WO2021029480A1 - 바인더 프리 자가지지형 전극 및 이의 제조방법 - Google Patents

바인더 프리 자가지지형 전극 및 이의 제조방법 Download PDF

Info

Publication number
WO2021029480A1
WO2021029480A1 PCT/KR2019/011766 KR2019011766W WO2021029480A1 WO 2021029480 A1 WO2021029480 A1 WO 2021029480A1 KR 2019011766 W KR2019011766 W KR 2019011766W WO 2021029480 A1 WO2021029480 A1 WO 2021029480A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene structure
electrode
self
weight
parts
Prior art date
Application number
PCT/KR2019/011766
Other languages
English (en)
French (fr)
Inventor
김광범
김영환
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of WO2021029480A1 publication Critical patent/WO2021029480A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a self-supporting electrode that does not include a binder and a current collector, a method of manufacturing the same, and a supercapacitor including the same.
  • the field of energy storage technology using carbon materials includes the field of nuclear power generation, the field of an electrochemical energy storage device such as a primary battery, a secondary battery, an ultra-high capacity capacitor, and a fuel cell.
  • Graphene refers to a single-layered carbon structure of a two-dimensional nanosheet (2-D nanosheet) in which sp 2 carbon atoms form a hexagonal honeycomb lattice.
  • graphene is a material that is in the spotlight as a new material having excellent physical and chemical stability, high specific surface area, and excellent electron conduction properties.
  • Graphene having such physical properties can act as an efficient template for depositing nano-sized metal oxides.
  • graphene can be applied in fields such as energy storage materials (lithium ion secondary batteries, hydrogen storage fuel cells, or electrodes of ultra-high capacity capacitors), gas sensors, micro-parts for biomedical engineering, and high-functional composites through nanocomplexing with transition metals. Is showing.
  • an electrode with graphene it is common to include a binder, but when the binder is included, the electrochemical performance of graphene is adversely affected, resulting in a decrease in electrical conductivity.
  • the present invention is a spherical three-dimensional graphene structure; And carbon nanotubes,
  • the three-dimensional graphene structure provides a self-supporting electrode, characterized in that 0.5mg to 5mg per 1.0cm 2 based on the electrode.
  • the present invention comprises the steps of preparing a solution by mixing a 3D graphene structure and a carbon nanotube in a solvent in an amount of 10:10 to 20 parts by weight;
  • It provides a method of manufacturing a self-supporting electrode comprising the step of manufacturing an electrode by filtering the prepared solution.
  • the present invention provides a supercapacitor including the self-supporting electrode described above.
  • the self-supporting electrode according to the present invention includes a three-dimensional graphene structure and carbon nanotubes in a certain amount, thereby exhibiting high density and high strength of the electrode without a binder and a current collector, and has excellent reactivity.
  • the present invention has the advantage of a simple manufacturing process by manufacturing an electrode through vacuum filtration of a solution obtained by mixing a 3D graphene structure and a carbon nanotube in a solvent.
  • FIG. 1 is a schematic image of a method of manufacturing a 3D graphene structure according to the present invention.
  • SEM scanning electron microscope
  • TEM 3 is a transmission electron microscope (TEM) image of the graphene structure according to Preparation Example 1 and Comparative Preparation Example of the present invention.
  • SEM scanning electron microscope
  • FIG. 6 shows the result of electron energy loss spectroscopy (EELS) analysis of the graphene structure according to Preparation Example 1 of the present invention.
  • FIG. 11 is a graph showing capacitance measured by weight of graphene structures according to Preparation Examples 1, 2, and Comparative Preparation Examples of the present invention.
  • Example 13 shows the results of measuring cycle performance of a symmetric type electric double layer supercapacitor including electrodes according to Example 1 and Comparative Example of the present invention.
  • the present invention relates to a self-supporting electrode that does not include a binder and a current collector, a method of manufacturing the same, and a supercapacitor including the same.
  • the present invention provides a self-supporting electrode for exhibiting high density, high strength, and high capacity without including a polymer binder, since the present invention adversely affects the electrochemical performance of the 3D graphene structure when a polymer binder is included during electrode formation. do.
  • the present invention is a spherical three-dimensional graphene structure; And carbon nanotubes,
  • the three-dimensional graphene structure provides a self-supporting electrode, characterized in that 0.5mg to 5mg per 1.0cm 2 based on the electrode.
  • the self-supporting electrode is 0.5mg to 5mg, 0.5mg to 4mg, 0.5mg to 3mg, 0.5mg to 2mg, 0.5mg to 1.5mg, 0.8mg to 5mg, 0.8mg to 4mg, 0.8mg per 1.0cm 2 To 3mg, 0.8mg to 2mg, 0.8mg to 1.5mg, or 0.7mg to 1.2mg of a three-dimensional graphene structure may be included.
  • the self-supporting electrode according to the present invention may include 10 parts by weight to 20 parts by weight of carbon nanotubes based on 10 parts by weight of a 3D graphene structure. Specifically, 10 parts by weight to 20 parts by weight, 10 parts by weight to 18 parts by weight, 10 parts by weight to 16 parts by weight, 12 parts by weight to 20 parts by weight, 12 parts by weight to 18 parts by weight based on 10 parts by weight of the 3D graphene structure It may contain carbon nanotubes in parts by weight, 12 parts by weight to 16 parts by weight, or 13 parts by weight to 17 parts by weight.
  • the self-supporting electrode of the present invention can exhibit an appropriate strength while having a thin thickness, and can have a high density characteristic.
  • the strength of the self-supporting electrode according to the present invention may be 10 MPa to 100 MPa. Specifically, the strength of the self-supporting electrode may be 10 MPa to 50 MPa days, 30 MPa to 70 MPa days, or 50 MPa to 100 MPa.
  • the self-supporting electrode according to the present invention may exhibit excellent compressive strength by including carbon nanotubes.
  • the density of the self-supporting electrode according to the present invention may be 0.4 to 1 g/cc.
  • the density of the self-supporting electrode may be 0.4 to 0.9 g/cc, 0.4 to 0.8 g/cc, 0.4 to 0.7 g/cc, 0.6 to 1 g/cc, or 0.6 to 0.9 g/cc.
  • the thickness of the self-supporting electrode according to the present invention may be 40 to 90 ⁇ m.
  • the thickness of the self-supporting electrode may be 40 to 80 ⁇ m, 40 to 70 ⁇ m, 50 to 90 ⁇ m, 50 to 80 ⁇ m, 50 to 70 ⁇ m.
  • the three-dimensional graphene structure according to the present invention includes doping of at least one of nitrogen, phosphorus, and boron derived from graphene oxide and a compound containing at least one of nitrogen, phosphorus, and boron, and the doping is graphene. It may be present at a specific site within the fin structure.
  • the three-dimensional graphene structure of the present invention can effectively increase physical properties such as the specific surface area of the graphene structure and the nanoperforation volume per unit mass according to the activation treatment.
  • the graphene structure according to the present invention is subjected to an activation treatment step, by adjusting the content of doped elements in the graphene structure, and by controlling the density of graphene according to a predetermined reduction process, the three-dimensional structure It can effectively control the spherical morphology of Specifically, through the activation treatment step, a certain amount of the element doped in the reduction step is desorbed. In this process, nanoperforations are developed in the area where the elements are desorbed, so that a three-dimensional graphene structure having a more excellent specific surface area can be manufactured.
  • the BET specific surface area of the three-dimensional graphene structure according to the present invention that has undergone the reduction and activation steps may range from 500 to 3,000 m 2 /g.
  • the BET specific surface area of the 3D graphene structure is 800 to 3,000 m 2 /g, 1,000 to 3,000 m 2 /g, 1,000 to 2,500 m 2 /g, 1,200 to 2,000 m 2 /g or 1,300 to 1,700 It may be in the range of m 2 /g.
  • the 3D graphene structure having an excellent BET surface area is used as an electrode material for an energy storage device, and thus can have an excellent specific storage capacity value.
  • the content of one or more of doped nitrogen, phosphorus, and boron may be in the range of 0.1 to 5 parts by weight based on 100 parts by weight of the total 3D graphene structure manufactured through the reduction and activation steps.
  • the content of one or more of doped nitrogen, phosphorus, and boron is 0.1 to 4 parts by weight, 0.1 to 3 parts by weight, 0.1 to 2.5 parts by weight, 0.1 to 2 parts by weight, 0.2 to 2 parts by weight, 0.5 to It may be in the range of 1.8 parts by weight, 0.5 to 1.5 parts by weight, or 0.5 to 1.0 parts by weight.
  • the 3D graphene structure manufactured through the reduction and activation treatment steps may have a ratio of carbon to oxygen (C/O) of 25 or more.
  • the three-dimensional graphene structure has a ratio of carbon to oxygen (C/O) of 25 or more, 30 or more, 35 or more, 25 to 50, 25 to 45, 25 to 40, 30 to 50, 30 to 45 , May be 30 to 40 or 35 to 40.
  • the self-supporting electrode according to the present invention includes a three-dimensional graphene structure having a ratio of carbon to oxygen as described above, thereby exhibiting high electrical conductivity, and an additional reaction between the electrolyte and the electrode material in the cell may be reduced. . Accordingly, the self-supporting electrode according to the present invention exhibits high rate characteristics, and deterioration of the electrode material may be reduced.
  • the three-dimensional graphene structure according to the present invention includes doping of at least one of nitrogen, phosphorus, and boron derived from graphene oxide and a compound containing at least one of nitrogen, phosphorus, and boron, and the doping is graphene. It may be present at a specific site within the fin structure.
  • Compounds containing one or more of nitrogen, phosphorus, and boron of the three-dimensional graphene structure according to the present invention for example, while containing one or more of nitrogen, phosphorus, and boron, a specific site of graphene oxide ,
  • it may be a compound having a functional group capable of bonding with any one or more functional groups selected from the group consisting of a carbonyl group, an ether group, and an epoxy group.
  • the compound containing at least one of nitrogen, phosphorus, and boron may be a compound having an amine group.
  • the amine group is bonded to a specific site of graphene oxide, for example, any one or more functional groups selected from the group consisting of a carbonyl group, an ether group, and an epoxy group, and doping at least one of nitrogen, phosphorus, and boron to the three-dimensional graphene structure Can provide.
  • the compound having an amine group may include, for example, an alkyl amine containing or not containing a benzene ring; Or, an amine compound having cyano such as cyanamide may be exemplified, but is not limited thereto.
  • the compound containing at least one of nitrogen, phosphorus, and boron is a carbonyl group, an ether group of the reduced graphene oxide. And it may be combined with any one or more functional groups selected from the group consisting of an epoxy group.
  • the electrical conductivity of the three-dimensional graphene structure according to the present invention may be 1,000 S/m or more.
  • the electrical conductivity of the 3D graphene structure may be in the range of 1,000 to 5,000 S/m, 1,200 to 4,000 S/m, 1,200 to 3,000 S/m, or 1,500 to 2,000 S/m.
  • the 3D graphene structure according to the present invention has excellent electrical conductivity and can be used as an electrode material for electronic devices to realize excellent efficiency.
  • the three-dimensional graphene structure according to the present invention may have an average diameter of 0.5 to 6 ⁇ m.
  • a structure within a diameter range of 0.5 to 3 ⁇ m may be 80% or more of the total 3D graphene structure.
  • the carbon nanotubes according to the present invention may be single-walled carbon nanotubes (SWCNT) or multi-walled carbon nanotubes (MWCNT).
  • the size of the carbon nanotubes of the present invention is not particularly limited, but may be, for example, a carbon nanotube having an average length of 1 ⁇ m to 5 ⁇ m and an average diameter of 20 nm to 80 nm.
  • the present invention comprises the steps of preparing a solution by mixing a 3D graphene structure and a carbon nanotube with a solvent in an amount of 10:10 to 20 parts by weight;
  • the method of manufacturing a self-supporting electrode As an example, the method of manufacturing a self-supporting electrode,
  • the step of preparing a three-dimensional graphene structure contains at least one of 200 to 1,000 parts by weight of nitrogen, phosphorus, and boron based on graphene oxide and 100 parts by weight of the graphene oxide as shown in FIG. 1 Spraying a mixture containing the compound to form a three-dimensional graphene structure; Reducing the three-dimensional graphene structure; And activating the reduced 3D graphene structure.
  • the step of preparing a three-dimensional graphene structure according to the present invention includes mixing a compound containing at least one of nitrogen, phosphorus, and boron together with graphene oxide, and then spraying the morphology into a three-dimensional spherical shape. By controlling, it is possible to overcome the problem of restacking of graphene.
  • the step of preparing the three-dimensional graphene structure comprises a mixture containing graphene oxide and a compound containing 200 to 1,000 parts by weight of nitrogen, phosphorus, and boron based on 100 parts by weight of the graphene oxide.
  • a compound containing 200 to 1,000 parts by weight of nitrogen, phosphorus, and boron based on 100 parts by weight of the graphene oxide By spraying, it is possible to form a spherical three-dimensional graphene structure.
  • the mixture may include a compound containing at least one of 300 to 800 parts by weight or 400 to 600 parts by weight of nitrogen, phosphorus, and boron based on 100 parts by weight of graphene oxide.
  • Graphene oxide may be present in the mixture in a state in which a compound containing at least one of nitrogen, phosphorus, and boron is bound.
  • the graphene oxide in the mixture may contain doping of at least one of nitrogen, phosphorus, and boron derived from a compound containing at least one of nitrogen, phosphorus, and boron.
  • the mixture may be formed by mixing, for example, a first solution containing a compound containing at least one of nitrogen, phosphorus, and boron and a dispersion in which graphene oxide is dispersed.
  • the first solution may contain a solvent capable of dissolving a compound containing at least one of nitrogen, phosphorus, and boron, such as a known organic or inorganic solvent.
  • the dispersion may contain a solvent, for example, deionized water, and the like so that graphene oxide can be effectively dispersed.
  • a solvent for example, deionized water, and the like so that graphene oxide can be effectively dispersed.
  • the step of preparing the 3D graphene structure includes spraying the mixture to form a 3D graphene oxide structure.
  • the spraying method is not particularly limited, and may include a method of forming droplets by spraying by supplying a mixed solution into a spraying device, and then drying the droplets, but is not limited thereto.
  • an ultrasonic spray device an air nozzle spray device, an ultrasonic nozzle spray device, a filter expansion droplet generating device, or an electrostatic spray device may be used as the spray device.
  • a three-dimensional graphene structure When passing through a spraying process of a mixed solution containing a compound containing at least one of graphene oxide and nitrogen, phosphorus, and boron, a three-dimensional graphene structure may be formed.
  • doping is present through a covalent bond of at least one of oxygen, nitrogen, phosphorus, and boron of graphene oxide.
  • the covalent bond may mainly exist at, for example, a pyrrolic site.
  • At least one of nitrogen, phosphorus, and boron of a three-dimensional graphene oxide structure formed through a spraying process of a mixed solution containing a compound containing at least one of graphene oxide and nitrogen, phosphorus, and boron Silver may be present in 60% or more, 70% or more, or 80% or more of the pyrrolic site.
