WO2012081406A1 - 炭素繊維強化プラスチック成形品 - Google Patents
炭素繊維強化プラスチック成形品 Download PDFInfo
- Publication number
- WO2012081406A1 WO2012081406A1 PCT/JP2011/077749 JP2011077749W WO2012081406A1 WO 2012081406 A1 WO2012081406 A1 WO 2012081406A1 JP 2011077749 W JP2011077749 W JP 2011077749W WO 2012081406 A1 WO2012081406 A1 WO 2012081406A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon fiber
- fiber reinforced
- design surface
- molded product
- reinforced plastic
- Prior art date
Links
- 239000004918 carbon fiber reinforced polymer Substances 0.000 title claims abstract description 38
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 168
- 239000004917 carbon fiber Substances 0.000 claims abstract description 168
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 149
- 238000013461 design Methods 0.000 claims abstract description 88
- 229920005989 resin Polymers 0.000 claims description 48
- 239000011347 resin Substances 0.000 claims description 48
- 238000000034 method Methods 0.000 claims description 31
- 239000000835 fiber Substances 0.000 claims description 29
- 238000010137 moulding (plastic) Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 description 51
- 238000000465 moulding Methods 0.000 description 18
- 238000004519 manufacturing process Methods 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 238000012545 processing Methods 0.000 description 7
- 229920005992 thermoplastic resin Polymers 0.000 description 7
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 229920001187 thermosetting polymer Polymers 0.000 description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 238000010030 laminating Methods 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 238000005470 impregnation Methods 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000007794 irritation Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000011342 resin composition Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 238000001721 transfer moulding Methods 0.000 description 2
- JZLWSRCQCPAUDP-UHFFFAOYSA-N 1,3,5-triazine-2,4,6-triamine;urea Chemical class NC(N)=O.NC1=NC(N)=NC(N)=N1 JZLWSRCQCPAUDP-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241001292396 Cirrhitidae Species 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000004313 glare Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000009787 hand lay-up Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- -1 polyethylene terephthalate Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 229920003987 resole Polymers 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229920006305 unsaturated polyester Polymers 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/06—Fibrous reinforcements only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/12—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by the relative arrangement of fibres or filaments of different layers, e.g. the fibres or filaments being parallel or perpendicular to each other
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/06—Fibrous reinforcements only
- B29C70/10—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
- B29C70/16—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
- B29C70/20—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
- B29C70/202—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres arranged in parallel planes or structures of fibres crossing at substantial angles, e.g. cross-moulding compound [XMC]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/30—Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B1/00—Layered products having a non-planar shape
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/10—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a fibrous or filamentary layer reinforced with filaments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/26—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/28—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/0405—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
- C08J5/042—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
- C08J5/241—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
- C08J5/243—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
- C08J5/248—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using pre-treated fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2307/00—Use of elements other than metals as reinforcement
- B29K2307/04—Carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/02—Composition of the impregnated, bonded or embedded layer
- B32B2260/021—Fibrous or filamentary layer
- B32B2260/023—Two or more layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/04—Impregnation, embedding, or binder material
- B32B2260/046—Synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/106—Carbon fibres, e.g. graphite fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/54—Yield strength; Tensile strength
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/718—Weight, e.g. weight per square meter
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24132—Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in different layers or components parallel
Definitions
- the present invention relates to a carbon fiber reinforced plastic molded product, and more particularly to a carbon fiber reinforced plastic molded product in which carbon fibers are uniformly oriented on the design surface and has an excellent appearance design.
- Patent Document 1 A technique for optimizing the curing characteristics and viscosity characteristics of an epoxy resin composition used for a prepreg so as not to impair the physical properties and appearance of a molded product is known (for example, Patent Document 1).
- Patent Document 2 There is no technology that pays attention to solving the problem of deterioration of the appearance quality caused by the fluctuation of the position of the carbon fiber bundles and the disorder of the orientation of the carbon fibers.
- Patent Document 2 there was a method of concealing the surface with a glass scrim cloth, but the effect was small, and in order to exhibit the design of the carbon fiber, the orientation of the carbon fiber itself was changed. Improvements such as turbulence were necessary.
- the object of the present invention is to pay particular attention to the problem of deterioration in the appearance quality due to the fluctuation of the position of the carbon fiber bundle on the design surface of the molded product and the disorder of the orientation of the carbon fiber, and the carbon fiber is uniformly oriented on the design surface.
- the object of the present invention is to provide a carbon fiber reinforced plastic molded article having excellent appearance design.
- a carbon fiber reinforced plastic molded product is a laminate of at least two layers including a unidirectional continuous carbon fiber reinforced sheet in which continuous carbon fiber bundles are arranged in a predetermined direction.
- a carbon fiber reinforced plastic molded product is a laminate of at least two layers including a unidirectional continuous carbon fiber reinforced sheet in which continuous carbon fiber bundles are arranged in a predetermined direction.
- the design surface of the unidirectional continuous carbon fiber reinforced sheet The portion where the ratio of carbon fibers in which the angle of carbon fibers is inclined by 3 ° or more is 0.5% or more is 20% or less. That is, a portion where the angle of the carbon fiber on the design surface is inclined by 3 ° or more is 0.5% or more, which may cause a deterioration in the appearance quality called “irritation” or the like due to the disturbance of the orientation of the carbon fiber.
- the area ratio with respect to the whole design surface of such a location is suppressed to 20% or less.
- the area ratio with respect to the whole design surface of such a location is 10% or less.
- the outermost unidirectional continuous carbon fiber reinforced sheet forming the design surface of the molded product is preferably 30 g / m 2 or more and 100 g / m 2 or less, more preferably 40 g / m 2 or more and 80 g / m 2 or less.
