NL / min of nitrogen gas was allowed to flow in the same direction as the dry powder supply direction and in the same direction, so that the total flow rate was 2.2 NL / min.
  • Air knockers were installed at both ends of the SUS calcining tube, and the air knocker was hit at a frequency of 10 hits per minute.
  • the air pressure at the air knocker inlet was set so that the vibration acceleration of the surface of the SUS fired tube due to impact was 50 m / s 2 .
  • Vibration acceleration was measured using a vibrometer. The temperature was raised to 680 ° C. in 2 hours, held at 680 ° C. for 2 hours, and then the furnace temperature was set so that the temperature could be lowered to 300 ° C. over 8 hours.
  • Calcining tube fired body obtained from the outlet (F 1) was 14.0 m 2 / g When the specific surface area was measured for.
  • the specific surface area of the fired product was determined by the BET 1-point method using Gemini 2360 (trade name) manufactured by MICROMETRICS (hereinafter the same).
  • 50 g of the fired body (F 1 ) was placed in a vertical tube (inner diameter: 41.6 mm, length: 70 cm) provided with a holed disk having three holes with a diameter of 1/64 inch at the bottom and a paper filter at the top.
  • air was circulated at room temperature from the lower side of the vertical tube to the upper side through the holes to promote contact between the fired bodies.
  • the airflow length in the direction in which the airflow flows at this time was 56 mm, and the average linear velocity of the airflow was 332 m / s.
  • Example 2 Preparation of dry powder
  • a dry powder (D 1 ) was produced as follows. To 2.220 kg of water, 611.5 g of ammonium heptamolybdate [(NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O], 84.7 g of ammonium metavanadate [NH 4 VO 3 ], antimony trioxide [Sb 2 O 3] to 119.3 g, further cerium nitrate [Ce (NO 3) 3 ⁇ 6H 2 O ] was added 6.8 g, was prepared aqueous feed solution (a 1) was heated with stirring for 1 hour at 95 ° C. .
  • an aqueous raw material liquid (B 1 ), an aqueous solution of ammonium metatungstate 42.8 g (purity 50%), and a dispersion obtained by dispersing 112.5 g of powdered silica in 1519 kg of water were sequentially added, and then at 50 ° C.
  • the mixture was aged and stirred for 2.5 hours to obtain a slurry-like aqueous mixed liquid (C 1 ) as a raw material preparation liquid.
  • the obtained aqueous mixed liquid (C 1 ) was supplied to a centrifugal spray dryer and dried to obtain a microspherical dry powder (D 1 ).
  • the dryer inlet temperature was 210 ° C. and the outlet temperature was 120 ° C.
  • the obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product.
  • the obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.3% by mass and an average particle size of 52 ⁇ m.
  • (Baking of dry powder (E 1 )) Firing was performed under the same conditions as in Example 1.
  • the reduction ratio of the pre-stage calcined product at this time was 10.3%, and the specific surface area of the calcined product after the main calcination was 12.5 m 2 / g.
  • Example 3 (Preparation of dry powder) A dry powder (D 1 ) was produced as follows. Ammonium heptamolybdate in water 1.027kg [(NH 4) 6 Mo 7 O 24 ⁇ 4H 2 O ] was 285.4G, ammonium metavanadate [NH 4 VO 3] 39.5 g, diantimony trioxide [Sb 2 O 3] was 55.7 g, further cerium nitrate [Ce (NO 3) 3 ⁇ 6H 2 O ] was added 3.2 g, was prepared aqueous feed solution (a 1) was heated with stirring for 1 hour at 95 ° C. .
  • an aqueous raw material liquid (B 1 ), 20.4 g of ammonium metatungstate aqueous solution (purity 50%), and a dispersion in which 292.5 g of powdered silica was dispersed in 3948 kg of water were sequentially added, and then at 50 ° C.
  • the mixture was aged and stirred for 2.5 hours to obtain a slurry-like aqueous mixed liquid (C 1 ) as a raw material preparation liquid.
  • the obtained aqueous mixed liquid (C 1 ) was supplied to a centrifugal spray dryer and dried to obtain a microspherical dry powder (D 1 ).
  • the dryer inlet temperature was 210 ° C. and the outlet temperature was 120 ° C.
  • the obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product.
  • the obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.3% by mass and an average particle size of 56 ⁇ m.
  • (Baking of dry powder (E 1 )) Firing was performed under the same conditions as in Example 1.
  • the reduction ratio of the pre-stage calcined product at this time was 10.5%, and the specific surface area of the calcined product after the main calcination was 17.0 m 2 / g.
  • Example 4 (Preparation of dry powder) A dry powder (D 1 ) was produced as follows. To 1.806 kg of water, 432.1 g of ammonium heptamolybdate [(NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O], 69.4 g of ammonium metavanadate [NH 4 VO 3 ], antimony trioxide [Sb 2 O 3] was 90.1 g, further cerium nitrate [Ce (NO 3) 3 ⁇ 6H 2 O ] was added 4.8 g, was prepared aqueous feed solution (a 1) was heated with stirring for 1 hour at 95 ° C. .
  • an aqueous raw material liquid (B 1 ), an aqueous solution of ammonium metatungstate 31.0 g (purity 50%), and a dispersion obtained by dispersing 211.5 g of powdered silica in 2.855 kg of water were sequentially added, and then 50 The mixture was aged and stirred at a temperature of 2.5 ° C. for 2.5 hours to obtain a slurry-like aqueous mixture (C 1 ) as a raw material mixture.
  • the obtained aqueous mixed liquid (C 1 ) was supplied to a centrifugal spray dryer and dried to obtain a microspherical dry powder (D 1 ).
  • the dryer inlet temperature was 210 ° C. and the outlet temperature was 120 ° C.
  • the obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product.
  • the obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.5% by mass and an average particle size of 55 ⁇ m.
  • (Baking of dry powder (E 1 )) Firing was performed under the same conditions as in Example 1.
  • the reduction ratio of the pre-stage calcined product at this time was 10.0%, and the specific surface area of the calcined product after the main calcination was 12.5 m 2 / g.
  • Example 5 (Preparation of dry powder)
  • the dry powder (D 1 ) was prepared in the same manner as in Example 1. (Classification operation) The obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product.
  • the obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.5% by mass and an average particle size of 58 ⁇ m.
  • (Baking of dry powder (E 1 )) Firing was performed under the same conditions as in Example 1 except that the pre-stage firing temperature was changed to 360 ° C. and the total nitrogen flow rate during the pre-stage firing was changed to 7.5 NL / min.
  • the reduction ratio of the pre-stage calcined product at this time was 10.0%, and the specific surface area of the calcined product after the main calcination was 12.0 m 2 / g.
  • the protrusions were removed under the same conditions as in Example 1, and the a / b and a / c composition ratios of the composite oxide catalyst (G 1 ) were measured by fluorescent X-ray analysis. The obtained results are shown in Table 1.
  • the composition of this time the resulting composite oxide catalyst (G 1) is met Mo 1 V 0.207 Sb 0.219 Nb 0.102 W 0.030 Ce 0.005 O n /51.0wt%-SiO 2 It was.
  • (Propane ammoxidation reaction) When the reaction was conducted under the same conditions as in Example 1, the propane conversion after the reaction was 88.8%, and the acrylonitrile yield was 55.1%.
  • Example 6 Preparation of dry powder
  • the dry powder (D 1 ) was prepared in the same manner as in Example 1. (Classification operation) The obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product.
  • the obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.7% by mass and an average particle size of 54 ⁇ m.
  • (Baking of dry powder (E 1 )) Firing was carried out under the same conditions as in Example 1 except that the total nitrogen flow rate during the previous stage firing was changed to 2.3 NL / min (each of countercurrent and cocurrent flow was 1.15 NL / min). It was.
  • the reduction ratio of the pre-stage calcined product at this time was 10.3%, and the specific surface area of the calcined product after the main calcination was 14.8 m 2 / g.
  • the protrusions were removed under the same conditions as in Example 1, and the a / b and a / c composition ratios of the composite oxide catalyst (G 1 ) were measured by fluorescent X-ray analysis. The obtained results are shown in Table 1.
  • the composition of this time the resulting composite oxide catalyst (G 1) is met Mo 1 V 0.207 Sb 0.219 Nb 0.102 W 0.030 Ce 0.005 O n /51.0wt%-SiO 2 It was.
  • (Propane ammoxidation reaction) When the reaction was carried out under the same conditions as in Example 1, the propane conversion after the reaction was 89.0%, and the acrylonitrile yield was 55.1%.
  • Example 7 (Preparation of dry powder)
  • the dry powder (D 1 ) was prepared in the same manner as in Example 1. (Classification operation) The obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product.
  • the obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.2% by mass and an average particle size of 53 ⁇ m.
  • (Baking of dry powder (E 1 )) Firing was performed under the same conditions as in Example 1 except that the total nitrogen flow rate during main firing was changed to 3.2 NL / min (each countercurrent and cocurrent was 1.6 NL / min). It was.
  • the reduction ratio of the pre-stage calcined product at this time was 10.3%, and the specific surface area of the calcined product after the main calcination was 13.6 m 2 / g.
  • the protrusions were removed under the same conditions as in Example 1, and the a / b and a / c composition ratios of the composite oxide catalyst (G 1 ) were measured by fluorescent X-ray analysis. The obtained results are shown in Table 1.
  • the composition of this time the resulting composite oxide catalyst (G 1) is met Mo 1 V 0.207 Sb 0.219 Nb 0.102 W 0.030 Ce 0.005 O n /51.0wt%-SiO 2 It was.
  • (Propane ammoxidation reaction) When the reaction was carried out under the same conditions as in Example 1, the propane conversion after the reaction was 88.6%, and the acrylonitrile yield was 55.1%.
  • Example 8 Preparation of dry powder
  • the dry powder (D 1 ) was prepared in the same manner as in Example 1. (Classification operation) The obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product. The obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.3% by mass and an average particle size of 52 ⁇ m. (Baking of dry powder (E 1 )) Firing was performed under the same conditions as in Example 1 except that the total nitrogen flow rate during main firing was changed to 1.0 NL / min (each countercurrent and cocurrent flow was 0.5 NL / min). It was.
  • the reduction ratio of the pre-stage calcined product at this time was 10.1%, and the specific surface area of the calcined product after the main calcination was 12.4 m 2 / g.
  • the protrusions were removed under the same conditions as in Example 1, and the a / b and a / c composition ratios of the composite oxide catalyst (G 1 ) were measured by fluorescent X-ray analysis. The obtained results are shown in Table 1.
  • the composition of this time the resulting composite oxide catalyst (G 1) is met Mo 1 V 0.207 Sb 0.219 Nb 0.102 W 0.030 Ce 0.005 O n /51.0wt%-SiO 2 It was.
  • (Propane ammoxidation reaction) When the reaction was conducted under the same conditions as in Example 1, the propane conversion after the reaction was 89.1%, and the acrylonitrile yield was 55.1%.
  • Example 9 (Preparation of dry powder) The dry powder (D 1 ) was prepared in the same manner as in Example 1. (Classification operation) The obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product. The obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.1% by mass and an average particle size of 49 ⁇ m. (Baking of dry powder (E 1 )) Firing was performed under the same conditions as in Example 1 except that the number of rotations of the firing tube at the previous stage firing was changed to 1 time / minute.
  • the reduction ratio of the pre-stage calcined product at this time was 11.2%, and the specific surface area of the calcined product after the main calcination was 15.6 m 2 / g.
  • the protrusions were removed under the same conditions as in Example 1, and the a / b and a / c composition ratios of the composite oxide catalyst (G 1 ) were measured by fluorescent X-ray analysis. The obtained results are shown in Table 1.
  • the composition of this time the resulting composite oxide catalyst (G 1) is met Mo 1 V 0.207 Sb 0.219 Nb 0.102 W 0.030 Ce 0.005 O n /51.0wt%-SiO 2 It was.
  • (Propane ammoxidation reaction) When the reaction was carried out under the same conditions as in Example 1, the propane conversion after the reaction was 87.2%, and the acrylonitrile yield was 54.0%.
  • Example 10 Preparation of dry powder
  • the dry powder (D 1 ) was prepared in the same manner as in Example 1. (Classification operation) The obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product.
  • the obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.6% by mass and an average particle size of 55 ⁇ m.
  • the firing conditions are: the maximum firing temperature during the pre-stage firing is 330 ° C., the number of rotations of the firing tube is 12 times / minute, and the total nitrogen flow rate during the pre-stage firing is 6.0 NL / min (countercurrent and parallel flow are each 3.
  • the calcination was performed under the same conditions as in Example 1 except for changing to 0 NL / min.
  • the reduction ratio of the pre-stage calcined product at this time was 9.8%, and the specific surface area of the calcined product after the main calcination was 12.1 m 2 / g.
  • Example 11 (Preparation of dry powder)
  • the dry powder (D 1 ) was prepared in the same manner as in Example 1.
  • the obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product.
  • the obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.5% by mass and an average particle size of 58 ⁇ m.
  • (Baking of dry powder (E 1 )) Firing was performed under the same conditions as in Example 1 except that the supply amount of the dry powder (E 1 ) at the previous stage firing was changed to 72 g / hr.
  • Example 12 (Preparation of dry powder)
  • the dry powder (D 1 ) was prepared in the same manner as in Example 1. (Classification operation) The obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product.
  • the obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.4% by mass and an average particle size of 60 ⁇ m.
  • (Baking of dry powder (E 1 )) Firing was performed under the same conditions as in Example 1 except that the supply amount of the dry powder (E 1 ) at the previous stage firing was changed to 89 g / hr.
  • the reduction ratio of the pre-stage calcined product at this time was 9.9%, and the specific surface area of the calcined product after the main calcination was 12.2 m 2 / g.
  • the protrusions were removed under the same conditions as in Example 1, and the a / b and a / c composition ratios of the composite oxide catalyst (G 1 ) were measured by fluorescent X-ray analysis. The obtained results are shown in Table 1.
  • the composition of this time the resulting composite oxide catalyst (G 1) is met Mo 1 V 0.207 Sb 0.219 Nb 0.102 W 0.030 Ce 0.005 O n /51.0wt%-SiO 2 It was.
  • (Propane ammoxidation reaction) When the reaction was carried out under the same conditions as in Example 1, the propane conversion after the reaction was 87.8%, and the acrylonitrile yield was 54.6%.
  • Example 13 (Preparation of dry powder)
  • the dry powder (D 1 ) was prepared in the same manner as in Example 1. (Classification operation) The obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product.
  • the obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.4% by mass and an average particle size of 62 ⁇ m.
  • the reduction ratio of the pre-stage calcined product at this time was 10.3%, and the specific surface area of the calcined product after the main calcination was 12.0 m 2 / g.
  • the protrusions were removed under the same conditions as in Example 1, and the a / b and a / c composition ratios of the composite oxide catalyst (G 1 ) were measured by fluorescent X-ray analysis. The obtained results are shown in Table 1.
  • the composition of this time the resulting composite oxide catalyst (G 1) is met Mo 1 V 0.207 Sb 0.219 Nb 0.102 W 0.030 Ce 0.005 O n /51.0wt%-SiO 2 It was.
  • (Propane ammoxidation reaction) When the reaction was carried out under the same conditions as in Example 1, the propane conversion after the reaction was 88.4%, and the acrylonitrile yield was 55.2%.
  • Example 14 (Preparation of dry powder)
  • the dry powder (D 1 ) was prepared in the same manner as in Example 1. (Classification operation) The obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product.
  • the obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.4% by mass and an average particle size of 58 ⁇ m.
  • (Baking of dry powder (E 1 )) Firing was performed under the same conditions as in Example 1 except that the supply amount of the pre-stage fired body during main firing was changed to 84 g / hr.
  • the reduction ratio of the pre-stage calcined product at this time was 10.4%, and the specific surface area of the calcined product after the main calcination was 14.0 m 2 / g.
  • the protrusions were removed under the same conditions as in Example 1, and the a / b and a / c composition ratios of the composite oxide catalyst (G 1 ) were measured by fluorescent X-ray analysis. The obtained results are shown in Table 1.
  • the composition of this time the resulting composite oxide catalyst (G 1) is met Mo 1 V 0.207 Sb 0.219 Nb 0.102 W 0.030 Ce 0.005 O n /51.0wt%-SiO 2 It was.
  • (Propane ammoxidation reaction) When the reaction was carried out under the same conditions as in Example 1, the propane conversion after the reaction was 88.4%, and the acrylonitrile yield was 54.3%.
  • Example 15 (Preparation of niobium raw material liquid) A niobium raw material solution was prepared by the following method. 72.2 kg of niobic acid containing 77.9% by mass as Nb 2 O 5 and 267 kg of oxalic acid dihydrate [H 2 C 2 O 4 .2H 2 O] were mixed in 500 kg of water. The molar ratio of the charged oxalic acid / niobium was 5.0, and the concentration of the charged niobium was 0.552 (mol-Nb / kg-solution). This solution was heated and stirred at 95 ° C. for 1 hour to obtain an aqueous solution in which the niobium compound was dissolved.
  • the aqueous solution was allowed to stand and ice-cooled, and then the solid was separated by suction filtration to obtain a uniform aqueous niobium compound solution. The same operation was repeated several times, and the obtained niobium compound aqueous solution was combined into one niobium raw material solution.
  • the molar ratio of oxalic acid / niobium in this niobium raw material liquid was 2.40 according to the following analysis. In a crucible, 10 g of this niobium raw material solution was precisely weighed, dried overnight at 95 ° C., and then heat-treated at 600 ° C. for 1 hour to obtain 0.835 g of Nb 2 O 5 .
  • the niobium concentration was 0.590 (mol-Nb / kg-solution).
  • 3 g of this niobium raw material solution was precisely weighed into a 300 mL glass beaker, 200 mL of hot water at about 80 ° C. was added, and then 10 mL of 1: 1 sulfuric acid was added.
  • the obtained solution was titrated with 1 / 4N KMnO 4 under stirring while maintaining the liquid temperature at 70 ° C. on a hot stirrer. The end point was a point where a faint pale pink color by KMnO 4 lasted for about 30 seconds or more.
  • the concentration of oxalic acid was 1.50 (mol-oxalic acid / kg) as a result of calculation from the titration amount according to the following formula. 2KMnO 4 + 3H 2 SO 4 + 5H 2 C 2 O 4 ⁇ K 2 SO 4 + 2MnSO 4 + 10CO 2 + 8H 2 O It was repeatedly prepared through the same process and used as a niobium raw material liquid in the production of the following composite oxide catalyst.
  • the liquid temperature was maintained at about 20 ° C., and the mixture was stirred and mixed to obtain an aqueous liquid (B-1).
  • aqueous mixed liquid (A-1) After cooling the obtained aqueous mixed liquid (A-1) to 70 ° C., 56.55 kg of silica sol containing 32.0% by mass as SiO 2 was added. Then added hydrogen peroxide 6.44kg containing 30% by mass as H 2 O 2, was mixed with stirring for 1 hour at 50 ° C., was 2.38kg dissolved aqueous solution of ammonium metatungstate aqueous solution (B -1) was added. Further, a solution obtained by adding 14.81 kg of fumed silica in 214.7 kg of water was agitated and aged at 50 ° C.
  • the obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.8% by mass and an average particle size of 55 ⁇ m.
  • the obtained dry powder (E 1 ) is a continuous SUS cylindrical firing tube having an inner diameter of 500 mm, a length of 3500 mm, and a wall thickness of 20 mm in a rotary furnace, and is composed of seven weir plates with a height of 150 mm.
  • the heated portion was supplied at a rate of 20 kg / hr to a calcining tube installed so as to divide the length of the heated portion into 8 equal parts.
  • a temperature profile is obtained in which 600 NL / min of nitrogen gas is circulated in the firing tube and the firing tube is rotated at 4 revolutions / minute, and the temperature is raised to 370 ° C. over about 4 hours and maintained at 370 ° C. for 3 hours.
  • the pre-stage calcined product was obtained by adjusting the heating furnace temperature and calcining the pre-stage.
  • the obtained pre-fired body was fired under the same conditions as the main firing shown in Example 1.
  • the reduction rate of the pre-stage calcined product was 10.2%, and the specific surface area of the calcined product after the main calcination was 13.5 m 2 / g.
  • Example 16 A niobium raw material liquid was prepared by the same method as the preparation method performed in Example 15. (Preparation of dry powder) The dry powder (D 1 ) was prepared in the same manner as in Example 15. (Classification operation) The obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product. The obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.4% by mass and an average particle size of 53 ⁇ m.
  • the obtained dry powder (E 1 ) was a SUS cylindrical firing tube having an inner diameter of 500 mm, a length of 3500 mm, and a wall thickness of 20 mm in a rotary furnace, and seven shrouds having a height of 150 mm were Was supplied at a rate of 20 kg / hr to a calcining tube installed so that its length was divided into 8 equal parts.
  • the pre-stage calcined product was obtained by adjusting the heating furnace temperature and firing the pre-stage.
  • a SUS cylindrical firing tube having an inner diameter of 500 mm, a length of 3500 mm, and a wall thickness of 20 mm in another rotary furnace, and is composed of seven dam plates with a height of 150 mm so that the length of the heating part is equally divided into eight
  • the pre-stage calcined body was supplied to the installed calcining tube at a rate of 15 kg / hr while rotating the calcining tube at 4 rpm.
  • the front-stage fired body introduction side portion (the portion not covered with the heating furnace) of the firing tube is a hammering device in which the hammering portion is provided with a SUS hammer with a mass of 14 kg in a direction perpendicular to the rotation axis.
  • the temperature was raised to 675 ° C. at 2 ° C./min under a nitrogen gas flow of 500 N liters / min, fired at 675 ° C. for 2 hours, The temperature of the heating furnace was adjusted so as to obtain a temperature profile in which the temperature decreased at / min, and the main body was fired to obtain a fired body.
  • the reduction rate of the pre-stage calcined product obtained in this process was 10.1%, and the specific surface area of the calcined product after the main calcination was 15.2 m 2 / g. (Removal of protrusions) 1800 kg of the fired body is placed in an apparatus as shown in FIG. 1 and adjusted so that the energy conversion value (m 5 / s 2 / kg) per catalyst mass at 15 ° C. and 1 atm is 50. Driving for hours.
  • the airflow length in the direction in which the airflow flows at this time was 390 mm, the average linear velocity of the airflow was 341 m / s, and the number K of holes in the gas circulation port was 350.
  • the composition ratio of the composite oxide catalyst (G 1 ) after removing the protrusions was measured by fluorescent X-ray analysis for a / b and a / c composition ratios. The obtained results are shown in Table 1.
  • the composition of this time the resulting composite oxide catalyst (G 1) is met Mo 1 V 0.207 Sb 0.219 Nb 0.102 W 0.030 Ce 0.005 O n /51.0wt%-SiO 2 It was. (Propane ammoxidation reaction) When the reaction was carried out under the same conditions as in Example 1, the propane conversion after the reaction was 89.1%, and the acrylonitrile yield was 55.2%.
  • Example 17 (Preparation of dry powder) A dry powder (D 1 ) was prepared in the same manner as in Example 1 except that the amount of the ammonium metatungstate aqueous solution was changed to 93.0 g (purity 50%). (Classification operation) The obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product. The obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.9% by mass and an average particle size of 56 ⁇ m. (Baking of dry powder (E 1 )) Firing was performed under the same conditions as in Example 1.
  • the reduction ratio of the pre-stage calcined product at this time was 10.2%, and the specific surface area of the calcined product after the main calcination was 14.2 m 2 / g.
  • the protrusions were removed under the same conditions as in Example 1, and the a / b and a / c composition ratios of the composite oxide catalyst (G 1 ) were measured by fluorescent X-ray analysis. The obtained results are shown in Table 1.
  • the composition of the composite oxide catalyst obtained at this time (G 1) is Mo 1 V 0.207 Sb 0.219 Nb 0.102 W 0.090 Ce 0.005 O n /51.0wt%-SiO 2 met It was.
  • (Propane ammoxidation reaction) When the reaction was carried out under the same conditions as in Example 1, the propane conversion after the reaction was 88.1%, and the acrylonitrile yield was 55.2%.
  • Example 18 (Preparation of dry powder) A dry powder (D 1 ) was prepared in the same manner as in Example 1 except that the ammonium metatungstate aqueous solution was not added. (Classification operation) The obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product. The obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.9% by mass and an average particle size of 57 ⁇ m. (Baking of dry powder (E 1 )) Firing was performed under the same conditions as in Example 1.
  • the reduction ratio of the pre-stage calcined product at this time was 9.9%, and the specific surface area of the calcined product after the main calcination was 11.0 m 2 / g.
  • the protrusions were removed under the same conditions as in Example 1, and the a / b and a / c composition ratios of the composite oxide catalyst (G 1 ) were measured by fluorescent X-ray analysis. The obtained results are shown in Table 1.
  • the composition of this time the resulting composite oxide catalyst (G 1) was Mo 1 V 0.207 Sb 0.219 Nb 0.102 Ce 0.005 O n /51.0wt%-SiO 2.
  • the propane conversion after the reaction was 88.7%, and the acrylonitrile yield was 54.4%.
  • Example 19 (Preparation of dry powder) Except that no addition of cerium nitrate [Ce (NO 3) 3 ⁇ 6H 2 O ] in the same manner as in Example 1, was dried powder of (D 1) was prepared. (Classification operation) The obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product. The obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.4% by mass and an average particle size of 55 ⁇ m. (Baking of dry powder (E 1 )) Firing was performed under the same conditions as in Example 1.
  • the reduction ratio of the pre-stage calcined product at this time was 9.9%, and the specific surface area of the calcined product after the main calcination was 15.5 m 2 / g.
  • the protrusions were removed under the same conditions as in Example 1, and the a / b and a / c composition ratios of the composite oxide catalyst (G 1 ) were measured by fluorescent X-ray analysis. The obtained results are shown in Table 1.
  • the composition of this time the resulting composite oxide catalyst (G 1) was Mo 1 V 0.207 Sb 0.219 Nb 0.102 W 0.030 O n /51.0wt%-SiO 2.
  • the propane conversion after the reaction was 89.5%, and the acrylonitrile yield was 54.3%.
  • Example 20 (Preparation of dry powder) Except for changing the amount of cerium nitrate [Ce (NO 3) 3 ⁇ 6H 2 O ] to 8.7g in the same manner as in Example 1, was dried powder of (D 1) was prepared. (Classification operation) The obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product. The obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.4% by mass and an average particle size of 52 ⁇ m. (Baking of dry powder (E 1 )) Firing was performed under the same conditions as in Example 1.
  • the reduction ratio of the pre-stage calcined product at this time was 9.7%, and the specific surface area of the calcined product after the main calcination was 12.8 m 2 / g.
  • the protrusions were removed under the same conditions as in Example 1, and the a / b and a / c composition ratios of the composite oxide catalyst (G 1 ) were measured by fluorescent X-ray analysis.
  • the propane conversion after the reaction was 89.1%, and the acrylonitrile yield was 54.6%.
  • Example 21 (Preparation of dry powder) Except that lanthanum nitrate instead of cerium nitrate [Ce (NO 3) 3 ⁇ 6H 2 O ] [La (NO 3) 3 ⁇ 6H 2 O ] were added 4.8g in the same manner as in Example 1, dried powder A body (D 1 ) was prepared. (Classification operation) The obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product. The obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.7% by mass and an average particle size of 51 ⁇ m.
  • Example 22 (Preparation of dry powder) Except that praseodymium nitrate instead of cerium nitrate [Ce (NO 3) 3 ⁇ 6H 2 O ] [Pr (NO 3) 3 ⁇ 6H 2 O ] were added 4.8g in the same manner as in Example 1, dried powder A body (D 1 ) was prepared. (Classification operation) The obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product. The obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.7% by mass and an average particle size of 56 ⁇ m.
  • Example 23 (Preparation of dry powder) Dry powder as in Example 1 except that 4.6 g of ytterbium nitrate [Yb (NO 3 ) 3 .3H 2 O] was added instead of cerium nitrate [Ce (NO 3 ) 3 .6H 2 O].
  • a body (D 1 ) was prepared.
  • the obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product.
  • the obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.6% by mass and an average particle size of 58 ⁇ m.
  • Example 24 (Preparation of dry powder) Peroxidation containing 30% by mass as H 2 O 2 added with 93.5 g of diantimony trioxide [Sb 2 O 3 ], 452.6 g of niobium mixed solution (B 0 ) and niobium mixed solution (B 0 )
  • a dry powder (D 1 ) was prepared in the same manner as in Example 1 except that hydrogen water was changed to 79.3 g and added. (Classification operation) The obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product.
  • the obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.7% by mass and an average particle size of 53 ⁇ m.
  • (Baking of dry powder (E 1 )) Firing was performed under the same conditions as in Example 1.
  • the reduction ratio of the pre-stage calcined product at this time was 10.8%, and the specific surface area of the calcined product after the main calcination was 14.8 m 2 / g.
  • the protrusions were removed under the same conditions as in Example 1, and the a / b and a / c composition ratios of the composite oxide catalyst (G 1 ) were measured by fluorescent X-ray analysis. The obtained results are shown in Table 1.
  • Example 25 (Preparation of dry powder) 1655 g of water, 459.2 g of ammonium heptamolybdate [(NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O], 63.7 g of ammonium metavanadate [NH 4 VO 3 ], antimony trioxide [Sb 2 O 3 ] is 99.3 g, the niobium mixed solution (B 0 ) is 363.6 g, and the hydrogen peroxide solution containing 30% by mass as H 2 O 2 added together with the niobium mixed solution (B 0 ) is 63.7 g.
  • a dry powder (D 1 ) was prepared in the same manner as in Example 1 except that the content was changed and added.
  • the obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product.
  • the obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.8% by mass and an average particle size of 55 ⁇ m.
  • (Baking of dry powder (E 1 )) Firing was performed under the same conditions as in Example 1 except that the maximum firing temperature in the pre-stage firing was 350 ° C. and the maximum firing temperature in the main firing was 685 ° C.
  • the reduction ratio of the pre-stage calcined product at this time was 9.9%, and the specific surface area of the calcined product after the main calcination was 11.0 m 2 / g.
  • Example 26 (Preparation of dry powder) Peroxygen containing 30% by mass as H 2 O 2 added with 80.8 g of diantimony trioxide [Sb 2 O 3 ], 337.6 g of niobium mixed solution (B 0 ), and niobium mixed solution (B 0 )
  • a dry powder (D 1 ) was prepared in the same manner as in Example 1, except that hydrogen water was added to 59.2 g in a changed manner.
  • the obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product.
  • the obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.4% by mass and an average particle size of 49 ⁇ m.
  • (Baking of dry powder (E 1 )) Firing was performed under the same conditions as in Example 1 except that the maximum firing temperature in the pre-stage firing was 350 ° C. and the maximum firing temperature in the main firing was 690 ° C.
  • the reduction ratio of the pre-stage calcined product at this time was 9.9%, and the specific surface area of the calcined product after the main calcination was 11.0 m 2 / g.
  • Example 27 (Preparation of dry powder) Peroxide containing 30% by mass as H 2 O 2 added with 81.2 g of diantimony trioxide [Sb 2 O 3 ], 445.2 g of niobium mixed solution (B 0 ), and niobium mixed solution (B 0 )
  • a dry powder (D 1 ) was prepared in the same manner as in Example 1 except that hydrogen water was added to 78.0 g.
  • the obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product.
  • the obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.4% by mass and an average particle size of 54 ⁇ m.
  • (Baking of dry powder (E 1 )) Firing was performed under the same conditions as in Example 1.
  • the reduction ratio of the pre-stage calcined product at this time was 10.7%, and the specific surface area of the calcined product after the main calcination was 15.6 m 2 / g.
  • the protrusions were removed under the same conditions as in Example 1, and the a / b and a / c composition ratios of the composite oxide catalyst (G 1 ) were measured by fluorescent X-ray analysis. The obtained results are shown in Table 1.
  • Example 28 (Preparation of dry powder) Peroxidation containing 30% by mass as H 2 O 2 added with 81.2 g of diantimony trioxide [Sb 2 O 3 ], 519.4 g of niobium mixed solution (B 0 ), and niobium mixed solution (B 0 )
  • a dry powder (D 1 ) was prepared in the same manner as in Example 1 except that hydrogen water was added in an amount of 91.0 g.
  • the obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product.
  • the obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.6% by mass and an average particle size of 55 ⁇ m.
  • (Baking of dry powder (E 1 )) Firing was performed under the same conditions as in Example 1 except that the maximum firing temperature in the pre-stage firing was 385 ° C. and the maximum firing temperature in the main firing was 680 ° C.
  • the reduction ratio of the pre-stage calcined product at this time was 11.0%, and the specific surface area of the calcined product after the main calcination was 16.0 m 2 / g.
  • Example 29 (Preparation of dry powder) Peroxidation containing 30% by mass as H 2 O 2 added with 93.5 g of diantimony trioxide [Sb 2 O 3 ], 519.4 g of niobium mixed solution (B 0 ), and niobium mixed solution (B 0 )
  • a dry powder (D 1 ) was prepared in the same manner as in Example 1 except that hydrogen water was added in an amount of 91.0 g.
  • the obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product.
  • the obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.5% by mass and an average particle size of 53 ⁇ m.
  • (Baking of dry powder (E 1 )) Firing was performed under the same conditions as in Example 1 except that the maximum firing temperature in the pre-stage firing was 385 ° C. and the maximum firing temperature in the main firing was 680 ° C.
  • the reduction ratio of the pre-stage calcined product at this time was 11.3%, and the specific surface area of the calcined product after the main calcination was 15.0 m 2 / g.
  • Example 30 (Preparation of dry powder) 1505 g of water, 417.5 g of ammonium heptamolybdate [(NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O], 57.9 g of ammonium metavanadate [NH 4 VO 3 ], antimony trioxide [Sb 2 O 3 ] is 87.4 g, the niobium mixed solution (B 0 ) is 341.3 g, and the hydrogen peroxide solution containing 30% by mass as H 2 O 2 added together with the niobium mixed solution (B 0 ) is 59.8 g.
  • a dry powder (D 1 ) was prepared in the same manner as in Example 1 except that each was changed and added.
  • the obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product.
  • the obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.8% by mass and an average particle size of 50 ⁇ m.
  • (Baking of dry powder (E 1 )) Firing was performed under the same conditions as in Example 1 except that the maximum firing temperature in the main firing was 680 ° C.
  • the reduction ratio of the pre-stage calcined product at this time was 10.1%, and the specific surface area of the calcined product after the main calcination was 14.3 m 2 / g.
  • Example 31 (Preparation of dry powder) 1505 g of water, 417.5 g of ammonium heptamolybdate [(NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O], 57.9 g of ammonium metavanadate [NH 4 VO 3 ], antimony trioxide [Sb 2 O 3 ] is 87.4 g, the niobium mixed solution (B 0 ) is 426.6 g, and the niobium mixed solution (B 0 ) is added to the hydrogen peroxide solution containing 30% by mass as H 2 O 2 to 74.8 g.
  • a dry powder (D 1 ) was prepared in the same manner as in Example 1 except that each was changed and added.
  • the obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product.
  • the obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.8% by mass and an average particle size of 52 ⁇ m.
  • (Baking of dry powder (E 1 )) Firing was performed under the same conditions as in Example 1 except that the maximum firing temperature in the main firing was 680 ° C.
  • the reduction ratio of the pre-stage calcined product at this time was 10.0%, and the specific surface area of the calcined product after the main calcination was 13.8 m 2 / g.
  • Example 32 (Preparation of dry powder)
  • the dry powder (D 1 ) was prepared in the same manner as in Example 1. (Classification operation)
  • the obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product.
  • the obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.4% by mass and an average particle size of 55 ⁇ m.
  • the reduction ratio of the pre-stage calcined product at this time was 10.2%, and the specific surface area of the calcined product after the main calcination was 8.0 m 2 / g.
  • the protrusions were removed under the same conditions as in Example 1, and the a / b and a / c composition ratios of the composite oxide catalyst (G 1 ) were measured by fluorescent X-ray analysis. The obtained results are shown in Table 1.
  • the composition of this time the resulting composite oxide catalyst (G 1) is met Mo 1 V 0.207 Sb 0.219 Nb 0.102 W 0.030 Ce 0.005 O n /51.0wt%-SiO 2 It was.
  • (Propane ammoxidation reaction) When the reaction was carried out under the same conditions as in Example 1, the propane conversion after the reaction was 88.4%, and the acrylonitrile yield was 53.8%.
  • Niobium mixed solution (B 0) a 500.8G, except for adding and changing each 87.8g of hydrogen peroxide water containing 30% by mass as H 2 O 2 is added together with niobium mixture (B 0)
  • the obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product.
  • the obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.4% by mass and an average particle size of 49 ⁇ m.
  • Example 34 (Preparation of dry powder) 1520 g of water, 421.7 g of ammonium heptamolybdate [(NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O], 58.5 g of ammonium metavanadate [NH 4 VO 3 ], and a niobium mixed solution (B 0 ) 437.8 g, the same as in Example 1 except that hydrogen peroxide containing 30% by mass as H 2 O 2 added together with the niobium mixed solution (B 0 ) was changed to 76.7 g.
  • a dry powder (D 1 ) was prepared.
  • the obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product.
  • the obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.7% by mass and an average particle size of 50 ⁇ m.
  • (Baking of dry powder (E 1 )) Firing was performed under the same conditions as in Example 1 except that the maximum firing temperature in the main firing was changed to 670 ° C.
  • the reduction ratio of the pre-stage calcined product at this time was 10.8%, and the specific surface area of the calcined product after the main calcination was 14.3 m 2 / g.
  • Example 35 (Preparation of dry powder) Niobium mixed solution (B 0) a 341.3G, except for adding and changing each 59.8g of hydrogen peroxide water containing 30% by mass as H 2 O 2 is added together with niobium mixture (B 0) Prepared a dry powder (D 1 ) in the same manner as in Example 1. (Classification operation) The obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product. The obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.2% by mass and an average particle size of 52 ⁇ m.
  • a dry powder (D 1 ) was produced as follows. In 1.580 kg of water, 438.4 g of ammonium heptamolybdate [(NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O], 60.8 g of ammonium metavanadate [NH 4 VO 3 ], antimony trioxide [Sb 2 O 3] to 107.8 g, further cerium nitrate [Ce (NO 3) 3 ⁇ 6H 2 O ] was added 4.8 g, was prepared aqueous feed solution (a 1) was heated with stirring for 1 hour at 95 ° C. .
  • an aqueous raw material liquid (B 1 ), an aqueous solution of ammonium metatungstate 31.0 g (purity 50%), and a dispersion obtained by dispersing 211.5 g of powdered silica in 2.855 kg of water were sequentially added, and then 50 The mixture was aged and stirred at a temperature of 2.5 ° C. for 2.5 hours to obtain a slurry aqueous mixture (C 1 ).
  • the obtained aqueous mixed liquid (C 1 ) was supplied to a centrifugal spray dryer and dried to obtain a microspherical dry powder (D 1 ).
  • the dryer inlet temperature was 210 ° C. and the outlet temperature was 120 ° C.
  • the obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product.
  • the obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.9% by mass and an average particle size of 50 ⁇ m.
  • (Baking of dry powder (E 1 )) Firing was performed under the same conditions as in Example 1 except that the maximum firing temperature in the pre-stage firing was changed to 390 ° C. and the maximum firing temperature in the main firing was changed to 695 ° C.
  • the reduction ratio of the pre-stage calcined product at this time was 9.2%, and the specific surface area of the calcined product after the main calcination was 9.0 m 2 / g.
  • the protrusions were removed under the same conditions as in Example 1, and the a / b and a / c composition ratios of the composite oxide catalyst (G 1 ) were measured by fluorescent X-ray analysis. The obtained results are shown in Table 1.
  • the composition of this time the resulting composite oxide catalyst (G 1) is met Mo 1 V 0.210 Sb 0.280 Nb 0.100 W 0.030 Ce 0.005 O n /51.0wt%-SiO 2 It was.
  • a dry powder (D 1 ) was produced as follows. To 1.730 kg of water, 480.1 g of ammonium heptamolybdate [(NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O], 66.6 g of ammonium metavanadate [NH 4 VO 3 ], antimony trioxide [Sb 2 O 3] was 84.7 g, further cerium nitrate [Ce (NO 3) 3 ⁇ 6H 2 O ] was added 4.8 g, was prepared aqueous feed solution (a 1) was heated with stirring for 1 hour at 95 ° C. .
  • an aqueous raw material liquid (B 1 ), an aqueous solution of ammonium metatungstate 31.0 g (purity 50%), and a dispersion obtained by dispersing 211.5 g of powdered silica in 2.855 kg of water were sequentially added, and then 50 The mixture was aged and stirred at a temperature of 2.5 ° C. for 2.5 hours to obtain a slurry-like aqueous mixture (C 1 ) as a raw material mixture.
  • the obtained aqueous mixed liquid (C 1 ) was supplied to a centrifugal spray dryer and dried to obtain a microspherical dry powder (D 1 ).
  • the dryer inlet temperature was 210 ° C. and the outlet temperature was 120 ° C.
  • the obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product.
  • the obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.9% by mass and an average particle size of 52 ⁇ m.
  • (Baking of dry powder (E 1 )) Firing was performed under the same conditions as in Example 1 except that the maximum firing temperature in the pre-stage firing was changed to 345 ° C. and the maximum firing temperature in the main firing was changed to 650 ° C.
  • the reduction ratio of the pre-stage calcined product at this time was 9.8%, and the specific surface area of the calcined product after the main calcination was 11.5 m 2 / g.
  • the protrusions were removed under the same conditions as in Example 1, and the a / b and a / c composition ratios of the composite oxide catalyst (G 1 ) were measured by fluorescent X-ray analysis. The obtained results are shown in Table 1.
  • the composition of this time the resulting composite oxide catalyst (G 1) is met Mo 1 V 0.230 Sb 0.220 Nb 0.090 W 0.030 Ce 0.005 O n /51.0wt%-SiO 2 It was.
  • a dry powder (D 1 ) was produced as follows. To 1.730 kg of water, 480.1 g of ammonium heptamolybdate [(NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O], 66.6 g of ammonium metavanadate [NH 4 VO 3 ], antimony trioxide [Sb 2 O 3] to 100.1 g, further cerium nitrate [Ce (NO 3) 3 ⁇ 6H 2 O ] was added 4.8 g, was prepared aqueous feed solution (a 1) was heated with stirring for 1 hour at 95 ° C. .
  • an aqueous raw material liquid (B 1 ), an aqueous solution of ammonium metatungstate 31.0 g (purity 50%), and a dispersion obtained by dispersing 211.5 g of powdered silica in 2.855 kg of water were sequentially added, and then 50 The mixture was aged and stirred at a temperature of 2.5 ° C. for 2.5 hours to obtain a slurry-like aqueous mixture (C 1 ) as a raw material mixture.
  • the obtained aqueous mixed liquid (C 1 ) was supplied to a centrifugal spray dryer and dried to obtain a microspherical dry powder (D 1 ).
  • the dryer inlet temperature was 210 ° C. and the outlet temperature was 120 ° C.
  • the obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product.
  • the obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.3% by mass and an average particle size of 56 ⁇ m.
  • (Baking of dry powder (E 1 )) Firing was performed under the same conditions as in Example 1 except that the maximum firing temperature in the pre-stage firing was changed to 390 ° C. and the maximum firing temperature in the main firing was changed to 695 ° C.
  • the reduction ratio of the pre-stage calcined product at this time was 9.6%, and the specific surface area of the calcined product after the main calcination was 9.5 m 2 / g.
  • the protrusions were removed under the same conditions as in Example 1, and the a / b and a / c composition ratios of the composite oxide catalyst (G 1 ) were measured by fluorescent X-ray analysis. The obtained results are shown in Table 1.
  • the composition of this time the resulting composite oxide catalyst (G 1) is met Mo 1 V 0.230 Sb 0.260 Nb 0.090 W 0.030 Ce 0.005 O n /51.0wt%-SiO 2 It was.
  • (Propane ammoxidation reaction) When the reaction was carried out under the same conditions as in Example 1, the propane conversion after the reaction was 81.2%, and the acrylonitrile yield was 52.0%.
  • a dry powder (D 1 ) was produced as follows. To 1.505 kg of water, 417.5 g of ammonium heptamolybdate [(NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O], 57.9 g of ammonium metavanadate [NH 4 VO 3 ], antimony trioxide [Sb 2 O 3] to 100.1 g, further cerium nitrate [Ce (NO 3) 3 ⁇ 6H 2 O ] was added 4.8 g, was prepared aqueous feed solution (a 1) was heated with stirring for 1 hour at 95 ° C. .
  • an aqueous raw material liquid (B 1 ), an aqueous solution of ammonium metatungstate 31.0 g (purity 50%), and a dispersion obtained by dispersing 211.5 g of powdered silica in 2.855 kg of water were sequentially added, and then 50 The mixture was aged and stirred at a temperature of 2.5 ° C. for 2.5 hours to obtain a slurry-like aqueous mixture (C 1 ) as a raw material mixture.
  • the obtained aqueous mixed liquid (C 1 ) was supplied to a centrifugal spray dryer and dried to obtain a microspherical dry powder (D 1 ).
  • the dryer inlet temperature was 210 ° C. and the outlet temperature was 120 ° C.
  • the obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product.
  • the obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.3% by mass and an average particle size of 54 ⁇ m.
  • (Baking of dry powder (E 1 )) Firing was performed under the same conditions as in Example 1 except that the maximum firing temperature in the pre-stage firing was changed to 340 ° C. and the maximum firing temperature in the main firing was changed to 640 ° C.
  • the reduction ratio of the pre-stage calcined product at this time was 10.8%, and the specific surface area of the calcined product after the main calcination was 15.2 m 2 / g.
  • the protrusions were removed under the same conditions as in Example 1, and the a / b and a / c composition ratios of the composite oxide catalyst (G 1 ) were measured by fluorescent X-ray analysis. The obtained results are shown in Table 1.
  • the composition of this time the resulting composite oxide catalyst (G 1) is met Mo 1 V 0.200 Sb 0.260 Nb 0.140 W 0.030 Ce 0.005 O n /51.0wt%-SiO 2 It was.
  • (Propane ammoxidation reaction) When the reaction was carried out under the same conditions as in Example 1, the propane conversion after the reaction was 82.0%, and the acrylonitrile yield was 51.5%.
  • a dry powder (D 1 ) was produced as follows. In 1.557 kg of water, 432.1 g of ammonium heptamolybdate [(NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O], 59.9 g of ammonium metavanadate [NH 4 VO 3 ], antimony trioxide [Sb 2 O 3] was 84.3 g, further cerium nitrate [Ce (NO 3) 3 ⁇ 6H 2 O ] was added 4.8 g, was prepared aqueous feed solution (a 1) was heated with stirring for 1 hour at 95 ° C. .
  • an aqueous raw material liquid (B 1 ), an aqueous solution of ammonium metatungstate 31.0 g (purity 50%), and a dispersion obtained by dispersing 211.5 g of powdered silica in 2.855 kg of water were sequentially added, and then 50 The mixture was aged and stirred at a temperature of 2.5 ° C. for 2.5 hours to obtain a slurry-like aqueous mixture (C 1 ) as a raw material mixture.
  • the obtained aqueous mixed liquid (C 1 ) was supplied to a centrifugal spray dryer and dried to obtain a microspherical dry powder (D 1 ).
  • the dryer inlet temperature was 210 ° C. and the outlet temperature was 120 ° C.
  • the obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product.
  • the obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.3% by mass and an average particle size of 53 ⁇ m.
  • (Baking of dry powder (E 1 )) Firing was performed under the same conditions as in Example 1 except that the maximum temperature in the pre-stage firing was changed to 400 ° C. and the maximum temperature in the main firing was changed to 700 ° C.
  • the reduction ratio of the pre-stage calcined product at this time was 11.5%, and the specific surface area of the calcined product after the main calcination was 15.0 m 2 / g.
  • the protrusions were removed under the same conditions as in Example 1, and the a / b and a / c composition ratios of the composite oxide catalyst (G 1 ) were measured by fluorescent X-ray analysis. The obtained results are shown in Table 1.
  • the composition of this time the resulting composite oxide catalyst (G 1) is met Mo 1 V 0.207 Sb 0.219 Nb 0.155 W 0.030 Ce 0.005 O n /51.0wt%-SiO 2 It was.
  • a dry powder (D 1 ) was produced as follows. Ammonium heptamolybdate in water 1.557kg [(NH 4) 6 Mo 7 O 24 ⁇ 4H 2 O ] was 432.1G, ammonium metavanadate [NH 4 VO 3] 59.9 g, diantimony trioxide [Sb 2 O 3] was 75.1 g, further cerium nitrate [Ce (NO 3) 3 ⁇ 6H 2 O ] was added 4.8 g, was prepared aqueous feed solution (a 1) was heated with stirring for 1 hour at 95 ° C. .
  • an aqueous raw material liquid (B 1 ), an aqueous solution of ammonium metatungstate 31.0 g (purity 50%), and a dispersion obtained by dispersing 211.5 g of powdered silica in 2.855 kg of water were sequentially added, and then 50 The mixture was aged and stirred at a temperature of 2.5 ° C. for 2.5 hours to obtain a slurry-like aqueous mixture (C 1 ) as a raw material mixture.
  • the obtained aqueous mixed liquid (C 1 ) was supplied to a centrifugal spray dryer and dried to obtain a microspherical dry powder (D 1 ).
  • the dryer inlet temperature was 210 ° C. and the outlet temperature was 120 ° C.
  • the obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product.
  • the obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.3% by mass and an average particle size of 56 ⁇ m.
  • (Baking of dry powder (E 1 )) Firing was performed under the same conditions as in Example 1 except that the maximum firing temperature in the pre-stage firing was changed to 370 ° C. and the maximum firing temperature in the main firing was changed to 680 ° C.
  • the reduction ratio of the pre-stage calcined product at this time was 11.2%, and the specific surface area of the calcined product after the main calcination was 14.2 m 2 / g.
  • the protrusions were removed under the same conditions as in Example 1, and the a / b and a / c composition ratios of the composite oxide catalyst (G 1 ) were measured by fluorescent X-ray analysis. The obtained results are shown in Table 1.
  • the composition of this time the resulting composite oxide catalyst (G 1) is met Mo 1 V 0.207 Sb 0.195 Nb 0.130 W 0.030 Ce 0.005 O n /51.0wt%-SiO 2 It was.
  • (Propane ammoxidation reaction) When the reaction was carried out under the same conditions as in Example 1, the propane conversion after the reaction was 82.3% and the acrylonitrile yield was 51.6%.
  • a dry powder (D 1 ) was produced as follows. Ammonium heptamolybdate in water 1.505kg [(NH 4) 6 Mo 7 O 24 ⁇ 4H 2 O ] was 417.5G, ammonium metavanadate [NH 4 VO 3] 57.9 g, diantimony trioxide [Sb 2 O 3] was 94.3 g, further cerium nitrate [Ce (NO 3) 3 ⁇ 6H 2 O ] was added 4.8 g, was prepared aqueous feed solution (a 1) was heated with stirring for 1 hour at 95 ° C. .
  • an aqueous raw material liquid (B 1 ), an aqueous solution of ammonium metatungstate 31.0 g (purity 50%), and a dispersion obtained by dispersing 211.5 g of powdered silica in 2.855 kg of water were sequentially added, and then 50 The mixture was aged and stirred at a temperature of 2.5 ° C. for 2.5 hours to obtain a slurry-like aqueous mixture (C 1 ) as a raw material mixture.
  • the obtained aqueous mixed liquid (C 1 ) was supplied to a centrifugal spray dryer and dried to obtain a microspherical dry powder (D 1 ).
  • the dryer inlet temperature was 210 ° C. and the outlet temperature was 120 ° C.
  • the obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product.
  • the obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.4% by mass and an average particle size of 57 ⁇ m.
  • (Baking of dry powder (E 1 )) Firing was performed under the same conditions as in Example 1 except that the maximum firing temperature in the pre-stage firing was changed to 370 ° C. and the maximum firing temperature in the main firing was changed to 680 ° C.
  • the reduction ratio of the pre-stage calcined product at this time was 9.0%, and the specific surface area of the calcined product after the main calcination was 11.0 m 2 / g.
  • the protrusions were removed under the same conditions as in Example 1, and the a / b and a / c composition ratios of the composite oxide catalyst (G 1 ) were measured by fluorescent X-ray analysis. The obtained results are shown in Table 1.
  • the composition of this time the resulting composite oxide catalyst (G 1) is met Mo 1 V 0.200 Sb 0.245 Nb 0.082 W 0.030 Ce 0.005 O n /51.0wt%-SiO 2 It was.
  • a dry powder (D 1 ) was produced as follows. To 1.655 kg of water, 459.2 g of ammonium heptamolybdate [(NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O], 63.7 g of ammonium metavanadate [NH 4 VO 3 ], antimony trioxide [Sb 2 O 3] was 80.8 g, further cerium nitrate [Ce (NO 3) 3 ⁇ 6H 2 O ] was added 4.8 g, was prepared aqueous feed solution (a 1) was heated with stirring for 1 hour at 95 ° C. .
  • an aqueous raw material liquid (B 1 ), an aqueous solution of ammonium metatungstate 31.0 g (purity 50%), and a dispersion obtained by dispersing 211.5 g of powdered silica in 2.855 kg of water were sequentially added, and then 50 The mixture was aged and stirred at a temperature of 2.5 ° C. for 2.5 hours to obtain a slurry-like aqueous mixture (C 1 ) as a raw material mixture.
  • the obtained aqueous mixed liquid (C 1 ) was supplied to a centrifugal spray dryer and dried to obtain a microspherical dry powder (D 1 ).
  • the dryer inlet temperature was 210 ° C. and the outlet temperature was 120 ° C.
  • the obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product.
  • the obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.4% by mass and an average particle size of 58 ⁇ m.
  • (Baking of dry powder (E 1 )) Firing was performed under the same conditions as in Example 1 except that the maximum firing temperature in the pre-stage firing was changed to 370 ° C. and the maximum firing temperature in the main firing was changed to 680 ° C.
  • the reduction ratio of the pre-stage calcined product at this time was 10.5%, and the specific surface area of the calcined product after the main calcination was 13.8 m 2 / g.
  • the protrusions were removed under the same conditions as in Example 1, and the a / b and a / c composition ratios of the composite oxide catalyst (G 1 ) were measured by fluorescent X-ray analysis. The obtained results are shown in Table 1.
  • the composition of this time the resulting composite oxide catalyst (G 1) is met Mo 1 V 0.220 Sb 0.210 Nb 0.110 W 0.030 Ce 0.005 O n /51.0wt%-SiO 2 It was.
  • (Propane ammoxidation reaction) When the reaction was carried out under the same conditions as in Example 1, the propane conversion after the reaction was 84.3% and the acrylonitrile yield was 49.5%.
  • the present invention has industrial applicability as a composite oxide catalyst used for gas phase catalytic oxidation or gas phase catalytic ammoxidation reaction of propane or isobutane.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 下記組成式: MoSbNb (式中、成分ZはLa、Ce、Pr、Yb、Y、Sc、Sr、Baなどの元素を示し、a、b、c、d、e、nは、0.1≦a≦0.4、0.1≦b≦0.4、0.01≦c≦0.3、0≦d≦0.2、0≦e≦0.1であり、原子比a/b、a/cは、0.85≦a/b<1.0、1.4<a/c<2.3である。)で表される複合酸化物を含む複合酸化物触媒の製造方法であって、Mo、V、Sb、Nb、W、及びZを含有する特定の原料調合液を調製する工程、原料調合液を乾燥し、乾燥粉体を得る工程、乾燥粉体を前段焼成し、前段焼成体を得る工程、前段焼成体を本焼成し、粒子表面に突起体を有する焼成体を得る工程、及び、上記突起体を気流により除去する工程を含み、前段焼成体の還元率が8~12%であり、かつ、焼成体の比表面積が7~20m/gである、製造方法。

