WO2021243525A1 - 电解液以及使用其的电化学装置和电子装置 - Google Patents

电解液以及使用其的电化学装置和电子装置 Download PDF

Info

Publication number
WO2021243525A1
WO2021243525A1 PCT/CN2020/093792 CN2020093792W WO2021243525A1 WO 2021243525 A1 WO2021243525 A1 WO 2021243525A1 CN 2020093792 W CN2020093792 W CN 2020093792W WO 2021243525 A1 WO2021243525 A1 WO 2021243525A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
compound
group
additive
Prior art date
Application number
PCT/CN2020/093792
Other languages
English (en)
French (fr)
Inventor
王翔
栗文强
唐超
郑建明
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to PCT/CN2020/093792 priority Critical patent/WO2021243525A1/zh
Priority to CN202080001143.8A priority patent/CN111801834B/zh
Publication of WO2021243525A1 publication Critical patent/WO2021243525A1/zh
Priority to US18/073,007 priority patent/US20230105866A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This application relates to the field of energy storage, in particular to an electrolyte and an electrochemical device and an electronic device using the electrolyte.
  • the present application attempts to solve at least one problem in the related field at least to some extent by providing an electrolyte and an electrochemical device and an electronic device using the electrolyte.
  • the present application provides an electrolyte, which contains a compound of formula (I):
  • R 11 , R 12 , R 13 and R 14 are each independently selected from a hydrogen atom, a substituted or unsubstituted C 1 -C 20 hydrocarbon group, a substituted or unsubstituted C 1 -C 20 heteroatom-containing organic functional group;
  • At least one of R 11 , R 12 , R 13 and R 14 is
  • R 15 and R 17 are each independently selected from a single bond, substituted or unsubstituted C 1 -C 4 alkylene, substituted or unsubstituted C 2 -C 4 alkenylene substituted or unsubstituted C 6 -C 10
  • R 16 and R 18 are each independently selected from a substituted or unsubstituted C 1 -C 10 hydrocarbon group, and a substituted or unsubstituted C 1 -C 10 heteroatom-containing organic functional group;
  • the heteroatom is selected from at least one of oxygen, nitrogen, sulfur, phosphorus, silicon or aluminum;
  • R 11 , R 12 , R 13 and R 14 , R 15 , R 16 , R 17 and R 18 is substituted, the substituent is halogen or -CN.
  • the compound of formula (I) includes at least one of the compound of formula (I-a) to the compound of formula (I-d):
  • X is selected from
  • Ra 1 , Ra 2 , Ra 3 , Rb 1 , Rb 2 , Rb 3 , Rc 1 , Rc 2 , Rc 3 , Rc 4 , Rc 5 , Rc 6 , Rd 1 , Rd 2 , Rd 3 , Rd 4 , Rd 5 And Rd 6 are each independently selected from a hydrogen atom, a substituted or unsubstituted C 1 -C 20 alkyl group, a substituted or unsubstituted C 2 -C 20 alkenyl group, a substituted or unsubstituted C 2 -C 20 alkynyl group, A substituted or unsubstituted C 6 -C 30 aryl group, a substituted or unsubstituted C 1 -C 20 alkoxy group, a substituted or unsubstituted C 2 -C 20 alkenyl group, a substituted or unsubstituted C 2 -C 20 Alkynyloxy,
  • R 15 , R e , R 17 and R f are each independently selected from a bond, substituted or unsubstituted C 1 -C 4 alkylene, substituted or unsubstituted C 2 -C 4 alkenylene substituted or unsubstituted C 6 -C 10 arylene group;
  • Ra 1 , Ra 2 , Ra 3 , Rb 1 , Rb 2 , Rb 3 , Rc 1 , Rc 2 , Rc 3 , Rc 4 , Rc 5 , Rc 6 , Rd 1 , Rd 2 , Rd 3 , Rd 4 , Rd 5, Rd 6, R e and R f are at least one of substituents by the substituents are halo, C alkyl, or is -CN 1 -C 6.
  • the compound of formula (I) includes at least one of the following compounds:
  • the content of the compound of formula (I) is n wt%, and n is 0.02-6.
  • the electrolyte further includes a first additive
  • the first additive includes at least one of fluoroethylene carbonate or vinylene carbonate, based on the total weight of the electrolyte, the The content of the first additive is m wt%, m>0, and m and n satisfy the following relationship: -1 ⁇ mn ⁇ 18.
  • the electrolyte further includes a second additive, and the second additive includes at least one of a compound of formula (II) or a compound of formula (III):
  • R 21 and R 22 are each independently selected from substituted or unsubstituted C 1 -C 20 alkyl, substituted or unsubstituted C 2 -C 20 alkenyl, substituted or unsubstituted C 2 -C 20 alkynyl, substituted Or unsubstituted C 6 -C 30 aryl, substituted or unsubstituted C 1 -C 20 alkoxy, substituted or unsubstituted C 2 -C 20 alkenyloxy, substituted or unsubstituted C 2 -C 20 Alkynyloxy, substituted or unsubstituted C 6 -C 30 aryloxy, when at least one of R 21 and R 22 is substituted, the substituent is halogen;
  • R 31 is selected from substituted or unsubstituted C 1 -C 4 alkylene or substituted or unsubstituted C 2 -C 4 alkenylene;
  • R 32 is selected from bond, substituted or unsubstituted C 1 -C 2 alkyleneoxy, -O- or -R 33 -SO 2 -R 34 -;
  • R 33 is a substituted or unsubstituted C 1 -C 2 alkylene group
  • R 34 is selected from bond, substituted or unsubstituted C 1 -C 2 alkylene or -O-;
  • R 31 , R 32 , R 33 and R 34 When at least one of R 31 , R 32 , R 33 and R 34 is substituted, the substituent is C 1 -C 20 alkyl, C 6 -C 30 aryl, halogen or -CN, and
  • the content of the second additive is 0.05 wt% to 10 wt%.
  • the second additive includes at least one of the following compounds:
  • the electrolyte further includes a third additive
  • the third additive includes at least one of a compound having two nitrile groups and a compound having three or more nitrile groups
  • the The compound having two nitrile groups includes at least one of a compound of formula (IV) or a compound of formula (V)
  • the compound having three or more nitrile groups includes a compound of formula (VI) or a compound of formula (VII) At least one of:
  • R 41 is selected from substituted or unsubstituted C 1 -C 12 alkylene or -R c -(OR a ) A -OR b , R a and R b are each independently selected from substituted or unsubstituted C 1 -C 3 alkylene, R c is selected from a bond or substituted or unsubstituted C 1 -C 3 alkylene, A is an integer from 0 to 2;
  • R 51 and R 52 are each independently selected from a bond or a substituted or unsubstituted C 1 -C 12 alkylene group
  • R 61 , R 62 and R 63 are each independently selected from a bond, a substituted or unsubstituted C 1 -C 12 alkylene group or a substituted or unsubstituted C 1 -C 12 alkyleneoxy group;
  • R 71 is selected from substituted or unsubstituted C 1 -C 12 alkylene, substituted or unsubstituted C 2 -C 12 alkenylene, substituted or unsubstituted C 6 -C 26 arylene or substituted or unsubstituted C 2 -C 12 heterocyclylene; and
  • the content of the third additive is 0.1 wt% to 12 wt%.
  • the third additive includes at least one of the following compounds: malononitrile, succinonitrile, glutaronitrile, adiponitrile, pimelonitrile, suberonitrile, sebaconitrile, 3 , 3′-oxydipropionitrile, hex-2-enedionitrile, fumaronitrile, 2-pentanedionitrile, methyl glutaronitrile, 4-cyanopimelonitrile, (Z)-butane- 2-enedinitrile, 2,2,3,3-tetrafluorosuccinonitrile, ethylene glycol bis(propionitrile) ether, 1,3,5-pentamethylenetricarbonitrile, 1,3,6-hexamethylenetricarbonitrile, 1,2,6-hexanetricarbonitrile, 1,2,3-tris(2-cyanooxy)propane, 1,1,3,3-propanetetracarbonitrile,
  • the content x wt% of the compound having two nitrile groups and the content y wt% of the compound having three or more nitrile groups satisfy xy ⁇ 0.
  • the electrolyte further includes a fourth additive
  • the fourth additive includes LiCH 3 SO 3 , LiCF 3 SO 3 , LiN(SO 2 CF 3 ) 2 , LiC(SO 2 CF 3 ) 3
  • the content of the fourth additive is 0.05 wt% to 2 wt%.
  • the present application provides an electrochemical device, which includes a positive electrode, a negative electrode, and an electrolyte according to the present application.
  • the positive electrode includes a positive electrode active material
  • the positive electrode active material includes first particles and second particles, and the average particle diameter of the first particles is larger than the average particle diameter of the second particles.
  • the first particles and the second particles have the same or different chemical compositions.
  • the second particles include aluminum element, and the content of the aluminum element is 0.001 wt% to 1 wt% based on the total weight of the positive active material.
  • the present application provides an electronic device including the electrochemical device according to the present application.
  • a list of items connected by the term "at least one of” can mean any combination of the listed items. For example, if items A and B are listed, then the phrase "at least one of A and B" means only A; only B; or A and B. In another example, if items A, B, and C are listed, then the phrase "at least one of A, B, and C" means only A; or only B; only C; A and B (excluding C); A and C (exclude B); B and C (exclude A); or all of A, B, and C.
  • Project A can contain a single element or multiple elements.
  • Project B can contain a single element or multiple elements.
  • Project C can contain a single element or multiple elements.
  • the term "at least one of" and "at least one of” have the same meaning.
  • hydrocarbyl encompasses alkyl, alkenyl, alkynyl, cycloalkyl, aryl, and the like.
  • alkyl is expected to be a linear saturated hydrocarbon structure having 1 to 20 carbon atoms.
  • Alkyl is also expected to be a branched or cyclic hydrocarbon structure having 3 to 20 carbon atoms.
  • butyl means to include n-butyl, sec-butyl, isobutyl, and tert-butyl And cyclobutyl;
  • propyl includes n-propyl, isopropyl and cyclopropyl.
  • alkyl groups include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, cyclopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, cyclobutyl, n-pentyl, Isopentyl, neopentyl, cyclopentyl, methylcyclopentyl, ethylcyclopentyl, n-hexyl, isohexyl, cyclohexyl, n-heptyl, octyl, cyclopropyl, cyclobutyl, norbornyl Base etc.
  • alkylene means a divalent saturated hydrocarbon group that may be linear or branched. Unless otherwise defined, the alkylene group generally contains 2 to 10 carbon atoms, and includes, for example, C 2 -C 3 alkylene and C 2 -C 6 alkylene. Representative alkylene groups include, for example, methylene, ethane-1,2-diyl ("ethylene"), propane-1,2-diyl, propane-1,3-diyl, butane -1,4-diyl, pentane-1,5-diyl, etc.
  • ethylene ethane-1,2-diyl
  • propane-1,3-diyl propane-1,3-diyl
  • butane -1,4-diyl pentane-1,5-diyl, etc.
  • alkenyl refers to a monovalent unsaturated hydrocarbon group that can be straight or branched and has at least one and usually 1, 2, or 3 carbon-carbon double bonds. Unless otherwise defined, the alkenyl group generally contains 2 to 20 carbon atoms and includes, for example, C 2 -C 4 alkenyl, C 2 -C 6 alkenyl, and C 2 -C 10 alkenyl. Representative alkenyl groups include, for example, vinyl, n-propenyl, isopropenyl, n-but-2-enyl, but-3-enyl, n-hex-3-enyl, and the like.
  • alkenylene means a difunctional group obtained by removing one hydrogen atom from an alkenyl group as defined above.
  • alkynyl refers to a monovalent unsaturated hydrocarbon group that can be linear or branched and has at least one and usually 1, 2, or 3 carbon-carbon triple bonds. Unless otherwise defined, the alkynyl group generally contains 2 to 20 carbon atoms and includes, for example, -C 2-4 alkynyl, -C 3-6 alkynyl, and -C 3-10 alkynyl. Representative alkynyl groups include, for example, ethynyl, prop-2-ynyl (n-propynyl), n-but-2-ynyl, n-hex-3-ynyl, and the like.
  • aryl means a monovalent aromatic hydrocarbon having a single ring (eg, phenyl) or a fused ring.
  • Condensed ring systems include those fully unsaturated ring systems (e.g., naphthalene) as well as those partially unsaturated ring systems (e.g., 1,2,3,4-tetrahydronaphthalene).
  • aryl groups typically contain 6 to 30 carbon ring atoms and include (for example) C 6 -C 10 aryl group.
  • Representative aryl groups include, for example, phenyl, methylphenyl, propylphenyl, isopropylphenyl, benzyl and naphth-1-yl, naphth-2-yl, and the like.
  • arylene encompasses monocyclic and polycyclic ring systems.
  • a polycyclic ring may have two or more rings in which two carbons are shared by two adjacent rings (the rings are "fused"), wherein at least one of the rings is aromatic, such as others
  • the ring can be a cycloalkyl, cycloalkenyl, aryl, heterocyclic, and/or heteroaryl group.
  • the arylene group may be a C 6 -C 30 arylene group, a C 6 -C 26 arylene group, a C 6 -C 20 arylene group, or a C 6 -C 10 arylene group.
  • alkoxy refers to an alkyl group attached to an oxygen atom, where the alkyl group has the meaning as described herein.
  • the alkoxy group may be an alkoxy group having 1 to 20 carbon atoms, an alkoxy group having 1-8 carbon atoms, an alkoxy group having 1-5 carbon atoms, or an alkoxy group having 5-10 carbon atoms.
  • alkoxy groups include, but are not limited to, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, sec-butoxy, tert-butoxy, n-pentoxy and 5 -Pentyloxy.
  • alkenyloxy refers to an alkenyl group attached to an oxygen atom, where the alkenyl group has the meaning as described herein.
  • the alkenyloxy group may be an alkenyloxy group having 2 to 20 carbon atoms, an alkenyloxy group having 2-10 carbon atoms, an alkenyloxy group having 2-8 carbon atoms, and an alkenyl group having 2-6 carbon atoms. Oxy.
  • alkenyloxy include, but are not limited to, propenyloxy, butenyloxy, pentenyloxy, hexenyloxy, heptenyloxy, and octenyloxy.
  • alkynyloxy refers to an alkynyl group attached to an oxygen atom, where the alkynyl group has the meaning as described herein.
  • the alkynyloxy group may be an alkynyloxy group having 2 to 20 carbon atoms, an alkynyloxy group having 2-10 carbon atoms, an alkynyloxy group having 2-8 carbon atoms, an alkynyloxy group having 2-6 carbon atoms Oxy.
  • alkynyloxy include, but are not limited to, ethynyloxy, 1-propynyloxy, 1-butynyloxy, 1-pentynyloxy, and 1-hexynyloxy.
  • aryloxy refers to an aryl group attached to an oxygen atom, where the aryl group has the meaning as described herein.
  • the aryloxy group may be an aryloxy group having 6 to 30 carbon atoms, an aryloxy group having 6 to 26 carbon atoms, an aryloxy group having 6-20 carbon atoms, and an aryloxy group having 6-10 carbon atoms. Oxy. Examples of aryloxy include, but are not limited to, phenoxymethyl and phenoxyethyl.
  • siloxane group refers to an alkyl group attached to a -Si-O- group, where the alkyl group has the meaning as described herein.
  • aluminoxyalkyl refers to an alkyl group attached to an -Al-O- group, where the alkyl group has the meaning as described herein.
  • organic functional group containing a heteroatom refers to a chain group containing a heteroatom, or a group containing a heterocyclic ring.
  • Chain group refers to a straight or branched chain group having 1-20 carbon atoms (or having 3-10 carbon atoms or having 2-5 carbon atoms).
  • chain groups containing heteroatoms include, but are not limited to, methoxy, ethoxy, propoxy, isopropyloxy, n-butyloxy, vinyloxy, propyleneoxy, ethynoxy Group, formaldehyde group, cyano group, acetonitrile group, ethylamino group, acetoxy group, acetamino group, diethyl ether group, methyl sulfide group, methyl disulfide group, methyl diazonium group, ethane sulfonate group, ethyl Alkyl sulfinate group, ethane phosphate group, ethane phosphite group, ethane phosphite group, methyl triacetone oxime group, methyl butyl ketoxime group, methyl siloxane group, methyl silicon Nitrogen alkyl, methylaluminoxyalkyl.
  • heterocycle or “heterocyclic group” means a stable monocyclic, bicyclic or tricyclic ring containing heteroatoms or heteroatoms, which can be saturated, partially unsaturated or unsaturated (Aromatic), they contain 3-10 carbon atoms (or 3-8 carbon atoms, or 3-6 carbon atoms) and 1, 2, 3, or 4 independently selected from N, O, S, Ring heteroatoms of P, Si or Al. Any of the above heterocyclic rings may be fused to a benzene ring to form a bicyclic ring.
  • the heterocyclic ring may include, but is not limited to, furan, pyran, piperidine, piperazine, pyrrole, pyrazole, pyrazine, pyridazine, imidazole, triazole, thiophene, thiazole, or oxazole.
  • heterocyclic groups include, but are not limited to, 1-(1,2,5,6-tetrahydropyridyl), 1-piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-morpholine Group, 3-morpholinyl, tetrahydrofuran-2-yl, tetrahydrofuranindol-3-yl, tetrahydrothiophen-2-yl, tetrahydrothiophen-3-yl, 1-piperazinyl and 2-piperazinyl.
  • heterocyclylene refers to a divalent heterocyclic group.
