WO2012083538A1 - 电极片及其制备方法及超级电容器和锂离子电池 - Google Patents

电极片及其制备方法及超级电容器和锂离子电池 Download PDF

Info

Publication number
WO2012083538A1
WO2012083538A1 PCT/CN2010/080139 CN2010080139W WO2012083538A1 WO 2012083538 A1 WO2012083538 A1 WO 2012083538A1 CN 2010080139 W CN2010080139 W CN 2010080139W WO 2012083538 A1 WO2012083538 A1 WO 2012083538A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode sheet
electrode
coating
fluorinated graphene
pole piece
Prior art date
Application number
PCT/CN2010/080139
Other languages
English (en)
French (fr)
Inventor
周明杰
潘军
王要兵
Original Assignee
海洋王照明科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海洋王照明科技股份有限公司 filed Critical 海洋王照明科技股份有限公司
Priority to PCT/CN2010/080139 priority Critical patent/WO2012083538A1/zh
Priority to JP2013541177A priority patent/JP5717867B2/ja
Priority to CN201080069699.7A priority patent/CN103155242B/zh
Priority to US13/988,299 priority patent/US20130236786A1/en
Priority to EP10861166.6A priority patent/EP2658014A4/en
Publication of WO2012083538A1 publication Critical patent/WO2012083538A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/34Apparatus or processes specially adapted for manufacturing conductors or cables for marking conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49204Contact or terminal manufacturing