Description

複合酸化物触媒及びその製造方法
 本発明は、プロパン又はイソブタンの気相接触酸化又は気相接触アンモ酸化反応に用いる複合酸化物触媒及びその製造方法、並びにその複合酸化物触媒を用いる不飽和酸又は不飽和ニトリルの製造方法に関する。
 従来、プロピレン又はイソブチレンを気相接触酸化又は気相接触アンモ酸化して対応する不飽和カルボン酸又は不飽和ニトリルを製造する方法が良く知られている。近年、プロピレン又はイソブチレンの代わりにプロパン又はイソブタンを気相接触酸化又は気相接触アンモ酸化することによって対応する不飽和カルボン酸又は不飽和ニトリルを製造する方法が着目されている。そのため、プロパン又はイソブタンの気相接触アンモ酸化の触媒としても、種々の酸化物触媒が提案されている。
 アンモ酸化触媒は、一般的にはモリブデン、バナジウム、アンチモン、ニオブ等を必要に応じて混合、乾燥及び焼成して得られる金属酸化物である。金属酸化物に含まれる金属の組成は、触媒性能に直接的に影響するので、様々な組成比について検討されてきた。さらに、近年では、組成比のみでは表現されない金属酸化物の物性も、触媒性能に影響しうることが分かってきている。
 例えば、特許文献1には、モリブデン、バナジウム、アンチモン、ニオブを含有し、還元率が8~12%であり、比表面積が5~30m/gである金属酸化物が記載されている。
 また、特許文献2には、アンモ酸化触媒の表面に突起状の流動性を阻害する物質が生成することが記載されている。特許文献2によると、この物質を触媒表面から除去することで、目的物収率を維持して、不飽和酸、不飽和ニトリルが製造できるとされている。
国際公開2004-108278号パンフレット 特開2007-216212号公報
 上記特許文献1及び2に記載されているように、確かに、触媒調製条件の選択によって金属酸化物の還元率と比表面積とを適正化すると、触媒性能は向上するし、焼成後に触媒の表面に生成する突起状の物質(以下、「突起体」という。)を除去することで、目的物の収率を維持し易くなる。
 しかしながら、本発明者らが検討したところによると、突起体の組成は触媒のコア部分とは異なっているために、突起体を除去してしまうと、出来上がる触媒の組成は仕込みの組成とは異なってくる。つまり、仕込みの組成を最適化し、それを前提に還元率や比表面積を決定しても、その後に一部を突起体として除去してしまうことで、組成は最適値からずれてしまうことが分かった。
 上記事情に鑑み、本発明の目的は、プロパン又はイソブタンの気相接触酸化又は気相接触アンモ酸化反応に用いる複合酸化物触媒であって、粒子表面に存在する突起体の除去工程を経た後に、構成する金属が適正な組成比を有する複合酸化物触媒及びその製造方法を提供することにある。
 上記課題を解決するために鋭意検討した結果、本発明者らは、突起体の除去工程は複合酸化物の組成のうち、特にバナジウムとアンチモンとの組成比であるV/Sb、及びバナジウムとニオブとの組成比であるV/Nbに大きく影響することを発見した。そして、原料調製段階で、仕込み組成を最適化することにより、適正な金属組成比を有する複合酸化物を含む触媒が得られることを見出し、本発明に到達した。
 即ち、本発明は以下のとおりである。
[1]
 プロパン又はイソブタンの気相接触酸化反応又は気相接触アンモ酸化反応に用いられる複合酸化物触媒であって、下記組成式(1)で表される複合酸化物を含む触媒。
 MoSbNb・・・(1)
(式中、成分ZはLa、Ce、Pr、Yb、Y、Sc、Sr、Baから選ばれる少なくとも1種類以上の元素を示し、a、b、c、d、e、nは、それぞれ、Mo1原子に対する各元素の原子比を示し、0.1≦a≦0.4、0.1≦b≦0.4、0.01≦c≦0.3、0≦d≦0.2、0≦e≦0.1であり、原子比a/b、a/cは、0.85≦a/b<1.0、1.4<a/c<2.3である。)
[2]
 SiO換算で20~70質量%のシリカを含む、上記[1]記載の複合酸化物触媒。
[3]
 下記組成式(1):
 MoSbNb ・・・(1)
(式中、成分ZはLa、Ce、Pr、Yb、Y、Sc、Sr、Baから選ばれる少なくとも1種類以上の元素を示し、a、b、c、d、e、nは、それぞれ、Mo1原子に対する各元素の原子比を示し、0.1≦a≦0.4、0.1≦b≦0.4、0.01≦c≦0.3、0≦d≦0.2、0≦e≦0.1であり、原子比a/b、a/cは、0.85≦a/b<1.0、1.4<a/c<2.3である。)で表される複合酸化物を含む複合酸化物触媒の製造方法であって、以下の(I)~(V)の工程:
(I)Mo、V、Sb、Nb、W、及びZを含有し、Mo1原子に対するVの原子比a、Sbの原子比b、Nbの原子比c、Wの原子比d、Zの原子比eが、それぞれ、0.1≦a≦0.5、0.1≦b≦0.5、0.01≦c≦0.5、0≦d≦0.4、0≦e≦0.2である原料調合液を調製する工程、
(II)前記原料調合液を乾燥し、乾燥粉体を得る工程、
(III)前記乾燥粉体を前段焼成し、前段焼成体を得る工程、
(IV)前記前段焼成体を本焼成し、粒子表面に突起体を有する焼成体を得る工程、及び
(V)前記焼成体の粒子表面に存在する突起体を気流により除去する工程
を含み、
 前記前段焼成体の還元率が8~12%であり、かつ、前記焼成体の比表面積が7~20m/gである、製造方法。
[4]
 前記乾燥粉体の粒子径25μm以下の粒子含有率が20質量%以下であり、且つ、平均粒子径が35~75μmである、上記[3]記載の複合酸化物触媒の製造方法。
[5]
 前記工程(V)において、前記突起体を、前記焼成体の全質量に対して前記焼成体が有する前記突起体の量を2質量%以下にするまで除去する、上記[3]又は[4]記載の複合酸化物触媒の製造方法。
[6]
 前記気流が流れる方向における気流長さが55mm以上であり、かつ、前記気流の平均流速が、摂氏15℃、1気圧における線速として80m/s以上500m/s以下である、上記[3]~[5]のいずれか記載の複合酸化物触媒の製造方法。
[7]
 前記工程(I)が、以下の(a)~(d)の工程:
(a)Mo、V、Sb及び成分Zを含有する水性混合液を調製する工程、
(b)前記(a)工程で得られた水性混合液にシリカゾル及び過酸化水素水を添加する工程、
(c)前記(b)工程で得られた溶液に、Nb、ジカルボン酸及び過酸化水素水を含有する水溶液と、W化合物と、を混合する工程、及び
(d)前記(c)工程で得られた溶液に粉体シリカ含有懸濁液を加えて、熟成する工程
を含む、上記[3]~[6]のいずれか記載の複合酸化物触媒の製造方法。
[8]
 前記(III)前段焼成工程及び/又は前記(IV)本焼成工程が、以下の(i)及び(ii)の工程:
(i)前記前段焼成体及び/又は焼成体をその中で焼成する焼成器に衝撃を与える工程、及び
(ii)前記本焼成における焼成温度より低い温度で前記前段焼成体及び/又は焼成体をアニーリングする工程
を含む、上記[3]~[7]のいずれか記載の複合酸化物触媒の製造方法。
[9]
 プロパン又はイソブタンを気相接触酸化反応させて対応する不飽和酸を製造する方法において、上記[1]又は[2]記載の複合酸化物触媒を用いる不飽和酸の製造方法。
[10]
 プロパン又はイソブタンを気相接触アンモ酸化反応させて対応する不飽和ニトリルを製造する方法において、上記[1]又は[2]記載の複合酸化物触媒を用いる不飽和ニトリルの製造方法。
 本発明によれば、構成する金属組成比を最適化した複合酸化物触媒を提供することができる。本発明の複合酸化物触媒は、その金属組成比が最適化されているため、良好な触媒性能を示す。
本実施形態の突起体除去装置の一例を概略的に示したものである。 図1の突起体除去装置のX-X断面を示したものである。 本実施形態の突起体除去装置内の分岐鎖の一例を示したものである。 本実施形態の突起体除去装置の一例を概略的に示したものである。 本実施形態の突起体除去装置の一例を概略的に示したものである。 本実施形態の突起体除去装置の一例を概略的に示したものである。 本実施形態の突起体除去装置の一例を概略的に示したものである。
 以下、本発明を実施するための形態(以下、「本実施形態」と言う。)について詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 なお、図面中、同一要素には同一符号を付すこととし、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。装置や部材の寸法比率は図示の比率に限られるものではない。
 本実施形態の複合酸化物触媒は、
 プロパン又はイソブタンの気相接触酸化反応又は気相接触アンモ酸化反応に用いられる複合酸化物触媒であって、下記組成式(1)で表される複合酸化物を含む触媒である。
 MoSbNb・・・(1)
(式中、成分ZはLa、Ce、Pr、Yb、Y、Sc、Sr、Baから選ばれる少なくとも1種類以上の元素を示し、a、b、c、d、e、nは、それぞれ、Mo1原子に対する各元素の原子比を示し、0.1≦a≦0.4、0.1≦b≦0.4、0.01≦c≦0.3、0≦d≦0.2、0≦e≦0.1であり、原子比a/b、a/cは、0.85≦a/b<1.0、1.4<a/c<2.3である。)
 本実施形態の複合酸化物触媒は、その金属組成比が最適化されているため、良好な触媒性能を有する。本実施形態の複合酸化物触媒の製造方法としては、特に限定されないが、以下の(I)~(V)の工程を含む方法により製造することが好ましい。
(I)Mo、V、Sb、Nb、W、及びZを含有し、Mo1原子に対するVの原子比a、Sbの原子比b、Nbの原子比c、Wの原子比d、Zの原子比eが、それぞれ、0.1≦a≦0.5、0.1≦b≦0.5、0.01≦c≦0.5、0≦d≦0.4、0≦e≦0.2である原料調合液を調製する工程、
(II)前記原料調合液を乾燥し、乾燥粉体を得る工程、
(III)前記乾燥粉体を前段焼成し、前段焼成体を得る工程、及び
(IV)前記前段焼成体を本焼成し、粒子表面に突起体を有する焼成体を得る工程
(V)前記焼成体の粒子表面に存在する突起体を気流により除去する工程
を含み、
 前記前段焼成体の還元率が8~12%であり、かつ、前記焼成体の比表面積が7~20m/gである。
(工程(I)原料調合工程)
 工程(I)は、Mo、V、Sb、Nb、W、及びZを含有し、Mo1原子に対するVの原子比a、Sbの原子比b、Nbの原子比c、Wの原子比d、Zの原子比eが、それぞれ、0.1≦a≦0.5、0.1≦b≦0.5、0.01≦c≦0.5、0≦d≦0.4、0≦e≦0.2である原料調合液を調製する工程である。なお、本明細書において、「調合」と「調製」とは互いに同義である。
 原料調合工程においては、溶媒及び/又は分散媒に、複合酸化物触媒の構成元素を特定の割合で溶解又は分散させ、原料調合液を得る。原料調合液の溶媒として水性媒体が好ましく、通常は水を用いることができる。原料調合液はMo、V、Sb、Nb、W、及びZ(ZはLa、Ce、Pr、Yb、Y、Sc、Sr、Baから選ばれる少なくとも1種類以上の元素を示す。)を含有する。原料調合液の原料としては、複合酸化物触媒の構成元素を含む塩又は化合物を使用できる。
 原料調合工程においては、Mo1原子に対するVの原子比a、Sbの原子比b、Nbの原子比c、Wの原子比d、Zの原子比eが、それぞれ、0.1≦a≦0.5、0.1≦b≦0.5、0.01≦c≦0.5、0≦d≦0.4、0≦e≦0.2となるように原料調合液を調製する。この組成比は、最終的に得られる複合酸化物触媒の組成比とは異なる値に設定されている。これは、後述する触媒の突起体が触媒本体とは異なる組成を有しており、これを本体から除去することによって触媒全体の組成比が原料調合工程における組成比とはずれたものになるからである。本明細書において「突起体」とは、後述する本焼成により得られた焼成体の表面に滲出及び/又は付着した物を示し、焼成体の表面から突出したり、付着したりした物をいう。ここで、突起体の多くは突出した酸化物の結晶やその他の不純物である。特に、複数の金属を含む焼成体の場合、焼成体の大部分を形成する結晶とは組成の異なる酸化物が、焼成体本体部から滲出したような形状で形成されることがある。この場合、突起体は、球体様の焼成体(例えば、直径30~150μm)の表面に複数の突起のような形(例えば、高さ0.1μm~20μm)で形成されることが多い。突起体の組成と、その除去工程については、後で詳述する。
 Moの原料としては、ヘプタモリブデン酸アンモニウム〔(NHMo24・4HO]、三酸化モリブデン〔MoO〕、リンモリブデン酸〔HPMo1240〕、ケイモリブデン酸〔HSiMo1240〕、五塩化モリブデン〔MoCl〕等を用いることができ、特にヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕が好ましい。
 Vの原料としては、メタバナジン酸アンモニウム〔NHVO]、五酸化バナジウム〔V〕、塩化バナジウム〔VCl、VCl〕等を用いることができ、特にメタバナジン酸アンモニウム〔NHVO]が好ましい。
 Sbの原料としてはアンチモン酸化物〔Sb、Sb〕、亜アンチモン酸〔HSbO〕、アンチモン酸〔HSbO〕、アンチモン酸アンモニウム〔(NH)SbO〕、塩化アンチモン〔SbCl〕、アンチモンの酒石酸塩等の有機酸塩、金属アンチモン等を用いることができ、特に三酸化二アンチモン〔Sb〕が好ましい。
 Nbの原料としては、ニオブ酸、ニオブの無機酸塩及びニオブの有機酸塩を用いることができ、特にニオブ酸が好ましい。ニオブ酸はNb・nHOで表され、ニオブ水酸化物又は酸化ニオブ水和物とも称される。更に、Nbの原料は、ジカルボン酸/ニオブのモル比が1~4のNb原料液の状態で用いることが好ましく、ジカルボン酸としてはシュウ酸が好ましい。
 Wの原料としては、アンモニウム塩、硝酸塩、カルボン酸塩、カルボン酸アンモニウム塩、ペルオキソカルボン酸塩、ペルオキソカルボン酸アンモニウム塩、ハロゲン化アンモニウム塩、ハロゲン化物、アセチルアセトナート、アルコキシド、トリフェニル化合物、ポリオキソメタレート、ポリオキソメタレートアンモニウム塩等のタングステンの塩、三酸化タングステン、二酸化タングステン、タングステン酸、メタタングステン酸アンモニウム水溶液、パラタングステン酸アンモニウム、ケイタングステン酸、ケイタングストモリブデン酸、ケイタングステン酸等を用いることができ、中でも、メタタングステン酸アンモニウム水溶液が好ましい。
 Z(La、Ce、Pr、Yb、Y、Sc、Sr、Baから選ばれる少なくとも1種類以上の元素)の原料としては、これらの元素を含む物質であれば特に制限はなく、これらの元素を含む化合物や、これらの元素の金属を適当な試薬で可溶化したものを使用することができる。これらの元素を含む化合物としては、通常、アンモニウム塩、硝酸塩、カルボン酸塩、カルボン酸アンモニウム塩、ペルオキソカルボン酸塩、ペルオキソカルボン酸アンモニウム塩、ハロゲン化アンモニウム塩、ハロゲン化物、アセチルアセトナート、アルコキシド等を使用することができ、好ましくは硝酸塩、カルボン酸塩等の水溶性原料が使用される。
 原料の調合において、触媒構成元素の原料の溶解手順、混合手順又は分散手順は特に限定されない。原料を同じ水性媒体中で溶解、混合又は分散させてもよく、或いは原料を個別に水性媒体中に溶解、混合又は分散させた後に水性媒体を混合させてもよい。また、必要に応じて加熱及び/又は攪拌してもよい。
 複合酸化物触媒において、重要な点の一つは、成分Zが触媒粒子内で均一に分布していることであり、触媒がそのような状態であると好ましい。ここで、「均一」とは、触媒粒子中で成分Zの分布に偏りがないことを言う。好ましくは、成分Zを含有する酸化物粒子の80%以上(質量比率)が1μm以下の粒径を有する微粒子として、触媒粒子内に存在することを言う。なお、複合酸化物触媒がシリカを含む場合に、好適に「均一」を定義すれば、均一とは、触媒粒子の断面を組成分析した時に、成分ZとSiとの信号強度比の分散値(標準偏差を平均値で除した値)が0~0.5の範囲にあることを言う。ここで、該分散値は「Dx」で示される。
 上記の組成分析には、一般的な組成分析方法、例えば、SEM-EDX、XPS、SIMS、EPMA等を用いることができる。好ましくはEPMAを用いることができる。ここで、EPMAとは、Electron Probe X-ray Microanalyzer(但し、このX-rayを省略して呼ばれることもある。)の通称であり、この分析装置は、加速された電子線を物質に照射することによって得られる特性X線を観測することにより、電子線を当てた微小領域(スポット)の組成分析を行うことができる装置である。このEPMAによって、一般に、触媒粒子や担体粒子等の固体粒子の断面について、特定元素の濃度分布や組成変化の情報が得られる。
 なお、上記EPMAによる成分ZとSiの強度比の分散値(Dx)は、測定しようとする粒子の断面について、通常の触媒分野で行われる粒子断面のEPMAによる面分析の手法に従って、次のようにして測定・算出されたものである。即ち、まず、その触媒粒子断面の任意の位置(x,y)に対するSiのX線ピーク強度(カウント数ISi)の分布の測定を、触媒粒子断面の全領域をカバーするように行う。次いで、同様に、成分Zについても触媒粒子断面の全領域をカバーするようにX線ピーク強度(カウント数IX)の分布を測定する。得られたSi及び成分Zに関する一連のデータ(x、y、ISi、IX)を基に、同一の位置(x、y)での成分Z及びSiのピーク強度比IR(IR=IX/ISi)を求め、IRの単純平均(IR)av及び標準偏差Sを求める。その標準偏差Sを単純平均(IR)avで除した値を前記の分散値(Dx)とする。この時、単純平均及び標準偏差は通常の方法で求めればよい。本明細書中、「複合酸化物触媒(単に「触媒」とも言う)」は、本焼成後の焼成体から粒子表面に生成した突起体を除去したものを意味するが、分散値の測定は断面の観察に依ることから表面の状態には影響されないので、本焼成後、突起体の除去工程前に測定しても同じ値を示す。
 また、上記測定における粒子断面のエッジ効果によるデータの不確定さを避けるべく、触媒粒子断面における断面積の10%の領域であって、粒子外周部分に相当する領域を除外し、触媒粒子断面における中心から90%の領域のデータを有効領域として算出することが好ましい。もちろん、始めから、粒子外周部の10%分の領域を除した触媒粒子断面の内部のみについて、EPMAによる上記の面分析を行い、そのデータから、分散値Dxを求めてもよい。
 次に、触媒粒子断面の面分析の好適な手法を示す。
 まず、測定しようとする粒子を適当なマトリックス樹脂中に包埋させ、これを研磨し、埋設した触媒粒子の断面が見えるまで全体を削る。次いで、断面の見えた触媒粒子について次のようにしてEPMA測定を行う。
 (1)EPMA測定における観測視野内に上記触媒粒子の断面がくるように試料の位置を設定する。
 (2)該触媒粒子断面に電子線を照射し、電子線を当てた部分から出てくるSi又は成分Zの特性X線の強度をカウントし、分析する領域を電子線で走査することによって面分析を行う。
 本実施形態における複合酸化物触媒が、シリカを含有する触媒、好ましくはシリカに担持されたシリカ担持触媒である場合、原料調合液がシリカ原料を含有するように調製することが好ましい。シリカの原料にはシリカゾルを用いることができるが、シリカ原料の一部又は全量に、粉体シリカを用いることもできる。
 触媒に含まれるシリカの含有量、好ましくは担体シリカの含有量は、SiO換算で、複合酸化物とシリカとを含む触媒の全質量に対して、触媒の強度を向上させる観点から20質量%以上であることが好ましく、十分な活性を付与する観点から70質量%以下であることが好ましい。その含有量は、より好ましくは、触媒の全質量に対して40~65質量%である。
 シリカゾルは、シリカゾル中のSiOの質量に対して10~270wtppm、より好ましくは10~270wtppmの硝酸イオンを含有することが好ましい。理由は定かではないが、下記の要因が考えられる。ただし、要因はこれに限定されない。すなわち、シリカ担体原料であるシリカゾル中の硝酸イオン濃度を特定の範囲に調整することにより、シリカゾルの凝集状態を適切に調整することができる。そのようなシリカゾルを担体原料として用いることで、目的物の収率が良好となり、且つ、物理的強度の優れたシリカ担持触媒が得られる。
 ここで、シリカゾル中のシリカに対する硝酸イオン濃度は、イオンクロマトグラフィーで求めることができる。測定装置及び測定条件を以下に示す。測定装置は東ソー株式会社製の装置(商品名「IC-2001」)を用いることができる。カラムは、TSKgel superIC-AZ(商品名)を使用し、ガードカラムとしてTSKguardcolumn superIC-AZ(商品名)を使用する。さらに、サプレッサバルブ洗浄液として、TSKsupress A(商品名)を用い、溶離液は1.9mmol/LのNaHCO水溶液と3.2mmol/LNaCO水溶液とを混合して用いる。その際の流速は0.8mL/minとする。
 シリカゾル中の硝酸イオン濃度を調整する方法を説明するために、まず、工業的なシリカゾルの製造方法について説明する。シリカゾルの工業的な製造方法としては、(1)水ガラス中和後の透析、(2)電気透析、(3)金属シリコンのアンモニア又はアミン水溶液中での溶解、(4)シリカゲルの解膠、(5)イオン交換樹脂による水ガラスの脱Na、等の方法が存在する。それらの中でも、最も一般的なシリカゾルの製法は、(5)イオン交換樹脂を用いた方法(イオン交換樹脂法)である。イオン交換樹脂法によって製造されたシリカゾルには、高濃度下での安定性を高めるために、安定剤としてLiOH、NaOH、KOH等を添加する。それゆえ、一般的にシリカゾルの安定なpH領域は8~10程度である。シリカゾルが安定な分散状態を保つためには、ゾル中のシリカ粒子が互いに電荷的に反発する必要がある。そのために、前述のように安定剤を添加し、シリカ粒子の表面にOHを吸着させて、負電荷による安定化効果を発揮させることにより、ゲル化を防止している。しかし、過剰なアルカリ(安定剤中のアルカリ金属イオン)が添加されるとアルカリイオンが吸着され、負電荷が減少される結果となるため、不安定になることが知られている。近年では、これらのシリカゾル本来の特性を有し、様々な用途に用いることができる多くのシリカゾルが市販されている。市販されているシリカゾルとしては、例えば、日産化学工業株式会社のスノーテックスシリーズでは、シリカゾル濃度30%のスノーテックス30、さらにゲル化を起こすおそれのある用途に用いられるスノーテックスC、揮発性弱塩基を安定化剤として使用してアルカリ分残留のおそれのないことを目的としたスノーテックスN、酸性での使用を必要とする用途に適するスノーテックスO等が挙げられる(参考文献:触媒工学講座10 元素別 触媒便覧 昭和42年2月25日発行)。
 上述の製法で得られたシリカゾルのシリカ粒子の表面に着目してみると、酸性タイプ、及びアルカリタイプに区別される。しかし、いずれのタイプにおいてもシリカゾル中にほとんど硝酸イオンは存在しない。例えば、酸性タイプでは主に水素イオンが安定剤として用いられ、一方で、アルカリタイプでは、ナトリウムイオン又はアンモニウムイオンが安定剤として用いられる。酸性タイプのカウンターアニオンとしてはSO 2-、Cl等が用いられ、アルカリタイプでのカウンターアニオンとしてはOHが一般的に用いられている。
 シリカゾルが上述した酸性タイプ、アルカリ性タイプのいずれの場合でも、硝酸イオンの質量割合が、シリカの質量に対して10~270wtppmであるシリカゾルを得るには、一般的なシリカゾルの製法である水ガラスの水溶液を硫酸や塩酸で中和する方法を用いる際に、硝酸や硝酸アンモニウム等の硝酸塩を添加して、シリカに対する硝酸イオン量を10~270wtppmに調整することが好ましい。また、硫酸や塩酸で中和した後、イオン交換によって水ガラス水溶液中のアニオンと硝酸イオンを交換してもよい。既製のシリカゾルに硝酸イオンをスポイト等で添加して硝酸イオン量を調整してもよい。硝酸源は硝酸の他、硝酸アンモニウム等の塩でもよい。シリカゾルの一次粒子は一般的に球体であるが、非球体のシリカゾルでも、球体同士が数珠状に連結されたゾルなどを用いても構わない。
 シリカ担体の原料は、シリカゾルのみでもよいが、一部を粉体シリカに代替することも可能である。シリカ担体の原料として粉体シリカを用いることにより、触媒活性及び/又は目的物の収率向上等の効果を期待できる一方、シリカゾルを使用しないで粉体シリカのみで触媒を調製すると触媒の耐摩耗性が著しく低くなる。本明細書中、用語「粉体シリカ」とは、固体のSiOの微粒子を示す。粉体シリカの一次粒径が大きすぎると、得られる触媒が脆くなる傾向にあるので、ナノメートルサイズの粉体シリカが好ましい。粉体シリカは、高熱法で製造されたものが好ましい。好ましい粉体シリカの具体例としては、日本アエロジル社製アエロジル200(商品名)が挙げられる。
 原料調合液への添加及び混合を容易にする観点で、粉体シリカは予め水に分散させておくことが好ましい。粉体シリカを水に分散させておく方法としては特に制限はなく、一般的なホモジナイザー、ホモミキサー又は超音波振動器等を単独若しくは組み合わせて用いて、分散させることができる。この時の粉体シリカの一次形状は、球体でもよいし、非球体でもよい。
 シリカ担体の原料としてシリカゾルと粉体シリカとを併用する場合、シリカゾルと粉体シリカとの合計量のうち20~70質量%を粉体シリカとするのが好ましい。粉体シリカが70質量%を超えると触媒の耐摩耗性が低くなる傾向にあり、20質量%未満であると触媒活性及び/又は目的物の収率が低くなる傾向にある。なお、粉体シリカは、硝酸イオンを含有していなくともよい。目的物の収率及び/又は物理的強度を高める目的で、シリカゾル中の硝酸イオン濃度(シリカの質量に対する硝酸イオンの質量割合)をSiOに対して10~270wtppmに調整する場合であっても、粉体シリカに含まれる硝酸イオンを調整する必要はない。
 以下、原料調合工程を、溶媒及び/又は分散媒を水とし、Mo化合物、V化合物、Sb化合物、Nb化合物、W化合物及びZ化合物を含有するシリカ担持触媒の原料調合液を調製する場合を例にとって説明する。ただし、原料調合工程はこれに限定されない。
 まず、Mo、V、Sb及び成分Zを含有する水性混合液を調製する。より具体的には、Mo化合物、V化合物、Sb化合物、成分Z化合物を水に添加し、加熱して水性混合液(A)を調製する。水性混合液(A)調製時の加熱温度及び加熱時間は原料化合物が十分に溶解しうる状態になるよう調整することが好ましく、加熱温度は好ましくは70℃~100℃であり、加熱時間は好ましくは30分~5時間である。加熱時の攪拌の回転数は、同様に原料が溶解しやすい適度な回転数に調整することができる。原料が金属塩である場合、それを十分に溶解させる観点から、攪拌状態を保つことが好ましい。この時、容器内は空気雰囲気でもよいが、得られる複合酸化物触媒の酸化数を調整する観点から、窒素雰囲気にすることもできる。水性混合液(A)の加熱が終了した後の状態を水性混合液(A’)とする。水性混合液(A’)の温度は20℃以上80℃以下で保持することが好ましく、より好ましくは40℃以上80℃以下である。水性混合液(A’)の温度が20℃未満である場合には、水性混合液(A’)に溶解している金属種の析出が起こる可能性がある。
 次いで、水性混合液(A)、あるいは、加熱が終了した後の水性混合液(A’)に、シリカゾルを加える。シリカゾルは、担体として機能する。シリカゾルを加えるときの温度は、80℃以下が好ましい。80℃を超える温度でシリカゾルを添加した場合には、シリカゾルの安定性が弱くなり原料調合液がゲル化するおそれがある。シリカゾルを添加するタイミングは後述する熟成開始時でも、熟成途中でも、原料調合液を乾燥する直前でもかまわない。ただし、シリカゾルを水性混合液(A’)に加えるのが好ましい。さらに、得られる複合酸化物の酸化数を調整する観点から、適量の過酸化水素水を水性混合液(A’)に、必要に応じて添加することが好ましい。過酸化水素水を添加するタイミングとしては、水性混合液(A’)自体に添加しても、水性混合液(A’)を調合する途中に添加してもよく、シリカゾル添加前でも添加後でも問題ない。この時、得られる複合酸化物触媒の酸化数を適正な範囲に調整する観点から、過酸化水素水の添加量は、H/Sb(モル比)として、0.01~5が好ましく、より好ましくは0.5~3、特に好ましくは1~2.5である。
 水性混合液(A’)に過酸化水素水を添加した後の加熱温度及び加熱時間は、過酸化水素水による液相酸化反応が十分に進行しうる状態になるよう調整することが好ましく、加熱温度は好ましくは30℃~70℃であり、加熱時間は好ましくは5分~4時間である。加熱時の攪拌の回転数は、同様に過酸化水素水による液相酸化反応が進行しやすい適度な回転数に調整することができる。過酸化水素水による液相酸化反応を十分に進行させる観点から、加熱の間、攪拌状態を保つことが好ましい。こうして調製された水性混合液を(A’’)とする。
 次に、Nb化合物とジカルボン酸とを水中で加熱撹拌して混合液(B)を調製する。ジカルボン酸の例としては、シュウ酸〔(COOH)〕が挙げられる。次いで、混合液(B)に、過酸化水素水を添加し、水性混合液(C)を調製することが好ましい。この時、H/Nb(モル比)は、Nb化合物と錯体を形成させて溶解状態で安定化させること、触媒構成元素の酸化還元状態を適正に調節すること、並びに、得られる触媒の触媒性能を適正にすること等の観点から、0.5~20とすることが好ましく、1~10とすることがより好ましい。
 次いで、目的とする組成に合わせて、水性混合液(A’’)、水性混合液(C)、W化合物、粉体シリカを好適に混合して、水性混合液(D)を得る。続いて、得られた水性混合液(D)を熟成処理し、原料調合液を得る。ここで用いる粉体シリカは、水性混合液(A’’)、水性混合液(C)及びW化合物を混合して得られた溶液に添加することが、得られる触媒の触媒性能を適正にする観点から好ましい。また、粉体シリカは、そのまま添加することも可能であるが、より好ましくは粉体シリカを水に分散させた液、すなわち粉体シリカ含有懸濁液として添加することが好ましい。この時の粉体シリカ含有懸濁液中の粉体シリカ濃度は、1~30質量%が好ましく、より好ましくは3~20質量%である。粉体シリカ濃度が1質量%未満の場合には、スラリーの粘度が低すぎるために、得られる粒子の形状が歪になる、また、触媒粒子にくぼみが発生しやすくなる、等のおそれがある。一方で、粉体シリカ濃度が30質量%を超える場合には、原料調合液の粘性が大きくなりすぎ、原料調合液がゲル化し、配管内でつまりを生じて乾燥粉末を得ることが困難になる、触媒性能が低下する、等のおそれがある。
 水性混合液(D)の熟成とは、水性混合液(D)を所定時間静置するか撹拌することを言う。熟成時間は、90分以上50時間以下が好ましく、90分以上6時間以下がより好ましい。熟成時間が90分未満又は50時間を超えると、好適な酸化還元状態(電位)を有する水性混合液(D)が形成され難くなり、得られる複合酸化物の触媒性能が低下する傾向にある。ここで、工業的に噴霧乾燥機による乾燥を経て複合酸化物触媒を製造する場合、通常は噴霧乾燥機の処理スピードが律速となり、一部の水性混合液(D)が噴霧乾燥された後、全ての混合液の噴霧乾燥が終了するまでに時間を要する。この間、噴霧乾燥処理されていない水性混合液の熟成は継続される。したがって、熟成時間には、後述する工程(II)における乾燥前の熟成時間だけでなく、乾燥開始後から終了までの時間も含まれる。熟成温度は、Mo成分の縮合や、V及び他の金属種又は複数の金属による金属酸化物の析出を防ぐ観点から、25℃以上が好ましい。また、Nbと過酸化水素とを含む錯体の加水分解が起こりすぎないようにし、好ましい形態のスラリーを形成する観点から、熟成温度は、65℃以下が好ましい。上記観点から、熟成温度は25℃以上65℃以下が好ましく、30℃以上60℃以下がより好ましい。
 熟成時の容器内雰囲気は、十分な酸素濃度を有することが好ましい。酸素濃度が十分でないと、水性混合液(D)の実質的な変化が生じにくくなる場合がある。より具体的には、容器内の気相酸素濃度は1vol%以上であることが好ましく、例えば空気雰囲気で熟成することができる。気相酸素濃度は、一般的な測定方法、例えば、ジルコニア式酸素濃度計を用いた測定方法により測定することができる。気相酸素濃度を測定する場所は、水性混合液(D)と気相との界面近傍であることが好ましい。例えば、同一地点での気相酸素濃度の測定を1分以内に3度行い、3度の測定結果の平均値をもって気相酸素濃度とすることが好ましい。
 気相酸素濃度を低減させるための希釈ガスとしては、特に限定されないが、窒素、ヘリウム、アルゴン、二酸化炭素、水蒸気等が挙げられる。工業的には、窒素が好ましい。また、気相酸素濃度を増加させるためのガスとしては、純酸素又は高酸素濃度の空気が好ましい。
 熟成により、水性混合液(D)に含まれる成分の酸化還元状態に何らかの変化が生じると考えられる。何らかの変化が起こっていることは、熟成中に水性混合液(D)の色の変化、酸化還元電位の変化等が生じることからも示唆される。その結果、酸素濃度1~25vol%の雰囲気で90分以上50時間以下の熟成の有無によって得られる複合酸化物触媒の性能にも違いが現れる。即ち、熟成中、液中成分の形態変化を正確に同定するのは極めて困難であるが、熟成時間の異なる触媒を製造し、性能を評価することで、性能の良い触媒に施した熟成時間が好ましく、この時何らかの好ましい形態のスラリーが形成されていたと考えるのが妥当である。
 水性混合液(D)の酸化還元電位に対しては、水性混合液(C)の電位600mV/AgClが支配的である。例えば、水性混合液(C)がシュウ酸Nbパーオキサイドを含む場合、シュウ酸Nbパーオキサイドと他の金属成分とが何らかの酸化還元反応を起こすことにより経時的な電位の低下が生じると考えている。水性混合液(D)の酸化還元電位は、好ましくは450~530mV/AgClであり、より好ましくは470~510mV/AgClである。
 水性混合液(D)に含まれる成分の酸化還元状態に何らかの影響を及ぼす酸化還元反応の進行を遅くし過ぎず、原料調合液段階での酸化還元状態が過還元気味になるのを防ぐ観点で、熟成中の酸素濃度は1vol%以上とすることが好ましい。一方、酸化還元反応が進行しすぎて、原料調合液が過酸化気味になるのを防ぐ観点で、熟成中の酸素濃度は25vol%以下とすることが好ましい。いずれにせよ、気相酸素が原料調合液の酸化還元状態に影響を及ぼすため、酸素濃度を適正な範囲に維持する必要がある。その範囲は、5~23vol%が好ましく、10~22vol%がより好ましい。
 水性混合液(D)の熟成中には、水分が蒸発し、濃縮が起こっても差し支えない。ただし、開放系で熟成をすれば、水分の蒸発は必然的に起こるものの、酸素濃度1~25vol%雰囲気下で行わなければ、触媒性能が改善されないおそれがある。
 熟成中の攪拌において、原料調合液のゲル化を防ぐ観点、及び得られる原料調合液の粘度を適切な状態に調整する観点から、液密度、原料調合液量、攪拌翼の回転数等を制御することが好ましい。原料調合液の粘度が低すぎると、後述する噴霧乾燥工程において、得られる粒子の形状が歪んだり、触媒粒子にくぼみが発生しやすくなるおそれがある。一方、粘度が高すぎると原料調合液がゲル化し、配管内でつまりを生じて乾燥粉末を得ることが困難になったり、触媒性能が低下したりするおそれがある。従って、液密度、原料調合液量、攪拌翼の回転数等を制御することによって、適切な粘度の原料調合液を得ることが好ましい。
 熟成中の攪拌では、一般的な攪拌翼、攪拌羽根等として、例えば、多段翼、アンカー翼、らせん軸翼、らせん帯翼等を用いることができる。また、低粘度液用攪拌翼として、例えば、プロペラ、ディスクタービン、ファンタービン、湾曲羽根ファンタービン、矢羽根タービン、角度付羽根タービン等を用いることができる。
 原料調合液を調製するための装置における、単位体積あたりの原料調合液に対して攪拌装置の攪拌翼より与えられる動力(以下「Pv」という)は、好ましくは0.005~300kW/mであり、より好ましくは0.01~280kW/m、更に好ましくは0.1~250kW/mである。Pvが0.005kW/m未満の撹拌動力で原料調合液を撹拌すると、原料調合液がゲル化し、配管内でつまりを生じて乾燥粉末を得ることが困難になったり、触媒性能が低下したりするおそれがある。また、Pvが300kW/mを超える撹拌動力で原料調合液を撹拌すると、噴霧乾燥後の触媒粒子にくぼみが発生しやすくなる。くぼみの存在は触媒の強度に悪影響を及ぼすこととなる。このPv値は、下記式(A)で示され、液密度、原料調合液量、攪拌翼の回転数等を調節することによって制御することができる。
 Pv=Np×ρ×n×d/V・・・(A)
 ここで、Np:攪拌に必要な動力に関する無次元数である動力数(-)、ρ:液密度(kg/m)、n:攪拌翼の回転数(s-1)、d:攪拌翼径(m)、V:原料調合液量(m
 Np値は、以下の計算式(B1)を用いて算出することができる。
Figure JPOXMLDOC01-appb-M000001
 ここで、上記式(B1)~(B5)中の記号はそれぞれ以下のとおりである。
 bは撹拌翼の幅(m)を示し、dは撹拌翼径(m)を示し、Dは撹拌槽径(m)を示し、Zは液深さ(m)を示し、θは撹拌翼の水平からの傾斜角(°)を示す。
 また、得られる原料調合液の室温(25℃)での粘度は、原料調合液がゲル化し、配管内を閉塞し乾燥粉末を得ることが困難になることを抑制し、さらには、触媒性能が低下することを抑制する観点、噴霧乾燥後の触媒粒子に窪みが発生する又は触媒粒子が歪な粒子形状となるのを抑制する観点等から、好ましくは1~100cp、より好ましくは2~90cp、更に好ましくは2.5~80cpである。
 原料調合液の粘度は、例えば市販の粘度計を用いて測定する方法、原料調合液を流通させる配管内の圧力損失を測定する方法によって測定することができる。例えば、無攪拌状態で徐々にゲル化が進むような液の粘度を測定する場合は、市販の粘度計を用いて測定する際に徐々に粘度が変化する可能性がある。そこで、測定値の再現性の観点から、原料調合液を流通させる配管内の圧力損失を測定する方法によって粘度を測定することが好ましい。
 原料調合液を流通させる配管内の圧力損失を測定する方法によって原料調合液の粘度を測定する場合には、液粘度は、次の計算式(C1)によって算出することができる。
Figure JPOXMLDOC01-appb-M000002
 ここで、式中の記号はそれぞれ以下のとおりである。
 μ:液粘度(cp)、ΔP:配管内の圧力損失(mmHO)、u:液流通平均速度(m/s)、L:配管長さ(m)、D:配管径(m)
 原料調合液を、各触媒成分を溶解した複数の原料液を混合することによって得る場合、各原料液を調製するときのそれぞれのPvの上限については特には限定されない。また、Pvの下限についても特に限定されないが、固体粒子の全て又は大半が、原料液を得る装置の槽底から離れて装置内を流動している状態となるようなPv値以上とすることが好ましい。なお、原料液を調製するに際して、それぞれの原料液中の固体粒子が実質的に全て溶解した後は、攪拌を停止してもよい。
 また、原料調合液のpHを調整するために、必要に応じて、原料調合液に酸及び/又はアルカリを添加してもよい。
 複合酸化物触媒がシリカ担持触媒の場合、触媒構成元素を含む化合物を十分に溶解及び/又は分散する観点、触媒構成元素の酸化還元状態を適正に調整する観点、得られる触媒粒子形状及び/又は強度を好ましい状態にする観点、得られる複合酸化物の触媒性能を向上させる観点等から、シリカゾルを含むように原料調合液を調製することが好ましい。シリカゾルは適宜添加することができる。また、シリカゾルの一部を粉体シリカの水分散液とすることもでき、粉体シリカの水分散液も、適宜添加することができる。
 以上の原料調合工程は、生産量に応じて繰り返し実施することができる。
 本実施形態における原料調合工程は、好ましくは以下の(a)~(d)の工程を含む。
(a)Mo、V、Sb及び成分Zを含有する水性混合液を調製する工程、
(b)(a)工程で得られた水性混合液にシリカゾル及び過酸化水素水を添加する工程、
