WO2021246587A1 - 고출력 특성을 갖는 하이브리드 슈퍼커패시터용 음극활물질 제조 방법과, 이를 갖는 하이브리드 슈퍼커패시터 및 그 제조 방법 - Google Patents

고출력 특성을 갖는 하이브리드 슈퍼커패시터용 음극활물질 제조 방법과, 이를 갖는 하이브리드 슈퍼커패시터 및 그 제조 방법 Download PDF

Info

Publication number
WO2021246587A1
WO2021246587A1 PCT/KR2020/015486 KR2020015486W WO2021246587A1 WO 2021246587 A1 WO2021246587 A1 WO 2021246587A1 KR 2020015486 W KR2020015486 W KR 2020015486W WO 2021246587 A1 WO2021246587 A1 WO 2021246587A1
Authority
WO
WIPO (PCT)
Prior art keywords
hybrid supercapacitor
lto
active material
carbon
output characteristics
Prior art date
Application number
PCT/KR2020/015486
Other languages
English (en)
French (fr)
Inventor
노광철
강서희
천진녕
Original Assignee
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원 filed Critical 한국세라믹기술원
Publication of WO2021246587A1 publication Critical patent/WO2021246587A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a method for manufacturing an anode active material for a hybrid supercapacitor having high output characteristics, a hybrid supercapacitor having the same, and a manufacturing method therefor, and more particularly, to a carbon material by spray drying an LTO composite precursor solution using a spray drying method one to give the LTO-containing composite particles which then, by performing a reducing heat treatment in a mixed gas atmosphere of Ar and H 2, the LTO- carbon composite material of the reduced black with the help of the carbon material in the composite particles as an anode active material LTO It relates to a method for manufacturing an anode active material for a hybrid supercapacitor having high output characteristics with improved output characteristics by securing excellent electrical conductivity by using the same, a hybrid supercapacitor having the same, and a manufacturing method thereof.
  • a typical supercapacitor is composed of a porous electrode, a current collector, a separator, and an electrolyte.
  • Supercapacitors are also referred to as Electric Double Layer Capacitors (EDLC) or Ultra-capacitors, which are a pair of charge layers ( It is a device that does not require maintenance because deterioration due to repeated charging/discharging operations is very small. Accordingly, supercapacitors are mainly used in the form of backing up integrated circuits (ICs) of various electric and electronic devices. Recently, its use has been expanded and it is widely applied to toys, solar energy storage, HEV (hybrid electric vehicle) power supply, and the like.
  • EDLC Electric Double Layer Capacitors
  • Ultra-capacitors which are a pair of charge layers ( It is a device that does not require maintenance because deterioration due to repeated charging/discharging operations is very small. Accordingly, supercapacitors are mainly used in the form of backing up integrated circuits (ICs) of various electric and electronic devices. Recently, its use has been expanded and it is widely applied to toys, solar energy storage, HEV (hybrid electric vehicle) power supply, and the like.
  • Such a hybrid supercapacitor uses a material that stores energy through oxidation and reduction reactions, such as a battery (lithium ion secondary battery), and a material that collects charges in an electric double layer, such as a storage battery (electric double layer capacitor), and has an asymmetric structure for hybrid energy storage. say the device.
  • a battery lithium ion secondary battery
  • a storage battery electric double layer capacitor
  • Patent Document 1 Republic of Korea Patent Publication No. 10-2011-0013460 (published on Feb. 9, 2011)
  • the object of the present invention is to obtain an LTO composite powder containing a carbon material by spray-drying an LTO composite precursor solution using a spray drying method, and then by performing a reduction heat treatment in a mixed gas atmosphere of Ar and H 2 , LTO composite
  • a method of manufacturing a negative electrode active material for a hybrid supercapacitor having high output characteristics that has improved output characteristics by securing excellent electrical conductivity by using the reduced black LTO-carbon material composite with the help of a carbon material in the powder as an anode active material, and having the same To provide a hybrid supercapacitor and a method for manufacturing the same.
  • a method for manufacturing a negative active material for a hybrid supercapacitor having high output characteristics is (a) mixing a carbon raw material, a titanium precursor, and a lithium precursor in a solvent to form an LTO composite precursor solution step; (b) spray-drying the LTO composite precursor solution to obtain an LTO composite powder; and (c) reducing the LTO composite powder to form an LTO-carbon material composite.
  • the LTO of the LTO-carbon material composite is Li 4 Ti 5 O 12-x , and x is 0 to 3.
  • the step (a) includes the steps of: (a-1) mixing a carbon raw material with a first solvent and then dispersing it by ultrasonication at 5 to 20° C. to form a carbon raw material solution; (a-2) mixing the titanium precursor with the second solvent at room temperature, followed by mixing for 5 to 15 minutes to form a titanium precursor solution; (a-3) mixing the carbon source material solution and the titanium precursor solution, followed by stirring at a speed of 500 to 1,000 rpm at room temperature; (a-4) mixing the lithium precursor with the resultant of step (a-3), followed by stirring at room temperature for 5 to 7 hours to form an LTO composite precursor solution;
  • the carbon raw material is carbon black, graphene, carbon nanotube, activated carbon, fullerene, artificial graphite, natural graphite, soft carbon, and hard carbon. It is characterized in that it contains at least one selected from among carbon.
  • the ultrasonic irradiation is characterized in that it is carried out for 1 to 2 hours under a condition of 10 to 60 kHz.
  • the titanium precursor may include at least one selected from TiO 2 , TiCl 4 , TiOCl 2 , and Ti 4 (OCH 2 CH 3 ) 16 .
  • the lithium precursor may include at least one selected from LiOH ⁇ H 2 0, LiCl ⁇ H 2 O, Li 2 SO 4 ⁇ H 2 O, LiNO 3 and Li 2 CO 3 .
  • step (b) the spray drying is preferably carried out in an air (Air) gas atmosphere at 180 ⁇ 220 °C conditions.
  • Air air
  • step (c) the reduction heat treatment is preferably performed for 3 to 5 hours under conditions of 700 to 900° C. in a mixed gas atmosphere of Ar and H 2 .
  • the reduction heat treatment is preferably heated to 700 ⁇ 900 °C at a rate of 4 ⁇ 6 °C / min.
  • a method for manufacturing a hybrid supercapacitor having high output characteristics comprising: preparing an anode composition for a hybrid supercapacitor by mixing an anode active material, a conductive material, and a binder in a dispersion medium; preparing a positive electrode composition for a hybrid supercapacitor by mixing a positive electrode active material made of activated carbon, a conductive material, and a binder in a dispersion medium; After preparing the negative electrode and positive electrode composition for the hybrid supercapacitor in the form of an electrode, drying to form the negative electrode and the positive electrode for the hybrid supercapacitor; and disposing a separator for preventing a short circuit between the negative electrode and the positive electrode between the negative electrode and the positive electrode for the hybrid supercapacitor, and immersing the negative electrode and the positive electrode in an electrolyte solution; including, wherein the negative electrode active material is an LTO-carbon material composite It is characterized
  • the LTO of the LTO-carbon material composite is Li 4 Ti 5 O 12-x , and x is 0 to 3.
  • the negative electrode composition is mixed in an amount of 0.1 to 20 parts by weight of a conductive material, 0.1 to 20 parts by weight of a binder, and 200 to 300 parts by weight of a dispersion medium based on 100 parts by weight of the negative electrode active material.
  • the positive electrode composition is mixed in an amount of 0.1 to 20 parts by weight of a conductive material, 0.1 to 20 parts by weight of a binder, and 200 to 300 parts by weight of a dispersion medium based on 100 parts by weight of the positive electrode active material.
  • a hybrid supercapacitor having high output characteristics includes: an anode including an anode active material, a conductive material, and a binder; a positive electrode spaced apart from the negative electrode and including a positive electrode active material made of activated carbon, a conductive material, and a binder; a separator disposed between the negative electrode and the positive electrode to prevent a short circuit between the negative electrode and the positive electrode; and an electrolyte impregnated in the negative electrode and the positive electrode, wherein the negative electrode active material is an LTO-carbon material composite.
  • the LTO of the LTO-carbon material composite is Li 4 Ti 5 O 12-x , and x is 0 to 3.
  • the positive electrode active material consists only of the activated carbon.
  • Each of the positive electrode and the negative electrode is preferably a self-supporting electrode that does not use a current collector.
  • a method for manufacturing a negative active material for a hybrid supercapacitor having high output characteristics according to the present invention, a hybrid supercapacitor having the same, and a method for manufacturing the same according to the present invention include spray-drying an LTO composite precursor solution using a spray-drying method to obtain an LTO composite powder containing a carbon material.
  • a partial reduction reaction Ti 4+ ⁇ Ti 3+
  • the capacity due to an increase in electrical conductivity The retention rate is improved, so that output characteristics can be improved.
  • the method for manufacturing an anode active material for a hybrid supercapacitor having high output characteristics according to the present invention, a hybrid supercapacitor having the same, and a method for manufacturing the same according to the present invention are LTO-carbon material composites used as a negative electrode active material to compensate for the asymmetric characteristics output characteristics , and it may be possible to secure a high capacity by the activated carbon used as the positive electrode active material.
  • each of the cathode and the anode are made of a self-supporting electrode without using a current collector, By omitting the current collector, it is possible to exhibit the effect of reducing manufacturing cost and process cost, as well as exhibiting flexible characteristics.
  • FIG. 1 is a process flow chart showing a method of manufacturing an anode active material for a hybrid supercapacitor having high output characteristics according to an embodiment of the present invention.
  • FIG. 2 is a process flow chart showing a method for manufacturing a hybrid supercapacitor having high output characteristics according to an embodiment of the present invention.
  • FIG 3 is a cross-sectional view showing a coin-type hybrid supercapacitor according to an embodiment of the present invention.
  • 4 to 7 are schematic views showing a wound type hybrid supercapacitor according to another embodiment of the present invention.
  • FIG. 8 is a graph showing the results of measuring the capacity retention rate for each current density for the hybrid supercapacitors manufactured according to Example 1 and Comparative Example 1.
  • FIG. 8 is a graph showing the results of measuring the capacity retention rate for each current density for the hybrid supercapacitors manufactured according to Example 1 and Comparative Example 1.
  • FIG. 9 is a graph showing the results of measuring the specific capacity for each potential for the hybrid supercapacitors manufactured according to Example 2 and Comparative Example 1.
  • FIG. 9 is a graph showing the results of measuring the specific capacity for each potential for the hybrid supercapacitors manufactured according to Example 2 and Comparative Example 1.
  • FIG. 1 is a process flow chart showing a method for manufacturing a negative active material for a hybrid supercapacitor having high output characteristics according to an embodiment of the present invention.
  • the method for manufacturing a negative active material for a hybrid supercapacitor having high output characteristics comprises an LTO composite precursor solution forming step (S10), a spray drying step (S20) and a reduction heat treatment step (S30).
  • a carbon raw material, a titanium precursor, and a lithium precursor are mixed in a solvent to form an LTO composite precursor solution.
  • a carbon raw material solution is formed by mixing a carbon raw material in a solvent and then dispersing it by ultrasonication at 5 to 20 °C.
  • the carbon raw material includes at least one selected from carbon black, graphene, carbon nanotube, activated carbon, fullerene, artificial graphite, natural graphite, soft carbon, and hard carbon. can do.
  • ethanol e.g., ethanol, aceton, DMF (dimethylformamide), octanol, tetradecane, pentanol, dipropylene glycol monomethyl ether, ethylene At least one selected from glycol (ethylene glycol), benzene, distilled water (H 2 O), etc. may be used, but is not limited thereto.
  • the ultrasonic irradiation is preferably performed for 1 to 2 hours under the conditions of 10 to 60 kHz.
  • the titanium precursor is mixed in a solvent at room temperature, and then mixed for 5 to 15 minutes to form a titanium precursor solution.
  • the titanium precursor may include at least one selected from TiO 2 , TiCl 4 , TiOCl 2 , and Ti 4 (OCH 2 CH 3 ) 16 .
  • the mixture is stirred at a speed of 500 to 1,000 rpm at room temperature.
  • the stirring speed when the stirring speed is less than 500 rpm, there is a fear that uniform mixing between the raw material solution for petition and the titanium precursor solution may not be achieved. Conversely, when the stirring speed exceeds 1,000 rpm, it is not economical because it may act as a factor increasing only the manufacturing cost and time without further increasing the effect.
  • the mixture is stirred at room temperature for 5 to 7 hours to form an LTO composite precursor solution.
  • the lithium precursor includes at least one selected from LiOH ⁇ H 2 0, LiCl ⁇ H 2 O, Li 2 SO 4 ⁇ H 2 O, LiNO 3 and Li 2 CO 3 .
  • the room temperature may be a temperature of -10 °C ⁇ 40 °C, but is not necessarily limited thereto.
  • the LTO composite precursor solution is spray dried to obtain an LTO composite powder.
  • Spray drying is preferably carried out at 180 ⁇ 220 °C conditions in an air gas atmosphere.
  • the spray drying temperature is less than 180° C., it may be difficult to sufficiently decompose the metal material in the LTO precursor solution. Conversely, when the spray drying temperature exceeds 220° C., it is not economical because it may act as a factor that increases only the manufacturing cost without further increasing the effect.
  • the LTO composite precursor solution is preferably sprayed in an aerosol state using a spray nozzle.
  • the spray drying is preferably sprayed at a rate of 1.0 ⁇ 5.0 mL / min. If the spray speed is less than 1.0 ml/min, the spray nozzle may be clogged. Conversely, when the injection speed exceeds 5.0 ml/min, it may be difficult to obtain monodispersed LTO composite powder.
  • the LTO composite powder is subjected to a reduction heat treatment to form an LTO-carbon material composite.
  • LTO has a very small volume change due to charging and discharging, and has advantages of good lifespan characteristics due to high reversibility according to insertion and desorption reactions, but has low rate capability due to low conductivity.
  • various methods such as carbon coating using a carbon material with good conductivity and a method of forming a carbon mixture are used.
  • the carbon mixture forming method is mainly to form an LTO composite by simply mixing LTO with a carbon material such as graphene and carbon nanotubes.
  • a carbon material such as graphene and carbon nanotubes.
  • the electrical conductivity rises, but the capacity is not greatly expressed, and when a large amount of carbon material is added because of the low density, the capacity per weight and There will be a loss in capacity per volume.
  • the present invention by spray-drying the LTO composite precursor solution to obtain an LTO composite powder and then performing a reduction heat treatment, an excellent reducing atmosphere can be provided with the help of the carbon material in the LTO composite powder. Accordingly, since the reduced black LTO-carbon material composite is formed with the help of the carbon material in the LTO composite powder, the capacity retention rate is improved due to an increase in electrical conductivity, thereby improving the output characteristics.
  • the reduction heat treatment is preferably performed for 3 to 5 hours under the conditions of 700 ⁇ 900 °C in a reducing gas atmosphere.
  • the reduction heat treatment temperature is less than 700 ° C. or the reduction heat treatment time is less than 3 hours, the carbon material in the LTO composite powder may not be smoothly reduced, so that the effect of improving electrical conductivity may be insignificant.
  • the reduction heat treatment temperature exceeds 900° C. or the reduction heat treatment time exceeds 5 hours, it acts as a factor increasing only the manufacturing cost and time without further increasing the effect, so it is not economical.
  • LTO of the LTO-carbon material composite prepared by such reduction heat treatment may be composed of Li 4 Ti 5 O 12-x .
  • x is preferably 0 to 3.
  • the LTO-carbon material composite may be composed of 90 to 80% by weight of LTO and 10 to 20% by weight of a carbon material.
  • the carbon material is added in an amount of less than 10% by weight of the total weight of the LTO-carbon material composite, the carbon material is added in an excessively small amount, so that it may be difficult to form a reducing atmosphere.
  • the carbon material exceeds 20% by weight of the total weight of the LTO-carbon material composite, the electrical conductivity increases, but there is a problem in that the capacity per weight and capacity per volume are lost.
  • the LTO composite precursor solution is spray-dried using a spray drying method to obtain an LTO composite powder containing a carbon material, Ar and By performing a reduction heat treatment in a mixed gas atmosphere of H 2 , a reduced black LTO-carbon material composite was prepared with the help of the carbon material in the LTO composite powder.
  • the capacity retention rate is improved due to an increase in the electrical conductivity of the hybrid supercapacitor, thereby improving the output characteristics.
  • a hybrid supercapacitor having high output characteristics includes: an anode including an anode active material, a conductive material, and a binder; a positive electrode spaced apart from the negative electrode and comprising a positive electrode active material made of activated carbon, a conductive material, and a binder; a separator disposed between the negative electrode and the positive electrode to prevent a short circuit between the negative electrode and the positive electrode; and an electrolyte impregnated in the negative electrode and the positive electrode.
  • the negative electrode may have a first thickness of 50 ⁇ 100 ⁇ m.
  • the negative electrode includes 0.1 to 20 parts by weight of a conductive material and 0.1 to 20 parts by weight of a binder based on 100 parts by weight of the negative electrode active material.
  • an LTO-carbon material composite was used as the negative electrode active material.
  • This LTO-carbon material composite is obtained by spray-drying the LTO composite precursor solution using a spray-drying method to obtain an LTO composite powder containing a carbon material, and then performing a reduction heat treatment in a mixed gas atmosphere of Ar and H 2 By, The reduced black LTO-carbon material composite was used with the help of the carbon material in the LTO composite powder.
  • the anode has a second thickness greater than the first thickness.
  • the second thickness may have a range of 80 ⁇ 400 ⁇ m.
  • the cathode has an asymmetric structure having a thinner thickness than that of the anode.
  • the positive electrode includes 0.1 to 20 parts by weight of a conductive material and 0.1 to 20 parts by weight of a binder based on 100 parts by weight of the positive electrode active material.
  • the electrolyte includes a non-aqueous electrolyte and 1 to 25 parts by weight of an ionic liquid based on 100 parts by weight of the non-aqueous electrolyte, and the non-aqueous electrolyte includes an organic solvent, lithium salts LiPF 6 (lithium hexafluorophosphate), LiBF 4 (lithium tetrafluoroborate), LiClO 4 (lithium perchlorate), LiFSI (lithium bis(fluorosulfonyl)imide), sodium salt NaPF 6 (sodium hexafluorophosphate), NaDFOB (sodium difluoro(oxalate)borate), potassium salt KFSI (potassium bis(fluorosulfonyl)imide), It contains at least one electrolyte salt selected from the group consisting of KPF 6 (potassium hexafluorophosphate).