Definitions

  • the invention relates to an electrode sheet and a preparation method thereof. At the same time, the invention also relates to a super capacitor and a lithium ion battery using the electrode sheet.
  • Supercapacitors also known as ultra-large-capacity electrochemical capacitors, are a new type of energy storage device between ordinary capacitors and secondary batteries.
  • the energy density stored by supercapacitors is 10% of that of traditional capacitors. Compared with batteries, it has the advantages of higher power density, short charge and discharge time, high charge and discharge efficiency, and long cycle life.
  • supercapacitors also have a wide operating temperature range (-40 ⁇ 75°C) , Good reliability, energy saving and environmental protection, so it can be widely used as a backup power supply for microcomputers, solar chargers, alarm devices, household appliances, camera flashes and aircraft ignition devices, especially in the field of electric vehicles The development and application of has attracted worldwide attention.
  • An electrode sheet includes a substrate and a coating layer coated on the substrate, wherein the coating layer contains a fluorinated graphene material.
  • the conductive agent is at least one of acetylene black, carbon nanotubes, vapor-grown carbon fibers, conductive graphite and conductive carbon black;
  • the binder is At least one of polyvinylidene fluoride and polytetrafluoroethylene battery binder.
  • the thickness of the coating is 10 to 200 ⁇ m.
  • the above-mentioned electrode sheet is made of fluorinated graphene with excellent electrical conductivity, and has high energy density and electrical conduction efficiency.
  • the fluorinated graphene has good wettability with the electrolyte material, and the fluorinated graphene generates carbon during the discharge reaction, and the utilization rate of the material is almost 100%, the internal resistance does not increase during discharge, and the discharge voltage is stable to the end of the discharge, so the entire electrode sheet has high stability.
  • a method for preparing an electrode sheet includes the following steps: preparing or providing a fluorinated graphene material, mixing the fluorinated graphene material with a conductive agent and a binder to form a coating solution; coating the coating solution Coating on the substrate to form a coating, and drying to form a pole piece; the pole piece is rolled and cut into an electrode piece.
  • the preparation process of the fluorinated graphene material includes the following steps: using graphite raw materials to prepare graphene oxide; reducing the graphene oxide in a liquid phase to obtain graphene; mixing the graphene with N 2 and F 2 The gas is reacted at 50-500° C. to prepare the fluorinated graphene material.
  • the thickness of the coating is 10 to 200 ⁇ m, more preferably the thickness of the coating is 50 to 100 ⁇ m.
  • the above preparation method is easy to operate, has low requirements on equipment, and can be widely promoted and applied.
  • the supercapacitor is made by adopting the above-mentioned electrode sheet, and has high energy density and electric conduction efficiency.
  • the above-mentioned electrode sheet can also be used as the negative electrode of a lithium ion battery, and the prepared lithium ion battery has higher energy density and better stability.
  • Fig. 1 is a flow chart of the preparation of the electrode sheet according to the embodiment of the present invention.
  • Fig. 2 is a constant current charging and discharging curve diagram of the supercapacitor prepared in the first embodiment.
  • the electrode sheet of the embodiment of the present invention includes a substrate and a coating layer coated on the substrate, wherein the coating layer contains a fluorinated graphene material.
  • the substrate is preferably a metal substrate with good electrical conductivity, such as an aluminum substrate, a copper substrate, and a nickel substrate.
  • the thickness of the coating is 10 ⁇ 200 ⁇ m .
  • the conductive agent can be at least one of acetylene black, carbon nanotube, vapor-grown carbon fiber, conductive graphite and conductive carbon black;
  • the binder can be At least one of battery binders such as polyvinylidene fluoride and polytetrafluoroethylene.
  • the electrode sheet is made of fluorinated graphene with excellent electrical conductivity, it has high energy density and electrical conduction efficiency.
  • the fluorinated graphene has good wettability with the electrolyte material, and the fluorinated graphene generates carbon during the discharge reaction, and the utilization rate of the material is almost 100%, the internal resistance does not increase during discharge, and the discharge voltage is stable to the end of the discharge, so the entire electrode sheet has high stability.
  • a method for preparing the above electrode sheet includes the following steps:
  • Step S1 Provide a fluorinated graphene material, and mix the fluorinated graphene material with a conductive agent and a binder to form a coating solution.
  • fluorinated graphene can be prepared by the following methods:
  • Step S11 providing graphite raw materials, using the graphite raw materials to prepare graphene oxide: adding graphite powder, potassium persulfate and phosphorus pentoxide to In 70 ⁇ 100°C concentrated sulfuric acid, stir well and cool for more than 6h, filter, wash the precipitate to neutral, dry and add to 0°C concentrated sulfuric acid, then add potassium permanganate, and control the temperature of the reaction system exist 2 ⁇ 4h below 20°C, then keep it in 35°C oil bath for 2 ⁇ 4h , And then slowly add a deionized aqueous solution containing hydrogen peroxide to the reaction system until the color of the reaction system turns bright yellow, filter with suction, wash the precipitate with hydrochloric acid, and vacuum dry to obtain graphene oxide.
  • Step S12 Liquid phase reduction of the graphene oxide to prepare graphene: the graphene oxide prepared above is dissolved in deionized water to obtain a suspension of graphene oxide, the suspension is ultrasonically dispersed, and hydrazine hydrate is added to it and heated to 90 ⁇ 120°C reaction 24 ⁇ 48h, filter, the obtained precipitate is washed with water and methanol successively, and dried in vacuum to obtain graphene.
  • Step S13 the graphene reacts with a mixed gas composed of N 2 and F 2 at 50 to 500° C. to prepare the fluorinated graphene: the dried graphene is charged into a reactor and dried with nitrogen After 0.5 ⁇ 4h, pass the fluorine-nitrogen mixed gas and react at 50 ⁇ 500°C for 3 ⁇ 120h to obtain fluorinated graphene.
  • the fluorine gas accounts for 10-30% of the volume of the fluorine-nitrogen mixed gas.
  • the conductive agent can be at least one of acetylene black, carbon nanotubes, vapor-grown carbon fiber, conductive graphite and conductive carbon black
  • the binder can be at least one of polyvinylidene fluoride and polytetrafluoroethylene.
  • Step S2 Coating the coating liquid on the substrate to form a coating, and drying to form a pole piece.
  • the thickness of the coating is 10 ⁇ 200 ⁇ m .
  • Step S3 Rolling and cutting the pole pieces into electrode pieces.
  • the preparation method is easy to operate, has low requirements on equipment, and can be widely promoted and applied.
  • the above-mentioned electrode sheet can be widely used in the manufacturing field of supercapacitors and lithium ion batteries because of its excellent electrical conductivity.
  • the supercapacitor manufactured by using the above-mentioned electrode sheet has higher energy density and electrical conduction efficiency.
  • the electrode sheets, the corresponding diaphragm and the electrolyte are assembled in the glove box according to the production process of the supercapacitor, and then the charging and discharging test is performed after standing for one day.
  • the separator used in the supercapacitor is preferably a polypropylene separator, and it can also be replaced by other separators commonly used in the field.
  • the electrolyte used in the supercapacitor can be a conventional electrolyte (such as water-based KOH, etc., organic NMe 4 BF). 4, etc.), or ionic liquid electrolyte (such as LiTFSI/EMITFSI, etc.).
  • the lithium ion battery using the above-mentioned electrode sheet as the negative electrode of the battery has higher energy density and better stability.
  • the electrolyte commonly used in lithium-ion batteries can be an organic system electrolyte (such as LiF 6 PC EC, etc.) or an ionic liquid electrolyte (such as LiTFSI/BMITFSI). After the battery is assembled, test its performance after standing for 24 hours.
  • Preparation of graphene oxide To prepare graphene oxide by an improved Hummers method, first add 20g 50 mesh graphite powder, 10g Potassium persulfate and 10g phosphorus pentoxide were added to 80°C concentrated sulfuric acid, stirred evenly, cooled for more than 6h, filtered, washed the precipitate to neutrality and dried. Add the dried precipitate to 0°C, 230mL Add 60g of potassium permanganate to the concentrated sulfuric acid, keep the temperature of the mixture below 20°C, and then keep it in an oil bath at 35°C for 2h, then slowly add 920mL of deionized water.