  • heterocyclylene include, but are not limited to: (ethylene)oxirane, (ethylene)aziridinyl, (azetidinyl), (ethylene)oxetanyl ( oxetanyl), (ylidene)tetrahydrofuranyl, (ylidene)dioxolinyl (dioxolinyl), (ylidene)pyrrolidinyl, (ylidene)pyrrolidonyl, (ylidene)imidazolidinyl, (ylidene)pyrazolidinyl , (Ylidene) pyrrolinyl, (ylidene) tetrahydropyranyl, (ylidene) piperidinyl, (ylidene) morpholinyl, (ylidene) dithianyl (dithianyl), (ylidene) thio
  • heteroatom refers to at least one of N, O, S, P, Si, or Al.
  • cyano encompasses organics containing the organic group -CN.
  • halogen refers to a stable atom belonging to group 17 of the periodic table, such as fluorine, chlorine, bromine, or iodine.
  • substituted or unsubstituted means that a particular group is unsubstituted or substituted by one or more substituents. Unless otherwise specified, when the above substituents are substituted, the substituents can be selected from the group consisting of halogen, alkyl, cycloalkyl, alkenyl, aryl, heteroaryl, -CN, and the like.
  • an electrolyte which contains a compound of formula (I):
  • R 11 , R 12 , R 13 and R 14 are each independently selected from a hydrogen atom, a substituted or unsubstituted C 1 -C 20 hydrocarbon group, and a substituted or unsubstituted C 1 -C 20 heteroatom-containing organic functional group;
  • At least one of R 11 , R 12 , R 13 and R 14 is
  • R 15 and R 17 are each independently selected from a single bond, substituted or unsubstituted C 1 -C 4 alkylene, substituted or unsubstituted C 2 -C 4 alkenylene substituted or unsubstituted C 6 -C 10
  • R 16 and R 18 are each independently selected from a substituted or unsubstituted C 1 -C 10 hydrocarbon group, and a substituted or unsubstituted C 1 -C 10 heteroatom-containing organic functional group;
  • the heteroatom is selected from at least one of oxygen, nitrogen, sulfur, phosphorus, silicon or aluminum;
  • R 11 , R 12 , R 13 and R 14 , R 15 , R 16 , R 17 and R 18 is substituted, the substituent is halogen or -CN.
  • the compound of formula (I) includes at least one of the compound of formula (I-a) to the compound of formula (I-d):
  • X is selected from
  • Ra 1 , Ra 2 , Ra 3 , Rb 1 , Rb 2 , Rb 3 , Rc 1 , Rc 2 , Rc 3 , Rc 4 , Rc 5 , Rc 6 , Rd 1 , Rd 2 , Rd 3 , Rd 4 , Rd 5 And Rd 6 are each independently selected from a hydrogen atom, a substituted or unsubstituted C 1 -C 20 alkyl group, a substituted or unsubstituted C 2 -C 20 alkenyl group, a substituted or unsubstituted C 2 -C 20 alkynyl group, A substituted or unsubstituted C 6 -C 30 aryl group, a substituted or unsubstituted C 1 -C 20 alkoxy group, a substituted or unsubstituted C 2 -C 20 alkenyl group, a substituted or unsubstituted C 2 -C 20 Alkynyloxy,
  • R 15 , R e , R 17 and R f are each independently selected from a bond, substituted or unsubstituted C 1 -C 4 alkylene, substituted or unsubstituted C 2 -C 4 alkenylene substituted or unsubstituted C 6 -C 10 arylene group;
  • Ra 1 , Ra 2 , Ra 3 , Rb 1 , Rb 2 , Rb 3 , Rc 1 , Rc 2 , Rc 3 , Rc 4 , Rc 5 , Rc 6 , Rd 1 , Rd 2 , Rd 3 , Rd 4 , Rd 5, Rd 6, R e and R f are at least one of substituents by the substituents are halo, C alkyl, or is -CN 1 -C 6.
  • the compound of formula (I) includes at least one of the following compounds:
  • the carbonyl triazole or thiocarbonyl triazole compound can open the ring in the electrolyte to form a composite organic protective film.
  • the protective film contains more electron-rich groups, which can store ions and inhibit the contact between the positive electrode active material and the electrolyte. Significantly improve the high temperature cycle performance of electrochemical devices under high voltage conditions and suppress the resistance growth rate in the cycle.
  • the content of the compound of formula (I) is n wt%, and n is 0.02-6.
  • n is 0.05-5.
  • n is 0.1-4.
  • n is 0.3 to 3.
  • n is 0.5-2.
  • n is 0.8 to 1.
  • n is 0.02, 0.05, 0.08, 0.1, 0.2, 0.5, 0.8, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6 or any two of the foregoing values within the range of composition.
  • the content of the compound of formula (I) in the electrolyte is within the above range, it helps to further improve the high-temperature cycle performance of the electrochemical device under high voltage conditions and further reduce its cycle impedance growth rate.
  • the electrolyte further includes a first additive
  • the first additive includes at least one of fluoroethylene carbonate or vinylene carbonate, based on the total weight of the electrolyte, the The content of the first additive is m wt%, m>0, and m and n satisfy the following relationship: -1 ⁇ mn ⁇ 18. In some embodiments, m and n satisfy the following relationship: 0 ⁇ m-n ⁇ 15. In some embodiments, m and n satisfy the following relationship: 1 ⁇ m-n ⁇ 10. In some embodiments, m and n satisfy the following relationship: 3 ⁇ m-n ⁇ 5.
  • the electrolyte further includes a second additive, and the second additive includes at least one of a compound of formula (II) or a compound of formula (III):
  • R 21 and R 22 are each independently selected from substituted or unsubstituted C 1 -C 20 alkyl, substituted or unsubstituted C 2 -C 20 alkenyl, substituted or unsubstituted C 2 -C 20 alkynyl, substituted Or unsubstituted C 6 -C 30 aryl, substituted or unsubstituted C 1 -C 20 alkoxy, substituted or unsubstituted C 2 -C 20 alkenyloxy, substituted or unsubstituted C 2 -C 20 Alkynyloxy, substituted or unsubstituted C 6 -C 30 aryloxy, when at least one of R 21 and R 22 is substituted, the substituent is halogen;
  • R 31 is selected from substituted or unsubstituted C 1 -C 4 alkylene or substituted or unsubstituted C 2 -C 4 alkenylene;
  • R 32 is selected from bond, substituted or unsubstituted C 1 -C 2 alkyleneoxy, -O- or -R 33 -SO 2 -R 34 -;
  • R 33 is a substituted or unsubstituted C 1 -C 2 alkylene group
  • R 34 is selected from bond, substituted or unsubstituted C 1 -C 2 alkylene or -O-;
  • R 31 , R 32 , R 33 and R 34 When at least one of R 31 , R 32 , R 33 and R 34 is substituted, the substituent is C 1 -C 20 alkyl, C 6 -C 30 aryl, halogen, or -CN.
  • the second additive includes at least one of the following compounds:
  • the second additive contains The functional group has good film-forming ability of positive and negative electrodes during the first charge, and can repair the decomposed protective film during the cycle.
  • the addition of the second additive on the basis of the compound of formula (I) can further improve the high temperature cycle performance of the electrochemical device under high voltage conditions and further reduce the growth rate of its cycle resistance.
  • the content of the second additive is 0.05 wt% to 10 wt%. In some embodiments, based on the total weight of the electrolyte, the content of the second additive is 0.1 wt% to 8 wt%. In some embodiments, based on the total weight of the electrolyte, the content of the second additive is 0.5 wt% to 5 wt%. In some embodiments, based on the total weight of the electrolyte, the content of the second additive is 1 wt% to 3 wt%.
  • the content of the second additive is 0.05wt%, 0.1wt%, 0.3wt%, 0.5wt%, 0.8wt%, 1wt%, 1.5wt%, 2wt%, 2.5wt%, 3wt%, 3.5wt%, 4wt%, 4.5wt%, 5wt%, 5.5wt%, 6wt%, 6.5wt%, 7wt%, 7.5wt%, 8wt%, 8.5wt%, 9wt %, 9.5wt%, 10wt% or within the range composed of any two of the above values.
  • the content of the second additive in the electrolyte is within the above range, it helps to further improve the high temperature cycle performance of the electrochemical device under high voltage conditions and further reduce the cycle resistance growth rate.
  • the electrolyte further includes a third additive
  • the third additive includes at least one of a compound having two nitrile groups and a compound having three or more nitrile groups
  • the The compound having two nitrile groups includes at least one of a compound of formula (IV) or a compound of formula (V)
  • the compound having three or more nitrile groups includes a compound of formula (VI) or a compound of formula (VII) At least one of:
  • R 41 is selected from substituted or unsubstituted C 1 -C 12 alkylene or -R c -(OR a ) A -OR b , R a and R b are each independently selected from substituted or unsubstituted C 1 -C 3 alkylene, R c is selected from a bond or substituted or unsubstituted C 1 -C 3 alkylene, A is an integer from 0 to 2;
  • R 51 and R 52 are each independently selected from a bond or a substituted or unsubstituted C 1 -C 12 alkylene group
  • R 61 , R 62 and R 63 are each independently selected from a bond, a substituted or unsubstituted C 1 -C 12 alkylene group or a substituted or unsubstituted C 1 -C 12 alkyleneoxy group;
  • R 71 is selected from a bond, substituted or unsubstituted C 1 -C 12 alkylene, substituted or unsubstituted C 2 -C 12 alkenylene, substituted or unsubstituted C 6 -C 26 arylene or substituted Or unsubstituted C 2 -C 12 heterocyclylene; and
  • R 41 , R 51 , R 52 , R 61 , R 62 , R 63 and R 71 When at least one of R 41 , R 51 , R 52 , R 61 , R 62 , R 63 and R 71 is substituted, the substituent is halogen.
  • the third additive includes at least one of the following compounds: malononitrile, succinonitrile, glutaronitrile, adiponitrile, pimelonitrile, suberonitrile, sebaconitrile, 3 , 3′-oxydipropionitrile, hex-2-enedionitrile, fumaronitrile, 2-pentanedionitrile, methyl glutaronitrile, 4-cyanopimelonitrile, (Z)-butane- 2-enedinitrile, 2,2,3,3-tetrafluorosuccinonitrile, ethylene glycol bis(propionitrile) ether, 1,3,5-pentamethylenetricarbonitrile, 1,3,6-hexamethylenetricarbonitrile, 1,2,6-hexanetricarbonitrile, 1,2,3-tris(2-cyanooxy)propane, 1,1,3,3-propanetetracarbonitrile,
  • Adding a third additive on the basis of the compound of formula (I) can further improve the high temperature cycle performance of the electrochemical device under high voltage conditions and further reduce the growth rate of its cycle impedance.
  • the content of the third additive is 0.1 wt% to 12 wt%. In some embodiments, based on the total weight of the electrolyte, the content of the third additive is 0.5 wt% to 10 wt%. In some embodiments, based on the total weight of the electrolyte, the content of the third additive is 1 wt% to 8 wt%. In some embodiments, based on the total weight of the electrolyte, the content of the third additive is 2wt% to 6wt%. In some embodiments, based on the total weight of the electrolyte, the content of the third additive is 3 wt% to 5 wt%.
  • the content of the third additive is 0.1 wt%, 0.5 wt%, 1 wt%, 1.5 wt%, 2 wt%, 2.5 wt%, 3 wt%, 3.5 wt% %, 4wt%, 4.5wt%, 5wt%, 5.5wt%, 6wt%, 6.5wt%, 7wt%, 7.5wt%, 8wt%, 8.5wt%, 9wt%, 9.5wt%, 10wt%, 10.5wt% , 11wt%, 11.5wt%, 12wt% or within the range composed of any two of the above values.
  • the content of the third additive in the electrolyte is within the above range, it helps to further improve the high-temperature cycle performance of the electrochemical device under high voltage conditions and further reduce the growth rate of its cycle resistance.
  • the content x wt% of the compound having two nitrile groups and the content y wt% of the compound having three or more nitrile groups satisfy xy ⁇ 0.
  • x and y satisfy x-y ⁇ 0.1.
  • x and y satisfy x-y ⁇ 1.
  • x and y satisfy x-y ⁇ 5.
  • x and y satisfy x-y ⁇ 8.
  • x and y satisfy x-y ⁇ 10.
  • the content x of the compound having two nitrile groups and the content y of the compound having three or more nitrile groups in the third additive satisfy the above relationship, it helps to further improve the performance of the electrochemical device under high voltage conditions. High temperature cycle performance and further reduce its cycle resistance growth rate.
  • the electrolyte further includes a fourth additive, and the fourth additive includes LiCH 3 SO 3 , LiCF 3 SO 3 , LiN(SO 2 CF 3 ) 2 , LiC(SO 2 CF 3 ) 3 , At least one of LiBOB or LiDFOB.
  • the fourth additive is a lithium salt additive.
  • the negative ions in the lithium salt are reduced before the solvent at the negative electrode, and oxidized before the solvent at the positive electrode, and form a stable inorganic layer to inhibit solvent consumption at high potential.
  • the addition of the fourth additive on the basis of the compound of formula (I) can further improve the high temperature cycle performance of the electrochemical device under high voltage conditions and further reduce the growth rate of its cycle resistance.
  • the content of the fourth additive is 0.05 wt% to 2 wt%. In some embodiments, based on the total weight of the electrolyte, the content of the fourth additive is 0.1 wt% to 1.5 wt%. In some embodiments, based on the total weight of the electrolyte, the content of the fourth additive is 0.5 wt% to 1 wt%.
  • the content of the fourth additive is 0.05wt%, 0.1wt%, 0.3wt%, 0.5wt%, 0.8wt%, 1wt%, 1.2wt%, 1.5wt%, 1.8wt%, 2wt% or within the range composed of any two of the above values.
  • the content of the fourth additive in the electrolyte is within the above range, it helps to further improve the high temperature cycle performance of the electrochemical device under high voltage conditions and further reduce the cycle resistance growth rate.
  • the electrolyte further includes lithium hexafluorophosphate (LiPF 6 ).
  • LiPF 6 lithium hexafluorophosphate
  • the concentration of the lithium hexafluorophosphate is 0.6M to 2M. In some embodiments, the concentration of the lithium hexafluorophosphate is 0.8M to 1.2M.
  • the electrolyte of the present application can be prepared by any known method. In some embodiments, the electrolyte of the present application can be prepared by mixing components.
  • the positive electrode includes a positive electrode current collector and a positive electrode active material provided on one or both surfaces of the positive electrode current collector.
  • the positive active material includes first particles and second particles, and the average particle diameter of the first particles is larger than the average particle diameter of the second particles.
  • the small particles of the positive electrode active material improve the lithium ion transport channel; the large particles maintain the stability of the particle structure at high potential.
  • the combination of two kinds of particles with different particle sizes can further improve the high temperature cycle performance of the electrochemical device under high voltage conditions and further reduce the growth rate of its cycle impedance.
  • the average particle size of the first particles or the average particle size of the second particles is in the range of 5 ⁇ m to 20 ⁇ m. In some embodiments, the average particle size of the first particles or the average particle size of the second particles is in the range of 8 ⁇ m to 18 ⁇ m. In some embodiments, the average particle diameter of the first particles or the average particle diameter of the second particles is in the range of 10 ⁇ m to 15 ⁇ m.
  • the average particle diameter of the first particles or the average particle diameter of the second particles is 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, 11 ⁇ m, 12 ⁇ m, 13 ⁇ m, 14 ⁇ m, 15 ⁇ m, 16 ⁇ m, 17 ⁇ m, 18 ⁇ m, 19 ⁇ m, 20 ⁇ m or within the range composed of any two of the above values.
  • the first particles and the second particles have the same or different chemical compositions.
  • the second particles include aluminum element, and the content of the aluminum element is 0.001 wt% to 1 wt% based on the total weight of the positive electrode active material. In some embodiments, based on the total weight of the positive active material, the content of the aluminum element is 0.005 wt% to 0.8 wt%. In some embodiments, based on the total weight of the positive active material, the content of the aluminum element is 0.01 wt% to 0.5 wt%. In some embodiments, based on the total weight of the positive active material, the content of the aluminum element is 0.05 wt% to 0.3 wt%.
  • the content of the aluminum element is 0.1 wt% to 0.2 wt%. In some embodiments, based on the total weight of the positive active material, the content of the aluminum element is 0.001 wt%, 0.005 wt%, 0.008 wt%, 0.01 wt%, 0.05 wt%, 0.08 wt%, 0.1 wt% , 0.3wt%, 0.5wt%, 0.8wt%, 1wt% or within the range composed of any two of the above values. When the content of the aluminum element in the second particles is within the above range, it helps to further improve the high temperature cycle performance of the electrochemical device under high voltage conditions and further reduce the cycle resistance growth rate.
  • the positive electrode active material has the formula Li a M 1 b M 2 c M 3 d O 2 , wherein:
  • M 1 is selected from at least one of cobalt, nickel or manganese
  • M 2 is selected from at least one of magnesium, aluminum or titanium
  • M 3 is selected from at least one of boron, chromium, iron, copper, zinc, niobium, molybdenum, tantalum, tin, sodium, potassium, barium, strontium or calcium;