  • LiPF 6 lithium hexafluorophosphate
  • LiBF 4 lithium tetraflu
  • the organic solvent is acetonitrile, propylene carbonate, ethylene carbonate, ethylmethyl carbonate, dimethyl carbonate, diethyl carbonate, butylene carbonate, vinylene carbonate, tetrahydrofuran, 1,2-dioxane, 2 -Methyltetrahydrofuran, butyrolactone, and may include one or more substances selected from the group consisting of dimethylformamide.
  • Ionic liquids are EMITf 2 N (1-Ethyl-3-methylimidazolium trifluoromethanesulfonylamide), BMITf 2 N (1-Butyl-3-methylimidazolium trifluoromethanesulfonylamide), EMITFSI (1-Ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide), BMIMBF 4 (1-Butyl-3-methylimidazolium tetrafluoroborate), OMIMBF 4 (1-Methyl-3-octylimidazolium tetrafluoroborate), OMIMTf 2 N(1-Methyl-3-octylimidazolium trifluoromethanesulfonylamide), MEMPBF 4 (N-(2-Methoxyethyl)-N -methylpyrrolidinium tetraflioroborate) and DEMEBF 4 (N,N-Diethy
  • the hybrid supercapacitor having high output characteristics according to the embodiment of the present invention described above is a partial reduction reaction ( By using the LTO-carbon material composite prepared for the purpose of improving electrical conductivity by inducing Ti 4+ ⁇ Ti 3+ ) as a negative active material, the capacity retention rate is improved due to the increase in electrical conductivity, so that the output characteristics can be improved do.
  • the LTO-carbon material composite used as a negative electrode active material improves output characteristics to compensate for the asymmetric characteristic, and high capacity by activated carbon used as a positive electrode active material It may be possible to obtain
  • the hybrid supercapacitor having high output characteristics is made of a self-supporting electrode in which a positive electrode and a negative electrode do not use a current collector, the manufacturing cost and process cost reduction effect by omitting the current collector Not only can it be exhibited, but also flexible characteristics can be exhibited.
  • FIG. 2 is a process flowchart illustrating a method for manufacturing a hybrid supercapacitor having high output characteristics according to an embodiment of the present invention.
  • the method for manufacturing a hybrid supercapacitor having high output characteristics includes preparing a negative electrode composition for a hybrid supercapacitor (S110), preparing a positive electrode composition for a hybrid supercapacitor (S120), a hybrid It includes a cathode and anode forming step (S130) and an electrolyte impregnation step (S140) for a supercapacitor.
  • the anode active material is mixed with a dispersion medium to prepare an anode composition for a hybrid supercapacitor.
  • the anode composition for a hybrid supercapacitor contains a negative electrode active material, 0.1 to 20 parts by weight of a conductive material based on 100 parts by weight of the negative electrode active material, 0.1 to 20 parts by weight of a binder based on 100 parts by weight of the negative electrode active material, and 100 parts by weight of the negative electrode active material It is preferable to include 200 to 300 parts by weight of the dispersion medium with respect to parts.
  • this anode composition for a hybrid supercapacitor is in the form of a paste, it may be difficult to uniformly mix (completely disperse). By stirring, it is possible to obtain an anode composition for a hybrid supercapacitor suitable for manufacturing an electrode.
  • a mixer such as a thinky mixer enables the preparation of a uniformly mixed negative electrode composition for a hybrid supercapacitor.
  • an LTO-carbon material composite was used as the negative electrode active material.
  • This LTO-carbon material composite is obtained by spray-drying the LTO composite precursor solution using a spray-drying method to obtain an LTO composite powder containing a carbon material, and then performing a reduction heat treatment in a mixed gas atmosphere of Ar and H 2 By, The reduced black LTO-carbon material composite was used with the help of the carbon material in the LTO composite powder.
  • the carbon material includes at least one selected from carbon black, graphene, carbon nanotubes, fullerene, artificial graphite, natural graphite soft carbon, and hard carbon.
  • the binder is polytetrafluoroethylene (PTFE; polytetrafluoroethylene), polyvinylidene fluoride (PVdF; polyvinylidenefloride), carboxymethylcellulose (CMC; carboxymethylcellulose), polyvinyl alcohol (PVA; polyvinyl alcohol), polyvinyl butyral (PVB) ; polyvinyl butyral), polyvinylpyrrolidone (PVP; poly-N-vinylpyrrolidone), styrene butadiene rubber (SBR), polyamide-imide, polyimide, etc.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • CMC carboxymethylcellulose
  • PVA polyvinyl alcohol
  • PVB polyvinyl butyral
  • PVP polyvinylpyrrolidone
  • SBR styrene butadiene rubber
  • One selected type or a mixture of two or more types may be used.
  • the conductive material is not particularly limited as long as it is an electronically conductive material that does not cause chemical change, and examples include natural graphite, artificial graphite, carbon black, acetylene black, Ketjen black, Super-P black, carbon fiber, copper, nickel, A metal powder, such as aluminum, silver, or a metal fiber, etc. are possible.
  • the dispersion medium may be an organic solvent such as ethanol (EtOH), acetone, isopropyl alcohol, N-methylpyrrolidone (NMP), propylene glycol (PG), or water, but is not limited thereto.
  • EtOH ethanol
  • NMP N-methylpyrrolidone
  • PG propylene glycol
  • a positive electrode composition for a hybrid supercapacitor is prepared by mixing a positive electrode active material made of activated carbon, a conductive material, and a binder in a dispersion medium.
  • the positive electrode composition for a hybrid supercapacitor includes a positive electrode active material, 0.1 to 20 parts by weight of a conductive material based on 100 parts by weight of the positive electrode active material, 0.1 to 20 parts by weight of a binder based on 100 parts by weight of the positive electrode active material, and 100 parts by weight of the positive electrode active material It is preferable to include 200 to 300 parts by weight of the dispersion medium with respect to parts.
  • Such a positive electrode composition for a hybrid supercapacitor is a paste, uniform mixing (complete dispersion) may be difficult.
  • a mixer such as a Thinky mixer
  • a mixer such as a thinky mixer enables the preparation of a uniformly mixed positive electrode composition for a hybrid supercapacitor.
  • the positive electrode active material may be formed of only activated carbon. That is, the cathode active material uses a high capacity activated carbon that undergoes physical adsorption and desorption reactions.
  • the binder is polytetrafluoroethylene (PTFE; polytetrafluoroethylene), polyvinylidene fluoride (PVdF; polyvinylidenefloride), carboxymethylcellulose (CMC; carboxymethylcellulose), polyvinyl alcohol (PVA; polyvinyl alcohol), polyvinyl butyral (PVB) ; polyvinyl butyral), polyvinylpyrrolidone (PVP; poly-N-vinylpyrrolidone), styrene butadiene rubber (SBR), polyamide-imide, polyimide, etc.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • CMC carboxymethylcellulose
  • PVA polyvinyl alcohol
  • PVB polyvinyl butyral
  • PVP polyvinylpyrrolidone
  • SBR styrene butadiene rubber
  • One selected type or a mixture of two or more types may be used.
  • the conductive material is not particularly limited as long as it is an electronically conductive material that does not cause chemical change, and examples include natural graphite, artificial graphite, carbon black, acetylene black, Ketjen black, Super-P black, carbon fiber, copper, nickel, A metal powder, such as aluminum, silver, or a metal fiber, etc. are possible.
  • the dispersion medium may be an organic solvent such as ethanol (EtOH), acetone, isopropyl alcohol, N-methylpyrrolidone (NMP), propylene glycol (PG), or water, but is not limited thereto.
  • EtOH ethanol
  • NMP N-methylpyrrolidone
  • PG propylene glycol
  • the negative electrode and the positive electrode composition for the hybrid supercapacitor is prepared in the form of an electrode, and then dried to form the negative electrode and the positive electrode for the hybrid supercapacitor.
  • the negative and positive electrode composition for a hybrid supercapacitor is compressed to form an electrode, or the anode and positive electrode composition for a hybrid supercapacitor is pressed with a roller to form an electrode in a sheet state form can be prepared.
  • an example of the manufacturing step in the form of an electrode can be formed by pressing the anode and cathode compositions for a hybrid supercapacitor using a roll press molding machine.
  • the roll press molding machine aims to improve the electrode density and control the thickness of the electrode through rolling, and includes a controller that can control the thickness and heating temperature of the upper and lower rolls and rolls, and a winding that can unwind and wind the electrode. made up of wealth
  • the rolling process proceeds as the electrode in a roll state passes through the roll press, which is then wound into a roll state to complete the electrode. At this time, it is preferable that the pressing pressure of the press is 5 to 20 ton/cm 2 and the temperature of the roll is 0 to 150°C.
  • the anode and cathode compositions for a hybrid supercapacitor may be made into a sheet state (rubber type) by pushing the composition with a roller to form an electrode.
  • the drying process is carried out at a temperature of 100 ⁇ 350 °C, preferably 150 ⁇ 300 °C.
  • the drying temperature is at least 100°C or higher and does not exceed 350°C.
  • the drying process is preferably carried out at the same temperature as above for 10 minutes to 6 hours. Such a drying process dries the molded composition for a supercapacitor electrode (evaporating the dispersion medium) and at the same time binds the powder particles to improve the strength of the supercapacitor electrode.
  • the electrode when it is formed by another example of forming an electrode, it is preferably dried at a temperature of 100 to 250 °C, preferably 150 to 200 °C.
  • a separator for preventing short circuit between the negative electrode and the positive electrode is disposed between the negative electrode and the positive electrode for the hybrid supercapacitor, and the negative electrode and the positive electrode are impregnated with the electrolyte.
  • the electrolyte of the hybrid supercapacitor may include a non-aqueous electrolyte and an ionic liquid added in an amount of 1 to 25 parts by weight based on 100 parts by weight of the non-aqueous electrolyte.
  • FIG. 3 is a cross-sectional view showing a coin-type hybrid supercapacitor according to an embodiment of the present invention.
  • FIG. 3 is a state diagram of a hybrid supercapacitor according to an embodiment of the present invention, showing a cross-sectional view of a coin-type hybrid supercapacitor to which a hybrid supercapacitor electrode is applied.
  • reference numeral 190 denotes a metal cap as a conductor
  • reference numeral 160 denotes a separator made of a porous material for insulation and short circuit prevention between the anode 120 and the cathode 110
  • reference numeral 192 denotes electrolyte leakage. It is a gasket for preventing electrical shock and insulation and short circuit.
  • the positive electrode 120 and the negative electrode 110 are firmly fixed by the metal cap 190 and the adhesive.
  • the coin-type supercapacitor is disposed between the positive electrode 120 made of the above-described hybrid supercapacitor electrode, the negative electrode 110 formed of the above-described hybrid supercapacitor electrode, the positive electrode 120 and the negative electrode 110, and the positive electrode 120 ) and a separator 160 to prevent a short circuit between the negative electrode 120 and the metal cap 190 are disposed in the metal cap 190, and the electrolyte of the above-described supercapacitor is injected between the positive electrode 120 and the negative electrode 110. , can be manufactured by sealing with a gasket 192 .
  • the separator 160 is not particularly limited as long as it is a separator commonly used in the battery field, such as polyolefin, polyethylene, polypropylene, or the like.
  • FIGS. 4 to 7 are schematic views showing a wound type hybrid supercapacitor according to another embodiment of the present invention, and with reference to this, a method of manufacturing a wound type hybrid supercapacitor according to another embodiment of the present invention will be described in detail do.
  • a method of preparing the negative electrode and positive electrode composition for a hybrid supercapacitor is the same as the method described above.
  • the anode and cathode compositions for hybrid supercapacitors are pressed with a roller to form a sheet (rubber type) to form anode and cathode shapes.
  • a drying process is performed on the shapes of the positive and negative electrodes that have undergone this process.
  • the drying process is carried out at a temperature of 100 to 350 °C, preferably 150 to 300 °C.
  • the drying temperature is less than 100 ° C., it is not preferable because evaporation of the dispersion medium is difficult, and when drying at a high temperature exceeding 350 ° C., oxidation of the conductive material may occur. Therefore, it is preferable that the drying temperature is at least 100°C or higher and does not exceed 350°C.
  • drying process is preferably carried out at the same temperature as above for 6 hours to 12 hours.
  • This drying process dries the composition for the hybrid supercapacitor electrode (evaporating the dispersion medium) and at the same time binds the powder particles to improve the strength of the hybrid supercapacitor electrode.
  • lead wires 130 and 140 are attached to the anode 120 and the cathode 110 for the hybrid supercapacitor, respectively.
  • the first separator 150 , the positive electrode 120 , the second separator 160 , and the negative electrode 110 are stacked and coiled to form a roll shape.
  • the unwinder 175 After being manufactured with the unwinder 175, it is wound around a roll with an adhesive tape 170 or the like so that the roll shape can be maintained.
  • the second separator 160 provided between the positive electrode 120 and the negative electrode 110 serves to prevent a short circuit between the positive electrode 120 and the negative electrode 110 .
  • Each of the first and second separators 150 and 160 is not particularly limited as long as it is a separator commonly used in the battery field, such as polyolefin, polyethylene, or polypropylene.
  • a sealing rubber 180 is mounted on the resultant in the form of a roll, and inserted into a metal cap (eg, an aluminum case) 190 .
  • a metal cap eg, an aluminum case
  • the hybrid supercapacitor thus fabricated is schematically shown in FIG. 7 .
  • the positive electrode 120 and the negative electrode 110 are spaced apart from each other, and the positive electrode 120 and the negative electrode 110 are between the positive electrode 120 and the negative electrode 110 .
  • Separators 150 and 160 are disposed to prevent a short circuit, and the positive electrode 120 and the negative electrode 110 are impregnated with the electrolyte of the hybrid supercapacitor.
  • the electrolyte of the hybrid supercapacitor includes a non-aqueous electrolyte and 1 to 25 parts by weight of an ionic liquid based on 100 parts by weight of the non-aqueous electrolyte
  • the non-aqueous electrolyte includes an organic solvent, a lithium salt LiPF 6 (lithium hexafluorophosphate), LiBF 4 (lithium tetrafluoroborate), LiClO 4 (lithium perchlorate), LiFSI (lithium bis(fluorosulfonyl)imide), sodium salt NaPF 6 (sodium hexafluorophosphate), NaDFOB (sodium difluoro(oxalate)borate), potassium salt KFSI (potassium) and at least one electrolyte salt selected from the group consisting of bis(fluorosulfonyl)imide) and KPF 6 (potassium hexafluorophosphate).
  • LiPF 6 lithium hexafluorophosphate
  • the organic solvent is acetonitrile, propylene carbonate, ethylene carbonate, ethylmethyl carbonate, dimethyl carbonate, diethyl carbonate, butylene carbonate, vinylene carbonate, tetrahydrofuran, 1,2-dioxane, 2 -Methyltetrahydrofuran, butyrolactone, and may include one or more substances selected from the group consisting of dimethylformamide.
  • Ionic liquids are EMITf 2 N (1-Ethyl-3-methylimidazolium trifluoromethanesulfonylamide), BMITf 2 N (1-Butyl-3-methylimidazolium trifluoromethanesulfonylamide), EMITFSI (1-Ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide), BMIMBF 4 (1-Butyl-3-methylimidazolium tetrafluoroborate), OMIMBF 4 (1-Methyl-3-octylimidazolium tetrafluoroborate), OMIMTf 2 N(1-Methyl-3-octylimidazolium trifluoromethanesulfonylamide), MEMPBF 4 (N-(2-Methoxyethyl)-N -methylpyrrolidinium tetraflioroborate) and DEMEBF 4 (N,N-Diethy
  • titanium ethoxide titanium (IV) ethoxide
  • the CNT dispersion solution was slowly poured into the Ti precursor solution, and then rapidly stirred at 10° C. at a speed of 500 rpm.
  • the LTO composite powder was heated to 750° C. at a rate of 5° C./min in a mixed gas atmosphere of Ar and H 2 , and then subjected to a reduction heat treatment at 750° C. for 3 hours to prepare a black LTO-CNT composite did.
  • LTO-CNT composite as an anode active material
  • 0.2 g of PTFE (Polytetrafluoroethylene) as a binder were put in ethanol, a dispersion medium, and mixed for 3 minutes with a Thinky mixer. , hand-kneading was performed 8 times to prepare a negative electrode composition for a hybrid supercapacitor.
  • the anode and cathode compositions for hybrid supercapacitors were each rolled by a roll press under the conditions of a pressurization pressure of 10 ton/cm 2 and a roll temperature of 60° C. to form a sheet, and then placed in a vacuum drying rack at 150° C.
  • a negative electrode and a positive electrode for a hybrid supercapacitor were prepared, respectively.
  • the anode for the hybrid supercapacitor was prepared in a thickness of 50 ⁇ m, and the anode for the hybrid supercapacitor was prepared in a thickness of 200 ⁇ m.
  • the hybrid supercapacitor was prepared by impregnating it with an electrolyte.
  • the separator used is a polyolefin film
  • the electrolyte is 1 M LiPF 6 EC/EMC (1/1, v/v), which is an electrolyte for a lithium battery.
  • a hybrid supercapacitor was manufactured in the same manner as in Example 1, except that the temperature was raised to 800° C. at a rate of 5° C./min in a mixed gas atmosphere of Ar and H 2, and then a reduction heat treatment was performed at 800° C. for 4 hours. did.
  • titanium ethoxide titanium (IV) ethoxide
  • the LTO powder was heated to 750° C. at a rate of 5° C./min in a mixed gas atmosphere of Ar and H 2 , and then subjected to reduction heat treatment at 750° C. for 3 hours to prepare black LTO.
  • LTO and CNT were stirred for 30 minutes at a speed of 2,000 rpm using a three-dimensional stirrer to prepare an LTO-CNT composite.
  • a hybrid supercapacitor was prepared in the same manner as in Example 1, except that the LTO-CNT composite prepared according to Comparative Example 1 was used as an anode active material.
  • Example 8 is a graph showing the results of measuring the capacity retention ratio for each current density for the hybrid supercapacitors manufactured according to Example 1 and Comparative Example 1. Referring to FIG. At this time, the capacity retention rate (capacity retention) was measured based on 25 °C, 2.7V.
  • the hybrid supercapacitor manufactured according to Example 1 exhibited higher capacity retention overall than the hybrid supercapacitor manufactured according to Comparative Example 1. As shown in FIG. 8 , the hybrid supercapacitor manufactured according to Example 1 exhibited higher capacity retention overall than the hybrid supercapacitor manufactured according to Comparative Example 1. As shown in FIG. 8 , the hybrid supercapacitor manufactured according to Example 1 exhibited higher capacity retention overall than the hybrid supercapacitor manufactured according to Comparative Example 1. As shown in FIG.
  • FIG. 9 is a graph showing the results of measuring the specific capacity for each potential for the hybrid supercapacitors manufactured according to Example 2 and Comparative Example 1. Referring to FIG.
  • first lead wire 140 second lead wire
  • first separator 160 second separator