(c)(b)工程で得られた溶液に、Nb、ジカルボン酸及び過酸化水素水を含有する水溶液と、W化合物を混合する工程、及び
(d)(c)工程で得られた溶液に粉体シリカ含有懸濁液を加えて、熟成する工程。
(工程(II)乾燥工程)
 工程(II)は、前記原料調合液を乾燥し、乾燥粉体を得る工程である。
 原料調合工程を経て得られたスラリー状の原料調合液を乾燥することによって、乾燥粉体が得られる。乾燥は公知の方法で行うことができ、例えば、噴霧乾燥又は蒸発乾固によって行うこともできる。気相接触酸化反応又は気相接触アンモ酸化反応で流動床反応方式を採用する場合、反応器内での流動性を好ましい状態にする等の観点から、微小球状の乾燥粉体を得ることが好ましいので、噴霧乾燥を採用するのが好ましい。噴霧乾燥法における噴霧化は、遠心方式、二流体ノズル方式又は高圧ノズル方式のいずれであってもよい。乾燥熱源としては、スチーム、電気ヒーター等によって加熱された空気を用いることができる。噴霧乾燥装置の乾燥機の入口における乾燥熱源の温度(以下、「乾燥機の入口温度」ともいう。)は、得られる触媒粒子形状及び/又は強度を好ましい状態にする観点、得られる複合酸化物の触媒性能を向上させる観点等から、150~300℃が好ましい。また、乾燥機の出口における排気温度(以下、「乾燥機の出口温度」ともいう。)は100~160℃が好ましい。
 噴霧速度、原料調合液の送液の速度、遠心方式の場合のアトマイザーの回転数等は、得られる乾燥粉体の大きさが好適になるように調整することが好ましい。乾燥粉体の平均粒子径は、好ましくは5μm~200μmであり、より好ましくは10~150μmである。
 乾燥粉体の平均粒子径は、JIS R 1629-1997「ファインセラミックス原料のレーザー回折・散乱法による粒子径分布測定方法」に準拠して粒子径分布を測定し、体積基準で平均して求めることができる。より詳細には、乾燥粉体の一部を空気中400℃で1時間焼成し、得られた粒子を対象として、レーザー回折散乱法粒度分布測定装置BECKMAN COULTER製LS230(商品名)を用いて測定される。
 平均粒子径を、乾燥粉体の一部を「空気中400℃で1時間焼成」した後で測定するのは、乾燥粉体が水に溶けるのを防ぐためである。つまり、「空気中400℃で1時間焼成」は専ら測定のためであって、後述の焼成工程とは関係しない。この焼成の前後で、粒子径はほぼ変化しないと考えてよい。
 より具体的には、乾燥粉体の平均粒子径の測定は、レーザー回折散乱法粒度分布測定装置(BECKMAN COULTER製、商品名「LS230」)に添付のマニュアルに準じ、次のように行う。まず、バックグラウンド測定(RunSpeed60)を行った後、粒子0.2gを適当な大きさのスクリュー管に秤量し、水10ccを加える。スクリュー管に蓋をして(密閉して)十分に振とうし、粒子を水に分散させる。装置により300Wの超音波を印加し、再度スクリュー管を十分に振とうする。その後、超音波の印加を続けながら、水に分散させた粒子を適切な濃度(濃度10、PIDS60)になるよう装置本体にスポイトを用いて注入する。濃度表示が安定したら、超音波の印加を停止し、10秒間静置した後、測定を開始する(測定時間90秒)。測定結果の中位径の値(D50)を平均粒子径とする。
 工程(II)により得られた乾燥粉体の一部を回収してその吸収又は反射スペクトルを測定することも好ましい。工程(II)で得られた乾燥粉体の吸収又は反射スペクトルを継続的に計測することで、吸収又は反射スペクトルから最終的に得られる複合酸化物触媒の性能を予測することができる。ここで、複合酸化物触媒は、例えば、乾燥工程中の加熱によって酸化還元度が変化して、得られる複合酸化物触媒の性能は影響を受けるので、これを例にとって、複合酸化物触媒の性能の予測について説明する。工程(II)において水性原料(原料調合液)を噴霧乾燥して乾燥粉体を得る際に、装置内の壁面及び/又は底に一部の乾燥粉体が付着及び堆積して装置内に長時間留まることによって、乾燥粉体に意図しない熱が加わり酸化還元度が変化する場合がある。後述する焼成工程が空気雰囲気中で行われる場合、焼成工程において酸化が進むことが前提であるので、乾燥粉体の酸化還元度は完成する触媒の性能に影響し難い。一方、焼成工程が不活性ガス雰囲気中で行われる場合、乾燥粉体の酸化還元度が複合酸化物触媒の性能に影響し易い。特に、複合酸化物触媒の酸化還元度を考慮に入れて調製法が最適化されている場合、乾燥粉体の酸化還元度が好適な範囲から外れていると、当然のことながら性能が悪化する傾向にある。詳細なメカニズムは不明であるが、乾燥粉体は酸化還元度が変化することに伴ってその色が変化する。Mo-V系触媒を例に取ると、特に乾燥粉体が黒く変色するほど、その複合酸化物触媒の性能が悪化する傾向にある。この理由として、例えば、乾燥粉体に含まれる有機成分や無機成分が意図しない加熱で熱分解し、それにより周囲の金属元素が還元される、或いは金属元素同士の酸化還元反応が生じることが考えられる。従って、乾燥粉体の吸収又は反射スペクトルをモニタリングして変色度合いを調べ、その複合酸化物触媒の性能を予測することができる。
 吸収又は反射スペクトルの測定方法としては、特に限定されないが、例えば、可視・紫外分光光度計を用いて測定される乾燥粉体の吸光度により求められる。本発明者らが鋭意検討した結果、黒く変色した性能の悪い乾燥粉体は、波長500nm以上の吸光度が、黒く変色していない乾燥粉体の吸光度よりも大きいことが分かった。従って、波長500nm以上、好ましくは500nm以上800nm以下の範囲における任意の波長における吸光度を選択し、モニタリングの指標とすることができる。
 乾燥粉体の吸収又は反射スペクトルは、継続的に測定することが好ましい。ここで、「継続的に測定する」とは、3ヶ月に1度以上の頻度で測定することを言う。より好ましくは1ヶ月に1度、さらに好ましくは1週間に1度、特に好ましくは1日1度以上の頻度で測定する。吸収又は反射スペクトルを頻繁に測定するほど、酸化還元度が適切でない乾燥粉体が多量に生成するリスクを低減することができる。ただし、製造条件によっては乾燥粉体の吸収又は反射スペクトルが変化し難く、頻繁な測定は不要の場合もあるので、測定の頻度は適宜設定すればよい。
 また、噴霧乾燥装置内における乾燥粉体の堆積を防ぐことを目的として、手段は限定されないが、噴霧乾燥装置に振動を与える振動機や衝撃を与えるエアノッカーを装着することが好ましい。また、適度な頻度で噴霧乾燥を一旦停止し、装置内を水等で洗浄することも好ましい。乾燥粉体の吸収スペクトルの計測又は反射スペクトルの計測は、意図しない加熱が起こりやすい工程(II)の直後に行うことが好ましい。
 乾燥装置に設置するエアノッカーの操作条件は、装置の大きさ、壁の肉厚、付着物の剥離具合等に応じて任意に調整することができる。操作条件としては、エアノッカーの打撃強度、打撃頻度、エアノッカーの設置個数の増減、設置位置の変更等が挙げられる。エアノッカーの打撃強度は、長期運転においても壁面及び/又は他の乾燥装置部位が変形、破損しない程度の強度であることが好ましい。打撃頻度は、1分に1回以上が好ましく、10秒に1回以上がより好ましい。エアノッカーの設置個数や設置位置については、長期運転後の内部観察で付着の激しい部位に対して個数を増設する、又は付着のほとんどない部位のノッカーを付着の激しい部位に移設すること等が好ましい。
 必要に応じ、上述のように測定した吸収又は反射スペクトルに応じて、上記工程(I)及び(II)における各条件を決定するための下記工程(A)を行うことができる。
[工程(A)]
 工程(A)は、測定した乾燥粉体の吸収又は反射スペクトルから最終的に得られる複合酸化物触媒の性能を予測して、予測した複合酸化物触媒の性能に基づいて各工程における操作条件を制御する工程であり、この工程(A)を行うことで、より一層性能に優れた触媒を効率的に得ることが可能となる。
 測定した乾燥粉体の吸収又は反射スペクトルを用いて最終的に得られる複合酸化物触媒の性能を予測するには、異なる原料の調製条件下及び/又は乾燥条件下で得た乾燥粉体の吸収又は反射スペクトルと、その乾燥粉体から得た複合酸化物触媒の性能の相関図を用いることができる。異なる原料の調製条件下及び/又は乾燥条件下で得た乾燥粉体の吸収又は反射スペクトルとしては、紫外可視分光光度計を用いて得られる特定波長に対する吸光度を用いることが好ましい。
 異なる原料の調製条件下で得た乾燥粉体とは、工程(I)において、例えば、水性媒体に触媒構成元素の原料を溶解又は分散させる際に、溶解手順又は混合手順を変更したり、酸化剤又は還元剤を添加したりすることによって触媒成分の酸化還元度などの原料調合液の状態を変化させて、更に工程(II)を経て得られた乾燥粉体である。より具体的には、例えば、工程(I)において、ジカルボン酸の量を増減させる、溶液の固形分濃度を調整する、処理時間の延長する、処理温度を変更する等の方法によって、原料調合液の状態を変化させ、更に工程(II)を経て得られた乾燥粉体である。
 異なる乾燥条件下で得た乾燥粉体とは、例えば、工程(II)における原料調合液の単位時間当たりの供給量、単位時間当たりの供給乾燥熱源量(例えば供給空気量)、乾燥熱源温度(例えば供給空気温度)及び/又は乾燥装置に取り付けた乾燥粉体堆積防止装置等の操作条件等を変化させて得られた乾燥粉体である。噴霧化が遠心方式の場合は、ディスクの回転数やディスク径等の条件を変更して乾燥粉体を得ることもできる。また、工程(II)で得られた乾燥粉体に、意図的に時間及び/又は温度を変えて加熱を行って変色させて得られる乾燥粉体を用いてもよい。
 異なる原料の調製条件下及び/又は乾燥条件下で得た乾燥粉体の吸収又は反射スペクトルは、上述した方法と同様に測定することができる。更に、それぞれを同条件下で焼成して得られる複合酸化物触媒を用いて、プロパン若しくはイソブタンの気相接触酸化又は気相接触アンモ酸化反応等を行った場合の触媒性能を調べる。調べる触媒性能としては収率、活性、転化率、副生成物の収率等が挙げられ、これらを組み合わせてもよい。
 次に、異なる原料の調製条件下及び/又は乾燥条件下で得た乾燥粉体の吸収又は反射スペクトルと、触媒性能の相関図を作成する。この相関図を用いて、測定した乾燥粉体の吸収又は反射スペクトルから、最終的に得られる複合酸化物触媒の性能を予測することができる。
 本工程(A)により、最終的に得られる複合酸化物触媒の性能の予想値に応じて各工程における操作条件を変更することにより、より性能に優れた複合酸化物触媒を簡易に得ることが可能になる。工業的には、乾燥粉体の吸収又は反射スペクトルを継続的にモニタリングして、上述した吸収又は反射スペクトルに応じて操作条件を変更することにより、性能に優れた複合酸化物触媒を効率的に得ることができる。
 本工程(A)においては、モニタリングした吸収又は反射スペクトルに応じて、上述した(I)原料調合工程及び(II)乾燥工程における操作条件を決定する。制御のしやすさの観点からは、吸収又は反射スペクトルに応じて、(II)乾燥工程における操作条件を決定することが好ましい。
 [工程(A-1)]
 工程(A-1)は、測定した吸収又は反射スペクトルに応じて、工程(I)における調製条件を決定する工程である。本工程においては、工程(I)において異なる調製条件下で得た原料調合液から、工程(II)において得られた乾燥粉体の吸収又は反射スペクトルと、その乾燥粉体から得た複合酸化物触媒の性能の相関図を用いて、最終的に得られる複合酸化物触媒の性能が良好となるように調製条件を決定する。
 本工程において「調製条件を決定する」手段としては、特に限定されないが、水性媒体に触媒構成元素の原料を溶解又は分散させる際に、溶解手順又は混合手順によって触媒成分の酸化還元度を制御する方法、酸化剤又は還元剤を添加する方法等が挙げられる。例えば、ジカルボン酸の量を増減させる、溶液の固形分濃度を調整する、処理時間の延長する、処理温度を変更する等の方法でも調整条件を決定することが可能である。
 [工程(A-2)]
 工程(A-2)は、測定した吸収又は反射スペクトルに応じて、工程(II)における乾燥条件を決定する工程である。本工程においては、工程(II)において異なる乾燥条件下で得た乾燥粉体の吸収又は反射スペクトルとその乾燥粉体から得た複合酸化物触媒の性能の相関図を用いて、最終的に得られる複合酸化物触媒の性能が良好となるように乾燥条件を決定する。
 本工程において「乾燥条件を決定する」手段としては、特に限定されないが、噴霧乾燥装置を用いる場合は、水性原料(原料調合液)の単位時間当たりの供給量、単位時間当たりの供給乾燥熱源量(例えば供給空気量)、乾燥熱源温度(例えば供給空気温度)、乾燥装置に取り付けた乾燥粉体堆積防止装置等の操作条件を変更する方法等が挙げられる。得られる触媒の性能や物理的な形状・強度等を維持するという観点からは、乾燥粉体堆積防止装置の操作条件を変更する方法がより好ましい。また、噴霧化が遠心方式の場合は、ディスクの回転数やディスク径を変更してもよい。また、これらを組み合わせてもよい。
 乾燥粉体は、粒子径25μm以下の粒子含有率が好ましくは20質量%以下、より好ましくは15質量%以下、更に好ましくは10質量%以下、更により好ましくは5質量%以下、特に好ましくは2質量%以下となるように調製する。粒子径25μm以下の粒子含有率が20質量%を超えると、得られる触媒の性能が悪化し、流動床反応装置における目的生成物の収率が低下する傾向にある。
 触媒の性能が悪化する理由は定かではないが、おそらく、粒子径25μm以下の粒子含有率が20質量%を超えると、流動性が悪化して焼成器内で焼成ムラが生じ易いためと考えられる。特に、連続式焼成においては粒子径の小さい乾燥粉体粒子が焼成器内を逆戻りし、所望時間よりも長時間焼成雰囲気にさらされるため、後述の前段焼成において前段焼成体の還元率が適正にならない、或いは、本焼成において焼成過多になり結晶が分解する等の問題が生じるおそれがあり、さらに、前段焼成体粒子の固着が起こりやすくなるため、焼成器壁面への固着物の積層により内部への伝熱が悪くなる、又は長時間固着した焼成過多の触媒が混入するおそれがあるためと推定される。ここで、「前段焼成体」とは後述する前段焼成工程により生成する化合物をいう。上記理由により、従来、連続式焼成によって触媒を製造する場合には、触媒組成を同じにしても、バッチ式焼成の場合と同程度の性能(例えば、目的生成物の収率)を有する触媒を安定して製造することが困難である。一方、本実施形態の製造方法によれば、連続式焼成であっても、バッチ式焼成の場合と同程度の性能のものを得ることが可能となる。ただし、要因は上記に限定されない。
 また、触媒中にMo、Sb等を含む場合、焼成中に低融点の化合物を生成しやすい。粒子径25μm以下の粒子は粒子径25μm超の粒子に比べ表面の割合が大きいため、より固着が起こりやすいと考えられる。固着量が多くなりすぎると、触媒層の十分な焼成温度が得られない、生産量が確保できない等の問題が生じる。よって、焼成前の段階で粒子径25μm以下の粒子の割合を少ない状態にすることが好ましい。
 乾燥粉体の平均粒子径は、更に好ましくは35~75μm、なおも更に好ましくは40~65μm、特に好ましくは45~60μmである。複合酸化物触媒を流動床型の触媒反応に用いる際、平均粒子径が35μm未満であると、流動性が悪化して目的生成物の収率が低下する、又は流動床反応器から飛散しやすく触媒量のロスが大きくなる等のおそれがある。一方、平均粒子径が75μmを超えると、流動性が悪化し、反応ガスとの接触効率が悪くなることにより目的生成物の収率が低下するおそれがある。
 乾燥粉体の平均粒子径を35~75μm、粒子径25μm以下の粒子含有率を20質量%以下に調整することにより、焼成工程において、前段焼成体の還元率を好ましい範囲に調整することができる。このメカニズムについて、本発明者らは、次のように考えている。
 乾燥粉体は、通常、アンモニウム根、有機酸、無機酸を含んでおり、不活性ガスを流通させながら焼成する場合、これらが蒸発、分解等をする際に触媒構成元素が還元される。アンモニウム根は蒸発してアンモニアガスとなり、前段焼成体粒子を気相から還元する。前段焼成体の還元率は、特に後述する前段焼成における焼成時間や焼成温度により変化する。焼成時間が長い場合、又は焼成温度が高い場合は還元が進み易く、還元率が高くなる。比較的小粒径の前駆体を多く含む場合、典型的には平均粒子径が35μm未満、又は粒子径25μm以下の粒子含有率が20質量%を超えると、不活性ガスに同伴されたり、焼成管を用いた場合に焼成管の回転と共に舞い上がったりして焼成管中を逆戻りする小粒子が多くなる。その結果、焼成管内に滞留する時間が所望の時間より長い粒子が存在し、還元率を好ましい範囲にすることが困難になる。また、小粒子はアンモニアガスと接触する表面が多く還元されやすいことも考えられる。逆に、平均粒子径が75μmを超えると、粒子が大きいため、アンモニアガスと接触する表面が少なく還元されにくくなる。結果として、還元率を好ましい範囲に調整することが困難になると考えられる。
 ここで、粒子径25μm以下の粒子含有率は、乾燥粉体20gを目開き25μm、直径20cmの篩を用いて3分間バイブレーター(例えば、National製Panabrator)を当てて篩にかけ、篩を通った粒子の質量及び篩上に残った粒子の質量を測定し、以下の式を用いて算出することができる。
(粒子径25μm以下の粒子含有率(%))=(篩を通った粒子の質量)÷{(篩を通った粒子の質量)+(篩上に残った粒子の質量)}×100
 粒子径25μm以下の粒子の含有率を、乾燥粉体の一部を「空気中400℃で1時間焼成」した後で測定するのは、乾燥粉体が水に溶けるのを防ぐためである。つまり、「空気中400℃で1時間焼成」は専ら測定のためであって、後述の焼成工程とは関係しない。この焼成の前後で、粒子径はほぼ変化しないと考えてよい。この焼成をしたサンプルの還元率はその他の乾燥粉体と異なっている可能性がある。しかしながら、通常、サンプルはごく少量であるので、後述の焼成工程に供しても、供しなくても、触媒全体の性能にはほぼ影響しない。なお、平均粒子径の測定対象は、必ずしも乾燥粉体でなくてもよく、必要に応じて焼成した前段焼成体の平均粒子径を測定してもよい。
 粒子径25μm以下の粒子含有率が20質量%以下、かつ、平均粒子径が35~75μmの粒子を調製する方法としては、噴霧乾燥の条件、例えば、アトマイザーの回転数・噴霧乾燥温度・原料混合液の供給量等を調整する方法や、乾燥粉体を分級する方法が挙げられる。乾燥粉体を分級する方法としては、特に限定されず、例えば、遠心式分級器、風力分級器、重力分級機、慣性分級機、篩、サイクロン等の一般的な方法を用いることができる。乾式及び湿式の分級機うち、触媒構成元素の溶媒中への溶出を防ぐ、触媒性能に悪影響を及ぼさない等の観点から、乾式の分級機を好適に利用することができる。触媒の生成量を増加させる観点から、分級操作における乾燥粉体の回収率が、好ましくは75質量%以上、より好ましくは80質量%以上となるような条件に調整する、又はそのような条件を満たす装置を選定して使用することが好ましい。
((III)前段焼成工程及び(IV)本焼成工程)
 工程(III)は、乾燥粉体を前段焼成し、前段焼成体を得る工程である。
 工程(IV)は、前段焼成体を本焼成し、粒子表面に突起体を有する焼成体を得る工程である。
 本明細書においては、工程(III)と工程(IV)とをまとめて「焼成工程」とも言う。
 工程(III)及び(IV)においては、乾燥工程で得られた乾燥粉体を焼成する。焼成温度、時間、雰囲気等の条件は、乾燥粉体に含まれる有機成分の除去や複合酸化物の結晶成長の観点等で適宜決めればよく、特に限定されない。本実施形態の製造方法においては、後述のとおり温度等の条件を変更して、前段焼成、本焼成とした多段階の焼成を行う。
(乾燥粉体の焼成方法)
 乾燥粉体を焼成するための焼成装置としては、例えば、回転炉(ロータリーキルン)を用いることができる。また、乾燥粉体をその中で焼成する焼成器の形状は特に限定されないが、管状(焼成管)であると、連続的な焼成を実施することができる観点から好ましく、特に円筒状であるのが好ましい。加熱方式は、焼成温度を好ましい昇温パターンになるよう調整しやすい等の観点から外熱式が好ましく、電気炉を好適に使用できる。焼成管の大きさ及び材質等は焼成条件や製造量に応じて適当なものを選択することができる。焼成管の内径は、触媒層内の焼成温度分布にムラがないようにする、焼成時間及び製造量を適正な値に調整する等の観点から、好ましくは70~2000mm、より好ましくは100~1200mmである。また、焼成管の長さは、焼成管内の乾燥粉体及び触媒前駆体粒子の滞留時間、即ち、焼成時間の分布を極力狭くする観点、焼成管の歪みを防止する観点、焼成時間及び製造量を適正な値に調整する観点等から、好ましくは200~10000mm、より好ましくは800~8000mmである。
 焼成器(例えば焼成管)に衝撃を与える場合、その肉厚は衝撃により破損しない程度の十分な厚みを持つという観点から、2mm以上が好ましく、より好ましくは4mm以上である。また、衝撃が焼成器内部まで十分に伝わるという観点から、その肉厚は、好ましくは100mm以下、より好ましくは50mm以下である。焼成器の材質は、好ましくは耐熱性があり衝撃により破損しない程度の強度を有するものであれば特に限定されず、例えばSUSを好適に使用できる。
 なお、本明細書において「触媒前駆体」とは、焼成工程の途中段階で生成する化合物のことを言う。
 焼成管の内部に、粉体が通過するための穴を中心部に有する堰板を、粉体の流れと垂直(又は略垂直)に設けて焼成管を2つ以上の区域に仕切ることもできる。堰板を設置することにより焼成管内の粉体の滞留時間を確保しやすくなる。堰板の数は1つでも複数でもよい。焼成雰囲気に対する耐久性及び耐熱性を良好にする観点から、堰板の材質は金属が好ましく、焼成管と同じ材質のものを好適に使用できる。堰板の高さは、確保すべき滞留時間に合わせて調整することができる。例えば、内径150mm、長さ1150mmのSUS製の焼成管を有する回転炉を用い、250g/hrで乾燥粉体を供給する場合、堰板の高さは、好ましくは5~50mm、より好ましくは10~40mm、更に好ましくは13~35mmである。堰板の厚さは、特に限定されず、焼成管の大きさに合わせて調整することが好ましい。例えば、内径150mm、長さ1150mmのSUS製の焼成管を有する回転炉の場合、堰板の厚さは、好ましくは0.3mm以上30mm以下、より好ましくは0.5mm以上15mm以下である。
 乾燥粉体の割れ、ひび等を防ぐと共に、均一に焼成するために、焼成管を回転させるのが好ましい。焼成管の回転速度は、好ましくは0.1~30rpm、より好ましくは0.5~20rpm、更に好ましくは1~10rpmである。焼成管を有する回転炉においては、炉が回転方向に対して垂直方向に傾斜を有していることが好ましい。さらに好ましくは、回転炉を、供給側を高く、焼成後の粉体排出側を低くして傾けることが好ましい。その角度は、粉体排出側から見た仰角が0.3°以上15°以下が好ましく、より好ましくは0.3°以上5°以下である。
 乾燥粉体の焼成には、乾燥粉体の加熱温度を400℃より低い温度から昇温を始めて、550~700℃の範囲内にある温度まで連続的に又は断続的に昇温するのが好ましい。
 焼成雰囲気は、空気雰囲気下でも空気流通下でもよいが、好ましい酸化還元状態に調整する観点から、焼成の少なくとも一部を、窒素等の実質的に酸素を含まない不活性ガスを流通させながら実施することが好ましい。焼成をバッチ式で行う場合は、好ましい酸化還元状態に調整する観点から、不活性ガスの供給量は乾燥粉体1kg当たり、50Nリットル/hr以上である。好ましくは50~5000Nリットル/hr、より好ましくは50~3000Nリットル/hrである。ここで、「Nリットル」は、標準温度・圧力条件、即ち0℃、1気圧で測定したリットルを意味する。
 焼成を連続式で行う場合は、好ましい酸化還元状態に調整する観点から、不活性ガスの供給量は乾燥粉体1kg当たり、50Nリットル以上である。好ましくは50~5000Nリットル、より好ましくは50~3000Nリットルである。この時、不活性ガスと乾燥粉体は向流でも並流でも問題ないが、乾燥粉体から発生するガス成分や、乾燥粉体とともに微量混入する空気を考慮すると、向流接触が好ましい。特に、上述した原料調合工程で、水性混合液(A)に過酸化水素水を添加する方法を採用し、モリブデン、バナジウム、アンチモンを可能な限り高い酸化数まで液中で酸化することを含む工程を経て原料調合液を得る場合は、乾燥粉体の焼成を、窒素等の実質的に酸素を含まない不活性ガスを流通させながら行うことが好ましい。
 乾燥粉体は、通常、水分の他、アンモニウム根、有機酸、無機酸等を含んでいる。実質的に酸素を含まない不活性ガスを流通させながら焼成する場合、これらが蒸発、分解等する際、触媒構成元素は還元される。乾燥粉体中の触媒構成元素がほぼ最高酸化数である場合、触媒の還元率を所望の範囲にするには、焼成工程において還元のみを実施すればよいので、工業的には簡便である。
 一方、後述するように、前段焼成体の還元率が所望の範囲になるように、焼成雰囲気中に酸化性成分又は還元性成分を添加してもよい。本実施形態の製造方法においては、得られる前段焼成体の還元率が8~12%、好ましくは、9~11%、さらに好ましくは9.5~11%である。また、好ましくは、焼成体の比表面積が7~20m/gとなるように焼成が実施され、比表面積は、より好ましくは、10~16m/gである。焼成体の比表面積が7~20m/gであることにより、更に十分な活性が得られ、劣化もより抑制され、収率も一層高くなるという効果が奏される傾向にある。また、酸化反応又はアンモ酸化反応中の収率維持のためのモリブデン化合物の添加効果に関して、その効果がより十分に発揮され、急峻な劣化を示すこともないため、モリブデン化合物の添加量及び添加頻度を低減することができる傾向にある。この理由については明らかではないが、焼成体の比表面積が7m/g未満であると、反応に関与する活性種の活性面も小さく、モリブデン化合物の添加効果が発揮され難いためと推定される。また、焼成体の比表面積が20m/gを超えると、活性種の活性面が大きくなる一方で、活性面からのモリブデンの逃散も速くなるものと推定される。ただし、要因はこれらに限定されない。
 前段焼成体の還元率は、下記式(D):
  還元率(%)=((n-n)/n)×100・・・(D)
(式中、nは前段焼成体における酸素以外の構成元素の原子価を満足する酸素原子の数であり、nは前段焼成体の酸素以外の構成元素がそれぞれの最高酸化数を有する時に必要な酸素原子の数である。)
により表される。
 具体的には、乾燥粉体を焼成し、その際、乾燥粉体の加熱温度を、400℃より低い温度から昇温を始めて、450~700℃の範囲内にある温度まで連続的に又は断続的に昇温する焼成条件で行う。その際、加熱温度が400℃に達した時の焼成中の前段焼成体の還元率が8~12%となるように焼成条件を調節する。
 前段焼成体の還元率に対しては、一般的に、乾燥粉体に含有されるシュウ酸等の有機分の量や原料のアンモニウム塩に由来するアンモニウム根の量、焼成開始時の昇温速度、不活性ガス雰囲気下で焼成する場合は不活性ガスの量、また、空気雰囲気下で焼成する場合はその温度及び時間が影響を及ぼす。前段焼成体の還元率を8~12%とするためには、焼成において、400℃より低い温度から昇温を始めて、乾燥粉体中のシュウ酸根、アンモニウム根等を分解し、ガスの発生をほぼ終了させ、加熱温度が400℃に達した時の焼成中の前段焼成体の還元率を8~12%にすることが重要である。
 また、焼成体の比表面積については、最終的に焼成(加熱)される温度や時間、触媒がシリカに担持されている場合のシリカ担持量が影響するが、加熱温度が400℃に達した時の還元率と最終的な焼成温度が特に大きな影響を及ぼす。焼成の最終段階は450℃~700℃、0.5時間~20時間で実施される。最終的な焼成温度が高いほど、また時間が長いほど比表面積は小さくなる傾向にある。また、加熱温度が400℃に達した時の還元率が低いと、焼成体の比表面積は小さくなり、加熱温度が400℃に達した時の還元率が高いと比表面積は高まる傾向にある。明確な理由は定かではないが、前段焼成と本焼成との二段階に分けて焼成する場合において、本焼成の温度を一定にした場合には、前段焼成の最高焼成温度が高いほうが、比表面積は大きくなり、前段焼成の最高焼成温度が低い場合には、比表面積は小さくなる。
 ロータリーキルンで焼成する場合、焼成時に乾燥粉体の供給量を調整することにより焼成体の比表面積を調整することが可能である。供給量を少なくすることで、乾燥粉体の系内における滞留時間が長くなるため、焼成管内で乾燥粉体が加熱されることで発生するアンモニア等の還元性ガスによる乾燥粉体の還元が進行する。その結果、還元率が高まり、本焼成後に得られる触媒の比表面積は大きくなる。逆に、乾燥粉体の供給量を多くすると、還元率が低くなり、触媒の比表面積は小さくなる。また、前段焼成時の窒素量によっても比表面積を調整することが可能である。窒素量を増やすことで、焼成時の前段焼成体を還元させる成分ガスが系外にすばやく排出されるため、前段焼成体は還元を受けにくくなり、その結果、焼成体の比表面積は小さくなると考えられる。逆に、窒素量を減らせば、還元率は高まり、焼成体の比表面積は大きくなる。
 焼成体の比表面積を7~20m/gとするためには、加熱温度が400℃に達した時の還元率を8~12%の範囲内とし、且つ、最終的な焼成温度を450℃~700℃とすると好ましい。
 焼成工程は、前段焼成の工程と本焼成の工程とを有し、該前段焼成を250~400℃の温度範囲で行い、該本焼成を450~700℃の温度範囲で行うことが好ましい。前段焼成と本焼成とを連続して実施してもよいし、前段焼成を一旦完了してから、あらためて本焼成を実施してもよい。また、前段焼成及び本焼成のそれぞれが数段に分かれていてもよい。
 焼成中の前段焼成体の還元率を測定する場合は、試料をその温度で焼成装置から取り出してもよいが、高温で空気に接触することで酸化され、還元率が変化する場合があるので、室温に冷却した後、焼成装置から取り出したものを代表試料とするのが好ましい。加熱温度が400℃に達した時の還元率を所望の範囲に制御する方法としては、具体的には、前段焼成温度を変更する方法、焼成時の雰囲気中に酸素等の酸化性成分を添加する方法、又は、焼成時の雰囲気中に還元性成分を添加する方法等が挙げられる。また、これらを組み合わせてもよい。
 前段焼成温度を変更する方法とは、前段焼成における焼成温度を変更することで、加熱温度が400℃に達した時の還元率を変える手法である。通常、前段焼成温度を下げると還元率は下がり、前段焼成温度を上げると還元率は上がる傾向を示すので、前段焼成温度を変化させて還元率を制御できる。また、窒素を用いる場合に供給する窒素量を増減させること、供給する乾燥粉体の量を増減させること、ロータリーキルンを用いた焼成においては、回転数を増減させることによっても還元率を制御することが可能である。供給する窒素を増加させると、炉の加熱によって乾燥粉体から気化した被酸化成分が焼成炉内に存在する金属酸化物によって酸化させられる(金属酸化物は還元する)ことなく、系外に排出される割合が高くなるため、焼成体の還元が進行しにくい、と考えられる。また、供給する乾燥粉体が少なくなると、ロータリーキルンでは触媒の滞留時間が延びることにより還元が進む、と考えられる。また、ロータリーキルンの場合において、回転数を減少させると、触媒のキルン内移動速度が低下するため、より多くの被酸化性分と接触する時間が長くなるため還元が進行する、と考えられる。
 加熱温度が400℃に達した時の還元率を所望の範囲に制御するために、焼成時の雰囲気中に酸素等の酸化性成分を添加する方法とは、還元率を下げる時に用いることができる方法である。なお、この段階における焼成は、前段焼成である。焼成時の雰囲気中に添加した酸化性成分とは、焼成装置に供給する不活性ガス中の酸化性成分を言う。酸化性成分の添加量は焼成装置に入る不活性ガス中の濃度で管理する。酸化性成分を添加することで、還元率を制御できる。酸化性成分が酸素の場合、空気(又は空気を含む不活性ガス)を焼成装置に供給し、空気中の酸素を酸化性成分として利用できる。
 加熱温度が400℃に達した時の還元率を所望の範囲に制御するために、焼成時の雰囲気中に還元性成分を添加する方法とは、還元率を上げる時に用いることができる方法である。焼成時の雰囲気中に添加した還元性成分とは、焼成装置に供給する不活性ガス中の還元性成分を言う。還元性成分の添加量は焼成装置に入る不活性ガス中の濃度で管理する。還元性成分を添加することで、還元率を制御できる。一般的には、還元性成分としては、水素、青酸、メタン、エタン、プロパン、一酸化炭素、一酸化窒素及びアンモニア等が挙げられる。これらの中から一つ、若しくは複数のガスを組み合わせて用いることが可能である。これらの中でもアンモニアを主成分としたガスを添加することが好ましい。
 なお、加熱温度が400℃に達した時点での前段焼成体の還元率が所望の還元率でなかった場合は、実際の還元率と、所望の還元率との差から、必要な酸化性物質又は還元性物質の総量を算出し、焼成の雰囲気中に添加することができる。不活性ガス流通下の焼成雰囲気には、還元率を調節するため、所望により、酸化性成分(例えば酸素)又は還元性成分(例えばアンモニア)を添加してもかまわない。還元率を求めるにあたり、上記式(2)における(n-n)の値は、試料をKMnOで酸化還元滴定することによって得られる。焼成終了前の前段焼成体と焼成終了後の焼成体のいずれについても、酸化還元滴定により(n-n)の値を求めることができる。しかしながら、酸化還元滴定による測定は、本焼成終了前の前段焼成体と本焼成終了後の焼成体とでは条件が異なる。本焼成終了前の前段焼成体と本焼成終了後の焼成体のそれぞれについて、測定方法の一例を以下に示す。
 焼成終了前の前段焼成体については以下のようにして測定する。
 ビーカーに前段焼成体約200mgを精秤する。更に濃度が既知のKMnO水溶液を過剰量添加する。更に70℃の純水150mL、1:1硫酸(即ち、濃硫酸と水を容量比1/1で混合して得られる硫酸水溶液)2mLを添加した後、ビーカーに時計皿で蓋をし、70℃±2℃の湯浴中で1hr攪拌し、試料を酸化させる。この時、KMnOは過剰に存在しており、液中には未反応のKMnOが存在するため、液色は紫色であることを確認する。酸化終了後、ろ紙にてろ過を行い、ろ液全量を回収する。濃度が既知のシュウ酸ナトリウム水溶液を、ろ液中に存在するKMnOに対し、過剰量添加し、液温が70℃となるように加熱攪拌する。液が無色透明になることを確認し、1:1硫酸2mLを添加する。液温を70℃±2℃に保ちながら攪拌を続け、濃度が既知のKMnO水溶液で滴定する。液色がKMnOによりかすかな淡桃色が約30秒続くところを終点とする。
 全KMnO量、全Na量から、試料の酸化に消費されたKMnO量を求める。この値から、(n-n)を算出し、これに基づき還元率を求める。
 本焼成終了後の焼成体については以下のようにして測定する。
 ビーカーに、瑪瑙(めのう)製乳鉢で擂り潰した焼成体約200mgを精秤する。95℃の純水150mL、1:1硫酸(即ち、濃硫酸と水を容量比1/1で混合して得られる硫酸水溶液)4mLを添加する。液温を95℃±2℃に保ちながら攪拌を続け、濃度が既知のKMnO水溶液で滴定する。この時、液色がKMnO滴下により一時的に紫色となるが、紫色が30秒以上続かないように、ゆっくりと少量ずつKMnOを滴下する。また、水の蒸発により液量が少なくなるので、液量が一定になるように95℃の純水を追加する。液色がKMnOによりかすかな淡桃色が約30秒続くところを終点とする。
 こうして、試料の酸化に消費されたKMnO量を求める。この値から、(n-n)を算出し、これに基づき還元率を求める。
 また、上記の測定方法の他に、本焼成終了前の前段焼成体と本焼成終了後の焼成体のいずれについても、以下のようにして測定することもできる。
 試料の構成元素が揮発、逃散しない条件で、前段焼成体又は焼成体が焼成された焼成温度よりも高い温度まで加熱し、酸素による完全酸化を行い、増加した質量(結合した酸素の量)を求め、これから(n-n)の値を求め、これに基づき還元率を求める。
 焼成雰囲気を不活性ガス又は好ましい酸化/還元雰囲気中で行うための方法は特に限定されない。ただし、焼成装置としては適切なシール構造を有し、外気との接触を十分に遮断できるものを用いることが好ましい。
 前段焼成は、得られる触媒を好ましい酸化還元状態に調整しやすいこと、触媒性能を向上できること等の観点から、好ましくは不活性ガス流通下、前段焼成温度が好ましくは250℃~400℃、より好ましくは300℃~400℃の範囲で行われる。前段焼成温度は250℃~400℃の温度範囲内の一定温度で保持することが好ましいが、250℃~400℃の範囲内で温度が変動したり、緩やかに昇温又は降温されたりしてもよい。加熱温度の保持時間は、得られる触媒を好ましい酸化還元状態に調整しやすいこと、触媒性能を向上できること等の観点から、好ましくは30分間以上、より好ましくは3~12時間である。前段焼成温度に達するまでの温度パターンは、直線的な昇温パターンであってもよく、上又は下に凸なる弧を描くような昇温パターンであってもよい。また、昇温中に降温する時間があってもよく、昇温及び降温を繰り返してもよい。さらには、昇温過程で乾燥粉体及び/又は触媒前駆体の中に含まれる成分によって吸熱反応が起こり、一時的に降温してもよい。
 前段焼成温度に達するまでの昇温時の平均昇温速度には特に限定はないが、得られる触媒を好ましい酸化還元状態に調整しやすいこと、触媒性能を向上できること等の観点から、通常0.1~15℃/分程度であり、好ましくは0.5~5℃/分、より好ましくは1~2℃/分である。
 本焼成は、得られる触媒を好ましい比表面積に調整しやすいこと、反応に活性な結晶構造を十分に形成すること、触媒性能を向上できること等の観点から、好ましくは不活性ガス流通下、好ましくは450~700℃、より好ましくは620~700℃で実施することができる。本焼成における焼成温度(本焼成温度)は620~700℃の温度範囲内の一定温度で保持することが好ましいが、620~700℃の範囲内で温度が変動、又は、緩やかに昇温、降温しても構わない。また、昇温の中に降温する時間が入ってもよいし、昇温・降温を繰り返してもよい。昇温過程で前段焼成体の中に含まれる成分によって吸熱反応が起こり、結果として降温するパターンが入ってしまってもよい。
 本焼成工程を経た焼成体の粒子表面には突起体が生成する。この突起体の組成は、仕込みの組成及び/又は焼成条件による違いはあるものの、Mo及びSbが比較的多く、比率はMo:Sb=10:2又は10:4(原子比)に近いことが本発明者らの検討によって明らかになった。このような組成を有する突起体がプロパン又はイソブタンの気相接触酸化反応又は気相接触アンモ酸化反応において反応器中に存在すると、副反応を起こし易いので、反応前に除去しておくのが望ましい。従って、本実施形態の製造方法においては、調合する原料調合液の組成は、この突起体を除去することを前提として設計する。そして、焼成工程で十分に突起体を生成させ、それを十分に除去するのが最終的に得られる触媒の組成を最適化するために重要となる。
 本発明者らの検討によると、突起体の生成度合は焼成体の比表面積に相関があり、明確な理由は定かではないが、比表面積が小さい場合には、突起体の量が多い傾向にある。上述のとおり、副反応を起こし易い突起体の成分を除去しておくことで触媒の性能が向上する。そこで、後述する突起体の除去工程において十分な除去が行えるように、焼成工程において適切な量の突起体を生成させるように調整するのが好ましい。また、内部に突起体と同組成の複合酸化物が残らないように、かつ、表面積を小さくして触媒性能を悪化させない適切な比表面積で焼成体が得られるように、調整するのが好ましい。適切な比表面積で調整された触媒は、短期間の触媒性能のみならず、長期にわたって安定的に高性能を維持することが可能となる。明確な理由は定かではないが、突起体を十分に除去できない場合には、反応中に触媒内部、もしくは表面に残存している突起体成分が低融点のために一部、もしくは全て融解し、触媒の流動性の低下、表面細孔の閉塞による性能の低下が起こる可能性が考えられる。本焼成時の最高焼成温度及び本焼成に供する前段焼成体の供給量によって比表面積を調整することができる。本焼成時の最高焼成温度を上げることで前段焼成体中に含まれるシリカ成分のシンタリングが進行するため、比表面積は減少する。また、前段焼成体の供給量を低下させるとロータリーキルン内における前段焼成体の滞留時間が延長されるため、シリカのシンタリングが進行し比表面積は減少する。明確な理由は定かではないが、焼成体の比表面積が小さすぎると、突起体の量が増加するため生産量の低下を招き、焼成体の比表面積が大きすぎると突起体の量は減少するが触媒性能も低下する。上記観点から、本実施形態の製造方法においては、焼成体の比表面積を7~20m/gに調整することが好ましく、より好ましくは10~16m/gに調整する。