  • the method of manufacturing a 3D graphene structure according to the present invention includes reducing the 3D graphene structure.
  • the graphene oxide becomes reduced graphene oxide, and the morphology of the three-dimensional graphene structure and the distribution of doping positions of at least one of nitrogen, phosphorus, and boron may be changed.
  • the 3D graphene structure can secure a density enough to reduce the deformation of the morphology of the 3D spherical structure. have.
  • At least one of nitrogen, phosphorus, and boron of the three-dimensional graphene structure that has undergone the reducing step may be doped in a range of 10% to 80% in a portion of a graphitic center.
  • at least one of nitrogen, phosphorus, and boron within the above range is doped in a portion of a graphitic center, it may be advantageous to secure excellent electrochemical properties when used as an electrode material for an energy storage device.
  • the method of reducing the three-dimensional spherical structure is not particularly limited, and a known reduction method may be adopted without limitation.
  • the reducing step is a thermal reduction method, a reduction method using an organic solvent and heating, a reduction method using a hydrogen plasma, a reduction method using a microwave, a reduction method using a reducing agent, a photocatalytic reduction method, an electrochemical reduction method, and a flash conversion method. Any one or more methods selected from the group consisting of may be used.
  • the reducing step is thermally reduced within a temperature range of 180 to 400°C in the presence of an inert gas such as argon gas, or reduction using a reducing agent such as hydrazine or sodium hydride. It may include, but is not limited thereto.
  • a three-dimensional graphene structure doped with at least one of nitrogen, phosphorus, and boron may be formed in the reduced graphene oxide.
  • the step of preparing a 3D graphene structure according to the present invention is 3 in order to increase the electrochemical properties by increasing the specific surface area or volume value per unit mass by forming micro- or meso-sized pores in the 3D graphene structure.
  • After the step of reducing the dimensional graphene structure it may include a step of activating the reduced three-dimensional graphene structure.
  • the present invention requires an activation process capable of effectively increasing the electrochemical properties according to the increase of the specific surface area and volume per mass value without modifying the morphology of the three-dimensional spherical structure.
  • the activating step may be performed using at least one activator of KOH, NaOH, LiOH, H 3 PO 4 and steam.
  • the effect of increasing the specific surface area may be insignificant, so it may be difficult to secure the excellence of the desired electrochemical properties.
  • the structure of the three-dimensional spherical graphene when the amount of the activator is large Since there is a risk of being released and transformed into a two-dimensional shape, etc., the activation of the three-dimensional graphene structure must be promoted while maintaining the activator concentration within an appropriate range in consideration of this point.
  • the step of activating may be performed by adjusting the weight ratio of the reduced 3D graphene structure and the activator within the range of 1:2 to 1:15. Within the above range, it is possible to simultaneously secure control of morphology and excellence in electrochemical properties.
  • the activating step may be performed by adjusting the weight ratio of the reduced three-dimensional graphene structure and the activator in the range of 1:2 to 1:12 or 1:5 to 1:12.
  • the morphology of the three-dimensional spherical structure is maintained as it is, and the effect of increasing the specific surface area and the volume per unit mass can be obtained.
  • a solution may be prepared by mixing a 3D graphene structure and a carbon nanotube in a solvent in an amount of 10:10 to 20 parts by weight.
  • a solution may be prepared by mixing with a solvent in parts by weight, 10: 12 to 18 parts by weight, 10: 12 to 16 parts by weight, or 10: 13 to 17 parts by weight.
  • the solvent may include at least one selected from the group consisting of isopropanol, distilled water, ethanol, dimethylformamide (DMF), and n-methyl-2-pyrrolidone (NMP). More specifically, the solvent may be isopropanol, distilled water, ethanol, dimethylformamide (DMF) or n-methyl-2-pyrrolidone (NMP), and for example, isopropanol and distilled water may be mixed at 1:1. I can.
  • the step of preparing the solution of the present invention may be performed by irradiating ultrasonic waves to a mixture of a 3D graphene structure and carbon nanotubes for 2 hours or more.
  • the 3D graphene structure and the carbon nanotubes may be uniformly mixed by irradiating the solution with ultrasonic waves for 2 hours to 6 hours, 2 hours to 5 hours, or 2 hours to 4 hours.
  • the method of filtering the solution in the step of manufacturing the electrode according to the present invention is not particularly limited, and a known filtering method may be adopted without limitation.
  • the step of preparing the electrode may filter the solution using a vacuum filtration or freeze filtration method.
  • the step of preparing the electrode of the present invention may be performed by drying the filtered solution at a temperature of 50°C to 100°C for 20 to 30 hours.
  • the step of preparing the electrode is to prepare the filtered solution at a temperature of 50°C to 100°C, 50°C to 90°C, 50°C to 70°C or 55°C to 75°C for 20 to 30 hours, 20 to 25 hours , Drying for 23 hours to 30 hours or 22 hours to 25 hours to form an electrode.
  • the step of preparing the electrode of the present invention may form an electrode having a thickness of 0.5 to 1.5 mm. More specifically, the step of manufacturing the electrode may form an electrode having a thickness of 0.5 to 1.5 mm, 0.5 to 1.3 mm, 0.5 to 1.0 mm, 0.7 to 1.5 mm, 0.7 to 1.3 mm, or 0.7 to 1.0 mm.
  • an electrode may be formed to include a three-dimensional graphene structure in an amount of 0.5 mg/cm 2 to 5 mg/cm 2 .
  • the self-supporting electrode of the present invention is 0.5mg to 5mg, 0.5mg to 4mg, 0.5mg to 3mg, 0.5mg to 2mg, 0.5mg to 1.5mg, 0.8mg to 5mg, 0.8mg to 4mg per 1.0cm 2 , 0.8mg to 3mg, 0.8mg to 2mg, 0.8mg to 1.5mg, or 0.7mg to 1.2mg of the three-dimensional graphene structure can be formed to include an electrode.
  • the present invention provides a supercapacitor including the self-supporting electrode.
  • the self-supporting electrode may include a pair of electrodes disposed opposite to each other and including a three-dimensional graphene structure and a carbon nanotube; An electrolyte provided between the pair of electrodes; And a separator provided between the pair of electrodes and suppressing an electrical short.
  • a graphene structure was manufactured in the same manner as in Preparation Example 1, except that the KOH activation process was not performed.
  • a solution was prepared in which 9.62 mg of the three-dimensional graphene structure prepared in Preparation Example 1 and 14.43 mg of single-walled carbon nanotubes (SWCNT) were mixed in a solvent in which the volume ratio of isopropanol and distilled water was 1:1. While stirring the solution, ultrasonic waves were irradiated for 3 hours. The solution irradiated with ultrasonic waves was filtered while maintaining dispersibility, and then dried at a temperature of 60° C. for 24 hours to prepare an electrode.
  • SWCNT single-walled carbon nanotubes
  • the content of the 3D graphene structure contained in the electrode is 1mg/cm 2 , and the ratio of the 3D graphene structure and the single-walled carbon nanotube is 4:6.
  • Example 1 except for preparing a solution in which 9.62 mg of the graphene structure prepared in Comparative Preparation Example and 14.43 mg of single-walled carbon nanotubes (SWCNT) were mixed in a solvent in which the volume ratio of isopropanol and distilled water was 1:1.
  • the electrode was manufactured in the same manner as described above.
  • the graphene structure prepared in Comparative Preparation Example, PVDF (Polyvinylidene fluoride) as a binder, and Carbon black powder as a conductive material were prepared in a weight ratio of 85:10:5.
  • FIG. 4(a) is an image of a self-supporting electrode manufactured in Example 1
  • FIG. 4(b) is an image of an electrode manufactured in Comparative Example 2.
  • the self-supporting electrode of Example 1 has a thickness of 60 ⁇ m
  • the electrode of Comparative Example 2 has a thickness of 100 ⁇ m.
  • the self-supporting electrode according to the present invention has a thinner thickness compared to an electrode including a conventional provider.
  • (a) of FIG. 5 is a graph showing the amount of absorption according to the relative pressure, and the BET specific surface area can be confirmed.
  • the activated graphene structure exhibits a BET specific surface area of 600 to 1450 m 2 /g
  • the BET specific surface area of the graphene structure of Preparation Example 1 is 631 m 2 /g
  • the BET ratio of the graphene structure of Preparation Example 2 The surface area is 1440m 2 /g.
  • the non-activated graphene structure has a marked difference in BET specific surface area of 270 m 2 /g.
  • Figure 5 (b) is a graph showing the pore size distribution and volume of the graphene structure, it is possible to confirm the pore volume of the graphene structure. Specifically, it can be seen that the activated graphene structure has a significantly smaller average pore size compared to the non-activated graphene structure. 5B and Table 1, the activated graphene structure exhibits a pore volume of 0.8 to 1.3 cm 3 /g, and the pore volume of the graphene structure of Preparation Example 1 is 0.841 cm 3 /g, and The pore volume in Example 2 is 1.216 cm 3 /g. On the other hand, Comparative Preparation Example, which is an unactivated graphene structure, exhibited a pore volume of 0.64cm 3 /g,
  • the activated graphene structures (Preparation Examples 1 and 2) showed a density of 0.8 g/cm 3 or less, compared to 0.91 g/cm 3 , which is the density of the non-activated graphene structure (Comparative Preparation Example). It can be seen that it has a small density.
  • Electron energy pure particle spectroscopy was performed to analyze the chemical composition of the 3D graphene structure according to Preparation Example 1, and in the 3D graphene structure according to Preparation Example 1, the chemical composition change according to the activation treatment was confirmed. In order to do so, X-ray photoelectron spectroscopy (XPS) was performed, and the results are shown in FIGS. 6, 7 and Table 2.
  • XPS X-ray photoelectron spectroscopy
  • the EELS analysis results of the 3D graphene structure according to Preparation Example 1.
  • the graphite is an analysis method for measuring whether sp 2 bonds are assumed dwaetdago composed of 100%, the graphite contrast 3D graphene structure how forming a sp 2 bond, the three-dimensional graphene structure through the above analysis sp 2 It can be seen that the bond is composed of about 85%
  • XPS peak analysis results of the 3D graphene structure according to Preparation Example 1 and the graphene structure according to Comparative Preparation Example show a C1s peak at 250-300eV and an O1s peak at 525-550eV. I can confirm.
  • N1s appearing at 375-425eV appears only in the graphene structure of Comparative Preparation Example, so that the nitrogen of cyanamide was removed from the activated three-dimensional graphene by the activation treatment, and the carbon inter-carbon in the graphene was removed at the site where nitrogen was removed. It can be seen that the bond is made and the sp 2 bond is formed.
  • the three-dimensional graphene structure according to Preparation Example 1 is composed of a ratio of 97.52 at% carbon atom, 1.68 at% oxygen atom, and 0.8 at% nitrogen atom
  • the graphene structure according to the comparative preparation example It can be seen that the carbon atom is 86 at%, the oxygen atom is 6 at%, and the nitrogen atom is composed of 8 at%.
  • the self-supporting electrode according to the present invention exhibits high electrical conductivity including the three-dimensional graphene structure as described above, and thus has excellent high rate characteristics, and additional reaction between the electrolyte and the electrode material is reduced, resulting in degradation of electrode material. ) May decrease.
  • FIG. 8 is an electrode of Comparative Example 1
  • FIG. 9 is an electrode of Comparative Example 2
  • FIG. 10 (a) is an electrode of Example 1
  • FIG. 10 (b) is a constant current charging of a cell including the electrode of Example 2. This is a graph of discharge test results.
  • a 2032 type coin cell was used, and the electrode prepared in 1M TEABF 4 (Tetraethylammonium tetrafluoroborate purum)in AN (acetonitrile) solution, Examples 1, 2, Comparative Example 1 and Comparative Example 2 was used as the electrolyte. Then, after punching into a circular shape with a diameter of 12 mm to prepare a circular electrode, a 2032 type coin cell including the above electrolyte was produced in a glove box in an argon atmosphere. In this case, it is a two-electrode cell and a symmetrical super capacitor cell.
  • 1M TEABF 4 Tetraethylammonium tetrafluoroborate purum
  • AN acetonitrile
  • the cells according to Examples 1 and 2 had superior storage capacity values compared to Comparative Example 2 in the low rate (0.1A/g) to high rate (2A/g) test. .
  • the cell of Comparative Example 2 exhibited a specific storage capacity value of 82.13 F/g at a high rate of 2A/g, whereas the cells of Example 1 and Example 2 had a ratio of 120.7 F/g and 140 F/g, respectively.
  • the electrode including the binder includes a single-walled carbon nanotube (SWCNT) like the self-supporting electrode according to the present invention, and the performance is significantly lower than that of the electrode not including the binder.
  • SWCNT single-walled carbon nanotube
  • Example 1 The electrodes of Example 1, Example 2, and Comparative Example 1 shown in Table 3 are the specific storage capacity values when the graphene structure and the single-walled carbon nanotube are included, so a pure three-dimensional graphene structure using the following equation 1
  • the reserve capacity value of was calculated and shown in Table 5 below.
  • the self-supporting electrode according to the present invention includes a 3D graphene structure having a high C/O ratio, thereby increasing electrical conductivity and improving high rate characteristics.
  • the compressive strength was measured using PI-85 SEM picoIndenter (Bruker) and FEI (XL-30 FEG). Specifically, the method of measuring compressive strength is a force-displacement curve by applying a specific value of force to the indenter in a state in which the self-supporting electrode of Example 1 is fixed to a substrate of a nanoindenter. curve) was used to measure the compressive strength of the self-supporting electrode. The results are shown in FIG. 12 below.
  • the self-supporting electrode prepared in Example 1 exhibits a compressive strength of 10 to 100 MPa. Through this, it can be seen that the self-supporting electrode according to the present invention exhibits excellent strength including carbon nanotubes.
  • Cycle performance was measured using the graphene structures prepared in Preparation Example 1 and Comparative Preparation Example. Specifically, in the case of cycle characteristics, it was carried out through galvanostatic charge-discharge, and in the case of current density, based on the weight of both sides, 40A/g (actual current is approximately 80mA (the weight of the graphene structure of one electrode is approximately 1mg, so both sides are 2mg)) was applied, and the charge/discharge cycle was repeated between 2.0V and 3.7V, and 1 to 100,000 cycles were repeatedly performed, and then the cycle retention was measured. The results are shown in FIG. 13 below.
  • the electrode according to the present invention has excellent life characteristics, and the life characteristics of the electrode including the non-activated graphene structure are lower than that of the activated graphene structure.
  • the self-supporting electrode according to the present invention includes a three-dimensional graphene structure and carbon nanotubes in a certain amount, thereby exhibiting high density and high strength without a binder and a current collector, excellent reactivity, and excellent productivity due to a simple manufacturing process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 바인더 및 집전체를 포함하지 않는 자가지지형 전극, 이의 제조방법 및 이를 포함하는 슈퍼커패시터에 대한 것으로, 상기 자가지지형 전극은 3차원 그래핀 구조체와 탄소나노튜브를 일정 함량으로 포함함으로써, 바인더 및 집전체 없이도 고밀도 및 고강도를 나타내고 반응성이 우수한 이점이 있다. 또한, 본 발명은 3차원 그래핀 구조체와 탄소나노튜브를 용매에 혼합한 용액을 진공 여과를 통해 전극을 제조하여 제조공정이 간단한 장점이 있다.