- the fiber basis weight is preferably 30 g / m 2 or more and 100 g / m 2 or less, more preferably 40 g / m 2 or more and 80 g / m 2 or less.
- the fiber basis weight is 30 g / m 2 or more, the single yarn can easily maintain straightness when the carbon fiber is uniformly spread.
- the outermost unidirectional continuous carbon fiber reinforced sheet forming the design surface of the molded product in order to more reliably achieve the excellent design surface as described above, the outermost unidirectional continuous carbon fiber reinforced sheet forming the design surface of the molded product. 15 mass% or more and 50 mass% or less are preferable, and it is more preferable that it is 20 mass% or more and 40 mass% or less.
- the resin content By setting the resin content to 15% by mass or more, the resin can easily be uniformly present on the surface when the molded body is manufactured. From this viewpoint, it is more preferably 20% by mass or more. Moreover, it can suppress that fiber orientation is disturb
- one carbon fiber bundle in the unidirectional continuous carbon fiber reinforced sheet forming the design surface of the molded product is 300 tex or less.
- it is effective to apply tension to the continuous carbon fiber bundle at the stage of manufacturing the prepreg that becomes the unidirectional continuous carbon fiber reinforced sheet portion of the outermost layer.
- it is possible to suppress the fluctuation of the position of the carbon fiber bundle and to suppress the disorder of the orientation of the carbon fiber even at the prepreg stage, but if the carbon fiber bundle is too thick, such a suppression effect is reduced.
- it is preferable to set the fineness per carbon fiber bundle to 300 tex or less.
- the lower limit of the fineness per carbon fiber bundle is not particularly limited, but about 90 tex or more is sufficient for the production of the prepreg.
- the tensile elastic modulus of the carbon fiber used for the outermost unidirectional continuous carbon fiber reinforced sheet forming the design surface of the molded product is 270 GPa or more.
- a carbon fiber having a tensile elastic modulus of 270 GPa or more that is easily aligned in a predetermined direction when tension is applied to form a continuous carbon fiber bundle is used.
- the position of the carbon fiber bundle fluctuates when tension is applied to the continuous carbon fiber bundle.
- the orientation of the carbon fibers in the carbon fiber bundle is not easily disturbed. While maintaining such a state, a prepreg for forming the unidirectional continuous carbon fiber reinforced sheet portion of the outermost layer is produced, and it is laminated as a unidirectional continuous carbon fiber reinforced sheet of the outermost layer that forms the design surface of the molded product. Thus, the molded product is molded. Therefore, also on the design surface of the formed molded product, the position of the carbon fiber bundle is less fluctuated, the disorder of the orientation of the carbon fibers is suppressed to a smaller value, and a more excellent design surface appears.
- the carbon fiber used in the present invention pitch-based or polyacrylonitrile-based carbon fibers are used, and polyacrylonitrile-based carbon fibers are preferable because of their relatively high tensile strength.
- the tensile strength of the preferred carbon fiber bundle is 3500 MPa or more, more preferably 4500 MPa or more. By selecting such a range, the resulting composite can be reduced in weight.
- the number of single yarns in the carbon fiber bundle is preferably 15000 or less. From this point of view, it is desirable that the number of single yarns is smaller. However, if the number of single yarns is reduced, more carbon fiber bundles must be used in order to obtain the desired prepreg, and the carbon fiber bundles must be aligned with a uniform tension. However, since it is considered that the degree of difficulty increases industrially, 500 or more is practically preferable. More preferably, it is 1000 or more and 7000 or less.
- thermosetting resin As the resin component used for the prepreg used for the outermost unidirectional carbon fiber reinforced sheet forming the design surface according to the present invention, both a thermosetting resin and a thermoplastic resin can be used.
- a thermosetting resin the molded product has excellent rigidity and strength
- thermoplastic resin the molded product has excellent impact strength and recyclability.
- thermosetting resins include unsaturated polyesters, vinyl esters, epoxies, phenols, resoles, urea melamines, polyimides, copolymers thereof, modified products, and / or blended resins of two or more. Can be used.
- an elastomer or a rubber component may be added to the thermosetting resin in order to improve impact resistance.
- the carbon fiber yarn width of the prepreg raw material is one carbon fiber bundle in the prepreg. It is preferable to use a package that is rolled up small with respect to the target width. Further, by not using a thread with a very thin thread width, a prepreg can be created without causing spots at the time of fiber opening. More preferably, it is 95% or less, more preferably 90% or less, more preferably 25% or more, and more preferably 30% or more with respect to the target width.
- the target width means a width obtained by dividing the total width of the prepreg by the number of carbon fibers used.
- the yarn width of the carbon fiber can be achieved by appropriately setting the carbon fiber fineness, the number of filaments, the process conditions after the surface treatment at the time of creating the carbon fiber, particularly the winding conditions, and selecting a yarn within this range.
- the production method of the prepreg of the present invention is not particularly limited as long as it can apply tension to the yarn to align the yarn in one direction and has a function of widening the carbon fiber bundle before resin impregnation. Not receive.
- equipment that blows compressed air and widens the carbon fiber bundle may cause entanglement of the single yarn in the carbon fiber bundle, and therefore it is preferable to use a fiber opening means such as a roll.
- the width of the carbon fiber sheet produced as described above is such that a tension of 0.5 to 6 cN / tex is applied to each carbon fiber bundle, preferably a tension of 1.5 to 3 cN / tex.
- the total width of the fiber bundle may be 80 to 98%, preferably 85 to 95% of the prepreg sheet width.