  • the positive electrode active material includes, but is not limited to, LiCoO 2 , LiCo 0.995 Mg 0.002 Al 0.003 O 2 , LiCo 0.993 Mg 0.001 Ti 0.001 Al 0.005 O 2 , LiCo 0.994 Mg 0.0025 Ti 0.0005 Al 0.003 O 2.
  • the positive active material has a coating on the surface.
  • the coating includes an oxide of a coating element, a hydroxide of a coating element, an oxyhydroxide of a coating element, an oxycarbonate of a coating element, or a hydroxyl group of a coating element. At least one of hydroxycarbonate.
  • the coating element contained in the coating may include Mg, Al, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B, As, Zr, or a mixture thereof.
  • the compound used for the coating may be amorphous or crystalline.
  • the coating can be applied by any method as long as the method does not adversely affect the performance of the positive electrode active material.
  • the method of applying the coating may include any coating method well known to those of ordinary skill in the art, such as spraying, dipping, and the like.
  • the positive active material layer further includes a binder.
  • the binder can improve the binding of the positive electrode active material particles to each other, and can improve the binding of the positive electrode active material and the positive electrode current collector.
  • the binder includes, but is not limited to, polyvinyl alcohol, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, and Ethyloxy polymer, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene butadiene rubber, acrylic (ester) styrene butadiene rubber, epoxy Resin and nylon, etc.
  • the positive active material layer further includes a conductive material, thereby imparting conductivity to the electrode.
  • the conductive material may include any conductive material as long as it does not cause a chemical change.
  • Non-limiting examples of conductive materials include carbon-based materials (e.g., natural graphite, artificial graphite, carbon black, acetylene black, Ketjen black, carbon fiber, etc.), metal-based materials (e.g., metal powder, metal fiber, etc., including For example, copper, nickel, aluminum, silver, etc.), conductive polymers (for example, polyphenylene derivatives), and mixtures thereof.
  • the positive electrode current collector includes, but is not limited to, aluminum (Al).
  • the negative electrode includes a negative electrode current collector and a negative electrode active material provided on one or both surfaces of the negative electrode current collector.
  • the specific types of negative electrode active materials are not subject to specific restrictions, and can be selected according to requirements.
  • the negative electrode current collector may be selected from copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam, polymer substrates coated with conductive metals, and combinations thereof.
  • the negative active material is selected from natural graphite, artificial graphite, mesophase micro-carbon spheres (MCMB for short), hard carbon, soft carbon, silicon, silicon-carbon composite, Li-Sn alloy, Li -One or more of Sn-O alloy, Sn, SnO, SnO 2 , spinel structure lithiated TiO 2 -Li 4 Ti 5 O 12 , and Li-Al alloy.
  • Non-limiting examples of carbon materials include crystalline carbon, amorphous carbon, and mixtures thereof.
  • the crystalline carbon may be amorphous or flake-shaped, flake-shaped, spherical or fibrous natural graphite or artificial graphite.
  • Amorphous carbon can be soft carbon, hard carbon, mesophase pitch carbide, calcined coke and the like.
  • the negative active material includes a binder.
  • the binder improves the bonding of the negative active material particles with each other and the bonding of the negative active material with the current collector.
  • binders include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, ethylene-containing Oxygen polymers, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene butadiene rubber, acrylic (ester) styrene butadiene rubber, epoxy resin, Nylon etc.
  • the negative active material includes a conductive material, thereby imparting conductivity to the electrode.
  • the conductive material may include any conductive material as long as it does not cause a chemical change.
  • Non-limiting examples of conductive materials include carbon-based materials (e.g., natural graphite, artificial graphite, carbon black, acetylene black, Ketjen black, carbon fiber, etc.), metal-based materials (e.g., metal powder, metal fiber, etc., such as Copper, nickel, aluminum, silver, etc.), conductive polymers (for example, polyphenylene derivatives), and mixtures thereof.
  • a separator is provided between the positive electrode and the negative electrode to prevent short circuits.
  • the material and shape of the isolation film are not particularly limited, and it may be any technology disclosed in the prior art.
  • the isolation membrane includes a polymer or an inorganic substance formed of a material that is stable to the electrolyte of the present application.
  • the isolation film includes a substrate layer.
  • the substrate layer is a non-woven fabric, film or composite film with a porous structure.
  • the material of the substrate layer is selected from at least one of polyethylene, polypropylene, polyethylene terephthalate, and polyimide.
  • the material of the substrate layer is selected from polypropylene porous film, polyethylene porous film, polypropylene non-woven fabric, polyethylene non-woven fabric, or polypropylene-polyethylene-polypropylene porous composite film.
  • a surface treatment layer is provided on at least one surface of the substrate layer.
  • the surface treatment layer may be a polymer layer, an inorganic substance layer, or a layer formed by a mixed polymer and an inorganic substance.
  • the polymer layer contains a polymer, and the material of the polymer is selected from polyamide, polyacrylonitrile, acrylate polymer, polyacrylic acid, polyacrylate, polyvinylpyrrolidone, polyvinyl ether, At least one of polyvinylidene fluoride and poly(vinylidene fluoride-hexafluoropropylene).
  • the inorganic layer includes inorganic particles and a binder.
  • the inorganic particles are selected from aluminum oxide, silicon oxide, magnesium oxide, titanium oxide, hafnium dioxide, tin oxide, ceria, nickel oxide, zinc oxide, calcium oxide, zirconium oxide, yttrium oxide, One or a combination of silicon carbide, boehmite, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, and barium sulfate.
  • the binder is selected from polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, polyamide, polyacrylonitrile, polyacrylate, polyacrylic acid, polyacrylate, polyethylene One or a combination of rolidone, polyvinyl ether, polymethyl methacrylate, polytetrafluoroethylene and polyhexafluoropropylene.
  • the electrochemical device of the present application includes any device that undergoes an electrochemical reaction, and specific examples thereof include all kinds of primary batteries, secondary batteries, fuel cells, solar cells, or capacitors.
  • the electrochemical device is a lithium secondary battery, including a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery, or a lithium ion polymer secondary battery.
  • the application also provides an electronic device, which includes the electrochemical device according to the application.
  • the use of the electrochemical device of the present application is not particularly limited, and it can be used in any electronic device known in the prior art.
  • the electrochemical device of the present application can be used in, but not limited to, notebook computers, pen-input computers, mobile computers, e-book players, portable phones, portable fax machines, portable copiers, portable printers, and headsets.
  • Stereo headsets video recorders, LCD TVs, portable cleaners, portable CD players, mini discs, transceivers, electronic notebooks, calculators, memory cards, portable recorders, radios, backup power supplies, motors, automobiles, motorcycles, power assistance Bicycles, bicycles, lighting equipment, toys, game consoles, clocks, power tools, flashlights, cameras, large household storage batteries, lithium-ion capacitors, etc.
  • lithium ion battery is taken as an example and the preparation of a lithium ion battery is described in conjunction with specific examples. Those skilled in the art will understand that the preparation methods described in this application are only examples, and any other suitable preparation methods are described in this application. Within range.
  • CoCl 2 and AlCl 3 are respectively configured into aqueous solutions, mixed according to the molar ratio of the active substance at a ratio of 1:k (0 ⁇ k ⁇ 0.01088221), and NH 3 HCO 3 solution is added to adjust the pH of the mixture to about 10.5.
  • a precipitated material is obtained.
  • the obtained precipitate was calcined at 400°C for 5 hours to obtain Co 3 O 4 containing Al.
  • the obtained Al-containing CO 3 O 4 and Li 2 CO 3 are uniformly mixed according to a molar ratio of 2:3.15, and then calcined at a temperature of 1000° C. for 8 hours to obtain LiCoO 2 .
  • LiCoO 2 to Al 2 O 3 (molar ratio 1:[(0.01088221-k)/2]) and mix them, sinter the mixed materials at 800°C for 8 hours, and screen the average particle size to 12 ⁇ m containing Al element ⁇ lithium cobalt oxide to obtain a positive electrode active material.
  • the content of Al element is 0.003 wt%.
  • the prepared positive electrode active material, acetylene black and polyvinylidene fluoride (PVDF) are dissolved in an N-methylpyrrolidone (NMP) solvent system at a weight ratio of 96:2:2, fully stirred and mixed to prepare a positive electrode slurry.
  • NMP N-methylpyrrolidone
  • the positive electrode slurry is uniformly coated on the positive electrode current collector aluminum foil, then dried and cold pressed to obtain the positive electrode active material layer, and then the positive electrode is obtained by cutting and welding the tabs.
  • transition metals such as Al, Mg, Ti, Zr, Ni, etc. were introduced into lithium cobalt oxide to prepare the positive electrode active materials used in the Examples and Comparative Examples in Table 7.
  • the boehmite is mixed with polyacrylate, and the mixture is dissolved in deionized water to form a coating slurry. Subsequently, the coating slurry is uniformly coated on the two surfaces of the porous substrate by a micro-gravure coating method, and an isolation film is obtained through drying treatment.
  • the lithium-ion battery that has reached a constant temperature is charged at a constant current of 1C to a voltage of 4.45V, then charged at a constant voltage of 4.45V to a current of 0.025C, and then discharged at a constant current of 1C to a voltage of 3.0V, which is a charge-discharge cycle. Record the capacity of the first discharge.
  • the charging and discharging cycle was 400 times in the above manner, the test was stopped, and the discharge capacity after the cycle was recorded.
  • the capacity retention rate and thickness growth rate after high temperature interval cycles are as follows:
  • High temperature cycle capacity retention rate discharge capacity after cycle/first discharge capacity ⁇ 100%.
  • the lithium-ion battery after the high temperature cycle was placed in a 25°C thermostat and left for 1 hour, charged with a constant current of 1C to 4.45V, charged with a constant voltage to a current of 0.025C, and allowed to stand for 120 minutes, and then a direct current at 0.1C Charge for 10 seconds, and charge with 1C DC for 360 seconds.
  • the DC impedance of the lithium-ion battery after high temperature cycling at 80% state of charge (SOC) is calculated.
  • the cycle impedance growth rate of the lithium-ion battery is calculated by the following formula:
  • Cycle impedance growth rate (DC impedance of lithium ion battery after high temperature cycle-DC impedance of lithium ion battery before high temperature cycle)/DC impedance of lithium ion battery before high temperature cycle ⁇ 100%.
  • Table 1 shows the effect of the compound of formula (I) on the high temperature cycle performance and cycle resistance growth rate of lithium ion batteries.
  • Table 2 shows the influence of the content of the compound of formula (I) in the electrolyte on the high-temperature cycle performance and cycle resistance growth rate of the lithium ion battery.
  • Table 3 shows the influence of the first additive and the content relationship between the first additive and the compound of formula (I) on the high-temperature cycle performance and cycle resistance growth rate of the lithium ion battery.
  • the electrolyte contains the first additive (at least one of fluoroethylene carbonate (FEC) or vinylene carbonate (VC)) and the content m of the first additive meets the content n of the compound of formula (I)
  • FEC fluoroethylene carbonate
  • VC vinylene carbonate
  • Table 4 shows the effect of the second additive on the high temperature cycle performance and cycle resistance growth rate of the lithium ion battery.
  • Examples 42-51 in Table 4 contain the same compound of formula (I) as Example 7, that is, 0.5% by weight of the compound of formula (Ic-1).
  • the results show that when the electrolyte contains 0.05 wt% to 10 wt% of the second additive, it is helpful to further improve the high temperature cycle performance of the lithium ion battery and reduce its cycle resistance growth rate.
  • the electrolyte contains 0.5 wt% to 6 wt% of the second additive, the improvement of the high temperature cycle performance and cycle resistance growth rate of the lithium ion battery is particularly obvious.
  • the combined use of multiple second additives can further improve the high-temperature cycle performance of the lithium-ion battery and reduce the growth rate of its cycle resistance.
  • Table 5 shows the effect of the third additive on the high temperature cycle performance and cycle resistance growth rate of lithium-ion batteries.
  • Examples 52-77 in Table 5 contain the same compound of formula (I) as Example 7, that is, 0.5% by weight of the compound of formula (Ic-1).
  • Table 6 shows the effect of the fourth additive on the high-temperature cycle performance and cycle resistance growth rate of lithium-ion batteries.
  • Examples 78-89 in Table 6 contain the same compound of formula (I) as Example 7, that is, 0.5% by weight of the compound of formula (Ic-1).
  • Table 7 shows the influence of the positive electrode active material on the high-temperature cycle performance and cycle impedance growth rate of lithium-ion batteries.
  • the electrolyte used in Examples 90-102 in Table 7 is the same as that in Example 89, and the weight ratio of the first particles to the second particles in Examples 90-102 remains the same.
  • the positive electrode active material contains two kinds of particles with different average particle sizes, it is helpful to further improve the high-temperature cycle performance of the lithium-ion battery and further reduce the growth rate of its cycle resistance.
  • Two kinds of particles with different average particle diameters can have the same or different chemical components, which can achieve substantially equivalent effects.
  • the particles with a smaller average particle diameter ie, the second particles
  • the particles with a smaller average particle diameter ie, the second particles
  • the particles with a smaller average particle size ie, the second particles
  • the particles with a smaller average particle size contain 0.001 wt% to 0.1 wt% of aluminum, it helps to improve the high temperature cycle performance of the lithium ion battery and further reduce its cycle resistance growth rate.
  • references to “embodiments”, “parts of embodiments”, “one embodiment”, “another example”, “examples”, “specific examples” or “partial examples” throughout the specification mean that At least one embodiment or example in this application includes the specific feature, structure, material, or characteristic described in the embodiment or example. Therefore, the descriptions appearing in various places throughout the specification, such as: “in some embodiments”, “in embodiments”, “in one embodiment”, “in another example”, “in an example “In”, “in a specific example” or “exemplified”, which are not necessarily quoting the same embodiment or example in this application.
  • the specific features, structures, materials, or characteristics herein can be combined in one or more embodiments or examples in any suitable manner.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