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

분무건조법을 이용하여 LTO 복합체 전구체 용액을 분무 건조하여 탄소물질을 함유하는 LTO 복합체 분말을 열처리시 형성된 환원 분위기에서 부분적인 환원 반응을 유도하여 전기전도도의 증가로 용량유지율이 개선되어 출력 특성을 향상시킬 수 있는 고출력 특성을 갖는 하이브리드 슈퍼커패시터용 음극활물질 제조 방법과, 이를 갖는 하이브리드 슈퍼커패시터 및 그 제조 방법에 대하여 개시한다.

Description

고출력 특성을 갖는 하이브리드 슈퍼커패시터용 음극활물질 제조 방법과, 이를 갖는 하이브리드 슈퍼커패시터 및 그 제조 방법
본 발명은 고출력 특성을 갖는 하이브리드 슈퍼커패시터용 음극활물질 제조 방법과, 이를 갖는 하이브리드 슈퍼커패시터 및 그 제조 방법에 관한 것으로, 보다 상세하게는 분무건조법을 이용하여 LTO 복합체 전구체 용액을 분무 건조하여 탄소물질을 함유하는 LTO 복합체 분말을 수득한 후, Ar 및 H 2의 혼합 가스 분위기에서 환원 열처리를 실시하는 것에 의해, LTO 복합체 분말 내의 탄소물질의 도움을 받아 환원된 검정색의 LTO-탄소물질 복합체를 음극활물질로 사용함으로써 우수한 전기전도도의 확보로 출력 특성을 개선한 고출력 특성을 갖는 하이브리드 슈퍼커패시터용 음극활물질 제조 방법과, 이를 갖는 하이브리드 슈퍼커패시터 및 그 제조 방법에 관한 것이다.
차세대 에너지 저장장치들 중 슈퍼커패시터는 빠른 충전 및 방전 속도, 높은 안정성, 그리고 친환경적 특성으로 인해, 차세대 에너지 저장장치로 각광받고 있다. 일반적인 슈퍼커패시터는 다공성 전극, 집전체, 분리막, 그리고 전해액 등으로 구성된다.
슈퍼커패시터는 전기이중층 커패시터(Electric Double Layer Capacitor; EDLC), 울트라커패시터(Ultra-capacitor) 라고도 일컬어지며, 이는 전극 및 도전체와, 그것에 함침된 전해액의 계면에 각각 부호가 다른 한 쌍의 전하층(전기이중층)이 생성된 것을 이용하는 것으로, 충전/방전 동작의 반복으로 인한 열화가 매우 작아 보수가 필요없는 소자이다. 이에 따라, 슈퍼커패시터는 각종 전기 및 전자기기의 IC(integrated circuit) 백업을 하는 형태로 주로 사용되고 있다. 최근에는 그 용도가 확대되어 장난감, 태양열 에너지 저장, HEV(hybrid electric vehicle) 전원 등에까지 폭넓게 응용되고 있다.
최근에는 슈퍼커패시터의 낮은 에너지 밀도를 보완하기 위해 음극 및 양극에 각기 다른 에너지 저장방식을 사용하는 하이브리드 슈퍼커패시터에 대한 연구가 활발히 이루어지고 있다.
이러한 하이브리드 슈퍼커패시터는 배터리(리튬이온 이차전지)처럼 산화 및 환원 반응을 통해 에너지를 저장하는 물질과 축전지(전기이중층 커패시터)와 같이 전기이중층에 전하를 모으는 물질을 사용하여 비대칭 구조를 가지는 하이브리드 에너지저장장치를 말한다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 대한민국 공개특허공보 제10-2011-0013460호(2011.02.09. 공개)
본 발명은 목적은 분무건조법을 이용하여 LTO 복합체 전구체 용액을 분무 건조하여 탄소물질을 함유하는 LTO 복합체 분말을 수득한 후, Ar 및 H 2의 혼합 가스 분위기에서 환원 열처리를 실시하는 것에 의해, LTO 복합체 분말 내의 탄소물질의 도움을 받아 환원된 검정색의 LTO-탄소물질 복합체를 음극활물질로 사용함으로써 우수한 전기전도도의 확보로 출력 특성을 개선한 고출력 특성을 갖는 하이브리드 슈퍼커패시터용 음극활물질 제조 방법과, 이를 갖는 하이브리드 슈퍼커패시터 및 그 제조 방법을 제공하는 것이다.
상기 목적을 달성하기 위한 본 발명의 실시예에 따른 고출력 특성을 갖는 하이브리드 슈퍼커패시터용 음극활물질 제조 방법은 (a) 탄소 원료 물질, 티타늄 전구체 및 리튬 전구체를 용매에 혼합하여 LTO 복합체 전구체 용액을 형성하는 단계; (b) 상기 LTO 복합체 전구체 용액을 분무 건조하여 LTO 복합체 분말을 수득하는 단계; 및 (c) 상기 LTO 복합체 분말을 환원 열처리하여 LTO-탄소물질 복합체를 형성하는 단계;를 포함하는 것을 특징으로 한다.
(여기서, 상기 LTO-탄소물질 복합체의 LTO는 Li 4Ti 5O 12-x이며, 상기 x는 0 ~ 3임.)
상기 (a) 단계는, (a-1) 탄소 원료 물질을 제1 용매에 혼합한 후, 5 ~ 20℃에서 초음파 처리로 분산시켜 탄소 원료 물질 용액을 형성하는 단계; (a-2) 티타늄 전구체를 상온에서 제2 용매에 혼합한 후, 5 ~ 15분 동안 혼합하여 티타늄 전구체 용액을 형성하는 단계; (a-3) 상기 탄소 원료 물질 용액과 티타늄 전구체 용액을 혼합한 후, 상온에서 500 ~ 1,000rpm의 속도로 교반하는 단계; (a-4) 상기 (a-3) 단계의 결과물에 리튬 전구체를 혼합한 후, 상온에서 5 ~ 7시간 동안 교반하여 LTO 복합체 전구체 용액을 형성하는 단계;를 포함하는 것을 특징으로 한다.
상기 (a-1) 단계에서, 상기 탄소 원료 물질은 카본블랙, 그래핀(graphene), 탄소 나노튜브(carbon nanotube), 활성 탄소(activated carbon), 풀러렌, 인조 흑연, 천연 흑연, 소프트카본 및 하드카본 중 선택된 1종 이상을 포함하는 것을 특징으로 한다.
상기 (a-1) 단계에서, 상기 초음파 조사는 10 ~ 60kHz 조건으로 1 ~ 2시간 동안 실시하는 것을 특징으로 한다.
상기 티타늄 전구체는 TiO 2, TiCl 4, TiOCl 2 및 Ti 4(OCH 2CH 3) 16 중 선택된 1종 이상을 포함할 수 있다.
아울러, 상기 리튬 전구체는 LiOH·H 20, LiCl·H 2O, Li 2SO 4·H 2O, LiNO 3 및 Li 2CO 3 중 선택된 1종 이상을 포함할 수 있다.
상기 (b) 단계에서, 상기 분무 건조는 에어(Air) 가스 분위기에서 180 ~ 220℃ 조건으로 실시하는 것이 바람직하다.
상기 (c) 단계에서, 상기 환원 열처리는 Ar 및 H 2의 혼합 가스 분위기에서 700 ~ 900℃ 조건으로 3 ~ 5시간 동안 실시하는 것이 바람직하다.
상기 환원 열처리는 4 ~ 6℃/min의 속도로 700 ~ 900℃까지 승온시키는 것이 바람직하다.
상기 목적을 달성하기 위한 본 발명의 실시예에 따른 고출력 특성을 갖는 하이브리드 슈퍼커패시터 제조 방법은 음극활물질, 도전재 및 바인더를 분산매에 혼합하여 하이브리드 슈퍼커패시터용 음극 조성물을 제조하는 단계; 활성탄으로 이루어진 양극활물질, 도전재 및 바인더를 분산매에 혼합하여 하이브리드 슈퍼커패시터용 양극 조성물을 제조하는 단계; 상기 하이브리드 슈퍼커패시터용 음극 및 양극 조성물을 전극 형태로 제조한 후, 건조하여 하이브리드 슈퍼커패시터용 음극 및 양극을 형성하는 단계; 및 상기 하이브리드 슈퍼커패시용 음극 및 양극 사이에 상기 음극과 양극의 단락을 방지하기 위한 분리막을 배치하고, 상기 음극 및 양극을 전해액에 함침시키는 단계;를 포함하며, 상기 음극활물질은 LTO-탄소물질 복합체를 이용하는 것을 특징으로 한다.
(여기서, 상기 LTO-탄소물질 복합체의 LTO는 Li 4Ti 5O 12-x이며, 상기 x는 0 ~ 3임.)
상기 음극 조성물은 상기 음극활물질 100 중량부에 대하여, 도전재 0.1 ~ 20 중량부, 바인더 0.1 ~ 20 중량부 및 분산매 200 ~ 300 중량부로 혼합한다.
상기 양극 조성물은 상기 양극활물질 100 중량부에 대하여, 도전재 0.1 ~ 20 중량부, 바인더 0.1 ~ 20 중량부 및 분산매 200 ~ 300 중량부로 혼합한다.
상기 목적을 달성하기 위한 본 발명의 실시예에 따른 고출력 특성을 갖는 하이브리드 슈퍼커패시터는 음극활물질, 도전재 및 바인더를 포함하는 음극; 상기 음극과 이격 배치되며, 활성탄으로 이루어진 양극활물질, 도전재 및 바인더를 포함하는 양극; 상기 음극 및 양극 사이에 배치되어, 상기 음극과 양극의 단락을 방지하기 위한 분리막; 및 상기 음극 및 양극에 함침된 전해액;을 포함하며, 상기 음극활물질은 LTO-탄소물질 복합체가 이용된 것을 특징으로 한다.
(여기서, 상기 LTO-탄소물질 복합체의 LTO는 Li 4Ti 5O 12-x이며, 상기 x는 0 ~ 3임.)
상기 양극활물질은 상기 활성탄만으로 이루어지는 것이 바람직하다.
상기 양극 및 음극 각각은 집전체를 사용하지 않은 자가지지 기반의 전극인 것이 바람직하다.
본 발명에 따른 고출력 특성을 갖는 하이브리드 슈퍼커패시터용 음극활물질 제조 방법과, 이를 갖는 하이브리드 슈퍼커패시터 및 그 제조 방법은 분무건조법을 이용하여 LTO 복합체 전구체 용액을 분무 건조하여 탄소물질을 함유하는 LTO 복합체 분말을 열처리시 형성된 환원 분위기에서 부분적인 환원 반응(Ti 4+ → Ti 3+)을 유도하여 전기 전도성의 개선을 목적으로 제조된 LTO-탄소물질 복합체를 음극활물질로 이용하는 것에 의해, 전기전도도의 증가로 용량유지율이 개선되어 출력 특성을 향상시킬 수 있게 된다.
아울러, 본 발명에 따른 고출력 특성을 갖는 하이브리드 슈퍼커패시터용 음극활물질 제조 방법과, 이를 갖는 하이브리드 슈퍼커패시터 및 그 제조 방법은 비대칭적인 특성을 보완하기 위하여 음극활물질로 사용되는 LTO-탄소물질 복합체가 출력 특성을 향상시키고, 양극활물질로 사용되는 활성탄에 의해 고용량 확보가 가능해질 수 있다.
또한, 본 발명에 따른 고출력 특성을 갖는 하이브리드 슈퍼커패시터용 음극활물질 제조 방법과, 이를 갖는 하이브리드 슈퍼커패시터 및 그 제조 방법은 양극 및 음극 각각이 집전체를 사용하지 않은 자가지지 기반의 전극으로 이루어지므로, 집전체의 생략으로 제조 비용 및 공정 비용 절감 효과를 발휘할 수 있을 뿐만 아니라, 플렉서블한 특성을 발휘할 수 있게 된다.
도 1은 본 발명의 실시예에 따른 고출력 특성을 갖는 하이브리드 슈퍼커패시터용 음극활물질 제조 방법을 나타낸 공정 순서도.
도 2는 본 발명의 실시예에 따른 고출력 특성을 갖는 하이브리드 슈퍼커패시터 제조 방법을 나타낸 공정 순서도.
도 3은 본 발명의 일 실시예에 따른 코인형 하이브리드 슈퍼커패시터를 나타낸 단면도.
도 4 내지 도 7은 본 발명의 다른 실시예에 따른 권취형 하이브리드 슈퍼커패시터를 나타낸 모식도.
도 8은 실시예 1 및 비교예 1에 따라 제조된 하이브리드 슈퍼커패시터에 대한 전류밀도별 용량유지율을 측정한 결과를 나타낸 그래프.
도 9는 실시예 2 및 비교예 1에 따라 제조된 하이브리드 슈퍼커패시터에 대한 전위별 비용량을 측정한 결과를 나타낸 그래프.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예를 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.
이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 고출력 특성을 갖는 하이브리드 슈퍼커패시터용 음극활물질 제조 방법과, 이를 갖는 하이브리드 슈퍼커패시터 및 그 제조 방법에 관하여 상세히 설명하면 다음과 같다.
하이브리드 슈퍼커패시터용 음극활물질 제조 방법
도 1은 본 발명의 실시예에 따른 고출력 특성을 갖는 하이브리드 슈퍼커패시터용 음극활물질 제조 방법을 나타낸 공정 순서도이다.
도 1을 참조하면, 본 발명의 실시예에 따른 고출력 특성을 갖는 하이브리드 슈퍼커패시터용 음극활물질 제조 방법은 LTO 복합체 전구체 용액 형성 단계(S10), 분무 건조 단계(S20) 및 환원 열처리 단계(S30)를 포함한다.
LTO 복합체 전구체 용액 형성
LTO 복합체 전구체 용액 형성 단계(S10)에서는 탄소 원료 물질, 티타늄 전구체 및 리튬 전구체를 용매에 혼합하여 LTO 복합체 전구체 용액을 형성한다.