Description

바인더 프리 자가지지형 전극 및 이의 제조방법
본 발명은 바인더 및 집전체를 포함하지 않는 자가지지형 전극, 이의 제조방법 및 이를 포함하는 슈퍼커패시터에 대한 것이다.
탄소재료를 이용한 에너지 저장 기술 분야는 원자력발전 분야, 일차전지(primary battery), 이차전지(secondary battery), 초고용량 커패시터 및 연료전지(fuel cell)과 같은 전기화학적 에너지 저장장치 분야가 있다.
최근 고도 정보화 사회의 도래와 멀티미디어의 급격한 발전에 따라 이동 통신용 기기, 휴대형 전자기기 및 복합기능을 겸비한 새로운 정보 단말기의 소형 고성능화로 에너지 저장장치의 소형화, 경량화, 고용량화, 충전시간 단축 등이 요구되고 있다.
에너지 저장장치 중 슈퍼커패시터의 경우 전하의 물리적 흡탈착에 의해 구동되기 때문에 비표면적이 넓은 물질을 사용하는 것이 중요하다. 따라서 슈퍼 커패시터의 전극 소재로서, 활성화 공정을 통해 비표면적을 증가시킨 활성탄이 현재 슈퍼커패시터에 많이 사용되고 있다.
그러나, 이러한 활성탄은 비표면적은 크지만, 전기 전도도 내지 용량이 낮다는 단점을 가지고 있다.
따라서, 상기 활성탄의 문제점을 보완하기 위하여, 그래핀을 이용하여 전극 소재를 개발하는 연구가 진행되었다.
그래핀(graphene)은 sp2 탄소 원자들이 6각형의 벌집 (honeycomb) 격자를 이룬 형태의 2차원 나노시트(2-D nanosheet) 단일층의 탄소 구조체를 의미한다. 일반적으로, 그래핀은 물리 내지 화학적 안정성이 우수하고, 높은 비표면적과 우수한 전자전도 특성을 가진 신소재로서 각광받고 있는 물질이다. 이와 같은 물성을 가진 그래핀은 나노 크기의 금속 산화물을 증착할 수 있는 효율적인 주형(template)으로 작용할 수 있다. 또한, 그래핀은 전이금속과의 나노 복합화을 통해 에너지 저장 소재(리튬이온 2차전지, 수소저장 연료전지 또는 초고용량 캐퍼시터의 전극), 가스 센서, 의공학용 미세부품 및 고기능 복합체 등의 분야에서 응용 가능성을 보여주고 있다.
그러나, 그래핀으로 전극을 제조하기 위해서는 바인더를 포함하는 것이 일반적이나, 바인더를 포함하는 경우 그래핀의 전기화학 성능 발현에 악영향을 끼쳐 전기 전도도가 저하되는 결과를 초래한다.
본 발명의 목적은 구형의 3차원 구조체와 탄소나노튜브를 일정 함량으로 포함하여 바인더와 집전체를 포함하지 않는 자가지지형 전극, 이의 제조방법 및 이를 포함하는 슈퍼커패시터를 제공하는 것이다.
이에, 본 발명은 일실시예에서,
본 발명은 구형의 3차원 그래핀 구조체; 및 탄소나노튜브를 포함하고,
상기 3차원 그래핀 구조체는 전극을 기준으로 1.0cm2 당 0.5mg 내지 5mg인 것을 특징으로 하는 자가지지형 전극을 제공한다
또한, 본 발명은 3차원 그래핀 구조체 및 탄소나노튜브를 10 : 10 내지 20 중량부로 용매에 혼합하여 용액을 제조하는 단계; 및
제조한 용액을 여과하여 전극을 제조하는 단계를 포함하는 자가지지형 전극의 제조방법을 제공한다.
아울러, 본 발명은 상기 서술한 자가지지형 전극을 포함하는 슈퍼커패시터를 제공한다.
본 발명에 따른 자가지지형 전극은 3차원 그래핀 구조체와 탄소나노튜브를 일정 함량으로 포함함으로써, 바인더 및 집전체 없이도 전극의 고밀도 및 고강도를 나타내고 반응성이 우수한 이점이 있다.
또한, 본 발명은 3차원 그래핀 구조체와 탄소나노튜브를 용매에 혼합한 용액을 진공 여과를 통해 전극을 제조하여 제조공정이 간단한 장점이 있다.
도 1은 본 발명에 따른 3차원 그래핀 구조체를 제조하는 방법을 도식화한 이미지이다.
도 2는 본 발명의 제조예 1 및 비교제조예에 따른 그래핀 구조체의 주사전자현미경(SEM) 촬영 이미지이다.
도 3은 본 발명의 제조예 1 및 비교제조예에 따른 그래핀 구조체의 투과전자현미경(TEM) 촬영 이미지이다.
도 4는 본 발명에 따른 자가지지형 전극의 측면을 주사전자현미경(SEM)으로 촬영한 이미지이다.
도 5는 본 발명의 제조예 1, 제조예 2 및 비교제조예에 따른 그래핀 구조체의 BET 표면적 결과를 도시한 것이다.
도 6은 본 발명의 제조예 1에 따른 그래핀 구조체의 전자에너지 손실 분광(EELS) 분석 결과를 도시한 것이다.
도 7은 본 발명의 제조예 1 및 비교제조예에 따른 그래핀 구조체의 X선 광전자 분광(XPS) 분석 결과를 도시한 것이다.
도 8 및 도 9는 본 발명의 비교예에 따른 전극을 포함하는 대칭형 전기 이중층 슈퍼캐퍼시터의 정전류 충방전 곡선 결과를 도시한 것이다.
도 10은 본 발명의 실시예 1 및 2에 따른 전극을 포함하는 대칭형 전기 이중층 슈퍼캐퍼시터의 정전류 충방전 곡선 결과를 도시한 것이다.
도 11은 본 발명의 제조예 1, 제조예 2 및 비교제조예에 따른 그래핀 구조체의 중량에 의해 측정된 정전용량을 나타낸 그래프이다.
도 12는 본 발명에 따른 전극의 압축강도를 측정한 그래프이다.
도 13은 본 발명의 실시예 1 및 비교예에 따른 전극을 포함하는 대칭형 전기 이중층 슈퍼캐퍼시터의 사이클 성능 측정 결과를 도시한 것이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 구체적으로 설명하고자 한다.
그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
이하, 본 발명에 대하여 구체적으로 설명하기로 한다.
본 발명은 바인더 및 집전체를 포함하지 않는 자가지지형 전극, 이의 제조방법 및 이를 포함하는 슈퍼커패시터에 대한 것이다.
본 발명은 전극 형성 시 고분자 바인더를 포함하는 경우 3차원 그래핀 구조체의 전기화학 성능 발현에 악영향을 주기 때문에, 고분자 바인더를 포함하지 않으면서도 고밀도, 고강도 및 고용량을 나타내기 위한 자가지지형 전극을 제공한다.
본 발명은 구형의 3차원 그래핀 구조체; 및 탄소나노튜브를 포함하고,
상기 3차원 그래핀 구조체는 전극을 기준으로 1.0cm2 당 0.5mg 내지 5mg인 것을 특징으로 하는 자가지지형 전극을 제공한다.
구체적으로, 자가지지형 전극은 1.0cm2 당 0.5mg 내지 5mg, 0.5mg 내지 4mg, 0.5mg 내지 3mg, 0.5mg 내지 2mg, 0.5mg 내지 1.5mg, 0.8mg 내지 5mg, 0.8mg 내지 4mg, 0.8mg 내지 3mg, 0.8mg 내지 2mg, 0.8mg 내지 1.5mg 또는 0.7mg 내지 1.2mg의 3차원 그래핀 구조체를 포함할 수 있다.
예를 들어, 본 발명에 따른 자가지지형 전극은 3차원 그래핀 구조체 10 중량부를 기준으로 10 중량부 내지 20 중량부의 탄소나노튜브를 포함할 수 있다. 구체적으로, 3차원 그래핀 구조체 10 중량부를 기준으로 10 중량부 내지 20 중량부, 10 중량부 내지 18 중량부, 10 중량부 내지 16 중량부, 12 중량부 내지 20 중량부, 12 중량부 내지 18 중량부, 12 중량부 내지 16 중량부 또는 13 중량부 내지 17 중량부의 탄소나노튜브를 포함할 수 있다. 상기와 같은 비율로 3차 그래핀 구조체를 포함함으로써, 본 발명의 자가지지형 전극은 얇은 두께를 가지면서도 적정한 강도를 나타낼 수 있고, 높은 밀도를 가져 고용량의 특징을 가질 수 있다.
하나의 예시에서, 본 발명에 따른 자가지지형 전극의 강도는 10 MPa 내지 100 MPa일 수 있다. 구체적으로, 자가지지형 전극의 강도는 10 MPa 내지 50 MPa일, 30 MPa 내지 70 MPa일 또는 50 MPa 내지 100 MPa일 일 수 있다. 본 발명에 따른 자가지지형 전극은 탄소나노튜브를 포함함으로써 우수한 압축 강도를 나타낼 수 있다.
또한, 본 발명에 따른 자가지지형 전극의 밀도는 0.4 내지 1 g/cc일 수 있다. 구체적으로, 자가지지형 전극의 밀도는 0.4 내지 0.9 g/cc, 0.4 내지 0.8g/cc, 0.4 내지 0.7 g/cc, 0.6 내지 1 g/cc 또는 0.6 내지 0.9 g/cc 일 수 있다.
더욱이, 본 발명에 따른 자가지지형 전극의 두께는 40 내지 90 ㎛일 수 있다. 구체적으로, 자가지지형 전극의 두께는 40 내지 80 ㎛, 40 내지 70 ㎛, 50 내지 90 ㎛, 50 내지 80 ㎛, 50 내지 70 ㎛일 수 있다.
본 발명에 따른 3차원 그래핀 구조체는 그래핀 옥사이드 및 질소, 인, 및 붕소 중 1 종 이상을 함유하는 화합물로부터 유도되는 질소, 인, 및 붕소 중 1 종 이상의 도핑을 포함하며, 상기 도핑은 그래핀 구조체 내에 특정 부위에 존재할 수 있다.
구체적으로, 본 발명의 3차원 그래핀 구조체는 활성화 처리에 따른 그래핀 구조체의 비표면적 및 단위 질량당 나노 천공 부피 등의 물성을 효과적으로 증대시킬 수 있다.
특히, 본 발명에 따른 그래핀 구조체는 활성화처리 단계를 거침으로써, 그래핀 구조체 내에 도핑된 원소의 함량을 조절하고, 또한 소정의 환원 공정에 따른 그래핀의 조밀도를 조절함으로써, 상기 3차원 구조의 구형 모폴로지를 효과적으로 제어할 수 있다. 구체적으로, 상기 활성화처리 단계를 통해, 환원 단계에서 도핑된 원소의 일정량을 탈착시킨다. 이러한 과정에서, 원소가 탈착된 부위에 나노 천공이 발달하여, 더욱 우수한 비표면적을 갖는 3차원 그래핀 구조체를 제조할 수 있다.
예를 들어, 환원 및 활성화 단계를 거친 본 발명에 따른 3차원 그래핀 구조체의 BET 비표면적은 500 내지 3,000m2/g 범위일 수 있다. 예를 들어, 상기 3차원 그래핀 구조체의 BET 비표면적은 800 내지 3,000m2/g, 1,000 내지 3,000m2/g, 1,000 내지 2,500m2/g, 1,200 내지 2,000m2/g 또는 1,300 내지 1,700m2/g 범위일 수 있다. 이와 같이, 우수한 BET 표면적을 갖는 3차원 그래핀 구조체는 에너지 저장장치용 전극 소재로 사용되어, 우수한 비축전 용량 값을 가질 수 있다.
상기 환원 및 활성화처리 단계를 거쳐 제조된 3차원 그래핀 구조체 전체 100 중량부를 기준으로 도핑된 질소, 인, 및 붕소 중 1 종 이상의 함량은 0.1 내지 5 중량부 범위일 수 있다. 예를 들어, 도핑된 질소, 인, 및 붕소 중 1 종 이상의 함량은 0.1 내지 4 중량부, 0.1 내지 3 중량부, 0.1 내지 2.5 중량부, 0.1 내지 2 중량부, 0.2 내지 2 중량부, 0.5 내지 1.8 중량부, 0.5 내지 1.5 중량부 또는 0.5 내지 1.0 중량부 범위일 수 있다. 상기와 같은 범위 내에서, 그래핀 구조체의 형상을 3차원의 구형으로 제어할 수 있다.