  • Graphene preparation add 100mg graphene oxide and 100mL deionized water to 250mL In a round-bottomed flask, the solution was a brown-yellow suspension at this time. Then the suspension was ultrasonically dispersed with 150W ultrasonic waves. Finally, add hydrazine hydrate (1mL, 98% concentration) and heat to 100°C Reaction for 48h. The obtained graphene was filtered, washed with 300 mL of water and 300 mL of methanol, and dried in a vacuum drying oven at 80°C for 48 hours.
  • Preparation of fluorinated graphene Load the dried graphene into the reactor, first pass in dry nitrogen for 3h, and then pass in the fluorine-nitrogen mixed gas and graphene in the reactor. After reacting at 250°C for 6 hours, fluorinated graphene can be obtained.
  • the fluorine gas in the fluorine-nitrogen mixed gas accounts for 30% of the mixed gas, and nitrogen is used as the diluent gas of the fluorine gas.
  • pole piece Preparation of pole piece: Weigh 1.25g fluorinated graphene, 0.25g acetylene black, 0.25g polyvinylidene fluoride, mix and add dropwise NMP (N-Methylpyrrolidone) makes the above mixture into a slurry, stir well to make it evenly mixed, and coat it on the metal aluminum foil with a coating thickness of 200 ⁇ m, and then vacuum dry at 100°C for 12h Then take it out to form the pole piece.
  • NMP N-Methylpyrrolidone
  • Pole piece rolling The obtained pole piece is rolled with a rolling mill, and the thickness after rolling is 165 ⁇ m.
  • Cut piece Use a punch to punch the rolled electrode piece into a round electrode piece with a diameter of 10mm, and weigh it accurately.
  • Figure 2 shows the constant current charge and discharge curve diagram of the prepared supercapacitor (horizontal axis: time (time), unit second (S); vertical axis: voltage ( Voltage), the unit is volts (V)), where the voltage range is 0 ⁇ 2.5 volts, and the current is 1A/g electrode sheet. From Figure 2 It can be seen that the charging and discharging curve of the supercapacitor exhibits good linear characteristics, the charging and discharging curve is similar to an isosceles triangle, the potential of the discharge curve is linear with time, showing obvious electric double layer characteristics, and the voltage drop is very small. It shows that the internal resistance of the material is very small, suitable for fast charging and discharging, and the capacity is 111.32 F/g. It can be seen from Table 1 that the specific charge capacity of the supercapacitor is 118.48 F/g, the specific discharge capacity is 111.32 F/g, and the charge-discharge efficiency is 93.96%, high charging and discharging efficiency.
  • pole piece Weigh 2.5g fluorinated graphene, 0.25g carbon nanotube, 0.25g polytetrafluoroethylene, Mix, add ethanol dropwise to make the above mixture into a slurry, stir well to make it evenly mixed and coat it on the foamed nickel with a coating thickness of 160 ⁇ m, then vacuum dry at 100°C for 12h and take it out to form the pole piece.
  • Pole piece rolling The obtained pole piece is rolled with a rolling mill, and the thickness after rolling is 120 ⁇ m.
  • Cut piece Use a punch to punch the rolled pole piece into a round electrode piece with a diameter of 8mm, and weigh it accurately.
  • pole piece Preparation of pole piece: Weigh 3.75g fluorinated graphene, 0.25g conductive graphite, 0.25g polyvinylidene fluoride, Mix, add NMP dropwise to make the above mixture into a slurry, stir well to make it evenly mixed and coat it on the metal copper foil with a coating thickness of 100 ⁇ m, and then vacuum dry at 100°C for 12h Then take it out to form the pole piece.
  • Pole piece rolling The obtained pole piece is rolled with a rolling mill, and the thickness after rolling is 80 ⁇ m.
  • Cut piece Use a punch to punch the rolled pole piece into a circular electrode piece with a diameter of 12mm, and weigh it accurately.
  • pole piece Preparation of pole piece: Weigh 9.5g fluorinated graphene, 0.25g vapor-grown carbon fiber, 0.25g polyvinylidene fluoride, Mix, add NMP dropwise to make the above mixture into a slurry, stir well to make it evenly mixed and coat it on the metal copper foil with a coating thickness of 10 ⁇ m, and then vacuum dry at 100°C for 12h Then take it out to form the pole piece.
  • Pole piece rolling The obtained pole piece is rolled with a rolling mill, and the thickness after rolling is 8 ⁇ m.
  • Cut piece Use a punch to punch the rolled pole piece into a circular electrode piece with a diameter of 12mm, and weigh it accurately.
  • pole piece Weigh 6.25g fluorinated graphene, 0.25g conductive carbon black, 0.25g polyvinylidene fluoride, Mix, add NMP dropwise to make the above mixture into a slurry, stir well to make it evenly mixed, and coat it on the metal copper foil with a coating thickness of 50 ⁇ m, and then vacuum dry at 100°C for 12h Then take it out to form the pole piece.
  • Pole piece rolling The obtained pole piece is rolled with a rolling mill, and the thickness after rolling is 45 ⁇ m.
  • Cut piece Use a puncher to punch the rolled electrode piece into a circular electrode piece with a diameter of 12mm, and weigh it accurately.
  • pole piece Preparation of pole piece: Weigh 7.5g fluorinated graphene, 0.25g conductive graphite, 0.25g polyvinylidene fluoride, mix and add dropwise NMP turns the above mixture into a slurry, stirs it thoroughly to make it evenly mixed, and coats it on a metal copper foil with a coating thickness of 40 ⁇ m, then vacuum-dried at 100°C for 12h before taking it out to form the pole piece.
  • Pole piece rolling The obtained pole piece is rolled with a rolling mill, and the thickness after rolling is 35 ⁇ m.
  • Cut piece Use a puncher to punch the rolled electrode piece into a circular electrode piece with a diameter of 12mm, and weigh it accurately.
  • pole piece Preparation of pole piece: Weigh 9g fluorinated graphene, 0.25g conductive graphite, 0.25g polyvinylidene fluoride, mix and add dropwise NMP turns the above mixture into a slurry, stirs it thoroughly to make it evenly mixed, and coats it on a metal copper foil with a coating thickness of 120 ⁇ m, then vacuum-dried at 100°C for 12h before taking it out to form the pole piece.
  • Pole piece rolling The obtained pole piece is rolled with a rolling mill, and the thickness after rolling is 100 ⁇ m.
  • Cut piece Use a puncher to punch the rolled electrode piece into a circular electrode piece with a diameter of 12mm, and weigh it accurately.
  • the charging specific capacity of the supercapacitor is 103.84 F/g
  • the discharge specific capacity is 100.33 F /g
  • the charging and discharging efficiency is 97.10%
  • the charging and discharging efficiency is relatively high.
  • pole piece Preparation of pole piece: Weigh 2.125g fluorinated graphene, 0.5g conductive graphite, 0.25g polyvinylidene fluoride, Mix, add NMP dropwise to make the above mixture into a slurry, stir well to make it evenly mixed and coat it on the metal copper foil with a coating thickness of 180 ⁇ m, then vacuum dry at 100°C for 12h Then take it out to form the pole piece.
  • Pole piece rolling The obtained pole piece is rolled with a rolling mill, and the thickness after rolling is 160 ⁇ m.
  • Cut piece Use a puncher to punch the rolled electrode piece into a circular electrode piece with a diameter of 12mm, and weigh it accurately.
  • pole piece Preparation of pole piece: Weigh 8.5g fluorinated graphene, 0.25g conductive graphite, 0.25g polyvinylidene fluoride, Mix, add NMP dropwise to make the above mixture into a slurry, stir well to make it evenly mixed and coat it on the metal copper foil with a coating thickness of 30 ⁇ m, then vacuum dry at 100°C for 12h Then take it out to form the pole piece.
  • Pole piece rolling The obtained pole piece is rolled with a rolling mill, and the thickness after rolling is 25 ⁇ m.
  • Cut piece Use a puncher to punch the rolled electrode piece into a circular electrode piece with a diameter of 12mm, and weigh it accurately.
  • the charging specific capacity of the supercapacitor is 110.18 F/g
  • the discharge specific capacity is 101.32 F /g
  • the charging and discharging efficiency is 97.96%
  • the charging and discharging efficiency is relatively high.
  • pole piece Weigh 5.0g of fluorinated graphene oxide, 0.25g of carbon nanotubes, and 0.25g of polyvinylidene fluoride , Mix, add NMP dropwise to make the above mixture into a slurry, stir well to make it evenly mixed and coat it on the metal copper foil with a coating thickness of 80 ⁇ m, and then vacuum dry at 100°C for 12h Then take it out to form the pole piece.
  • Pole piece rolling the obtained pole piece is rolled with a rolling mill, and the thickness after rolling is 50 ⁇ m.
  • Cut piece Use a puncher to punch the rolled electrode piece into a circular electrode piece with a diameter of 12mm, and weigh it accurately.
  • Lithium-ion battery assembly use the electrode sheet as the battery negative electrode in the glove box, and then cooperate with the corresponding battery positive electrode, casing and electrolyte to assemble the lithium-ion battery according to the lithium-ion battery production process.
  • the electrolyte is an ionic liquid electrolyte. LiTFSI / BMITFSI.
  • Example 1 118.48 111.32 93.96%
  • Example 2 239.56 230.69 96.30%
  • Example 3 98.53 95.96 97.39%
  • Example 4 106.85 102.29 95.73%
  • Example 5 87.81 83.24 94.80%
  • Example 6 120.03 116.26 96.86%
  • Example 8 95.66 92.92 97.13%