 比表面積は、MICROMETRICS社製Gemini2360(商品名)を用いて、BET1点法により求められる。
 焼成体の比表面積は、焼成温度によって調整することができる。特定の比表面積を有する焼成体を得るには、前段焼成の温度によっても比表面積を増減することは可能であるが、比表面積により影響し易い本焼成の焼成温度を調整することは、目的の比表面積を有する焼成体を得るために好ましい態様である。
 本焼成の時間は好ましくは0.5~20時間、より好ましくは1~15時間である。焼成管を堰板で区切る場合、前段焼成体及び/又は焼成体は少なくとも2つ、乾燥粉体等の適した焼成管内の滞留時間を確保する等の観点から、好ましくは2~20、更に好ましくは4~15の区域を連続して通過する。温度の制御は1つ以上の制御器を用いて行うことができるが、前記所望の焼成パターンを得るために、これら堰で区切られた区域ごとにヒーターと制御器を設置し、制御することが好ましい。例えば堰板を焼成管の加熱炉内に入る部分の長さを8等分するように7枚設置し、8つの区域に仕切った焼成管を用いる場合、前段焼成体及び/又は本焼成体の温度が前記所望の焼成温度パターンとなるよう8つの区域を各々の区域について設置したヒーターと制御器により設定温度を制御することが好ましい。例えば、堰板を焼成器の加熱炉内に入る部分の長さを8等分するように7枚設置し、8つの区域に仕切った焼成器を用いる場合、前記所望の焼成パターンを得るため、以下のように調整することができる。前段焼成では焼成器内を滞留している前段焼成体の区域内中心部に挿入した熱電対の温度がそれぞれ、前段焼成体の供給側から数えて、区域1:120~280℃、区域2:180~330℃、区域3:250~350℃、区域4:270~380℃、区域5:300~380℃、区域6:300~390℃、区域7:320~390℃、区域8:260~380℃となるように調整するのが好ましい。本焼成では同様に、区域1:360~560℃、区域2:450~650℃、区域3:600~700℃、区域4:620~700℃、区域5:580~700℃、区域6:480~690℃、区域7:450~630℃、区域8:370~580℃となるように調整するのが好ましい。
 仕込み組成がMo0.209Sb0.236Nb0.0910.027Ce0.005であり、担体としてのシリカの含有量が全乾燥粉体中の47.0質量%である乾燥粉体を、焼成管を使用して連続的に焼成する場合であって、前段焼成の温度が350℃である場合を例にとる。7~20m/gの比表面積の焼成体を得るには、本焼成の温度を600~700℃にするのが好ましく、10~16m/gにするには、640~700℃にするのが好ましい。7~20m/gの比表面積を有する焼成体は、突起体を粒子の外表面に多く有しており、突起体の除去工程でより多くの突起体を除去することが可能である。従って、最終的に得られる触媒の組成を設計どおりの最適値にし易い。
 例えば、内径500mm、長さ4500mm、肉厚20mmで、管内を8等分に堰板を設けたSUS製焼成管を6rpmで回転しつつ、前段焼成での最高焼成温度を350℃にし、さらに、系内の不活性ガス(窒素ガス)量を合計1050NL/minで流通させながら35kg/hrの速度で乾燥粉体を供給して前段焼成を行い、その後、同じSUS製焼成管を6rpmで回転しつつ、ハンマー等を用いた本焼成管(本焼成を行う焼成管)への打撃を6回/分で行い、本焼成における最高焼成温度を650℃にし、さらに系内の不活性ガス(窒素ガス)量を合計667NL/minで流通させながら、20kg/hrの速度で前段焼成体を供給し本焼成を行う場合、前段焼成体の還元率を8~12%に、焼成体の比表面積を7~20m/g、より好ましくは10~16m/gにすることが可能となる。この場合において、乾燥粉体又は前段焼成体の供給量を変化させた場合に、前段焼成体の還元率を8~12%に、焼成体の比表面積を7~20m/g、より好ましくは10~16m/gにするためには、例えば、以下のように条件を変更することが好ましい。
 前段焼成において、主に還元率の適正化の方法例を示す。乾燥粉体の供給量を35kg/hrから60kg/hrに増やした場合、還元率を8~12%にするために、系内に導入している不活性ガスを1500~1800NL/minに増やすことが好ましい。不活性ガスの供給量を増加させない場合は、堰の高さを高くする、堰の数を増加させる、焼成管の長さを長くする、焼成管の内径を広くすること等を組み合わせることによって焼成管内に乾燥粉体が滞留する時間を延ばすことが好ましい。また、前段焼成における最高焼成温度を上げることも好ましい。ロータリーキルンの回転数を下げることで、焼成管内を流通するガスとの境界面付近にある乾燥粉体が、流通ガスと接触しづらい粉体層下部に移動するまでの時間が長くなり、粉体層上部で還元性ガスによる還元反応が進行しやすくなると考えられる。したがって、ロータリーキルンの回転数を減らすことで前段焼成体の還元率を上げることも可能である。
 反対に、乾燥粉体の供給量を45kg/hrから20kg/hrに減らした場合には、還元率を8~12%にするために、系内に導入している不活性ガスを400~800NL/minに減らすことが好ましい。不活性ガスの供給量を減らさない場合は、堰の高さを低くする、堰の数を減少させる、焼成管の長さを短くする、焼成管の内径を狭くすることによって焼成管内に乾燥粉体が滞留する時間を短くすることが好ましい。また、前段焼成における最高焼成温度を下げることも好ましい。ロータリーキルンの回転数を上げた場合は、焼成管内を流通するガスとの境界面付近にある乾燥粉体が、流通ガスと接触しづらい粉体層下部に移動するまでの時間が短くなり、粉体層上部で還元性ガスによる還元反応が進行しづらくなると考えられる。したがって、ロータリーキルンの回転数を増やすことで、前段焼成体の還元率を下げることもできる。
 前段焼成体の比表面積も、焼成体の比表面積ほどではないが、前段焼成の条件によってある程度調整することが可能である。明確な理由は定かではないが、還元率と比表面積とは比例の関係にあることから、上記と同じ管理を行うことで、比表面積の範囲を適正化しやすくなる。しかし、焼成体の比表面積の調整は、本焼成の焼成方法に大きく依存している。
 8~12%の還元率を有する前段焼成体から、本焼成において、適正な比表面積を有する焼成体を得る例を以下に示す。
 本焼成工程において、内径500mm、長さ4500mm、肉厚20mmで管内を8等分に堰板を設けたSUS製焼成管を6rpmで回転しつつ、本焼成における最高焼成温度を650℃とし、さらに系内の不活性ガス(窒素ガス)量を合計667NL/minで流通させながら、20kg/hrの速度で前段焼成体を供給し本焼成を行う場合、本焼成体の比表面積を7~20m/gの範囲内に収める場合には、例えば以下のような運転を行うことが好ましい。例えば、前段焼成体の本焼成管内への供給量を10kg/hrに減らした場合には、適正な比表面積の範囲を維持するために不活性ガス(窒素ガス)量を250~400NL/minに調整することが好ましい。また、堰の高さを低くする、焼成管の径を小さくする、焼成管の長さを短くする、焼成管の設置角度の傾斜を大きくする(ただし、下流側を低くする)、焼成管内の最高温度領域(ここでいう「最高温度領域」とは、前段焼成時においては300~390℃の範囲を、本焼成時においては600~700℃の範囲の温度領域のことを示す。)の長さ方向の幅を短くする、本焼成における最高温度を低くする等を、それぞれ、又は任意に組み合わせて調整することで、より簡便に比表面積を目的範囲内に調整することができる。一方、前段焼成体の本焼成管内への供給量を40kg/hrに増加させた場合、不活性ガス(窒素ガス)量を1000~1600NL/minに調整することが好ましい。また、堰の高さを高くする、焼成管の径を太くする、焼成管の長さを長くする、焼成管の設置角度の傾斜を小さくする(ただし、下流側を低くする)、焼成管内の最高温度領域の長さ方向の幅を短くする、本焼成における最高焼成温度を高くする等を、それぞれ、又は任意に組み合わせて調整することで比表面積を目的範囲内に調整することが可能となる。このように、前段焼成において条件を変更した際にも、本焼成における条件を調整することで、適正な還元率と共に、適正な比表面積を維持することが可能である。
 また、650℃という焼成温度は、構成金属の酸化物の融点を大きく超えているので、焼成管の壁面へ酸化物が多く固着する。そこで、ハンマー等を用いて本焼成管へ打撃し、若しくは、その打撃回数を増やすことを行うか、又は、ロータリーキルン(回転炉)の回転数を増やすこと等によって前段焼成体の滞留する時間を延ばすことが好ましい。これらの打撃回数や回転数の増加率については、本焼成管への前段焼成体の供給量と本焼成管から排出される焼成体の量とのマスバランスから任意に設定することが可能である。なお、不活性ガス流通下の焼成雰囲気には、所望により、酸化性成分(例えば酸素)又は還元性成分(例えばアンモニア)を添加してもかまわない。
 本焼成温度に達するまでの昇温パターンは直線的に上げてもよいし、上又は下に凸なる弧を描いて昇温してもよい。また、昇温中に降温する時間が入ってもよいし、昇温・降温を繰り返してもよい。昇温過程で前段焼成体の中に残っている成分によって吸熱反応が起こり、降温するパターンが結果として入ってしまってもよい。
 本焼成温度に達するまでの昇温時の平均昇温速度としては特に限定はないが、好ましくは0.5~8℃/minである。本焼成終了後の平均降温速度は、反応に活性な結晶構造を十分に形成しやすいこと、触媒性能が向上すること等の観点から、好ましくは0.05~50℃/min、より好ましくは0.05~20℃/minである。
 また、反応に活性な結晶構造を十分に形成しやすいこと、触媒性能を向上すること等の観点から、本焼成温度より低い温度で一旦保持してアニーリングすることも好ましい。保持する温度は、本焼成温度より5℃、好ましくは10℃、さらに好ましくは50℃低い温度である。保持する時間は、上記と同様の観点から、好ましくは0.5時間以上、より好ましくは1時間以上、さらに好ましくは3時間以上、特に好ましくは10時間以上である。アニーリングする段階については、本焼成の後に焼成体をアニーリングすればよい。
 前段焼成を一旦完了してからあらためて本焼成を実施する場合は、本焼成の前に低温処理を行うこともできる。低温処理に要する時間、即ち、前段焼成体及び/又は焼成体の温度を低下させた後、昇温して焼成温度にするまでに要する時間は、焼成器の大きさ、肉厚、材質、触媒生産量、連続的に前段焼成体及び/又は焼成体を焼成する一連の期間、固着速度・固着量等により適宜調整することが可能である。焼成管壁面に固着した前段焼成体及び/又は焼成体を十分に剥離すること、安定して酸化物層温度を維持すること、得られる触媒の性能が向上すること等の観点から、低温処理に要する時間は、連続的に焼成体を焼成する一連の期間中に、好ましくは30日以内、より好ましくは15日以内、更に好ましくは3日以内、特に好ましくは2日以内である。なお、酸化物層温度とは、焼成器内に堆積している粒子状の前段焼成体及び/又は本焼成体に挿入した熱電対によって測定する温度をいう。また、例えば、内径500mm、長さ4500mm、肉厚20mmのSUS製の焼成管を有する回転炉により6rpmで回転しながら35kg/hrの速度で前段焼成体を供給し、本焼成温度が645℃である場合、前段焼成の後に温度を400℃まで低下させた後、昇温して645℃にする工程を1日程度で行うことができる。1年間連続的に焼成する場合、このような低温処理を1ヶ月に1回の頻度で実施することで、安定して酸化物層温度を維持しながら焼成することができる。
 また、焼成工程において焼成器に衝撃を加えると、固着した塊に亀裂を生じさせる効果が高まる傾向にあり、また、低温処理を実施する場合においても焼成器に衝撃を加えると、亀裂を生じた塊が焼成器から容易に剥離する傾向にあるため好ましい。
 焼成器に加える衝撃は、焼成器内に供給する前段焼成体の層の深さや、焼成器(例えば焼成管)の直径・長さ・肉厚・材質、衝撃を加える装置の材質・種類・形状・位置、及び衝撃を加える頻度等に依存するので、これらにより適切に設定することが好ましい。
 衝撃を加える箇所(以下、衝撃点とも言う。)における振動加速度は、焼成器内壁への固着を十分に低減する観点から、好ましくは0.1m/s以上であり、より好ましくは10m/s以上である。また、焼成器の破損を防止する、及び、焼成器内を流通する粉体の流れを乱さないという観点からは、好ましくは3000m/s以下であり、より好ましくは300m/s以下である。
 本実施形態において、焼成器に加える衝撃の「振動加速度」とは、焼成器が焼成管である場合、焼成器全長Lに対して、粉体流れ方向と平行に、焼成器粉体入口からL/4、3L/8、L/2の距離の位置で測定した値の平均値を意味する。測定位置は、焼成器断面方向で衝撃点と同じ位置とする。振動加速度の測定は焼成器に取り付けた振動計で測定できる。振動計としては、旭化成テクノシステム(株)製MD220(商品名)を用いることができる。
 衝撃を加える方法としては、特に限定されず、エアノッカー、ハンマー、ハンマリング装置等を好適に用いることができる。打撃先端部の焼成器に直接触れる部分の材質としては、十分な耐熱性を有する材質であれば特に限定されず、例えば、衝撃に耐えられる一般的な樹脂、金属等を使用することができ、中でも、金属が好ましい。金属は焼成器を破損、変形することのない程度の硬度を有するものが好ましく、銅製、SUS製のものを好適に使用できる。衝撃を加える箇所も特に限定されず、操作上都合の良い場所で行うことができるが、衝撃を無駄なく焼成器に直接与えることができるため、焼成器の加熱炉で覆われていない箇所に加えることが好ましい。
 衝撃を加える箇所は、1箇所でも複数箇所でもよい。焼成器として焼成管を用いる場合、振動を効率よく伝えるために、衝撃は、焼成管の回転軸に垂直な方向から加えることが好ましい。衝撃を加える頻度は特に限定されないが、焼成器内の固着がより良好に低減される傾向にあるため、焼成器に定常的に衝撃を加えるのが好ましい。ここで、「定常的に衝撃を加える」とは、好ましくは1秒以上1時間以下に1回、より好ましくは1秒以上1分以下に1回、衝撃を加えることを意味する。衝撃を加える頻度は、振動加速度、焼成器内に供給する前段焼成体の層の深さ、焼成器(例えば焼成管)の直径・長さ・肉厚・材質、衝撃を加える装置の材質・種類・形状に合わせて適宜調整することが好ましい。
(V)突起体の除去工程
 本実施形態の製造方法における工程(V)は、焼成体の粒子表面に存在する突起体を気流により除去する工程である。
 焼成工程を経た焼成体の粒子表面には突出する突起体が存在する。工程(V)においては、この突起体を除去して、焼成体が有する突起体の量を、焼成体の全質量に対して好ましくは2質量%以下にする。突起体の除去方法としては、いくつかの方法が考えられるが、これらのうち、ガス流通下、焼成体同士の接触等により除去する方法が好ましい。例えば、焼成体を貯蔵するホッパー等にガスを流通する方法、流動床反応器に焼成体を入れてそこにガスを流通させる方法が挙げられる。流動床反応器を用いる方法は、突起体を除去するための特別な装置が不要である点で好ましい態様であるが、もともと焼成体(触媒)同士の接触を意図して設計された装置ではないためか、少ない量の焼成体を投入して時間をかけて流動させる等の対策をしない限り、焼成体の投入量、流通させる時間やガス量等、条件によっては突起体を十分に除去できない場合がある。本発明者らの検討によると、十分な流速の気流を、突起体を有する焼成体に接触させることで効率的に突起体を除去することができる。適切な流速を焼成体に接触させられる構造の装置を設ければ、大きなスケールでも、突起体を効率的に除去することができる。
 例えば、焼成体を収容する本体と、本体の上部に設けられた焼成体の回収手段と、回収手段に接続された前記焼成体の戻し手段と、を有し、前記戻し手段は、下端が気流に接触するように設けられており、本体内で気流に接触した焼成体の一部が回収手段によって回収され、戻し手段によって本体内に戻される装置は、大きなスケールでも効率よく突起体を除去しうる。
 焼成体を充填した流動床反応器等の装置にガスを流通させると、焼成体は接触しあって、突起状の突起体が除去される。焼成体から剥離した突起体は焼成体より遥かに小さいので、流通させているガスと共に流動床反応器の外へ流出する。この時の焼成体の密度は、300~1300kg/mになるように装置内に焼成体を充填するのが好ましい。用いる装置の胴体部分の断面積は、好ましくは0.1~100m、より好ましくは、0.2~85mである。
 流通させるガスは、窒素等の不活性ガスや、空気が好ましい。ホッパー、流動床反応器等の焼成体を充填した装置の胴体部分に流通させるガスの線速度(線速)は0.03m/s~5m/sとするのが好ましく、より好ましくは0.05~1m/sである。また、ガスの流通時間は1~168時間が好ましい。具体的には、本実施形態の突起体除去装置は、本体を備え、前記本体に収容した焼成体に気流を接触させる、もしくは気流によって流動した粒子同士が接触することによって、焼成体の表面にある突起体を焼成体から除去する装置であって、気流が流れる方向における気流長さが55mm以上であり、かつ、気流の平均流速が、摂氏15℃、1気圧における線速に換算した場合に80m/s以上500m/s以下であるのが好ましい。
 流動床反応に用いる触媒が突起体を有していたり、焼成体から剥がれた突起体と触媒とが混在したりしている場合、触媒の流動性が悪化し易い。触媒の流動性が悪化すると、それに伴って反応器内での触媒の偏在化が起き、その結果として除熱効率が低下し、蓄熱されて異常反応が発生する、又は、反応によっては目的生成物の分解反応が促進される可能性もある。また、突起体は、流動床反応器等などの突起体を除去するための装置内での焼成体同士の相互接触等で一部が剥離し、その装置内部から系外に排出された場合、次の工程へ混入し、その工程の負荷が増加することが考えられる。従って、その装置中には、焼成体と突起体とが混在していないことが好ましい。
 図1は、大きなスケールで焼成体から突起体を除去するのに好適な装置の一例を概略的に示したものである。図1に示す装置は、本体1と本体1の側面を貫通する気体導入管2と、本体1の上面に設けられ、サイクロン4に接続された出口配管3とを有する。
 本体1は概略円柱状であって、下部は逆向きの円錐状になっている。本体1には焼成体が収容されるが、収容される焼成体の量は、突起体を効率よく除去する観点から、静止した状態で本体1内の気体導入管2の垂直方向に最も高い位置に存在する気体導入口が浸かるまで入れることが好ましい。本体1に大量の焼成体を収容してもよいが、その場合はサイクロン等の分離装置の分離能を考慮する必要がある。
 気体導入管2は本体1の半分程度の高さで水平に導入されており、図2に示すように、本体1の中央付近で分岐され、さらに下垂した分岐鎖21となっている。図1に示す例では、気体導入管2の複数の分岐鎖21は垂直方向下向きに設けられているが、分岐鎖21の方向はこれに限定されず、上向きでもよいし、上下両方の向きでもよいし、水平方向でもよい。図1の部分拡大図に示すように、それぞれの分岐鎖21は複数のノズル210を有しており、気体導入管2を通じて供給された気体は、各ノズル210から噴出する。なお分岐鎖21の構造はノズル210を有するものに限定されず、図3(A)に示すように、分岐鎖21に複数の開口部211を有していてもよいし、図3(B)に示すように分岐鎖21に垂直な再分岐部22が設けられており、再分岐部22が複数の開口部220を有していてもよい。円錐状の本体下部には、複数の下部気体導入ノズル6が嵌められている。図1に示す例では、気体導入ノズル6はL字型であって、本体に垂直に導入された後、斜め下方向に開口しているので、本体内に溜まった焼成体は、ノズル6から導入された気体によって本体1の下に向かって流される。本体1の下端は開口しており、第二の気体導入管7に接続されているので、気体導入ノズル6から供給された気体によって下端に集められた焼成体は、第二の気体導入管7から供給された気体によって本体1内で流動する。気体導入ノズル先端部61の形状はL字型に限定されず、I型であってもよいし、本体1の内面から突出したノズルがなく壁面が開口した状態であってもよい。またL字型ノズルの場合も、下向きに開口している必要は無く、他の第二の気体導入管7から供給される気体の向きとの相関や、本体1の形状等によって上向き横向き等、適宜設定することができる。
 出口配管3の一端は、本体1の上面中央部に取り付けられており、他端はサイクロン4に接続されている。サイクロン4は、焼成体と、焼成体から剥離した突起体とを遠心力によって分離する。突起体を除去された比較的大きい焼成体の粒子はサイクロンの下端から戻り配管5を通って本体1に戻り、一方、突起体は軽いのでサイクロンの上面に開口した排出ライン8を通って除去される。排出ライン8の先にはフィルター(図示されていない)が設けられていて、排出された突起体を捕捉するようになっていることが好ましい。
 図4に示す装置は、本体1の下端に焼成体循環ライン71が設けられていること以外は図1に示す例と同じである。循環ライン71の他方の端部は本体1の側面で開口しているので、循環ライン71に流入した焼成体はライン71にニューマー等を設けることによって気体搬送され本体1内部に戻される。
 図5に示す装置は、第一のサイクロン4の出口配管41に第二のサイクロン42が接続されていること以外は図1に示す装置と同じである。第一のサイクロン4、第二のサイクロン42の下端に設けられた戻り配管51、52は、それぞれ本体1の側面に接続され、回収された表面体が本体1に戻される。
 図6に示す装置は、本体1が外管11と内管12からなる二重構造であって、外管11と内管12の間に気体導入管2から気体が導入されるようになっていること以外は図1に示す装置とほぼ同じであるので、相違点のみ次に説明する。内管12は複数の開口部13を有しており、外管11と内管12の間に供給された気体は開口部13から本体1内に噴出される。内管12は出口配管3及び戻り配管5に開口しているが、外管11はこれらに接続されていないので、焼成体は外管11と内管12の間には入らず、出口配管3を通ってサイクロン4に入り、戻り配管5から本体1に戻される。また第二の気体導入管7も内管12に対してのみ開口しており、焼成体が本体1の底に溜まらないように、気体導入管7から適当量の気体を供給することができる。
 なお、図6に示す例には、複数の分岐鎖21を有する気体導入管2が設けられていないが、二重構造の本体1を有する場合も図1に示すような分岐鎖21を有する気体導入管2を設けてもよい。
 図7に示す装置は、出口配管3及び戻り配管5が二重構造を有していること以外は図1に示す例とほぼ同じであるので相違点のみ説明する。出口配管3は外管31及び内管32とからなり、これらの間にノズル33から気体が供給され、戻り配管5は外管53及び内管54とからなり、これらの間にノズル55から気体が供給される。この図7に示す装置を図6に示す装置と組み合わせて用いてもよい。
 ガスと突起体との接触効率を高める観点から、単位焼成体当たりの気流流通口の数は多いほうが好ましい。気流流通口は、焼成体を収容し、気流と接触させるための本体の壁面に直接穴を開けることによって設けてもよいし、本体内部に配管、パイプ等を通してその配管、パイプ等に穴を開けることで流通口を設けても構わない。しかし、気流同士が接触する場合には焼成体同士も接触し、焼成体が割れたり欠けたりする可能性があることから気流同士が交差しないように設計することが好ましい。焼成体が割れたり、配管や本体が磨耗したりすることを防止する観点から、気流が直接パイプや本体の壁等に接触しないことが好ましい。
 ここで、気流流通口とは、気流が流れる方向における気流長さが55mm以上であり、かつ、前記気流の平均流速が、摂氏15℃、1気圧における線速として80.0m/s以上500m/s以下の状態で、気流が本体内部に入る穴のことを示し、例えば、図1中の符号210、図3中の符号211、220、図6中の符号13、図7中の符号32、54等で表される孔のことを言う。
 気流流通口のサイズは直径が0.04mm~20cm程度であることが好ましく、より好ましくは0.04mm~5cm程度であるが、その流通口の形状はどのようなものでも構わない。また、気流の穴径は均一でなくても構わない。さらに、気流流通口の個数は多いほうが好ましいが、先にも述べたように気流同士が接触する距離に穴を設けた場合には焼成体同士が接触して焼成体が割れること等が考えられる。従って、以下の堀尾らの文献(1)、YATESらの文献(2)に記載の式によって算出される気流径、気流長さ、気流容積等を考慮して、焼成体同士が接触しないように、流通口同士の間隔を開けることが望ましい。この時の気流が流れる方向における気流長さは、接触効率及び触媒の流動性の観点から、本体壁やパイプ等、装置に接触しない限り55mm以上であることが望ましい。なお、気流長さはYATESらの式を用いて算出し、気流径は堀尾らの式を用いて計算することができる。
 気流長さは、hj:気流長さ[m]、dor:オリフィス径[m]、dp:触媒の粒子径[m]、uor:オリフィス流速[m/s]、μ:気体の粘度[kg・m/sec]、ρg:気体の密度[kg/m3]、ρp:触媒粒子密度[kg/m3]、g:重力加速度[m/s2]とした時に、
 hj/dor=21.2・(uor2/(g・dp))0.37・(dor・uor・ρg/μ)0.05×(ρg/ρp)0.68・(dp/dor)0.24・dor
からなる式で示される。
 一方、気流径は、dj:気流径[m]、fj:0.02(定数)、Frj =ρg・uor2/((1 -εmf)・ρp・dp・g)、k =(1 - sinφr)/(1 + sinφr)、φr:触媒の安息角(ここでは30°と近似した)、lor:ピッチ[m]とした時に、
(dj/dor)= 1.56・((fj・Frj)/(k0.5・tanφr))0.3・(dor / lor)0.2
からなる式で示される。
(1)Horio, M.,T.Yamada, and I. Muchi: Preprints of the 14th Fall Meeting of Soc. of Chem. Engrs.,Japan, p.760(1980)
(2)Yates,J.G.,P.N.Rowe and D.J.Cheesman: AIChE J., 30, 890(1984).
 気流の流速は、気流流通口の面積とガスの流量によって計算されるが、突起体を焼成体表面から効率よく剥離させるためには、各流通口から出る気流の平均流速が、摂氏15℃、1気圧における線速として換算した場合に80m/s以上500m/s以下であり、好ましくは200m/s以上341m/s以下である。
 ここで、噴き出し流量Y(m/h)と気流の流速u(m/s)は、ノズル配管の内圧をa(kg/cmG)、ノズル部圧力をb(kg/cmG)、その時の気体の温度をk(℃)、圧力p(kPa)、気体流通口の面積をS(m)とした時、以下の計算式に従って求めることができる。求めた線速を平均することで気流の平均流速を求めることができる。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 上記線速にてガスを焼成体に接触させている時間は、10時間以上100時間以下であることが好ましい。接触時間が10時間未満である場合には、突起体が焼成体表面に残存する傾向にあり、100時間を超える場合には、焼成体表面が削られて、触媒の生産効率が低下する傾向にある。ガスと焼成体との接触時間は、好ましくは15時間以上60時間以下である。焼成体の循環を高め、より効率的に突起体を除去するためにニューマー等で搬送・循環して気流に接触させるような機構を設けてもよい。また、装置の本体内にプロペラ状の回転体や回転する棒状のものを導入し、回転させて攪拌させることで気流との接触効率を高めてもよい。
 本実施形態の突起体の除去工程において、高速ガス(気流)を流通させ、その気流と焼成体とを接触させ、焼成体を流動化させると同時に気流せん断によって焼成体表面の突起体を除去し、同時に運動する焼成体粒子の相互接触によっても除去する、という方法を組み合わせることが好ましい。このときのガスの種類は問わないが、乾燥させた空気、若しくは窒素等の不活性ガスが好ましい。
 ここで、本発明者らは、気流容積(V)と気流流通口の穴数(K)とを乗じた値が、気流が焼成体に速度を与えることのできる全体積を反映すると考え、これに気流速度(u)の2乗を乗じたものが突起体を除去するのに使われる全エネルギーに類するものであると仮定した。そして、各変数を独立に変化させながら、焼成体量がMである焼成体中に突起体が残存している量を時間を追って測定し、u×V×Kを焼成体量(M)で除した値と、十分な量の突起体が焼成体表面から除去されるのに要する時間との相関を調べた。その結果、u×V×K/Mは処理に要する時間に対してほぼ反比例の関係にあったことから、エネルギーの指標として適切であることが示唆された(以下、u×V×K/Mを「エネルギー換算値」とも呼ぶ)。
 工業的な規模で触媒を製造する場合、作業のしやすさ等に鑑みて各工程に要する時間が一定の範囲に収まるように設計するのが好ましいといえるが、突起体の除去工程についても、例えば1日以内に終わるように処理時間を設定すると運転しやすい。上述のように、エネルギー換算値は除去処理に要する時間とほぼ反比例の関係にあることから、エネルギー換算値をある程度大きくすることによって、これとほぼ反比例の関係にある除去処理の時間を好ましい時間以内にすることができる。突起体の除去工程に要する時間を1日以内にする観点から、好ましいエネルギー換算値を本発明者らが実験的に調べたところ、気流の流速u(m/s)、気流流通口を通過した気流が形成する体積(気流容積)V(m)、気流流通口の穴数K、及び系内に収容される焼成体の質量M(kg)を用いて表されるエネルギー換算値u×V×K/M(m/s/kg)が、
 14<u×V×K/M
を満たすようにu、V、K及びMを設定するのが好ましいことが分かった。一方で、焼成体同士及び/又は焼成体と系の壁面などとの接触に伴う焼成体の割れを防ぐ観点から、エネルギー換算値が、
 u×V×K/M<100
を満たすように、各数値を設定するのが好ましいことが分かった。すなわち、下記式(X)
 14<u×V×K/M<100   (X)
を満たすことで、除去工程の処理時間を一定の範囲内に抑え、かつ焼成体の破壊を防ぐことができるので、突起体が焼成体表面からより効率的に除去され得ることを見出した。なお、エネルギー換算値の好適値は除去装置の因子にも依存し、装置の形状、大きさ、ノズルの向き、壁との接触などにより変化するが、工業的に使用する規模の装置の場合、20<u×V×K/M<90を満たすのがより好ましく、30<u×V×K/M<80を満たすのが更に好ましい。
 突起体除去装置によって焼成体から剥離した突起体は、球状の触媒より遥かに小さく、流通させているガスと共に流出するため、フィルター等で捕集することも可能である。しかし、同時に微小な(しかしながら、突起体よりは大きな)触媒粒もフィルターに捕集されてしまう可能性があるために、サイクロンのような分離装置を用いて分離効率を高めることが好ましい。サイクロン等の分離装置は複数個備えてもよいし、異なった分離装置を組み合わせて用いても構わない。微小な粒径の触媒と突起体との混合物等がサイクロンから本体内に戻ってきてしまう場合を考慮して、サイクロン下部に、例えば三方弁等を設置し、系外へ別回収できるような機構を備えてもよい。分離された触媒成分は、再び本体の内部に搬送されるが、その際に再び気流に触媒が接触する位置に戻すことが好ましい。例えば、全体的な気体の流れが最終的に上方に向かう場合には、触媒もこの気体の流れに沿って上昇すると考えられるため、気流口よりも下に分離された触媒の戻り口を設けることが好ましい。突起体の安息角が大きい場合や突起体が粘性を有する場合には、本体内部の壁面に付着する可能性のみならず、配管へ付着し、配管を閉塞させる可能性があるため、適宜、ノッカー、パージエアー等を系内に導入することが好ましい。さらに、配管に付着した突起体を除去するために、水、アルコール等の液体を用いて洗浄するような機構を備えてもよい。
 突起体の除去をグラムスケールで行う場合には、下記の装置を用いることが可能である。すなわち、底部に1つ以上の穴を有する穴あき板を備え、上部にペーパーフィルターを設けた垂直チューブを用いることができる。この垂直チューブに焼成体を投入し、下部から空気を流通させることで、それぞれの穴から気流が流れて焼成体同士の接触を促し、突起体の除去が行われる。
 本実施形態の製造方法において、突起体を除去した後に得られる複合酸化物触媒は、下記式(1):
  MoSbNb・・・(1)
(式中、成分ZはLa、Ce、Pr、Yb、Y、Sc、Sr、Baから選ばれる少なくとも1種類以上の元素であり、a、b、c、d、e、nは、それぞれ、Mo1原子に対する各元素の原子比を示し、0.1≦a≦0.4、0.1≦b≦0.4、0.01≦c≦0.3、0≦d≦0.2、0≦e≦0.1であり、原子比a/b、a/cは0.85≦a/b<1.0、1.4<a/c<2.3である。)
で表される組成を有する複合酸化物を含む。本実施形態の製造方法においては、原料調合液の仕込み組成にも依るが、一般的には、突起体の除去によってMo及びV、Sbが減少し、原子比a/b、a/cが0.85≦a/b<1.0、1.4<a/c<2.3を満たすようになる。原子比a/bについて、0.85≦a/b<1.0を満たすことにより、Vの過剰に由来するプロパンの燃焼による収率の低下が少なくなり、Sbの過剰に由来する他の結晶相の成長が少なくなる。好ましくは0.88≦a/b<1.0であり、より好ましくは、0.90≦a/b<1.0である。また原子比a/cについて、1.4<a/c<2.3を満たすことにより、適正なアンモ酸化のための結晶性の反応場の成長を促すと考えられ、Nbが少ない場合には、結晶性のアンモ酸化反応場が少なくなり、Nbが多すぎると反応場以外の結晶相の成長を促す可能性がある。好ましくは、1.5<a/c<2.3であり、より好ましくは1.6<a/c<2.3である。
 触媒の結晶子径は、20~250nmであると好ましい。20nmよりも結晶子径が小さい場合、結晶粒子が小さいことにより、触媒活性点も少なくなる。また、本来活性種になる可能性のあるものまで、他の結晶系やアモルファスとなっていることが予想されるため、副反応が誘起されやすい。触媒の結晶子径が250nmを超える場合、この触媒の活性種は、ある面は触媒の活性種であり、また、ある面では副反応を促進するものでもあるため、触媒が大きくなりすぎることにより、副反応を促進する傾向が大きくなる。同様の観点から、触媒の結晶子径は、さらに好ましくは40~150nmである。
 一般的に、結晶の大きさは、X線回折を用いて測定することができる。本明細書中、触媒の結晶子径(L)は、リガク株式会社製、RINT2500VHF(商品名)を用い、下記のシェラーの式によって求めた値とする。
 L=Kλ/(βCosθ)
ここで、Kは定数であり0.9とする。λはX線の波長であり、1.5418Å、βはその角度における半価幅(単位:ラジアン)であり、実際の半価幅bから完全でよく成長した結晶による半価幅のB(本装置では0.1を用いた)を引いた値である。θとβはラジアンで入力する。結晶粒子の成長には、焼成温度、触媒組成が大きく関係している。この触媒の活性種は、同じ組成の場合には、焼成温度を高くすることにより、活性種の結晶子サイズを大きくすることが可能である。また、本焼成温度から温度を降下させていく際の降温速度を遅めることで結晶子サイズは大きくなり、一方、急激に温度を低下させると結晶子サイズは小さくなる。さらに、焼成の際の酸化/還元条件、原料の仕込みの組成、例えばNbなどの元素の含有率を高めると結晶子サイズは小さくなる、このように、各種条件を調整することで、結晶子の大きさを制御することができる。
 本実施形態における複合酸化物触媒は、プロパン又はイソブタンの気相接触酸化反応又は気相接触アンモ酸化反応に供する前の段階で、上記式(1)に表される組成を有する複合酸化物を含む。触媒反応を開始した後は、Mo等の金属元素の昇華や、新たな触媒の添加等によって金属組成比が変化するものの、反応開始前の段階で、式(1)で表される組成を有することが、初期段階及び継続的な反応において好ましい反応成績を示すために重要である。即ち、反応開始前の複合酸化物の組成を最適化したものが式(1)に表される組成であるため、その後に異なる組成になったとしても、反応開始時点で当該組成を有していればよい。
[気相接触酸化反応及び気相接触アンモ酸化反応]
 本実施形態の気相接触酸化反応は、プロパン又はイソブタンを気相接触酸化反応させて対応する不飽和酸を製造する方法において、上記複合酸化物触媒を用いる不飽和酸の製造方法である。
 また、本実施形態の気相接触アンモ酸化反応は、プロパン又はイソブタンを気相接触アンモ酸化反応させて対応する不飽和ニトリルを製造する方法において、上記複合酸化物触媒を用いる不飽和ニトリルの製造方法である。
 プロパン、イソブタン及びアンモニアの供給原料は必ずしも高純度である必要はなく、工業グレードのガスを使用できる。供給酸素源としては、空気、純酸素又は純酸素で富化した空気を用いることができる。さらに、希釈ガスとしてヘリウム、ネオン、アルゴン、炭酸ガス、水蒸気、窒素等を供給してもよい。
 プロパン又はイソブタンの気相接触酸化反応は、以下の条件で行うことができる。
 反応に供給する酸素のプロパン又はイソブタンに対するモル比は好ましくは0.1~6、より好ましくは0.5~4である。反応温度は好ましくは300~500℃、より好ましくは350~500℃である。反応圧力は好ましくは5×10~5×10Pa、より好ましくは1×10~3×10Paである。接触時間は好ましくは0.1~10(sec・g/cc)、より好ましくは0.5~5(sec・g/cc)である。
 本実施形態において、接触時間は次式で定義される。
 接触時間(sec・g/cc)=(W/F)×273/(273+T)
 ここで、W、F及びTは次のように定義される。
   W=充填触媒量(g)
   F=標準状態(0℃、1.013×10Pa)での原料混合ガス流量(Ncc/sec)
   T=反応温度(℃)
 プロパン又はイソブタンの気相接触アンモ酸化反応は、以下の条件で行うことができる。
 反応に供給する酸素のプロパン又はイソブタンに対するモル比は好ましくは0.1~6、より好ましくは0.5~4である。反応に供給するアンモニアのプロパン又はイソブタンに対するモル比は好ましくは0.3~1.5、より好ましくは0.7~1.2である。反応温度は好ましくは350~500℃、より好ましくは380~470℃である。反応圧力は好ましくは5×10~5×10Pa、より好ましくは1×10~3×10Paである。接触時間は好ましくは0.1~10(sec・g/cc)、より好ましくは0.5~5(sec・g/cc)である。
 気相酸化反応及び気相アンモ酸化反応における反応方式は、固定床、流動床、移動床等従来の方式を採用できるが、反応熱の除去が容易な流動床反応器が好ましい。また、気相接触アンモ酸化反応は、単流式であってもリサイクル式であってもよい。
 以下に本実施の形態を、実施例と比較例によってさらに詳細に説明するが、本実施の形態はこれらの実施例に限定されるものではない。
 実施例と比較例においては、プロパン又はイソブタンの転化率、アクリロニトリル又はメタクリロニトリルの収率はそれぞれ次の定義に従う。