또한, 환원 및 활성화처리 단계를 거쳐 제조된 3차원 그래핀 구조체는 산소 대비 탄소의 비율(C/O)이 25 이상일 수 있다. 구체적으로, 3차원 그래핀 구조체는 산소 대비 탄소의 비율(C/O)의 비율이 25 이상, 30 이상, 35 이상, 25 내지 50, 25 내지 45, 25 내지 40, 30 내지 50, 30 내지 45, 30 내지 40 또는 35 내지 40일 수 있다. 본 발명에 따른 자가지지형 전극은 상기와 같은 산소 대비 탄소의 비율을 가지는 3차원 그래핀 구조체를 포함함으로써, 높은 전기전도도를 나타내고, 셀 내에서 전해질과 전극 소재 간의 부가적인 반응이 감소할 수 있다. 이에 따라, 본 발명에 따른 자가지지형 전극은 높은 고율 특성을 나타내고, 전극 소재의 열화가 적어질 수 있다.
본 발명에 따른 3차원 그래핀 구조체는 그래핀 옥사이드 및 질소, 인, 및 붕소 중 1 종 이상을 함유하는 화합물로부터 유도되는 질소, 인, 및 붕소 중 1 종 이상의 도핑을 포함하며, 상기 도핑은 그래핀 구조체 내에 특정 부위에 존재할 수 있다.
본 발명에 따른 3차원 그래핀 구조체의 질소, 인, 및 붕소 중 1 종 이상을 함유하는 화합물은, 예를 들면 질소, 인, 및 붕소 중 1 종 이상을 함유하고 있으면서, 그래핀 옥사이드의 특정 부위, 예를 들면 카르보닐기, 에테르기 및 에폭시기로 이루어진 군에서 선택되는 어느 하나 이상의 관능기와 결합할 수 있는 관능기를 가지는 화합물일 수 있다.
구체적인 예시에서, 질소, 인, 및 붕소 중 1 종 이상을 함유하는 화합물은, 아민기를 가지는 화합물 일 수 있다. 상기 아민기는 그래핀 옥사이드의 특정 부위, 예를 들면 카르보닐기, 에테르기 및 에폭시기로 이루어진 군에서 선택되는 어느 하나 이상의 관능기와 결합하여, 3차원 그래핀 구조체에 질소, 인, 및 붕소 중 1 종 이상의 도핑을 제공할 수 있다.
상기 아민기를 가지는 화합물은, 예를 들면 벤젠 고리를 포함하거나 포함하지 않는 알킬 아민; 또는 시안 아미드와 같은 시안을 가지는 아민 화합물 등이 예시될 수 있으나 이에 제한되는 것은 아니다.
따라서, 이후에 그래핀 옥사이드의 환원 공정에 의해 그래핀 옥사이드가 환원된 그래핀 옥사이드로 되는 경우, 질소, 인, 및 붕소 중 1 종 이상을 함유하는 화합물은 상기 환원 그래핀 옥사이드의 카르보닐기, 에테르기 및 에폭시기로 이루어진 군에서 선택되는 어느 하나 이상의 관능기와 결합되어 있을 수 있다.
본 발명에 따른 3차원 그래핀 구조체의 전기 전도도는 1,000 S/m 이상일 수 있다. 예를 들어, 상기 3차원 그래핀 구조체의 전기 전도도는 1,000 내지 5,000 S/m, 1,200 내지 4,000 S/m, 1,200 내지 3,000 S/m 또는 1,500 내지 2,000 S/m 범위일 수 있다. 이와 같이, 본 발명에 따른 3차원 그래핀 구조체는 전기 전도도가 우수하여 전자 소자의 전극 재료로 사용하여 우수한 효율을 구현할 수 있다는 것을 알 수 있다.
본 발명에 따른 3차원 그래핀 구조체는, 0.5 내지 6 ㎛의 평균 직경을 가지는 것일 수 있다. 특히 본 발명에 따른 3차원 그래핀 구조체는 0.5 내지 3 ㎛의 직경 범위 내에 있는 구조체가 전체 3차원 그래핀 구조체의 80% 이상일 수 있다. 이와 같은 균일한 직경 분포를 가지는 3차원 그래핀 구조체를 에너지 저장 소재의 일 구성으로 이용하는 경우 전기 화학적 특성의 우수성을 도모할 수 있다.
하나의 예시에서, 본 발명에 따른 탄소나노튜브는 단일벽 탄소나노튜브(SWCNT) 또는 다중벽 탄소나노튜브(MWCNT)일 수 있다.
구체적으로, 본 발명의 탄소나노튜브의 크기는 특별히 제한되는 것은 아니나, 예를 들어, 1 ㎛ 내지 5 ㎛의 평균 길이를 가지고, 20 nm 내지 80 nm의 평균 직경을 가지는 탄소나노튜브일 수 있다.
본 발명은 3차원 그래핀 구조체 및 탄소나노튜브를 10 : 10 내지 20 중량부로 용매에 혼합하여 용액을 제조하는 단계; 및
제조한 용액을 여과하여 전극을 제조하는 단계를 포함하는 자가지지형 전극의 제조방법을 제공할 수 있다.
하나의 예로서, 자가지지형 전극의 제조방법은,
(1)3차원 그래핀 구조체를 제조하는 단계;
(2)상기 3차원 그래핀 구조체 및 탄소나노튜브를 일정 함량으로 용매에 혼합하여 용액을 제조하는 단계; 및
(3)제조한 용액을 여과하여 전극을 제조하는 단계를 포함할 수 있다.
하나의 예시에서, 3차원 그래핀 구조체를 제조하는 단계는 도 1에 나타난 바와 같이 그래핀 옥사이드 및 상기 그래핀 옥사이드 100 중량부 대비 200 내지 1,000 중량부의 질소, 인, 및 붕소 중 1 종 이상을 함유하는 화합물을 포함하는 혼합물을 분무하여, 3차원 그래핀 구조체를 형성하는 단계; 상기 3차원 그래핀 구조체를 환원시키는 단계; 및 상기 환원된 3차원 그래핀 구조체를 활성화시키는 단계를 포함한다.
본 발명에 따른 3차원 그래핀 구조체를 제조하는 단계는 그래핀 옥사이드와 함께 질소, 인, 및 붕소 중 1 종 이상을 함유하는 화합물을 혼합한 후, 분무하는 공정을 통해 3차원 구형 형상으로 모폴로지를 제어하여 그래핀의 재적층(restacking)문제를 극복할 수 있다.
즉, 상기 3차원 그래핀 구조체를 제조하는 단계는 그래핀 옥사이드 및 상기 그래핀 옥사이드 100 중량부 대비 200 내지 1,000 중량부의 질소, 인, 및 붕소 중 1 종 이상을 함유하는 함유 화합물을 포함하는 혼합물을 분무하여, 구형의 3차원 그래핀 구조체를 형성할 수 있다.
다른 예시에서, 상기 혼합물은 그래핀 옥사이드 100 중량부 대비 300 내지 800 중량부 또는 400 내지 600 중량부의 질소, 인, 및 붕소 중 1 종 이상을 함유하는 화합물을 포함할 수 있다.
그래핀 옥사이드는 질소, 인, 및 붕소 중 1 종 이상을 함유하는 화합물이 결합된 상태로 상기 혼합물 내에 존재할 수 있다.
하나의 예시에서, 혼합물 내 그래핀 옥사이드는 질소, 인, 및 붕소 중 1 종 이상을 함유하는 화합물로부터 유도되는 질소, 인, 및 붕소 중 1 종 이상의 도핑을 포함하고 있을 수 있다.
상기 혼합물은, 예를 들면 질소, 인, 및 붕소 중 1 종 이상을 함유하는 화합물을 포함하는 제 1 용액과 그래핀 옥사이드가 분산되어 있는 분산액을 혼합하여 형성할 수 있다.
상기 제 1 용액에는 질소, 인, 및 붕소 중 1 종 이상을 함유하는 화합물을 용해시킬 수 있는 용매, 예를 들면 공지의 유기 또는 무기 용매를 포함할 수 있다.
상기 분산액에는 그래핀 옥사이드가 효과적으로 분산되어 있을 수 있도록 하는 용매, 예를 들면 탈 이온수 등을 포함할 수 있다.
상기 혼합물 내에 그래핀 옥사이드가 질소, 인, 및 붕소 중 1 종 이상을 함유하는 화합물로부터 유도되는 질소, 인, 및 붕소 중 1 종 이상의 도핑을 포함하고 있을 수 있도록 하기 위한 공지의 공정, 예를 들면 소정의 온도 범위 내에서 교반하는 공정 등을 거칠 수 있다.
상기 3차원 그래핀 구조체를 제조하는 단계는 상기 혼합물을 분무하여, 3차원 그래핀 옥사이드 구조체를 형성하는 단계를 포함한다.
상기 분무하는 방법은, 특별히 제한되는 것은 아니며, 혼합액을 분무 장치 내로 공급하여 분무에 의해 액적을 형성한 후, 상기 액적을 건조하는 방법을 포함할 수 있으나, 이에 제한되는 것은 아니다.
보다 구체적인 예시에서, 분무 장치로는 초음파 분무 장치, 공기노즐 분무장치, 초음파 노즐 분무장치, 필터 팽창 액적 발생 장치 또는 정전 분무 장치 등이 사용될 수 있다.
그래핀 옥사이드 및 질소, 인, 및 붕소 중 1 종 이상을 함유하는 화합물을 포함하는 혼합액의 분무 공정을 거치는 경우, 3차원 그래핀 구조체가 형성될 수 있다.
상기 3차원 그래핀 구조체 내에 그래핀 옥사이드의 산소와, 질소, 인, 및 붕소 중 1 종 이상의 공유 결합을 통해 도핑이 존재한다.
상기 공유 결합은, 예를 들면 피롤릭(Pyrrolic) 부위에 주로 존재할 수 있다.
하나의 예시에서, 그래핀 옥사이드 및 질소, 인, 및 붕소 중 1 종 이상을 함유하는 화합물을 포함하는 혼합액의 분무 공정을 거쳐 형성된 3차원 그래핀 옥사이드 구조체의 질소, 인, 및 붕소 중 1 종 이상은 피롤릭(Pyrrolic) 부위 60% 이상, 70% 이상 또는 80% 이상 존재할 수 있다.
따라서, 3차원 그래핀 구조체의 구형 모폴로지를 효과적으로 제어하기 위하여, 상기 3차원 그래핀 구조체를 환원하는 단계를 포함한다.
즉, 본 발명에 따른 3차원 그래핀 구조체의 제조방법은 3차원 그래핀 구조체를 환원시키는 단계를 포함한다. 상기 환원시키는 단계를 거치는 경우 그래핀 옥사이드가 환원 그래핀 옥사이드로 되며, 3차원 그래핀 구조체의 모폴로지 및 질소, 인, 및 붕소 중 1 종 이상의 도핑 위치 분포가 변경될 수 있다.
즉, 상기 환원시키는 단계를 거치는 경우, 3차원 그래핀 구조체가 이후 활성화 처리의 조건에서 활성화제의 농도가 증대되더라도 3차원 구형 구조의 모폴로지의 변형 현상이 감소될 수 있을 정도의 조밀성을 확보할 수 있다.
또한, 상기 환원시키는 단계를 거친 3차원 그래핀 구조체의 질소, 인, 및 붕소 중 1 종 이상은 그래피틱 센터(graphitic center) 부위에 10% 내지 80%의 범위 내로 도핑되어 있을 수 있다. 상기 범위 내로 질소, 인, 및 붕소 중 1 종 이상이 그래피틱 센터(graphitic center) 부위에 도핑되어 있는 경우, 에너지 저장장치용 전극 소재로서 사용될 경우 우수한 전기 화학적 특성을 확보하는데 유리할 수 있다.
상기 3차원 구형 구조체를 환원시키는 방법은, 특별히 제한되는 것은 아니며, 공지의 환원 방법을 제한 없이 채택할 수 있다.
하나의 예시에서, 상기 환원시키는 단계는 열적 환원법, 유기용매를 이용하고 가열을 통한 환원법, 수소 플라즈마에 의한 환원법, 마이크로파 인가에 의한 환원법, 환원제에 의한 환원법, 광촉매 환원법, 전기화학적 환원법 및 플래쉬 컨버전법으로 이루어진 군에서 선택되는 어느 하나 이상의 방법을 이용할 수 있다.
보다 구체적인 예시에서, 상기 환원시키는 단계는 아르곤 가스와 같은 불활성 기체의 존재 하에, 180 내지 400℃의 온도 범위 내에서 열적 환원시키는 것, 또는 히드라진이나 나트륨 하이드라이드와 같은 환원제를 이용하여 환원시키는 것 등을 포함할 수 있으나 이에 제한되는 것은 아니다.
상기와 같은 환원시키는 단계를 거치는 경우, 환원 그래핀 옥사이드에 질소, 인, 및 붕소 중 1 종 이상이 도핑된 3차원 그래핀 구조체가 형성될 수 있다.
본 발명에 따른 3차원 그래핀 구조체를 제조하는 단계는 상기 3차원 그래핀 구조체에 마이크로 또는 메조 사이즈의 기공을 형성하여 비표면적이나, 단위 질량당 부피 값을 증가시켜 전기 화학적 특성을 증대시키기 위해서 3차원 그래핀 구조체를 환원시키는 단계 이후에, 환원된 3차원 그래핀 구조체를 활성화시키는 단계를 포함할 수 있다.