즉, LTO 복합체 전구체 용액 형성 단계(S10)에서는 탄소 원료 물질을 용매에 혼합한 후, 5 ~ 20℃에서 초음파 처리로 분산시켜 탄소 원료 물질 용액을 형성한다.
여기서, 탄소 원료 물질은 카본블랙, 그래핀(graphene), 탄소 나노튜브(carbon nanotube), 활성 탄소(activated carbon), 풀러렌, 인조 흑연, 천연 흑연, 소프트카본 및 하드카본 중 선택된 1종 이상을 포함할 수 있다.
용매로는 에탄올(ethanol), 아세톤(aceton), DMF(dimethylformamide), 옥탄올(Octanol), 테트라데칸(tetradecane), 펜탄올(pentanol), 디프로필렌 글리콜 모노메틸 에테르(dipropylene glycol monomethyl ether), 에틸렌 글리콜(ethylene glycol), 벤젠, 증류수(H 2O) 등에서 선택된 1종 이상이 이용될 수 있으나, 이에 제한되는 것은 아니다.
본 단계에서, 초음파 조사는 10 ~ 60kHz 조건으로 1 ~ 2시간 동안 실시하는 것이 바람직하다.
다음으로, 티타늄 전구체를 상온에서 용매에 혼합한 후, 5 ~ 15분 동안 혼합하여 티타늄 전구체 용액을 형성한다.
이때, 티타늄 전구체는 TiO 2, TiCl 4, TiOCl 2 및 Ti 4(OCH 2CH 3) 16 중 선택된 1종 이상을 포함할 수 있다.
다음으로, 탄소 원료 물질 용액과 티타늄 전구체 용액을 혼합한 후, 상온에서 500 ~ 1,000rpm의 속도로 교반한다.
여기서, 교반 속도가 500rpm 미만일 경우에는 탄원 원료 물질 용액과 티타늄 전구체 용액 간의 균일한 혼합이 이루어지지 못할 우려가 있다. 반대로, 교반 속도가 1,000rpm을 초과할 경우에는 더 이상의 효과 상승 없이 제조 비용 및 시간만을 증가시키는 요인으로 작용할 수 있으므로, 경제적이지 못하다.
다음으로, 교반된 결과물에 리튬 전구체를 혼합한 후, 상온에서 5 ~ 7시간 동안 교반하여 LTO 복합체 전구체 용액을 형성한다.
여기서, 리튬 전구체는 LiOH·H 20, LiCl·H 2O, Li 2SO 4·H 2O, LiNO 3 및 Li 2CO 3 중 선택된 1종 이상을 포함한다.
본 단계에서, 상온은 -10℃ ~ 40℃의 온도일 수 있으나, 반드시 이에 제한되는 것은 아니다.
분무 건조
분무 건조 단계(S20)에서는 LTO 복합체 전구체 용액을 분무 건조하여 LTO 복합체 분말을 수득한다.
분무 건조는 에어(Air) 가스 분위기에서 180 ~ 220℃ 조건으로 실시하는 것이 바람직하다.
이러한 분무 건조 온도가 180℃ 미만일 경우에는 LTO 전구체 용액 중의 금속 물질이 충분히 분해되기 어려워질 수 있다. 반대로, 분무 건조 온도가 220℃를 초과할 경우에는 더 이상의 효과 상승 없이 제조비용만을 상승시키는 요인으로 작용할 수 있으므로, 경제적이지 못하다.
여기서, LTO 복합체 전구체 용액은 분사 노즐을 이용하여 에어로졸 상태로 분사하는 것이 바람직하다.
본 단계에서, 분무 건조는 1.0 ~ 5.0 mL/min의 속도로 분사하는 것이 바람직하다. 분사 속도가 1.0 ml/min 미만일 경우에는 분사 노즐이 막히는 문제가 발생할 수 있다. 반대로, 분사 속도가 5.0 ml/min를 초과할 경우에는 단분산된 LTO 복합체 분말을 확보하는데 어려움이 따를 수 있다.
환원 열처리
환원 열처리 단계(S30)에서는 LTO 복합체 분말을 환원 열처리하여 LTO-탄소물질 복합체를 형성한다.
일반적으로, LTO는 충방전에 따른 체적 변화가 매우 적고, 삽입과 탈리 반응에 따른 높은 가역성 때문에 수명 특성이 좋다는 장점을 가지고 있으나, 낮은 전도성으로 인해 낮은 방전용량비(rate capability)를 갖는다. 이러한 LTO의 단점인 낮은 전기전도도를 보완하고자 전도성이 좋은 탄소물질을 이용한 카본 코팅(carbon coating), 카본 혼합물 형성방법 등 여러 가지 방법이 사용되고 있다.
이 중, 카본 혼합물 형성 방법은 주로 그라핀, 탄소나노튜브 등의 탄소물질과 LTO를 단순히 혼합하여 LTO 복합체를 형성하게 된다. 그러나, 단순히 탄소물질과 LTO를 혼합시킨 LTO-탄소물질 복합체의 경우에는 전기전도도는 상승하나, 용량을 크게 발현하지 못할 뿐만 아니라, 밀도가 낮기 때문에 다량의 탄소물질을 첨가하게 될 경우 중량당 용량과 체적당 용량에 손실이 발생하게 된다.
이에, 본 발명에서는 LTO 복합체 전구체 용액을 분무 건조하여 LTO 복합체 분말을 수득한 상태에서 환원 열처리를 실시하는 것에 의해, LTO 복합체 분말 내의 탄소물질의 도움을 받아 환원된 검정색의 LTO-탄소물질 복합체를 제조하여 전기전도도를 향상시켰다.
이와 같이, 본 발명에서는 LTO 복합체 전구체 용액을 분무 건조하여 LTO 복합체 분말을 수득한 후 환원 열처리를 실시함으로써, LTO 복합체 분말 내의 탄소물질의 도움을 받아 우수한 환원분위기를 제공받을 수 있게 된다. 이에 따라, LTO 복합체 분말 내의 탄소물질의 도움을 받아 환원된 검정색의 LTO-탄소물질 복합체가 형성되므로, 전기전도도의 증가로 용량유지율이 개선되어 출력 특성을 향상시킬 수 있게 된다.
이를 위해, 환원 열처리는 환원 가스 분위기에서 700 ~ 900℃ 조건으로 3 ~ 5시간 동안 실시하는 것이 바람직하다. 여기서, 환원 열처리는 4 ~ 6℃/min의 속도로 700 ~ 900℃까지 승온시키는 것이 바람직하다. 환원 열처리시 가스 분위기는 Ar/H 2, N 2 및 CO 2 중 선택된 1종 이상의 가스 분위기일 수 있다. 보다 구체적으로, 환원에 유리한 가스 분위기는 Ar 및 H 2의 혼합 가스(Ar:H 2 = 90:10) 분위기인 것이 보다 바람직하다.
환원 열처리 온도가 700℃ 미만이거나, 환원 열처리 시간이 3시간 미만일 경우에는 LTO 복합체 분말 내의 탄소물질이 원활히 환원되지 못하여 전기전도도 향상 효과가 미미할 수 있다. 반대로, 환원 열처리 온도가 900℃를 초과하거나, 환원 열처리 시간이 5시간을 초과할 경우에는 더 이상의 효과 상승 없이 제조 비용 및 시간만을 증가시키는 요인으로 작용하므로, 경제적이지 못하다.
이러한 환원 열처리에 의해 제조되는 LTO-탄소물질 복합체의 LTO는 Li 4Ti 5O 12-x으로 조성될 수 있다. 여기서, x는 0 ~ 3인 것이 바람직하다.
LTO-탄소물질 복합체는 LTO 90 ~ 80 중량% 및 탄소물질 10 ~ 20 중량%로 조성될 수 있다. 탄소물질이 LTO-탄소물질 복합체 전체 중량 중 10 중량% 미만으로 첨가될 경우에는 탄소물질이 너무 소량으로 첨가되어 환원 분위기 형성에 어려움이 따를 수 있다. 반대로, 탄소물질이 LTO-탄소물질 복합체 전체 중량의 20 중량%를 초과할 경우에는 전기전도도는 증가하나, 중량당 용량과 체적당 용량에 손실이 발생하는 문제가 있다.
전술한 본 발명의 실시예에 따른 고출력 특성을 갖는 하이브리드 슈퍼커패시터용 음극활물질 제조 방법은 분무건조법을 이용하여 LTO 복합체 전구체 용액을 분무 건조하여 탄소물질을 함유하는 LTO 복합체 분말을 수득한 후, Ar 및 H 2의 혼합 가스 분위기에서 환원 열처리를 실시하는 것에 의해, LTO 복합체 분말 내의 탄소물질의 도움을 받아 환원된 검정색의 LTO-탄소물질 복합체를 제조하였다.
이 결과, 본 발명의 실시예에 따른 방법으로 제조된 검정색의 LTO-탄소물질 복합체를 하이브리드 슈퍼커패시터용 음극활물질로 사용하는 것에 의해, 하이브리드 슈퍼커패시터의 전기전도도 증가로 용량유지율이 개선되어 출력 특성을 향상시킬 수 있게 된다.
고출력 특성을 갖는 하이브리드 슈퍼커패시터
본 발명의 실시예에 따른 고출력 특성을 갖는 하이브리드 슈퍼커패시터는 음극활물질, 도전재 및 바인더를 포함하는 음극; 음극과 이격 배치되며, 활성탄으로 이루어진 양극활물질, 도전재 및 바인더를 포함하는 양극; 음극 및 양극 사이에 배치되어, 음극과 양극의 단락을 방지하기 위한 분리막; 및 음극 및 양극에 함침된 전해액;을 포함한다.
여기서, 음극은 50 ~ 100㎛의 제1 두께를 가질 수 있다. 이러한 음극은 음극활물질 100 중량부에 대하여, 도전재 0.1 ~ 20 중량부 및 바인더 0.1 ~ 20 중량부를 포함한다.
음극활물질은 LTO-탄소물질 복합체를 이용하였다. 이러한 LTO-탄소물질 복합체는 분무건조법을 이용하여 LTO 복합체 전구체 용액을 분무 건조하여 탄소물질을 함유하는 LTO 복합체 분말을 수득한 후, Ar 및 H 2의 혼합 가스 분위기에서 환원 열처리를 실시하는 것에 의해, LTO 복합체 분말 내의 탄소물질의 도움을 받아 환원된 검정색의 LTO-탄소물질 복합체를 이용하였다. 이러한 LTO-탄소물질 복합체를 음극활물질로 사용함으로써 전기전도도의 증가로 용량유지율이 개선되어 출력 특성을 향상시킬 수 있게 된다.
양극은 제1 두께보다 두꺼운 제2 두께를 갖는 것이 바람직하다. 이때, 제2 두께는 80 ~ 400㎛를 가질 수 있다. 이에 따라, 음극이 양극에 비하여 두께가 얇은 비대칭 구조를 갖는다.
이러한 양극은 양극활물질 100 중량부에 대하여, 도전재 0.1 ~ 20 중량부 및 바인더 0.1 ~ 20 중량부를 포함한다.
전해액은 비수계 전해액과, 비수계 전해액 100 중량부에 대하여 이온성 액체 1 ~ 25 중량부를 포함하며, 비수계 전해액은 유기용매와, 리튬 염 LiPF 6(lithium hexafluorophosphate), LiBF 4(lithium tetrafluoroborate), LiClO 4(lithium perchlorate), LiFSI(lithium bis(fluorosulfonyl)imide)와, 소듐 염 NaPF 6(sodium hexafluorophosphate), NaDFOB(sodium difluoro(oxalate)borate)와, 포타슘 염 KFSI(potassium bis(fluorosulfonyl)imide), KPF 6(potassium hexafluorophosphate)로 이루어진 군으로부터 선택된 1종 이상의 전해질 염을 포함한다.
유기용매는 아세토니트릴(acetonitrile), 프로필렌 카보네이트(propylene carbonate), 에틸렌 카보네이트, 에틸메틸 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 부틸렌 카보네이트, 비닐렌 카보네이트, 테트라히드로푸란, 1,2-디옥산, 2-메틸테트라히드로푸란, 부티로락톤 및 디메틸포름아미드으로 이루어진 군으로부터 선택된 1종 이상의 물질을 포함할 수 있다.
이온성 액체는 EMITf 2N(1-Ethyl-3-methylimidazolium trifluoromethanesulfonylamide), BMITf 2N(1-Butyl-3-methylimidazolium trifluoromethanesulfonylamide), EMITFSI(1-Ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide), BMIMBF 4(1-Butyl-3-methylimidazolium tetrafluoroborate), OMIMBF 4(1-Methyl-3-octylimidazolium tetrafluoroborate), OMIMTf 2N(1-Methyl-3-octylimidazolium trifluoromethanesulfonylamide), MEMPBF 4(N-(2-Methoxyethyl)-N-methylpyrrolidinium tetraflioroborate) 및 DEMEBF 4(N,N-Diethyl-N-methyl-N-(2-methoxyethyl)ammonium tetraflioroborate)로 이루어진 군으로부터 선택된 1종 이상의 물질을 포함할 수 있다.