 プロパン転化率(%)=(反応したプロパンのモル数)/(供給したプロパンのモル数)×100
 アクリロニトリル(AN)収率(%)=(生成したアクリロニトリルのモル数)/(供給したプロパンのモル数)×100
(前段焼成体の還元率の測定方法)
 ビーカーに前段焼成体約200mgを精秤した。そこに濃度が既知のKMnO水溶液を過剰量添加した。更に70℃の純水150mL、1:1硫酸(即ち、濃硫酸と水を容量比1/1で混合して得られる硫酸水溶液。以下同様。)2mLを添加した。次いで、そのビーカーに時計皿で蓋をし、70℃±2℃の湯浴中で1hr攪拌し、試料を酸化させた。この時、KMnOは過剰に存在させており、液中には未反応のKMnOが存在するため、液色は紫色であることを確認した。酸化終了後、ろ紙にてろ過を行い、ろ液の全量を回収した。濃度が既知のシュウ酸ナトリウム(Na))水溶液を、ろ液中に存在するKMnOに対し、過剰量添加し、液温が70℃となるように加熱攪拌した。液が無色透明になることを確認し、1:1硫酸2mLを添加した。液温を70℃±2℃に保ちながら攪拌を続け、濃度を既知のKMnO水溶液で滴定した。この際、KMnOにより、液色がかすかな淡桃色を呈して約30秒続いたところを終点とした。
 全KMnO量、全Na量から、試料の酸化に消費されたKMnO量を求めた。この値から、(n-n)を算出し、これに基づき還元率を求めた。
(焼成体の比表面積の測定方法)
 MICROMETRICS社製Gemini2360(商品名)を用いて、BET1点法により焼成体の比表面積を求めた。
(ニオブ混合液の調製)
 以下の方法でニオブ混合液を調製した。
 水10kgに、Nbとして79.8質量%を含有するニオブ酸1.530kgとシュウ酸二水和物〔H・2HO〕5.266kgとを混合した。仕込みのシュウ酸/ニオブのモル比は5.0、仕込みのニオブ濃度は0.50(mol-Nb/kg-液)であった。この液を95℃で2時間加熱撹拌することによって、ニオブが溶解した混合液を得た。この混合液を静置、氷冷後、固体を吸引濾過によって濾別し、均一なニオブ混合液を得た。このニオブ混合液のシュウ酸/ニオブのモル比は下記の分析により2.68であった。
 るつぼにこのニオブ混合液10gを精秤し、95℃で一夜乾燥後、600℃で1時間熱処理し、Nb0.7895gを得た。この結果から、ニオブ濃度は0.594(mol-Nb/kg-液)であった。300mLのガラスビーカーにこのニオブ混合液3gを精秤し、約80℃の熱水200mLを加え、続いて1:1硫酸10mLを加えた。得られた混合液をホットスターラー上で液温70℃に保ちながら、攪拌下、1/4規定KMnOを用いて滴定した。KMnOによるかすかな淡桃色が約30秒以上続く点を終点とした。シュウ酸の濃度は、滴定量から次式に従って計算した結果、1.592(mol-シュウ酸/kg)であった。
 2KMnO+3HSO+5H→KSO+2MnSO+10CO+8H
 得られたニオブ混合液(B)は、下記の実施例1~14の複合酸化物触媒の製造におけるニオブ原料液として用いた。
(実施例1)
(乾燥粉体の調製)
 乾燥粉体(D)を次のようにして製造した。
 水1.557kgにヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕を432.1g、メタバナジン酸アンモニウム〔NHVO〕を59.9g、三酸化二アンチモン〔Sb〕を84.3g、さらに硝酸セリウム〔Ce(NO・6HO〕を4.8g加え、攪拌しながら95℃で1時間加熱して水性原料液(A)を調製した。
 ニオブ混合液(B)378.4gに、Hとして30質量%を含有する過酸化水素水を66.3g添加し、室温で10分間攪拌混合して、水性原料液(B)を調製した。
 得られた水性原料液(A)を70℃に冷却した後にSiOとして34.0質量%を含有するシリカゾル807.8gを添加し、さらに、Hとして30質量%含有する過酸化水素水98.4gを添加し、55℃で30分間撹拌を続けた。次に、水性原料液(B)、メタタングステン酸アンモニウム水溶液を31.0g(純度50%)、粉体シリカ211.5gを水2.855kgに分散させた分散液を順次添加した後に、50℃で2.5時間攪拌熟成し、原料調合液であるスラリー状の水性混合液(C)を得た。
 得られた水性混合液(C)を、遠心式噴霧乾燥器(乾燥熱源は空気。以下同様。)に供給して乾燥し、微小球状の乾燥粉体(D)を得た。乾燥器の入口温度は210℃、出口温度は120℃であった。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.2質量%であり、平均粒子径は54μmであった。粒子含有率及び平均粒子径はBECKMAN COULTER製LS230(商品名)により測定した(以下同様。)。
(乾燥粉体(E)の焼成)
 得られた乾燥粉体(E)を80g/hrの供給量で、回転炉内の直径(内径。以下同様。)3インチ、長さ89cmの連続式のSUS製円筒状焼成管に供給した。その焼成管内に1.5NL/minの窒素ガスを乾燥粉体の供給方向と対向する方向(すなわち向流。以下同様。)、及び同じ方向(すなわち並流。以下同様。)にそれぞれ流し、合計の流量を3.0NL/minとした。SUS製焼成管の両端にはエアノッカーを設置し、エアノッカーの打撃頻度は1分当たり10回の間の打撃となるように設定した。また、打撃によるSUS製焼成管表面の振動加速度が50m/sとなるようにエアノッカー入口の空気圧力を設定した。振動加速度は振動計(旭化成テクノシステム(株)製MD-220(商品名)。以下同様)を用いて測定した。焼成管を4回転/分の速度で回転させながら、最高焼成温度である370℃まで4時間かけて昇温し、370℃で1時間保持できるように炉の温度を設定して前段焼成を行った。焼成管出口で回収した前段焼成体を少量サンプリングし、窒素雰囲気下400℃に加熱した後、還元率を測定したところ、10.2%であった。回収した前段焼成体を60g/hrの供給量で、回転炉内の直径3インチ、長さ89cmの連続式のSUS製焼成管に供給した。その焼成管内に1.1NL/minの窒素ガスを乾燥粉体の供給方向と対向する方向、及び同じ方向にそれぞれ流し、合計の流量を2.2NL/minとした。SUS製焼成管の両端にはエアノッカーを設置し、エアノッカーの打撃頻度は1分当たり10回の間の打撃となるように設定した。また、打撃によるSUS製焼成管表面の振動加速度が50m/sとなるようにエアノッカー入口の空気圧力を設定した。振動加速度は振動計を用いて測定した。680℃まで2時間で昇温し、680℃で2時間保持した後、300℃まで8時間かけて降温できるように炉の温度を設定して、本焼成を行った。焼成管出口より得られた焼成体(F)の比表面積を測定したところ14.0m/gであった。焼成体の比表面積はMICROMETRICS社製Gemini2360(商品名)を用いて、BET1点法により求めた(以下同様。)。
(突起体の除去)
 底部に直径1/64インチの3つの穴のある穴あき円盤を備え、上部にペーパーフィルターを設けた垂直チューブ(内径41.6mm、長さ70cm)に焼成体(F)を50g投入した。次いで、それぞれの穴を経由して、その垂直チューブの下方から上方に向けて、室温にて空気を流通させて、焼成体同士の接触を促した。この時の気流が流れる方向における気流長さは56mm、気流の平均線速は332m/sであった。24時間後に得られた複合酸化物触媒(G)中には突起体が存在しなかった。
 複合酸化物触媒(G)のa/b、a/c組成比を、蛍光X線分析(装置:リガク株式会社製、RINT1000(商品名)、Cr管球、管電圧50kV、管電流50mA。以下同様。)により測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.207Sb0.219Nb0.1020.030Ce0.005/51.0wt%-SiOであった。
 この複合酸化物触媒(G)のX線回折測定をX線回折装置(リガク株式会社製、RINT2500VHF(商品名)、Cu管球、管電圧40kV、管電流200mA。以下同様。)を用いて行った。この時、2θ=8.9°のピークに着目し、シェラーの式から結晶粒子径を測定したところ、52nmであった。
(プロパンのアンモ酸化反応)
 上記で得られた複合酸化物触媒(G)を用いて、以下の方法により、プロパンを気相アンモ酸化反応に供した。内径25mmのバイコールガラス流動床型反応管に複合酸化物触媒を35g充填し、反応温度440℃、反応圧力常圧下にプロパン:アンモニア:酸素:ヘリウム=1:1:3:18のモル比の混合ガスを接触時間2.8(sec・g/cc)で供給した。反応後のプロパン転化率は89.2%、アクリロニトリル収率は55.5%であった。この触媒について、30日間連続反応を行ったところ、30日後のアクリロニトリル収率は55.4%であった。
(実施例2)
(乾燥粉体の調製)
 乾燥粉体(D)を次のようにして製造した。
 水2.202kgにヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕を611.5g、メタバナジン酸アンモニウム〔NHVO〕を84.7g、三酸化二アンチモン〔Sb〕を119.3g、さらに硝酸セリウム〔Ce(NO・6HO〕を6.8g加え、攪拌しながら95℃で1時間加熱して水性原料液(A)を調製した。
 ニオブ混合液(B)535.5gに、Hとして30質量%を含有する過酸化水素水を93.8g添加し、室温で10分間攪拌混合して、水性原料液(B)を調製した。
 得られた水性原料液(A)を70℃に冷却した後にSiOとして34.0質量%を含有するシリカゾル429.7gを添加し、さらに、Hとして30質量%含有する過酸化水素水98.4gを添加し、55℃で30分間撹拌を続けた。次に、水性原料液(B)、メタタングステン酸アンモニウム水溶液を42.8g(純度50%)、粉体シリカ112.5gを水1519kgに分散させた分散液を順次添加した後に、50℃で2.5時間攪拌熟成し、原料調合液であるスラリー状の水性混合液(C)を得た。
 得られた水性混合液(C)を、遠心式噴霧乾燥器に供給して乾燥し、微小球状の乾燥粉体(D)を得た。乾燥器の入口温度は210℃、出口温度は120℃であった。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.3質量%であり、平均粒子径は52μmであった。
(乾燥粉体(E)の焼成)
 焼成条件は実施例1と同じ条件で焼成を行った。この時の前段焼成体の還元率は10.3%、本焼成後の焼成体の比表面積は12.5m/gであった。
(突起体の除去)
 実施例1と同じ条件で突起体の除去を行い、蛍光X線分析により、複合酸化物触媒(G)のa/b、a/c組成比を測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.207Sb0.219Nb0.1020.03Ce0.005/30.0wt%-SiOであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は87.2%、アクリロニトリル収率は54.5%であった。
(実施例3)
(乾燥粉体の調製)
 乾燥粉体(D)を次のようにして製造した。
 水1.027kgにヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕を285.4g、メタバナジン酸アンモニウム〔NHVO〕を39.5g、三酸化二アンチモン〔Sb〕を55.7g、さらに硝酸セリウム〔Ce(NO・6HO〕を3.2g加え、攪拌しながら95℃で1時間加熱して水性原料液(A)を調製した。
 ニオブ混合液(B)249.9gに、Hとして30質量%を含有する過酸化水素水を43.8g添加し、室温で10分間攪拌混合して、水性原料液(B)を調製した。
 得られた水性原料液(A)を70℃に冷却した後にSiOとして34.0質量%を含有するシリカゾル1117.2gを添加し、さらに、Hとして30質量%含有する過酸化水素水98.4gを添加し、55℃で30分間撹拌を続けた。次に、水性原料液(B)、メタタングステン酸アンモニウム水溶液を20.4g(純度50%)、粉体シリカ292.5gを水3948kgに分散させた分散液を順次添加した後に、50℃で2.5時間攪拌熟成し、原料調合液であるスラリー状の水性混合液(C)を得た。
 得られた水性混合液(C)を、遠心式噴霧乾燥器に供給して乾燥し、微小球状の乾燥粉体(D)を得た。乾燥器の入口温度は210℃、出口温度は120℃であった。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.3質量%であり、平均粒子径は56μmであった。
(乾燥粉体(E)の焼成)
 焼成条件は実施例1と同じ条件で焼成を行った。この時の前段焼成体の還元率は10.5%、本焼成後の焼成体の比表面積は17.0m/gであった。
(突起体の除去)
 実施例1と同じ条件で突起体の除去を行い、蛍光X線分析により、複合酸化物触媒(G)のa/b、a/c組成比を測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.207Sb0.219Nb0.1020.03Ce0.005/68.0wt%-SiOであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は88.8%、アクリロニトリル収率は55.1%であった。
(実施例4)
(乾燥粉体の調製)
 乾燥粉体(D)を次のようにして製造した。
 水1.806kgにヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕を432.1g、メタバナジン酸アンモニウム〔NHVO〕を69.4g、三酸化二アンチモン〔Sb〕を90.1g、さらに硝酸セリウム〔Ce(NO・6HO〕を4.8g加え、攪拌しながら95℃で1時間加熱して水性原料液(A)を調製した。
 ニオブ混合液(B)504.5gに、Hとして30質量%を含有する過酸化水素水を88.4g添加し、室温で10分間攪拌混合して、水性原料液(B)を調製した。
 得られた水性原料液(A)を70℃に冷却した後にSiOとして34.0質量%を含有するシリカゾル807.8gを添加し、さらに、Hとして30質量%含有する過酸化水素水98.4gを添加し、55℃で30分間撹拌を続けた。次に、水性原料液(B)、メタタングステン酸アンモニウム水溶液を31.0g(純度50%)、粉体シリカ211.5gを水2.855kgに分散させた分散液を順次添加した後に、50℃で2.5時間攪拌熟成し、原料調合液であるスラリー状の水性混合液(C)を得た。
 得られた水性混合液(C)を、遠心式噴霧乾燥器に供給して乾燥し、微小球状の乾燥粉体(D)を得た。乾燥器の入口温度は210℃、出口温度は120℃であった。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.5質量%であり、平均粒子径は55μmであった。
(乾燥粉体(E)の焼成)
 焼成条件は実施例1と同じ条件で焼成を行った。この時の前段焼成体の還元率は10.0%、本焼成後の焼成体の比表面積は12.5m/gであった。
(突起体の除去)
 実施例1と同じ条件で突起体の除去を行い、蛍光X線分析により、複合酸化物触媒(G)のa/b、a/c組成比を測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.240Sb0.250Nb0.1200.030Ce0.005/51.0wt%-SiOであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は87.5%、アクリロニトリル収率は55.2%であった。
(実施例5)
(乾燥粉体の調製)
 乾燥粉体(D)の調製は実施例1と同様の方法で行った。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.5質量%であり、平均粒子径は58μmであった。
(乾燥粉体(E)の焼成)
 焼成条件は、前段焼成温度を360℃に変更し、前段焼成時の合計窒素流量7.5NL/minに変更したこと以外は実施例1と同じ条件で焼成を行った。この時の前段焼成体の還元率は10.0%、本焼成後の焼成体の比表面積は12.0m/gであった。
(突起体の除去)
 実施例1と同じ条件で突起体の除去を行い、蛍光X線分析により、複合酸化物触媒(G)のa/b、a/c組成比を測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.207Sb0.219Nb0.1020.030Ce0.005/51.0wt%-SiOであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は88.8%、アクリロニトリル収率は55.1%であった。
(実施例6)
(乾燥粉体の調製)
乾燥粉体(D)の調製は実施例1と同様の方法で行った。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.7質量%であり、平均粒子径は54μmであった。
(乾燥粉体(E)の焼成)
 焼成条件は、前段焼成時の合計窒素流量を2.3NL/min(向流、並流のそれぞれを1.15NL/minずつ。)に変更したこと以外は実施例1と同じ条件で焼成を行った。この時の前段焼成体の還元率は10.3%、本焼成後の焼成体の比表面積は14.8m/gであった。
(突起体の除去)
 実施例1と同じ条件で突起体の除去を行い、蛍光X線分析により、複合酸化物触媒(G)のa/b、a/c組成比を測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.207Sb0.219Nb0.1020.030Ce0.005/51.0wt%-SiOであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は89.0%、アクリロニトリル収率は55.1%であった。
(実施例7)
(乾燥粉体の調製)
 乾燥粉体(D)の調製は実施例1と同様の方法で行った。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.2質量%であり、平均粒子径は53μmであった。
(乾燥粉体(E)の焼成)
 焼成条件は、本焼成時の合計窒素流量を3.2NL/min(向流、並流のそれぞれを1.6NL/minずつ。)に変更したこと以外は実施例1と同じ条件で焼成を行った。この時の前段焼成体の還元率は10.3%、本焼成後の焼成体の比表面積は13.6m/gであった。
(突起体の除去)
 実施例1と同じ条件で突起体の除去を行い、蛍光X線分析により、複合酸化物触媒(G)のa/b、a/c組成比を測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.207Sb0.219Nb0.1020.030Ce0.005/51.0wt%-SiOであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は88.6%、アクリロニトリル収率は55.1%であった。
(実施例8)
(乾燥粉体の調製)
 乾燥粉体(D)の調製は実施例1と同様の方法で行った。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.3質量%であり、平均粒子径は52μmであった。
(乾燥粉体(E)の焼成)
 焼成条件は、本焼成時の合計窒素流量を1.0NL/min(向流、並流のそれぞれを0.5NL/minずつ。)に変更したこと以外は実施例1と同じ条件で焼成を行った。この時の前段焼成体の還元率は10.1%、本焼成後の焼成体の比表面積は12.4m/gであった。
(突起体の除去)
 実施例1と同じ条件で突起体の除去を行い、蛍光X線分析により、複合酸化物触媒(G)のa/b、a/c組成比を測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.207Sb0.219Nb0.1020.030Ce0.005/51.0wt%-SiOであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は89.1%、アクリロニトリル収率は55.1%であった。
(実施例9)
(乾燥粉体の調製)
 乾燥粉体(D)の調製は実施例1と同様の方法で行った。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.1質量%であり、平均粒子径は49μmであった。
(乾燥粉体(E)の焼成)
 焼成条件は、前段焼成時の焼成管の回転数を1回/分に変更した以外は実施例1と同じ条件で焼成を行った。この時の前段焼成体の還元率は11.2%、本焼成後の焼成体の比表面積は15.6m/gであった。
(突起体の除去)
 実施例1と同じ条件で突起体の除去を行い、蛍光X線分析により、複合酸化物触媒(G)のa/b、a/c組成比を測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.207Sb0.219Nb0.1020.030Ce0.005/51.0wt%-SiOであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は87.2%、アクリロニトリル収率は54.0%であった。
(実施例10)
(乾燥粉体の調製)
 乾燥粉体(D)の調製は実施例1と同様の方法で行った。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.6質量%であり、平均粒子径は55μmであった。
(乾燥粉体(E)の焼成)
 焼成条件は、前段焼成時の最高焼成温度を330℃、焼成管の回転数を12回/分、前段焼成時の合計窒素流量を6.0NL/min(向流、並流のそれぞれを3.0NL/minずつ。)に変更したこと以外は実施例1と同じ条件で焼成を行った。この時の前段焼成体の還元率は9.8%、本焼成後の焼成体の比表面積は12.1m/gであった。
(突起体の除去)
 実施例1と同じ条件で突起体の除去を行い、蛍光X線分析により、複合酸化物触媒(G)のa/b、a/c組成比を測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.207Sb0.219Nb0.1020.030Ce0.005/51.0wt%-SiOであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は90.0%、アクリロニトリル収率は54.2%であった。
(実施例11)
(乾燥粉体の調製)
 乾燥粉体(D)の調製は実施例1と同様の方法で行った。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.5質量%であり、平均粒子径は58μmであった。
(乾燥粉体(E)の焼成)
 焼成条件は、前段焼成時の乾燥粉体(E)の供給量を72g/hrに変更したこと以外は実施例1と同じ条件で焼成を行った。この時の前段焼成体の還元率は10.5%、本焼成後の焼成体の比表面積は14.3m/gであった。
(突起体の除去)
 実施例1と同じ条件で突起体の除去を行い、蛍光X線分析により、複合酸化物触媒(G)のa/b、a/c組成比を測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.207Sb0.219Nb0.1020.030Ce0.005/51.0wt%-SiOであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は87.9%、アクリロニトリル収率は54.9%であった。
(実施例12)
(乾燥粉体の調製)
 乾燥粉体(D)の調製は実施例1と同様の方法で行った。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.4質量%であり、平均粒子径は60μmであった。
(乾燥粉体(E)の焼成)
 焼成条件は、前段焼成時の乾燥粉体(E)の供給量を89g/hrに変更したこと以外は実施例1と同じ条件で焼成を行った。この時の前段焼成体の還元率は9.9%、本焼成後の焼成体の比表面積は12.2m/gであった。
(突起体の除去)
 実施例1と同じ条件で突起体の除去を行い、蛍光X線分析により、複合酸化物触媒(G)のa/b、a/c組成比を測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.207Sb0.219Nb0.1020.030Ce0.005/51.0wt%-SiOであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は87.8%、アクリロニトリル収率は54.6%であった。
(実施例13)
(乾燥粉体の調製)
 乾燥粉体(D)の調製は実施例1と同様の方法で行った。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.4質量%であり、平均粒子径は62μmであった。
(乾燥粉体(E)の焼成)
 焼成条件は、本焼成時の前段焼成体の供給量を36g/hrに変更したこと以外は実施例1と同じ条件で焼成を行った。この時の前段焼成体の還元率は10.3%、本焼成後の焼成体の比表面積は12.0m/gであった。
(突起体の除去)
 実施例1と同じ条件で突起体の除去を行い、蛍光X線分析により、複合酸化物触媒(G)のa/b、a/c組成比を測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.207Sb0.219Nb0.1020.030Ce0.005/51.0wt%-SiOであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は88.4%、アクリロニトリル収率は55.2%であった。
(実施例14)
(乾燥粉体の調製)
 乾燥粉体(D)の調製は実施例1と同様の方法で行った。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.4質量%であり、平均粒子径は58μmであった。
(乾燥粉体(E)の焼成)
 焼成条件は、本焼成時の前段焼成体の供給量を84g/hrに変更したこと以外は実施例1と同じ条件で焼成を行った。この時の前段焼成体の還元率は10.4%、本焼成後の焼成体の比表面積は14.0m/gであった。
(突起体の除去)
 実施例1と同じ条件で突起体の除去を行い、蛍光X線分析により、複合酸化物触媒(G)のa/b、a/c組成比を測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.207Sb0.219Nb0.1020.030Ce0.005/51.0wt%-SiOであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は88.4%、アクリロニトリル収率は54.3%であった。
(実施例15)
(ニオブ原料液の調製)
 以下の方法でニオブ原料液を調製した。水500kgにNbとして77.9質量%を含有するニオブ酸72.2kgとシュウ酸二水和物〔H・2HO〕267kgとを混合した。仕込みのシュウ酸/ニオブのモル比は5.0、仕込みのニオブ濃度は0.552(mol-Nb/kg-液)であった。
 この液を95℃で1時間加熱撹拌することによって、ニオブ化合物が溶解した水溶液を得た。この水溶液を静置、氷冷後、固体を吸引濾過によって濾別し、均一なニオブ化合物水溶液を得た。同じような操作を数回繰り返して、得られたニオブ化合物水溶液を一つにし、ニオブ原料液とした。このニオブ原料液のシュウ酸/ニオブのモル比は下記の分析により2.40であった。
 るつぼに、このニオブ原料液10gを精秤し、95℃で一夜乾燥後、600℃で1時間熱処理し、Nb0.835gを得た。この結果から、ニオブ濃度は0.590(mol-Nb/kg-液)であった。
 300mLのガラスビーカーにこのニオブ原料液3gを精秤し、約80℃の熱水200mLを加え、続いて1:1硫酸10mLを加えた。得られた溶液をホットスターラー上で液温70℃に保ちながら、攪拌下、1/4規定KMnOを用いて滴定した。KMnOによるかすかな淡桃色が約30秒以上続く点を終点とした。シュウ酸の濃度は、滴定量から次式に従って計算した結果、1.50(mol-シュウ酸/kg)であった。
 2KMnO+3HSO+5H→KSO+2MnSO+10CO+8H
 同工程を経て繰り返し調製し、以下の複合酸化物触媒の製造におけるニオブ原料液として用いた。
(乾燥粉体の調製)
 水100kgにヘプタモリブデン酸アンモニウム〔(NH)6Mo24・4HO〕を30.24kg、メタバナジン酸アンモニウム〔NHVO〕を4.19kg、三酸化二アンチモン〔Sb〕を5.52kg、さらに硝酸セリウム〔Ce(NO・6HO〕371gを26kgの水に溶解させてから加え、攪拌しながら95℃で1時間加熱して水性混合液(A-1)を得た。
 上記ニオブ原料液29.9kgに、Hとして30質量%を含有する過酸化水素水3.42kgを添加した。液温をおよそ20℃に維持し、攪拌混合して、水性液(B-1)を得た。
 得られた水性混合液(A-1)を70℃に冷却した後に、SiOとして32.0質量%を含有するシリカゾル56.55kgを添加した。次いで、Hとして30質量%を含有する過酸化水素水6.44kgを添加し、50℃で1時間撹拌混合した後、メタタングステン酸アンモニウム水溶液を2.38kg溶解させ、水性液(B-1)を添加した。さらに、そこに、ヒュームドシリカ14.81kgを214.7kgの水に分散させた液を添加して得られた液を50℃で2.5時間攪拌熟成し、原料調合液であるスラリー状の水性混合液(C)を得た。
 得られた水性混合液(C)を、遠心式噴霧乾燥器に供給して乾燥し、微小球状の乾燥粉体(D)を得た。乾燥器の入口温度は210℃、出口温度は120℃であった。
 後述する「乾燥粉体(E)の焼成」工程を連続式で行うために、本工程を38回繰り返し、乾燥粉体(D)を合計約2600kg調製した。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.8質量%であり、平均粒子径は55μmであった。
(乾燥粉体(E)の焼成)
 得られた乾燥粉体(E)を、回転炉内の内径500mm、長さ3500mm、肉厚20mmの連続式のSUS製円筒状焼成管であって、高さ150mmの7枚の堰板を、加熱部分の長さを8等分するように設置した焼成管に、20kg/hrの速度で供給した。その焼成管内に、600NL/minの窒素ガスを流通し、焼成管を4回転/分で回転させながら、370℃まで約4時間かけて昇温し、370℃で3時間保持する温度プロファイルとなるように加熱炉温度を調整し、前段焼成することにより前段焼成体を得た。得られた前段焼成体に対して、実施例1に示した本焼成の条件と同条件で焼成を行った。前段焼成体の還元率は10.2%、本焼成後の焼成体の比表面積は13.5m/gであった。
(突起体の除去)
 実施例1と同じ条件で突起体の除去を行い、蛍光X線分析により、複合酸化物触媒(G)のa/b、a/c組成比を測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.207Sb0.219Nb0.1020.030Ce0.005/51.0wt%-SiOであった。
 この複合酸化物触媒(G)のX線回折測定を行った。この時、2θ=8.9°のピークに着目し、シェラーの式から結晶粒子径を測定したところ、48nmであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は89.1%、アクリロニトリル収率は55.0%であった。この触媒について、30日間連続反応を行ったところ、30日後のアクリロニトリル収率は55.3%であった。
(実施例16)
 実施例15で行った調製法と同様の方法によりニオブ原料液の調製を行った。
(乾燥粉体の調製)
 乾燥粉体(D)の調製は実施例15と同様の方法で行った。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.4質量%であり、平均粒子径は53μmであった。
(乾燥粉体(E)の焼成)
 得られた乾燥粉体(E)を、回転炉内の内径500mm、長さ3500mm、肉厚20mmのSUS製円筒状焼成管であって、高さ150mmの7枚の堰板を、加熱部分の長さを8等分するように設置した焼成管に、20kg/hrの速度で供給した。その焼成管内に、600Nリットル/minの窒素ガスを流通し、焼成管を4回転/分で回転させながら、370℃まで約4時間かけて昇温し、370℃で3時間保持する温度プロファイルとなるように加熱炉温度を調整し、前段焼成することにより前段焼成体を得た。別の回転炉内の内径500mm、長さ3500mm、肉厚20mmのSUS製円筒状焼成管であって、高さ150mmの7枚の堰板を、加熱部分の長さを8等分するように設置した焼成管に、焼成管を4回転/分で回転させながら、前段焼成体を15kg/hrの速度で供給した。その際、焼成管の前段焼成体導入側部分(加熱炉に覆われていない部分)を、打撃部先端がSUS製の質量14kgのハンマーを設置したハンマリング装置で、回転軸に垂直な方向で焼成管上部250mmの高さから5秒に1回打撃を加えながら、500Nリットル/minの窒素ガス流通下で675℃まで2℃/minで昇温し、675℃で2時間焼成し、1℃/minで降温する温度プロファイルとなるように加熱炉温度を調整し、本焼成することにより焼成体を得た。この過程で得られた前段焼成体の還元率は10.1%、本焼成後の焼成体の比表面積は15.2m/gであった。
(突起体の除去)
 図1に示すような装置の中に、焼成体を1800kg入れ、摂氏15℃、1気圧における触媒質量当たりのエネルギー換算値(m/s/kg)が50になるように調整し、24時間運転を行った。この時の気流が流れる方向における気流長さは390mm、気流の平均線速は341m/sであり、気体流通口の穴の数Kは350個であった。突起体を除去した後の複合酸化物触媒(G)の組成を蛍光X線分析により、a/b、a/c組成比を測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.207Sb0.219Nb0.1020.030Ce0.005/51.0wt%-SiOであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は89.1%、アクリロニトリル収率は55.2%であった。
(実施例17)
(乾燥粉体の調製)
 メタタングステン酸アンモニウム水溶液の量を93.0g(純度50%)に変更して加えたこと以外は実施例1と同様にして、乾燥粉体(D)を調製した。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.9質量%であり、平均粒子径は56μmであった。
(乾燥粉体(E)の焼成)
 焼成条件は、実施例1と同じ条件で焼成を行った。この時の前段焼成体の還元率は10.2%、本焼成後の焼成体の比表面積は14.2m/gであった。
(突起体の除去)
 実施例1と同じ条件で突起体の除去を行い、蛍光X線分析により、複合酸化物触媒(G)のa/b、a/c組成比を測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.207Sb0.219Nb0.1020.090Ce0.005/51.0wt%-SiOであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は88.1%、アクリロニトリル収率は55.2%であった。
(実施例18)
(乾燥粉体の調製)
 メタタングステン酸アンモニウム水溶液を加えなかったこと以外は実施例1と同様にして、乾燥粉体(D)を調製した。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.9質量%であり、平均粒子径は57μmであった。
(乾燥粉体(E)の焼成)
 焼成条件は、実施例1と同じ条件で焼成を行った。この時の前段焼成体の還元率は9.9%、本焼成後の焼成体の比表面積は11.0m/gであった。
(突起体の除去)
 実施例1と同じ条件で突起体の除去を行い、蛍光X線分析により、複合酸化物触媒(G)のa/b、a/c組成比を測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.207Sb0.219Nb0.102Ce0.005/51.0wt%-SiOであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は88.7%、アクリロニトリル収率は54.4%であった。
(実施例19)
(乾燥粉体の調製)
 硝酸セリウム〔Ce(NO・6HO〕を加えなかったこと以外は実施例1と同様にして、乾燥粉体(D)を調製した。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.4質量%であり、平均粒子径は55μmであった。
(乾燥粉体(E)の焼成)
 焼成条件は、実施例1と同じ条件で焼成を行った。この時の前段焼成体の還元率は9.9%、本焼成後の焼成体の比表面積は15.5m/gであった。
(突起体の除去)
 実施例1と同じ条件で突起体の除去を行い、蛍光X線分析により、複合酸化物触媒(G)のa/b、a/c組成比を測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.207Sb0.219Nb0.1020.030/51.0wt%-SiOであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は89.5%、アクリロニトリル収率は54.3%であった。
(実施例20)
(乾燥粉体の調製)
 硝酸セリウム〔Ce(NO・6HO〕の添加量を8.7gに変更したこと以外は実施例1と同様にして、乾燥粉体(D)を調製した。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.4質量%であり、平均粒子径は52μmであった。
(乾燥粉体(E)の焼成)
 焼成条件は、実施例1と同じ条件で焼成を行った。この時の前段焼成体の還元率は9.7%、本焼成後の焼成体の比表面積は12.8m/gであった。
(突起体の除去)
 実施例1と同じ条件で突起体の除去を行い、蛍光X線分析により、複合酸化物触媒(G)のa/b、a/c組成比を測定した。得られた結果を表1に示すこの時に得られた複合酸化物触媒(G)の組成はMo0.207Sb0.219Nb0.1020.030Ce0.009/51.0wt%-SiOであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は89.1%、アクリロニトリル収率は54.6%であった。
(実施例21)
(乾燥粉体の調製)
 硝酸セリウム〔Ce(NO・6HO〕の代わりに硝酸ランタン〔La(NO・6HO〕を4.8g添加したこと以外は実施例1と同様にして、乾燥粉体(D)を調製した。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.7質量%であり、平均粒子径は51μmであった。
(乾燥粉体(E)の焼成)
 焼成条件は、実施例1と同じ条件で焼成を行った。この時の前段焼成体の還元率は9.9%、本焼成後の焼成体の比表面積は14.5m/gであった。
(突起体の除去)
 実施例1と同じ条件で突起体の除去を行い、蛍光X線分析により、複合酸化物触媒(G)のa/b、a/c組成比を測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.207Sb0.219Nb0.1020.030La0.005/51.0wt%-SiOであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は88.8%、アクリロニトリル収率は54.0%であった。
(実施例22)
(乾燥粉体の調製)
 硝酸セリウム〔Ce(NO・6HO〕の代わりに硝酸プラセオジム〔Pr(NO・6HO〕を4.8g添加したこと以外は実施例1と同様にして、乾燥粉体(D)を調製した。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.7質量%であり、平均粒子径は56μmであった。