상기 환원된 활성화 공정을 통해 비표면적 및 단위 질량 당 부피와 같은 물성을 증대시켜 에너지 저장 소재에 적용되었을 때 우수한 전기 화학적 특성을 확보할 수 있다.
특히, 본 발명은 3차원 구형 구조체의 모폴로지를 변형시키지 아니하면서, 비표면적 및 질량당 부피 값의 증대에 따른 전기 화학적 특성을 증대를 효과적으로 도모할 수 있을 정도의 활성화 공정이 필요하다.
상기 활성화시키는 단계는 KOH, NaOH, LiOH, H3PO4 및 증기 중 1 종 이상의 활성화제를 이용하여 수행될 수 있다.
활성화 단계에서 활성화제의 함량이 지나치게 적을 경우 비표면적 증대 등의 효과가 미미하여, 목적하는 전기 화학적 특성의 우수성 확보에 어려움이 있을 수 있고, 또한 활성화제의 함량이 많을 경우 3차원 구형 그래핀의 구조가 풀려 2차원 형상 등으로 변형될 우려가 있으므로, 이러한 점을 고려하여 적절한 범위 내의 활성화제 농도를 유지한 상태로 3차원 그래핀 구조체의 활성화를 도모하여야 한다.
하나의 예시에서, 상기 활성화시키는 단계는 환원된 3차원 그래핀 구조체와 활성화제의 중량 비율을 1:2 내지 1:15의 범위 내로 조절하여 수행될 수 있다. 상기 범위 내에서 모폴로지의 제어 및 전기 화학적 특성의 우수성을 동시에 확보할 수 있다.
다른 예시에서, 상기 활성화시키는 단계는 환원된 3차원 그래핀 구조체와 활성화제의 중량 비율을 1:2 내지 1:12 또는 1:5 내지 1:12의 범위 내로 조절하여 수행될 수 있다.
상기와 같이 활성화 단계를 거친 그래핀 구조체의 경우, 3차원 구형 구조의 모폴로지는 그대로 유지한 상태로, 비표면적 및 단위 질량 당 부피의 증대 효과를 가져올 수 있다.
본 발명에 따른 용액을 제조하는 단계는 3차원 그래핀 구조체 및 탄소나노튜브를 10: 10 내지 20 중량부로 용매에 혼합하여 용액을 제조할 수 있다. 구체적으로, 3차원 그래핀 구조체 및 탄소나노튜브를 10: 10 내지 20 중량부, 10: 10 내지 20 중량부, 10: 10 내지 18 중량부, 10: 10 내지 16 중량부, 10: 12 내지 20 중량부, 10: 12 내지 18 중량부, 10: 12 내지 16 중량부 또는 10: 13 내지 17 중량부로 용매에 혼합하여 용액을 제조할 수 있다. 상기와 같은 비율로 3차 그래핀 구조체를 혼합함으로써, 본 발명의 자가지지형 전극은 얇은 두께를 가지면서도 적정한 강도를 나타낼 수 있고, 높은 밀도를 가져 고용량의 특징을 가질 수 있다.
구체적으로, 용액을 제조하는 단계에서 용매는 이소프로판올, 증류수, 에탄올, 디메틸포름아미드(DMF) 및 n-메틸-2-피롤리돈(NMP)로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 보다 구체적으로, 용매는 이소프로판올, 증류수, 에탄올, 디메틸포름아미드(DMF) 또는 n-메틸-2-피롤리돈(NMP)일 수 있고, 예를 들어, 이소프로판올 및 증류수가 1:1로 혼합된 것일 수 있다.
또한, 본 발명의 용액을 제조하는 단계는 3차원 그래핀 구조체 및 탄소나노튜브를 혼합한 용액에 초음파를 2시간 이상 조사하여 수행할 수 있다. 구체적으로, 상기 용액에 2시간 내지 6시간, 2시간 내지 5시간 또는 2시간 내지 4시간 동안 초음파를 조사하여 3차원 그래핀 구조체와 탄소나노튜브가 균일하게 혼합될 수 있다.
본 발명에 따른 전극을 제조하는 단계에서 용액을 여과하는 방법은, 특별히 제한되는 것은 아니며, 공지의 여과 방법을 제한 없이 채택할 수 있다.
하나의 예시에서, 전극을 제조하는 단계는 진공 여과 또는 빙결 여과 (freeze filtration) 방법을 이용하여 용액을 여과할 수 있다.
또한, 본 발명의 전극을 제조하는 단계는 여과한 용액을 50℃ 내지 100℃의 온도에서 20 시간 내지 30 시간 동안 건조하여 수행할 수 있다. 구체적으로, 전극을 제조하는 단계는 여과한 용액을 50℃ 내지 100℃, 50℃ 내지 90℃, 50℃ 내지 70℃ 또는 55℃ 내지 75℃의 온도에서 20 시간 내지 30 시간, 20 시간 내지 25 시간, 23 시간 내지 30 시간 또는 22 시간 내지 25 시간 동안 건조하여 전극을 형성할 수 있다.
구체적으로, 본 발명의 전극을 제조하는 단계는 0.5 내지 1.5 mm의 두께의 전극을 형성할 수 있다. 보다 구체적으로, 전극을 제조하는 단계는 0.5 내지 1.5 mm, 0.5 내지 1.3 mm, 0.5 내지 1.0 mm, 0.7 내지 1.5 mm, 0.7 내지 1.3 mm 또는 0.7 내지 1.0 mm 두께의 전극을 형성할 수 있다.
본 발명에 따른 자가지지형 전극의 제조방법은 0.5mg/cm2 내지 5mg/cm2 함량으로 3차원 그래핀 구조체를 포함하도록 전극을 형성할 수 있다. 구체적으로, 본 발명의 자가지지형 전극은 1.0cm2 당 0.5mg 내지 5mg, 0.5mg 내지 4mg, 0.5mg 내지 3mg, 0.5mg 내지 2mg, 0.5mg 내지 1.5mg, 0.8mg 내지 5mg, 0.8mg 내지 4mg, 0.8mg 내지 3mg, 0.8mg 내지 2mg, 0.8mg 내지 1.5mg 또는 0.7mg 내지 1.2mg의 3차원 그래핀 구조체를 포함하도록 전극을 형성할 수 있다.
나아가, 본 발명은 상기 자가지지형 전극을 포함하는 슈퍼커패시터를 제공한다.
하나의 예로서, 상기 자가지지형 전극은, 상호 대향 배치되고, 3차원 그래핀 구조체 및 탄소나노튜브를 포함하는 한 쌍의 전극; 상기 한 쌍의 전극 사이에 구비되는 전해질; 및 상기 한 쌍의 전극 사이에 구비되고, 전기적 단락을 억제하는 분리막을 포함할 수 있다.
이하 본 발명에 따르는 실시예 등을 통해 본 발명을 보다 상세히 설명하나, 본 발명의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.
제조예 1 - 3차원 그래핀 구조체의 제조(A1)
Hummer 법 또는 상용 그래핀 옥사이드 제품으로 제조된 그래핀 옥사이드를 포함하는 제 1 용액과 시안아미드를 포함하는 제 2 용액을 혼합하되, 상기 그래핀 옥사이드와 시안 아미드의 중량 비율로 1:5로 조절하여 혼합액을 제조하였다. 그 후, 상온에서 5분 동안 교반하고, 약 90℃의 온도에서 12 시간 동안 교반 하였다. 또한, 상기 혼합액을 분무 건조 장치에 넣고, 미세한 액적 상태로 분사하여 3차원 그래핀 구조체를 형성하였다. 그 후, 상기 3차원 그래핀 구조체의 환원 처리를 위하여, 약 900℃의 온도에서 아르곤 가스 분위기 하에 열 환원 공정을 수행하여, 환원 그래핀 옥사이드를 제조하였다. 마지막으로, 상기 환원 그래핀 옥사이드와 KOH의 중량 비율이 1:6의 범위가 되는 KOH 용액에 상기 환원 그래핀 옥사이드를 활성화시켜, KOH 활성화된 3차원 그래핀 구조체를 제조하였다.
제조예 2 - 3차원 그래핀 구조체의 제조(A2)
환원 그래핀 옥사이드와 KOH의 중량 비율이 1:8의 범위가 되는 KOH 용액에 상기 환원 그래핀 옥사이드를 활성화시켜, KOH 활성화된 3차원 그래핀 구조체를 제조한 것을 제외하고는 제조예 1과 동일한 방식으로 3차원 그래핀 구조체를 제조하였다.
비교제조예 - 활성화 공정을 진행하지 않은 3차원 그래핀 구조체의 제조
KOH 활성화 공정을 거치지 않은 것을 제외하고는 제조예 1과 동일한 방식으로 그래핀 구조체를 제조하였다.
실시예 1- 바인더프리 전극의 제조
제조예 1에서 제조한 3차원 그래핀 구조체 9.62mg과 단일벽 탄소나노튜브(SWCNT) 14.43mg을 이소프로판올과 증류수의 부피 비율이 1:1가 되는 용매에 혼합한 용액을 제조하였다. 상기 용액을 교반하면서 3시간 동안 초음파를 조사하였다. 초음파를 조사한 용액을 분산성을 유지하면서 필터한 후 60℃의 온도에서 24시간 동안 건조하여 전극을 제조하였다.
이때, 전극 내에 포함된 3차원 그래핀 구조체의 함량은 1mg/cm2이고, 3차원 그래핀 구조체와 단일벽 탄소나노튜브의 비율은 4:6이다.
실시예 2- 바인더프리 전극의 제조
제조예 2에서 제조한 3차원 그래핀 구조체 9.62mg과 단일벽 탄소나노튜브(SWCNT) 14.43mg을 이소프로판올과 증류수의 부피 비율이 1:1가 되는 용매에 혼합한 용액을 제조한 것을 제외하고는 실시예 1과 동일한 방식으로 전극을 제조하였다.
비교예 1 - 바인더프리 전극의 제조
비교제조예에서 제조한 그래핀 구조체 9.62mg과 단일벽 탄소나노튜브(SWCNT) 14.43mg을 이소프로판올과 증류수의 부피 비율이 1:1가 되는 용매에 혼합한 용액을 제조한 것을 제외하고는 실시예 1과 동일한 방식으로 전극을 제조하였다.
비교예 2 - 바인더 포함 전극의 제조
비교제조예에서 제조한 그래핀 구조체와 바인더인 PVDF(Polyvinylidene fluoride), 도전재인 Carbon black powder를 무게비 85:10:5로 전극을 제조하였다.
실험예 1 -전자현미경 관찰 이미지 측정을 통한 구조 확인
제조예 1 및 비교제조예에 따른 그래핀 구조체의 모폴로지(morphology)를 확인하기 위하여, 주사전자현미경(SEM)을 이용하여 이미지를 촬영하였고, 제조예 1에서, 3차원 그래핀 구조체의 (a) 활성화 전과 (b) 활성화 후의 구조 변화 확인을 위하여, 투과전자현미경(TEM)을 이용하여 이미지를 촬영하였고, 그 결과는 도 2 및 도 3에 도시하였다.
또한 실시예 1에서 제조한 자가지지형 전극의 두께를 확인하기 위하여, 주사전자현미경(SEM)을 이용하여 전극의 측면을 촬영하였고, 그 결과는 도 4에 도시하였다.
구체적으로, 도 2에 도시된 바와 같이, 제조예 1 및 비교제조예에 따른 그래핀 구조체의 경우, 그래핀 옥사이드와 함께 질소 함유 화합물을 소정 함량 포함하는 혼합물을 이용하여 3차원 그래핀 구조체를 형성함으로써, 모폴로지를 구형으로 제어할 수 있음을 확인할 수 있었다.
도 3을 살펴보면, 3차원 그래핀 구형 구조체가 활성화 전/후를 비교할 때, 활성화 공정 처리에 의해 비표면적 및 단위 질량 당 나노 천공 부피가 증대된 것을 확인할 수 있다.
도 4(a)는 실시예 1에서 제조한 자가지지형 전극의 이미지이고, 도 4(b)는 비교예 2에서 제조한 전극의 이미지이다. 도 4를 살펴보면, 실시예 1의 자가지지형 전극은 60㎛의 두께를 가지고, 비교예 2의 전극은 100㎛의 두께를 가지는 것을 확인 수 있다. 이를 통해, 본 발명에 따른 자가지지형 전극은 기존의 바이더를 포함하는 전극에 비해 얇은 두께를 가지는 것을 알 수 있다.
실험예 3 - BET 비표면적 측정
활성화 처리가 된 제조예 1 및 제조예 2의 그래핀 구조체와 활성화 처리가 되지 않은 비교제조예의 그래핀 구조체의 BET 비표면적, 단위 질량 당 부피 및 밀도를 측정하였고, 그 결과를 하기 표 1 및 도 5에 도시하였다.
제조예 1 제조예 2 비교제조예
BET 비표면적(m2/g) 631 1440 270