전술한 본 발명의 실시예에 따른 고출력 특성을 갖는 하이브리드 슈퍼커패시터는 분무건조법을 이용하여 LTO 복합체 전구체 용액을 분무 건조하여 탄소물질을 함유하는 LTO 복합체 분말을 열처리시 형성된 환원 분위기에서 부분적인 환원 반응(Ti 4+ → Ti 3+)을 유도하여 전기 전도성의 개선을 목적으로 제조된 LTO-탄소물질 복합체를 음극활물질로 이용하는 것에 의해, 전기전도도의 증가로 용량유지율이 개선되어 출력 특성을 향상시킬 수 있게 된다.
아울러, 본 발명의 실시예에 따른 고출력 특성을 갖는 하이브리드 슈퍼커패시터는 비대칭적인 특성을 보완하기 위하여 음극활물질로 사용되는 LTO-탄소물질 복합체가 출력 특성을 향상시키고, 양극활물질로 사용되는 활성탄에 의해 고용량 확보가 가능해질 수 있다.
또한, 본 발명의 실시예에 따른 고출력 특성을 갖는 하이브리드 슈퍼커패시터는 양극 및 음극 각각이 집전체를 사용하지 않은 자가지지 기반의 전극으로 이루어지므로, 집전체의 생략으로 제조 비용 및 공정 비용 절감 효과를 발휘할 수 있을 뿐만 아니라, 플렉서블한 특성을 발휘할 수 있게 된다.
고출력 특성을 갖는 하이브리드 슈퍼커패시터 제조 방법
이하 첨부된 도면을 참조하여 본 발명의 실시예에 따른 고출력 특성을 갖는 하이브리드 슈퍼커패시터 제조 방법에 대하여 설명하도록 한다.
도 2는 본 발명의 실시예에 따른 고출력 특성을 갖는 하이브리드 슈퍼커패시터 제조 방법을 나타낸 공정 순서도이다.
도 2에 도시된 바와 같이, 본 발명의 실시예에 따른 고출력 특성을 갖는 하이브리드 슈퍼커패시터 제조 방법은 하이브리드 슈퍼커패시터용 음극 조성물 제조 단계(S110), 하이브리드 슈퍼커패시터용 양극 조성물 제조 단계(S120), 하이브리드 슈퍼커패시터용 음극 및 양극 형성 단계(S130) 및 전해액 함침 단계(S140)를 포함한다.
하이브리드 슈퍼커패시터용 음극 조성물 제조
하이브리드 슈퍼커패시터용 음극 조성물 제조 단계(S110)에서는 음극활물질을 분산매에 혼합하여 하이브리드 슈퍼커패시터용 음극 조성물을 제조한다.
본 단계에서, 하이브리드 슈퍼커패시터용 음극 조성물은 음극활물질과, 음극활물질 100 중량부에 대하여 도전재 0.1 ~ 20 중량부와, 음극활물질 100 중량부에 대하여 바인더 0.1 ~ 20 중량부와, 음극활물질 100 중량부에 대하여 분산매 200 ~ 300 중량부를 포함하는 것이 바람직하다.
이러한 하이브리드 슈퍼커패시터용 음극 조성물은 반죽 상이므로 균일한 혼합(완전 분산)이 어려울 수 있는데, 싱키 믹서(Thinky mixer)와 같은 혼합기(mixer)를 사용하여 소정 시간(예컨대, 10분 ~ 1시간) 동안 교반시키면 전극 제조에 적합한 하이브리드 슈퍼커패시터용 음극 조성물을 얻을 수 있다. 싱키 믹서(Thinky mixer)와 같은 혼합기는 균일하게 혼합된 하이브리드 슈퍼커패시터용 음극 조성물의 제조를 가능케 한다.
음극활물질은 LTO-탄소물질 복합체를 이용하였다. 이러한 LTO-탄소물질 복합체는 분무건조법을 이용하여 LTO 복합체 전구체 용액을 분무 건조하여 탄소물질을 함유하는 LTO 복합체 분말을 수득한 후, Ar 및 H 2의 혼합 가스 분위기에서 환원 열처리를 실시하는 것에 의해, LTO 복합체 분말 내의 탄소물질의 도움을 받아 환원된 검정색의 LTO-탄소물질 복합체를 이용하였다. 이러한 LTO-탄소물질 복합체를 음극활물질로 사용함으로써 전기전도도의 증가로 용량유지율이 개선되어 출력 특성을 향상시킬 수 있게 된다.
탄소재는 카본블랙, 그래핀, 탄소 나노튜브, 풀러렌, 인조 흑연, 천연 흑연 소프트카본 및 하드카본 중 선택된 1종 이상을 포함한다.
바인더는 폴리테트라플루오로에틸렌(PTFE; polytetrafluoroethylene), 폴리비닐리덴플로라이드(PVdF; polyvinylidenefloride), 카르복시메틸셀룰로오스(CMC; carboxymethylcellulose), 폴리비닐알코올(PVA; poly vinyl alcohol), 폴리비닐부티랄(PVB; poly vinyl butyral), 폴리비닐피롤리돈(PVP; poly-N-vinylpyrrolidone), 스티렌부타디엔고무(SBR; styrene butadiene rubber), 폴리아마이드-이미드(Polyamide-imide), 폴리이미드(polyimide) 등으로부터 선택된 1종 또는 2종 이상을 혼합하여 사용할 수 있다.
도전재는 화학 변화를 야기하지 않는 전자 전도성 재료이면 특별히 제한되지 않으며, 그 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 슈퍼-피(Super-P) 블랙, 탄소섬유, 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등이 가능하다.
분산매는 에탄올(EtOH), 아세톤, 이소프로필알콜, N-메틸피롤리돈(NMP), 프로필렌글리콜(PG) 등의 유기 용매 또는 물을 사용할 수 있으나, 이에 제한되는 것은 아니다.
하이브리드 슈퍼커패시터용 양극 조성물 제조
하이브리드 슈퍼커패시터용 양극 조성물 제조 단계(S210)에서는 활성탄으로 이루어진 양극활물질, 도전재 및 바인더를 분산매에 혼합하여 하이브리드 슈퍼커패시터용 양극 조성물을 제조한다.
본 단계에서, 하이브리드 슈퍼커패시터용 양극 조성물은 양극활물질과, 양극활물질 100 중량부에 대하여 도전재 0.1 ~ 20 중량부와, 양극활물질 100 중량부에 대하여 바인더 0.1 ~ 20 중량부와, 양극활물질 100 중량부에 대하여 분산매 200 ~ 300 중량부를 포함하는 것이 바람직하다.
이러한 하이브리드 슈퍼커패시터용 양극 조성물은 반죽 상이므로 균일한 혼합(완전 분산)이 어려울 수 있는데, 싱키 믹서(Thinky mixer)와 같은 혼합기(mixer)를 사용하여 소정 시간(예컨대, 10분 ~ 1시간) 동안 교반시키면 전극 제조에 적합한 하이브리드 슈퍼커패시터용 양극 조성물을 얻을 수 있다. 싱키 믹서(Thinky mixer)와 같은 혼합기는 균일하게 혼합된 하이브리드 슈퍼커패시터용 양극 조성물의 제조를 가능케 한다.
양극활물질은 활성탄만으로 이루어질 수 있다. 즉, 양극활물질은 물리적 흡착 및 탈착 반응을 하는 고용량의 활성탄을 사용한다.
바인더는 폴리테트라플루오로에틸렌(PTFE; polytetrafluoroethylene), 폴리비닐리덴플로라이드(PVdF; polyvinylidenefloride), 카르복시메틸셀룰로오스(CMC; carboxymethylcellulose), 폴리비닐알코올(PVA; poly vinyl alcohol), 폴리비닐부티랄(PVB; poly vinyl butyral), 폴리비닐피롤리돈(PVP; poly-N-vinylpyrrolidone), 스티렌부타디엔고무(SBR; styrene butadiene rubber), 폴리아마이드-이미드(Polyamide-imide), 폴리이미드(polyimide) 등으로부터 선택된 1종 또는 2종 이상을 혼합하여 사용할 수 있다.
도전재는 화학 변화를 야기하지 않는 전자 전도성 재료이면 특별히 제한되지 않으며, 그 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 슈퍼-피(Super-P) 블랙, 탄소섬유, 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등이 가능하다.
분산매는 에탄올(EtOH), 아세톤, 이소프로필알콜, N-메틸피롤리돈(NMP), 프로필렌글리콜(PG) 등의 유기 용매 또는 물을 사용할 수 있으나, 이에 제한되는 것은 아니다.
하이브리드 슈퍼커패시터용 음극 및 양극 형성
하이브리드 슈퍼커패시터용 음극 및 양극 형성 단계(S130)에서는 하이브리드 슈퍼커패시터용 음극 및 양극 조성물을 전극 형태로 제조한 후, 건조하여 하이브리드 슈퍼커패시터용 음극 및 양극을 형성한다.
하이브리드 슈퍼커패시터용 음극 및 양극 조성물을 전극 형태로 제조하는 단계는, 하이브리드 슈퍼커패시터용 음극 및 양극 조성물을 압착하여 전극 형태로 형성하거나, 하이브리드 슈퍼커패시터용 음극 및 양극 조성물을 롤러로 밀어 시트 상태의 전극 형태로 제조할 수 있다.
전극 형태로 제조하는 단계의 예를 보다 구체적으로 설명하면, 하이브리드 슈퍼커패시터용 음극 및 양극 조성물을 롤프레스 성형기를 이용하여 압착하여 성형할 수 있다. 롤프레스 성형기는 압연을 통한 전극밀도 향상 및 전극의 두께 제어를 목적으로 하고 있으며, 상단과 하단의 롤과 롤의 두께 및 가열 온도를 제어할 수 있는 컨트롤러와, 전극을 풀어주고 감아줄 수 있는 와인딩부로 구성된다. 롤 상태의 전극이 롤프레스를 지나면서 압연공정이 진행되고, 이것이 다시 롤 상태로 감겨서 전극이 완성된다. 이때, 프레스의 가압 압력은 5 ~ 20 ton/㎠로 롤의 온도는 0 ~ 150℃로 하는 것이 바람직하다.
또한, 전극 형태로 제조하는 다른 예를 살펴보면, 하이브리드 슈퍼커패시터용 음극 및 양극 조성물을 롤러로 밀어 시트(sheet) 상태(고무 타입)로 만들어 전극 형상으로 제조할 수도 있다.
본 단계에서, 건조 공정은 100 ~ 350℃, 바람직하게는 150 ~ 300℃의 온도에서 수행된다. 이때, 건조 온도가 100℃ 미만인 경우 분산매의 증발이 어려워 바람직하지 않으며, 350℃를 초과하는 고온 건조 시에는 도전재의 산화가 일어날 수 있으므로 바람직하지 않다. 따라서, 건조 온도는 적어도 100℃ 이상이고, 350℃를 넘지 않는 것이 바람직하다. 그리고, 건조 공정은 위와 같은 온도에서 10분 ~ 6시간 동안 진행시키는 것이 바람직하다. 이와 같은 건조 공정은 성형된 슈퍼커패시터 전극용 조성물을 건조(분산매 증발)시킴과 동시에 분말 입자를 결속시켜 슈퍼커패시터 전극의 강도를 향상시킨다.
한편, 전극 형태로 형성하는 다른 예에 의해 전극을 형성한 경우에는 100 ~ 250℃, 바람직하게는 150 ~ 200℃의 온도 조건으로 건조하는 것이 바람직하다.
전해액 함침
전해액 함침 단계(S140)에서는 하이브리드 슈퍼커패시터용 음극 및 양극 사이에 음극과 양극의 단락을 방지하기 위한 분리막을 배치하고, 음극 및 양극을 전해액에 함침시킨다.
여기서, 하이브리드 슈퍼커패시터의 전해액은 비수계 전해액과, 비수계 전해액 100 중량부에 대하여, 1 ~ 25 중량부로 첨가된 이온성 액체를 포함하는 것이 이용될 수 있다.
이하 첨부된 도면들을 참조하여 보다 구체적으로 설명하도록 한다.
도 3은 본 발명의 일 실시예에 따른 코인형 하이브리드 슈퍼커패시터를 나타낸 단면도이다. 이때, 도 3에서는 본 발명의 일 실시예에 따른 하이브리드 슈퍼커패시터의 사용 상태도로서, 하이브리드 슈퍼커패시터 전극이 적용된 코인형 하이브리드 슈퍼커패시터의 단면도를 나타낸 것이다.
도 3에서 도면부호 190은 도전체로서의 금속캡이고, 도면부호 160은 양극(120)과 음극(110) 간의 절연 및 단락 방지를 위한 다공성 재질의 분리막(separator)이며, 도면부호 192는 전해액의 누액을 방지하고 절연 및 단락방지를 위한 가스켓이다. 이때, 양극(120)과 음극(110)은 금속캡(190)과 접착제에 의해 견고하게 고정된다.
코인형 슈퍼커패시터는, 상술한 하이브리드 슈퍼커패시터 전극으로 이루어진 양극(120)과, 상술한 하이브리드 슈퍼커패시터 전극으로 이루어진 음극(110)과, 양극(120)과 음극(110) 사이에 배치되고 양극(120)과 음극(120)의 단락을 방지하기 위한 분리막(seperator)(160)을 금속캡(190) 내에 배치하고, 양극(120)와 음극(110) 사이에 상술한 슈퍼커패시터의 전해액을 주입한 후, 가스켓(192)으로 밀봉하여 제조할 수 있다.
분리막(160)은 폴리올레핀, 폴리에틸렌, 폴리프로필렌 등 배터리 분야에서 일반적으로 사용되는 분리막이라면 특별히 제한되지 않는다.
한편, 도 4 내지 도 7은 본 발명의 다른 실시예에 따른 권취형 하이브리드 슈퍼커패시터를 나타낸 모식도로, 이를 참조하여 본 발명의 다른 실시예에 따른 권취형 하이브리드 슈퍼커패시터를 제조하는 방법을 구체적으로 설명한다.