- the carbon fiber reinforced plastic molded product according to the present invention is formed by laminating a prepreg used for a unidirectional continuous carbon fiber reinforced sheet forming a design surface on the outermost layer, and the other layers are not particularly limited, but the outermost layer. It is obtained by laminating and molding the same prepreg or other material. When the same prepreg is laminated, only one material is required, and there is no mistake in lamination, which is preferable.
- the basis weight of the same prepreg is low, a large number of sheets will be laminated in order to obtain a carbon fiber reinforced plastic molded product of the required thickness, so it is also possible to use prepregs with different carbon fiber types and basis weights, This is also preferable from the viewpoint of shortening the stacking operation time and cost.
- a laminate composed of a prepreg and other layers used for the unidirectional continuous carbon fiber reinforced sheet forming the outermost surface of the design surface is directed from the center of the laminate to both surface layers.
- the carbon fiber reinforced sheets are laminated, for example, when the number of the laminated bodies is an even number, the arrangement is symmetrical with respect to the contact surface of the carbon fiber reinforced sheets corresponding to half of the number of the laminated sheets. In the case of an odd number, the carbon fiber reinforced sheets disposed on both sides are symmetrically disposed with respect to the carbon fiber reinforced sheet disposed in the center.
- the fiber orientations of the respective carbon fiber reinforced sheets are arranged so as to be symmetrical.
- the fiber arrangement direction is 0 ° / 90 ° / 0 ° / 0 ° / 90 ° / from the top. It can be laminated so that it becomes 0 degree.
- the fiber arrangement direction is 0 ° / 90 ° / 0 ° / 90 ° / 0 ° / 90 ° / 0 ° from the top. Can be made.
- the prepreg used for the unidirectional continuous carbon fiber reinforced sheet forming the design surface is also laminated on the outermost layer opposite to the outermost layer.
- a prepreg used for the outermost layer unidirectional continuous carbon fiber reinforced sheet that forms a design surface on the outermost layer opposite to the outermost layer is used.
- the outermost layer forming the design surface and the lower layer By laminating and stacking from the top to be 0 ° / 0 ° / 90 ° / 0 ° / 90 ° / 0 ° / 90 ° / 0 ° / 0 °, the outermost layer forming the design surface and the lower layer This is preferable because the second layer is in the same direction and the influence of the unevenness of the second layer prepreg on the design of the outermost layer can be reduced.
- the carbon fiber reinforced plastic molded product according to the present invention is formed by laminating an adhesive intervening sheet on the outermost layer on the opposite side to the outermost layer forming the design surface for the purpose of improving the adhesiveness when bonded to other members.
- the adhesive interposed sheet include a sheet made of polyamide resin, polyester resin, polycarbonate resin, EVA resin (ethylene-vinyl acetate copolymer resin), styrene resin, PPS (polyphenylene sulfide) resin, and the like. These modified products may also be used.
- These thermoplastic resins may be used alone or in combination of two or more of these copolymers or blend polymers.
- the production method of the carbon fiber reinforced plastic molded product is not particularly limited, and is a hand lay-up molding method, a spray-up molding method, a vacuum back molding method, a pressure molding method, an autoclave molding method, a press molding. And a method using a thermosetting resin such as a transfer molding method and a method using a thermoplastic resin such as a press molding and a stamping molding method.
- a vacuum back molding method, a press molding method, a transfer molding method and the like are preferably used.
- the press pressure is 0.5 to 5 MPa. It is preferable to mold. If the pressure is too low, it will not be possible to obtain a molded product with a predetermined thickness created with a press die, and if the pressure is too high, the resin will flow and resin defects such as pinholes will occur in the outermost layer that constitutes the design surface. This is not preferable.
- a configuration in which a resin sheet having a basis weight of 15 g / m 2 or less is further provided on the outermost layer forming the design surface of the molded product can be adopted.
- this resin sheet for example, a resin nonwoven fabric sheet can be used.
- the kind of resin of the resin sheet is not particularly limited, and for example, polyethylene terephthalate (PET) can be used.
- PET polyethylene terephthalate
- Such a resin sheet essentially does not bear the strength or rigidity of the molded product, and therefore may be thin, and therefore may be a low-weight resin sheet having a basis weight of 15 g / m 2 or less.
- the resin sheet By adding such a resin sheet, even if a very slight light and dark part has occurred on the design surface formed by the unidirectional continuous carbon fiber reinforced sheet of the outermost layer, the light and dark part, The resin sheet can be shielded, and an excellent appearance design surface in which a bright and dark part does not appear more reliably is realized.
- This resin sheet will form the final outermost layer, but if this resin sheet is too thick with a basis weight exceeding 15 g / m 2 , the carbon fiber in the inner layer may not be visible, and a non-woven fabric is used. In some cases, the surface appearance may be deteriorated because the resin does not go around the design surface.
- the carbon fiber plastic molded product according to the present invention can be used, for example, as it is as a casing with excellent design properties, but it can also be a casing integrated with a second member.
- the second member is not particularly limited, but a thermoplastic resin or the like is preferably used.
- an adhesive can be used for bonding.
- the melting point of the thermoplastic resin constituting the adhesive interposing sheet as an integration method
- the method of joining by adhering another member at the above process temperature, and then cooling is mentioned.
- Examples of the method of melting and bonding the thermoplastic resin as the second member include thermal welding, vibration welding, ultrasonic welding, laser welding, insert injection molding, and outsert injection molding.
- Such a carbon fiber reinforced plastic molded product according to the present invention can be applied to any molded product that requires an excellent design surface that does not show the appearance design defects as described above. Is suitable. In particular, when applied to a housing of an electric / electronic product, an extremely excellent design surface can be obtained.