Abstract

本发明涉及一种电极片,该电极片包括基片及涂覆在所述基片上的涂层,所述涂层含有氟化石墨烯材料。氟化石墨烯具有优良的导电性能,从而利用其制作的电极材料具有较高的能量密度及电传导效率。此外,本发明涉及一种电极片的制备方法,及采用该电极片制作的超级电容器和锂离子电池。

Description

电极片及其制备方法及超级电容器和锂离子电池
【技术领域】
本发明涉及一种电极片及其制备方法,同时,本发明还涉及一种采用该电极片的超级电容器和锂离子电池。
【背景技术】
超级电容器又被叫做超大容量电化学电容器,是一种介于普通电容器和二次电池之间的新型储能装置。超级电容器存储的能量密度为传统电容器的 10 倍以上,与电池相比,具有更高的功率密度、充放电时间短、充放电效率高、循环使用寿命长等优点,同时超级电容器还具有工作温度范围宽 (-40~75℃) ,可靠性好,节约能源和绿色环保等特点,因此可被广泛用作微机的备用电源、太阳能充电器、报警装置、家用电器、照相机闪光灯和飞机的点火装置等,尤其是在电动汽车领域中的开发应用已引起举世的广泛重视。
超级电容器及锂离子电池的基本要求为容量大、体积小、能量密度和功率密度高。根据能量密度公式 E=1/2CU2 可知,要提高能量密度,可通过提高比电容的方式来达到,其中比电容主要与其电极材料有关。但传统的用于制造超级电容器及锂离子电池的电极材料普遍存在导电性能有限等问题,导致生产的超级电容器及锂离子电池的能量密度难以进一步提高。
【发明内容】
基于此,有必要提供一种导电性优良的电极片。
一种电极片,包括基片及涂覆在基片上的涂层,其中,涂层含有氟化石墨烯材料。
优选的,涂层还包括导电剂及粘结剂,且导电剂、粘结剂与氟化石墨烯材料的质量百分数分别为 x 、 y 、 z , x+y+z=1 , 2%<x<15% , 3%<y<15% , 70%<z<95% 。
优选的,导电剂为乙炔黑、碳纳米管、气相生长碳纤维、导电石墨及导电碳黑中的至少一种;粘结剂为 聚偏氟乙烯及聚四氟乙烯中等电池粘结剂的至少一种。
优选的,涂层的厚度为 10~200μm 。
上述电极片中采用具有优良导电性能的氟化石墨烯制作,具有较高的能量密度及电传导效率。同时,氟化石墨烯与电解液材料的浸润性好,且氟化石墨烯在放电反应过程中生成碳,材料的利用率几乎为 100% ,放电时内阻并不增加,放电电压稳定到放电末期,从而整个电极片具有较高的稳定性。
同时还有必要提供一种导电性优良的电极片的制备方法。
一种电极片的制备方法,包括如下步骤:制备或提供氟化石墨烯材料,将所述氟化石墨烯材料与导电剂、粘结剂混合配置成涂层液;将所述涂层液涂覆至基片上形成涂层,干燥后形成极片;将所述极片辊压、裁剪成电极片。
优选的,氟化石墨烯材料的制备过程包括如下步骤:使用石墨原料制备氧化石墨烯;液相还原所述氧化石墨烯制得石墨烯;所述石墨烯与由 N2 和 F2 组成的混合气体在 50~500℃ 下反应制得所述氟化石墨烯材料。
优选的,所述导电剂、粘结剂与氟化石墨烯材料的质量百分数分别为 x 、 y 、 z , x+y+z=1 , 2%<x<15% , 3%<y<15% , 70%<z<95% ;更优选导电剂、粘结剂与氟化石墨稀材料的质量比为 1:1:8 , 1:1:18 , 2:1:8.5 ;所述导电剂为乙炔黑、碳纳米管、气相生长碳纤维、导电石墨及导电碳黑中的至少一种;所述粘结剂为 聚偏氟乙烯及聚四氟乙烯等电池粘结剂中的至少一种 。
优选的,所述涂层的厚度为 10~200μm ,更优选涂层的厚度为 50~100μm 。
上述制备方法操作简便,对设备要求低,可广泛推广应用。
此外,还有必要提供一种能量密度较高的超级电容器及锂离子电池。该超级电容器采用上述电极片制作而成,具有较高的能量密度和电传导效率。上述电极片还可以作为锂离子电池的负极,制得的锂离子电池能量密度较高、稳定性较好。
【附图说明】
图 1 为本发明实施方式的电极片制备流程图;
图 2 为实施例一所制得的超级电容器的衡流充放电曲线图。
【具体实施方式】
下面主要结合附图及具体实施例对电极片及其制备方法及超级电容器和锂离子电池作进一步详细的说明。
本发明实施方式的电极片包括基片及涂覆在基片上的涂层,其中,涂层含有氟化石墨烯材料。
基片优选导电性能良好的金属基片,如铝基片、铜基片及镍基片等。
涂层的厚度为 10~200μm 。优选的,涂层还包括导电剂及粘结剂,其中,导电剂、粘结剂与氟化石墨烯材料的质量百分数分别为 x 、 y 、 z , x+y+z=1 , 2%<x<15% , 3%<y<15% , 70%<z<95% 。更优选导电剂、粘结剂与氟化石墨稀材料的质量比为 1:1:8 , 1:1:18 , 2:1:8.5 。导电剂可以为乙炔黑、碳纳米管、气相生长碳纤维、导电石墨及导电碳黑中的至少一种;粘结剂可以为 聚偏氟乙烯及聚四氟乙烯等电池粘结剂中的至少一种。
该电极片因采用具有优良导电性能的氟化石墨烯制作,具有较高的能量密度及电传导效率。同时,氟化石墨烯与电解液材料的浸润性好,且氟化石墨烯在放电反应过程中生成碳,材料的利用率几乎为 100% ,放电时内阻并不增加,放电电压稳定到放电末期,从而整个电极片具有较高的稳定性。
如图 1 所示,一种上述电极片的制备方法,包括如下步骤:
步骤 S1 :提供氟化石墨烯材料,将所述氟化石墨烯材料与导电剂、粘结剂混合配置成涂层液。
其中,氟化石墨烯可以采用如下方法制备:
步骤 S11 ,提供石墨原料,使用所述石墨原料制备氧化石墨烯:将石墨粉、过硫酸钾及五氧化二磷加入至 70~100℃ 的浓硫酸中,搅拌均匀后冷却 6h 以上,过滤,将沉淀物洗涤至中性,干燥后加入至 0℃ 的浓硫酸中,然后加入高锰酸钾,并控制反应体系的温度在 20℃ 以下 2~4h ,再在 35℃ 的油浴中保持 2~4h ,然后向反应体系中缓慢加入含双氧水的去离子水溶液直至反应体系的颜色变为亮黄色,抽滤,用盐酸洗涤沉淀物,真空干燥后得到氧化石墨烯。
步骤 S12 ,液相还原所述氧化石墨烯制得石墨烯:将上述制得的氧化石墨烯溶于去离子水中得到氧化石墨烯的悬浊液,超声分散悬浊液,向其中加入水合肼并加热到 90~120℃ 反应 24~48h ,过滤,所得沉淀物依次用水和甲醇洗涤,真空干燥得到石墨烯。