一种电解液以及使用其的电化学装置和电子装置。电解液包括羰基三唑化合物或硫羰基三唑化合物。该电解液可改善电化学装置在高电压条件下的高温循环性能和循环阻抗增长。

Description

电解液以及使用其的电化学装置和电子装置 技术领域
本申请涉及储能领域,具体涉及一种电解液以及使用其的电化学装置和电子装置。
背景技术
随着社会发展,电气制品已广泛应用于生产生活的方方面面,人们对轻型、小型的电气制品的需求越来越多,由此对电化学装置(例如,锂离子电池)的要求也越来越高。在开发具有高能量密度的锂离子电池时,其设计的使用上限电压也随之提高。例如,市场上钴酸锂电池的额定电压可达4.45V或者更高的水平。然而,在高电压下,锂离子电池中的电解液性能下降,甚至会由于正极和负极的结构的破坏而发生分解。现有的电解液添加剂无法在高电压下提供足够的保护作用,反而会发生副反应而进一步恶化锂离子电池的性能。
有鉴于此,确有必要提供一种改进的适用于高电压工况的电解液以及使用其的电化学装置和电子装置。
发明内容
本申请通过提供一种电解液以及使用其的电化学装置和电子装置以试图在至少某种程度上解决至少一种存在于相关领域中的问题。
根据本申请的一个方面,本申请提供了一种电解液,其包含式(I)化合物:
Figure PCTCN2020093792-appb-000001
其中:
R 11、R 12、R 13和R 14各自独立地选自氢原子,取代或未取代的C 1-C 20的烃基、取代或未取代的含有杂原子的C 1-C 20的有机官能团;
R 11、R 12、R 13和R 14中的至少一者为
Figure PCTCN2020093792-appb-000002
其中:
R 15和R 17各自独立地选自单键、取代或未取代的C 1-C 4亚烷基、取代或未取代的C 2-C 4亚烯基取代或未取代的C 6-C 10的亚芳基;
R 16和R 18各自独立地选自取代或未取代的C 1-C 10的烃基、取代或未取代的含有杂原子的C 1-C 10的有机官能团;
所述杂原子选自氧、氮、硫、磷、硅或铝中的至少一种;
当R 11、R 12、R 13和R 14、R 15、R 16、R 17和R 18中的至少一者经取代时,取代基为卤素或-CN。
根据本申请的实施例,所述式(I)化合物包括式(I-a)化合物至式(I-d)化合物中的至少一种:
Figure PCTCN2020093792-appb-000003
其中:
X选自
Figure PCTCN2020093792-appb-000004
Ra 1、Ra 2、Ra 3、Rb 1、Rb 2、Rb 3、Rc 1、Rc 2、Rc 3、Rc 4、Rc 5、Rc 6、Rd 1、Rd 2、Rd 3、Rd 4、Rd 5和Rd 6各自独立地选自氢原子、取代或未取代的C 1-C 20烷基、取代或未取代的C 2-C 20烯基、取代或未取代的C 2-C 20炔基、取代或未取代的C 6-C 30芳基、取代或未取代的C 1-C 20烷氧基、取代或未取代的C 2-C 20烯氧基、取代或未取代的C 2-C 20炔氧基、取代或未取代的C 6-C 30芳氧基、羧基、醚基、碳酰氧基、硫基、氰基、氨基、碳酰胺基、取代或未取代的C 1-C 16硅氧烷基、C 1-C 16铝氧烷基、取代或未取代的C 1-C 10饱和环烷基、取代或未取代的呋喃、取代或未取代的吡喃、取代或未取代的哌啶、取代或未取代的哌嗪、取代或未取代的吡咯、取代或未取代的吡唑、取代或未取代的吡嗪、取代或未取代的哒嗪、取代或未取代的咪唑、取代或未取代的三唑、取代或未取代的噻吩、取代或未 取代的噻唑或取代或未取代的噁唑;
R 15、R e、R 17和R f各自独立地选自键、取代或未取代的C 1-C 4亚烷基、取代或未取代的C 2-C 4亚烯基取代或未取代的C 6-C 10的亚芳基;
当Ra 1、Ra 2、Ra 3、Rb 1、Rb 2、Rb 3、Rc 1、Rc 2、Rc 3、Rc 4、Rc 5、Rc 6、Rd 1、Rd 2、Rd 3、Rd 4、Rd 5、Rd 6、R e和R f中的至少一者经取代时,取代基为卤素、C 1-C 6的烷基或-CN。
根据本申请的实施例,所述式(I)化合物包括以下化合物中的至少一种:
Figure PCTCN2020093792-appb-000005
根据本申请的实施例,基于所述电解液的总重量,所述式(I)化合物的含量为n wt%,n为0.02至6。
根据本申请的实施例,所述电解液进一步包括第一添加剂,所述第一添加剂包括氟代碳酸乙烯酯或碳酸亚乙烯酯中的至少一种,基于所述电解液的总重量,所述第一添加剂的含量为m wt%,m>0且m和n满足以下关系:-1≤m-n≤18。
根据本申请的实施例,所述电解液进一步包括第二添加剂,所述第二添加剂包括式(II)化合物或式(III)化合物中的至少一种:
Figure PCTCN2020093792-appb-000006
其中:
R 21和R 22各自独立地选自取代或未取代的C 1-C 20烷基、取代或未取代的C 2-C 20烯基、取代或未取代的C 2-C 20炔基、取代或未取代的C 6-C 30芳基、取代或未取代的C 1-C 20烷氧基、取代或未取代的C 2-C 20烯氧基、取代或未取代的C 2-C 20炔氧基、取代或未取代的C 6-C 30芳氧基,当R 21和R 22中至少一者经取代时,取代基为卤素;
R 31选自取代或未取代的C 1-C 4的亚烷基或者取代或未取代的C 2-C 4亚烯基;
R 32选自键、取代或未取代的C 1-C 2亚烷氧基、-O-或-R 33-SO 2-R 34-;
R 33选取代或未取代的C 1-C 2亚烷基;
R 34选自键、取代或未取代的C 1-C 2亚烷基或-O-;
当R 31、R 32、R 33和R 34中的至少一者经取代时,取代基为C 1-C 20烷基、C 6-C 30芳基、卤素或-CN,并且
其中基于所述电解液的总重量,所述第二添加剂的含量为0.05wt%至10wt%。
根据本申请的实施例,所述第二添加剂包括以下化合物中的至少一种:
Figure PCTCN2020093792-appb-000007
根据本申请的实施例,所述电解液进一步包括第三添加剂,所述第三添加剂包括具有两个腈基的化合物和具有三个及三个以上腈基的化合物中的至少一种,所述具有两个腈基的化合物包括式(IV)化合物或式(V)化合物中的至少一种,所述具有三个及三个以上腈基的化合物包括式(VI)化合物或式(VII)化合物中的至少一种:
Figure PCTCN2020093792-appb-000008
其中:
R 41选自取代或未取代的C 1-C 12亚烷基或-R c-(O-R a) A-O-R b,R a和R b各自独立地选自取代或未取代的C 1-C 3亚烷基,R c选自一键或取代或未取代的C 1-C 3亚烷基,A为0至2的整数;
R 51和R 52各自独立地选自一键或取代或未取代的C 1-C 12亚烷基;
R 61、R 62和R 63各自独立地选自一键、取代或未取代的C 1-C 12亚烷基或取代或未取代的C 1-C 12亚烷氧基;
R 71选自取代或未取代的C 1-C 12亚烷基、取代或未取代的C 2-C 12亚烯基、取代或未取代的C 6-C 26亚芳基或取代或未取代的C 2-C 12亚杂环基;并且
当R 41、R 51、R 52、R 61、R 62、R 63和R 71中至少一者经取代时,取代基为卤素,
其中基于所述电解液的总重量,所述第三添加剂的含量为0.1wt%至12wt%。
根据本申请的实施例,所述第三添加剂包括以下化合物中的至少一种:丙二腈、丁二腈、戊二腈、己二腈、庚二腈、辛二腈、癸二腈、3,3′-氧二丙腈、己-2-烯二腈、反丁烯二腈、2-戊烯二腈、甲基戊二腈、4-氰基庚二腈、(Z)-丁-2-烯二腈、2,2,3,3-四氟丁二腈、乙二醇双(丙腈)醚、1,3,5-戊三甲腈、1,3,6-己三甲腈、1,2,6-己三甲腈、1,2,3-三(2-氰氧基)丙烷、1,1,3,3-丙四甲腈、
Figure PCTCN2020093792-appb-000009
Figure PCTCN2020093792-appb-000010
根据本申请的实施例,基于所述电解液的总重量,所述具有两个腈基的化合物的含量x wt%与所述具有三个及三个以上腈基的化合物的含量y wt%满足x-y≥0。
根据本申请的实施例,所述电解液进一步包括第四添加剂,所述第四添加剂包括LiCH 3SO 3、LiCF 3SO 3、LiN(SO 2CF 3) 2、LiC(SO 2CF 3) 3、LiBOB或LiDFOB中的至少一种,基于所述电解液的总重量,所述第四添加剂的含量为0.05wt%至2wt%。
根据本申请的另一个方面,本申请提供了一种电化学装置,其包括正极、负极和根据本申请的电解液。
根据本申请的实施例,所述正极包括正极活性材料,所述正极活性材料包含第一颗粒和第二颗粒,所述第一颗粒的平均粒径大于所述第二颗粒的平均粒径。
根据本申请的实施例,所述第一颗粒和所述第二颗粒具有相同或不同的化学组成。
根据本申请的实施例,所述第二颗粒包含铝元素,基于所述正极活性材料的总重量,所述铝元素的含量为0.001wt%至1wt%。
根据本申请的又一个方面,本申请提供了一种电子装置,其包括根据本申请的电化学装置。
本申请的额外层面及优点将部分地在后续说明中描述、显示、或是经由本申请实施例的实施而阐释。
具体实施方式
本申请的实施例将会被详细的描示在下文中。本申请的实施例不应该被解释为对本申请的限制。
在具体实施方式及权利要求书中,由术语“中的至少一者”连接的项目的列表可意味着所列项目的任何组合。例如,如果列出项目A及B,那么短语“A及B中的至少一者”意味着仅A;仅B;或A及B。在另一实例中,如果列出项目A、B及C,那么短语“A、B及C中的至少一种”意味着仅A;或仅B;仅C;A及B(排除C);A及C(排除B);B及C(排除A);或A、B及C的全部。项目A可包含单个元件或多个元件。 项目B可包含单个元件或多个元件。项目C可包含单个元件或多个元件。术语“中的至少一种”与“中的至少一者”具有相同的含义。
如本文中所使用,术语“烃基”涵盖烷基、烯基、炔基、环烷基和芳基等。
如本文中所使用,术语“烷基”预期是具有1至20个碳原子的直链饱和烃结构。“烷基”还预期是具有3至20个碳原子的支链或环状烃结构。当指定具有具体碳数的烷基时,预期涵盖具有该碳数的所有几何异构体;因此,例如,“丁基”意思是包括正丁基、仲丁基、异丁基、叔丁基和环丁基;“丙基”包括正丙基、异丙基和环丙基。烷基实例包括,但不限于甲基、乙基、正丙基、异丙基、环丙基、正丁基、异丁基、仲丁基、叔丁基、环丁基、正戊基、异戊基、新戊基、环戊基、甲基环戊基、乙基环戊基、正己基、异己基、环己基、正庚基、辛基、环丙基、环丁基、降冰片基等。
如本文中所使用,术语“亚烷基”意指可为直链或具支链的二价饱和烃基。除非另有定义,否则所述亚烷基通常含有2到10个碳原子,且包括(例如)C 2-C 3亚烷基和C 2-C 6亚烷基。代表性亚烷基包括(例如)亚甲基、乙烷-1,2-二基(“亚乙基”)、丙烷-1,2-二基、丙烷-1,3-二基、丁烷-1,4-二基、戊烷-1,5-二基等。
如本文中所使用,术语“烯基”是指可为直链或具支链且具有至少一个且通常1个、2个或3个碳碳双键的单价不饱和烃基团。除非另有定义,否则所述烯基通常含有2个到20个碳原子且包括(例如)C 2-C 4烯基、C 2-C 6烯基及C 2-C 10烯基。代表性烯基包括(例如)乙烯基、正丙烯基、异丙烯基、正-丁-2-烯基、丁-3-烯基、正-己-3-烯基等。
如本文中所使用,术语“亚烯基”意指通过从上述定义的烯基中除去一个氢原子而获得的双官能团。优选的亚烯基包括但不限于-CH=CH-、-C(CH3)=CH-、-CH=CHCH 2-等。
如本文中所使用,术语“炔基”是指可为直链或具支链且具有至少一个且通常具有1个、2个或3个碳碳三键的单价不饱和烃基团。除非另有定义,否则所述炔基通常含有2个到20个碳原子且包括(例如)-C 2-4炔基、-C 3-6炔基及-C 3-10炔基。代表性炔基包括(例如)乙炔基、丙-2-炔基(正-丙炔基)、正-丁-2-炔基、正-己-3-炔基等。
如本文中所使用,术语“芳基”意指具有单环(例如,苯基)或稠合环的单价芳香族烃。稠合环系统包括那些完全不饱和的环系统(例如,萘)以及那些部分不饱和的环系统(例如,1,2,3,4-四氢萘)。除非另有定义,否则所述芳基通常含有6个到30个碳环原子且包括(例如)C 6-C 10芳基。代表性芳基包括(例如)苯基、甲基苯基、丙基苯基、 异丙基苯基、苯甲基和萘-1-基、萘-2-基等等。
如本文中所使用,术语“亚芳基”涵盖单环系统和多环系统。多环可以具有其中两个碳为两个邻接环(所述环是“稠合的”)共用的两个或更多个环,其中所述环中的至少一者是芳香族的,例如其它环可以是环烷基、环烯基、芳基、杂环和/或杂芳基。例如,亚芳基可为C 6-C 30亚芳基、C 6-C 26亚芳基、C 6-C 20亚芳基或C 6-C 10亚芳基。