단위 질량 당부피(cm3/g) 0.841 1.216 0.64
밀도(g/cm3) 0.77 0.6 0.91
도 5를 살펴보면, 도 5의 (a)는 상대 압력에 따른 흡수량을 나타낸 그래프로, BET 비표면적을 확인할 수 있다. 구체적으로, 활성화된 그래핀 구조체는 600 내지 1450m2/g의 BET 비표면적을 나타내고, 제조예 1의 그래핀 구조체의 BET 비표면적은 631m2/g이고, 제조예 2의 그래핀 구조체의 BET 비표면적은 1440m2/g이다. 반면, 활성화되지 않은 그래핀 구조체는 270m2/g으로 BET 비표면적이 현저하게 차이나는 것을 알 수 있다.
또한, 도 5의 (b)는 그래핀 구조체의 기공 크기 분포와 부피를 나타낸 그래프로, 그래핀 구조체의 기공 부피를 확인할 수 있다. 구체적으로, 활성화된 그래핀 구조체는 평균 기공 크기가 활성되지 않은 그래핀 구조체와 비교하여 현저하게 작은 것을 알 수 있다. 도 5의 (b)와 표 1을 살펴보면, 활성화된 그래핀 구조체는 0.8 내지 1.3 cm3/g의 기공 부피를 나타내고, 제조예 1의 그래핀 구조체의 기공 부피는 0.841cm3/g이고, 제조예 2의 기공 부피는 1.216cm3/g이다. 반면, 활성화되지 않은 그래핀 구조체인 비교제조예는 0.64cm3/g의 기공 부피를 나타내어
표 1을 살펴보면, 활성화된 그래핀 구조체(제조예 1 및 2)는 0.8 g/cm3 이하의 밀도를 나타내어 활성화되지 않은 그래핀 구조체(비교제조예)의 밀도인 0.91g/cm3와 비교하여 작은 밀도를 가지는 것을 알 수 있다.
실험예 3 - 화학적 특성 평가
제조예 1에 따른 3차원 그래핀 구조체에 화학 성분을 분석하기 위하여 전자에너지 순실 분광분석(EELS)을 수행하였고, 제조예 1에 따른 3차원 그래핀 구조체에서, 활성화 처리에 따른 화학 성분 변화를 확인하기 위하여, X선 광전자 분광분석(XPS)을 수행하였고, 그 결과를 도 6, 도 7 및 표 2에 나타내었다.
제조예 1 비교제조예
탄소 원자 비율(at%) 97.52 86
산소 원자 비율(at%) 1.68 6
질소 원자 비율(at%) 0.8 8
탄소/산소 비율(const.) >39 <7
도 6에 도시된 바와 같이 제조예 1에 따른 3차원 그래핀 구조체의 EELS 분석 결과이다. EELS 분석을 통하여 π 결합과 σ결합간 분율을 계산하여 sp2 결합(bonding) 과 sp3 결합 간 분율을 계산할 수 있다. 이때 그라파이트(graphite)는 sp2 결합이 100%으로 구성됐다고 가정하여, 그라파이트 대비 3차원 그래핀 구조체가 얼마나 sp2 결합을 이루는지 측정하는 분석법이며, 위의 분석을 통해 3차원 그래핀 구조체가 sp2 결합이 85% 정도로 구성됨을 확인할 수 있다
도 7에 도시된 바와 같이, 제조예 1에 따른 3차원 그래핀 구조체와 비교제조예에 따른 그래핀 구조체의 XPS 피크 분석 결과는 모두 250-300eV에서 나타나는 C1s 피크와 525-550eV에서 나타나는 O1s 피크를 확인할 수 있다. 반면, 375-425eV에서 나타나는 N1s는 비교제조예의 그래핀 구조체에서만 나타나는 것으로 보아, 활성화된 3차원 그래핀에는 시안 아미드의 질소가 활성화 처리로 인해 제거되었고, 질소가 제거된 자리엔 그래핀 내 탄소간 결합이 이뤄져 sp2 결합이 형성됨을 확인할 수 있다.
구체적으로 표 2를 살펴보면, 제조예 1에 따른 3차원 그래핀 구조체는 탄소 원자가 97.52at%, 산소 원자가 1.68at%, 질소 원자가 0.8at%의 비율로 구성되고, 비교제조예에 따른 그래핀 구조체는 탄소 원자가 86at%, 산소 원자가 6at%, 질소 원자가 8at%의 비율로 구성되는 것을 알 수 있다. 이를 통해, 본 발명에 따른 자가지지형 전극은 상기와 같은 3차원 그래핀 구조체를 포함하여 높은 전기전도도를 나타내어 고율 특성이 우수하고, 전해질과 전극 소재간의 부가적인 반응이 감소하여 전극 소재 열화(degradation)이 감소할 수 있다.
실험예 4 - 전기 화학적 특성 평가
실시예 1 및 2와 비교예 1 및 비교예 2에 따른 전극의 전기 화학적 특성을 평가하기 위하여, 하기와 같은 방식으로 셀을 제조한 후, 실시예 1, 실시예 2, 비교예 1 및 비교예 2에 따른 전극을 포함하는 셀의 정전류 충방전 테스트를 수행하였고, 그 결과를 각각 도 8 내지 도 10에 도시하였고, 또한 하기 표 3 내지 표 5에 수치적으로 표현하였다. 이때, 도 8은 비교예 1의 전극, 도 9는 비교예 2의 전극, 도 10(a)는 실시예 1의 전극 및 도 10(b)는 실시예 2의 전극을 포함하는 셀의 정전류 충방전 테스트 결과 그래프이다.
구체적으로, 2032 type coin cell을 이용하였으며 전해액은 1M TEABF4 (Tetraethylammonium tetrafluoroborate purum)in AN(acetonitrile)용액, 실시예 1, 실시예 2, 비교예 1 및 비교예 2에서 제조한 전극을 사용하였다. 그 후, 직경 12mm의 원 모양으로 펀칭하여 원형 전극을 제조한 후에, 아르곤 분위기의 glove box 내에서 위의 전해질을 포함한 2032 type coin cell을 제작하였다. 이 경우, 2전극 셀이며 대칭형 슈퍼 커패시터 셀이다.
SWCNT 실시예 1 실시예 2 비교예
0.1A/g 68.8 F/g 136.3 F/g 154.2 F/g 125 F/g
0.2A/g 68.5 F/g 134.6 F/g 152.9 F/g 124 F/g
0.4A/g 67.2 F/g 131.6 F/g 150.2 F/g 121 F/g
1A/g 64.6 F/g 127.32 F/g 145.7 F/g 116.6 F/g
2A/g 60.1 F/g 120.7 F/g 140 F/g 110.1 F/g
Current Density (A/g) 0.5 A/g 1 A/g 2 A/g 5 A/g 10 A/g
Specific capacitance (F/g) 87 F/g 84.4 F/g 82.13 F/g 68.44 F/g 53.04 F/g
표 3과 도면에서 알 수 있듯이, 실시예 1 및 2에 따른 셀이 저율(0.1A/g) 내지 고율(2A/g) 테스트에서 비교예 1 대비 우수한 비축전 용량값을 가짐을 확인할 수 있었다.
한편, 구형의 3차원 그래핀 구조체 전극 소재와 KOH 활성화 공정 후의 구형의 3차원 그래핀 구조체 전극 소재의 비축전 용량값의 효율을 살펴보면, KOH 중량 비율이 증가할수록 큰 BET 비표면적 및 큰 단위 질량당 나노 천공 부피 특성을 나타내는 만큼 우수한 비축전 용량값을 나타냄을 확인할 수 있었다.
또한, 표 4 및 도 9를 살펴보면, 실시예 1 및 2에 따른 셀이 저율(0.1A/g) 내지 고율(2A/g) 테스트에서 비교예 2 대비 우수한 비축전 용량값을 가짐을 확인할 수 있었다. 구체적으로, 비교예 2의 셀은 2A/g의 고율에서 82.13 F/g의 비축전 용량값을 나타내는 반면, 실시예 1 및 실시예 2의 셀은 각각 120.7 F/g 및 140 F/g의 비축전 용량값을 나타낸다. 이를 통해, 바인더를 포함하는 전극은 본 발명에 따른 자가지지형 전극과 같이 단일벽 탄소나노튜브(SWCNT)를 포함하고, 바인더를 포함하지 않는 전극보다 성능이 현저하게 저하되는 것을 확인할 수 있다.
상기 표 3에 나타낸 실시예 1, 실시예 2 및 비교예 1의 전극은 그래핀 구조체와 단일벽 탄소나노튜브를 포함하는 경우의 비축전 용량값이므로 하기 식 1을 이용하여 순수한 3차원 그래핀 구조체의 비축전 용량값을 구하여 하기 표 5에 나타내었다.
[식 1]
C그래핀 구조체 = (C전체-CSWCNT X 0.6)/0.4
제조예 1 제조예 2 비교제조예
0.1A/g 237.6 F/g 282.4 F/g 209.4 F/g
0.2A/g 233.8 F/g 279.4 F/g 207.3 F/g
0.4A/g 228.1 F/g 274.8 F/g 201.7 F/g
1A/g 221.4 F/g 267.4 F/g 194.6 F/g
2A/g 211.5 F/g 259.8 F/g 185.1 F/g
Rate capa(0.1 vs 2) 89.1% 92.1% 88.4%
표 5를 살펴보면, 제조예 1 및 제조예 2에서 제조한 3차원 그래핀 구조체가 율특성이 89% 이상인 반면, 비교제조예에서 제조한 그래핀 구조체는 88.5%로 나타난다. 이를 통해, 본 발명에 따른 자가지지형 전극은 C/O의 비율이 높은 3차원 그래핀 구조체를 포함함으로써 전기전도도가 증가하여 고율 특성이 향상됨을 알 수 있다.
실험예 5 - 물리적 특성 평가
실시예 1에서 제조한 자가지지형 전극을 대상으로 PI-85 SEM picoIndenter(Bruker 社), FEI(XL-30 FEG)를 이용하여 압축강도를 측정하였다. 구체적으로 압축강도 측정 방법은 나노인덴터(nanoindenter)의 기판(substrate)에 실시예 1의 자가지지형 전극을 고정한 상태로, 특정 수치의 힘을 인덴터에 인가하여 힘-변위 곡선(Force-displacement curve)을 통해 자가지지형 전극의 압축강도(compressive strength)를 측정하였다. 그 결과는 하기 도 12에 나타내었다.
도 12를 살펴보면, 실시예 1에서 제조한 자가지지형 전극은 10 내지 100MPa의 압축강도를 나타내는 것을 확인할 수 있다. 이를 통해 본 발명에 따른 자가지지형 전극은 탄소나노튜브를 포함하여 우수한 강도를 나타내는 것을 알 수 있다.
실험예 6 - 그래핀 구조체의 사이클 성능 측정
제조예 1 및 비교제조예에서 제조한 그래핀 구조체를 이용하여 사이클 성능을 측정하였다. 구체적으로 사이클 특성의 경우, galvanostatic charge-discharge를 통해 진행하였으며, 전류밀도의 경우 양쪽 무게 기준으로 40A/g (실제 전류는 대략 80mA (한 쪽 전극의 그래핀 구조체의 무게가 대략 1mg이므로, 양쪽은 2mg))을 인가하였고 전압범위는 2.0V에서 3.7V 사이에서 충방전 사이클을, 1 내지 100,000 사이클을 반복 수행한 후 사이클 유지율(Cycle retention)을 측정하였다. 그 결과는 하기 도 13에 나타내었다.
도 13를 보면, 10만회 사이클을 반복한 후에도 1회 사이클 비축전 용량 대비 10만회 사이클 비축전 용량 유지율이 95% 이상으로 내구성이 우수한 것을 알 수 있다. 이를 통해, 본 발명에 따른 전극은 수명 특성이 우수한 것을 확인할 수 있고, 활성화되지 않은 그래핀 구조체를 포함하는 전극의 수명 특성은 활성화된 그래핀 구조체의 경우보다 수명 특성이 낮은 것을 알 수 있다.
본 발명에 따른 자가지지형 전극은 3차원 그래핀 구조체와 탄소나노튜브를 일정 함량으로 포함함으로써, 바인더 및 집전체 없이도 고밀도 고강도를 나타내고 반응성이 우수하며 제조공정이 간단하여 생산성이 우수한 장점이 있다.