(乾燥粉体(E)の焼成)
 焼成条件は、実施例1と同じ条件で焼成を行った。この時の前段焼成体の還元率は9.9%、本焼成後の焼成体の比表面積は14.2m/gであった。
(突起体の除去)
 実施例1と同じ条件で突起体の除去を行い、蛍光X線分析により、複合酸化物触媒(G)のa/b、a/c組成比を測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.207Sb0.219Nb0.1020.030Pr0.005/51.0wt%-SiOであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は88.7%、アクリロニトリル収率は54.1%であった。
(実施例23)
(乾燥粉体の調製)
 硝酸セリウム〔Ce(NO・6HO〕の代わりに硝酸イッテルビウム〔Yb(NO・3HO〕を4.6g添加したこと以外は実施例1と同様にして、乾燥粉体(D)を調製した。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.6質量%であり、平均粒子径は58μmであった。
(乾燥粉体(E)の焼成)
 焼成条件は、実施例1と同じ条件で焼成を行った。この時の前段焼成体の還元率は9.9%、本焼成後の焼成体の比表面積は14.0m/gであった。
(突起体の除去)
 実施例1と同じ条件で突起体の除去を行い、蛍光X線分析により、複合酸化物触媒(G)のa/b、a/c組成比を測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.207Sb0.219Nb0.1020.030Yb0.005/51.0wt%-SiOであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は88.8%、アクリロニトリル収率は54.1%であった。
(実施例24)
(乾燥粉体の調製)
 三酸化二アンチモン〔Sb〕を93.5g、ニオブ混合液(B)を452.6g、ニオブ混合液(B)と共に添加するHとして30質量%を含有する過酸化水素水を79.3gにそれぞれ変更して添加したこと以外は実施例1と同様にして、乾燥粉体(D)を調製した。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.7質量%であり、平均粒子径は53μmであった。
(乾燥粉体(E)の焼成)
 焼成条件は、実施例1と同じ条件で焼成を行った。この時の前段焼成体の還元率は10.8%、本焼成後の焼成体の比表面積は14.8m/gであった。
(突起体の除去)
 実施例1と同じ条件で突起体の除去を行い、蛍光X線分析により、複合酸化物触媒(G)のa/b、a/c組成比を測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.207Sb0.243Nb0.1220.030Ce0.005/51.0wt%-SiOであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は89.1%、アクリロニトリル収率は54.8%であった。
(実施例25)
(乾燥粉体の調製)
 水を1655g、ヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕を459.2g、メタバナジン酸アンモニウム〔NHVO〕を63.7g、三酸化二アンチモン〔Sb〕を99.3g、ニオブ混合液(B)を363.6g、ニオブ混合液(B)と共に添加するHとして30質量%を含有する過酸化水素水を63.7gにそれぞれ変更して添加したこと以外は実施例1と同様にして、乾燥粉体(D)を調製した。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.8質量%であり、平均粒子径は55μmであった。
(乾燥粉体(E)の焼成)
 焼成条件は、前段焼成における最高焼成温度を350℃、本焼成における最高焼成温度を685℃にしたこと以外は実施例1と同じ条件で焼成を行った。この時の前段焼成体の還元率は9.9%、本焼成後の焼成体の比表面積は11.0m/gであった。
(突起体の除去)
 実施例1と同じ条件で突起体の除去を行い、蛍光X線分析により、複合酸化物触媒(G)のa/b、a/c組成比を測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.220Sb0.258Nb0.0980.030Ce0.005/51.0wt%-SiOであった。
 この複合酸化物のX線回折測定を行った。この時、2θ=8.9°のピークに着目し、シェラーの式から結晶粒子径を測定したところ、55nmであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は88.3%、アクリロニトリル収率は54.6%であった。
(実施例26)
(乾燥粉体の調製)
 三酸化二アンチモン〔Sb〕を80.8g、ニオブ混合液(B)を337.6g、ニオブ混合液(B)と共に添加するHとして30質量%を含有する過酸化水素水を59.2gに、それぞれ変更して添加したこと以外は実施例1と同様の方法にして、乾燥粉体(D)を調製した。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.4質量%であり、平均粒子径は49μmであった。
(乾燥粉体(E)の焼成)
 焼成条件は、前段焼成における最高焼成温度を350℃、本焼成における最高焼成温度を690℃にしたこと以外は実施例1と同じ条件で焼成を行った。この時の前段焼成体の還元率は9.9%、本焼成後の焼成体の比表面積は11.0m/gであった。
(突起体の除去)
 実施例1と同じ条件で突起体の除去を行い、蛍光X線分析により、複合酸化物触媒(G)のa/b、a/c組成比を測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.207Sb0.210Nb0.0910.030Ce0.005/51.0wt%-SiOであった。
 この複合酸化物のX線回折測定を行った。この時、2θ=8.9°のピークに着目し、シェラーの式から結晶粒子径を測定したところ、65nmであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は89.0%、アクリロニトリル収率は54.5%であった。
(実施例27)
(乾燥粉体の調製)
 三酸化二アンチモン〔Sb〕を81.2g、ニオブ混合液(B)を445.2g、ニオブ混合液(B)と共に添加するHとして30質量%を含有する過酸化水素水を78.0gに、それぞれ変更して添加したこと以外は実施例1と同様にして、乾燥粉体(D)を調製した。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.4質量%であり、平均粒子径は54μmであった。
(乾燥粉体(E)の焼成)
 焼成条件は、実施例1と同じ条件で焼成を行った。この時の前段焼成体の還元率は10.7%、本焼成後の焼成体の比表面積は15.6m/gであった。
(突起体の除去)
 実施例1と同じ条件で突起体の除去を行い、蛍光X線分析により、複合酸化物触媒(G)のa/b、a/c組成比を測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.207Sb0.211Nb0.1200.030Ce0.005/51.0wt%-SiOであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は89.0%、アクリロニトリル収率は55.5%であった。
(実施例28)
(乾燥粉体の調製)
 三酸化二アンチモン〔Sb〕を81.2g、ニオブ混合液(B)を519.4g、ニオブ混合液(B)と共に添加するHとして30質量%を含有する過酸化水素水を91.0gに、それぞれ変更して添加したこと以外は実施例1と同様にして、乾燥粉体(D)を調製した。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.6質量%であり、平均粒子径は55μmであった。
(乾燥粉体(E)の焼成)
 焼成条件は、前段焼成における最高焼成温度を385℃、本焼成における最高焼成温度を680℃にしたこと以外は実施例1と同じ条件で焼成を行った。この時の前段焼成体の還元率は11.0%、本焼成後の焼成体の比表面積は16.0m/gであった。
(突起体の除去)
 実施例1と同じ条件で突起体の除去を行い、蛍光X線分析により、複合酸化物触媒(G)のa/b、a/c組成比を測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.207Sb0.211Nb0.1400.030Ce0.005/51.0wt%-SiOであった。
 この複合酸化物のX線回折測定を行った。この時、2θ=8.9°のピークに着目し、シェラーの式から結晶粒子径を測定したところ、46nmであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は87.4%、アクリロニトリル収率は54.6%であった。
(実施例29)
(乾燥粉体の調製)
 三酸化二アンチモン〔Sb〕を93.5g、ニオブ混合液(B)を519.4g、ニオブ混合液(B)と共に添加するHとして30質量%を含有する過酸化水素水を91.0gに、それぞれ変更して添加したこと以外は実施例1と同様にして、乾燥粉体(D)を調製した。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.5質量%であり、平均粒子径は53μmであった。
(乾燥粉体(E)の焼成)
 焼成条件は、前段焼成における最高焼成温度を385℃、本焼成における最高焼成温度を680℃にした以外、実施例1と同じ条件で焼成を行った。この時の前段焼成体の還元率は11.3%、本焼成後の焼成体の比表面積は15.0m/gであった。
(突起体の除去)
 実施例1と同じ条件で突起体の除去を行い、蛍光X線分析により、複合酸化物触媒(G)のa/b、a/c組成比を測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.207Sb0.243Nb0.1400.030Ce0.005/51.0wt%-SiOであった。
 この複合酸化物のX線回折測定を行った。この時、2θ=8.9°のピークに着目し、シェラーの式から結晶粒子径を測定したところ、45nmであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は87.2%、アクリロニトリル収率は54.4%であった。
(実施例30)
(乾燥粉体の調製)
 水を1505g、ヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕を417.5g、メタバナジン酸アンモニウム〔NHVO〕を57.9g、三酸化二アンチモン〔Sb〕を87.4g、ニオブ混合液(B)を341.3g、ニオブ混合液(B)と共に添加するHとして30質量%を含有する過酸化水素水を59.8gに、それぞれ変更して添加したこと以外は実施例1と同様にして、乾燥粉体(D)を調製した。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.8質量%であり、平均粒子径は50μmであった。
(乾燥粉体(E)の焼成)
 焼成条件は、本焼成における最高焼成温度を680℃にしたこと以外は実施例1と同じ条件で焼成を行った。この時の前段焼成体の還元率は10.1%、本焼成後の焼成体の比表面積は14.3m/gであった。
(突起体の除去)
 実施例1と同じ条件で突起体の除去を行い、蛍光X線分析により、複合酸化物触媒(G)のa/b、a/c組成比を測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.200Sb0.227Nb0.0920.030Ce0.005/51.0wt%-SiOであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は88.3%、アクリロニトリル収率は55.1%であった。
(実施例31)
(乾燥粉体の調製)
 水を1505g、ヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕を417.5g、メタバナジン酸アンモニウム〔NHVO〕を57.9g、三酸化二アンチモン〔Sb〕を87.4g、ニオブ混合液(B)を426.6g、ニオブ混合液(B)と共に添加するHとして30質量%を含有する過酸化水素水を74.8gに、それぞれ変更して添加したこと以外は実施例1と同様にして、乾燥粉体(D)を調製した。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.8質量%であり、平均粒子径は52μmであった。
(乾燥粉体(E)の焼成)
 焼成条件は、本焼成における最高焼成温度を680℃にしたこと以外は実施例1と同じ条件で焼成を行った。この時の前段焼成体の還元率は10.0%、本焼成後の焼成体の比表面積は13.8m/gであった。
(突起体の除去)
 実施例1と同じ条件で突起体の除去を行い、蛍光X線分析により、複合酸化物触媒(G)のa/b、a/c組成比を測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.200Sb0.227Nb0.1150.030Ce0.005/51.0wt%-SiOであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は88.3%、アクリロニトリル収率は55.2%であった。
(実施例32)
(乾燥粉体の調製)
 乾燥粉体(D)の調製は実施例1と同様の方法で行った。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.4質量%であり、平均粒子径は55μmであった。
(乾燥粉体(E)の焼成)
 焼成条件は、前段焼成時の乾燥粉体(E)の供給量を70g/hrに変更し、前段焼成における合計窒素流量を0.8NL/min(向流、並流のそれぞれを0.4NL/minずつ。)に変更し、前段焼成における最高焼成温度を400℃に変更した。本焼成での前段焼成体の供給量を51g/hrに変更し、本焼成における最高焼成温度を695℃に変更した。これら以外は実施例1と同じ条件で焼成を行った。この時の前段焼成体の還元率は10.2%、本焼成後の焼成体の比表面積は8.0m/gであった。
(突起体の除去)
 実施例1と同じ条件で突起体の除去を行い、蛍光X線分析により、複合酸化物触媒(G)のa/b、a/c組成比を測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.207Sb0.219Nb0.1020.030Ce0.005/51.0wt%-SiOであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は88.4%、アクリロニトリル収率は53.8%であった。
(実施例33)
(乾燥粉体の調製)
 ニオブ混合液(B)を500.8g、ニオブ混合液(B)と共に添加するHとして30質量%を含有する過酸化水素水を87.8gにそれぞれ変更して添加したこと以外は実施例1と同様にして、乾燥粉体(D)を調製した。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.4質量%であり、平均粒子径は49μmであった。
(乾燥粉体(E)の焼成)
 焼成条件は、本焼成における最高焼成温度を670℃に変更したこと以外は、実施例1と同じ条件で焼成を行った。この時の前段焼成体の還元率は11.2%、本焼成後の焼成体の比表面積は14.8m/gであった。
(突起体の除去)
 実施例1と同じ条件で突起体の除去を行い、蛍光X線分析により、複合酸化物触媒(G)のa/b、a/c組成比を測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.207Sb0.219Nb0.1350.030Ce0.005/51.0wt%-SiOであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は87.5%、アクリロニトリル収率は54.4%であった。この触媒について、30日間連続反応を行ったところ、30日後のアクリロニトリル収率は54.6%であった。
(実施例34)
(乾燥粉体の調製)
 水を1520g、ヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕を421.7g、メタバナジン酸アンモニウム〔NHVO〕を58.5g、ニオブ混合液(B)を437.8g、ニオブ混合液(B)と共に添加するHとして30質量%を含有する過酸化水素水を76.7gにそれぞれ変更して添加したこと以外は実施例1と同様にして、乾燥粉体(D)を調製した。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.7質量%であり、平均粒子径は50μmであった。
(乾燥粉体(E)の焼成)
 本焼成における最高焼成温度を670℃に変更したこと以外は、実施例1と同じ条件で焼成を行った。この時の前段焼成体の還元率は10.8%、本焼成後の焼成体の比表面積は14.3m/gであった。
(突起体の除去)
 実施例1と同じ条件で突起体の除去を行い、蛍光X線分析により、複合酸化物触媒(G)のa/b、a/c組成比を測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.202Sb0.219Nb0.1180.030Ce0.005/51.0wt%-SiOであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は87.6%、アクリロニトリル収率は52.8%であった。この触媒について、30日間連続反応を行ったところ、30日後のアクリロニトリル収率は54.8%であった。
(実施例35)
(乾燥粉体の調製)
 ニオブ混合液(B)を341.3g、ニオブ混合液(B)と共に添加するHとして30質量%を含有する過酸化水素水を59.8gにそれぞれ変更して添加したこと以外は実施例1と同様にして、乾燥粉体(D)を調製した。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.2質量%であり、平均粒子径は52μmであった。
(乾燥粉体(E)の焼成)
 焼成条件は、本焼成における最高焼成温度を685℃に変更したこと以外は、実施例1と同じ条件で焼成を行った。この時の前段焼成体の還元率は9.5%、本焼成後の焼成体の比表面積は13.5m/gであった。
(突起体の除去)
 実施例1と同じ条件で突起体の除去を行い、蛍光X線分析により、複合酸化物触媒(G)のa/b、a/c組成比を測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.207Sb0.219Nb0.0920.030Ce0.005/51.0wt%-SiOであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は89.6%、アクリロニトリル収率は55.4%であった。この触媒について、30日間連続反応を行ったところ、30日後のアクリロニトリル収率は54.5%であった。
(比較例1)
(乾燥粉体の調製)
 乾燥粉体(D)を次のようにして製造した。
 水1.580kgにヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕を438.4g、メタバナジン酸アンモニウム〔NHVO〕を60.8g、三酸化二アンチモン〔Sb〕を107.8g、さらに硝酸セリウム〔Ce(NO・6HO〕を4.8g加え、攪拌しながら95℃で1時間加熱して水性原料液(A)を調製した。
 実施例1と同様にして調製したニオブ混合液(B)371.0gに、Hとして30質量%を含有する過酸化水素水を65.0g添加し、室温で10分間攪拌混合して、水性原料液(B)を調製した。
 得られた水性原料液(A)を70℃に冷却した後にSiOとして34.0質量%を含有するシリカゾル807.8gを添加し、さらに、Hとして30質量%含有する過酸化水素水98.4gを添加し、55℃で30分間撹拌を続けた。次に、水性原料液(B)、メタタングステン酸アンモニウム水溶液を31.0g(純度50%)、粉体シリカ211.5gを水2.855kgに分散させた分散液を順次添加した後に、50℃で2.5時間攪拌熟成し、スラリー状の水性混合液(C)を得た。
 得られた水性混合液(C)を、遠心式噴霧乾燥器に供給して乾燥し、微小球状の乾燥粉体(D)を得た。乾燥器の入口温度は210℃、出口温度は120℃であった。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.9質量%であり、平均粒子径は50μmであった。
(乾燥粉体(E)の焼成)
 焼成条件は、前段焼成における最高焼成温度を390℃、本焼成における最高焼成温度を695℃に変更したこと以外は、実施例1と同じ条件で焼成を行った。この時の前段焼成体の還元率は9.2%、本焼成後の焼成体の比表面積は9.0m/gであった。
(突起体の除去)
 実施例1と同じ条件で突起体の除去を行い、蛍光X線分析により、複合酸化物触媒(G)のa/b、a/c組成比を測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.210Sb0.280Nb0.1000.030Ce0.005/51.0wt%-SiOであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は86.0%、アクリロニトリル収率は51.5%であった。この触媒について、30日間連続反応を行ったところ、30日後のアクリロニトリル収率は49.0%であった。
(比較例2)
(乾燥粉体の調製)
 乾燥粉体(D)を次のようにして製造した。
 水1.730kgにヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕を480.1g、メタバナジン酸アンモニウム〔NHVO〕を66.6g、三酸化二アンチモン〔Sb〕を84.7g、さらに硝酸セリウム〔Ce(NO・6HO〕を4.8g加え、攪拌しながら95℃で1時間加熱して水性原料液(A)を調製した。
 実施例1と同様にして調製したニオブ混合液(B)333.9gに、Hとして30質量%を含有する過酸化水素水を58.5g添加し、室温で10分間攪拌混合して、水性原料液(B)を調製した。
 得られた水性原料液(A)を70℃に冷却した後にSiOとして34.0質量%を含有するシリカゾル807.8gを添加し、さらに、Hとして30質量%含有する過酸化水素水98.4gを添加し、55℃で30分間撹拌を続けた。次に、水性原料液(B)、メタタングステン酸アンモニウム水溶液を31.0g(純度50%)、粉体シリカ211.5gを水2.855kgに分散させた分散液を順次添加した後に、50℃で2.5時間攪拌熟成し、原料調合液であるスラリー状の水性混合液(C)を得た。
 得られた水性混合液(C)を、遠心式噴霧乾燥器に供給して乾燥し、微小球状の乾燥粉体(D)を得た。乾燥器の入口温度は210℃、出口温度は120℃であった。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.9質量%であり、平均粒子径は52μmであった。
(乾燥粉体(E)の焼成)
 焼成条件は、前段焼成における最高焼成温度を345℃、本焼成における最高焼成温度を650℃に変更したこと以外は、実施例1と同じ条件で焼成を行った。この時の前段焼成体の還元率は9.8%、本焼成後の焼成体の比表面積は11.5m/gであった。
(突起体の除去)
 実施例1と同じ条件で突起体の除去を行い、蛍光X線分析により、複合酸化物触媒(G)のa/b、a/c組成比を測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.230Sb0.220Nb0.0900.030Ce0.005/51.0wt%-SiOであった。
 この複合酸化物のX線回折測定を行った。この時、2θ=8.9°のピークに着目し、シェラーの式から結晶粒子径を測定したところ、35nmであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は84.0%、アクリロニトリル収率は52.3%であった。
(比較例3)
(乾燥粉体の調製)
 乾燥粉体(D)を次のようにして製造した。
 水1.730kgにヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕を480.1g、メタバナジン酸アンモニウム〔NHVO〕を66.6g、三酸化二アンチモン〔Sb〕を100.1g、さらに硝酸セリウム〔Ce(NO・6HO〕を4.8g加え、攪拌しながら95℃で1時間加熱して水性原料液(A)を調製した。
 実施例1と同様にして調製したニオブ混合液(B)333.9gに、Hとして30質量%を含有する過酸化水素水を58.5g添加し、室温で10分間攪拌混合して、水性原料液(B)を調製した。
 得られた水性原料液(A)を70℃に冷却した後にSiOとして34.0質量%を含有するシリカゾル807.8gを添加し、さらに、Hとして30質量%含有する過酸化水素水98.4gを添加し、55℃で30分間撹拌を続けた。次に、水性原料液(B)、メタタングステン酸アンモニウム水溶液を31.0g(純度50%)、粉体シリカ211.5gを水2.855kgに分散させた分散液を順次添加した後に、50℃で2.5時間攪拌熟成し、原料調合液であるスラリー状の水性混合液(C)を得た。
 得られた水性混合液(C)を、遠心式噴霧乾燥器に供給して乾燥し、微小球状の乾燥粉体(D)を得た。乾燥器の入口温度は210℃、出口温度は120℃であった。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.3質量%であり、平均粒子径は56μmであった。
(乾燥粉体(E)の焼成)
 焼成条件は、前段焼成における最高焼成温度を390℃、本焼成における最高焼成温度を695℃に変更したこと以外は、実施例1と同じ条件で焼成を行った。この時の前段焼成体の還元率は9.6%、本焼成後の焼成体の比表面積は9.5m/gであった。
(突起体の除去)
 実施例1と同じ条件で突起体の除去を行い、蛍光X線分析により、複合酸化物触媒(G)のa/b、a/c組成比を測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.230Sb0.260Nb0.0900.030Ce0.005/51.0wt%-SiOであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は81.2%、アクリロニトリル収率は52.0%であった。
(比較例4)
(乾燥粉体の調製)
 乾燥粉体(D)を次のようにして製造した。
 水1.505kgにヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕を417.5g、メタバナジン酸アンモニウム〔NHVO〕を57.9g、三酸化二アンチモン〔Sb〕を100.1g、さらに硝酸セリウム〔Ce(NO・6HO〕を4.8g加え、攪拌しながら95℃で1時間加熱して水性原料液(A)を調製した。
 実施例1と同様にして調製したニオブ混合液(B)519.4gに、Hとして30質量%を含有する過酸化水素水を91.0g添加し、室温で10分間攪拌混合して、水性原料液(B)を調製した。
 得られた水性原料液(A)を70℃に冷却した後にSiOとして34.0質量%を含有するシリカゾル807.8gを添加し、さらに、Hとして30質量%含有する過酸化水素水98.4gを添加し、55℃で30分間撹拌を続けた。次に、水性原料液(B)、メタタングステン酸アンモニウム水溶液を31.0g(純度50%)、粉体シリカ211.5gを水2.855kgに分散させた分散液を順次添加した後に、50℃で2.5時間攪拌熟成し、原料調合液であるスラリー状の水性混合液(C)を得た。
 得られた水性混合液(C)を、遠心式噴霧乾燥器に供給して乾燥し、微小球状の乾燥粉体(D)を得た。乾燥器の入口温度は210℃、出口温度は120℃であった。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.3質量%であり、平均粒子径は54μmであった。
(乾燥粉体(E)の焼成)
 焼成条件は、前段焼成における最高焼成温度を340℃、本焼成における最高焼成温度を640℃に変更したこと以外は、実施例1と同じ条件で焼成を行った。この時の前段焼成体の還元率は10.8%、本焼成後の焼成体の比表面積は15.2m/gであった。
(突起体の除去)
 実施例1と同じ条件で突起体の除去を行い、蛍光X線分析により、複合酸化物触媒(G)のa/b、a/c組成比を測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.200Sb0.260Nb0.1400.030Ce0.005/51.0wt%-SiOであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は82.0%、アクリロニトリル収率は51.5%であった。
(比較例5)
(乾燥粉体の調製)
 乾燥粉体(D)を次のようにして製造した。
 水1.557kgにヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕を432.1g、メタバナジン酸アンモニウム〔NHVO〕を59.9g、三酸化二アンチモン〔Sb〕を84.3g、さらに硝酸セリウム〔Ce(NO・6HO〕を4.8g加え、攪拌しながら95℃で1時間加熱して水性原料液(A)を調製した。
 実施例1と同様にして調製したニオブ混合液(B)575.0gに、Hとして30質量%を含有する過酸化水素水を100.8g添加し、室温で10分間攪拌混合して、水性原料液(B)を調製した。
 得られた水性原料液(A)を70℃に冷却した後にSiOとして34.0質量%を含有するシリカゾル807.8gを添加し、さらに、Hとして30質量%含有する過酸化水素水98.4gを添加し、55℃で30分間撹拌を続けた。次に、水性原料液(B)、メタタングステン酸アンモニウム水溶液を31.0g(純度50%)、粉体シリカ211.5gを水2.855kgに分散させた分散液を順次添加した後に、50℃で2.5時間攪拌熟成し、原料調合液であるスラリー状の水性混合液(C)を得た。
 得られた水性混合液(C)を、遠心式噴霧乾燥器に供給して乾燥し、微小球状の乾燥粉体(D)を得た。乾燥器の入口温度は210℃、出口温度は120℃であった。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.3質量%であり、平均粒子径は53μmであった。
(乾燥粉体(E)の焼成)
 焼成条件は、前段焼成における最高温度を400℃、本焼成における最高温度を700℃に変更したこと以外は、実施例1と同じ条件で焼成を行った。この時の前段焼成体の還元率は11.5%、本焼成後の焼成体の比表面積は15.0m/gであった。
(突起体の除去)
 実施例1と同じ条件で突起体の除去を行い、蛍光X線分析により、複合酸化物触媒(G)のa/b、a/c組成比を測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.207Sb0.219Nb0.1550.030Ce0.005/51.0wt%-SiOであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は81.7%、アクリロニトリル収率は48.5%であった。この触媒について、30日間連続反応を行ったところ、30日後のアクリロニトリル収率は46.5%であった。
(比較例6)
(乾燥粉体の調製)
 乾燥粉体(D)を次のようにして製造した。
 水1.557kgにヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕を432.1g、メタバナジン酸アンモニウム〔NHVO〕を59.9g、三酸化二アンチモン〔Sb〕を75.1g、さらに硝酸セリウム〔Ce(NO・6HO〕を4.8g加え、攪拌しながら95℃で1時間加熱して水性原料液(A)を調製した。
 実施例1と同様にして調製したニオブ混合液(B)482.3gに、Hとして30質量%を含有する過酸化水素水を84.5g添加し、室温で10分間攪拌混合して、水性原料液(B)を調製した。
 得られた水性原料液(A)を70℃に冷却した後にSiOとして34.0質量%を含有するシリカゾル807.8gを添加し、さらに、Hとして30質量%含有する過酸化水素水98.4gを添加し、55℃で30分間撹拌を続けた。次に、水性原料液(B)、メタタングステン酸アンモニウム水溶液を31.0g(純度50%)、粉体シリカ211.5gを水2.855kgに分散させた分散液を順次添加した後に、50℃で2.5時間攪拌熟成し、原料調合液であるスラリー状の水性混合液(C)を得た。
 得られた水性混合液(C)を、遠心式噴霧乾燥器に供給して乾燥し、微小球状の乾燥粉体(D)を得た。乾燥器の入口温度は210℃、出口温度は120℃であった。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.3質量%であり、平均粒子径は56μmであった。
(乾燥粉体(E)の焼成)
 焼成条件は、前段焼成における最高焼成温度を370℃、本焼成における最高焼成温度を680℃に変更したこと以外は、実施例1と同じ条件で焼成を行った。この時の前段焼成体の還元率は11.2%、本焼成後の焼成体の比表面積は14.2m/gであった。
(突起体の除去)
 実施例1と同じ条件で突起体の除去を行い、蛍光X線分析により、複合酸化物触媒(G)のa/b、a/c組成比を測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.207Sb0.195Nb0.1300.030Ce0.005/51.0wt%-SiOであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は82.3%、アクリロニトリル収率は51.6%であった。
(比較例7)
(乾燥粉体の調製)
 乾燥粉体(D)を次のようにして製造した。
 水1.505kgにヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕を417.5g、メタバナジン酸アンモニウム〔NHVO〕を57.9g、三酸化二アンチモン〔Sb〕を94.3g、さらに硝酸セリウム〔Ce(NO・6HO〕を4.8g加え、攪拌しながら95℃で1時間加熱して水性原料液(A)を調製した。
 実施例1と同様にして調製したニオブ混合液(B)304.2gに、Hとして30質量%を含有する過酸化水素水を53.3g添加し、室温で10分間攪拌混合して、水性原料液(B)を調製した。
 得られた水性原料液(A)を70℃に冷却した後にSiOとして34.0質量%を含有するシリカゾル807.8gを添加し、さらに、Hとして30質量%含有する過酸化水素水98.4gを添加し、55℃で30分間撹拌を続けた。次に、水性原料液(B)、メタタングステン酸アンモニウム水溶液を31.0g(純度50%)、粉体シリカ211.5gを水2.855kgに分散させた分散液を順次添加した後に、50℃で2.5時間攪拌熟成し、原料調合液であるスラリー状の水性混合液(C)を得た。
 得られた水性混合液(C)を、遠心式噴霧乾燥器に供給して乾燥し、微小球状の乾燥粉体(D)を得た。乾燥器の入口温度は210℃、出口温度は120℃であった。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.4質量%であり、平均粒子径は57μmであった。
(乾燥粉体(E)の焼成)
 焼成条件は、前段焼成における最高焼成温度を370℃、本焼成における最高焼成温度を680℃に変更したこと以外は、実施例1と同じ条件で焼成を行った。この時の前段焼成体の還元率は9.0%、本焼成後の焼成体の比表面積は11.0m/gであった。
(突起体の除去)
 実施例1と同じ条件で突起体の除去を行い、蛍光X線分析により、複合酸化物触媒(G)のa/b、a/c組成比を測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.200Sb0.245Nb0.0820.030Ce0.005/51.0wt%-SiOであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は84.2%、アクリロニトリル収率は49.5%であった。この触媒について、30日間連続反応を行ったところ、30日後のアクリロニトリル収率は44.0%であった。
(比較例8)
(乾燥粉体の調製)
 乾燥粉体(D)を次のようにして製造した。
 水1.655kgにヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕を459.2g、メタバナジン酸アンモニウム〔NHVO〕を63.7g、三酸化二アンチモン〔Sb〕を80.8g、さらに硝酸セリウム〔Ce(NO・6HO〕を4.8g加え、攪拌しながら95℃で1時間加熱して水性原料液(A)を調製した。
 実施例1と同様にして調製したニオブ混合液(B)408.1gに、Hとして30質量%を含有する過酸化水素水を71.5g添加し、室温で10分間攪拌混合して、水性原料液(B)を調製した。
 得られた水性原料液(A)を70℃に冷却した後にSiOとして34.0質量%を含有するシリカゾル807.8gを添加し、さらに、Hとして30質量%含有する過酸化水素水98.4gを添加し、55℃で30分間撹拌を続けた。次に、水性原料液(B)、メタタングステン酸アンモニウム水溶液を31.0g(純度50%)、粉体シリカ211.5gを水2.855kgに分散させた分散液を順次添加した後に、50℃で2.5時間攪拌熟成し、原料調合液であるスラリー状の水性混合液(C)を得た。
 得られた水性混合液(C)を、遠心式噴霧乾燥器に供給して乾燥し、微小球状の乾燥粉体(D)を得た。乾燥器の入口温度は210℃、出口温度は120℃であった。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.4質量%であり、平均粒子径は58μmであった。
(乾燥粉体(E)の焼成)
 焼成条件は、前段焼成における最高焼成温度を370℃、本焼成における最高焼成温度を680℃に変更したこと以外は、実施例1と同じ条件で焼成を行った。この時の前段焼成体の還元率は10.5%、本焼成後の焼成体の比表面積は13.8m/gであった。
(突起体の除去)
 実施例1と同じ条件で突起体の除去を行い、蛍光X線分析により、複合酸化物触媒(G)のa/b、a/c組成比を測定した。得られた結果を表1に示す。この時に得られた複合酸化物触媒(G)の組成はMo0.220Sb0.210Nb0.1100.030Ce0.005/51.0wt%-SiOであった。
(プロパンのアンモ酸化反応)
 実施例1と同じ条件で反応を行ったところ、反応後のプロパン転化率は84.3%、アクリロニトリル収率は49.5%であった。
Figure JPOXMLDOC01-appb-T000005
 本発明は、プロパン又はイソブタンの気相接触酸化又は気相接触アンモ酸化反応に用いる複合酸化物触媒としての産業上利用可能性を有する。
 1:本体
 2:気体導入管、21:分岐鎖、210:ノズル、211:開口部、22:再分岐部、220:開口部
 3:出口配管、31:外管、32:内管、33:ノズル
 4:サイクロン、41:出口配管、42:サイクロン
 5,51,52:戻り配管、53:外管、54:内管、55:ノズル
 6:ノズル、61:ノズル先端部
 7:気体導入管、71:循環ライン
 8:排出ライン
 11:外管
 12:内管
 13:開口部

Claims (10)

  1.  プロパン又はイソブタンの気相接触酸化反応又は気相接触アンモ酸化反応に用いられる複合酸化物触媒であって、下記組成式(1)で表される複合酸化物を含む触媒。
     MoSbNb・・・(1)
    (式中、成分ZはLa、Ce、Pr、Yb、Y、Sc、Sr、Baから選ばれる少なくとも1種類以上の元素を示し、a、b、c、d、e、nは、それぞれ、Mo1原子に対する各元素の原子比を示し、0.1≦a≦0.4、0.1≦b≦0.4、0.01≦c≦0.3、0≦d≦0.2、0≦e≦0.1であり、原子比a/b、a/cは、0.85≦a/b<1.0、1.4<a/c<2.3である。)
  2.  SiO換算で20~70質量%のシリカを含む、請求項1記載の複合酸化物触媒。
  3.  下記組成式(1):
     MoSbNb ・・・(1)
    (式中、成分ZはLa、Ce、Pr、Yb、Y、Sc、Sr、Baから選ばれる少なくとも1種類以上の元素を示し、a、b、c、d、e、nは、それぞれ、Mo1原子に対する各元素の原子比を示し、0.1≦a≦0.4、0.1≦b≦0.4、0.01≦c≦0.3、0≦d≦0.2、0≦e≦0.1であり、原子比a/b、a/cは、0.85≦a/b<1.0、1.4<a/c<2.3である。)で表される複合酸化物を含む複合酸化物触媒の製造方法であって、以下の(I)~(V)の工程:
    (I)Mo、V、Sb、Nb、W、及びZを含有し、Mo1原子に対するVの原子比a、Sbの原子比b、Nbの原子比c、Wの原子比d、Zの原子比eが、それぞれ、0.1≦a≦0.5、0.1≦b≦0.5、0.01≦c≦0.5、0≦d≦0.4、0≦e≦0.2である原料調合液を調製する工程、
    (II)前記原料調合液を乾燥し、乾燥粉体を得る工程、
    (III)前記乾燥粉体を前段焼成し、前段焼成体を得る工程、
    (IV)前記前段焼成体を本焼成し、粒子表面に突起体を有する焼成体を得る工程、及び
    (V)前記焼成体の粒子表面に存在する突起体を気流により除去する工程
    を含み、
     前記前段焼成体の還元率が8~12%であり、かつ、前記焼成体の比表面積が7~20m/gである、製造方法。
  4.  前記乾燥粉体の粒子径25μm以下の粒子含有率が20質量%以下であり、且つ、平均粒子径が35~75μmである、請求項3記載の複合酸化物触媒の製造方法。
  5.  前記工程(V)において、前記突起体を、前記焼成体の全質量に対して前記焼成体が有する前記突起体の量を2質量%以下にするまで除去する、請求項3又は4記載の複合酸化物触媒の製造方法。
  6.  前記気流が流れる方向における気流長さが55mm以上であり、かつ、前記気流の平均流速が、摂氏15℃、1気圧における線速として80m/s以上500m/s以下である、請求項3~5のいずれか1項記載の複合酸化物触媒の製造方法。
  7.  前記工程(I)が、以下の(a)~(d)の工程:
    (a)Mo、V、Sb及び成分Zを含有する水性混合液を調製する工程、
    (b)前記(a)工程で得られた水性混合液にシリカゾル及び過酸化水素水を添加する工程、
    (c)前記(b)工程で得られた溶液に、Nb、ジカルボン酸及び過酸化水素水を含有する水溶液と、W化合物と、を混合する工程、及び
    (d)前記(c)工程で得られた溶液に粉体シリカ含有懸濁液を加えて、熟成する工程
    を含む、請求項3~6のいずれか1項記載の複合酸化物触媒の製造方法。
  8.  前記(III)前段焼成工程及び/又は前記(IV)本焼成工程が、以下の(i)及び(ii)の工程:
    (i)前記前段焼成体及び/又は焼成体をその中で焼成する焼成器に衝撃を与える工程、及び
    (ii)前記本焼成における焼成温度より低い温度で前記前段焼成体及び/又は焼成体をアニーリングする工程
    を含む、請求項3~7のいずれか1項記載の複合酸化物触媒の製造方法。
  9.  プロパン又はイソブタンを気相接触酸化反応させて対応する不飽和酸を製造する方法において、請求項1又は2記載の複合酸化物触媒を用いる不飽和酸の製造方法。
  10.  プロパン又はイソブタンを気相接触アンモ酸化反応させて対応する不飽和ニトリルを製造する方法において、請求項1又は2記載の複合酸化物触媒を用いる不飽和ニトリルの製造方法。
PCT/JP2011/080152 2010-12-27 2011-12-27 複合酸化物触媒及びその製造方法 WO2012090979A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012550956A JP5694379B2 (ja) 2010-12-27 2011-12-27 複合酸化物触媒及びその製造方法
CN2011800613857A CN103269790A (zh) 2010-12-27 2011-12-27 复合氧化物催化剂及其制造方法
KR1020137015613A KR101506828B1 (ko) 2010-12-27 2011-12-27 복합 산화물 촉매 및 그 제조 방법
US13/992,031 US9855546B2 (en) 2010-12-27 2011-12-27 Composite oxide catalyst and method for producing the same
RU2013128139/04A RU2562606C2 (ru) 2010-12-27 2011-12-27 Композитный оксидный катализатор и способ его получения
EP11853903.0A EP2659965A4 (en) 2010-12-27 2011-12-27 COMPOUND OXIDE CATALYST AND METHOD OF MANUFACTURING THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-290711 2010-12-27
JP2010290711 2010-12-27

Publications (1)

Publication Number Publication Date
WO2012090979A1 true WO2012090979A1 (ja) 2012-07-05

Family

ID=46383074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080152 WO2012090979A1 (ja) 2010-12-27 2011-12-27 複合酸化物触媒及びその製造方法

Country Status (9)

Country Link
US (1) US9855546B2 (ja)
EP (1) EP2659965A4 (ja)
JP (1) JP5694379B2 (ja)
KR (1) KR101506828B1 (ja)
CN (2) CN107983335A (ja)
MY (1) MY161358A (ja)
RU (1) RU2562606C2 (ja)
TW (1) TWI530321B (ja)
WO (1) WO2012090979A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050615A1 (ja) 2012-09-27 2014-04-03 旭化成ケミカルズ株式会社 複合酸化物触媒及びその製造方法、並びに不飽和ニトリルの製造方法
CN104180157A (zh) * 2014-07-25 2014-12-03 武汉一冶钢结构有限责任公司 一种大型lng双层球罐珠光砂现场发泡填充系统及方法
JP5710749B2 (ja) * 2011-04-21 2015-04-30 旭化成ケミカルズ株式会社 シリカ担持触媒
KR20160068896A (ko) 2014-03-06 2016-06-15 아사히 가세이 가부시키가이샤 산화물 촉매 및 그의 제조 방법, 및 불포화 니트릴의 제조 방법
KR20160068897A (ko) 2014-03-31 2016-06-15 아사히 가세이 가부시키가이샤 산화물 촉매의 제조 방법 및 불포화 니트릴의 제조 방법
WO2022145394A1 (ja) * 2020-12-28 2022-07-07 旭化成株式会社 気相接触アンモ酸化反応用触媒及び気相接触アンモ酸化反応用触媒の製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY165222A (en) * 2011-02-18 2018-03-09 Asahi Kasei Chemicals Corp Process for producing oxide catalyst, and process for producing unsaturated acid or unsaturated nitrile
MY186236A (en) * 2015-03-26 2021-06-30 Asahi Chemical Ind Method for producing catalyst and method for producing unsaturated nitrile
US10661238B2 (en) * 2015-06-30 2020-05-26 Kabushiki Kaisha Powrex Continuous particle manufacturing device
KR102244998B1 (ko) * 2016-08-02 2021-04-27 아사히 가세이 가부시키가이샤 산화물 촉매의 제조 방법 및 불포화 니트릴의 제조 방법
WO2018030384A1 (ja) * 2016-08-12 2018-02-15 旭化成株式会社 酸化物触媒の製造方法、並びに不飽和ニトリル及び不飽和酸の製造方法
JP6568327B2 (ja) * 2017-06-09 2019-08-28 旭化成株式会社 不飽和ニトリルの製造方法
US11098402B2 (en) * 2017-08-22 2021-08-24 Praxair Technology, Inc. Storage and delivery of antimony-containing materials to an ion implanter
RU2668227C1 (ru) * 2017-10-23 2018-09-27 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (ИК СО РАН) Катализатор для получения этилена окислительным дегидрированием этана, способ его приготовления и способ окислительного дегидрирования этана с использованием катализатора
CN110557941B (zh) 2018-03-30 2023-04-11 旭化成株式会社 催化剂、催化剂的制造方法、丙烯腈的制造方法
KR102508137B1 (ko) * 2018-06-28 2023-03-09 어센드 퍼포먼스 머티리얼즈 오퍼레이션즈 엘엘씨 유동층 반응기에 실리카 입자를 사용하는 방법 및 시스템

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003320248A (ja) * 2002-04-25 2003-11-11 Asahi Kasei Corp 酸化用触媒の調製方法とその触媒を用いたニトリルの製法
WO2004108278A1 (ja) 2003-06-09 2004-12-16 Asahi Kasei Kabushiki Kaisha 酸化またはアンモ酸化用触媒
JP2007216212A (ja) 2006-01-19 2007-08-30 Asahi Kasei Chemicals Corp 不飽和酸または不飽和ニトリル製造用酸化物触媒およびその製造方法並びに不飽和酸または不飽和ニトリルの製造方法
JP2007326036A (ja) * 2006-06-07 2007-12-20 Asahi Kasei Chemicals Corp 酸化又はアンモ酸化用酸化物触媒
WO2009081758A1 (ja) * 2007-12-26 2009-07-02 Asahi Kasei Chemicals Corporation 酸化物触媒の製造方法
JP2009262146A (ja) * 2008-03-31 2009-11-12 Asahi Kasei Chemicals Corp 酸化物触媒の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2352390C9 (ru) * 2002-10-17 2010-05-20 Басф Акциенгезельшафт Массы оксидов металлов
CN101405079A (zh) 2006-03-20 2009-04-08 旭化成化学株式会社 氧化或氨氧化用催化剂及其制造方法
KR101346885B1 (ko) 2009-01-30 2014-01-02 아사히 가세이 케미칼즈 가부시키가이샤 실리카 담지 촉매의 제조 방법 및 불포화 카르복실산 또는 불포화 니트릴의 제조 방법
EP2636451B1 (en) * 2010-11-05 2020-09-02 Asahi Kasei Kabushiki Kaisha Process for production of oxide catalyst, process for production of unsaturated acid, and process for production of unsaturated nitrile using said oxide catalyst
KR101741888B1 (ko) * 2012-09-27 2017-05-30 아사히 가세이 케미칼즈 가부시키가이샤 복합 산화물 촉매 및 그의 제조 방법, 및 불포화 니트릴의 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003320248A (ja) * 2002-04-25 2003-11-11 Asahi Kasei Corp 酸化用触媒の調製方法とその触媒を用いたニトリルの製法
WO2004108278A1 (ja) 2003-06-09 2004-12-16 Asahi Kasei Kabushiki Kaisha 酸化またはアンモ酸化用触媒
JP2007216212A (ja) 2006-01-19 2007-08-30 Asahi Kasei Chemicals Corp 不飽和酸または不飽和ニトリル製造用酸化物触媒およびその製造方法並びに不飽和酸または不飽和ニトリルの製造方法
JP2007326036A (ja) * 2006-06-07 2007-12-20 Asahi Kasei Chemicals Corp 酸化又はアンモ酸化用酸化物触媒
WO2009081758A1 (ja) * 2007-12-26 2009-07-02 Asahi Kasei Chemicals Corporation 酸化物触媒の製造方法
JP2009262146A (ja) * 2008-03-31 2009-11-12 Asahi Kasei Chemicals Corp 酸化物触媒の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HORIO, M.; T. YAMADA, MUCHI: PREPRINTS OF THE 14TH FALL MEETING OF SOC. OF CHEM. ENGRS., JAPAN, 1980, pages 760
See also references of EP2659965A4
YATES, J.G.; P.N. ROWE; D.J. CHEESMAN, AICHE J., vol. 30, 1984, pages 890

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5710749B2 (ja) * 2011-04-21 2015-04-30 旭化成ケミカルズ株式会社 シリカ担持触媒
RU2601990C1 (ru) * 2012-09-27 2016-11-10 Асахи Касеи Кемикалз Корпорейшн Многокомпонентный оксидный катализатор, способ его изготовления и способ изготовления ненасыщенного нитрила
KR101741888B1 (ko) 2012-09-27 2017-05-30 아사히 가세이 케미칼즈 가부시키가이샤 복합 산화물 촉매 및 그의 제조 방법, 및 불포화 니트릴의 제조 방법
CN104661745A (zh) * 2012-09-27 2015-05-27 旭化成化学株式会社 复合氧化物催化剂及其制造方法、和不饱和腈的制造方法
EP2902105A4 (en) * 2012-09-27 2016-02-17 Asahi Kasei Chemicals Corp MIXED OXIDE CATALYST, PRODUCTION METHOD AND METHOD FOR PRODUCTION OF UNSATURATED NITRILE
WO2014050615A1 (ja) 2012-09-27 2014-04-03 旭化成ケミカルズ株式会社 複合酸化物触媒及びその製造方法、並びに不飽和ニトリルの製造方法
CN110026183A (zh) * 2012-09-27 2019-07-19 旭化成株式会社 复合氧化物催化剂的制造方法和不饱和腈的制造方法
US10343146B2 (en) 2012-09-27 2019-07-09 Asahi Kasei Chemicals Corporation Composite oxide catalyst, method for producing the same, and method for producing unsaturated nitrile
JP2016215187A (ja) * 2012-09-27 2016-12-22 旭化成株式会社 複合酸化物触媒及びその製造方法、並びに不飽和ニトリルの製造方法
JPWO2014050615A1 (ja) * 2012-09-27 2016-08-22 旭化成株式会社 複合酸化物触媒及びその製造方法、並びに不飽和ニトリルの製造方法
KR20160068896A (ko) 2014-03-06 2016-06-15 아사히 가세이 가부시키가이샤 산화물 촉매 및 그의 제조 방법, 및 불포화 니트릴의 제조 방법
US10179763B2 (en) 2014-03-06 2019-01-15 Asahi Kasei Kabushiki Kaisha Oxide catalyst and method for producing same, and method for producing unsaturated nitrile
KR20160068897A (ko) 2014-03-31 2016-06-15 아사히 가세이 가부시키가이샤 산화물 촉매의 제조 방법 및 불포화 니트릴의 제조 방법
CN104180157A (zh) * 2014-07-25 2014-12-03 武汉一冶钢结构有限责任公司 一种大型lng双层球罐珠光砂现场发泡填充系统及方法
WO2022145394A1 (ja) * 2020-12-28 2022-07-07 旭化成株式会社 気相接触アンモ酸化反応用触媒及び気相接触アンモ酸化反応用触媒の製造方法
TWI805151B (zh) * 2020-12-28 2023-06-11 日商旭化成股份有限公司 氣相接觸氨氧化反應用觸媒及氣相接觸氨氧化反應用觸媒之製造方法

Also Published As

Publication number Publication date
EP2659965A1 (en) 2013-11-06
RU2013128139A (ru) 2015-02-10
JPWO2012090979A1 (ja) 2014-06-05
TWI530321B (zh) 2016-04-21
US20130253217A1 (en) 2013-09-26
RU2562606C2 (ru) 2015-09-10
JP5694379B2 (ja) 2015-04-01
KR20130086376A (ko) 2013-08-01
KR101506828B1 (ko) 2015-03-27
MY161358A (en) 2017-04-14
US9855546B2 (en) 2018-01-02
CN107983335A (zh) 2018-05-04
EP2659965A4 (en) 2013-11-20
CN103269790A (zh) 2013-08-28
TW201233439A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
JP5694379B2 (ja) 複合酸化物触媒及びその製造方法
KR101496389B1 (ko) 산화물 촉매, 산화물 촉매의 제조 방법, 불포화 산의 제조 방법 및 불포화 니트릴의 제조 방법
JP5710749B2 (ja) シリカ担持触媒
TWI438031B (zh) Mixture of catalyst
TWI597100B (zh) A method for producing a catalyst, and a method for producing an unsaturated nitrile
US8980183B2 (en) Apparatus and method for producing catalyst, and method for producing unsaturated acid or unsaturated nitrile
WO2012117605A1 (ja) 不飽和ニトリルの製造方法
WO2024024973A1 (ja) 気相接触アンモ酸化反応に用いる触媒及びその製造方法並びに不飽和酸又は不飽和ニトリルの製造方法
JP5345901B2 (ja) 複合酸化物触媒の製造方法
TWI783358B (zh) 觸媒製造用組合物、觸媒製造用組合物之製造方法、及製造氧化物觸媒之製造方法
TWI765269B (zh) 氧化物觸媒以及不飽和腈之製造方法
TW202344308A (zh) 觸媒及觸媒之製造方法
JP2018187579A (ja) 触媒の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853903

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012550956

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13992031

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011853903

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137015613

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013128139

Country of ref document: RU

Kind code of ref document: A