하이브리드 슈퍼커패시터용 음극 및 양극 조성물을 제조하는 방법은 앞서 설명한 방법과 동일하다.
하이브리드 슈퍼커패시터용 음극 및 양극 조성물을 롤러로 밀어 시트(sheet) 상태(고무 타입)로 만들어 양극 및 음극 형상으로 제조한다.
이러한 공정을 거친 양극 및 음극 형상에 대하여 건조 공정을 거친다. 건조 공정은 100 ~ 350℃, 바람직하게는 150 ~ 300℃의 온도에서 수행된다. 이때, 건조 온도가 100℃ 미만인 경우 분산매의 증발이 어려워 바람직하지 않으며, 350℃를 초과하는 고온 건조 시에는 도전재의 산화가 일어날 수 있으므로 바람직하지 않다. 따라서, 건조 온도는 적어도 100℃ 이상이고, 350℃를 넘지 않는 것이 바람직하다.
그리고, 건조 공정은 위와 같은 온도에서 6시간 ~ 12시간 동안 진행시키는 것이 바람직하다. 이와 같은 건조 공정은 하이브리드 슈퍼커패시터 전극용 조성물을 건조(분산매 증발)시킴과 동시에 분말 입자를 결속시켜 하이브리드 슈퍼커패시터 전극의 강도를 향상시킨다.
도 4에 도시된 바와 같이, 하이브리드 슈퍼커패시터용 양극(120) 및 음극(110)에 각각 리드선(130, 140)을 부착한다.
다음으로, 도 5에 도시된 바와 같이, 제1 분리막(150), 양극(120), 제2 분리막(160) 및 음극(110)을 적층하고, 코일링(coling)하여 롤(roll) 형태의 권취소자(175)로 제작한 후, 롤(roll) 주위로 접착 테이프(170) 등으로 감아 롤 형태가 유지될 수 있게 한다.
양극(120)과 음극(110) 사이에 구비된 제2 분리막(160)은 양극(120)과 음극(110)의 단락을 방지하는 역할을 한다. 제1 및 제2 분리막(150,160) 각각은 폴리올레핀, 폴리에틸렌, 폴리프로필렌 등 배터리 분야에서 일반적으로 사용되는 분리막이라면 특별히 제한되지 않는다.
다음으로, 도 6에 도시된 바와 같이, 롤(roll) 형태의 결과물에 실링 고무(sealing rubber)(180)를 장착하고, 금속캡(예컨대, 알루미늄 케이스)(190)에 삽착시킨다.
롤 형태의 권취소자(175)가 함침되도록 전해액을 주입하고, 밀봉한다.
이와 같이, 제작된 하이브리드 슈퍼커패시터를 도 7에 개략적으로 나타내었다.
상술한 바와 같이 제조된 하이브리드 슈퍼커패시터(100)는 양극(120)과 음극(110)이 서로 이격되게 배치되어 있고, 양극(120)과 음극(110) 사이에 양극(120)과 음극(110)의 단락을 방지하기 위한 분리막(150, 160)이 배치되며, 양극(120) 및 음극(110)은 하이브리드 슈퍼커패시터의 전해액에 함침되어 있다.
여기서, 하이브리드 슈퍼커패시터의 전해액은, 비수계 전해액과, 비수계 전해액 100 중량부에 대하여 이온성 액체 1 ~ 25 중량부를 포함하며, 비수계 전해액은 유기용매와, 리튬 염 LiPF 6(lithium hexafluorophosphate), LiBF 4(lithium tetrafluoroborate), LiClO 4(lithium perchlorate), LiFSI(lithium bis(fluorosulfonyl)imide)와, 소듐 염 NaPF 6(sodium hexafluorophosphate), NaDFOB(sodium difluoro(oxalate)borate)와, 포타슘 염 KFSI(potassium bis(fluorosulfonyl)imide), KPF 6(potassium hexafluorophosphate)로 이루어진 군으로부터 선택된 1종 이상의 전해질 염을 포함한다. 유기용매는 아세토니트릴(acetonitrile), 프로필렌 카보네이트(propylene carbonate), 에틸렌 카보네이트, 에틸메틸 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 부틸렌 카보네이트, 비닐렌 카보네이트, 테트라히드로푸란, 1,2-디옥산, 2-메틸테트라히드로푸란, 부티로락톤 및 디메틸포름아미드으로 이루어진 군으로부터 선택된 1종 이상의 물질을 포함할 수 있다.
이온성 액체는 EMITf 2N(1-Ethyl-3-methylimidazolium trifluoromethanesulfonylamide), BMITf 2N(1-Butyl-3-methylimidazolium trifluoromethanesulfonylamide), EMITFSI(1-Ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide), BMIMBF 4(1-Butyl-3-methylimidazolium tetrafluoroborate), OMIMBF 4(1-Methyl-3-octylimidazolium tetrafluoroborate), OMIMTf 2N(1-Methyl-3-octylimidazolium trifluoromethanesulfonylamide), MEMPBF 4(N-(2-Methoxyethyl)-N-methylpyrrolidinium tetraflioroborate) 및 DEMEBF 4(N,N-Diethyl-N-methyl-N-(2-methoxyethyl)ammonium tetraflioroborate)로 이루어진 군으로부터 선택된 1종 이상의 물질을 포함할 수 있다.
실시예
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.
1. 하이브리드 슈퍼커패시터 제조
실시예 1
LTO-CNT 복합체 제조
CNT(carbon nanotube) 0.2g을 증류수 100ml에 혼합한 후, 10℃에서 초음파 처리로 1시간 30분 동안 교반하여 분산시켰다.
티타늄 에톡사이드(titanium(IV) ethoxide) 4.11ml를 15℃에서 무수에탄올 100ml에 넣어 10분 동안 교반하였다.
다음으로, CNT 분산 용액을 Ti 전구체 용액에 천천히 부은 뒤, 10℃에서 500rpm의 속도로 빠르게 교반하였다.
1M LiOH·H 2O 15.68ml를 CNT 분산 용액과 Ti 전구체 용액이 혼합된 혼합 용액에 넣은 뒤 15℃에서 6시간 동안 교반하여 LTO 복합체 전구체 용액을 제조하였다.
다음으로, 분무건조기의 내부를 200℃로 유지하면서 400cc/min의 속도로 Air 가스를 공급하여 Air 가스 분위기를 만든 후, 1.5ml/min의 속도로 LTO 복합체 전구체 용액을 분무하여 LTO 복합체 분말을 수득하였다.
다음으로, LTO 복합체 분말을 Ar 및 H 2의 혼합 가스 분위기에서 5℃/min의 속도로 750℃까지 승온시킨 후, 750℃ 조건으로 3시간 동안 환원 열처리를 실시하여 검정색의 LTO-CNT 복합체를 제조하였다.
하이브리드 슈퍼커패시터 제조
음극활물질로 LTO-CNT 복합체 0.7g, 도전재로 카본블랙(Super-p) 0.1g 및 바인더로 PTFE(Polytetrafluoroethylene) 0.2g을 분산매인 에탄올에 넣고, 싱키 믹서(Thinky mixer)로 3분간 혼합한 후, 손반죽 8회 진행하여 하이브리드 슈퍼커패시터용 음극 조성물을 제조하였다.
다음으로, 양극활물질로 상용 활성탄(CEP21-KS) 0.9g, 도전재로 카본블랙(Super-p) 0.05g 및 바인더로 PTFE(Polytetrafluoroethylene) 0.05g을 분산매인 에탄올에 넣고, 싱키 믹서(Thinky mixer)로 3분간 혼합한 후, 손반죽 8회 진행하여 하이브리드 슈퍼커패시터용 양극 조성물을 제조하였다.
다음으로, 하이브리드 슈퍼커패시터용 음극 및 양극 조성물을 가압 압력 10 ton/㎠ 및 롤 온도 60℃ 조건으로 롤프레스로 각각 압연 공정을 실시하여 시트 상태로 만든 후, 150℃의 진공 건조대에 넣고 12시간 건조시켜 하이브리드 슈퍼커패시터용 음극 및 양극을 각각 제조하였다.
이때, 하이브리드 슈퍼커패시터용 음극은 50㎛로 제조하였고, 하이브리드 슈퍼커패시터용 양극은 200㎛로 제조하였다.
다음으로, 진공 건조된 하이브리드 슈퍼커패시터용 음극 및 양극을 2032 코인 셀(coin cell)로 조립한 후, 전해액을 함침시켜 하이브리드 슈퍼커패시터를 제조하였다. 여기서, 사용한 분리막은 폴리올레핀 필름(polyolefin film)이고, 전해액은 리튬배터리용 전해액인 1 M LiPF 6 EC/EMC (1/1, v/v)이다.
실시예 2
분무건조기의 내부를 210℃로 유지하면서 400cc/min의 속도로 Air 가스를 공급하여 Air 가스 분위기를 만든 후, 2.0ml/min의 속도로 LTO 복합체 전구체 용액을 분무하여 LTO 복합체 분말을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 하이브리드 슈퍼커패시터를 제조하였다.
실시예 3
Ar 및 H 2의 혼합 가스 분위기에서 5℃/min의 속도로 800℃까지 승온시킨 후, 800℃ 조건으로 4시간 동안 환원 열처리를 실시한 것을 제외하고는 실시예 1과 동일한 방법으로 하이브리드 슈퍼커패시터를 제조하였다.
비교예 1
LTO-CNT 복합체
티타늄 에톡사이드(titanium(IV) ethoxide) 4.56ml를 15℃에서 무수에탄올 100ml에 넣어 10분 동안 교반하였다.
다음으로, 1M LiOH·H 2O 17.42ml를 Ti 전구체 용액에 넣은 뒤 15℃에서 6시간 동안 교반하였다.
다음으로, 분무건조기의 내부를 200℃로 유지하면서 400cc/min의 속도로 Air 가스를 공급하여 Air 가스 분위기를 만든 후, 1.5ml/min의 속도로 LTO 전구체 용액을 분무하여 블랙 색상의 LTO 분말을 수득하였다.
다음으로, LTO 분말을 Ar 및 H 2의 혼합 가스 분위기에서 5℃/min의 속도로 750℃까지 승온시킨 후, 750℃ 조건으로 3시간 동안 환원 열처리를 실시하여 블랙 색상의 LTO를 제조하였다.
다음으로, LTO와 CNT를 3차원 교반기를 이용하여 2,000rpm의 속도로 30분 동안 교반하여 LTO-CNT 복합체를 제조하였다.
하이브리드 슈퍼커패시터 제조
비교예 1에 따라 제조된 LTO-CNT 복합체를 음극활물질로 이용한 것을 제외하고는 실시예 1과 동일한 방법으로 하이브리드 슈퍼커패시터를 제조하였다.
2. 물성 평가
도 8은 실시예 1 및 비교예 1에 따라 제조된 하이브리드 슈퍼커패시터에 대한 전류밀도별 용량유지율을 측정한 결과를 나타낸 그래프이다. 이때, 용량유지율(capacity retention)은 25℃, 2.7V를 기준으로 측정하였다.
도 8에 도시된 바와 같이, 실시예 1에 따라 제조된 하이브리드 슈퍼커패시터는 비교예 1에 따라 제조된 하이브리드 슈퍼커패시터 보다 용량유지율(capacity retention)이 전체적으로 높게 나타났다.
한편, 도 9는 실시예 2 및 비교예 1에 따라 제조된 하이브리드 슈퍼커패시터에 대한 전위별 비용량을 측정한 결과를 나타낸 그래프이다.
도 9에 도시된 바와 같이, 실시예 2에 따라 제조된 하이브리드 슈퍼커패시터가 비교예 1에 따라 제조된 하이브리드 슈퍼커패시터에 비하여, 비용량이 증가하는 것을 확인할 수 있다.
이상에서는 본 발명의 실시예를 중심으로 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 기술자의 수준에서 다양한 변경이나 변형을 가할 수 있다. 이러한 변경과 변형은 본 발명이 제공하는 기술 사상의 범위를 벗어나지 않는 한 본 발명에 속한다고 할 수 있다. 따라서 본 발명의 권리범위는 이하에 기재되는 청구범위에 의해 판단되어야 할 것이다.
[부호의 설명]
S10 : LTO 복합체 전구체 용액 형성 단계
S20 : 분무 건조 단계
S30 : 환원 열처리 단계
110 : 음극 120 : 양극
130 : 제1 리드선 140 : 제2 리드선
150 : 제1 분리막 160 : 제2 분리막
170 : 접착 테이프 175 : 권취소자
180 : 실링 고무 190 : 금속캡
192 : 가스켓