如本文中所使用,术语“烷氧基”指与氧原子连接的烷基基团,其中烷基基团具有如本文所述的含义。烷氧基可为具有1至20个碳原子的烷氧基、具有1-8个碳原子的烷氧基、具有1-5个碳原子的烷氧基、具有5-10个碳原子的烷氧基或具有5-20个碳原子的烷氧基。烷氧基的实例包括,但不限于,甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、仲丁氧基、叔丁氧基、正戊氧基和5-戊氧基。
如本文中所使用,术语“烯氧基”指与氧原子连接的烯基基团,其中烯基基团具有如本文所述的含义。烯氧基可为具有2至20个碳原子的烯氧基、具有2-10个碳原子的烯氧基、具有2-8个碳原子的烯氧基、具有2-6个碳原子的烯氧基。烯氧基的实例包括,但不限于,丙烯基氧基、丁烯基氧基、戊烯基氧基、己烯基氧基、庚烯基氧基、辛烯基氧基。
如本文中所使用,术语“炔氧基”指与氧原子连接的炔基基团,其中炔基基团具有如本文所述的含义。炔氧基可为具有2至20个碳原子的炔氧基、具有2-10个碳原子的炔氧基、具有2-8个碳原子的炔氧基、具有2-6个碳原子的炔氧基。炔氧基的实例包括,但不限于,乙炔氧基、1-丙炔氧基、1-丁炔氧基、1-戊炔氧基和1-己炔氧基。
如本文中所使用,术语“芳氧基”是指与氧原子连接的芳基基团,其中芳基基团具有如本文所述的含义。芳氧基可为具有6至30个碳原子的芳氧基、具有6-26个碳原子的芳氧基、具有6-20个碳原子的芳氧基、具有6-10个碳原子的芳氧基。芳氧基的实例包括,但不限于,苯氧基甲基和苯氧基乙基。
如本文中所使用,术语“硅氧烷基”是指与-Si-O-基团连接的烷基基团,其中烷基基团具有如本文所述的含义。
如本文中所使用,术语“铝氧烷基”是指与-Al-O-基团连接的烷基基团,其中烷基基团具有如本文所述的含义。
如本文中所使用,术语“含有杂原子的有机官能团”是指含有杂原子的链状基团,或者含有杂环的基团。“链状基团”指的是具有1-20个碳原子(或具有3-10个碳原子或具有2-5个碳原子)的直链基团或支链基团。含有杂原子的链状基团的实例包括,但 不限于,甲氧基、乙氧基、丙氧基、异丙基氧基、正丁基氧基、乙烯氧基、丙烯氧基、乙炔氧基、甲醛基、氰基、乙腈基、乙胺基、乙酰氧基、乙酰氨基、乙醚基、甲硫醚基、甲基二硫醚基、甲基重氮基、乙烷磺酸基、乙烷亚磺酸基、乙烷磷酸基、乙烷亚磷酸基、、乙烷亚磷酸酯基、甲基三丙酮肟基、甲基丁基酮肟基、甲基硅氧烷基、甲基硅氮烷基、甲基铝氧烷基。
如本文中所使用,术语“杂环”或“杂环基”意指稳定的含杂原子或杂原子团的单环、双环或三环,它们可以是饱和的、部分不饱和的或不饱和的(芳族的),它们包含3-10个碳原子(或3-8个碳原子,或3-6个碳原子)和1、2、3或4个独立地选自N、O、S、P、Si或Al的环杂原子。上述任意杂环可以稠合到一个苯环上形成双环。杂环可列举,但不限于,呋喃、吡喃、哌啶、哌嗪、吡咯、吡唑、吡嗪、哒嗪、咪唑、三唑、噻吩、噻唑或噁唑。杂环基的实例包括,但不限于,1-(1,2,5,6-四氢吡啶基)、1-哌啶基、2-哌啶基,3-哌啶基、4-吗啉基、3-吗啉基、四氢呋喃-2-基、四氢呋喃吲哚-3-基、四氢噻吩-2-基、四氢噻吩-3-基,1-哌嗪基和2-哌嗪基。
如本文中所使用,术语“亚杂环基”是指二价杂环基。亚杂环基的实例包括,但不限于:(亚)环氧乙烷基、(亚)氮丙啶基、(亚)氮杂环丁基(azetidinyl)、(亚)氧杂环丁基(oxetanyl)、(亚)四氢呋喃基、(亚)二氧杂环戊烯基(dioxolinyl)、(亚)吡咯烷基、(亚)吡咯烷酮基、(亚)咪唑烷基、(亚)吡唑烷基、(亚)吡咯啉基、(亚)四氢吡喃基、(亚)哌啶基、(亚)吗啉基、(亚)二噻烷基(dithianyl)、(亚)硫吗啉基、(亚)哌嗪基或(亚)三噻烷基(trithianyl)。
如本文中所使用,术语“杂原子”是指N、O、S、P、Si或Al中的至少一种。
如本文中所使用,术语“氰基”涵盖含有机基团-CN的有机物。
如本文中所使用,术语“卤素”是指属于元素周期表的第17族的稳定原子,例如氟、氯、溴或碘。
如本文中所使用,术语“取代的或未取代的”表示特定基团是未被取代基取代或被一个或多个取代基取代。除非有特别说明,当上述取代基经取代时,取代基可选自由以下组成的群组:卤素、烷基、环烷基、烯基、芳基、杂芳基和-CN等。
电解液
随着电化学装置(例如,锂离子电池)的广泛应用,人们对其性能的要求越来越高。为了开发高能量密度的锂离子电池,其设计的使用上限电压需随之提高。然而,在高电压条件下(例如,4.45V或更高),传统电解液的耐氧化能力及成膜稳定性下降,同时,正极和负极的结构会发生破坏而释氧,其会加速电解液的分解。先前所使用的用于改善 电解液性能的添加剂的效果在高电压甚至极限电压下会显著降低,使其无法发挥保护作用,不仅如此,其还会发生副反应从而恶化锂离子电池的循环性能。如何在高电压工况下改善电化学装置的循环性能已成为研发瓶颈之一。
为了解决上述问题,本申请提供了一种电解液,其包含式(I)化合物:
Figure PCTCN2020093792-appb-000011
其中:
R 11、R 12、R 13和R 14各自独立地选自氢原子,取代或未取代的C 1-C 20的烃基、取代或未取代的含有杂原子的C 1-C 20的有机官能团;
R 11、R 12、R 13和R 14中的至少一者为
Figure PCTCN2020093792-appb-000012
其中:
R 15和R 17各自独立地选自单键、取代或未取代的C 1-C 4亚烷基、取代或未取代的C 2-C 4亚烯基取代或未取代的C 6-C 10的亚芳基;
R 16和R 18各自独立地选自取代或未取代的C 1-C 10的烃基、取代或未取代的含有杂原子的C 1-C 10的有机官能团;
所述杂原子选自氧、氮、硫、磷、硅或铝中的至少一种;
当R 11、R 12、R 13和R 14、R 15、R 16、R 17和R 18中的至少一者经取代时,取代基为卤素或-CN。
根据本申请的实施例,所述式(I)化合物包括式(I-a)化合物至式(I-d)化合物中的至少一种:
Figure PCTCN2020093792-appb-000013
其中:
X选自
Figure PCTCN2020093792-appb-000014
Ra 1、Ra 2、Ra 3、Rb 1、Rb 2、Rb 3、Rc 1、Rc 2、Rc 3、Rc 4、Rc 5、Rc 6、Rd 1、Rd 2、Rd 3、Rd 4、Rd 5和Rd 6各自独立地选自氢原子、取代或未取代的C 1-C 20烷基、取代或未取代的C 2-C 20烯基、取代或未取代的C 2-C 20炔基、取代或未取代的C 6-C 30芳基、取代或未取代的C 1-C 20烷氧基、取代或未取代的C 2-C 20烯氧基、取代或未取代的C 2-C 20炔氧基、取代或未取代的C 6-C 30芳氧基、羧基、醚基、碳酰氧基、硫基、氰基、氨基、碳酰胺基、取代或未取代的C 1-C 16硅氧烷基、C 1-C 16铝氧烷基、取代或未取代的C 1-C 10饱和环烷基、取代或未取代的呋喃、取代或未取代的吡喃、取代或未取代的哌啶、取代或未取代的哌嗪、取代或未取代的吡咯、取代或未取代的吡唑、取代或未取代的吡嗪、取代或未取代的哒嗪、取代或未取代的咪唑、取代或未取代的三唑、取代或未取代的噻吩、取代或未取代的噻唑或取代或未取代的噁唑;
R 15、R e、R 17和R f各自独立地选自键、取代或未取代的C 1-C 4亚烷基、取代或未取代的C 2-C 4亚烯基取代或未取代的C 6-C 10的亚芳基;
当Ra 1、Ra 2、Ra 3、Rb 1、Rb 2、Rb 3、Rc 1、Rc 2、Rc 3、Rc 4、Rc 5、Rc 6、Rd 1、Rd 2、Rd 3、Rd 4、Rd 5、Rd 6、R e和R f中的至少一者经取代时,取代基为卤素、C 1-C 6的烷基或-CN。
根据本申请的实施例,所述式(I)化合物包括以下化合物中的至少一种:
Figure PCTCN2020093792-appb-000015
Figure PCTCN2020093792-appb-000016
羰基三唑或硫羰基三唑化合物在电解液中可开环形成复合有机保护膜,该保护膜含有较多的富电子基团,能够存储离子,抑制正极活性材料与电解液的接触,从而可显著提升电化学装置在高电压条件下的高温循环性能并抑制循环中的阻抗增长率。
根据本申请的实施例,基于所述电解液的总重量,所述式(I)化合物的含量为n wt%,n为0.02至6。在一些实施例中,n为0.05至5。在一些实施例中,n为0.1至4。在一些实施例中,n为0.3至3。在一些实施例中,n为0.5至2。在一些实施例中,n为0.8至1。在一些实施例中,n为0.02、0.05、0.08、0.1、0.2、0.5、0.8、1、1.5、2、2.5、3、3.5、4、4.5、5、5.5、6或在上述任意两个数值所组成的范围内。当式(I)化合物在电解液中的含量在上述范围内时,有助于进一步提升电化学装置的在高电压条件下的高温循环性能并进一步降低其循环阻抗增长率。
根据本申请的实施例,所述电解液进一步包括第一添加剂,所述第一添加剂包括氟代碳酸乙烯酯或碳酸亚乙烯酯中的至少一种,基于所述电解液的总重量,所述第一添加剂的含量为m wt%,m>0且m和n满足以下关系:-1≤m-n≤18。在一些实施例中,m和n满足以下关系:0≤m-n≤15。在一些实施例中,m和n满足以下关系:1≤m-n≤10。在一些实施例中,m和n满足以下关系:3≤m-n≤5。在一些实施例中,m-n等于-1、-0.5、0、0.5、1、1.5、2、2.5、3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10、11、12、13、14、15、16、17或18。当第一添加剂和式(I)化合物在电解液中的含量满足上述关系时,有助于进一步提升电化学装置的在高电压条件下的高温循环性能并进一步降低其循环阻抗增长率。
根据本申请的实施例,所述电解液进一步包括第二添加剂,所述第二添加剂包括式(II)化合物或式(III)化合物中的至少一种:
Figure PCTCN2020093792-appb-000017
Figure PCTCN2020093792-appb-000018
其中:
R 21和R 22各自独立地选自取代或未取代的C 1-C 20烷基、取代或未取代的C 2-C 20烯基、取代或未取代的C 2-C 20炔基、取代或未取代的C 6-C 30芳基、取代或未取代的C 1-C 20烷氧基、取代或未取代的C 2-C 20烯氧基、取代或未取代的C 2-C 20炔氧基、取代或未取代的C 6-C 30芳氧基,当R 21和R 22中至少一者经取代时,取代基为卤素;
R 31选自取代或未取代的C 1-C 4的亚烷基或者取代或未取代的C 2-C 4亚烯基;
R 32选自键、取代或未取代的C 1-C 2亚烷氧基、-O-或-R 33-SO 2-R 34-;
R 33选取代或未取代的C 1-C 2亚烷基;
R 34选自键、取代或未取代的C 1-C 2亚烷基或-O-;
当R 31、R 32、R 33和R 34中的至少一者经取代时,取代基为C 1-C 20烷基、C 6-C 30芳基、卤素或-CN。
根据本申请的实施例,所述第二添加剂包括以下化合物中的至少一种:
Figure PCTCN2020093792-appb-000019
Figure PCTCN2020093792-appb-000020
第二添加剂包含
Figure PCTCN2020093792-appb-000021
官能团,首次充电时具备良好的正负极成膜能力,并在循环过程中,对发生分解的保护膜起到修复作用。在式(I)化合物的基础上添加第二添加剂可进一步提升电化学装置在高电压条件下的高温循环性能并进一步降低其循环阻抗增长率。
根据本申请的实施例,基于所述电解液的总重量,所述第二添加剂的含量为0.05wt%至10wt%。在一些实施例中,基于所述电解液的总重量,所述第二添加剂的含量为0.1wt%至8wt%。在一些实施例中,基于所述电解液的总重量,所述第二添加剂的含量为0.5wt%至5wt%。在一些实施例中,基于所述电解液的总重量,所述第二添加剂的含量为1wt%至3wt%。在一些实施例中,基于所述电解液的总重量,所述第二添加剂的含量为0.05wt%、0.1wt%、0.3wt%、0.5wt%、0.8wt%、1wt%、1.5wt%、2wt%、2.5wt%、3wt%、3.5wt%、4wt%、4.5wt%、5wt%、5.5wt%、6wt%、6.5wt%、7wt%、7.5wt%、8wt%、8.5wt%、9wt%、9.5wt%、10wt%或在上述任意两个数值所组成的范围内。当第二添加剂在电解液中的含量在上述范围内时,有助于进一步提升电化学装置的在高电压条件下的高温循环性能并进一步降低其循环阻抗增长率。