步骤 S13 ,所述石墨烯与由 N2 和 F2 组成的混合气体在 50~500℃ 下反应制得所述氟化石墨烯:将干燥后的石墨烯装入反应器中通入干燥的氮气 0.5~4h 后通入氟氮混合气体, 50~500℃ 下反应 3~120h ,即得到氟化石墨烯,其中,氟氮混合气体中氟气占体积比的 10~30% 。
导电剂、粘结剂与氟化石墨烯材料的质量百分数分别为 x 、 y 、 z , x+y+z=1 , 2%<x<15% , 3%<y<15% , 70%<z<95% ;导电剂可以选用乙炔黑、碳纳米管、气相生长碳纤维、导电石墨及导电碳黑中的至少一种;粘结剂可以选用 聚偏氟乙烯及聚四氟乙烯中的至少一种 。
步骤 S2 :将所述涂层液涂覆至基片上形成涂层,干燥后形成极片。优选的,涂层的厚度为 10~200μm 。
步骤 S3 :将所述极片辊压、裁剪成电极片。
该制备方法操作简便,对设备要求低,可广泛推广应用。
上述电极片因其具有优良的导电性能,可以广泛应用在超级电容器及锂离子电池的制造领域。
如,应用上述电极片制作的超级电容器,该超级电容器具有较高的能量密度和电传导效率。该超级电容器在制备时,在手套箱中将电极片及相应的隔膜和电解液按照超级电容器的制作工艺进行组装,然后静置一天后进行充放电试验。其中,应用于超级电容器的隔膜优选为聚丙烯隔膜,也可以用本领域常用的其他隔膜替代,应用于超级电容器的电解液可以为常规电解液(如水系的 KOH 等,有机系的 NMe4BF4 等),也可以为离子液体电解液(如 LiTFSI/EMITFSI 等)。
应用上述电极片作电池负极的锂离子电池,能量密度较高、稳定性较好。其中,锂离子电池中常用的电解液可以为有机体系电解液(如 LiF6 PC EC 等)也可以为离子液体电解液(如 LiTFSI/ BMITFSI )。电池组装完后,静置 24h 后检测性能。
以下为具体实施例部分:
实施例1
( 1 )电极材料氟化石墨烯的制备:石墨粉 → 氧化石墨烯 → 石墨烯 → 氟化石墨烯。其中,所用石墨粉的纯度为 99.5% 。
氧化石墨烯的制备:通过改进的 Hummers 法制备氧化石墨烯,首先将 20g 50 目的石墨粉、 10g 过硫酸钾和 10g 五氧化二磷加入至 80℃ 的浓硫酸中,搅拌均匀,冷却 6h 以上,过滤,洗涤沉淀至中性后干燥。将干燥后的沉淀加入至 0℃ 、 230mL 的浓硫酸中,再加入 60g 高锰酸钾,混合物的温度保持在 20℃ 以下,然后在 35℃ 的油浴中保持 2h 后,缓慢加入 920mL 去离子水。 15 分钟后,再加入 2.8L 去离子水 ( 其中含有 50mL 浓度为 30% 的双氧水 ) ,之后混合物颜色变为亮黄色,趁热抽滤,再用 5L 浓度为 10% 的盐酸进行洗涤、抽滤、在 60℃ 真空干燥 48h 即得到氧化石墨烯。
石墨烯的制备:将 100mg 氧化石墨烯和 100mL 去离子水加入到 250mL 的圆底烧瓶中,此时溶液为棕黄色的悬浊液。然后将悬浊液用 150W 的超声波超声分散。最后向其中加入水合肼( 1mL ,浓度为 98% )并加热到 100℃ 反应 48h 。所得石墨烯过滤后依次用水 300mL 和甲醇 300mL 洗涤,在 80℃ 下真空干燥箱中干燥 48h 。
氟化石墨烯的制备:将干燥的石墨烯装入反应器中,首先通入干燥的氮气 3h ,然后通入氟氮混合气体与石墨烯在 250℃ 下反应 6h ,即可得到氟化石墨烯。其中,氟氮混合气体中氟气占混合气体的 30% ,氮气作为氟气的稀释气体。
( 2 )电极片的制备:极片 → 极片辊压 → 电极片。
极片的制备:称取氟化石墨烯 1.25g ,乙炔黑 0.25g 、聚偏氟乙烯 0.25g , 混合,滴加 NMP ( N- 甲基吡咯烷酮)使上述混合物变为浆状,充分搅拌使之混合均匀后涂覆到金属铝箔上,涂覆厚度为 200μm ,然后 100℃ 真空干燥 12h 后取出,形成所述极片。
极片辊压:将所得的极片用辊轧机进行辊压,辊压后的厚度为 165μm 。
裁片:将辊压过的极片用打孔器打成直径为 10mm 的圆形电极片,准确称重。
( 3 )超级电容器的组装:在手套箱中将电极片,隔膜及电解液按照超级电容器制作工艺组装成超级电容器,其中隔膜为 celgard2000 (美国纳德公司产品),电解液为 0.5 mol/L 的 1- 乙基 -3- 甲基咪唑四氟硼酸盐溶液。
图 2 为制得的超级电容器衡流充放电曲线图(横轴:时间( time ),单位秒( S );纵轴:电压( Voltage ),单位伏( V )),其中电压范围为 0~2.5 伏,电流为 1A /g 电极片。从图 2 中可以看出,该超级电容器充放电曲线呈现较好的线性特征,充放电曲线近似等腰三角形,放电曲线的电位与时间成线性关系,呈现明显的双电层特征,且电压降很小,说明材料的内阻很小,适合快速充放电,容量为 111.32 F /g 。由表 1 可以看出该超级电容器的充电比容量为 118.48 F /g ,放电比容量为 111.32 F /g ,充放电效率为 93.96% ,充放电效率较高。
实施例2
( 1 )电极材料氟化石墨烯的制备:同实施例一。
( 2 )电极片的制备:极片 → 极片辊压 → 电极片。
极片的制备:称取氟化石墨烯 2.5g ,碳纳米管 0.25g 、 聚四氟乙烯 0.25g , 混合,滴加乙醇使上述混合物变为浆状,充分搅拌使之混合均匀后涂覆到泡沫镍上,涂覆厚度为 160μm ,然后 100℃ 真空干燥 12h 后取出,形成所述极片。
极片辊压:将所得的极片用辊轧机进行辊压,辊压后的厚度为 120μm 。
裁片:将辊压过的极片用打孔器打成直径为8mm的圆形电极片,准确称重。
( 3 )超级电容器的组装:在手套箱中将电极片,隔膜及电解液按照超级电容器制作工艺组装成超级电容器,其中隔膜为 celgard2000 (美国纳德公司产品),电解液为 1mol/L 的氢氧化钾溶液。
由表 1 可以看出该超级电容器的充电比容量为 239.56 F /g ,放电比容量为 230.69 F /g ,充放电效率为 96.30% ,充放电效率较高。
实施例3:
( 1 )电极材料氟化石墨烯的制备:同实施例一。
( 2 )电极片的制备:极片 → 极片辊压 → 电极片。
极片的制备:称取氟化石墨烯 3.75g ,导电石墨 0.25g 、 聚偏氟乙烯 0.25g , 混合,滴加 NMP 使上述混合物变为浆状,充分搅拌使之混合均匀后涂覆到金属铜箔上,涂覆厚度为 100μm ,然后 100℃ 真空干燥 12h 后取出,形成所述极片。