Claims (15)

  1. (a) 탄소 원료 물질, 티타늄 전구체 및 리튬 전구체를 용매에 혼합하여 LTO 복합체 전구체 용액을 형성하는 단계;
    (b) 상기 LTO 복합체 전구체 용액을 분무 건조하여 LTO 복합체 분말을 수득하는 단계; 및
    (c) 상기 LTO 복합체 분말을 환원 열처리하여 LTO-탄소물질 복합체를 형성하는 단계;
    를 포함하는 고출력 특성을 갖는 하이브리드 슈퍼커패시터용 음극활물질 제조 방법.
    (여기서, 상기 LTO-탄소물질 복합체의 LTO는 Li 4Ti 5O 12-x이며, 상기 x는 0 ~ 3임.)
  2. 제1항에 있어서,
    상기 (a) 단계는,
    (a-1) 탄소 원료 물질을 제1 용매에 혼합한 후, 5 ~ 20℃에서 초음파 처리로 분산시켜 탄소 원료 물질 용액을 형성하는 단계;
    (a-2) 티타늄 전구체를 상온에서 제2 용매에 혼합한 후, 5 ~ 15분 동안 혼합하여 티타늄 전구체 용액을 형성하는 단계;
    (a-3) 상기 탄소 원료 물질 용액과 티타늄 전구체 용액을 혼합한 후, 상온에서 500 ~ 1,000rpm의 속도로 교반하는 단계;
    (a-4) 상기 (a-3) 단계의 결과물에 리튬 전구체를 혼합한 후, 상온에서 5 ~ 7시간 동안 교반하여 LTO 복합체 전구체 용액을 형성하는 단계;
    를 포함하는 것을 특징으로 하는 고출력 특성을 갖는 하이브리드 슈퍼커패시터용 음극활물질 제조 방법.
  3. 제2항에 있어서,
    상기 (a-1) 단계에서,
    상기 탄소 원료 물질은
    카본블랙, 그래핀(graphene), 탄소 나노튜브(carbon nanotube), 활성 탄소(activated carbon), 풀러렌, 인조 흑연, 천연 흑연, 소프트카본 및 하드카본 중 선택된 1종 이상을 포함하는 것을 특징으로 하는 고출력 특성을 갖는 하이브리드 슈퍼커패시터용 음극활물질 제조 방법.
  4. 제2항에 있어서,
    상기 (a-1) 단계에서,
    상기 초음파 조사는
    10 ~ 60kHz 조건으로 1 ~ 2시간 동안 실시하는 것을 특징으로 하는 고출력 특성을 갖는 하이브리드 슈퍼커패시터용 음극활물질 제조 방법.
  5. 제2항에 있어서,
    상기 티타늄 전구체는
    TiO 2, TiCl 4, TiOCl 2 및 Ti 4(OCH 2CH 3) 16 중 선택된 1종 이상을 포함하는 것을 특징으로 하는 고출력 특성을 갖는 하이브리드 슈퍼커패시터용 음극활물질 제조 방법.
  6. 제2항에 있어서,
    상기 리튬 전구체는
    LiOH·H 20, LiCl·H 2O, Li 2SO 4·H 2O, LiNO 3 및 Li 2CO 3 중 선택된 1종 이상을 포함하는 것을 특징으로 하는 고출력 특성을 갖는 하이브리드 슈퍼커패시터용 음극활물질 제조 방법.
  7. 제1항에 있어서,
    상기 (b) 단계에서,
    상기 분무 건조는
    에어(Air) 가스 분위기에서 180 ~ 220℃ 조건으로 실시하는 것을 특징으로 하는 고출력 특성을 갖는 하이브리드 슈퍼커패시터용 음극활물질 제조 방법.
  8. 제1항에 있어서,
    상기 (c) 단계에서,
    상기 환원 열처리는
    Ar 및 H 2의 혼합 가스 분위기에서 700 ~ 900℃ 조건으로 3 ~ 5시간 동안 실시하는 것을 특징으로 하는 고출력 특성을 갖는 하이브리드 슈퍼커패시터용 음극활물질 제조 방법.
  9. 제8항에 있어서,
    상기 환원 열처리는
    4 ~ 6℃/min의 속도로 700 ~ 900℃까지 승온시키는 것을 특징으로 하는 고출력 특성을 갖는 하이브리드 슈퍼커패시터용 음극활물질 제조 방법.
  10. 음극활물질, 도전재 및 바인더를 분산매에 혼합하여 하이브리드 슈퍼커패시터용 음극 조성물을 제조하는 단계;
    활성탄으로 이루어진 양극활물질, 도전재 및 바인더를 분산매에 혼합하여 하이브리드 슈퍼커패시터용 양극 조성물을 제조하는 단계;
    상기 하이브리드 슈퍼커패시터용 음극 및 양극 조성물을 전극 형태로 제조한 후, 건조하여 하이브리드 슈퍼커패시터용 음극 및 양극을 형성하는 단계; 및
    상기 하이브리드 슈퍼커패시용 음극 및 양극 사이에 상기 음극과 양극의 단락을 방지하기 위한 분리막을 배치하고, 상기 음극 및 양극을 전해액에 함침시키는 단계;를 포함하며,
    상기 음극활물질은,
    제1항 내지 제9항 중 어느 한 항에 의해 제조된 LTO-탄소물질 복합체를 이용하는 것을 특징으로 하는 고출력 특성을 갖는 하이브리드 슈퍼커패시터 제조 방법.
    (여기서, 상기 LTO-탄소물질 복합체의 LTO는 Li 4Ti 5O 12-x이며, 상기 x는 0 ~ 3임.)
  11. 제10항에 있어서,
    상기 음극 조성물은
    상기 음극활물질 100 중량부에 대하여, 도전재 0.1 ~ 20 중량부, 바인더 0.1 ~ 20 중량부 및 분산매 200 ~ 300 중량부로 혼합하는 것을 특징으로 하는 고출력 특성을 갖는 하이브리드 슈퍼커패시터 제조 방법.
  12. 제10항에 있어서,
    상기 양극 조성물은
    상기 양극활물질 100 중량부에 대하여, 도전재 0.1 ~ 20 중량부, 바인더 0.1 ~ 20 중량부 및 분산매 200 ~ 300 중량부로 혼합하는 것을 특징으로 하는 고출력 특성을 갖는 하이브리드 슈퍼커패시터 제조 방법.
  13. 음극활물질, 도전재 및 바인더를 포함하는 음극;
    상기 음극과 이격 배치되며, 활성탄으로 이루어진 양극활물질, 도전재 및 바인더를 포함하는 양극;
    상기 음극 및 양극 사이에 배치되어, 상기 음극과 양극의 단락을 방지하기 위한 분리막; 및
    상기 음극 및 양극에 함침된 전해액;을 포함하며,
    상기 음극활물질은,
    제1항 내지 제9항 중 어느 한 항에 의해 제조된 LTO-탄소물질 복합체가 이용된 것을 특징으로 하는 고출력 특성을 갖는 하이브리드 슈퍼커패시터.
    (여기서, 상기 LTO-탄소물질 복합체의 LTO는 Li 4Ti 5O 12-x이며, 상기 x는 0 ~ 3임.)
  14. 제13항에 있어서,
    상기 양극활물질은
    상기 활성탄만으로 이루어진 것을 특징으로 하는 고출력 특성을 갖는 하이브리드 슈퍼커패시터.
  15. 제13항에 있어서,
    상기 양극 및 음극 각각은
    집전체를 사용하지 않은 자가지지 기반의 전극인 것을 특징으로 하는 고출력 특성을 갖는 하이브리드 슈퍼커패시터.
PCT/KR2020/015486 2020-06-03 2020-11-06 고출력 특성을 갖는 하이브리드 슈퍼커패시터용 음극활물질 제조 방법과, 이를 갖는 하이브리드 슈퍼커패시터 및 그 제조 방법 WO2021246587A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0066823 2020-06-03
KR1020200066823A KR102361162B1 (ko) 2020-06-03 2020-06-03 고출력 특성을 갖는 하이브리드 슈퍼커패시터용 음극활물질 제조 방법과, 이를 갖는 하이브리드 슈퍼커패시터 및 그 제조 방법