根据本申请的实施例,所述电解液进一步包括第三添加剂,所述第三添加剂包括具有两个腈基的化合物和具有三个及三个以上腈基的化合物中的至少一种,所述具有两个腈基的化合物包括式(IV)化合物或式(V)化合物中的至少一种,所述具有三个及三个以上腈基的化合物包括式(VI)化合物或式(VII)化合物中的至少一种:
Figure PCTCN2020093792-appb-000022
Figure PCTCN2020093792-appb-000023
其中:
R 41选自取代或未取代的C 1-C 12亚烷基或-R c-(O-R a) A-O-R b,R a和R b各自独立地选自取代或未取代的C 1-C 3亚烷基,R c选自一键或取代或未取代的C 1-C 3亚烷基,A为0至2的整数;
R 51和R 52各自独立地选自键或取代或未取代的C 1-C 12亚烷基;
R 61、R 62和R 63各自独立地选自一键、取代或未取代的C 1-C 12亚烷基或取代或未取代的C 1-C 12亚烷氧基;
R 71选自一键、取代或未取代的C 1-C 12亚烷基、取代或未取代的C 2-C 12亚烯基、取代或未取代的C 6-C 26亚芳基或取代或未取代的C 2-C 12亚杂环基;并且
当R 41、R 51、R 52、R 61、R 62、R 63和R 71中至少一者经取代时,取代基为卤素。
根据本申请的实施例,所述第三添加剂包括以下化合物中的至少一种:丙二腈、丁二腈、戊二腈、己二腈、庚二腈、辛二腈、癸二腈、3,3′-氧二丙腈、己-2-烯二腈、反丁烯二腈、2-戊烯二腈、甲基戊二腈、4-氰基庚二腈、(Z)-丁-2-烯二腈、2,2,3,3-四氟丁二腈、乙二醇双(丙腈)醚、1,3,5-戊三甲腈、1,3,6-己三甲腈、1,2,6-己三甲腈、1,2,3-三(2-氰氧基)丙烷、1,1,3,3-丙四甲腈、
Figure PCTCN2020093792-appb-000024
Figure PCTCN2020093792-appb-000025
Figure PCTCN2020093792-appb-000026
在式(I)化合物的基础上添加第三添加剂可进一步提升电化学装置在高电压条件下的高温循环性能并进一步降低其循环阻抗增长率。
根据本申请的实施例,基于所述电解液的总重量,所述第三添加剂的含量为0.1wt%至12wt%。在一些实施例中,基于所述电解液的总重量,所述第三添加剂的含量为0.5wt%至10wt%。在一些实施例中,基于所述电解液的总重量,所述第三添加剂的含量为1wt%至8wt%。在一些实施例中,基于所述电解液的总重量,所述第三添加剂的含量为2wt%至6wt%。在一些实施例中,基于所述电解液的总重量,所述第三添加剂的含量为3wt%至5wt%。在一些实施例中,基于所述电解液的总重量,所述第三添加剂的含量为0.1wt%、0.5wt%、1wt%、1.5wt%、2wt%、2.5wt%、3wt%、3.5wt%、4wt%、4.5wt%、5wt%、5.5wt%、6wt%、6.5wt%、7wt%、7.5wt%、8wt%、8.5wt%、9wt%、9.5wt%、10wt%、10.5wt%、11wt%、11.5wt%、12wt%或在上述任意两个数值所组成的范围内。当第三添加剂在电解液中的含量在上述范围内时,有助于进一步提升电化学装置的在高电压条件下的高温循环性能并进一步降低其循环阻抗增长率。
根据本申请的实施例,基于所述电解液的总重量,所述具有两个腈基的化合物的含量x wt%与所述具有三个及三个以上腈基的化合物的含量y wt%满足x-y≥0。在一些实施例中,x和y满足x-y≥0.1。在一些实施例中,x和y满足x-y≥1。在一些实施例中,x和y满足x-y≥5。在一些实施例中,x和y满足x-y≥8。在一些实施例中,x和y满足x-y≥10。当第三添加剂中具有两个腈基的化合物的含量x与具有三个及三个以上腈基的化合物的含量y满足上述关系时,有助于进一步提升电化学装置的在高电压条件下的高温循环性能并进一步降低其循环阻抗增长率。
根据本申请的实施例,所述电解液进一步包括第四添加剂,所述第四添加剂包括LiCH 3SO 3、LiCF 3SO 3、LiN(SO 2CF 3) 2、LiC(SO 2CF 3) 3、LiBOB或LiDFOB中的至少一种。
第四添加剂为锂盐添加剂,锂盐中的负离子在负极先于溶剂还原,在正极先于溶剂氧化,并形成稳定的无机层,抑制高电位下溶剂的消耗。在式(I)化合物的基础上添 加第四添加剂可进一步提升电化学装置在高电压条件下的高温循环性能并进一步降低其循环阻抗增长率。
根据本申请的实施例,基于所述电解液的总重量,所述第四添加剂的含量为0.05wt%至2wt%。在一些实施例中,基于所述电解液的总重量,所述第四添加剂的含量为0.1wt%至1.5wt%。在一些实施例中,基于所述电解液的总重量,所述第四添加剂的含量为0.5wt%至1wt%。在一些实施例中,基于所述电解液的总重量,所述第四添加剂的含量为0.05wt%、0.1wt%、0.3wt%、0.5wt%、0.8wt%、1wt%、1.2wt%、1.5wt%、1.8wt%、2wt%或在上述任意两个数值所组成的范围内。当第四添加剂在电解液中的含量在上述范围内时,有助于进一步提升电化学装置的在高电压条件下的高温循环性能并进一步降低其循环阻抗增长率。
根据本申请的实施例,所述电解液进一步包括六氟磷酸锂(LiPF 6)。在一些实施例中,所述六氟磷酸锂的浓度为0.6M至2M。在一些实施例中,所述六氟磷酸锂的浓度为0.8M至1.2M。
本申请的电解液可采用任何已知方法制备。在一些实施例中,本申请的电解液可通过混合各组分制备。
正极
正极包括正极集流体和设置在正极集流体的一个或两个表面的正极活性物质。
根据本申请的实施例,所述正极活性材料包含第一颗粒和第二颗粒,所述第一颗粒的平均粒径大于所述第二颗粒的平均粒径。正极活性材料小颗粒改善锂离子传输通道;大颗粒维持了高电位下颗粒结构的稳定性。不同粒径的两种颗粒的组合,可进一步提升电化学装置在高电压条件下的高温循环性能并进一步降低其循环阻抗增长率。
根据本申请的实施例,所述第一颗粒的平均粒径或所述第二颗粒的平均粒径在5μm至20μm的范围内。在一些实施例中,所述第一颗粒的平均粒径或所述第二颗粒的平均粒径在8μm至18μm的范围内。在一些实施例中,所述第一颗粒的平均粒径或所述第二颗粒的平均粒径在10μm至15μm的范围内。在一些实施例中,所述第一颗粒的平均粒径或所述第二颗粒的平均粒径为5μm、6μm、7μm、8μm、9μm、10μm、11μm、12μm、13μm、14μm、15μm、16μm、17μm、18μm、19μm、20μm或在由上述任意两个数值所组成的范围内。
根据本申请的实施例,所述第一颗粒和所述第二颗粒具有相同或不同的化学组成。
根据本申请的实施例,所述第二颗粒包含铝元素,基于所述正极活性材料的总重量, 所述铝元素的含量为0.001wt%至1wt%。在一些实施例中,基于所述正极活性材料的总重量,所述铝元素的含量为0.005wt%至0.8wt%。在一些实施例中,基于所述正极活性材料的总重量,所述铝元素的含量为0.01wt%至0.5wt%。在一些实施例中,基于所述正极活性材料的总重量,所述铝元素的含量为0.05wt%至0.3wt%。在一些实施例中,基于所述正极活性材料的总重量,所述铝元素的含量为0.1wt%至0.2wt%。在一些实施例中,基于所述正极活性材料的总重量,所述铝元素的含量为0.001wt%、0.005wt%、0.008wt%、0.01wt%、0.05wt%、0.08wt%、0.1wt%、0.3wt%、0.5wt%、0.8wt%、1wt%或在由上述任意两个数值所组成的范围内。当第二颗粒中的铝元素的含量在上述范围内时,有助于进一步提升电化学装置的在高电压条件下的高温循环性能并进一步降低其循环阻抗增长率。
根据本申请的实施例,所述正极活性材料具有式Li aM 1 bM 2 cM 3 dO 2,其中:
M 1选自钴、镍或锰中的至少一种;
M 2选自镁、铝或钛中的至少一种;
M 3选自硼、铬、铁、铜、锌、铌、钼、钽、锡、钠、钾、钡、锶或钙中的至少一种;
0.9≤a≤1.2;
0.80≤b≤1.2;
0.00001≤c≤0.2;以及
0≤d≤0.002。
根据本申请的实施例,所述正极活性材料包括,但不限于,LiCoO 2、LiCo 0.995Mg 0.002Al 0.003O 2、LiCo 0.993Mg 0.001Ti 0.001Al 0.005O 2、LiCo 0.994Mg 0.0025Ti 0.0005Al 0.003O 2、LiCo 0.988Mg 0.001Ti 0.001Al 0.01O 2、LiCo 0.898Mg 0.001Ti 0.001Al 0.1O 2、LiCo 0.948Mg 0.001Ti 0.001Al 0.5O 2、LiCo 0.987Mg 0.001Ti 0.001Al 0.01Zr 0.001O 2或LiNi 0.497Co 0.2Mn 0.3Al 0.001Zr 0.002O 2
在一些实施例中,正极活性材料的表面上具有涂层。在一些实施例中,所述涂层包括涂覆元素的氧化物、涂覆元素的氢氧化物、涂覆元素的羟基氧化物、涂覆元素的碳酸氧盐(oxycarbonate)或涂覆元素的羟基碳酸盐(hydroxycarbonate)的至少一种。在涂层中含有的涂覆元素可以包括Mg、Al、Co、K、Na、Ca、Si、Ti、V、Sn、Ge、Ga、B、As、Zr或它们的混合物。用于涂层的化合物可以是非晶的或结晶的。可以通过任何方法来施加涂层,只要该方法不对正极活性材料的性能产生不利影响即可。施加涂层的方法可以包括对本领域普通技术人员来说众所周知的任何涂覆方法,例如喷涂、浸渍等。
在一些实施例中,正极活性材料层还包括粘合剂。粘合剂可提高正极活性材料颗粒彼此间的结合,并且可提高正极活性材料与正极集流体的结合。在一些实施例中,所述粘合剂包括,但不限于,聚乙烯醇、羟丙基纤维素、二乙酰基纤维素、聚氯乙烯、羧化的聚氯乙烯、聚氟乙烯、含亚乙基氧的聚合物、聚乙烯吡咯烷酮、聚氨酯、聚四氟乙烯、聚偏1,1-二氟乙烯、聚乙烯、聚丙烯、丁苯橡胶、丙烯酸(酯)化的丁苯橡胶、环氧树脂和尼龙等。
在一些实施例中,正极活性材料层还包括导电材料,从而赋予电极导电性。该导电材料可以包括任何导电材料,只要它不引起化学变化。导电材料的非限制性示例包括基于碳的材料(例如,天然石墨、人造石墨、碳黑、乙炔黑、科琴黑、碳纤维等)、基于金属的材料(例如,金属粉、金属纤维等,包括例如铜、镍、铝、银等)、导电聚合物(例如,聚亚苯基衍生物)和它们的混合物。
在一些实施例中,正极集流体包括,但不限于,铝(Al)。
负极
负极包括负极集流体和设置在负极集流体的一个或两个表面的负极活性物质。负极活性物质的具体种类均不受到具体的限制,可根据需求进行选择。
在一些实施例中,负极集流体可以选自于铜箔、镍箔、不锈钢箔、钛箔、泡沫镍、泡沫铜、覆有导电金属的聚合物基底和它们的组合。
在一些实施例中,所述负极活性物质选自天然石墨、人造石墨、中间相微碳球(简称为MCMB)、硬碳、软碳、硅、硅-碳复合物、Li-Sn合金、Li-Sn-O合金、Sn、SnO、SnO 2、尖晶石结构的锂化TiO 2-Li 4Ti 5O 12、Li-Al合金中的一种或几种。碳材料的非限制性示例包括结晶碳、非晶碳和它们的混合物。结晶碳可以是无定形的或片形的、小片形的、球形的或纤维状的天然石墨或人造石墨。非晶碳可以是软碳、硬碳、中间相沥青碳化物、煅烧焦等。
在一些实施例中,负极活性物质包括粘合剂。粘合剂提高负极活性材料颗粒彼此间的结合和负极活性材料与集流体的结合。粘合剂的非限制性示例包括聚乙烯醇、羧甲基纤维素、羟丙基纤维素、二乙酰基纤维素、聚氯乙烯、羧化的聚氯乙烯、聚氟乙烯、含亚乙基氧的聚合物、聚乙烯吡咯烷酮、聚氨酯、聚四氟乙烯、聚偏1,1-二氟乙烯、聚乙烯、聚丙烯、丁苯橡胶、丙烯酸(酯)化的丁苯橡胶、环氧树脂、尼龙等。
在一些实施例中,负极活性物质包括导电材料,从而赋予电极导电性。该导电材料可以包括任何导电材料,只要它不引起化学变化。导电材料的非限制性示例包括基于碳 的材料(例如,天然石墨、人造石墨、碳黑、乙炔黑、科琴黑、碳纤维等)、基于金属的材料(例如,金属粉、金属纤维等,例如铜、镍、铝、银等)、导电聚合物(例如,聚亚苯基衍生物)和它们的混合物。
隔离膜
在一些实施例中,正极与负极之间设有隔离膜以防止短路。隔离膜的材料和形状没有特别限制,其可为任何现有技术中公开的技术。在一些实施例中,隔离膜包括由对本申请的电解液稳定的材料形成的聚合物或无机物等。
在一些实施例中,隔离膜包括基材层。在一些实施例中,基材层为具有多孔结构的无纺布、膜或复合膜。在一些实施例中,基材层的材料选自聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯和聚酰亚胺中的至少一种。在一些实施例中,基材层的材料选自聚丙烯多孔膜、聚乙烯多孔膜、聚丙烯无纺布、聚乙烯无纺布或聚丙烯-聚乙烯-聚丙烯多孔复合膜。