Claims (13)

  1. 구형의 3차원 그래핀 구조체; 및 탄소나노튜브를 포함하고,
    상기 3차원 그래핀 구조체는 전극을 기준으로 1.0cm2 당 0.5mg 내지 5mg인 것을 특징으로 하는 자가지지형 전극.
  2. 제 1 항에 있어서,
    탄소나노튜브는 3차원 그래핀 구조체 10 중량부를 기준으로 10 중량부 내지 20 중량부로 포함하는 자가지지형 전극.
  3. 제 1 항에 있어서,
    상기 3차원 그래핀 구조체는 산소 대비 탄소의 비율(C/0)이 25 이상인 것을 특징으로 하는 자가지지형 전극.
  4. 제 1 항에 있어서,
    전극의 강도는 10 MPa 내지 100 MPa인 것을 특징으로 하는 자가지지형 전극.
  5. 제 1 항에 있어서,
    전극의 밀도는 0.4 내지 1 g/cc인 자가지지형 전극.
  6. 3차원 그래핀 구조체 및 탄소나노튜브를 10: 10 내지 20 중량부로 용매에 혼합하여 용액을 제조하는 단계; 및
    제조한 용액을 여과하여 전극을 제조하는 단계를 포함하는 자가지지형 전극의 제조방법.
  7. 제 6 항에 있어서,
    용액을 제조하는 단계에서 용매는 이소프로판올, 증류수, 에탄올, 디메틸포름아미드(DMF) 및 n-메틸-2-피롤리돈(NMP)로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 자가지지형 전극의 제조방법.
  8. 제 6 항에 있어서,
    3차원 그래핀 구조체는 그래핀 옥사이드 및 그래핀 옥사이드 100 중량부 대비 200 내지 1,000 중량부의 질소, 인, 및 붕소 중 1 종 이상을 함유하는 화합물을 포함하는 혼합물을 분무하고 환원시켜 제조한 환원된 3차원 그래핀 구조체인 자가지지형 전극의 제조방법.
  9. 제 8 항에 있어서,
    환원된 3차원 그래핀 구조체를 KOH, NaOH, LiOH, H3PO4 및 증기 중 1 종 이상의 활성화제를 이용하여 활성화 과정을 수행하는 자가지지형 전극의 제조방법.
  10. 제 6 항에 있어서,
    용액을 제조하는 단계는 용액에 초음파를 2시간 이상 조사하여 수행하는 자가지지형 전극의 제조방법.
  11. 제 6 항에 있어서,
    제조한 용액을 여과하여 전극을 제조하는 단계는 여과한 용액을 50℃ 내지 100℃의 온도에서 20 시간 내지 30 시간 동안 건조하여 수행하는 자가지지형 전극의 제조방법.
  12. 제 6 항에 있어서,
    제조한 전극은 3차원 그래핀 구조체가 0.5mg/cm2 내지 5mg/cm2 함량으로 포함된 자가지지형 전극의 제조방법.
  13. 제 1 항 내지 제 5 항 중 어느 한 항에 따른 자가지지형 전극을 포함하는 슈퍼커패시터.
PCT/KR2019/011766 2019-08-09 2019-09-10 바인더 프리 자가지지형 전극 및 이의 제조방법 WO2021029480A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0097696 2019-08-09
KR1020190097696A KR102106532B1 (ko) 2019-08-09 2019-08-09 바인더 프리 자가지지형 전극 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2021029480A1 true WO2021029480A1 (ko) 2021-02-18