Publications (1)

Publication Number Publication Date
WO2021246587A1 true WO2021246587A1 (ko) 2021-12-09

Family

ID=78830408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/015486 WO2021246587A1 (ko) 2020-06-03 2020-11-06 고출력 특성을 갖는 하이브리드 슈퍼커패시터용 음극활물질 제조 방법과, 이를 갖는 하이브리드 슈퍼커패시터 및 그 제조 방법

Country Status (2)

Country Link
KR (1) KR102361162B1 (ko)
WO (1) WO2021246587A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110013460A (ko) * 2008-05-14 2011-02-09 에네르델, 인코포레이티드 리튬 티타네이트 및 이의 제조 방법
KR20130142486A (ko) * 2012-06-19 2013-12-30 비나텍주식회사 이온성 액체 전해액을 포함하는 하이브리드 커패시터 및 이의 제조 방법
KR20140131119A (ko) * 2013-05-03 2014-11-12 삼화콘덴서공업주식회사 Lto/탄소 복합체, lto/탄소 복합체 제조방법, lto/탄소 복합체를 이용한 이용한 음극활물질 및 음극활물질을 이용한 하이브리드 슈퍼커패시터
KR20190070334A (ko) * 2016-10-27 2019-06-20 로베르트 보쉬 게엠베하 최적화된 하이브리드 슈퍼커패시터
KR102106532B1 (ko) * 2019-08-09 2020-05-28 연세대학교 산학협력단 바인더 프리 자가지지형 전극 및 이의 제조방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101268872B1 (ko) * 2011-06-28 2013-05-29 한국세라믹기술원 슈퍼커패시터 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110013460A (ko) * 2008-05-14 2011-02-09 에네르델, 인코포레이티드 리튬 티타네이트 및 이의 제조 방법
KR20130142486A (ko) * 2012-06-19 2013-12-30 비나텍주식회사 이온성 액체 전해액을 포함하는 하이브리드 커패시터 및 이의 제조 방법
KR20140131119A (ko) * 2013-05-03 2014-11-12 삼화콘덴서공업주식회사 Lto/탄소 복합체, lto/탄소 복합체 제조방법, lto/탄소 복합체를 이용한 이용한 음극활물질 및 음극활물질을 이용한 하이브리드 슈퍼커패시터
KR20190070334A (ko) * 2016-10-27 2019-06-20 로베르트 보쉬 게엠베하 최적화된 하이브리드 슈퍼커패시터
KR102106532B1 (ko) * 2019-08-09 2020-05-28 연세대학교 산학협력단 바인더 프리 자가지지형 전극 및 이의 제조방법

Also Published As

Publication number Publication date
KR20210149994A (ko) 2021-12-10
KR102361162B1 (ko) 2022-02-10

Similar Documents

Publication Publication Date Title
WO2018164494A1 (ko) 탄소계 박막이 형성된 음극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2015065047A1 (ko) 음극 활물질 및 이의 제조 방법
WO2015084036A1 (ko) 다공성 실리콘계 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2021201399A1 (ko) 이차전지용 음극 및 이를 포함하는 이차전지
WO2019194613A1 (ko) 양극 활물질, 상기 양극 활물질의 제조 방법, 상기 양극 활물질을 포함하는 양극, 및 상기 양극을 포함하는 이차 전지
WO2022103091A1 (ko) 다공성 아라미드 나노섬유 박막, 이의 제조방법, 및 이를 포함하는 이차전지
WO2022060021A1 (ko) 리튬 금속 전극의 제조방법, 이에 의해 제조된 리튬 금속 전극, 및 이를 포함하는 리튬 이차 전지
WO2020067792A1 (ko) 고분자계 고체 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극
WO2018236200A1 (ko) 리튬이차전지용 양극 및 이를 포함하는 리튬이차전지
WO2021251663A1 (ko) 음극 및 이를 포함하는 이차전지
WO2023121368A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2020022831A1 (ko) 양극 활물질, 이를 포함하는 양극 및 이차전지
WO2022211282A1 (ko) 리튬 이차전지
WO2020032454A1 (ko) 황-탄소 복합체, 이의 제조방법, 이를 포함하는 양극 및 리튬 이차전지
WO2021246587A1 (ko) 고출력 특성을 갖는 하이브리드 슈퍼커패시터용 음극활물질 제조 방법과, 이를 갖는 하이브리드 슈퍼커패시터 및 그 제조 방법
WO2022149913A1 (ko) 황-탄소 복합체, 이의 제조방법, 및 이를 포함하는 리튬-황 전지
WO2022255672A1 (ko) 리튬 전극 및 이를 포함하는 리튬 이차전지
WO2022050651A1 (ko) 분리막 및 이를 포함하는 이차 전지
WO2018236046A1 (ko) 리튬-황 전지
WO2019078691A1 (ko) 고수명 및 초고에너지 밀도의 리튬 이차전지
WO2020242247A1 (ko) 황-탄소 복합체, 이를 포함하는 리튬-황 전지용 양극, 및 상기 양극을 포함하는 리튬-황 전지
WO2020060084A1 (ko) 황-탄소 복합체, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2023090805A1 (ko) 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2017200338A1 (ko) 이차전지용 복합 음극재, 이를 포함하는 음극 및 리튬 이차전지
WO2024049246A1 (ko) 증점제 분산액, 이를 포함하는 음극 슬러리, 음극 및 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20938673

Country of ref document: EP

Kind code of ref document: A1