极片辊压:将所得的极片用辊轧机进行辊压,辊压后的厚度为 80μm 。
裁片:将辊压过的极片用打孔器打成直径为 12mm的圆形电极片,准确称重。
( 3 )超级电容器的组装:在手套箱中将电极片,隔膜及电解液按照超级电容器制作工艺组装成超级电容器,其中隔膜为 celgard2000 (美国纳德公司产品),电解液为 1mol/L 的 NMe4BF4/PC 溶液。
由表 1 可以看出该超级电容器的充电比容量为 98.53 F /g ,放电比容量为 95.96 F /g ,充放电效率为 97.39% ,充放电效率较高。
实施例4:
( 1 )电极材料氟化石墨烯的制备:同实施例一。
( 2 )电极片的制备:极片 → 极片辊压 → 电极片。
极片的制备:称取氟化石墨烯 9.5g ,气相生长碳纤维 0.25g 、 聚偏氟乙烯 0.25g , 混合,滴加 NMP 使上述混合物变为浆状,充分搅拌使之混合均匀后涂覆到金属铜箔上,涂覆厚度为 10μm ,然后 100℃ 真空干燥 12h 后取出,形成所述极片。
极片辊压:将所得的极片用辊轧机进行辊压,辊压后的厚度为 8μm 。
裁片:将辊压过的极片用打孔器打成直径为 12mm的圆形电极片,准确称重。
( 3 )超级电容器的组装:在手套箱中将电极片,隔膜及电解液按照超级电容器制作工艺组装成超级电容器,其中隔膜为 celgard2000 (美国纳德公司产品),电解液为 1mol/L 的 NMe4BF4/PC 溶液。
由表 1 可以看出该超级电容器的充电比容量为 106.85 F /g ,放电比容量为 102.29 F /g ,充放电效率为 95.73% ,充放电效率较高。
实施例5:
( 1 )电极材料氟化石墨烯的制备:同实施例一。
( 2 )电极片的制备:极片 → 极片辊压 → 电极片。
极片的制备:称取氟化石墨烯 6.25g ,导电碳黑 0.25g 、 聚偏氟乙烯 0.25g , 混合,滴加 NMP 使上述混合物变为浆状,充分搅拌使之混合均匀后涂覆到金属铜箔上,涂覆厚度为 50μm ,然后 100℃ 真空干燥 12h 后取出,形成所述极片。
极片辊压:将所得的极片用辊轧机进行辊压,辊压后的厚度为 45μm 。
裁片:将辊压过的极片用打孔器打成直径为 12mm 的圆形电极片,准确称重。
( 3 )超级电容器的组装:在手套箱中将电极片,隔膜及电解液按照超级电容器制作工艺组装成超级电容器,其中隔膜为 celgard2000 (美国纳德公司产品),电解液为 1mol/L 的 NMe4BF4/PC 溶液。
由表 1 可以看出该超级电容器的充电比容量为 87.81 F /g ,放电比容量为 83.24 F /g ,充放电效率为 94.80% ,充放电效率较高。
实施例6:
( 1 )电极材料氟化石墨烯的制备:同实施例一。
( 2 )电极片的制备:极片 → 极片辊压 → 电极片。
极片的制备:称取氟化石墨烯 7.5g ,导电石墨 0.25g 、 聚偏氟乙烯 0.25g , 混合,滴加 NMP 使上述混合物变为浆状,充分搅拌使之混合均匀后涂覆到金属铜箔上,涂覆厚度为 40μm ,然后 100℃ 真空干燥 12h 后取出,形成所述极片。
极片辊压:将所得的极片用辊轧机进行辊压,辊压后的厚度为 35μm 。
裁片:将辊压过的极片用打孔器打成直径为 12mm 的圆形电极片,准确称重。
( 3 )超级电容器的组装:在手套箱中将电极片,隔膜及电解液按照超级电容器制作工艺组装成超级电容器,其中隔膜为 celgard2000 (美国纳德公司产品),电解液为 1mol/L 的 NMe4BF4/PC 溶液。
由表 1 可以看出该超级电容器的充电比容量为 120.03 F /g ,放电比容量为 116.26 F /g ,充放电效率为 96.86% ,充放电效率较高。
实施例7:
( 1 )电极材料氟化石墨烯的制备:同实施例一。
( 2 )电极片的制备:极片 → 极片辊压 → 电极片。
极片的制备:称取氟化石墨烯 9g ,导电石墨 0.25g 、 聚偏氟乙烯 0.25g , 混合,滴加 NMP 使上述混合物变为浆状,充分搅拌使之混合均匀后涂覆到金属铜箔上,涂覆厚度为 120μm ,然后 100℃ 真空干燥 12h 后取出,形成所述极片。
极片辊压:将所得的极片用辊轧机进行辊压,辊压后的厚度为 100μm 。
裁片:将辊压过的极片用打孔器打成直径为 12mm 的圆形电极片,准确称重。
( 3 )超级电容器的组装:在手套箱中将电极片,隔膜及电解液按照超级电容器制作工艺组装成超级电容器,其中隔膜为 celgard2000 (美国纳德公司产品),电解液为 1mol/L 的 NMe4BF4/PC 溶液。
由表 1 可以看出该超级电容器的充电比容量为 103.84 F /g ,放电比容量为 100.33 F /g ,充放电效率为 97.10% ,充放电效率较高。
实施例8:
( 1 )电极材料氟化石墨烯的制备:同实施例一。
( 2 )电极片的制备:极片 → 极片辊压 → 电极片。
极片的制备:称取氟化石墨烯 2.125g ,导电石墨 0.5g 、 聚偏氟乙烯 0.25g , 混合,滴加 NMP 使上述混合物变为浆状,充分搅拌使之混合均匀后涂覆到金属铜箔上,涂覆厚度为 180μm ,然后 100℃ 真空干燥 12h 后取出,形成所述极片。
极片辊压:将所得的极片用辊轧机进行辊压,辊压后的厚度为 160μm 。
裁片:将辊压过的极片用打孔器打成直径为 12mm 的圆形电极片,准确称重。
( 3 )超级电容器的组装:在手套箱中将电极片,隔膜及电解液按照超级电容器制作工艺组装成超级电容器,其中隔膜为 celgard2000 (美国纳德公司产品),电解液为 1mol/L 的 NMe4BF4/PC 溶液。
由表 1 可以看出该超级电容器的充电比容量为 95.66 F /g ,放电比容量为 92.92 F /g ,充放电效率为 97.13% ,充放电效率较高。
实施例9:
( 1 )电极材料氟化石墨烯的制备:同实施例一。
( 2 )电极片的制备:极片 → 极片辊压 → 电极片。