在一些实施例中,基材层的至少一个表面上设置有表面处理层。在一些实施例中,表面处理层可以是聚合物层、无机物层或混合聚合物与无机物所形成的层。在一些实施例中,聚合物层中包含聚合物,聚合物的材料选自聚酰胺、聚丙烯腈、丙烯酸酯聚合物、聚丙烯酸、聚丙烯酸盐、聚乙烯呲咯烷酮、聚乙烯醚、聚偏氟乙烯、聚(偏氟乙烯-六氟丙烯)中的至少一种。
在一些实施例中,无机物层包括无机颗粒和粘结剂。在一些实施例中,所述无机颗粒选自氧化铝、氧化硅、氧化镁、氧化钛、二氧化铪、氧化锡、二氧化铈、氧化镍、氧化锌、氧化钙、氧化锆、氧化钇、碳化硅、勃姆石、氢氧化铝、氢氧化镁、氢氧化钙和硫酸钡中的一种或几种的组合。在一些实施例中,所述粘结剂选自聚偏氟乙烯、偏氟乙烯-六氟丙烯的共聚物、聚酰胺、聚丙烯腈、聚丙烯酸酯、聚丙烯酸、聚丙烯酸盐、聚乙烯呲咯烷酮、聚乙烯醚、聚甲基丙烯酸甲酯、聚四氟乙烯和聚六氟丙烯中的一种或几种的组合。
电化学装置
本申请的电化学装置包括发生电化学反应的任何装置,它的具体实例包括所有种类的一次电池、二次电池、燃料电池、太阳能电池或电容器。特别地,该电化学装置是锂二次电池,包括锂金属二次电池、锂离子二次电池、锂聚合物二次电池或锂离子聚合物二次电池。
电子装置
本申请另提供了一种电子装置,其包括根据本申请的电化学装置。
本申请的电化学装置的用途没有特别限定,其可用于现有技术中已知的任何电子装置。在一些实施例中,本申请的电化学装置可用于,但不限于,笔记本电脑、笔输入型计算机、移动电脑、电子书播放器、便携式电话、便携式传真机、便携式复印机、便携式打印机、头戴式立体声耳机、录像机、液晶电视、手提式清洁器、便携CD机、迷你光盘、收发机、电子记事本、计算器、存储卡、便携式录音机、收音机、备用电源、电机、汽车、摩托车、助力自行车、自行车、照明器具、玩具、游戏机、钟表、电动工具、闪光灯、照相机、家庭用大型蓄电池和锂离子电容器等。
下面以锂离子电池为例并且结合具体的实施例说明锂离子电池的制备,本领域的技术人员将理解,本申请中描述的制备方法仅是实例,其他任何合适的制备方法均在本申请的范围内。
实施例
以下说明根据本申请的锂离子电池的实施例和对比例进行性能评估。
一、锂离子电池的制备
1、正极的制备
(1)表1-6中各实施例和对比例所使用的正极通过以下方法制备:
将商业购买的CoCl 2和AlCl 3分别配置成水溶液,按照活性物质按照摩尔比为1∶k(0≤k≤0.01088221)的比例混合,并加入NH 3HCO 3溶液调节混合物的pH为约10.5,得到沉淀物质。将得到的沉淀物质在400℃进行煅烧5小时,得到含有Al元素的Co 3O 4。将得到的含有Al元素CO 3O 4和Li 2CO 3按照摩尔比2∶3.15混合均匀,然后在1000℃的温度下煅烧8小时得到LiCoO 2。将得到的LiCoO 2加入Al 2O 3(摩尔比为1∶[(0.01088221-k)/2])混匀,将混匀的物质在800℃烧结8小时,筛选平均粒径为12μm含有Al元素的钴酸锂,得到正极活性材料。如无特殊说明,在表1-6所列实施例和对比例中,基于所述正极活性材料层的总重量,Al元素含量为0.003wt%。
将制备的正极活性材料、乙炔黑和聚偏二氟乙烯(PVDF)按重量比96∶2∶2溶解于N-甲基吡咯烷酮(NMP)溶剂体系中,充分搅拌混合,制得正极浆料。将正极浆料均匀涂覆于正极集流体铝箔上,然后烘干、冷压得到正极活性材料层,之后经裁片、焊接极耳,得到正极。
(2)表7中各实施例和对比例所使用的正极通过以下方法制备:
根据上述相似的方法将Al、Mg、Ti、Zr、Ni等过渡金属引入钴酸锂,制得表7中 各实施例和对比例所使用的正极活性材料。
2、负极的制备
将人造石墨、羧甲基纤维素钠(CMC)和丁苯橡胶(SBR)按照重量比97∶1∶2溶解于去离子水溶剂体系中,搅拌混合,得到负极浆料。将负极浆料均匀涂覆在负极集流体铜箔上,烘干,冷压、裁片、分切并在真空下干燥,得到负极。
3、电解液的制备
在干燥的氩气气氛手套箱中,将碳酸乙烯酯(EC)、碳酸丙烯酯(PC)和丙酸丙酯(PP)按照1∶3∶6的质量比混合均匀,加入下表中各实施例和对比例所示的组分(所示含量为基于电解液的总重量计算得到的质量百分数),溶解并充分搅拌,然后加入锂盐LiPF 6,混合均匀,获得电解液。所得电解液中LiPF 6的浓度为1mol/L。
4、隔离膜的制备
将勃姆石与聚丙烯酸酯混合,将混合物溶于去离子水中,形成涂层浆料。随后采用微凹涂布法将所述涂层浆料均匀涂布到多孔基材的两个表面上,经过干燥处理获得隔离膜。
5、锂离子电池的制备
将正极、隔离膜和负极按顺序叠好,使隔离膜处于正极和负极中间,然后卷绕、焊接极耳并置于外包装箔中,注入上述制备好的电解液,经过真空封装、静置、化成、整形等工序,得到锂离子电池。
二、测试方法
1、锂离子电池的高温循环性能和循环阻抗增长率的测试方法
将制备的锂离子电池置于25℃恒温箱,静置1小时之后以1C恒流充电至4.45V,恒压充电至电流为0.025C,静置120分钟,然后以0.1C直流充电10秒,以1C直流充电360秒,通过下式计算高温循环前的该锂离子电池在80%荷电状态(SOC)时的直流阻抗:
Figure PCTCN2020093792-appb-000027
然后,将锂离子电池置于45℃恒温箱中,静置30分钟,使锂离子电池达到恒温。将达到恒温的锂离子电池以1C恒流充电至电压为4.45V,然后以4.45V恒压充电至电流为0.025C,接着以1C恒流放电至电压为3.0V,此为一个充放电循环。记录首次放电的容量。按上述方式充放电循环400次,停止测试,记录循环后的放电容量。通过下式 高温间隔循环后的容量保持率和厚度增长率:
高温循环容量保持率=循环后放电容量/首次放电容量×100%。
随后,将高温循环后的锂离子电池置于25℃恒温箱,静置1小时,以1C恒流充电至4.45V,恒压充电至电流为0.025C,静置120分钟,然后以0.1C直流充电10秒,以1C直流充电360秒。根据上述公式计算高温循环后的锂离子电池在80%荷电状态(SOC)时的直流阻抗。通过下式计算该锂离子电池的循环阻抗增长率:
循环阻抗增长率=(高温循环后的锂离子电池的直流阻抗-高温循环前的锂离子电池的直流阻抗)/高温循环前的锂离子电池的直流阻抗×100%。
2、正极活性材料的平均粒径的测试方法
使用MasterSizer 2000激光衍射法测试正极活性材料的平均粒径。
三、测试结果
表1展示了式(I)化合物对锂离子电池的高温循环性能和循环阻抗增长率的影响。
表1
Figure PCTCN2020093792-appb-000028
其中,“/”表示未添加该物质。
结果表明,相比于咪唑、三唑和羰基二咪唑,羰基三唑和硫羰基三唑化合物(即,式(I)化合物)可显著提升锂离子电池的高温循环性能和显著降低其循环阻抗增长。
表2展示了电解液中的式(I)化合物的含量对锂离子电池的高温循环性能和循环阻抗增长率的影响。
表2
  式(I)化合物 含量(wt%) 高温循环容量保持率 循环阻抗增长率
实施例10 式(Ia-1) 0.01 50.42% 296%
实施例11 式(Ia-1) 0.02 51.10% 245%
实施例12 式(Ia-1) 0.05 51.57% 228%
实施例1 式(Ia-1) 0.5 56.11% 216%
实施例13 式(Ia-1) 1 56.52% 214%
实施例14 式(Ia-1) 3 55.57% 225%
实施例15 式(Ia-1) 6 53.07% 226%
实施例9 式(Ia-1) 7 50.15% 242%
实施例16 式(Ia-4) 0.02 51.49% 237%
实施例17 式(Ia-4) 0.05 52.48% 220%
实施例4 式(Ia-4) 0.5 57.02% 208%
实施例18 式(Ia-4) 1 57.31% 206%
实施例19 式(Ia-4) 3 56.64% 217%
实施例20 式(Ia-4) 6 53.56% 218%
实施例7 式(Ic-1) 0.5 58.10% 210%
实施例21 式(Ic-1) 1 58.78% 200%
实施例8 式(Id-1) 0.5 56.97% 219%
实施例22 式(Id-1) 1 57.97% 214%
其中,“/”表示未添加该物质。
结果表明,当式(I)化合物在电解液中的含量在0.02wt%至6wt%的范围内时,有助于进一步提升锂离子电池的高温循环性能并降低其循环阻抗增长率。当式(I)化合物在电解液中的含量在0.5wt%至3wt%的范围内时,其对锂离子电池的高温循环性能和循环阻抗增长率的改善尤为明显。
表3展示了第一添加剂以及第一添加剂与式(I)化合物的含量关系对锂离子电池的高温循环性能和循环阻抗增长率的影响。
表3
Figure PCTCN2020093792-appb-000029
Figure PCTCN2020093792-appb-000030
其中,“/”表示未添加该物质。
结果表明,当电解液包含第一添加剂(氟代碳酸乙烯酯(FEC)或碳酸亚乙烯酯(VC)中的至少一种)且第一添加剂的含量m与式(I)化合物的含量n满足-1≤m-n≤18时,锂离子电池具有显著提升的高温循环性能并显著降低的循环阻抗增长率。
表4展示了第二添加剂对锂离子电池的高温循环性能和循环阻抗增长率的影响。表4中实施例42-51包含与实施例7相同的式(I)化合物,即,0.5wt%式(Ic-1)化合物。
表4
Figure PCTCN2020093792-appb-000031
其中,“/”表示未添加该物质。
结果表明,当电解液包含0.05wt%至10wt%的第二添加剂时,有助于进一步提升 锂离子电池的高温循环性能并降低其循环阻抗增长率。当电解液包含0.5wt%至6wt%的第二添加剂时,其对锂离子电池的高温循环性能和循环阻抗增长率的改善尤为明显。此外,组合使用多种第二添加剂可进一步提升锂离子电池的高温循环性能并降低其循环阻抗增长率。
表5展示了第三添加剂对锂离子电池的高温循环性能和循环阻抗增长率的影响。表5中实施例52-77包含与实施例7相同的式(I)化合物,即,0.5wt%式(Ic-1)化合物。
表5
Figure PCTCN2020093792-appb-000032
Figure PCTCN2020093792-appb-000033
结果表明,当电解液包含0.1wt%至12wt%的第三添加剂时,有助于进一步提升锂离子电池的高温循环性能并进一步降低其循环阻抗增长率。当第三添加剂中具有两个腈基的化合物的含量x与具有三个及三个以上腈基的化合物的含量y满足x-y≥0时,可进一步提升锂离子电池的高温循环性能并进一步降低其循环阻抗增长率。
表6展示了第四添加剂对锂离子电池的高温循环性能和循环阻抗增长率的影响。表6中实施例78-89包含与实施例7相同的式(I)化合物,即,0.5wt%式(Ic-1)化合物。
表6
Figure PCTCN2020093792-appb-000034
Figure PCTCN2020093792-appb-000035
结果表明,当电解液包含0.05wt%至2wt%的第四添加剂时,有助于进一步提升锂离子电池的高温循环性能并进一步降低其循环阻抗增长率。
表7展示了正极活性材料对锂离子电池的高温循环性能和循环阻抗增长率的影响。表7中实施例90-102使用的电解液与实施例89相同,实施例90-102中第一颗粒与第二颗粒的重量比保持一致。
结果表明,当正极活性材料包含两种不同平均粒径的颗粒时,有助于进一步提升锂离子电池的高温循环性能并进一步降低其循环阻抗增长率。两种具有不同平均粒径的颗粒可具有相同或不同的化学组分,其可实现基本相当的效果。当具有较小平均粒径的颗粒(即,第二颗粒)包含0.001wt%至1wt%的铝元素时,有助于进一步提升锂离子电池的高温循环性能。当具有较小平均粒径的颗粒(即,第二颗粒)包含0.001wt%至0.1wt%的铝元素时,有助于提升锂离子电池的高温循环性能并进一步降低其循环阻抗增长率。
Figure PCTCN2020093792-appb-000036
整个说明书中对“实施例”、“部分实施例”、“一个实施例”、“另一举例”、“举例”、“具体举例”或“部分举例”的引用,其所代表的意思是在本申请中的至少一个实施例或举例包含了该实施例或举例中所描述的特定特征、结构、材料或特性。因此,在整个说明书中的各处所出现的描述,例如:“在一些实施例中”、“在实施例中”、“在一个实施例中”、“在另一个举例中”,“在一个举例中”、“在特定举例中”或“举例”,其不必然是引用本申请中的相同的实施例或示例。此外,本文中的特定特征、结构、材料或特性可以以任何合适的方式在一个或多个实施例或举例中结合。
尽管已经演示和描述了说明性实施例,本领域技术人员应该理解上述实施例不能被解释为对本申请的限制,并且可以在不脱离本申请的精神、原理及范围的情况下对实施例进行改变,替代和修改。