Family

ID=70920027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/011766 WO2021029480A1 (ko) 2019-08-09 2019-09-10 바인더 프리 자가지지형 전극 및 이의 제조방법

Country Status (2)

Country Link
KR (1) KR102106532B1 (ko)
WO (1) WO2021029480A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102361162B1 (ko) * 2020-06-03 2022-02-10 한국세라믹기술원 고출력 특성을 갖는 하이브리드 슈퍼커패시터용 음극활물질 제조 방법과, 이를 갖는 하이브리드 슈퍼커패시터 및 그 제조 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101813893B1 (ko) * 2017-07-12 2018-01-02 한국지질자원연구원 구겨진 형상의 실리콘-탄소나노튜브-그래핀 복합체 제조방법, 이에 따라 제조된 복합체 및 복합체를 포함하는 이차전지
KR101932663B1 (ko) * 2012-07-12 2018-12-26 삼성전자 주식회사 리프레쉬 주기 정보를 저장하는 반도체 메모리 장치 및 그 동작방법
KR101973997B1 (ko) * 2017-11-10 2019-05-02 한국전력공사 3차원 그래핀 복합체의 제조방법, 이에 의하여 제조된 3차원 그래핀 복합체 및 이를 포함하는 슈퍼커패시터 전극
KR20190076943A (ko) * 2019-06-24 2019-07-02 대주전자재료 주식회사 그래핀-탄소나노튜브 복합체 및 이의 제조 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101024940B1 (ko) * 2009-02-03 2011-03-31 삼성전기주식회사 표면 산화된 전이금속질화물 에어로젤을 이용한 하이브리드수퍼커패시터
WO2015179541A1 (en) * 2014-05-22 2015-11-26 Ozkan Cengiz S Battery electrode and method
KR101832663B1 (ko) 2017-03-15 2018-02-26 연세대학교 산학협력단 고밀도 및 고용량 특성을 갖는 3차원 그래핀 구조체, 이의 제조방법 및 이를 포함하는 전극 소재

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101932663B1 (ko) * 2012-07-12 2018-12-26 삼성전자 주식회사 리프레쉬 주기 정보를 저장하는 반도체 메모리 장치 및 그 동작방법
KR101813893B1 (ko) * 2017-07-12 2018-01-02 한국지질자원연구원 구겨진 형상의 실리콘-탄소나노튜브-그래핀 복합체 제조방법, 이에 따라 제조된 복합체 및 복합체를 포함하는 이차전지
KR101973997B1 (ko) * 2017-11-10 2019-05-02 한국전력공사 3차원 그래핀 복합체의 제조방법, 이에 의하여 제조된 3차원 그래핀 복합체 및 이를 포함하는 슈퍼커패시터 전극
KR20190076943A (ko) * 2019-06-24 2019-07-02 대주전자재료 주식회사 그래핀-탄소나노튜브 복합체 및 이의 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOUNG HWAN KIM, BYUNG HOON PARK, YEON JUN CHOI, GEON-WOO LEE, HYUN-KYUNG KIM, KWANG-BUM KIM: "Compact graphene powders with high volumetric capacitance: Microspherical assembly of graphene via surface modification using cyanamide", ENERGY STORAGE MATERIALS, 24 January 2020 (2020-01-24), pages 351 - 361, XP055793507, Retrieved from the Internet <URL:https://www.sciencedirect.com/science/article/pii/S2405829719308992> [retrieved on 20200424] *

Also Published As

Publication number Publication date
KR102106532B1 (ko) 2020-05-28

Similar Documents

Publication Publication Date Title
WO2016159663A1 (ko) 다공성 실리콘-실리콘 옥사이드-탄소 복합체, 및 이의 제조방법
WO2019108039A2 (ko) 음극 및 이를 포함하는 이차전지
WO2019194613A1 (ko) 양극 활물질, 상기 양극 활물질의 제조 방법, 상기 양극 활물질을 포함하는 양극, 및 상기 양극을 포함하는 이차 전지
WO2018088735A1 (ko) 음극 및 상기 음극의 제조방법
WO2012083538A1 (zh) 电极片及其制备方法及超级电容器和锂离子电池
WO2021172879A1 (ko) 리튬 금속 음극의 제조방법, 이에 의해 제조된 리튬 금속 음극 및 이를 포함하는 리튬-황 전지
WO2019156462A1 (ko) 신규한 도전재, 상기 도전재를 포함하는 전극, 상기 전극을 포함하는 이차 전지, 및 상기 도전재의 제조 방법
WO2020149681A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2022060021A1 (ko) 리튬 금속 전극의 제조방법, 이에 의해 제조된 리튬 금속 전극, 및 이를 포함하는 리튬 이차 전지
WO2014129749A1 (ko) Si/C 복합체, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지용 음극 활물질
WO2022086098A1 (ko) 그래핀-실리콘 복합체를 포함하는 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2022050664A1 (ko) 양극 활물질, 상기 양극 활물질을 포함하는 양극, 및 상기 양극을 포함하는 이차 전지
WO2022055309A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2022005210A1 (ko) 리튬-황 전지용 양극 및 이의 제조방법
WO2021241959A1 (ko) 프리스탠딩 필름형 리튬 이차전지용 양극재, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2021029480A1 (ko) 바인더 프리 자가지지형 전극 및 이의 제조방법
WO2024096397A1 (ko) 실리콘-그래핀 복합 음극재 및 그 제조방법
WO2020242257A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2023008783A1 (ko) 리튬-황 전지용 전해질 및 이를 포함하는 리튬-황 전지
WO2019093825A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2022086026A1 (ko) 리튬 이차전지용 양극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2011132952A2 (ko) 전기화학소자 전극, 이의 제조 방법 및 전기화학소자
WO2023068621A1 (ko) 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2023153572A1 (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2023128592A1 (ko) 리튬-황 전지용 양극 및 그의 제조방법 및 그를 포함하는 리튬-황 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941331

Country of ref document: EP

Kind code of ref document: A1