极片的制备:称取氟化石墨烯 8.5g ,导电石墨 0.25g 、 聚偏氟乙烯 0.25g , 混合,滴加 NMP 使上述混合物变为浆状,充分搅拌使之混合均匀后涂覆到金属铜箔上,涂覆厚度为 30μm ,然后 100℃ 真空干燥 12h 后取出,形成所述极片。
极片辊压:将所得的极片用辊轧机进行辊压,辊压后的厚度为 25μm 。
裁片:将辊压过的极片用打孔器打成直径为 12mm 的圆形电极片,准确称重。
( 3 )超级电容器的组装:在手套箱中将电极片,隔膜及电解液按照超级电容器制作工艺组装成超级电容器,其中隔膜为 celgard2000 (美国纳德公司产品),电解液为 1mol/L 的 NMe4BF4/PC 溶液。
由表 1 可以看出该超级电容器的充电比容量为 110.18 F /g ,放电比容量为 101.32 F /g ,充放电效率为 97.96% ,充放电效率较高。
实施例10:
( 1 )电极材料氟化氧化石墨烯的制备:同实施例一。
( 2 )电极片的制备:极片 → 极片辊压 → 电极片。
极片的制备:称取氟化氧化石墨烯 5.0g ,碳纳米管 0.25g 、 聚偏氟乙烯 0.25g ,混合,滴加 NMP 使上述混合物变为浆状,充分搅拌使之混合均匀后涂覆到金属铜箔上,涂覆厚度为 80μm ,然后 100℃ 真空干燥 12h 后取出,形成所述极片。
极片辊压:将所得的极片用辊轧机进行辊压,辊压后的厚度为 50μm 。
裁片:将辊压过的极片用打孔器打成直径为 12mm 的圆形电极片,准确称重。
( 3 )锂离子电池的组装:在手套箱中将电极片作为电池负极,再配合相应的电池正极、外壳及电解液按照锂离子电池制作工艺组装成锂离子电池,电解液为离子液体电解液 LiTFSI / BMITFSI 。
表 1 超级电容器充放电比容量及充放电效率
实施例 充电比容量( F/g ) 放电比容量( F/g ) 充放电效率
实施例 1 118.48 111.32 93.96%
实施例 2 239.56 230.69 96.30%
实施例 3 98.53 95.96 97.39%
实施例 4 106.85 102.29 95.73%
实施例 5 87.81 83.24 94.80%
实施例 6 120.03 116.26 96.86%
实施例 7 103.84 100.33 97.10%
实施例 8 95.66 92.92 97.13%
实施例 9 110.18 101.32 97.96%
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种电极片,包括基片及涂覆在所述基片上的涂层,其特征在于,所述涂层含有氟化石墨烯材料。
  2. 如权利要求1所述的电极片,其特征在于,所述涂层还包括导电剂及粘结剂,且所述导电剂、粘结剂与所述氟化石墨烯材料的质量百分数分别为x、y、z, x+y+z=1,2%<x<15%,3%<y<15%,70%<z<95%。
  3. 如权利要求2所述的电极片,其特征在于,所述导电剂为乙炔黑、碳纳米管、气相生长碳纤维、导电石墨及导电碳黑中的至少一种;所述粘结剂为聚偏氟乙烯及聚四氟乙烯中的至少一种。
  4. 如权利要求1所述的电极片,其特征在于,所述涂层的厚度为10~200μm。
  5. 一种电极片的制备方法,其特征在于,包括如下步骤:
    制备或提供氟化石墨烯材料,将所述氟化石墨烯材料与导电剂、粘结剂混合配置成涂层液;
    将所述涂层液涂覆至基片上形成涂层,干燥后形成极片;
    将所述极片辊压、裁剪成电极片。
  6. 如权利要求 5 所述的电极片的制备方法,其特征在于,所述氟化石墨烯材料的制备包括如下步骤:
    使用石墨原料制备氧化石墨烯;
    液相还原所述氧化石墨烯制得石墨烯;
    所述石墨烯与由N2和F2组成的混合气体在50~500℃下反应制得所述氟化石墨烯材料。
  7. 如权利要求5所述的电极片的制备方法,其特征在于,所述导电剂、粘结剂与氟化石墨烯材料的质量百分数分别为x、y、z,x+y+z=1,2%<x<15%,3%<y<15%,70%<z<95%;所述导电剂为乙炔黑、碳纳米管、气相生长碳纤维、导电石墨及导电碳黑中的至少一种;所述粘结剂为聚偏氟乙烯及聚四氟乙烯中的至少一种。
  8. 如权利要求5所述的电极片的制备方法,其特征在于,所述涂层的厚度为10~200μm。
  9. 一种超级电容器,其特征在于,包括权利要求1~4中任一项所述的电极片。
  10. 一种锂离子电池,包括电池负极,其特征在于,所述电池负极为权利要求1~4中任一项所述的电极片。
PCT/CN2010/080139 2010-12-22 2010-12-22 电极片及其制备方法及超级电容器和锂离子电池 WO2012083538A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2010/080139 WO2012083538A1 (zh) 2010-12-22 2010-12-22 电极片及其制备方法及超级电容器和锂离子电池
JP2013541177A JP5717867B2 (ja) 2010-12-22 2010-12-22 電極板及びその調製方法、並びにスーパーコンデンサ及びリチウムイオン電池
CN201080069699.7A CN103155242B (zh) 2010-12-22 2010-12-22 电极片及其制备方法及超级电容器和锂离子电池
US13/988,299 US20130236786A1 (en) 2010-12-22 2010-12-22 Electrode sheet and its preparation method and super capacitor and lithium ion battery
EP10861166.6A EP2658014A4 (en) 2010-12-22 2010-12-22 ELECTRODE PLATE, PREPARATION METHOD THEREFOR, SUPERCAPSET AND LITHIUM ION BATTERY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/080139 WO2012083538A1 (zh) 2010-12-22 2010-12-22 电极片及其制备方法及超级电容器和锂离子电池