Claims (16)

  1. 一种电解液,其包含式(I)化合物:
    Figure PCTCN2020093792-appb-100001
    其中:
    R 11、R 12、R 13和R 14各自独立地选自氢原子,取代或未取代的C 1-C 20的烃基、取代或未取代的含有杂原子的C 1-C 20的有机官能团;
    R 11、R 12、R 13和R 14中的至少一者为
    Figure PCTCN2020093792-appb-100002
    其中:
    R 15和R 17各自独立地选自单键、取代或未取代的C 1-C 4亚烷基、取代或未取代的C 2-C 4亚烯基取代或未取代的C 6-C 10的亚芳基;
    R 16和R 18各自独立地选自取代或未取代的C 1-C 10的烃基、取代或未取代的含有杂原子的C 1-C 10的有机官能团;
    所述杂原子选自氧、氮、硫、磷、硅或铝中的至少一种;
    当R 11、R 12、R 13和R 14、R 15、R 16、R 17和R 18中的至少一者经取代时,取代基为卤素或-CN。
  2. 根据权利要求1所述的电解液,其中所述式(I)化合物包括式(I-a)化合物至式(I-d)化合物中的至少一种:
    Figure PCTCN2020093792-appb-100003
    Figure PCTCN2020093792-appb-100004
    其中:
    X选自
    Figure PCTCN2020093792-appb-100005
    Ra 1、Ra 2、Ra 3、Rb 1、Rb 2、Rb 3、Rc 1、Rc 2、Rc 3、Rc 4、Rc 5、Rc 6、Rd 1、Rd 2、Rd 3、Rd 4、Rd 5和Rd 6各自独立地选自氢原子、取代或未取代的C 1-C 20烷基、取代或未取代的C 2-C 20烯基、取代或未取代的C 2-C 20炔基、取代或未取代的C 6-C 30芳基、取代或未取代的C 1-C 20烷氧基、取代或未取代的C 2-C 20烯氧基、取代或未取代的C 2-C 20炔氧基、取代或未取代的C 6-C 30芳氧基、羧基、醚基、碳酰氧基、硫基、氰基、氨基、碳酰胺基、取代或未取代的C 1-C 16硅氧烷基、C 1-C 16铝氧烷基、取代或未取代的C 1-C 10饱和环烷基、取代或未取代的呋喃、取代或未取代的吡喃、取代或未取代的哌啶、取代或未取代的哌嗪、取代或未取代的吡咯、取代或未取代的吡唑、取代或未取代的吡嗪、取代或未取代的哒嗪、取代或未取代的咪唑、取代或未取代的三唑、取代或未取代的噻吩、取代或未取代的噻唑或取代或未取代的噁唑;
    R 15、R e、R 17和R f各自独立地选自键、取代或未取代的C 1-C 4亚烷基、取代或未取代的C 2-C 4亚烯基取代或未取代的C 6-C 10的亚芳基;
    当Ra 1、Ra 2、Ra 3、Rb 1、Rb 2、Rb 3、Rc 1、Rc 2、Rc 3、Rc 4、Rc 5、Rc 6、Rd 1、Rd 2、Rd 3、Rd 4、Rd 5、Rd 6、R e和R f中的至少一者经取代时,取代基为卤素、C 1-C 6的烷基或-CN。
  3. 根据权利要求1所述的电解液,其中所述式(I)化合物包括以下化合物中的至少一种:
    Figure PCTCN2020093792-appb-100006
    Figure PCTCN2020093792-appb-100007
  4. 根据权利要求1所述的电解液,其中基于所述电解液的总重量,所述式(I)化合物的含量为n wt%,n为0.01至6。
  5. 根据权利要求4所述电解液,其进一步包括第一添加剂,所述第一添加剂包括氟代碳酸乙烯酯或碳酸亚乙烯酯中的至少一种,基于所述电解液的总重量,所述第一添加剂的含量为mwt%,m>0且m和n满足以下关系:-1≤m-n≤18。
  6. 根据权利要求1所述的电解液,其进一步包括第二添加剂,所述第二添加剂包括式(II)化合物或式(III)化合物中的至少一种:
    Figure PCTCN2020093792-appb-100008
    其中:
    R 21和R 22各自独立地选自取代或未取代的C 1-C 20烷基、取代或未取代的C 2-C 20烯基、取代或未取代的C 2-C 20炔基、取代或未取代的C 6-C 30芳基、取代或未取代的C 1-C 20烷氧基、取代或未取代的C 2-C 20烯氧基、取代或未取代的C 2-C 20炔氧基、取代或未取代的C 6-C 30芳氧基,当R 21和R 22中至少一者经取代时,取代基为卤素;
    R 31选自取代或未取代的C 1-C 4的亚烷基或者取代或未取代的C 2-C 4亚烯基;
    R 32选自键、取代或未取代的C 1-C 2亚烷氧基、-O-或-R 33-SO 2-R 34-;
    R 33选取代或未取代的C 1-C 2亚烷基;
    R 34选自键、取代或未取代的C 1-C 2亚烷基或-O-;
    当R 31、R 32、R 33和R 34中的至少一者经取代时,取代基为C 1-C 20烷基、C 6-C 30芳基、卤素或-CN,并且
    其中基于所述电解液的总重量,所述第二添加剂的含量为0.05wt%至10wt%。
  7. 根据权利要求6所述的电解液,其中所述第二添加剂包括以下化合物中的至少一种:
    Figure PCTCN2020093792-appb-100009
  8. 根据权利要求1所述的电解液,其进一步包括第三添加剂,所述第三添加剂包括具有两个腈基的化合物和具有三个及三个以上腈基的化合物中的至少一种,所述具有两个腈基的化合物包括式(IV)化合物或式(V)化合物中的至少一种,所述具有三个及三个以上腈基的化合物包括式(VI)化合物或式(VII)化合物中的至少一种:
    N≡C-R 41-C≡N  式(IV)
    Figure PCTCN2020093792-appb-100010
    Figure PCTCN2020093792-appb-100011
    其中:
    R 41选自取代或未取代的C 1-C 12亚烷基或-R c-(O-R a) A-O-R b,R a和R b各自独立地选自取代或未取代的C 1-C 3亚烷基,R c选自一键或取代或未取代的C 1-C 3亚烷基,A为0至2的整数;
    R 51和R 52各自独立地选自一键或取代或未取代的C 1-C 12亚烷基;
    R 61、R 62和R 63各自独立地选自一键、取代或未取代的C 1-C 12亚烷基或取代或未取代的C 1-C 12亚烷氧基;
    R 71选自一键、取代或未取代的C 1-C 12亚烷基、取代或未取代的C 2-C 12亚烯基、取代或未取代的C 5-C 12亚环烷基、取代或未取代的C 6-C 26亚芳基或取代或未取代的C 2-C 12亚杂环基;并且
    当R 41、R 51、R 52、R 61、R 62、R 63和R 71中至少一者经取代时,取代基为卤素,
    其中基于所述电解液的总重量,所述第三添加剂的含量为0.1wt%至12wt%。
  9. 根据权利要求8所述的电解液,其中所述第三添加剂包括以下化合物中的至少一种:丙二腈、丁二腈、戊二腈、己二腈、庚二腈、辛二腈、癸二腈、3,3′-氧二丙腈、己-2-烯二腈、反丁烯二腈、2-戊烯二腈、甲基戊二腈、4-氰基庚二腈、(Z)-丁-2-烯二腈、2,2,3,3-四氟丁二腈、乙二醇双(丙腈)醚、1,3,5-戊三甲腈、1,3,6-己三甲腈、1,2,6-己三甲腈、1,2,3-三(2-氰氧基)丙烷、1,1,3,3-丙四甲腈、
    Figure PCTCN2020093792-appb-100012
    Figure PCTCN2020093792-appb-100013
    Figure PCTCN2020093792-appb-100014
  10. 根据权利要求8所述的电解液,其中基于所述电解液的总重量,所述具有两个腈基的化合物的含量x wt%与所述具有三个及三个以上腈基的化合物的含量y wt%满足x-y≥0。
  11. 根据权利要求1所述的电解液,其进一步包括第四添加剂,所述第四添加剂包括LiCH 3SO 3、LiCF 3SO 3、LiN(SO 2CF 3) 2、LiC(SO 2CF 3) 3、LiBOB或LiDFOB中的至少一种,基于所述电解液的总重量,所述第四添加剂的含量为0.05wt%至2wt%。
  12. 一种电化学装置,其包括正极、负极和根据权利要求1-11中任一项所述的电解液。
  13. 根据权利要求12所述的电化学装置,其中所述正极包括正极活性材料,所述正极活性材料包含第一颗粒和第二颗粒,所述第一颗粒的平均粒径大于所述第二颗粒的平均粒径。
  14. 根据权利要求13所述的电化学装置,其中所述第一颗粒和所述第二颗粒具有相同或不同的化学组成。
  15. 根据权利要求13所述的电化学装置,其中所述第二颗粒包含铝元素,基于所述正极活性材料的总重量,所述铝元素的含量为0.001wt%至1wt%。
  16. 一种电子装置,其包括根据权利要求12-15中任一权利要求所述的电化学装置。
PCT/CN2020/093792 2020-06-01 2020-06-01 电解液以及使用其的电化学装置和电子装置 WO2021243525A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/093792 WO2021243525A1 (zh) 2020-06-01 2020-06-01 电解液以及使用其的电化学装置和电子装置
CN202080001143.8A CN111801834B (zh) 2020-06-01 2020-06-01 电解液以及使用其的电化学装置和电子装置
US18/073,007 US20230105866A1 (en) 2020-06-01 2022-12-01 Electrolyte and electrochemical apparatus and electronic apparatus using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/093792 WO2021243525A1 (zh) 2020-06-01 2020-06-01 电解液以及使用其的电化学装置和电子装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/073,007 Continuation US20230105866A1 (en) 2020-06-01 2022-12-01 Electrolyte and electrochemical apparatus and electronic apparatus using same

Publications (1)

Publication Number Publication Date
WO2021243525A1 true WO2021243525A1 (zh) 2021-12-09

Family

ID=72834270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093792 WO2021243525A1 (zh) 2020-06-01 2020-06-01 电解液以及使用其的电化学装置和电子装置

Country Status (3)

Country Link
US (1) US20230105866A1 (zh)
CN (1) CN111801834B (zh)
WO (1) WO2021243525A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112467213B (zh) * 2020-11-30 2022-03-01 远景动力技术(江苏)有限公司 电解液和使用了其的锂离子电池
CN113839094B (zh) * 2021-09-17 2023-04-07 宁德新能源科技有限公司 电解液、包含该电解液的电化学装置及电子装置
US11894520B2 (en) 2022-01-13 2024-02-06 Lg Energy Solution, Ltd. Non-aqueous electrolyte including additive for non-aqueous electrolyte, and lithium secondary battery including the non-aqueous electrolyte
CN114373992A (zh) * 2022-01-25 2022-04-19 宁德新能源科技有限公司 电解液、电化学装置及电子装置
CN115332638B (zh) * 2022-10-14 2023-03-24 宁德新能源科技有限公司 一种电解液、电化学装置和电子装置
CN116675650B (zh) * 2023-08-03 2023-10-31 蓝固(淄博)新能源科技有限公司 一种锂离子电池电解液添加剂、锂离子电池电解液和锂离子电池

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102195082A (zh) * 2010-03-05 2011-09-21 索尼公司 锂二次电池及其电解液、电动工具、电动车和电力储存系统
CN103787996A (zh) * 2012-10-31 2014-05-14 海洋王照明科技股份有限公司 三氮唑类离子液体、离子液体电解液及制备方法和应用
JP2014099321A (ja) * 2012-11-14 2014-05-29 Fujifilm Corp 非水電解液二次電池
CN104282903A (zh) * 2013-07-08 2015-01-14 三星Sdi株式会社 正极活性物质、其制备方法、含其的正极和锂二次电池
CN104505535A (zh) * 2014-12-29 2015-04-08 珠海市赛纬电子材料有限公司 一种高电压锂离子电池的非水电解液
US20150200422A1 (en) * 2014-01-16 2015-07-16 Samsung Sdi Co., Ltd. Electrolyte additive for lithium battery, electrolyte including the same, and lithium battery including the electrolyte
CN105024065A (zh) * 2015-07-02 2015-11-04 电子科技大学 一种锂离子电池正极材料及其制备方法
CN106505249A (zh) * 2016-12-15 2017-03-15 东莞市杉杉电池材料有限公司 一种锂离子电池电解液及含该电解液的锂离子电池
CN106654128A (zh) * 2017-01-18 2017-05-10 宁德新能源科技有限公司 二次电池
CN109301323A (zh) * 2018-09-21 2019-02-01 宁德新能源科技有限公司 一种电解液及包含该电解液的电化学装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109256585B (zh) * 2017-07-14 2021-01-08 宁德时代新能源科技股份有限公司 一种电解液及电化学装置
CN110380120B (zh) * 2019-07-05 2021-04-13 宁德新能源科技有限公司 电解液、包含所述电解液的电化学装置和电子装置
CN110518286B (zh) * 2019-08-30 2022-04-15 宁德新能源科技有限公司 电解液及包括电解液的电化学装置及电子装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102195082A (zh) * 2010-03-05 2011-09-21 索尼公司 锂二次电池及其电解液、电动工具、电动车和电力储存系统
CN103787996A (zh) * 2012-10-31 2014-05-14 海洋王照明科技股份有限公司 三氮唑类离子液体、离子液体电解液及制备方法和应用
JP2014099321A (ja) * 2012-11-14 2014-05-29 Fujifilm Corp 非水電解液二次電池
CN104282903A (zh) * 2013-07-08 2015-01-14 三星Sdi株式会社 正极活性物质、其制备方法、含其的正极和锂二次电池
US20150200422A1 (en) * 2014-01-16 2015-07-16 Samsung Sdi Co., Ltd. Electrolyte additive for lithium battery, electrolyte including the same, and lithium battery including the electrolyte
CN104505535A (zh) * 2014-12-29 2015-04-08 珠海市赛纬电子材料有限公司 一种高电压锂离子电池的非水电解液
CN105024065A (zh) * 2015-07-02 2015-11-04 电子科技大学 一种锂离子电池正极材料及其制备方法
CN106505249A (zh) * 2016-12-15 2017-03-15 东莞市杉杉电池材料有限公司 一种锂离子电池电解液及含该电解液的锂离子电池
CN106654128A (zh) * 2017-01-18 2017-05-10 宁德新能源科技有限公司 二次电池
CN109301323A (zh) * 2018-09-21 2019-02-01 宁德新能源科技有限公司 一种电解液及包含该电解液的电化学装置

Also Published As

Publication number Publication date
CN111801834A (zh) 2020-10-20
US20230105866A1 (en) 2023-04-06
CN111801834B (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
WO2021243525A1 (zh) 电解液以及使用其的电化学装置和电子装置
CN109802180B (zh) 电解液及电化学装置
US20230231191A1 (en) Electrolyte and electrochemical device thereof and electronic device
CN111740165B (zh) 电解液和包含电解液的电化学装置及电子装置
CN110518286B (zh) 电解液及包括电解液的电化学装置及电子装置
CN111697266B (zh) 电解液和包括其的电化学装置及电子装置
CN109830749B (zh) 一种电解液及电化学装置
WO2021218267A1 (zh) 一种电解液及电化学装置
US11742518B2 (en) Electrolyte, and electrochemical device and electronic device using the same
WO2022001777A1 (zh) 电解液和包含电解液的电化学装置
WO2023040687A1 (zh) 一种电解液、包含该电解液的电化学装置和电子装置
US20230131435A1 (en) Pre-lithiated silicon negative electrode material, silicon negative electrode plate, method for preparing same, and lithium-ion battery
WO2021120434A1 (zh) 一种电解液及电化学装置
CN112005418A (zh) 一种电解液及电化学装置
US20230261264A1 (en) Electrochemical device and electronic device containing same
CN111697267A (zh) 电解液和包含电解液的电化学装置及电子装置
WO2021179300A1 (zh) 电化学装置及包含其的电子装置
JP7383716B2 (ja) 電解液、電気化学装置及び電子装置
WO2018113268A1 (zh) 锂离子电池及其电解液
WO2021237664A1 (zh) 电解液和包括电解液的电化学装置及电子装置
CN110854432B (zh) 电解液以及使用其的电化学装置和电子装置
CN111740162A (zh) 电解液和包括电解液的电化学装置及电子装置
WO2021128203A1 (zh) 一种电解液及电化学装置
CN111600065B (zh) 电解液和使用其的电化学装置
WO2021146839A1 (zh) 电解液和使用其的电化学装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939136

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939136

Country of ref document: EP

Kind code of ref document: A1