- the carbon fiber reinforced plastic molded product according to the present invention it is possible to obtain a design surface exhibiting an excellent appearance with very little deterioration in appearance quality due to fluctuations in the position of the carbon fiber bundles on the design surface and disturbance of the orientation of the carbon fibers. It is possible to provide a carbon fiber reinforced plastic molded product having excellent appearance design.
- the present invention when the present invention is applied to a casing, the commercial value of a product having the casing can be greatly increased.
- the molded product consists of a laminate of at least two layers including a unidirectional continuous carbon fiber reinforced sheet in which continuous carbon fiber bundles are arranged in a predetermined direction, Among these, in particular, when the carbon fiber in the design surface of the unidirectional continuous carbon fiber reinforced sheet forming the design surface of the molded product is observed, the angle of the carbon fiber is inclined by 3 ° or more with respect to the predetermined one direction.
- the area ratio with respect to the entire design surface of the portion where the ratio of the carbon fiber is 0.5% or more is 20% or less.
- the one outermost layer of the carbon fiber weight per unit area of the unidirectional continuous carbon fiber-reinforced sheet is 30 g / m 2 or more 100 g / m 2 or less is used.
- the resin content of the unidirectional continuous carbon fiber reinforced sheet of the outermost layer is 15% by mass or more and 50% by mass, and one carbon fiber bundle in the unidirectional continuous carbon fiber reinforced sheet of the outermost layer.
- the fineness is set to 300 tex or less.
- the carbon fiber bundle is impregnated before impregnating the carbon fiber bundle with resin by applying a tension of 0.5 to 6 N / tex to the carbon fiber bundle in the prepreg manufacturing process.
- a unidirectional continuous carbon fiber reinforced sheet manufactured through a process of widening to 80 to 98% of the target width in advance is used as the outermost layer that forms the design surface of the molded product.
- a carbon fiber having a tensile elastic modulus of 270 GPa or more is used as the carbon fiber used in the outermost layer unidirectional continuous carbon fiber reinforced sheet.
- a resin sheet is further provided on the outermost layer which forms the design surface of a molded article, it is preferable to be a resin sheet having a basis weight of 15 g / m 2 or less.
- FIG. 1 it is a molded article composed of a laminate of at least two layers including a unidirectional continuous carbon fiber reinforced sheet having continuous carbon fiber bundles, and the outermost layer forming the design surface of the molded article is A sample 1 of a carbon fiber reinforced plastic molded product formed of a unidirectional continuous carbon fiber reinforced sheet is submerged in a predetermined water tank 2 and the design surface of the sample 1 is observed with an optical microscope 3 from above.
- the measurement conditions in this case are as follows, for example.
- Measuring device KEYENCE VHX-500 Lens: VH-Z20R Image field of view: 3.04 ⁇ 2.28mm Magnification: 100 times Resolution: 1600 x 1200 pixels
- Number of measurement points 25 points or more (random)
- Shooting method Shooting with the fiber facing mainly 0 ° (horizontal direction)
- An image taken out by shooting is processed as follows.
- the image processing environment is as follows, for example.
- OS Windows (registered trademark)
- XP CPU Celeron 2.8GHz
- Memory 512MB
- image processing (1) is performed according to the following procedure. Reading pre-processing image (0) ⁇ Noise removal ⁇ Edge enhancement ⁇ Binarization ⁇ Expansion / contraction ⁇ Thinning ⁇ Extraction of fibers longer than 150 pixels (0.285mm) (extracted image (1)) (actually Are extracted as colored fibers.) Examples of the pre-processing image (0) and the extracted image (1) are shown in FIG.
- image processing (2) as shown in FIG. 3 is performed according to the following procedure.
- the angle of the fiber is determined, and the fiber 10 tilted by ⁇ 3 ° or more with respect to the horizontal direction (0 ° direction) is extracted (in this extracted image (2) Actually, the fibers 10 which are emphasized by coloring and inclined by ⁇ 3 ° or more are extracted).
- Ratio of fibers tilted by ⁇ 3 ° or more [Area of fiber extracted from extracted image (2) (number of pixels) / Area of fiber extracted from extracted image (1) (number of pixels)] ⁇ 100
- the ratio of the inclined fibers is shown in, for example, Table 1 (Table 1 illustrates Examples 1 and 2 and Comparative Example 1 described later). Calculate as follows. Then, the occurrence rate is calculated as to how many percent of the carbon fiber in which the angle of the carbon fiber in the design surface is inclined by 3 ° or more is 0.5% or more (the occurrence rate is also exemplified in Table 1). ing).
- the tensile strength (MPa), tensile elastic modulus (GPa), fineness (tex) of the carbon fiber bundle, and the design surface of the molded product are combined.
- the fiber basis weight (g / m 2 ), fiber content (wt%), tension applied to the carbon fiber bundle at the time of prepreg production (cN / tex), carbon fiber opening Measure the yarn width (mm) after fiber processing, the yarn width (mm) after prepreg processing, and the width expansion rate (%), and if the resin sheet is provided on the outermost layer, the basis weight (g / m 2 ) is also It was measured.
- Example 1 A dimethyl sulfoxide solution containing 20% by mass of an acrylonitrile-based polymer having an intrinsic viscosity [ ⁇ ] of 1.80 consisting of 99.5 mol% of acrylonitrile and 0.5 mol% of itaconic acid is used as a spinning stock solution, and a 6000 having a pore diameter of 0.15 mm ⁇ is 6000. It was once discharged into the air using a hole cap and introduced into a coagulation bath consisting of a 35% aqueous dimethyl sulfoxide solution adjusted to 10 ° C. to obtain a coagulated yarn. The coagulated yarn is washed with water and stretched, and then a surfactant mainly composed of an amino-modified silicone dispersion is added, followed by drying and densification, and stretching is performed using a steam stretching apparatus. The body fiber was wound up.
- a surfactant mainly composed of an amino-modified silicone dispersion is added, followed by drying and densification, and stretching is performed using a
- the precursor was subjected to a carbonization process, and was untwisted and flame-resistant while being unwound so as not to be twisted, and carbonized at a maximum temperature of 1900 ° C. with a tension of 5 g / carbonized yarn tex. Then, after anodizing continuously with the same tension to impart conformity with the matrix, sizing and drying, a fineness of 250 tex, a filament number of 6000, a strand strength measured according to JIS R7608: 2007, 5490 MPa, A carbon fiber having an elastic modulus of 295 GPa and a thread width of 3.5 mm on the bobbin was obtained.
- the carbon fiber bundle was aligned at a tension of 1.9 cN / tex, a carbon fiber sheet was obtained using a multistage widening apparatus having a plurality of rollers, and a carbon fiber reinforced prepreg was obtained under the conditions shown in Table 2.
- This unidirectional carbon fiber reinforced prepreg is cut to a predetermined size and used as the first and eighth outermost layers.
- the inner layer (2-7th layer) is made of P3052S prepreg (150 g carbon fiber basis weight) manufactured by Toray Industries, Inc. / M 2 ), a total of 8 layers were formed.
- the laminated structure was laminated so as to be 0 ° / 0 ° / 90 ° / 0 ° / 0 ° / 90 ° / 0 ° / 0 ° when the longitudinal direction of the carbon fiber molded product was 0 °.
- the laminate sandwiched between release films is evacuated for 5 minutes in order to remove air from the laminate, and then press-molded (mold temperature 150 ° C., pressure 1.5 MPa, curing time 20 minutes.
- the target thickness after pressing was 0.8 mm), and a carbon fiber reinforced plastic molded product was obtained. From cutting the prepreg to forming, no tension is applied for the purpose of aligning the carbon fibers of the prepreg.
- Table 2 shows the above-mentioned conditions, and the characteristics of the obtained molded product (occurrence rate of the portion where the angle of the carbon fiber on the design surface is inclined by 3 ° or more is 0.5% or more) and the appearance evaluation result based thereon. Shown in
- Examples 2-8, Comparative Examples 1-8 Compared to Example 1, the tensile modulus of carbon fiber, the fineness of the carbon fiber bundle, the carbon fiber basis weight and the resin content in the prepreg, the tension at the time of production, the widening rate, and the resin surface (15 g / m 2 basis weight) Tables 2 and 3 show the test results when at least one of other conditions such as the case where the following PET nonwoven fabric is provided (Examples 2 to 8, Comparative Examples 1 to 8).
- the carbon fiber reinforced plastic molded product according to the present invention can be applied to any molded product that requires an excellent design surface, and is particularly suitable as a casing.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Polymers & Plastics (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Textile Engineering (AREA)
- Reinforced Plastic Materials (AREA)
- Laminated Bodies (AREA)
- Moulding By Coating Moulds (AREA)
Abstract
Description
本発明に係る炭素繊維強化プラスチック成形品においては、成形品は、連続炭素繊維束が所定の一方向に配された一方向連続炭素繊維強化シートを含む少なくとも2層以上の積層体からなるが、このうちとくに、成形品の意匠面を形成する最表層の一方向連続炭素繊維強化シートの意匠面における炭素繊維について観察したとき、炭素繊維の角度が上記所定の一方向に対し3°以上傾いている炭素繊維の割合が0.5%以上ある箇所の、意匠面の全体に対する面積割合が20%以下であるものとされている。そして、前述したように、好ましくは、この最表層の一方向連続炭素繊維強化シートの炭素繊維目付が30g/m2以上100g/m2以下のものが用いられる。また、好ましくは前述したように、最表層の一方向連続炭素繊維強化シートの樹脂含有率が15質量%以上50質量%とされ、最表層の一方向連続炭素繊維強化シートにおける炭素繊維束1本の繊度が300tex以下とされる。さらに、好ましくは、前述したように、プリプレグの製造工程において炭素繊維束に0.5~6N/texの張力を付与して引き揃えることによって炭素繊維束に樹脂を含浸させる前に炭素繊維束を予め目的幅の80~98%まで拡幅する工程を経て製造された一方向連続炭素繊維強化シートが、上記成形品の意匠面を形成する最表層に用いられる。また、この最表層の一方向連続炭素繊維強化シートに用いられる炭素繊維として、引張弾性率が270GPa以上の炭素繊維を用いることが好ましい。また、成形品の意匠面を形成する最表層上にさらに樹脂シートが設けられる場合には、目付15g/m2以下の樹脂シートとされることが好ましい。
測定装置:KEYENCE VHX-500
レンズ:VH-Z20R
画像視野範囲:3.04×2.28mm
倍率:100倍
解像度:1600×1200画素
測定点数:25point以上(ランダム)
撮影方法:繊維が主に0°(水平方向)を向くように撮影
OS:Windows(登録商標) XP
CPU:Celeron 2.8GHz
Memory:512MB
使用ソフト:画像処理ライブラリHALCON(Ver.8.0 MVTec社製)
処理前画像(0)の読込→ノイズ除去→輪郭強調→2値化→膨張・収縮→細線化
→150画素(0.285mm)以上の長さの繊維を抽出(抽出画像(1))(実際には色づけされた繊維として抽出される。)
処理前画像(0)と抽出画像(1)の例を図2に示す。
上記抽出画像(1)で抽出された各繊維について、繊維の角度を割り出し、水平方向(0°方向)に対して±3°以上傾いた繊維10を抽出する(この抽出画像(2)においては、実際には色づけにより強調されて±3°以上傾いた繊維10が抽出される)。
±3°以上傾いた繊維の割合(%)=
[抽出画像(2)で抽出された繊維の面積(画素数)/抽出画像(1)で抽出された繊維の面積(画素数)]×100
実施例1
アクリロニトリル99.5モル%、イタコン酸0.5モル%からなる固有粘度[η]が1.80のアクリロニトリル系重合体を20質量%含むジメチルスルホキシド溶液を紡糸原液として、孔径が0.15mmφの6000ホールの口金を用いて一旦空気中に吐出し、10℃に温調されたジメチルスルホキシド35%水溶液から成る凝固浴に導入して凝固糸を得た。該凝固糸を水洗・延伸後、アミノ変性シリコーン分散物を主成分とした界面活性剤を付与した後、乾燥緻密化を行い、スチーム延伸装置を用いて延伸を行ない、円形断面で表面平滑な前駆体繊維を巻き取った。
この樹脂組成物を担持シートに塗布し、プリプレグ用樹脂シートを得た。
上記実施例1に対し、炭素繊維の引張弾性率や、炭素繊維束の繊度、プリプレグにおける炭素繊維目付や樹脂含有率、製造時の張力、拡幅率、意匠面に樹脂シート(目付15g/m2以下のPET不織布)を設けた場合などの他の条件の少なくとも一つを変更した場合(実施例2~8、比較例1~8)の試験結果を表2、表3に示す。
2 水槽
3 光学顕微鏡
10 ±3°以上傾いた繊維
Claims (8)
- 連続炭素繊維束が所定の一方向に配された一方向連続炭素繊維強化シートを含む少なくとも2層以上の積層体からなる成形品であって、該成形品の意匠面を形成する最表層の一方向連続炭素繊維強化シートの前記意匠面における炭素繊維について観察したとき、炭素繊維の角度が前記所定の一方向に対し3°以上傾いている炭素繊維の割合が0.5%以上ある箇所の、前記意匠面の全体に対する面積割合が20%以下であることを特徴とする炭素繊維強化プラスチック成形品。
- 前記成形品の意匠面を形成する最表層の一方向連続炭素繊維強化シートの繊維目付が30g/m2以上100g/m2以下である、請求項1に記載の炭素繊維強化プラスチック成形品。
- 前記成形品の意匠面を形成する最表層の一方向連続炭素繊維強化シートの樹脂含有率が15質量%以上50質量%以下である、請求項1または2に記載の炭素繊維強化プラスチック成形品。
- 前記成形品の意匠面を形成する最表層の一方向連続炭素繊維強化シートにおける炭素繊維束1本の繊度が300tex以下である、請求項1~3のいずれかに記載の炭素繊維強化プラスチック成形品。
- 炭素繊維束に0.5~6cN/texの張力を付与して引き揃えることによって、該炭素繊維束に樹脂を含浸させる前に該炭素繊維束を予め目的幅の80~98%まで拡幅する工程を経て製造された一方向連続炭素繊維強化シートが、前記成形品の意匠面を形成する最表層に用いられている、請求項1~4のいずれかに記載の炭素繊維強化プラスチック成形品。
- 前記成形品の意匠面を形成する最表層の一方向連続炭素繊維強化シートに用いられる炭素繊維の引張弾性率が270GPa以上である、請求項1~5のいずれかに記載の炭素繊維強化プラスチック成形品。
- 前記成形品の意匠面を形成する最表層上にさらに目付15g/m2以下の樹脂シートが設けられている、請求項1~6のいずれかに記載の炭素繊維強化プラスチック成形品。
- 筐体として成形されている、請求項1~7のいずれかに記載の炭素繊維強化プラスチック成形品。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011553228A JP5915929B2 (ja) | 2010-12-13 | 2011-12-01 | 炭素繊維強化プラスチック成形品の製造方法 |
CA2821246A CA2821246A1 (en) | 2010-12-13 | 2011-12-01 | Carbon-fiber-reinforced plastic molded article |
CN201180053334.XA CN103201087B (zh) | 2010-12-13 | 2011-12-01 | 碳纤维增强塑料成型品 |
EP11848052.4A EP2653292A4 (en) | 2010-12-13 | 2011-12-01 | MOLDED ARTICLE IN PLASTIC MATERIAL REINFORCED WITH CARBON FIBER |
KR1020137007774A KR101861875B1 (ko) | 2010-12-13 | 2011-12-01 | 탄소 섬유 강화 플라스틱 성형품 |
US13/993,705 US20130280479A1 (en) | 2010-12-13 | 2011-12-01 | Carbon-fiber-reinforced plastic molded article |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-276880 | 2010-12-13 | ||
JP2010276880 | 2010-12-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012081406A1 true WO2012081406A1 (ja) | 2012-06-21 |
Family
ID=46244515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/077749 WO2012081406A1 (ja) | 2010-12-13 | 2011-12-01 | 炭素繊維強化プラスチック成形品 |
Country Status (8)
Country | Link |
---|---|
US (1) | US20130280479A1 (ja) |
EP (1) | EP2653292A4 (ja) |
JP (1) | JP5915929B2 (ja) |
KR (1) | KR101861875B1 (ja) |
CN (1) | CN103201087B (ja) |
CA (1) | CA2821246A1 (ja) |
TW (1) | TWI545004B (ja) |
WO (1) | WO2012081406A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015536853A (ja) * | 2012-12-07 | 2015-12-24 | ハンファ アズデル インコーポレイテッド | 無撚繊維を含む物品およびその使用方法 |
JP2019093726A (ja) * | 2019-03-14 | 2019-06-20 | 王子ホールディングス株式会社 | 多層成形品 |
JP2019093727A (ja) * | 2019-03-14 | 2019-06-20 | 王子ホールディングス株式会社 | 多層成形品、及び多層成形品用シート |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9481117B2 (en) * | 2013-08-13 | 2016-11-01 | Teijin Limited | Manufacturing method of decorative molded article and decorative molded article |
FR3020777B1 (fr) * | 2014-05-09 | 2017-01-20 | Plastic Omnium Cie | Empilage de couches de matiere plastique renforcee pour moulage de piece |
KR101627622B1 (ko) | 2014-06-10 | 2016-06-08 | 중앙대학교 산학협력단 | 탄소 섬유 강화 플라스틱, 이의 제조방법 및 이의 성형품 |
JP6523859B2 (ja) * | 2014-08-28 | 2019-06-05 | 帝人株式会社 | 切断体の製造方法、及び繊維強化樹脂の切断方法 |
CN104262900B (zh) * | 2014-09-12 | 2016-04-20 | 吉林大学 | 单向连续碳纤维增强聚醚醚酮复合材料及其制备方法 |
USD779833S1 (en) | 2014-11-04 | 2017-02-28 | Polyone Designed Structures And Solutions Llc | Plastic sheet with a surface pattern |
USD809445S1 (en) | 2014-11-04 | 2018-02-06 | Spartech Llc | Vehicle floor mat with applied surface pattern |
GB2549955A (en) * | 2016-05-03 | 2017-11-08 | 4A Mfg Gmbh | Membrane plate structure for generating sound waves |
EP3339356B1 (en) * | 2016-12-20 | 2019-10-30 | Sika Technology Ag | An article of thermosetting epoxy resin composition and carbon fibre fabric, and reinforced structural component made therewith |
CN113242783B (zh) * | 2018-11-28 | 2023-09-12 | 三菱化学株式会社 | 布预浸料、布预浸料的制造方法、纤维增强树脂成型品、纤维增强树脂成型品的制造方法 |
JP2022533540A (ja) * | 2019-05-09 | 2022-07-25 | テイジン カーボン ユーロップ ゲー・エム・ベー・ハー | 不連続な中間層を有する多軸ノンクリンプファブリック |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004099814A (ja) | 2002-09-12 | 2004-04-02 | Toray Ind Inc | プリプレグおよび繊維強化複合材料 |
JP2005014600A (ja) * | 2003-06-02 | 2005-01-20 | Toray Ind Inc | 一方向炭素繊維プリプレグ材の製造方法 |
JP2007231073A (ja) * | 2006-02-28 | 2007-09-13 | Toray Ind Inc | 難燃性炭素繊維強化複合材料およびその製造方法 |
JP2007291283A (ja) * | 2006-04-27 | 2007-11-08 | Toray Ind Inc | 一方向炭素繊維プリプレグ材およびその製造方法 |
US20090110872A1 (en) | 2007-10-31 | 2009-04-30 | Apple Inc. | Composite Laminate Having An Improved Cosmetic Surface And Method Of Making Same |
JP2010514592A (ja) * | 2006-12-27 | 2010-05-06 | ソシエテ ド テクノロジー ミシュラン | 複合リングの製造方法および装置 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101085865B (zh) * | 2002-12-27 | 2012-10-10 | 东丽株式会社 | 用于热结合的基材及用其制造层压品的方法 |
TWI304321B (en) * | 2002-12-27 | 2008-12-11 | Toray Industries | Layered products, electromagnetic wave shielding molded articles and method for production thereof |
CA2562141C (en) * | 2004-03-31 | 2012-05-29 | Markus Schneider | Epoxy resin impregnated yarn and the use thereof for producing a preform |
JP4128165B2 (ja) * | 2004-08-31 | 2008-07-30 | 弘治 大石橋 | 拡繊装置 |
JP4206454B2 (ja) * | 2006-08-18 | 2009-01-14 | 福井県 | 多軸補強積層成型品及びその製造方法 |
ES2837455T3 (es) * | 2007-06-04 | 2021-06-30 | Toray Industries | Haz de fibras troceadas, material de moldeo y plástico reforzado con fibras, y proceso para producirlos |
JP4983709B2 (ja) | 2008-04-17 | 2012-07-25 | 東レ株式会社 | 炭素繊維前駆体繊維および炭素繊維の製造方法 |
DE102008042363B4 (de) * | 2008-09-25 | 2022-09-22 | Robert Bosch Gmbh | Verfahren zur Erzeugung eines Fahrzeug-Differenzmoments |
ES2453666T3 (es) * | 2008-09-29 | 2014-04-08 | Kuraray Co., Ltd. | Artículo laminado resistente al impacto, proceso para producir el mismo, y material resistente al impacto |
JP5614280B2 (ja) * | 2009-03-25 | 2014-10-29 | 東レ株式会社 | エポキシ樹脂組成物、プリプレグ、炭素繊維強化複合材料および電子電気部品筐体 |
JP5326170B2 (ja) * | 2009-05-25 | 2013-10-30 | 福井県 | 繊維束の開繊方法及び開繊糸シート並びに繊維補強シートの製造方法 |
KR101841797B1 (ko) * | 2010-12-13 | 2018-03-23 | 도레이 카부시키가이샤 | 탄소 섬유 프리프레그 및 그의 제조 방법, 탄소 섬유 강화 복합 재료 |
-
2011
- 2011-12-01 US US13/993,705 patent/US20130280479A1/en not_active Abandoned
- 2011-12-01 EP EP11848052.4A patent/EP2653292A4/en not_active Withdrawn
- 2011-12-01 CA CA2821246A patent/CA2821246A1/en not_active Abandoned
- 2011-12-01 CN CN201180053334.XA patent/CN103201087B/zh not_active Expired - Fee Related
- 2011-12-01 JP JP2011553228A patent/JP5915929B2/ja active Active
- 2011-12-01 WO PCT/JP2011/077749 patent/WO2012081406A1/ja active Application Filing
- 2011-12-01 KR KR1020137007774A patent/KR101861875B1/ko active IP Right Grant
- 2011-12-07 TW TW100144973A patent/TWI545004B/zh not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004099814A (ja) | 2002-09-12 | 2004-04-02 | Toray Ind Inc | プリプレグおよび繊維強化複合材料 |
JP2005014600A (ja) * | 2003-06-02 | 2005-01-20 | Toray Ind Inc | 一方向炭素繊維プリプレグ材の製造方法 |
JP2007231073A (ja) * | 2006-02-28 | 2007-09-13 | Toray Ind Inc | 難燃性炭素繊維強化複合材料およびその製造方法 |
JP2007291283A (ja) * | 2006-04-27 | 2007-11-08 | Toray Ind Inc | 一方向炭素繊維プリプレグ材およびその製造方法 |
JP2010514592A (ja) * | 2006-12-27 | 2010-05-06 | ソシエテ ド テクノロジー ミシュラン | 複合リングの製造方法および装置 |
US20090110872A1 (en) | 2007-10-31 | 2009-04-30 | Apple Inc. | Composite Laminate Having An Improved Cosmetic Surface And Method Of Making Same |
Non-Patent Citations (1)
Title |
---|
See also references of EP2653292A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015536853A (ja) * | 2012-12-07 | 2015-12-24 | ハンファ アズデル インコーポレイテッド | 無撚繊維を含む物品およびその使用方法 |
JP2019093726A (ja) * | 2019-03-14 | 2019-06-20 | 王子ホールディングス株式会社 | 多層成形品 |
JP2019093727A (ja) * | 2019-03-14 | 2019-06-20 | 王子ホールディングス株式会社 | 多層成形品、及び多層成形品用シート |
Also Published As
Publication number | Publication date |
---|---|
CN103201087B (zh) | 2016-01-20 |
KR101861875B1 (ko) | 2018-05-28 |
US20130280479A1 (en) | 2013-10-24 |
EP2653292A1 (en) | 2013-10-23 |
CA2821246A1 (en) | 2012-06-21 |
CN103201087A (zh) | 2013-07-10 |
JPWO2012081406A1 (ja) | 2014-05-22 |
KR20130141468A (ko) | 2013-12-26 |
EP2653292A4 (en) | 2014-09-03 |
JP5915929B2 (ja) | 2016-05-11 |
TWI545004B (zh) | 2016-08-11 |
TW201231257A (en) | 2012-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5915929B2 (ja) | 炭素繊維強化プラスチック成形品の製造方法 | |
JP5834917B2 (ja) | 炭素繊維プリプレグの製造方法、炭素繊維強化複合材料の製造方法 | |
WO2013147257A1 (ja) | 炭素繊維熱可塑性樹脂プリプレグ、炭素繊維複合材料、ならびに製造方法 | |
JPWO2013118689A1 (ja) | 炭素繊維複合材料 | |
JP2020100156A (ja) | 積層基材およびその製造方法並びに炭素繊維強化樹脂基材 | |
JP6587607B2 (ja) | 繊維強化複合材料 | |
JP5571963B2 (ja) | 高強力・高弾性率シート状物 | |
JP6610835B1 (ja) | 炭素繊維およびその製造方法 | |
JP6384121B2 (ja) | プリプレグ及びその製造方法ならびに炭素繊維強化複合材料 | |
JP2002069754A (ja) | 高強度・高伸度炭素繊維及びその成形材料 | |
JP6667554B2 (ja) | Frp用樹脂組成物、frpシート及び成形体 | |
JP2009242964A (ja) | 炭素繊維及びその製造方法 | |
JP2012241183A (ja) | 繊維複合材料およびそれを用いたサンドイッチ材 | |
JP2007260930A (ja) | プリフォーム基材及びプリフォームの製造方法 | |
JP2020131466A (ja) | 繊維強化樹脂シート | |
CN118103204A (zh) | 纳米纤维膜增强复合材料的制造工艺和用于这种工艺的纳米纤维膜 | |
JP6499029B2 (ja) | 振動減衰部材製造用シート状物、このシート状物を用いた振動減衰部材およびその製造方法 | |
US20220145528A1 (en) | Method for producing opened carbon fibre bundle and fibre reinforced composite material | |
JP5935299B2 (ja) | 繊維強化複合材料および繊維強化複合材料の製造方法。 | |
JP2006188782A (ja) | 炭素繊維束およびその製造方法 | |
JP2023157399A (ja) | 一方向性繊維強化樹脂及び積層体 | |
KR20120002667A (ko) | 자동차 시트 프레임용 아라미드 복합체 막대 | |
JP2024032103A (ja) | 強化繊維基材、およびこれを用いた積層体 | |
JP2011088335A (ja) | 繊維強化複合材料 | |
JP2012201067A (ja) | ロボットフォーク用プリプレグおよびその製造方法、ならびにロボットフォークの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2011553228 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11848052 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20137007774 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2821246 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13993705 Country of ref document: US |