Publications (1)

Publication Number Publication Date
WO2012083538A1 true WO2012083538A1 (zh) 2012-06-28

Family

ID=46313038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/080139 WO2012083538A1 (zh) 2010-12-22 2010-12-22 电极片及其制备方法及超级电容器和锂离子电池

Country Status (5)

Country Link
US (1) US20130236786A1 (zh)
EP (1) EP2658014A4 (zh)
JP (1) JP5717867B2 (zh)
CN (1) CN103155242B (zh)
WO (1) WO2012083538A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104993146A (zh) * 2015-05-29 2015-10-21 深圳好电科技有限公司 一种掺杂氟化石墨烯制备高导电浆料的方法
CN104993145A (zh) * 2015-05-29 2015-10-21 深圳好电科技有限公司 以氟化石墨烯为导电剂的电极及在锂离子电池中的应用

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8940145B1 (en) 2013-03-01 2015-01-27 The United States of America as represented by the Administrator of the National Aeronautics & Space Administration (NASA) Graphene-based electrode for a supercapacitor
US10312028B2 (en) * 2014-06-30 2019-06-04 Avx Corporation Electrochemical energy storage devices and manufacturing methods
CN106486646A (zh) * 2015-08-28 2017-03-08 张明东 锂离子电池负极材料及其制备方法和锂离子电池
CN106192376A (zh) * 2016-07-08 2016-12-07 张麟德 石墨烯材料涂层及其制备方法、以及空气过滤装置及系统
CN106058214B (zh) * 2016-08-05 2018-11-23 北京中能德源能源科技有限公司 一种石墨烯穿插锰基层状结构锂电池正极材料的制备方法
JP7143566B2 (ja) * 2019-03-18 2022-09-29 株式会社Abri リチウムイオン二次電池用正極材料、リチウムイオン二次電池、リチウムイオン二次電池用正極の製造方法、及びリチウムイオン二次電池の製造方法
CN110530969B (zh) * 2019-08-14 2021-05-25 江苏大学 一种基于掺杂金属原子的石墨烯谐振式气体传感器的制备工艺
CN114582635A (zh) * 2022-02-11 2022-06-03 山东爱特机电技术有限责任公司 一种耐高压的超级电容器电极极片

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101385168A (zh) * 2006-02-16 2009-03-11 加州理工学院 低温电化学电池
CN101383231A (zh) * 2008-10-24 2009-03-11 南开大学 以单层石墨材料为电极材料的超级电容器
CN101632189A (zh) * 2007-03-14 2010-01-20 加州理工学院 高放电率的电池
CN101796673A (zh) * 2007-09-06 2010-08-04 松下电器产业株式会社 非水电解液电池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1992028A4 (en) * 2006-02-16 2010-03-17 California Inst Of Techn LOW TEMPERATURE ELECTROCHEMICAL CELL
CN106276811A (zh) * 2008-09-08 2017-01-04 新加坡南洋理工大学 作为电极材料的纳米粒子装饰的纳米结构化材料及其获得方法
JP2013514963A (ja) * 2009-12-22 2013-05-02 スー・クワンスック グラフェン分散液およびグラフェン−イオン性液体高分子複合物
US8652687B2 (en) * 2009-12-24 2014-02-18 Nanotek Instruments, Inc. Conductive graphene polymer binder for electrochemical cell electrodes
US8795434B2 (en) * 2010-09-01 2014-08-05 Jaw Tian Lin Method and apparatus for mass production of graphene and carbon tubes by deposition of carbon atoms, on flat surfaces and inside walls of tubes, generated from dissociation of a carbon-containing gas stimulated by a tunable high power pulsed laser
US9558860B2 (en) * 2010-09-10 2017-01-31 Samsung Electronics Co., Ltd. Graphene-enhanced anode particulates for lithium ion batteries

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101385168A (zh) * 2006-02-16 2009-03-11 加州理工学院 低温电化学电池
CN101632189A (zh) * 2007-03-14 2010-01-20 加州理工学院 高放电率的电池
CN101796673A (zh) * 2007-09-06 2010-08-04 松下电器产业株式会社 非水电解液电池
CN101383231A (zh) * 2008-10-24 2009-03-11 南开大学 以单层石墨材料为电极材料的超级电容器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104993146A (zh) * 2015-05-29 2015-10-21 深圳好电科技有限公司 一种掺杂氟化石墨烯制备高导电浆料的方法
CN104993145A (zh) * 2015-05-29 2015-10-21 深圳好电科技有限公司 以氟化石墨烯为导电剂的电极及在锂离子电池中的应用

Also Published As

Publication number Publication date
US20130236786A1 (en) 2013-09-12
CN103155242B (zh) 2016-06-01
JP5717867B2 (ja) 2015-05-13
JP2014505351A (ja) 2014-02-27
EP2658014A1 (en) 2013-10-30
EP2658014A4 (en) 2014-08-27
CN103155242A (zh) 2013-06-12

Similar Documents

Publication Publication Date Title
WO2012083538A1 (zh) 电极片及其制备方法及超级电容器和锂离子电池
WO2012083537A1 (zh) 电极片及其制备方法及超级电容器和锂离子电池
WO2019113532A1 (en) Silicon-based energy storage devices with fluorinated cyclic compound containing electrolyte additives
WO2019039856A1 (ko) 다공성 실리콘-탄소 복합체의 제조방법, 상기 제조방법에 의해 제조된 다공성 실리콘-탄소 복합체를 포함하는 이차전지 음극 및 상기 이차전지 음극을 포함하는 이차전지
KR20100097027A (ko) 축전 디바이스 및 그 제조 방법
WO2020091345A1 (ko) 음극 활물질 및 이를 포함하는 리튬 이차전지
WO2021243525A1 (zh) 电解液以及使用其的电化学装置和电子装置
WO2018186555A1 (ko) 이차전지용 음극, 이의 제조방법 및 이를 사용하여 제조된 리튬이차전지
Yin et al. Hybrid energy storage devices combining carbon-nanotube/polyaniline supercapacitor with lead-acid battery assembled through a “directly-inserted” method
CN112993220A (zh) 一种用于锂离子电池正负极片的功能涂层浆料及其制备方法、锂离子电池
WO2016173387A1 (zh) 电极粘结剂、正极材料以及锂离子电池
WO2020153728A1 (ko) 리튬 이차전지용 음극활물질, 이를 포함하는 음극 및 리튬 이차전지
CN108028370B (zh) 非水电解质二次电池及其制造方法
CN110336069B (zh) 一种锂离子电池及其制备方法
WO2020063888A1 (zh) 非水电解液、锂离子电池、电池模块、电池包及装置
CN114267875B (zh) 一种复合固态电解质及其制备方法和应用
WO2021029480A1 (ko) 바인더 프리 자가지지형 전극 및 이의 제조방법
CN111224197B (zh) 一种锂氟化碳-超级电容器快速响应复合电池
WO2023077330A1 (zh) 电解液、二次电池及包含该二次电池的用电装置
KR20170006693A (ko) 이차 전지용 음극 및 이를 포함하는 이차 전지
WO2021246587A1 (ko) 고출력 특성을 갖는 하이브리드 슈퍼커패시터용 음극활물질 제조 방법과, 이를 갖는 하이브리드 슈퍼커패시터 및 그 제조 방법
WO2022149912A1 (ko) 양극 및 이를 포함하는 리튬 이차전지
CN107845833B (zh) 一种高低温兼顾倍率型锂离子电池电解液及锂离子电池
WO2023158272A1 (ko) 리튬-황 전지용 분리막 및 이를 포함하는 리튬-황 전지
WO2022169347A1 (ko) 난연성 또는 불연성 전해액 및 이를 포함하는 리튬이차전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080069699.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10861166

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13988299

Country of ref document: US

Ref document number: 2010861166

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013541177

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE