WO2014050615A1 - 複合酸化物触媒及びその製造方法、並びに不飽和ニトリルの製造方法 - Google Patents

複合酸化物触媒及びその製造方法、並びに不飽和ニトリルの製造方法 Download PDF

Info

Publication number
WO2014050615A1
WO2014050615A1 PCT/JP2013/074888 JP2013074888W WO2014050615A1 WO 2014050615 A1 WO2014050615 A1 WO 2014050615A1 JP 2013074888 W JP2013074888 W JP 2013074888W WO 2014050615 A1 WO2014050615 A1 WO 2014050615A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite oxide
oxide catalyst
raw material
catalyst
producing
Prior art date
Application number
PCT/JP2013/074888
Other languages
English (en)
French (fr)
Inventor
悠輔 石井
実 門脇
加藤 高明
Original Assignee
旭化成ケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成ケミカルズ株式会社 filed Critical 旭化成ケミカルズ株式会社
Priority to US14/429,711 priority Critical patent/US10343146B2/en
Priority to KR1020147034954A priority patent/KR101741888B1/ko
Priority to IN1735DEN2015 priority patent/IN2015DN01735A/en
Priority to RU2015109718/04A priority patent/RU2601990C1/ru
Priority to JP2014538399A priority patent/JP6047169B2/ja
Priority to EP13841273.9A priority patent/EP2902105B1/en
Priority to CN201380049253.1A priority patent/CN104661745A/zh
Publication of WO2014050615A1 publication Critical patent/WO2014050615A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/24Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/24Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons
    • C07C253/26Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons containing carbon-to-carbon multiple bonds, e.g. unsaturated aldehydes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/06Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms of an acyclic and unsaturated carbon skeleton
    • C07C255/07Mononitriles
    • C07C255/08Acrylonitrile; Methacrylonitrile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a composite oxide catalyst, a method for producing the same, and a method for producing an unsaturated nitrile using the composite oxide catalyst.
  • Patent Document 1 discloses a composite metal oxide containing Mo, V, Nb, and B as a catalyst for gas phase catalytic oxidation or gas phase catalytic ammoxidation of propane or isobutane with respect to the total mass of oxide and silica.
  • a catalyst supported on 20 to 60% by mass of silica in terms of SiO 2 is described.
  • Patent Document 2 discloses a silica-supported catalyst used for producing an unsaturated nitrile by a gas phase catalytic ammoxidation reaction of propane or isobutane, or an unsaturated carboxylic acid by a gas phase catalytic oxidation reaction, which has a specific metal component. Those having a composition, silica content and pore volume are described.
  • V is larger than Sb.
  • Such a ratio is well known for an ammoxidation catalyst synthesized by hydrothermal synthesis or the like (for example, see Non-Patent Document 1).
  • MoV-based composite oxide catalysts for ammoxidation prepared other than hydrothermal synthesis have been adjusted so that the amount of V relative to Sb is not reduced or increased as much as possible.
  • Patent Document 3 discloses a catalyst with improved reaction yield and catalyst life, but still uses a large amount of V.
  • Mo in the active structure forms a complex with water generated by the catalytic reaction or by the side reaction and escapes.
  • V in the composite crystal is relatively increased and the activity on the raw material is excessively increased.
  • the present invention has been made in view of the above problems, and in a method for producing a corresponding unsaturated nitrile by subjecting propane or isobutane to gas phase catalytic ammoxidation, the production of CO 2 and CO is suppressed, and the unsaturated nitrile is produced. It is an object of the present invention to provide a composite oxide catalyst capable of improving the yield of the catalyst, a process for producing the same, and a process for producing an unsaturated nitrile using the composite oxide catalyst.
  • V vanadium
  • the conventional catalyst has a large amount of CO 2 and CO because there is surplus V that is not complexed with other metals such as Mo and Nb due to some factors.
  • Mo escapes during the reaction, so that the V in the composite oxide catalyst is relatively increased, the activity on the raw material is excessively improved, and the side reaction generation is spurred.
  • reducing V in the composite oxide catalyst has been studied because it may deviate from the metal composition of the active species that has been considered so far, and the activity on the raw material may decrease too much. Not.
  • the present inventors have conducted intensive research to improve the yield with a low V composition with respect to Mo.
  • the ratio of Mo to V, the ratio of V to Sb. Is within a specific range, it has been found that the performance is improved while reducing excess V, and the present invention has been completed.
  • a composite oxide catalyst comprising a composite oxide represented by the following composition formula (1).
  • component Z is one or more elements selected from the group consisting of La, Ce, Pr, Yb, Y, Sc, Sr, and Ba, and a, b, c, d, e, and n are Represents the atomic ratio of each element, 0.1 ⁇ a ⁇ 0.2, 0.15 ⁇ b ⁇ 0.5, 0.01 ⁇ c ⁇ 0.5, 0 ⁇ d ⁇ 0.4, 0 ⁇ e ⁇ 0.2 and 0.60 ⁇ a / b ⁇ 1.00.)
  • composition formula (1) Mo 1 V a Sb b Nb c W d Z e O n ⁇ (1)
  • component Z is one or more elements selected from the group consisting of La, Ce, Pr, Yb, Y, Sc, Sr, and Ba, and a, b, c, d, e, and n are Represents the atomic ratio of each element, 0.1 ⁇ a ⁇ 0.2, 0.15 ⁇ b ⁇ 0.5, 0.01 ⁇ c ⁇ 0.5, 0 ⁇ d ⁇ 0.4, 0 ⁇ e ⁇ 0.2 and 0.60 ⁇ a / b ⁇ 1.00.)
  • a method for producing a composite oxide catalyst comprising a composite oxide represented by: (I) Mo, V, Sb, Nb, W, and Z are contained, and each atomic ratio is 0.1 ⁇ a ⁇ 0.2, 0.15 ⁇ b ⁇ 0.5, 0.01 ⁇ c ⁇ 0.5, 0 ⁇
  • the raw material preparation step (I) includes the following steps (a) to (d): (A) preparing an aqueous mixture containing Mo, V, Sb and component Z; (B) a step of adding silica sol and hydrogen peroxide solution to the aqueous mixture obtained in the step (a), (C) mixing the solution obtained in the step (b) with an aqueous solution containing Nb, dicarboxylic acid and hydrogen peroxide and a W-containing compound; and (d) in the step (c).
  • the present invention it is possible to suppress the formation of CO 2 and CO, to achieve a composite oxide catalyst which can improve the yield of the unsaturated nitrile. Moreover, the manufacturing method of the composite oxide catalyst which can manufacture this composite oxide catalyst easily and at low cost is realizable. Furthermore, by using this composite oxide catalyst, it is possible to realize a method for producing an unsaturated nitrile that can suppress the production of CO 2 and CO and improve the yield of the unsaturated nitrile.
  • the present embodiment a mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail.
  • the following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents.
  • the present invention can be implemented with appropriate modifications within the scope of the gist thereof.
  • the composite oxide catalyst of the present embodiment is Used for gas phase catalytic oxidation reaction or gas phase catalytic ammoxidation reaction of propane or isobutane, A composite oxide represented by the following composition formula (1) is included.
  • component Z is one or more elements selected from the group consisting of La, Ce, Pr, Yb, Y, Sc, Sr, and Ba, and a, b, c, d, e, and n are Represents the atomic ratio of each element, 0.1 ⁇ a ⁇ 0.2, 0.15 ⁇ b ⁇ 0.5, 0.01 ⁇ c ⁇ 0.5, 0 ⁇ d ⁇ 0.4, 0 ⁇ e ⁇ 0.2 and 0.60 ⁇ a / b ⁇ 1.00.
  • the component Z is uniformly distributed in the catalyst particles from the viewpoint of preventing the decomposition reaction of the generated unsaturated nitrile.
  • “Uniform” means that there is no bias in the distribution of component Z in the catalyst particles.
  • 80% or more (mass ratio) of the oxide particles containing component Z are present in the catalyst particles as fine particles having a particle size of 1 ⁇ m or less.
  • the composite oxide catalyst contains silica, from the viewpoint of uniformity, when analyzing the composition of the cross section of the catalyst particles, the dispersion value of the signal intensity ratio between the component Z and Si (standard deviation is an average value).
  • (Divided value) is preferably in the range of 0 to 0.5, more preferably in the range of 0 to 0.4, and still more preferably in the range of 0 to 0.3.
  • the dispersion value of the signal intensity ratio is indicated by “Dx” described later.
  • the atomic ratio of V to Mo (a) and the ratio of V and Sb (a / b) are set to 0.1 ⁇ a ⁇ , respectively. It is important that 0.2 and 0.60 ⁇ a / b ⁇ 1.00. According to the study by the present inventors, the conventional catalyst does not complex well with other metal components and excessive V exists, and the presence of excessive V causes CO 2 and CO to be generated. And, it became clear that it was a factor that lowered the yield of unsaturated nitrile.
  • the atomic ratio of V to Mo and the ratio of V to Sb are 0.1 ⁇ a ⁇ 0.2, 0, respectively. It was revealed that excessive V can be suppressed by setting .60 ⁇ a / b ⁇ 1.00. By suppressing excessive V in this way, the production of CO 2 and CO can be suppressed and the yield of unsaturated nitrile can be improved without reducing the activity on the raw material.
  • a is preferably 0.12 ⁇ a ⁇ 0.2, and more preferably 0.13 ⁇ a ⁇ 0.2.
  • a / b is preferably 0.60 ⁇ a / b ⁇ 0.95, and more preferably 0.60 ⁇ a / b ⁇ 0.85.
  • b is 0.15 ⁇ b ⁇ 0.5, preferably 0.15 ⁇ b ⁇ 0.4, and more preferably 0.15 ⁇ b ⁇ 0.3.
  • c is 0.01 ⁇ c ⁇ 0.5, preferably 0.01 ⁇ c ⁇ 0.4, and more preferably 0.01 ⁇ c ⁇ 0.35.
  • d is 0 ⁇ d ⁇ 0.4, preferably 0 ⁇ d ⁇ 0.3, and more preferably 0 ⁇ d ⁇ 0.25.
  • e is 0 ⁇ e ⁇ 0.2, preferably 0 ⁇ e ⁇ 0.15, and more preferably 0 ⁇ e ⁇ 0.1.
  • n represents the proportion of oxygen atoms and is a numerical value determined by a, b, c, d, and e.
  • Z is one or more elements selected from the group consisting of La, Ce, Pr, Yb, Y, Sc, Sr, and Ba. Among these, Yb, Y, La, and Ce are preferable, and Ce is more preferable. .
  • the composite oxide catalyst of the present embodiment preferably further contains 20 to 70% by mass of silica, based on the total mass of the catalyst containing the composite oxide and silica, in terms of SiO 2 , and is preferably 40 to 65% by mass.
  • the silica is more preferably contained, and further preferably 40 to 60% by mass of silica is further contained.
  • the content of silica is 20% by mass or more, the strength of the catalyst tends to be further improved.
  • the method for measuring the concentration of the catalyst constituent element is not particularly limited, and a general method for measuring the metal concentration can be employed.
  • fluorescent X-ray analysis XRF
  • XRF fluorescent X-ray analysis
  • the catalyst can be dissolved in an appropriate solution and quantified by ICP or atomic absorption using the solution.
  • CHN analysis can be suitably used.
  • the Dx can be obtained by EPMA or the like.
  • the method for producing the composite oxide catalyst of the present embodiment is as follows: The following composition formula (1): Mo 1 V a Sb b Nb c W d Z e O n ⁇ (1)
  • component Z is one or more elements selected from the group consisting of La, Ce, Pr, Yb, Y, Sc, Sr, and Ba, and a, b, c, d, e, and n are Represents the atomic ratio of each element, 0.1 ⁇ a ⁇ 0.2, 0.15 ⁇ b ⁇ 0.5, 0.01 ⁇ c ⁇ 0.5, 0 ⁇ d ⁇ 0.4, 0 ⁇ e ⁇ 0.2 and 0.60 ⁇ a / b ⁇ 1.00.)
  • a method for producing a composite oxide catalyst comprising a composite oxide represented by: (I) Mo, V, Sb, Nb, W, and Z are contained, and each atomic ratio is 0.1 ⁇ a ⁇ 0.2, 0.15 ⁇
  • the atomic ratio a of V to Mo1 atom, the atomic ratio b of Sb, the atomic ratio c of Nb, the atomic ratio d of W, and the atomic ratio e of Z are 0.1.
  • a raw material preparation solution is prepared so that /b ⁇ 1.00. This composition ratio is set to a value different from the composition ratio of the finally obtained composite oxide catalyst.
  • the protrusions of the catalyst described later have a composition different from that of the catalyst body, and removing this from the catalyst body also changes the composition ratio of the entire catalyst. This is because the composition ratio is set in consideration.
  • the “projection” refers to a material that has exuded and / or adhered to the surface of the fired body obtained by the main firing described later, and refers to an object that protrudes from or adheres to the surface of the fired body.
  • the Mo raw material is not particularly limited, specifically, ammonium heptamolybdate [(NH 4) 6 Mo 7 O 24 ⁇ 4H 2 O ], molybdenum trioxide [MoO 3], phosphomolybdic acid [H 3 PMo 12 O 40], silicomolybdic acid [H 4 SiMo 12 O 40], it is possible to use molybdenum pentachloride [MoCl 5] and the like.
  • ammonium heptamolybdate [(NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O] is particularly preferable.
  • the V raw material is not particularly limited, specifically, ammonium metavanadate [NH 4 VO 3], vanadium pentoxide [V 2 O 5], the use of vanadium chloride [VCl 4, VCl 3] and the like it can. Among these, ammonium metavanadate [NH 4 VO 3 ] is particularly preferable.
  • the Sb raw material is not particularly limited, specifically, antimony oxide [Sb 2 O 3, Sb 2 O 5 ], nitrous antimonate [HSBO 2], antimonate [HSBO 3], ammonium antimonate [ (NH 4 ) SbO 3 ], antimony chloride [Sb 2 Cl 3 ], organic acid salts such as antimony tartrate, metal antimony, and the like can be used.
  • antimony oxide [Sb 2 O 3, Sb 2 O 5 ] nitrous antimonate [HSBO 2]
  • antimonate [HSBO 3] antimonate [HSBO 3], ammonium antimonate [ (NH 4 ) SbO 3 ], antimony chloride [Sb 2 Cl 3 ]
  • organic acid salts such as antimony tartrate, metal antimony, and the like can be used.
  • diantimony trioxide [Sb 2 O 3 ] is particularly preferable.
  • the raw material of Nb is not particularly limited, and specifically, niobic acid, an inorganic acid salt of niobium and an organic acid salt of niobium can be used, and niobic acid is particularly preferable.
  • Niobic acid is represented by Nb 2 O 5 .nH 2 O and is also referred to as niobium hydroxide or niobium oxide hydrate.
  • the Nb raw material is preferably used in the form of an Nb raw material liquid having a dicarboxylic acid / niobium molar ratio of 1 to 4, and the dicarboxylic acid is preferably oxalic acid.
  • the raw material of Z (one or more elements selected from the group consisting of La, Ce, Pr, Yb, Y, Sc, Sr, Ba) is not particularly limited as long as it is a substance containing these elements.
  • a compound containing an element or a metal in which these elements are solubilized with an appropriate reagent can be used.
  • the compounds containing these elements are usually ammonium salts, nitrates, carboxylates, ammonium carboxylates, peroxocarboxylates, ammonium peroxocarboxylates, ammonium halides, halides, acetylacetonates, alkoxides, etc. Can be used. Of these, water-soluble raw materials such as nitrates and carboxylates are preferably used.
  • raw materials there are no particular limitations on the procedure for dissolving, mixing or dispersing the raw materials for the catalyst constituent elements.
  • the raw materials may be dissolved, mixed or dispersed in the same aqueous medium, or the aqueous medium may be mixed after the raw materials are individually dissolved, mixed or dispersed in the aqueous medium.
  • you may heat and / or stir as needed.
  • the composite oxide catalyst in the present embodiment is a silica-containing catalyst, preferably a silica-supported catalyst supported on silica
  • a silica sol can be used and a powder silica can also be used for a part or whole quantity of a silica raw material.
  • the raw material preparation step in the present embodiment is preferably the following steps (a) to (d): (A) preparing an aqueous mixture containing Mo, V, Sb and component Z; (B) a step of adding silica sol and hydrogen peroxide solution to the aqueous mixture obtained in step (a), (C) The step obtained by mixing the solution obtained in the step (b) with an aqueous solution containing Nb, dicarboxylic acid and hydrogen peroxide and a W-containing compound, and the solution obtained in the step (d) and step (c). And adding a powdered silica-containing suspension and aging. Thereby, it exists in the tendency for the metal valence of each metal kind to become more appropriate in the step before baking.
  • the above raw material preparation step is carried out using a solvent and / or a dispersion medium as water, and a silica-supported catalyst raw material preparation containing a Mo-containing compound, a V-containing compound, an Sb-containing compound, an Nb-containing compound, a W-containing compound, and a Z-containing compound.
  • a solvent and / or a dispersion medium as water
  • a silica-supported catalyst raw material preparation containing a Mo-containing compound, a V-containing compound, an Sb-containing compound, an Nb-containing compound, a W-containing compound, and a Z-containing compound.
  • the case of preparing the liquid will be described as an example.
  • the raw material preparation step is not limited to this.
  • An Mo-containing compound, a V-containing compound, an Sb-containing compound, and a Z-containing compound are added to water and heated to prepare an aqueous mixture (A).
  • the heating temperature and heating time during preparation of the aqueous mixture (A) are preferably adjusted so that the raw material compound can be sufficiently dissolved.
  • the heating temperature is preferably 70 ° C. to 100 ° C., and the heating time is preferably Is 30 minutes to 5 hours. At this time, it is preferable that (A) is stirred so that the raw material is easily dissolved.
  • the inside of the container may be an air atmosphere, but from the viewpoint of adjusting the oxidation number of the obtained composite oxide catalyst, a nitrogen atmosphere can also be used.
  • the state after the heating of the aqueous mixture (A) is referred to as an aqueous mixture (A ′).
  • the temperature of the aqueous mixed solution (A ′) is preferably maintained at 20 ° C. or higher and 80 ° C. or lower, more preferably 40 ° C. or higher and 80 ° C. or lower.
  • the temperature of the aqueous mixed solution (A ′) is 20 ° C. or higher, the metal species dissolved in the aqueous mixed solution (A ′) tend not to precipitate.
  • silica sol is added to the aqueous mixed solution (A) or the aqueous mixed solution (A ′) after the heating is completed.
  • Silica sol functions as a carrier.
  • the temperature when adding the silica sol is preferably 80 ° C. or less. When silica sol is added at 80 ° C. or lower, the stability of silica sol is relatively high, and gelation of the raw material mixture tends to be suppressed.
  • the timing of adding the silica sol may be at the start of ripening described later, during ripening, or just before drying the raw material mixture. It is preferable to add silica sol to the aqueous mixed solution (A ′).
  • the amount of hydrogen peroxide added is preferably 0.01 to 5 as H 2 O 2 / Sb (molar ratio). More preferably, it is 0.5 to 3, more preferably 1 to 2.5.
  • the heating temperature and heating time after adding the hydrogen peroxide solution to the aqueous mixture (A ′) are preferably adjusted so that the liquid phase oxidation reaction with the hydrogen peroxide solution can sufficiently proceed.
  • the temperature is preferably 30 ° C. to 70 ° C., and the heating time is preferably 5 minutes to 4 hours.
  • the rotation speed of the stirring at the time of heating can be adjusted to an appropriate rotation speed at which the liquid-phase oxidation reaction with the hydrogen peroxide solution easily proceeds. From the viewpoint of sufficiently proceeding the liquid phase oxidation reaction with hydrogen peroxide, it is preferable to keep the stirring state during heating.
  • the aqueous mixture thus prepared is referred to as (A ′′).
  • the Nb-containing compound and the dicarboxylic acid are heated and stirred in water to prepare a mixed solution (B 0 ).
  • the dicarboxylic acid include oxalic acid [(COOH) 2 ].
  • H 2 O 2 / Nb (molar ratio) is to form a complex with the Nb-containing compound to stabilize the Nb-containing compound in a dissolved state, to appropriately adjust the redox state of the catalyst constituent elements,
  • it is preferably 0.5 to 20, and more preferably 1 to 10.
  • an aqueous mixed liquid (A ′′), an aqueous mixed liquid (C), a W-containing compound, and powder silica are suitably mixed according to the target composition to obtain an aqueous mixed liquid (D).
  • the obtained aqueous mixed liquid (D) is subjected to aging treatment to obtain a raw material preparation liquid.
  • the powder silica used here is added to the solution obtained by mixing the aqueous mixed solution (A ′′), the aqueous mixed solution (C), and the W-containing compound, so that the catalyst performance of the resulting catalyst is appropriately adjusted.
  • Powdered silica can be added as it is, but more preferably, it is preferably added as a liquid in which powdered silica is dispersed in water, that is, a powdered silica-containing suspension.
  • the concentration of powder silica in the suspension containing powder silica is preferably 1 to 30% by mass, more preferably 3 to 20% by mass.
  • the powder silica concentration is 1% by mass or more, the shape of the catalyst particles tends to be suppressed from being distorted due to the low viscosity of the slurry. In addition, it is possible to suppress the occurrence of dents in the catalyst particles.
  • the concentration of the powder silica is 30% by mass or less, there is a tendency that gelation of the raw material preparation liquid and clogging in the piping caused by the high viscosity of the raw material preparation liquid can be avoided, and a dry powder is easily obtained. It becomes possible. Furthermore, the catalyst performance tends to be further improved.
  • the aging of the aqueous mixed liquid (D) means that the aqueous mixed liquid (D) is allowed to stand for a predetermined time or is stirred.
  • the aging time is preferably 90 minutes to 50 hours, more preferably 90 minutes to 6 hours.
  • an aqueous mixed liquid (D) having a suitable redox state (potential) is easily formed, and the catalytic performance of the resulting composite oxide tends to be further improved.
  • the processing speed of the spray dryer is usually limited, and after a part of the aqueous mixture (D) is spray-dried, It takes time to finish the spray drying of all the mixed solutions.
  • the aging time includes not only the aging time before drying in step (II) described later but also the time from the start to the end of drying.
  • the aging temperature is preferably 25 ° C. or higher from the viewpoint of preventing condensation of the Mo component and precipitation of metal oxides due to V and other metal species or a plurality of metals. Further, from the viewpoint of preventing the hydrolysis of the complex containing Nb and hydrogen peroxide from occurring and forming a slurry in a preferable form, the aging temperature is preferably 65 ° C. or lower, more preferably 25 ° C. or higher and 65 ° C. or lower. 45 ° C.
  • the catalyst can be further reduced during calcination.
  • the oxidation-reduction potential of the slurry is preferably 400 to 600 mV, more preferably 450 to 550 mV, and further preferably 470 to 510 mV.
  • the drying process of this embodiment is a process of drying the raw material preparation liquid to obtain a dry powder. Drying can be performed by a known method, for example, spray drying or evaporation to dryness.
  • spray drying When adopting a fluidized bed reaction method in a gas phase catalytic oxidation reaction or a gas phase catalytic ammoxidation reaction, it is preferable to obtain a microspherical dry powder from the viewpoint of making the fluidity in the reactor favorable. Therefore, it is preferable to employ spray drying.
  • the atomization in the spray drying method may be any of a centrifugal method, a two-fluid nozzle method, or a high-pressure nozzle method.
  • As the drying heat source air heated by steam, an electric heater or the like can be used.
  • the average particle size of the dry powder is preferably 35 to 75 ⁇ m, more preferably 40 to 70 ⁇ m, and still more preferably 45 to 65 ⁇ m. Even after firing, the average particle size does not change significantly.
  • the firing step of this embodiment is a step of firing a dry powder to obtain a fired body.
  • a baking apparatus for baking the dry powder for example, a rotary furnace (rotary kiln) can be used.
  • the shape of the calciner for firing the dry powder therein is not particularly limited, but a tubular shape (firing tube) is preferable from the viewpoint that continuous firing can be carried out, and is particularly cylindrical. It is preferable.
  • the heating method is preferably an external heating type from the viewpoint of easy adjustment of the firing temperature so as to have a preferable temperature rise pattern, and an electric furnace can be suitably used.
  • the size and material of the firing tube an appropriate one can be selected according to the firing conditions and the production amount.
  • the pre-baking is preferably performed in a temperature range of 250 to 400 ° C.
  • the main baking is preferably performed in a temperature range of 450 to 700 ° C.
  • the pre-stage baking and the main baking may be performed continuously, or the pre-stage baking may be once completed and then the main baking may be performed again.
  • each of pre-stage baking and main baking may be divided into several stages.
  • Calcination can be performed under an air atmosphere or under air circulation. From the viewpoint of adjusting the composite oxidation catalyst to a preferable redox state, it is preferable to carry out at least a part of the calcination while circulating an inert gas substantially free of oxygen such as nitrogen.
  • the supply amount of the inert gas is preferably 50 NL / hr or more, more preferably 50 to 5000 NL / kg from the viewpoint of adjusting the composite oxidation catalyst to a preferable redox state. hr, more preferably 50 to 3000 NL / hr.
  • “NL” means a gas volume measured at standard temperature and pressure conditions, that is, at 0 ° C. and 1 atm.
  • the reduction rate of the pre-stage calcined product is preferably 7 to 15%, more preferably 8 to 12%, and further preferably 9 to 12%.
  • the reduction rate is within this range, it is preferable from the viewpoint of catalyst production such that the yield is further improved.
  • a method for controlling the reduction rate to a desired range specifically, a method of changing the pre-stage firing temperature, a method of adding an oxidizing component such as oxygen to the atmosphere during firing, or the atmosphere during firing And the like, and the like. Moreover, you may combine these.
  • the protrusion removal step of the present embodiment is a step of removing protrusions present on the particle surface of the fired body.
  • Most of the protrusions are protruding oxide crystals and other impurities.
  • an oxide having a composition different from that of a crystal that forms most of the fired body may be formed in a shape that exudes from the fired body body.
  • Such protrusions should be removed from the catalyst surface because they cause a decrease in fluidity.
  • a vertical tube having a perforated plate having one or more holes at the bottom and a paper filter at the top can be used.
  • the method for producing an unsaturated nitrile of the present embodiment is a method for producing a corresponding unsaturated nitrile by subjecting propane or isobutane to a gas phase catalytic oxidation reaction or a gas phase catalytic ammoxidation reaction. Is used.
  • a method for producing acrylonitrile by bringing the propane, ammonia and oxygen-containing gas into contact with the composite oxide catalyst of the present embodiment filled in the reactor and performing a gas-phase contact ammoxidation reaction of propane will be described.
  • the raw material propane and ammonia do not necessarily have to be of high purity, but are industrial such as propane containing 3 vol% or less of impurities such as ethane, ethylene, n-butane, and isobutane, and ammonia containing 3 vol% or less of impurities such as water.
  • Grade gas can be used.
  • the oxygen-containing gas is not particularly limited, and examples thereof include air, air enriched with oxygen, pure oxygen, or an inert gas such as helium, argon, carbon dioxide, and nitrogen, or a gas diluted with water vapor. . Among these, when used on an industrial scale, it is preferable to use air for simplicity.
  • the gas phase catalytic oxidation reaction of propane or isobutane is not particularly limited, but specifically, it can be performed under the following conditions.
  • the molar ratio of oxygen supplied to the reaction to propane or isobutane is preferably 0.1 to 6, and more preferably 0.5 to 4.
  • the reaction temperature is preferably 300 to 500 ° C, more preferably 350 to 500 ° C.
  • the reaction pressure is preferably 5 ⁇ 10 4 to 5 ⁇ 10 5 Pa, more preferably 1 ⁇ 10 5 to 3 ⁇ 10 5 Pa.
  • the contact time is preferably 0.1 to 10 (sec ⁇ g / cm 3 ), more preferably 0.5 to 5 (sec ⁇ g / cm 3 ).
  • W, F, and T are defined as follows.
  • W filled catalyst amount (g)
  • F Raw material mixed gas flow rate (Ncm 3 / sec) in standard state (0 ° C., 1.013 ⁇ 10 5 Pa)
  • T reaction temperature (° C.)
  • the gas phase catalytic ammoxidation reaction of propane or isobutane using the composite oxide catalyst of the present embodiment is not particularly limited, but specifically, it can be performed under the following conditions.
  • the molar ratio of oxygen supplied to the reaction to propane or isobutane is preferably 0.1 to 6, and more preferably 0.5 to 4.
  • the molar ratio of ammonia to propane or isobutane supplied to the reaction is preferably 0.3 to 1.5, more preferably 0.7 to 1.2.
  • the reaction temperature is preferably 350 to 500 ° C, more preferably 380 to 470 ° C.
  • the reaction pressure is preferably 5 ⁇ 10 4 to 5 ⁇ 10 5 Pa, more preferably 1 ⁇ 10 5 to 3 ⁇ 10 5 Pa.
  • the contact time is preferably 0.1 to 10 (sec ⁇ g / cm 3 ), more preferably 0.5 to 5 (sec ⁇ g / cm 3 ).
  • the reaction method in the gas phase catalytic oxidation reaction and the gas phase catalytic ammoxidation reaction can be adopted as the reaction method in the gas phase catalytic oxidation reaction and the gas phase catalytic ammoxidation reaction.
  • a fluidized bed reactor that can easily remove reaction heat is preferable.
  • the gas phase ammoxidation reaction may be a single flow type or a recycle type.
  • the yield of acrylonitrile follows the following definition.
  • the number of moles of acrylonitrile produced is the gas produced by an ammoxidation reaction after analyzing an acrylonitrile gas with a known concentration in advance by gas chromatography (GC: product name GC2014, manufactured by Shimadzu Corporation). Was quantitatively injected into the GC and measured.
  • Acrylonitrile yield (%) (Mole number of acrylonitrile produced) / (Mole number of propane fed) ⁇ 100
  • the yield of CO 2 and CO follows the following definition.
  • the number of moles of CO 2 and CO produced is determined by analyzing the CO 2 gas and CO gas with known concentrations in advance by gas chromatography (GC: manufactured by Shimadzu Corporation, product name GC2014) and taking a calibration curve. A gas generated by the oxidation reaction was quantitatively injected into the GC and measured.
  • CO 2 or CO yield (%) (number of moles of CO 2 or CO produced) / ⁇ (number of moles of propane or isobutane supplied) ⁇ (number of carbons of propane or isobutane) ⁇ ⁇ 100
  • Example 1 (Preparation of dry powder) A dry powder (D 1 ) was produced as follows. To 34.71 g of water, 340.5 g of ammonium heptamolybdate [(NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O], 46.9 g of ammonium metavanadate [NH 4 VO 3 ], antimony trioxide [Sb 2 O 3] was 66.2 g, further cerium nitrate [Ce (NO 3) 3 ⁇ 6H 2 O ] was added 4.2 g, was prepared aqueous feed solution (a 1) was heated with stirring for 1 hour at 95 ° C. .
  • aqueous raw material liquid (A 1 ) After cooling the obtained aqueous raw material liquid (A 1 ) to 70 ° C., 564.7 g of silica sol containing 34.0% by mass of SiO 2 was added, and further, an excess of 30% by mass of H 2 O 2 was added. 80 g of hydrogen oxide water was added and stirring was continued at 55 ° C. for 30 minutes. Next, an aqueous raw material liquid (B 1 ), a dispersion obtained by dispersing 26.5 g (concentration 50%) of an ammonium metatungstate aqueous solution and 192 g of powdered silica in 1728 g of water are sequentially added to the aqueous raw material liquid (A 1 ). After the addition, the mixture was aged and stirred at 50 ° C. for 2.5 hours to obtain a slurry-like aqueous mixed liquid (C 1 ) as a raw material preparation liquid.
  • C 1 slurry-like aqueous mixed liquid
  • the obtained aqueous mixed liquid (C 1 ) was supplied to a centrifugal spray dryer (drying heat source is air, the same applies hereinafter) and dried to obtain a microspherical dry powder (D 1 ).
  • the dryer inlet temperature was 210 ° C. and the outlet temperature was 120 ° C.
  • the obtained dry powder (D 1 ) was classified using a sieve having an opening of 25 ⁇ m to obtain a dry powder (E 1 ) as a classified product.
  • the obtained dry powder (E 1 ) had a particle content of 25 ⁇ m or less of 0.2% by mass and an average particle size of 54 ⁇ m.
  • the particle content and the average particle size were measured by LS230 (trade name) manufactured by BECKMAN COULTER (the same applies hereinafter).
  • the temperature is raised to 360 ° C., which is the maximum firing temperature, over 4 hours, and the furnace temperature is set so that it can be held at 360 ° C. for 1 hour, and pre-stage firing is performed. It was.
  • a small amount of the pre-stage calcined body collected at the calcining tube outlet was sampled and heated to 400 ° C. in a nitrogen atmosphere, and then the reduction rate was measured to be 10.2%.
  • the recovered pre-stage calcined body was fed at a supply rate of 60 g / hr to a continuous SUS calcining tube having a diameter of 3 inches and a length of 89 cm in a rotary furnace.
  • the a / b composition ratio of the composite oxide catalyst (G 1 ) was measured by fluorescent X-ray analysis (apparatus: manufactured by Rigaku Corporation, RINT1000 (trade name), Cr tube, tube voltage 50 kV, tube current 50 mA, and so on.) It was measured by. The obtained results are shown in Table 1.
  • the composition of the composite oxide catalyst obtained at this time (G 1) is Mo 1 V 0.190 Sb 0.200 Nb 0.102 W 0.03 Ce 0.005 O n /53.2wt%-SiO 2 there were.
  • Examples 2 to 9, Comparative Examples 1 to 8 A catalyst having the composition shown in Table 1 was prepared, and propane ammoxidation reaction was performed in the same manner as in Example 1 using the catalyst. The yield of the reaction using each catalyst is shown in Table 1.
  • the catalyst of this embodiment had a high AN yield and a low CO 2 and CO yield.
  • the CO 2 and CO yields are significantly reduced as compared with the comparative examples, and it can be inferred that the decomposition of not only acrylonitrile but also useful by-products such as acetonitrile and hydrocyanic acid is suppressed.
  • the composite oxide catalyst of the present invention suppresses the formation of CO 2 and CO and improves the yield of unsaturated nitriles in a method for producing a corresponding unsaturated nitrile by subjecting propane or isobutane to gas phase catalytic ammoxidation reaction. It can be suitably used as a catalyst that can be made to occur.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

 本発明の複合酸化物触媒は、プロパン又はイソブタンの気相接触酸化反応又は気相接触アンモ酸化反応に用いられ、組成式Mo1VaSbbNbcWdZeOn(式中、成分Z はLa,Ce,Pr,Yb,Y,Sc,Sr,Ba から選ばれる1 種類以上の元素であり、a,b,c,d,e,n は各元素の原子比を表し、0.1≦a<0.2、0.15≦b≦0.5、0.01≦c≦0.5、0≦d≦0.4、0≦e≦0.2 であり、0.60<a/b<1.00 である。)で表される複合酸化物を含む。 そして、本発明の複合酸化物触媒を前記反応に用いれば、CO2 及びCO の生成を抑制し、不飽和ニトリルの収率を向上させることができる。

Description

複合酸化物触媒及びその製造方法、並びに不飽和ニトリルの製造方法
 本発明は、複合酸化物触媒及びその製造方法、並びに該複合酸化物触媒を用いた不飽和ニトリルの製造方法に関する。
 現在、一般に市販されている不飽和ニトリルは、主に、オレフィンと、アンモニアと、酸素との接触的アンモ酸化反応によって工業的に製造されたものである。一方で、近年では、オレフィンに代わってプロパン又はイソブタン等のアルカンを原料として気相接触アンモ酸化反応を行ない、対応する不飽和ニトリルを製造する方法が着目されており、その際に用いられる触媒も多数提案されている。
 特許文献1には、プロパン又はイソブタンの気相接触酸化又は気相接触アンモ酸化の触媒として、Mo、V、Nb、及びBを含有する複合金属酸化物を、酸化物とシリカの全質量に対しSiO換算で20~60質量%のシリカに担持した触媒が記載されている。
 特許文献2には、プロパン又はイソブタンの気相接触アンモ酸化反応によって不飽和ニトリルを、又は気相接触酸化反応によって不飽和カルボン酸を製造する際に用いるシリカ担持触媒であって、特定の金属成分組成、シリカ含有率及び細孔容積を有するものが記載されている。
 一般に、MoVSbOx系のアンモ酸化用触媒においてV/Sbの比率に着目した場合、VはSbより多い。このような比率とすることは、水熱合成等で合成されるアンモ酸化用触媒では良く知られている(例えば、非特許文献1参照)。このことから、水熱合成以外で調製されるMoV系のアンモ酸化用複合酸化物触媒もSbに対するVの量はなるべく減らさない、もしくは増やすように調整されてきた。
 特許文献3には、反応収率及び触媒寿命が改善された触媒が示されているものの、依然としてVの量は多く用いられている。一方、実際の反応中では、活性構造中のMoが触媒反応によって、または、副反応によって生成された水と錯体を形成し、逃散してしまうことが知られていた。MoV複合結晶の場合、Moが逃散してしまうと、複合結晶中のVが相対的に増加して原料に対する活性が増加しすぎてしまう。
特開2001-276618号公報 特開2002-219362号公報 WO2012-090979号
Ind. Eng. Chem. Res., Vol. 45, NO.2、2006 P607~614
 上述した理由から、工業的な生産にはさらなる収率向上が求められている。上記特許文献1~3に記載された触媒を用いても二酸化炭素(CO)や一酸化炭素(CO)等、多くの副生成物が生成するため、不飽和ニトリルの収率は十分ではない。また、CO及びCOは特に用途の無い化合物であり、これらの生成を抑制することは、原料の有効活用にもつながる。
 本発明は、上記課題に鑑みなされたものであり、プロパン又はイソブタンを気相接触アンモ酸化反応させて対応する不飽和ニトリルを製造する方法において、CO及びCOの生成を抑制し、不飽和ニトリルの収率を向上させることのできる複合酸化物触媒及びその製造方法、並びに該複合酸化物触媒を用いた不飽和ニトリルの製造方法を提供することを目的とする。
 上記課題について本発明者らが検討したところ、CO及びCOの生成には、バナジウム(V)が関与していることが見出された。従来の触媒には、何らかの要因によりMoやNb等他の金属と複合化していない余剰のVが存在するため、CO及びCOが多く生成していることが明らかになった。また、反応中にMoが逃散してしまうため複合酸化物触媒中のVが相対的に増加し、原料に対する活性が向上しすぎてしまい、副反応生成に拍車がかかってしまうということも分かった。一方、複合酸化物触媒中のVを減らすことは、これまで考えられてきた活性種の金属組成からは外れてしまうこと、原料に対する活性が下がりすぎてしまう可能性があること等から検討がなされていない。
 そこで、本発明者らは上記課題を解決するために、Moに対して低V組成で、かつ収率を向上させるべく鋭意研究を行ったところ、MoとVの比、VとSbとの比が特定の範囲に入る場合には、余剰のVを低減しながらも性能が向上することを見出し、本発明を完成するに至った。
 即ち、本発明は、以下のとおりである。
〔1〕
 プロパン又はイソブタンの気相接触酸化反応又は気相接触アンモ酸化反応に用いられ、
 下記組成式(1)で表される複合酸化物を含む、複合酸化物触媒。
 MoSbNb・・・(1)
(式中、成分ZはLa、Ce、Pr、Yb、Y、Sc、Sr、及びBaからなる群より選ばれる1種類以上の元素であり、a、b、c、d、e、及びnは、各元素の原子比を表し、0.1≦a<0.2、0.15≦b≦0.5、0.01≦c≦0.5、0≦d≦0.4、0≦e≦0.2であり、0.60<a/b<1.00である。)
〔2〕
 SiO換算で20~70質量%のシリカをさらに含む、前項〔1〕に記載の複合酸化物触媒。
〔3〕
 下記組成式(1):
 MoSbNb・・・(1)
(式中、成分ZはLa、Ce、Pr、Yb、Y、Sc、Sr、及びBaからなる群より選ばれる1種類以上の元素であり、a、b、c、d、e、及びnは、各元素の原子比を表し、0.1≦a<0.2、0.15≦b≦0.5、0.01≦c≦0.5、0≦d≦0.4、0≦e≦0.2であり、0.60<a/b<1.00である。)で表される複合酸化物を含む複合酸化物触媒の製造方法であって、
(I)Mo、V、Sb、Nb、W、及びZを含有し、各原子比が、0.1≦a<0.2、0.15≦b≦0.5、0.01≦c≦0.5、0≦d≦0.4、0≦e≦0.2であり、0.60<a/b<1.00である原料調合液を調製する原料調合工程と、
(II)前記原料調合液を乾燥し、乾燥粉体を得る乾燥工程と、
(III)前記乾燥粉体を焼成し、焼成体を得る焼成工程と、
(IV)前記焼成体の粒子表面に存在する突起体を除去する突起体除去工程と、を含む、
複合酸化物触媒の製造方法。
〔4〕
 前記原料調合工程(I)が、以下の(a)~(d)の工程:
(a)Mo、V、Sb及び成分Zを含有する水性混合液を調製する工程、
(b)前記(a)工程で得られた水性混合液にシリカゾル及び過酸化水素水を添加する工程、
(c)前記(b)工程で得られた溶液に、Nb、ジカルボン酸及び過酸化水素水を含有する水溶液と、W含有化合物と、を混合する工程、及び
(d)前記(c)工程で得られた溶液に粉体シリカ含有懸濁液を加えて、熟成する工程
を含む、前項〔3〕に記載の複合酸化物触媒の製造方法。
〔5〕
 プロパン又はイソブタンを気相接触酸化反応又は気相接触アンモ酸化反応させて、対応する不飽和ニトリルを製造する方法において、前項〔1〕又は〔2〕に記載の複合酸化物触媒を用いる不飽和ニトリルの製造方法。
 本発明によれば、CO及びCOの生成を抑制し、不飽和ニトリルの収率を向上させることができる複合酸化物触媒を実現することができる。また、簡単かつ低コストで該複合酸化物触媒を製造することができる複合酸化物触媒の製造方法を実現することができる。さらに、この複合酸化物触媒を用いることにより、CO及びCOの生成を抑制し、不飽和ニトリルの収率を向上させることができる不飽和ニトリルの製造方法を実現することができる。
 以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜に変形して実施できる。
〔複合酸化物触媒〕
 本実施形態の複合酸化物触媒は、
 プロパン又はイソブタンの気相接触酸化反応又は気相接触アンモ酸化反応に用いられ、
 下記組成式(1)で表される複合酸化物を含む。
 MoSbNb・・・(1)
(式中、成分ZはLa、Ce、Pr、Yb、Y、Sc、Sr、及びBaからなる群より選ばれる1種類以上の元素であり、a、b、c、d、e、及びnは、各元素の原子比を表し、0.1≦a<0.2、0.15≦b≦0.5、0.01≦c≦0.5、0≦d≦0.4、0≦e≦0.2であり、0.60<a/b<1.00である。)
 複合酸化物触媒において、生成された不飽和ニトリルの分解反応を防ぐという観点で、成分Zが触媒粒子内で均一に分布していることが好ましい。「均一」とは、触媒粒子中で成分Zの分布に偏りがないことをいう。好ましくは、成分Zを含有する酸化物粒子の80%以上(質量比率)が1μm以下の粒径を有する微粒子として、触媒粒子内に存在することをいう。なお、複合酸化物触媒がシリカを含む場合には、均一性の観点から、触媒粒子の断面を組成分析したときに、成分ZとSiとの信号強度比の分散値(標準偏差を平均値で除した値)が0~0.5の範囲にあることが好ましく、0~0.4の範囲にあることがより好ましく、0~0.3の範囲にあることがさらに好ましい。ここで、信号強度比の分散値は後述する「Dx」で示される。
 本実施形態の複合酸化物触媒において、不飽和ニトリルの収率向上の観点から、Moに対するVの原子比(a)、VとSbの比(a/b)を、それぞれ0.1≦a<0.2、0.60<a/b<1.00とすることが重要である。本発明者らの検討により、従来の触媒には、他の金属成分とうまく複合化せず、過剰に余ったVが存在し、過剰に余ったVの存在が、CO及びCOを生成させ、かつ不飽和ニトリルの収率を低下させている要因となっていることが明らかになった。そこで、MoとVの比、VとSbの比に着目し、鋭意検討を重ねた結果、Moに対するVの原子比、VとSbの比を、それぞれ0.1≦a<0.2、0.60<a/b<1.00とすることにより、過剰に余ったVを抑制できることが明らかになった。このように過剰に余ったVを抑制することにより、原料に対する活性を低下させることなく、CO及びCOの生成を抑制し、不飽和ニトリルの収率を向上させることができる。
 また、本発明者らが検討したところ、Moに対するVの原子比、VとSbの比が上記特定の範囲に入る場合には、目的物収率が向上することもわかった。Moに対するVの原子比が0.1≦a<0.2となる場合には、本来Moが存在するべき場所にVが置換されることにより、プロパン活性に必要な結晶構造中のVの割合が増えるため、活性が向上する。また、VとSbの比が0.60<a/b<1.00となる場合には、V及びMoが触媒焼成時に酸化されにくくなり、V及びMoの酸化物の析出が抑制される。これにより、相対的に複合酸化物触媒中の活性種の量が多くなり、目的生成物選択率が向上すると推測される。上記の観点から、aは、0.12≦a<0.2であることが好ましく、0.13≦a<0.2であることがより好ましい。また、a/bは、0.60<a/b<0.95であることが好ましく、0.60<a/b<0.85であることがより好ましい。a及びa/bが上記範囲であることにより、CO及びCOの生成をより抑制し、不飽和ニトリルの収率をより向上させることができる。
 なお、bは、0.15≦b≦0.5であり、0.15≦b≦0.4であることが好ましく、0.15≦b≦0.3であることがより好ましい。また、cは、0.01≦c≦0.5であり、0.01≦c≦0.4であることが好ましく、0.01≦c≦0.35であることがより好ましい。さらに、dは、0≦d≦0.4であり、0≦d≦0.3であることが好ましく、0≦d≦0.25であることがより好ましい。またさらに、eは、0≦e≦0.2であり、0≦e≦0.15であることが好ましく、0≦e≦0.1であることがより好ましい。b、c、d、eが上記範囲内であることにより、CO及びCOの生成をより抑制し、不飽和ニトリルの収率をより向上させることができる。
 また、nは、酸素原子の割合を示し、a、b、c、d、及びeにより決まる数値である。Zは、La、Ce、Pr、Yb、Y、Sc、Sr、及びBaからなる群より選ばれる1種類以上の元素であり、このなかでもYb、Y、La、Ceが好ましく、Ceがより好ましい。
 本実施形態の複合酸化物触媒は、SiO換算で、複合酸化物とシリカとを含む触媒の全質量に対して、20~70質量%のシリカをさらに含むことが好ましく、40~65質量%のシリカを含むことがより好ましく、40~60質量%のシリカを含むことがさらに好ましい。シリカの含有量が20質量%以上であることにより、触媒の強度がより向上する傾向にある。また、シリカの含有量が70質量%以下であることにより、より高い活性を有する傾向にある。
 触媒構成元素の濃度の測定方法は特に限定されず、一般的な、金属濃度を測定する方法を採用でき、例えば、蛍光X線分析(XRF)を用いることができる。固体粒子状の触媒中の金属の濃度を測定する場合、測定の簡便さ、定量の精度等の観点から、XRFを好適に使用できる。ごく微量の金属を分析する場合は、触媒を適切な溶液に溶解させ、その溶解液を用いてICPや原子吸光により定量することができる。また炭素、水素、窒素の定量を行いたい場合は、CHN分析を好適に使用できる。なお、前記DxはEPMAなどにより求めることができる。
〔複合酸化物触媒の製造方法〕
 本実施形態の複合酸化物触媒の製造方法は、
 下記組成式(1):
 MoSbNb・・・(1)
(式中、成分ZはLa、Ce、Pr、Yb、Y、Sc、Sr、及びBaからなる群より選ばれる1種類以上の元素であり、a、b、c、d、e、及びnは、各元素の原子比を表し、0.1≦a<0.2、0.15≦b≦0.5、0.01≦c≦0.5、0≦d≦0.4、0≦e≦0.2であり、0.60<a/b<1.00である。)で表される複合酸化物を含む複合酸化物触媒の製造方法であって、
(I)Mo、V、Sb、Nb、W、及びZを含有し、各原子比が、0.1≦a<0.2、0.15≦b≦0.5、0.01≦c≦0.5、0≦d≦0.4、0≦e≦0.2であり、0.60<a/b<1.00となるように原料調合液を調製する原料調合工程と、
(II)前記原料調合液を乾燥し、乾燥粉体を得る乾燥工程と、
(III)前記乾燥粉体を焼成し、焼成体を得る焼成工程と、
(IV)前記焼成体の粒子表面に存在する突起体を除去する突起体除去工程と、を含む。
〔(I)原料調合工程〕
 本実施形態の原料調合工程においては、例えばMo1原子に対するVの原子比a、Sbの原子比b、Nbの原子比c、Wの原子比d、Zの原子比eが、それぞれ、0.1≦a<0.2、0.15≦b≦0.5、0.01≦c≦0.5、0≦d≦0.4、0≦e≦0.2であり、0.60<a/b<1.00となるように原料調合液を調製する。この組成比は、最終的に得られる複合酸化物触媒の組成比とは異なる値に設定されている。この理由は、後述する触媒の突起体が触媒本体とは異なる組成を有しており、これを触媒本体から除去することによって触媒全体の組成比も変化するため、原料調合工程においてはその変化も加味して組成比を設定するからである。本明細書において「突起体」とは、後述する本焼成により得られた焼成体の表面に滲出及び/又は付着した物を示し、焼成体の表面から突出したり、付着したりした物をいう。
(触媒調製)
 Moの原料としては、特に限定されないが、具体的には、ヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕、三酸化モリブデン〔MoO〕、リンモリブデン酸〔HPMo1240〕、ケイモリブデン酸〔HSiMo1240〕、五塩化モリブデン〔MoCl〕等を用いることができる。このなかでも、特にヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕が好ましい。
 Vの原料としては、特に限定されないが、具体的には、メタバナジン酸アンモニウム〔NHVO〕、五酸化バナジウム〔V〕、塩化バナジウム〔VCl、VCl〕等を用いることができる。このなかでも、特にメタバナジン酸アンモニウム〔NHVO〕が好ましい。
 Sbの原料としては、特に限定されないが、具体的には、アンチモン酸化物〔Sb、Sb〕、亜アンチモン酸〔HSbO〕、アンチモン酸〔HSbO〕、アンチモン酸アンモニウム〔(NH)SbO〕、塩化アンチモン〔SbCl〕、アンチモンの酒石酸塩等の有機酸塩、金属アンチモン等を用いることができる。このなかでも、特に三酸化二アンチモン〔Sb〕が好ましい。
 Nbの原料としては、特に限定されないが、具体的には、ニオブ酸、ニオブの無機酸塩及びニオブの有機酸塩を用いることができ、特にニオブ酸が好ましい。ニオブ酸はNb・nHOで表され、ニオブ水酸化物又は酸化ニオブ水和物とも称される。さらに、Nbの原料は、ジカルボン酸/ニオブのモル比が1~4のNb原料液の状態で用いることが好ましく、ジカルボン酸としてはシュウ酸が好ましい。
 Wの原料としては、特に限定されないが、具体的には、アンモニウム塩、硝酸塩、カルボン酸塩、カルボン酸アンモニウム塩、ペルオキソカルボン酸塩、ペルオキソカルボン酸アンモニウム塩、ハロゲン化アンモニウム塩、ハロゲン化物、アセチルアセトナート、アルコキシド、トリフェニル化合物、ポリオキソメタレート、ポリオキソメタレートアンモニウム塩等のタングステンの塩;三酸化タングステン、二酸化タングステン、タングステン酸、メタタングステン酸アンモニウム水溶液、パラタングステン酸アンモニウム、ケイタングステン酸、ケイタングストモリブデン酸、ケイタングステン酸等を用いることができる。このなかでも、メタタングステン酸アンモニウム水溶液が好ましい。
 Z(La、Ce、Pr、Yb、Y、Sc、Sr、Baからなる群より選ばれる1種類以上の元素)の原料としては、これらの元素を含む物質であれば特に限定されず、これらの元素を含む化合物や、これらの元素の金属を適当な試薬で可溶化したものを使用することができる。これらの元素を含む化合物としては、通常、アンモニウム塩、硝酸塩、カルボン酸塩、カルボン酸アンモニウム塩、ペルオキソカルボン酸塩、ペルオキソカルボン酸アンモニウム塩、ハロゲン化アンモニウム塩、ハロゲン化物、アセチルアセトナート、アルコキシド等を使用することができる。このなかでも、好ましくは硝酸塩、カルボン酸塩等の水溶性原料が使用される。
 原料の調合において、触媒構成元素の原料の溶解手順、混合手順又は分散手順は特に限定されない。原料を同じ水性媒体中で溶解、混合又は分散させてもよく、或いは原料を個別に水性媒体中に溶解、混合又は分散させた後に水性媒体を混合させてもよい。また、必要に応じて加熱及び/又は攪拌してもよい。
 本実施形態における複合酸化物触媒が、シリカを含有する触媒、好ましくはシリカに担持されたシリカ担持触媒である場合、原料調合液がシリカ原料を含有するように調製することが好ましい。シリカの原料としては、特に限定されないが、具体的には、シリカゾルを用いることができ、シリカ原料の一部又は全量に、粉体シリカを用いることもできる。
 本実施形態における原料調合工程は、好ましくは以下の(a)~(d)の工程:
(a)Mo、V、Sb及び成分Zを含有する水性混合液を調製する工程、
(b)(a)工程で得られた水性混合液にシリカゾル及び過酸化水素水を添加する工程、
(c)(b)工程で得られた溶液に、Nb、ジカルボン酸及び過酸化水素水を含有する水溶液と、W含有化合物を混合する工程、及び
(d)(c)工程で得られた溶液に粉体シリカ含有懸濁液を加えて、熟成する工程
を含む。これにより、焼成前までの段階で各金属種の金属価数がより適正となる傾向にある。
 以下、上記原料調合工程を、溶媒及び/又は分散媒を水とし、Mo含有化合物、V含有化合物、Sb含有化合物、Nb含有化合物、W含有化合物及びZ含有化合物を含有するシリカ担持触媒の原料調合液を調製する場合を例にとって説明する。ただし、原料調合工程はこれに限定されない。
 Mo含有化合物、V含有化合物、Sb含有化合物、Z含有化合物を水に添加し、加熱して水性混合液(A)を調製する。水性混合液(A)調製時の加熱温度及び加熱時間は原料化合物が十分に溶解しうる状態になるよう調整することが好ましく、加熱温度は好ましくは70℃~100℃であり、加熱時間は好ましくは30分~5時間である。このとき、(A)は原料が溶解しやすいように攪拌されていることが好ましい。また、このとき、容器内は空気雰囲気でもよいが、得られる複合酸化物触媒の酸化数を調整する観点から、窒素雰囲気にすることもできる。水性混合液(A)の加熱が終了した後の状態を水性混合液(A’)とする。水性混合液(A’)の温度は20℃以上80℃以下で保持することが好ましく、より好ましくは40℃以上80℃以下である。水性混合液(A’)の温度が20℃以上であることにより、水性混合液(A’)に溶解している金属種の析出が起こりにくい傾向にある。
 次いで、水性混合液(A)、あるいは、加熱が終了した後の水性混合液(A’)に、シリカゾルを加える。シリカゾルは、担体として機能する。シリカゾルを加えるときの温度は、80℃以下が好ましい。80℃以下でシリカゾルを添加した場合には、シリカゾルの安定性が比較的高く、原料調合液のゲル化が抑制される傾向にある。シリカゾルを添加するタイミングは後述する熟成開始時でも、熟成途中でも、原料調合液を乾燥する直前でもよい。シリカゾルを水性混合液(A’)に加えることが好ましい。さらに、得られる複合酸化物の酸化数を調整する観点から、適量の過酸化水素水を水性混合液(A’)に、必要に応じて添加することが好ましい。過酸化水素水を添加するタイミングとしては、水性混合液(A’)自体に添加しても、水性混合液(A’)を調合する途中に添加してもよく、シリカゾル添加前でも添加後でもよい。このとき、得られる複合酸化物触媒の酸化数を適正な範囲に調整する観点から、過酸化水素水の添加量は、H/Sb(モル比)として、0.01~5が好ましく、より好ましくは0.5~3であり、さらに好ましくは1~2.5である。
 水性混合液(A’)に過酸化水素水を添加した後の加熱温度及び加熱時間は、過酸化水素水による液相酸化反応が十分に進行しうる状態になるよう調整することが好ましく、加熱温度は好ましくは30℃~70℃であり、加熱時間は好ましくは5分~4時間である。加熱時の攪拌の回転数は、同様に過酸化水素水による液相酸化反応が進行しやすい適度な回転数に調整することができる。過酸化水素水による液相酸化反応を十分に進行させる観点から、加熱の間、攪拌状態を保つことが好ましい。こうして調製された水性混合液を(A’’)とする。
 次に、Nb含有化合物とジカルボン酸とを水中で加熱撹拌して混合液(B)を調製する。ジカルボン酸の例としては、シュウ酸〔(COOH)〕が挙げられる。次いで、混合液(B)に、過酸化水素水を添加し、水性混合液(C)を調製することが好ましい。このとき、H/Nb(モル比)は、Nb含有化合物と錯体を形成させてNb含有化合物を溶解状態で安定化させること、触媒構成元素の酸化還元状態を適正に調節すること、並びに、得られる触媒の触媒性能を適正にすること等の観点から、0.5~20とすることが好ましく、1~10とすることがより好ましい。
 次いで、目的とする組成に合わせて、水性混合液(A’’)、水性混合液(C)、W含有化合物、粉体シリカを好適に混合して、水性混合液(D)を得る。続いて、得られた水性混合液(D)を熟成処理し、原料調合液を得る。ここで用いる粉体シリカは、水性混合液(A’’)、水性混合液(C)及びW含有化合物を混合して得られた溶液に添加することが、得られる触媒の触媒性能を適正にする観点から好ましい。また、粉体シリカは、そのまま添加することも可能であるが、より好ましくは粉体シリカを水に分散させた液、すなわち粉体シリカ含有懸濁液として添加することが好ましい。このときの粉体シリカ含有懸濁液中の粉体シリカ濃度は、1~30質量%が好ましく、より好ましくは3~20質量%である。粉体シリカ濃度が1質量%以上であることにより、スラリーの粘度が低いことに起因して、触媒粒子の形状が歪となることを抑制できる傾向にある。また、触媒粒子にくぼみが発生すること等も抑制できる傾向にある。粉体シリカ濃度が30質量%以下であることにより、原料調合液の粘性が大きいことに起因する、原料調合液のゲル化、配管内のつまりを回避できる傾向にあり、乾燥粉末を容易に得ることが可能となる。さらに、触媒性能もより向上する傾向にある。
 水性混合液(D)の熟成とは、水性混合液(D)を所定時間静置するか撹拌することをいう。熟成時間は、90分以上50時間以下が好ましく、90分以上6時間以下がより好ましい。熟成時間が上記範囲であることにより、好適な酸化還元状態(電位)を有する水性混合液(D)が形成されやすくなり、得られる複合酸化物の触媒性能がより向上する傾向にある。ここで、工業的に噴霧乾燥機による乾燥を経て複合酸化物触媒を製造する場合、通常は噴霧乾燥機の処理スピードが律速となり、一部の水性混合液(D)が噴霧乾燥された後、全ての混合液の噴霧乾燥が終了するまでに時間を要する。この間、噴霧乾燥処理されていない水性混合液の熟成は継続される。したがって、熟成時間には、後述する工程(II)における乾燥前の熟成時間だけでなく、乾燥開始後から終了までの時間も含まれる。また、熟成温度は、Mo成分の縮合や、V及び他の金属種又は複数の金属による金属酸化物の析出を防ぐ観点から、25℃以上が好ましい。また、Nbと過酸化水素とを含む錯体の加水分解が起こりすぎないようにし、好ましい形態のスラリーを形成する観点から、熟成温度は、65℃以下が好ましく、25℃以上65℃以下がより好ましく、45℃以上60℃以下がさらに好ましい。熟成の時間を延ばすこと、また、熟成の温度を上げること等を行う、もしくはそれらを組み合わせて行うことで焼成時に触媒をより還元させることが可能になる。本発明者らが鋭意検討したところ、焼成後の触媒の還元率とスラリーの酸化還元電位が一定の相関をもつことがわかった。スラリーの酸化還元電位が高くなると、焼成後の触媒は酸化的になり、スラリーの酸化還元電位が低くなると、焼成後の触媒は還元的になる。そのため、スラリーの酸化還元電位は、400~600mVが好ましく、より好ましくは450~550mVであり、さらに好ましくは470~510mVである。
〔(II)乾燥工程〕
 本実施形態の乾燥工程は、原料調合液を乾燥し、乾燥粉体を得る工程である。乾燥は公知の方法で行うことができ、例えば、噴霧乾燥又は蒸発乾固によって行うこともできる。気相接触酸化反応又は気相接触アンモ酸化反応で流動床反応方式を採用する場合、反応器内での流動性を好ましい状態にする等の観点から、微小球状の乾燥粉体を得ることが好ましいので、噴霧乾燥を採用することが好ましい。噴霧乾燥法における噴霧化は、遠心方式、二流体ノズル方式又は高圧ノズル方式のいずれであってもよい。乾燥熱源としては、スチーム、電気ヒーター等によって加熱された空気を用いることができる。
 噴霧速度、原料調合液の送液の速度、遠心方式の場合のアトマイザーの回転数等は、得られる乾燥粉体の大きさが好適になるように調整することが好ましい。乾燥粉体の平均粒子径は、好ましくは35~75μmであり、より好ましくは40~70μmであり、さらに好ましくは45~65μmである。焼成後も平均粒子径は大きく変化することはない。
〔(III)焼成工程〕
 本実施形態の焼成工程は、乾燥粉体を焼成し、焼成体を得る工程である。乾燥粉体を焼成するための焼成装置としては、例えば、回転炉(ロータリーキルン)を用いることができる。また、乾燥粉体をその中で焼成する焼成器の形状は特に限定されないが、管状(焼成管)であることが、連続的な焼成を実施することができる観点から好ましく、特に円筒状であることが好ましい。加熱方式は、焼成温度を好ましい昇温パターンになるよう調整しやすい等の観点から外熱式が好ましく、電気炉を好適に使用できる。焼成管の大きさ及び材質等は焼成条件や製造量に応じて適当なものを選択することができる。
 焼成工程では、2回に分けて焼成することが望ましい。最初の焼成を前段焼成、後の焼成を本焼成とした場合、前段焼成を250~400℃の温度範囲で行い、本焼成を450~700℃の温度範囲で行うことが好ましい。前段焼成と本焼成とを連続して実施してもよいし、前段焼成を一旦完了してから、改めて本焼成を実施してもよい。また、前段焼成及び本焼成のそれぞれが数段に分かれていてもよい。
 焼成は、空気雰囲気下又は空気流通下で行うことができる。複合酸化触媒を好ましい酸化還元状態に調整する観点から、焼成の少なくとも一部を、窒素等の実質的に酸素を含まない不活性ガスを流通させながら実施することが好ましい。焼成をバッチ式で行う場合は、複合酸化触媒を好ましい酸化還元状態に調整する観点から、不活性ガスの供給量は乾燥粉体1kg当たり、50NL/hr以上が好ましく、より好ましくは50~5000NL/hrであり、さらに好ましくは50~3000NL/hrである。ここで、「NL」は、標準温度・圧力条件、即ち0℃、1気圧で測定した気体の体積を意味する。
 本実施形態の複合酸化物触媒の製造方法においては、前段焼成体の還元率は、7~15%が好ましく、8~12%がより好ましく、9~12%がさらに好ましい。還元率がこの範囲にあることにより、収率がより向上するなどの触媒製造の観点で好ましい。還元率を所望の範囲に制御する方法としては、具体的には、前段焼成温度を変更する方法、焼成時の雰囲気中に酸素等の酸化性成分を添加する方法、又は、焼成時の雰囲気中に還元性成分を添加する方法等が挙げられる。また、これらを組み合わせてもよい。
〔(IV)突起体除去工程〕
 本実施形態の突起体除去工程は、焼成体の粒子表面に存在する突起体を除去する工程である。突起体の多くは突出した酸化物の結晶やその他の不純物である。特に、複数の金属を含む焼成体の場合、焼成体の大部分を形成する結晶とは組成の異なる酸化物が、焼成体本体部から滲出したような形状で形成されることがある。このような突起体は流動性を低下させる要因になるため、触媒表面から除去すべきである。突起体の除去をグラムスケールで行う場合には、下記の装置を用いることが可能である。すなわち、底部に1つ以上の穴を有する穴あき板を備え、上部にペーパーフィルターを設けた垂直チューブを用いることができる。この垂直チューブに焼成体を投入し、下部から空気を流通させることで、それぞれの穴から気流が流れて焼成体同士の接触を促し、突起体の除去が行われる。
〔不飽和ニトリルの製造方法〕
 本実施形態の不飽和ニトリルの製造方法は、プロパン又はイソブタンを気相接触酸化反応又は気相接触アンモ酸化反応させて、対応する不飽和ニトリルを製造する方法において、本実施形態の複合酸化物触媒を用いる。以下、反応器に充填した本実施形態の複合酸化物触媒に、プロパン、アンモニア及び酸素含有ガスを接触させて、プロパンの気相接触アンモ酸化反応を行うことによりアクリロニトリルを製造する方法について説明する。
(原料)
 原料のプロパン及びアンモニアは必ずしも高純度である必要はなく、エタン、エチレン、n-ブタン、イソブタン等の不純物を3vol%以下含むプロパンや、水等の不純物を3vol%以下程度含むアンモニアのような工業グレードのガスを使用できる。酸素含有ガスとしては、特に限定されないが、例えば、空気、酸素を富化した空気、純酸素、又はこれらをヘリウム、アルゴン、二酸化炭素、窒素等の不活性ガス若しくは水蒸気で希釈したガスが挙げられる。このなかでも、工業スケールで用いる場合には簡便さから空気を用いることが好ましい。
(反応条件)
 プロパン又はイソブタンの気相接触酸化反応は、特に限定されないが、具体的には、以下の条件で行うことができる。反応に供給する酸素のプロパン又はイソブタンに対するモル比は好ましくは0.1~6であり、より好ましくは0.5~4である。反応温度は好ましくは300~500℃であり、より好ましくは350~500℃である。反応圧力は好ましくは5×10~5×10Paであり、より好ましくは1×10~3×10Paである。接触時間は好ましくは0.1~10(sec・g/cm)であり、より好ましくは0.5~5(sec・g/cm)である。反応条件が上記範囲であることにより、CO及びCOの生成をより抑制し、不飽和ニトリルの収率をより向上できる傾向にある。
 本実施形態において、接触時間は次式で定義される。
 接触時間(sec・g/cm)=(W/F)×273/(273+T)
 ここで、W、F及びTは次のように定義される。
   W=充填触媒量(g)
   F=標準状態(0℃、1.013×10Pa)での原料混合ガス流量(Ncm/sec)
   T=反応温度(℃)
 また、本実施形態の複合酸化物触媒を用いたプロパン又はイソブタンの気相接触アンモ酸化反応は、特に限定されないが、具体的には、以下の条件で行うことができる。反応に供給する酸素のプロパン又はイソブタンに対するモル比は好ましくは0.1~6であり、より好ましくは0.5~4である。反応に供給するアンモニアのプロパン又はイソブタンに対するモル比は好ましくは0.3~1.5であり、より好ましくは0.7~1.2である。反応温度は好ましくは350~500℃であり、より好ましくは380~470℃である。反応圧力は好ましくは5×10~5×10Paであり、より好ましくは1×10~3×10Paである。接触時間は好ましくは0.1~10(sec・g/cm)であり、より好ましくは0.5~5(sec・g/cm)である。反応条件が上記範囲であることにより、CO及びCOの生成をより抑制し、不飽和ニトリルの収率をより向上できる傾向にある。
 気相接触酸化反応及び気相接触アンモ酸化反応における反応方式は、固定床、流動床、移動床等従来の方式を採用できる。このなかでも、反応熱の除去が容易な流動床反応器が好ましい。また、気相接触アンモ酸化反応は、単流式であってもリサイクル式であってもよい。
 以下に本実施の形態を、実施例と比較例によってさらに詳細に説明するが、本実施の形態はこれらの実施例に限定されるものではない。
〔アクリロニトリル(不飽和ニトリル)の収率〕
 実施例と比較例においては、アクリロニトリルの収率は次の定義に従う。生成したアクリロニトリルのモル数は、予め濃度既知のアクリロニトリルのガスをガスクロマトグラフィー(GC:株式会社島津製、製品名GC2014)にて分析して検量線を採った後に、アンモ酸化反応によって生成したガスをGCに定量注入し、測定した。
 アクリロニトリルの収率(%)=(生成したアクリロニトリルのモル数)/(供給したプロパンのモル数)×100
〔CO及びCOの収率〕
 実施例と比較例においては、CO及びCOの収率は次の定義に従う。生成したCO及びCOのモル数は、予め濃度既知のCOガス及びCOガスをガスクロマトグラフィー(GC:株式会社島津製、製品名GC2014)にて分析して検量線を採った後に、アンモ酸化反応によって生成したガスをGCに定量注入し、測定した。
 CO又はCOの収率(%)=(生成したCO又はCOのモル数)/{(供給したプロパン又はイソブタンのモル数)×(プロパン又はイソブタンの炭素数)}×100
[実施例1]
(乾燥粉体の調製)
 乾燥粉体(D)を次のようにして製造した。
 水1.771gにヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕を340.5g、メタバナジン酸アンモニウム〔NHVO〕を46.9g、三酸化二アンチモン〔Sb〕を66.2g、さらに硝酸セリウム〔Ce(NO・6HO〕を4.2g加え、攪拌しながら95℃で1時間加熱して水性原料液(A)を調製した。
 シュウ酸/ニオブのモル比が2.5のニオブ混合液(B)257.6gに、30質量%のHを含有する過酸化水素水を40g添加し、室温で10分間攪拌混合して、水性原料液(B)を調製した。
 得られた水性原料液(A)を70℃に冷却した後に34.0質量%のSiOを含有するシリカゾル564.7gを添加し、さらに、30質量%のHを含有する過酸化水素水80gを添加し、55℃で30分間撹拌を続けた。次に、水性原料液(B)、メタタングステン酸アンモニウム水溶液を26.5g(濃度50%)、粉体シリカ192gを水1728gに分散させた分散液を、水性原料液(A)に順次添加した後に、50℃で2.5時間攪拌熟成し、原料調合液であるスラリー状の水性混合液(C)を得た。
 得られた水性混合液(C)を、遠心式噴霧乾燥器(乾燥熱源は空気。以下同様。)に供給して乾燥し、微小球状の乾燥粉体(D)を得た。乾燥器の入口温度は210℃、出口温度は120℃であった。
(分級操作)
 得られた乾燥粉体(D)を目開き25μmの篩を用いて分級し、分級品である乾燥粉体(E)を得た。得られた乾燥粉体(E)の25μm以下の粒子含有率は0.2質量%であり、平均粒子径は54μmであった。粒子含有率及び平均粒子径はBECKMAN COULTER製LS230(商品名)により測定した(以下同様。)。
(乾燥粉体(E)の焼成)
 得られた乾燥粉体(E)を80g/hrの供給量で、回転炉内の直径(内径。以下同様。)3インチ、長さ89cmの連続式のSUS製円筒状焼成管に供給した。その焼成管内に1.5NL/minの窒素ガスを乾燥粉体の供給方向と対向する方向(すなわち向流。以下同様。)、及び同じ方向(すなわち並流。以下同様。)にそれぞれ流し、合計の流量を3.0NL/minとした。焼成管を4回転/分の速度で回転させながら、最高焼成温度である360℃まで4時間かけて昇温し、360℃で1時間保持できるように炉の温度を設定して前段焼成を行った。焼成管出口で回収した前段焼成体を少量サンプリングし、窒素雰囲気下400℃に加熱した後、還元率を測定したところ、10.2%であった。回収した前段焼成体を60g/hrの供給量で、回転炉内の直径3インチ、長さ89cmの連続式のSUS製焼成管に供給した。その焼成管内に1.1NL/minの窒素ガスを乾燥粉体の供給方向と対向する方向、及び同じ方向にそれぞれ流し、合計の流量を2.2NL/minとした。680℃まで2時間で昇温し、680℃で2時間保持した後、600℃まで8時間かけて降温できるように炉の温度を設定して、本焼成を行った。
(突起体の除去)
 底部に直径1/64インチの3つの穴のある穴あき円盤を備え、上部にペーパーフィルターを設けた垂直チューブ(内径41.6mm、長さ70cm)に焼成体(F)を50g投入した。次いで、それぞれの穴を経由して、その垂直チューブの下方から上方に向けて、室温にて空気を流通させて、焼成体同士の接触を促した。このときの気流が流れる方向における気流長さは56mm、気流の平均線速は332m/sであった。24時間後に得られた複合酸化物触媒(G)中には突起体が存在しなかった。
 複合酸化物触媒(G)のa/b組成比を、蛍光X線分析(装置:リガク株式会社製、RINT1000(商品名)、Cr管球、管電圧50kV、管電流50mA。以下同様。)により測定した。得られた結果を表1に示す。このときに得られた複合酸化物触媒(G)の組成はMo0.190Sb0.200Nb0.1020.03Ce0.005/53.2wt%-SiOであった。
(プロパンのアンモ酸化反応)
 上記で得られた複合酸化物触媒(G)を用いて、以下の方法により、プロパンを気相接触アンモ酸化反応に供した。内径25mmのバイコールガラス流動床型反応管に複合酸化物触媒を35g充填し、反応温度440℃、反応圧力常圧下にプロパン:アンモニア:酸素:ヘリウム=1:1:3:18のモル比の混合ガスを接触時間3.0(sec・g/cm)で供給した。この触媒について30日間連続反応を行ったときのアクリロニトリル(AN)の反応収率を表1に示す。
〔実施例2~9、比較例1~8〕
 表1に示す組成を有する触媒を調製し、該触媒を用いて実施例1と同様の方法でプロパンのアンモ酸化反応を行った。それぞれの触媒を用いた反応の収率を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 各実施例の結果から、本実施形態の触媒はAN収率が高く、CO及びCO収率が低いことが示された。特に、比較例と比べてCO及びCO収率の減少は著しく、アクリロニトリルのみならず、アセトニトリルや青酸等の有用な副生成物の分解も抑制されていると推察できる。
 本出願は、2012年9月27日に日本国特許庁へ出願された日本特許出願(特願2012-214867)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の複合酸化物触媒は、プロパン又はイソブタンを気相接触アンモ酸化反応させて対応する不飽和ニトリルを製造する方法において、CO及びCOの生成を抑制し、不飽和ニトリルの収率を向上させることのできる触媒として好適に用いることができる。

Claims (5)

  1.  プロパン又はイソブタンの気相接触酸化反応又は気相接触アンモ酸化反応に用いられ、
     下記組成式(1)で表される複合酸化物を含む、複合酸化物触媒。
     MoSbNb・・・(1)
    (式中、成分ZはLa、Ce、Pr、Yb、Y、Sc、Sr、及びBaからなる群より選ばれる1種類以上の元素であり、a、b、c、d、e、及びnは、各元素の原子比を表し、0.1≦a<0.2、0.15≦b≦0.5、0.01≦c≦0.5、0≦d≦0.4、0≦e≦0.2であり、0.60<a/b<1.00である。)
  2.  SiO換算で20~70質量%のシリカをさらに含む、請求項1に記載の複合酸化物触媒。
  3.  下記組成式(1):
     MoSbNb・・・(1)
    (式中、成分ZはLa、Ce、Pr、Yb、Y、Sc、Sr、及びBaからなる群より選ばれる1種類以上の元素であり、a、b、c、d、e、及びnは、各元素の原子比を表し、0.1≦a<0.2、0.15≦b≦0.5、0.01≦c≦0.5、0≦d≦0.4、0≦e≦0.2であり、0.60<a/b<1.00である。)で表される複合酸化物を含む複合酸化物触媒の製造方法であって、
    (I)Mo、V、Sb、Nb、W、及びZを含有し、各原子比が、0.1≦a<0.2、0.15≦b≦0.5、0.01≦c≦0.5、0≦d≦0.4、0≦e≦0.2であり、0.60<a/b<1.00である原料調合液を調製する原料調合工程と、
    (II)前記原料調合液を乾燥し、乾燥粉体を得る乾燥工程と、
    (III)前記乾燥粉体を焼成し、焼成体を得る焼成工程と、
    (IV)前記焼成体の粒子表面に存在する突起体を除去する突起体除去工程と、を含む、
    複合酸化物触媒の製造方法。
  4.  前記原料調合工程(I)が、以下の(a)~(d)の工程:
    (a)Mo、V、Sb及び成分Zを含有する水性混合液を調製する工程、
    (b)前記(a)工程で得られた水性混合液にシリカゾル及び過酸化水素水を添加する工程、
    (c)前記(b)工程で得られた溶液に、Nb、ジカルボン酸及び過酸化水素水を含有する水溶液と、W含有化合物と、を混合する工程、及び
    (d)前記(c)工程で得られた溶液に粉体シリカ含有懸濁液を加えて、熟成する工程
    を含む、請求項3に記載の複合酸化物触媒の製造方法。
  5.  プロパン又はイソブタンを気相接触酸化反応又は気相接触アンモ酸化反応させて、対応する不飽和ニトリルを製造する方法において、請求項1又は2に記載の複合酸化物触媒を用いる不飽和ニトリルの製造方法。
PCT/JP2013/074888 2012-09-27 2013-09-13 複合酸化物触媒及びその製造方法、並びに不飽和ニトリルの製造方法 WO2014050615A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/429,711 US10343146B2 (en) 2012-09-27 2013-09-13 Composite oxide catalyst, method for producing the same, and method for producing unsaturated nitrile
KR1020147034954A KR101741888B1 (ko) 2012-09-27 2013-09-13 복합 산화물 촉매 및 그의 제조 방법, 및 불포화 니트릴의 제조 방법
IN1735DEN2015 IN2015DN01735A (ja) 2012-09-27 2013-09-13
RU2015109718/04A RU2601990C1 (ru) 2012-09-27 2013-09-13 Многокомпонентный оксидный катализатор, способ его изготовления и способ изготовления ненасыщенного нитрила
JP2014538399A JP6047169B2 (ja) 2012-09-27 2013-09-13 複合酸化物触媒及びその製造方法、並びに不飽和ニトリルの製造方法
EP13841273.9A EP2902105B1 (en) 2012-09-27 2013-09-13 Composite oxide catalyst, method for producing same, and method for producing unsaturated nitrile
CN201380049253.1A CN104661745A (zh) 2012-09-27 2013-09-13 复合氧化物催化剂及其制造方法、和不饱和腈的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-214867 2012-09-27
JP2012214867 2012-09-27

Publications (1)

Publication Number Publication Date
WO2014050615A1 true WO2014050615A1 (ja) 2014-04-03

Family

ID=50388022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074888 WO2014050615A1 (ja) 2012-09-27 2013-09-13 複合酸化物触媒及びその製造方法、並びに不飽和ニトリルの製造方法

Country Status (11)

Country Link
US (1) US10343146B2 (ja)
EP (1) EP2902105B1 (ja)
JP (2) JP6047169B2 (ja)
KR (1) KR101741888B1 (ja)
CN (2) CN104661745A (ja)
IN (1) IN2015DN01735A (ja)
MY (1) MY169921A (ja)
RU (1) RU2601990C1 (ja)
TR (1) TR201905402T4 (ja)
TW (1) TWI580470B (ja)
WO (1) WO2014050615A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159085A1 (ja) * 2015-03-31 2016-10-06 旭化成株式会社 酸化物触媒の製造方法、及び不飽和ニトリルの製造方法
CN106311219A (zh) * 2016-09-08 2017-01-11 江苏大学 一种碳掺杂二氧化硅复合材料的制备方法及其应用
EP3120926A1 (de) * 2015-07-20 2017-01-25 Evonik Degussa GmbH Verfahren zur herstellung von mischoxidkatalysatoren
EP3127608A4 (en) * 2014-03-31 2017-07-05 Asahi Kasei Kabushiki Kaisha Method for producing oxide catalyst and method for producing unsaturated nitrile
WO2018025774A1 (ja) * 2016-08-02 2018-02-08 旭化成株式会社 酸化物触媒の製造方法、及び不飽和ニトリルの製造方法
WO2020246283A1 (ja) * 2019-06-06 2020-12-10 旭化成株式会社 酸化物触媒及び不飽和ニトリルの製造方法
US11806702B2 (en) * 2016-09-13 2023-11-07 Asahi Kasei Kabushiki Kaisha Method for producing oxide catalyst and method for producing unsaturated nitrile

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2562606C2 (ru) * 2010-12-27 2015-09-10 Асахи Касеи Кемикалз Корпорейшн Композитный оксидный катализатор и способ его получения
JP6717948B2 (ja) 2016-08-12 2020-07-08 旭化成株式会社 酸化物触媒の製造方法、並びに不飽和ニトリル及び不飽和酸の製造方法
EP3636631A4 (en) * 2017-06-09 2020-06-03 Asahi Kasei Kabushiki Kaisha PROCESS FOR PRODUCING UNSATURATED NITRILE
RU2738110C1 (ru) * 2017-07-03 2020-12-08 Асахи Касеи Кабусики Кайся Способ получения ненасыщенного нитрила
TWI655967B (zh) * 2017-11-22 2019-04-11 國立清華大學 還原態觸媒的製備方法、其製備之還原態觸媒、其用途以及合成氣的製造方法
JP7191254B2 (ja) * 2020-01-31 2022-12-16 旭化成株式会社 触媒製造用組成物、触媒製造用組成物の製造方法、及び酸化物触媒を製造する製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001276618A (ja) 2000-04-03 2001-10-09 Asahi Kasei Corp 酸化またはアンモ酸化用触媒
JP2002219362A (ja) 2001-01-24 2002-08-06 Asahi Kasei Corp 低比重シリカ担持触媒
JP2003320248A (ja) * 2002-04-25 2003-11-11 Asahi Kasei Corp 酸化用触媒の調製方法とその触媒を用いたニトリルの製法
JP2010523314A (ja) * 2007-04-03 2010-07-15 イネオス ユーエスエイ リミテッド ライアビリティ カンパニー 改善された混合金属酸化物触媒および低級アルカン系炭化水素の(amm)酸化方法
JP2012077039A (ja) * 2010-10-04 2012-04-19 Asahi Kasei Chemicals Corp 不飽和酸又は不飽和ニトリルの製造方法
WO2012090979A1 (ja) 2010-12-27 2012-07-05 旭化成ケミカルズ株式会社 複合酸化物触媒及びその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10175885A (ja) * 1996-04-25 1998-06-30 Mitsubishi Chem Corp エチレンの製造方法
JPH1036311A (ja) * 1996-07-25 1998-02-10 Mitsubishi Chem Corp α,β−不飽和カルボン酸の製造方法
JPH1045664A (ja) * 1996-07-30 1998-02-17 Mitsubishi Chem Corp α,β−不飽和カルボン酸の製造方法
JP2002030028A (ja) * 2000-07-13 2002-01-29 Mitsubishi Chemicals Corp 不飽和カルボン酸の製造方法
CN100342969C (zh) * 2002-12-02 2007-10-17 标准石油公司 用于制造丙烯腈的Rb、Ce、Cr、Ni、Fe、Bi及Mo的混合氧化物催化剂
EP1806178B1 (en) * 2004-08-17 2020-03-04 Asahi Kasei Kabushiki Kaisha Catalyst composed of complex oxide
JP5041514B2 (ja) * 2006-01-19 2012-10-03 旭化成ケミカルズ株式会社 不飽和酸または不飽和ニトリル製造用酸化物触媒およびその製造方法並びに不飽和酸または不飽和ニトリルの製造方法
JP5187800B2 (ja) 2006-05-19 2013-04-24 旭化成ケミカルズ株式会社 不飽和酸または不飽和ニトリルの製造方法
JP2007326036A (ja) * 2006-06-07 2007-12-20 Asahi Kasei Chemicals Corp 酸化又はアンモ酸化用酸化物触媒
US8697596B2 (en) * 2007-04-03 2014-04-15 Ineos Usa Llc Mixed metal oxide catalysts and catalytic conversions of lower alkane hydrocarbons
US9731285B2 (en) * 2007-12-26 2017-08-15 Asahi Kasei Chemicals Corporation Process for producing oxide catalysts
WO2010087262A1 (ja) * 2009-01-30 2010-08-05 旭化成ケミカルズ株式会社 シリカ担持触媒の製造方法、及び不飽和カルボン酸又は不飽和ニトリルの製造方法
WO2012117605A1 (ja) * 2011-03-02 2012-09-07 旭化成ケミカルズ株式会社 不飽和ニトリルの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001276618A (ja) 2000-04-03 2001-10-09 Asahi Kasei Corp 酸化またはアンモ酸化用触媒
JP2002219362A (ja) 2001-01-24 2002-08-06 Asahi Kasei Corp 低比重シリカ担持触媒
JP2003320248A (ja) * 2002-04-25 2003-11-11 Asahi Kasei Corp 酸化用触媒の調製方法とその触媒を用いたニトリルの製法
JP2010523314A (ja) * 2007-04-03 2010-07-15 イネオス ユーエスエイ リミテッド ライアビリティ カンパニー 改善された混合金属酸化物触媒および低級アルカン系炭化水素の(amm)酸化方法
JP2012077039A (ja) * 2010-10-04 2012-04-19 Asahi Kasei Chemicals Corp 不飽和酸又は不飽和ニトリルの製造方法
WO2012090979A1 (ja) 2010-12-27 2012-07-05 旭化成ケミカルズ株式会社 複合酸化物触媒及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IND. ENG. CHEM. RES., vol. 45, no. 2, 2006, pages 607 - 614
NOBUFUMI WATANABE ET AL.: "Comparative Study o the Catalytic Performance of Single-Phase Mo-V-O-Based Metal Oxide Catalysts in Propane Ammoxidation to Acrylonitrile", INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, vol. 45, no. 2, 2006, pages 607 - 614, XP002445131 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3127608A4 (en) * 2014-03-31 2017-07-05 Asahi Kasei Kabushiki Kaisha Method for producing oxide catalyst and method for producing unsaturated nitrile
KR101850670B1 (ko) 2015-03-31 2018-04-19 아사히 가세이 가부시키가이샤 산화물 촉매의 제조 방법 및 불포화 니트릴의 제조 방법
RU2661196C1 (ru) * 2015-03-31 2018-07-13 Асахи Касеи Кабусики Кайся Способ получения оксидного катализатора и способ получения ненасыщенного нитрила
JPWO2016159085A1 (ja) * 2015-03-31 2017-10-26 旭化成株式会社 酸化物触媒の製造方法、及び不飽和ニトリルの製造方法
WO2016159085A1 (ja) * 2015-03-31 2016-10-06 旭化成株式会社 酸化物触媒の製造方法、及び不飽和ニトリルの製造方法
US9950313B2 (en) 2015-03-31 2018-04-24 Asahi Kasei Kabushiki Kaisha Method for producing oxide catalyst, and method for producing unsaturated nitrile
JP2018521851A (ja) * 2015-07-20 2018-08-09 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH モリブデンおよびビスマスを含有する混合金属酸化物触媒の製造方法
EP3120926A1 (de) * 2015-07-20 2017-01-25 Evonik Degussa GmbH Verfahren zur herstellung von mischoxidkatalysatoren
WO2018025774A1 (ja) * 2016-08-02 2018-02-08 旭化成株式会社 酸化物触媒の製造方法、及び不飽和ニトリルの製造方法
JPWO2018025774A1 (ja) * 2016-08-02 2019-04-04 旭化成株式会社 酸化物触媒の製造方法、及び不飽和ニトリルの製造方法
RU2702126C1 (ru) * 2016-08-02 2019-10-04 Асахи Касеи Кабусики Кайся Способ получения оксидного катализатора и способ получения ненасыщенного нитрила
US10792643B2 (en) 2016-08-02 2020-10-06 Asahi Kasei Kabushiki Kaisha Method for producing oxide catalyst and method for producing unsaturated nitrile
CN106311219A (zh) * 2016-09-08 2017-01-11 江苏大学 一种碳掺杂二氧化硅复合材料的制备方法及其应用
US11806702B2 (en) * 2016-09-13 2023-11-07 Asahi Kasei Kabushiki Kaisha Method for producing oxide catalyst and method for producing unsaturated nitrile
WO2020246283A1 (ja) * 2019-06-06 2020-12-10 旭化成株式会社 酸化物触媒及び不飽和ニトリルの製造方法

Also Published As

Publication number Publication date
EP2902105B1 (en) 2019-03-20
US20150231604A1 (en) 2015-08-20
MY169921A (en) 2019-06-17
JP6159847B2 (ja) 2017-07-05
TWI580470B (zh) 2017-05-01
JPWO2014050615A1 (ja) 2016-08-22
TW201420184A (zh) 2014-06-01
CN104661745A (zh) 2015-05-27
EP2902105A4 (en) 2016-02-17
KR101741888B1 (ko) 2017-05-30
JP2016215187A (ja) 2016-12-22
US10343146B2 (en) 2019-07-09
IN2015DN01735A (ja) 2015-05-29
KR20150011830A (ko) 2015-02-02
CN110026183A (zh) 2019-07-19
JP6047169B2 (ja) 2016-12-21
EP2902105A1 (en) 2015-08-05
TR201905402T4 (tr) 2019-05-21
RU2601990C1 (ru) 2016-11-10

Similar Documents

Publication Publication Date Title
JP6159847B2 (ja) 複合酸化物触媒及びその製造方法、並びに不飽和ニトリルの製造方法
JP6208400B2 (ja) 酸化物触媒の製造方法、及び不飽和ニトリルの製造方法
JP6087471B2 (ja) 酸化物触媒及びその製造方法、並びに、不飽和ニトリルの製造方法
JP6105809B2 (ja) 酸化物触媒の製造方法、及び不飽和ニトリルの製造方法
JP6764939B2 (ja) 酸化物触媒の製造方法、及び不飽和ニトリルの製造方法
JP6595716B2 (ja) 酸化物触媒の製造方法、及び不飽和ニトリルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841273

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147034954

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014538399

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013841273

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14429711

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015109718

Country of ref document: RU

Kind code of ref document: A