WO2012081137A1 - 電池パック - Google Patents

電池パック Download PDF

Info

Publication number
WO2012081137A1
WO2012081137A1 PCT/JP2011/003753 JP2011003753W WO2012081137A1 WO 2012081137 A1 WO2012081137 A1 WO 2012081137A1 JP 2011003753 W JP2011003753 W JP 2011003753W WO 2012081137 A1 WO2012081137 A1 WO 2012081137A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
battery
frame body
battery pack
battery module
Prior art date
Application number
PCT/JP2011/003753
Other languages
English (en)
French (fr)
Inventor
安井 俊介
知昌 青木
裕史 高崎
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201180004331.7A priority Critical patent/CN102656718B/zh
Priority to JP2012510055A priority patent/JP5420064B2/ja
Priority to US13/504,362 priority patent/US20120288738A1/en
Priority to EP11831783.3A priority patent/EP2654100A4/en
Publication of WO2012081137A1 publication Critical patent/WO2012081137A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • H01M50/367Internal gas exhaust passages forming part of the battery cover or case; Double cover vent systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery pack in which a plurality of battery modules are stacked.
  • a battery pack in which a plurality of batteries are accommodated in a case so that a predetermined voltage and capacity can be output is widely used as a power source for various devices and vehicles.
  • a technology is adopted that can support a wide variety of applications by connecting general-purpose batteries in parallel and in series, modularizing assembled batteries that output a predetermined voltage and capacity, and combining these battery modules in various ways. I'm starting.
  • This modularization technology improves the workability when assembling the battery pack and improves the performance of the battery stored in the battery module by improving the performance of the battery accommodated in the battery module. It has various merits, such as an improved degree of freedom when mounted in a designated space. It is also expected to be applied as a power storage system linked to a solar power generation system.
  • the safety valve is activated and high temperature gas is released outside the battery, if the surrounding battery is exposed to the high temperature gas, it will return to a normal battery. May affect and cause chain degradation.
  • Patent Document 1 discloses that the gas discharge part of each battery housed in the battery pack is connected to the exhaust duct, and the high-temperature gas released from the battery in an abnormal state is circulated in the exhaust duct. An exhaust mechanism for discharging the battery pack to the outside of the battery pack is described. Thereby, since the exhaust route of gas is regulated by the exhaust duct, the gas whose temperature has decreased can be discharged to the outside while preventing the gas from burning in contact with oxygen.
  • a battery module that outputs a predetermined voltage and capacity can be applied to a wide variety of uses by configuring a battery pack (storage unit) in various combinations.
  • the battery module is provided with an exhaust duct that discharges abnormal gas from the battery to the outside
  • the battery pack is configured by combining a plurality of battery modules
  • the gas discharged from the exhaust duct is still in a high temperature state
  • the surrounding battery modules exposed to the high temperature gas may have a thermal effect.
  • the present invention has been made in view of the above points, and the main object of the present invention is a battery pack in which a plurality of battery modules are stacked, and is adapted to a modularization technique capable of constructing an exhaust path with a simple configuration. It is to provide a highly safe battery pack.
  • the present invention provides a battery pack in which a plurality of battery modules are stacked, the battery pack being fixed to a frame in which a hollow frame body is framed, and a gas provided in the battery module.
  • the exhaust port is connected to the intake port provided on the frame, and the gas discharged from the battery module exhaust port is exhausted to the outside through the hollow part of the frame through the exhaust port provided on the frame.
  • the exhaust path of the gas discharged from the discharge port of the battery module can also be used as a hollow frame for fixing the battery pack, so that the exhaust path can be constructed with a simple structure and modularized.
  • a highly safe battery pack suitable for the technology can be realized.
  • the exhaust path of the gas from the intake port to the exhaust port by adjusting the arrangement position of the intake port and the exhaust port or the combination of the frames constituting the frame Can be lengthened.
  • the battery pack according to the present invention is a battery pack in which a plurality of battery modules are stacked.
  • the battery module is provided on a case in which a plurality of unit cells are accommodated and one side of the case, and is discharged from the unit cells.
  • a discharge port for discharging the gas to the outside of the case The battery pack is fixed to a frame in which a hollow frame is framed, and the discharge port of the battery module is connected to an intake port provided in a part of the frame, and is discharged from the discharge port of the battery module.
  • the discharged gas passes through the hollow portion of the frame and is discharged to the outside from an exhaust port provided in a part of the frame.
  • the frame includes an upper frame body and a lower frame body in the stacking direction of the battery modules, and a vertical frame body that connects the upper frame body and the lower frame body, and the battery pack includes a plurality of frames. It further has an exhaust duct that connects each discharge port of the battery module in the stacking direction, and the discharge port of the exhaust duct is connected to the intake port provided at the lower end of the lower frame or vertical frame. The gas discharged from the discharge port of the battery module passes through the exhaust duct, the lower frame body of the frame and the hollow portion of the vertical frame body, and then passes through the exhaust port provided at the upper end of the upper frame body or the vertical frame body. To be discharged.
  • a highly safe battery pack that can construct an exhaust path with a simple configuration and that is suitable for modularization technology.
  • FIG. 1 It is sectional drawing which showed typically the structure of the battery used for the battery module in one Embodiment of this invention. BRIEF DESCRIPTION OF THE DRAWINGS It is the figure which showed typically the structure of the battery module which comprises the battery pack in one Embodiment of this invention, (a) is sectional drawing, (b) is a perspective view. (A) is the perspective view which showed typically the structure of the battery pack comprised by laminating
  • FIG. 1 is a cross-sectional view schematically showing a configuration of a battery 10 used in a battery module according to an embodiment of the present invention.
  • the battery used in the battery module of the present invention may be a battery that can be used alone as a power source for portable electronic devices such as notebook computers (hereinafter, the battery used in the battery module is referred to as “unit cell”). Called).
  • unit cell the battery used in the battery module
  • Called the battery used in the battery module.
  • a high-performance general-purpose battery can be used as a unit cell of the battery module, it is possible to easily improve the performance and cost of the battery module.
  • a cylindrical lithium ion secondary battery as shown in FIG. 1 can be adopted as the unit cell 10 used in the battery module of the present invention.
  • This lithium ion secondary battery has a normal configuration, and includes a safety mechanism that releases gas to the outside of the battery when the pressure in the battery increases due to an internal short circuit or the like.
  • a specific configuration of the unit cell 10 will be described with reference to FIG.
  • the opening of the battery case 7 is sealed with a sealing plate 8 through a gasket 9.
  • an electrode group 4 configured by winding a positive electrode plate 1 and a negative electrode plate 2 with a separator 3 interposed therebetween is housed together with a non-aqueous electrolyte.
  • the positive electrode plate 1 is connected to a sealing plate 8 that also serves as a positive electrode terminal via a positive electrode lead 5.
  • the negative electrode plate 2 is connected via a negative electrode lead 6 to the bottom of a battery case 7 that also serves as a negative electrode terminal.
  • the sealing plate 8 has an open portion 8a. When an abnormal gas is generated in the unit cell 10, the abnormal gas is discharged from the open portion 8a to the outside of the battery case 7.
  • FIG. 2 is a diagram schematically showing the configuration of the battery module 100 constituting the battery pack according to the embodiment of the present invention, where (a) is a cross-sectional view and (b) is a perspective view.
  • a plurality of unit cells 10 are arranged and accommodated in a case 30.
  • Each unit cell 10 is accommodated in an accommodating portion formed in the holder 20.
  • the holder 20 is made of a material having thermal conductivity, and the unit cell 10 is accommodated in the accommodating portion 21 with its outer peripheral surface abutting against the inner peripheral surface of the accommodating portion 21. preferable.
  • produced in the unit cell 10 can be rapidly radiated
  • a flat plate 31 is disposed on the positive electrode terminal 8 side of the plurality of unit cells 10, whereby an exhaust chamber 32 is defined between the case 30 and the flat plate 31.
  • the flat plate 31 is provided with a through-hole 31a into which the positive electrode terminal 8 of each unit cell 10 is inserted, and abnormal gas discharged from the open portion 8a of the unit cell 10 is passed through the exhaust chamber 32 in FIG.
  • the liquid is discharged out of the case 30 through a discharge port 33 provided on one side surface of the case 30.
  • Such an exhaust mechanism is not limited to the structure shown in FIG. 2A, and may be a battery module without the exhaust chamber 32.
  • FIG. 3A is a perspective view schematically showing a configuration of a battery pack 200 formed by stacking a plurality of battery modules 100
  • FIG. 3B is an arrow A in FIG. It is sectional drawing to which the part shown was expanded.
  • the battery pack 200 in the present embodiment is fixed to a frame 40 in which a hollow frame body is framed in a rectangular parallelepiped shape.
  • the method for fixing the battery pack 200 is not particularly limited.
  • a fixing tab may be provided on the case 30 of the battery module 100 and the tab may be fixed to a connecting portion provided on the frame 40 with a bolt or the like.
  • the discharge port 33 of each battery module 100 is connected to an intake port provided in a part of the frame 40.
  • the discharge port 33 of the lowermost battery module 100 is a portion of the frame 40 indicated by an arrow A in FIG. 3A, and an intake port 61 provided in the frame 40 as shown in FIG. It is connected to.
  • the connection method between the discharge port 33 and the intake port 61 is not particularly limited.
  • a gap formed between the case 30 of the battery module 100 and the frame 40 It is also possible to seal with an annular elastic member (for example, sponge or rubber), and connect the discharge port 33 and the intake port 61 via this sealed space.
  • an annular elastic member for example, sponge or rubber
  • an exhaust port 60 is provided in a part of the frame 40, so that the gas discharged from the discharge port 33 of the battery module 100 is hollow in the frame 40. The air is exhausted from the exhaust port 60 through the section.
  • the exhaust path of the gas discharged from the discharge port 33 of the battery module 100 can also be used as the hollow frame 40 that fixes the battery pack 200, so that the exhaust path can be constructed with a simple configuration.
  • the highly safe battery pack 200 suitable for the modularization technique can be realized.
  • the arrangement positions of the intake port 61 and the exhaust port 60 of the frame 40 are not particularly limited.
  • the intake port 61 and the exhaust port 60 are a rectangular parallelepiped frame. It is preferable to arrange them in the vicinity of the corners that are located diagonally to each other. Thereby, since the exhaust path of the gas from the intake port 61 to the exhaust port 60 can be lengthened, even if the gas discharged from the discharge port 33 of the battery module 100 is in a high temperature state, the gas comes into contact with oxygen. Thus, it is possible to discharge the gas whose temperature has decreased from the exhaust port 60 to the outside while preventing it from burning.
  • the configuration of the frame 40 in the present invention is not particularly limited, but for example, the cross section is preferably rectangular. This facilitates the connection between the discharge port 33 of the battery module 100 and the intake port 61 of the frame 40.
  • the material of the frame 40 is preferably a material having high thermal conductivity, particularly metal. Thereby, the heat of the gas flowing through the hollow portion of the frame 40 can be transmitted to the frame 40 and efficiently radiated to the outside.
  • the cross-sectional area of the frame 40 is set to a size that does not cause a gas pressure loss.
  • the cross-sectional area of the frame 40 is preferably 400 mm 2 or more from an exhaust test using a cylindrical exhaust duct.
  • the cross-sectional area of the frame 30 is increased, when the gas flowing through the exhaust duct is a laminar flow, the ratio of the gas that contacts the wall surface of the exhaust duct is relatively reduced, so the efficiency of heat exchange in the frame 40 is reduced.
  • the arrangement of the intake port 61 and the exhaust port 60 of the frame 40 is adjusted so that the flow of exhaust gas collides with the wall of the frame 40 to change the gas flow to turbulent flow, A decrease in heat exchange efficiency can be suppressed.
  • FIG. 4 is a cross-sectional view schematically showing a configuration of a battery pack 210 according to another embodiment of the present invention.
  • the frame 40 in the present embodiment includes an upper frame body 40a and a lower frame body 40b in the stacking direction of the battery modules 100, and a vertical frame body 40c that connects the upper frame body 40a and the lower frame body 40b. have.
  • the battery pack 210 has the exhaust duct 70 which connected each discharge port 33 of the some battery module 100 to the lamination direction, respectively.
  • the exhaust port 71 of the exhaust duct 70 is connected to an intake port 61 provided at the lower end of the vertical frame body 40 c of the frame 40.
  • the gas discharged from the discharge port 33 of the battery module 100 passes through the exhaust duct 70 and the hollow portion of the vertical frame body 40c of the frame 40 and from the exhaust port 60 provided at the upper end of the vertical frame body 40c. It is discharged outside.
  • the gas discharged from the discharge port 33 of the battery module 100 is led to the intake port 61 provided at the lower end portion of the vertical frame body 40c through the exhaust duct 70, and further from there to the vertical frame It can be made to exhaust from the exhaust port 60 provided in the upper end part of the vertical frame 40c through the hollow part of the body 40c.
  • the exhaust path of the gas from the discharge port 33 of the battery module 100 to the exhaust port 60 can be lengthened, the gas is discharged even if the gas discharged from the discharge port 33 of the battery module 100 is in a high temperature state. While preventing contact with oxygen and burning, the gas whose temperature has decreased due to heat exchange with the frame 40 can be discharged from the exhaust port 60 to the outside.
  • inlet 61 was provided in the lower end part of the vertical frame 40c of the flame
  • exhaust port 60 is provided in the upper end part of the vertical frame 40c of the flame
  • the configuration of the exhaust duct 70 is not particularly limited.
  • the exhaust duct 70 has an opening (not shown) corresponding to each discharge port 33 of the battery module 100, and the discharge port 33 and the opening are connected by a connection method as shown in FIG. You may connect.
  • the case side surfaces facing each other in the stacking direction of the battery modules 100 in FIG. 2A, the direction perpendicular to the paper surface).
  • each battery module 100 is connected to the intake port of the battery module 100 located at the lower stage thereof, for example, a hollow connecting member
  • the exhaust duct 70 can also be configured by connecting together.
  • the discharge port 33 of the battery module 100 located at the lowermost stage is connected to the intake port 61 provided in the lower end portion (or the lower frame body 40b) of the vertical frame body 40c of the frame 40.
  • the intake port of the battery module 100 located at the uppermost stage may be sealed with a sealing member or the like so that the exhaust gas does not escape from there.
  • FIG. 5 is a perspective view schematically showing a configuration of a frame 40 for fixing a battery pack according to another embodiment of the present invention.
  • the frame 40 in the present embodiment connects the upper frame body 40a and the lower frame body 40b and the upper frame body 40a and the lower frame body 40b in the stacking direction of the battery module 100 (not shown).
  • the number of intermediate frames 40d 1 , 40d 2 , and 40d 3 corresponding to the number of stacked battery modules 100 (4 in FIG. 5) (3 in FIG. 5) is further included. ing.
  • the discharge ports 33 (not shown) of the battery modules 100 are intake ports 61a, 61b, 61c, 61d provided in the intermediate frame bodies 40d 1 , 40d 2 , 40d 3 and the lower frame body 40b corresponding to the battery modules 100, respectively. Respectively. As a result, the gas discharged from the discharge port 33 of the battery module 100 passes through the hollow portions of the intermediate frame bodies 40d 1 , 40d 2 , 40d 3 and the vertical frame body 40c of the frame 40, and the upper frame body of the frame 40. It is discharged to the outside through an exhaust port 60 provided in 40a.
  • the discharge port 33 of each battery module 100 can be connected to the intake ports 61a, 61b, and 61c provided in the intermediate frame bodies 40d 1 , 40d 2 , and 40d 3 corresponding to each battery module 100, respectively.
  • the degree of freedom of arrangement of the discharge port 33 provided in the case 30 of the battery module 100 can be increased.
  • a plurality of partitions 62 may be provided to block the flow.
  • the partition 62 allows the gas discharged from the discharge port 33 of the battery module 100 to pass through the hollow portions of the intermediate frame bodies 40d 1 , 40d 2 , 40d 3 or the lower frame body 40b of the frame 40 positioned below in the stacking direction. Via, it arrange
  • the gas discharged to the intake port 61a connected to the discharge port 33 of the uppermost battery module 100 is separated from the upper frame body 40a.
  • the path flowing through the exhaust port 60 is blocked through the hollow portions of the frame bodies 40d 1 and 40d 2 . Therefore, gas discharge into the intake port 61a along the path indicated by the arrow in FIG. 5, by way of the intermediate frame 40d 3 located in the lower part, from an exhaust port 60 provided in the upper frame 40a It will be discharged to the outside.
  • the gas discharged from the discharge port 33 of the battery module 100 is in a high temperature state.
  • the gas having a lowered temperature can be discharged from the exhaust port 60 to the outside while preventing the gas from burning in contact with oxygen.
  • the position at which the “partition” is provided is not particularly limited, and the gas discharged from the discharge port 33 of the battery module 100 is provided in a part of the frame 40 through the hollow portion of the frame body. Further, it can be determined as appropriate according to the configuration of the frame 40 at a position where the path discharged outside from the exhaust port 60 becomes long.
  • FIG. 6 is a perspective view schematically showing a configuration of a battery pack 220 according to another embodiment of the present invention.
  • the battery pack 220 is fixed to a casing 80 in which flat plates having a hollow structure are connected in a rectangular parallelepiped shape. It differs from the structure fixed to the frame 40 of the hollow structure.
  • the housing 80 includes an upper flat plate 80a and a lower flat plate 80b in the stacking direction of the battery modules 100, and a vertical flat plate 80c that connects the upper flat plate 80a and the lower flat plate 80b.
  • a plurality of battery modules 100A to 100D are stacked to form a battery pack 220.
  • a discharge port 33 (not shown) of each of the battery modules 100A to 100D is formed in a part of the housing 80.
  • the intake ports 61A to 61D provided are respectively connected. Then, the gas discharged from the discharge ports of the battery modules 100A to 100D passes through the hollow portion of the casing 80 and is discharged to the outside from the exhaust port 60 provided in a part of the casing 80.
  • the exhaust path of the gas discharged from the discharge port 33 of each of the battery modules 100A to 100D is also used as the hollow structure casing 80 that fixes the battery pack 220, so that the exhaust path can be simplified.
  • the exhaust path can be simplified.
  • the discharge ports 33 of the battery modules 100A to 100D are connected to the intake ports 61A to 61D provided in a part of the housing 80, respectively.
  • An exhaust duct in which the exhaust ports 33 of the modules 100A to 100D are connected in the stacking direction may be provided, and the exhaust port of the exhaust duct may be connected to an intake port 61D provided at the lower end portion of the vertical flat plate 80c.
  • the gas discharged from the discharge ports 33 of the battery modules 100A to 100D is led to the intake port 61D provided at the lower end of the vertical plate 80c through the exhaust duct 70, and from there. Furthermore, it can discharge
  • the gas exhaust path from the discharge port 33 of the battery modules 100A to 100D to the exhaust port 60 can be lengthened, so that the gas discharged from the discharge ports 33 of the battery modules 100A to 100D is in a high temperature state.
  • the gas whose temperature has decreased can be discharged from the exhaust port 60 to the outside while preventing the gas from coming into contact with oxygen and burning.
  • inlet 61D was provided in the lower end part of the vertical flat plate 80c of the housing
  • exhaust port 60 is provided in the upper end part of the vertical flat plate 80c of the housing
  • FIG. 7 is a longitudinal sectional view showing the structure of the flat plates 80a, 80b, 80c constituting the casing 80 for fixing the battery pack 220 in the present embodiment.
  • the inside of the flat plates 80a, 80b, and 80c is partitioned into a shielding part 81 that regulates the flow of gas and a hollow part 82 that circulates the gas.
  • the shielding part 81 partitions the hollow part 82 so that the gas flow in the hollow part 82 meanders.
  • FIG. 8 is a cross-sectional view illustrating a method of connecting the discharge port 33 of the battery module 100 and the intake port 61 provided in the frame 40 according to another embodiment of the present invention.
  • the discharge port 33 of the battery module 100 and the intake port 61 provided in the frame 40 are connected by a connecting member 90.
  • the connecting member 90 is provided with an annular elastic member 91 in a flange portion formed in a hollow cylindrical portion, and the cylindrical portion of the connecting member 90 is connected to the discharge port 33 of the battery module 100 and the intake air of the frame 40.
  • the discharge port 33 and the intake port 61 can be connected.
  • the frame 40 and the casing 80 are rectangular parallelepipeds, but any form may be used as long as the battery pack is fixed.
  • the intermediate frame bodies 40d 1 , 40d 2 , and 40d 3 are provided corresponding to the battery modules 100, the number of intermediate frame bodies is not particularly limited.
  • the frame 40 may be configured by connecting a flat plate having a hollow structure to another frame body instead of at least one set of frame bodies framed in a planar shape.
  • the unit cell 10 is a lithium ion secondary battery, other secondary batteries (for example, nickel metal hydride batteries) may be used.
  • the present invention is useful for a driving power source such as an automobile, an electric motorcycle or an electric play equipment, or a power storage unit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

 電池モジュール100が積層された電池パック200であって、電池モジュール100は、複数の素電池10が収容されたケース30と、ケース30に設けられ、素電池10から排出されるガスをケース30外に排出する排出口33とを有している。電池パック200は、中空構造の枠体が直方体状に枠組みされたフレーム40に固定され、電池モジュール100の排出口33は、フレーム40に設けられた吸気口61に連結されている。電池モジュール100の排出口33から排出されたガスは、フレーム40の中空部を通って、フレーム40に設けられた排気口60から外部に排出される。

Description

電池パック
 本発明は、複数の電池モジュールが積層された電池パックに関する。
 複数の電池をケースに収容して、所定の電圧及び容量を出力できるようにした電池パックは、種々の機器、車両等の電源として広く使用されている。中でも、汎用的な電池を並列・直列接続して、所定の電圧及び容量を出力する組電池をモジュール化し、この電池モジュールを種々組み合わせることによって、多種多様な用途に対応可能とする技術が採用され始めている。このモジュール化技術は、電池モジュールに収容する電池を高性能化することによって、電池モジュール自身の小型・軽量化が図られるため、電池パックを組み立てる際の作業性が向上するとともに、車両等の限られた空間へ搭載する際の自由度が向上するなど、様々なメリットを有する。また、太陽光発電システムと連動した蓄電システムとしての応用も期待されている。
 一方、電池モジュールに収容する電池の高性能化に伴い、電池自身の安全性確保に加え、複数の電池が集合した電池モジュールにおける安全性確保も重要になってくる。特に、電池内での内部短絡等による発熱でガスが発生し、安全弁が作動して高温ガスが電池外に放出された場合、周辺の電池が高温ガスに曝されると、正常な電池にまで影響を与え、連鎖的な劣化を引き起こすおそれがある。
 このような問題に対して、特許文献1には、電池パックに収容された各電池のガス放出部を排気ダクトに接続して、異常時に電池から放出された高温ガスを、排気ダクト内を流通させて、電池パックの外部に排出させる排気機構が記載されている。これにより、排気ダクトによってガスの排気経路が規制されるため、ガスが酸素と接触して燃焼するのを防止ししつつ、温度の低下したガスを外部に排出させることができる。
特開2008-117765号公報
 所定の電圧及び容量を出力する電池モジュールは、種々組み合わせて電池パック(蓄電ユニット)を構成することによって、多種多様な用途に適用することができる。
 一方、電池モジュールに、電池からの異常ガスを外部に排出する排気ダクトを設けた場合、複数の電池モジュールを組み合わせて電池パックを構成したとき、排気ダクトから排出されたガスがまだ高温状態であると、高温ガスに曝された周辺の電池モジュールに熱的影響を与える畏れがある。
 また、電池パックに、各電池モジュールの排気ダクトを連結した新たな排気経路を設けた場合、電池モジュールの組み合わせに応じて、多様な排出経路を構築する必要があり、組み立て工程が煩雑になって、モジュール化技術に適合しにくくなる。
 本発明は、かかる点に鑑みなされたもので、その主な目的は、複数の電池モジュールが積層された電池パックにおいて、簡単な構成で排気経路を構築することのできる、モジュール化技術に適合した、安全性の高い電池パックを提供することにある。
 上記の課題を解決するために、本発明は、複数の電池モジュールが積層された電池パックにおいて、電池パックを、中空構造の枠体が枠組みされたフレームに固定し、電池モジュールに設けられたガス排出口を、フレームに設けられた吸気口に連結し、電池モジュールの排出口から排出されたガスを、フレームの中空部を通って、フレームに設けられた排気口から外部に排出させる構成を採用する。
 このような構成により、電池モジュールの排出口から排出されるガスの排気経路を、電池パックを固定する中空構造のフレームと兼用することによって、簡単な構成で排気経路を構築でき、かつ、モジュール化技術に適合した、安全性の高い電池パックを実現することができる。
 ここで、フレームにより構築された排気経路において、吸気口及び排気口の配設位置、あるいは、フレームを構成する枠体の組み合わせ等を調整することによって、吸気口から排気口に至るガスの排気経路を長くすることができる。これにより、電池モジュールの排出口から排出されるガスが高温状態であっても、ガスが酸素と接触して燃焼するのを防止ししつつ、温度の低下したガスを排気口から外部に排出させることができる。
 本発明に係る電池パックは、複数の電池モジュールが積層された電池パックであって、電池モジュールは、複数の素電池が収容されたケースと、ケースの一側面に設けられ、素電池から排出されるガスを前記ケース外に排出する排出口とを有し、
 電池パックは、中空構造の枠体が枠組みされたフレームに固定されており、電池モジュールの排出口は、フレームの一部に設けられた吸気口に連結されており、電池モジュールの排出口から排出されたガスは、フレームの中空部を通って、フレームの一部に設けられた排気口から外部に排出されることを特徴とする。
 ある好適な実施形態において、上記フレームは、電池モジュールの積層方向における上枠体と下枠体、及び上枠体と下枠体とを連結する縦枠体を有し、電池パックは、複数の電池モジュールの各排出口をそれぞれ積層方向に連結した排気ダクトをさらに有し、排気ダクトの排出口は、フレームの下枠体または縦枠体の下端部に設けられた吸気口に連結されており、電池モジュールの排出口から排出されたガスは、排気ダクト、フレームの下枠体及び縦枠体の中空部を通って、上枠体または縦枠体の上端部に設けられた排気口から外部に排出される。
 本発明によれば、複数の電池モジュールが積層された電池パックにおいて、簡単な構成で排気経路を構築することのできる、モジュール化技術に適合した、安全性の高い電池パックを提供することができる。
本発明の一実施形態における電池モジュールに使用する電池の構成を模式的に示した断面図である。 本発明の一実施形態における電池パックを構成する電池モジュールの構成を模式的に示した図で、(a)は断面図、(b)は斜視図である。 (a)は、本発明の一実施形態における電池モジュールが積層して構成された電池パックの構成を模式的に示した斜視図で、(b)は、(a)の矢印Aで示した部分を拡大した断面図である。 本発明の他の実施形態における電池パックの構成を模式的に示した断面図である。 本発明の他の実施形態における電池パックを固定するフレームの構成を模式的に示した斜視図である。 本発明の他の実施形態における電池パックの構成を模式的に示した斜視図である。 本発明の他の実施形態における電池パックを固定する筐体を構成する平板の構造を模式的に示した縦断面図である。 本発明の他の実施形態における電池モジュールの排出口とフレームの吸気口との連結方法を示した断面図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではない。また、本発明の効果を奏する範囲を逸脱しない範囲で、適宜変更は可能である。さらに、他の実施形態との組み合わせも可能である。
 図1は、本発明の一実施形態における電池モジュールに使用する電池10の構成を模式的に示した断面図である。なお、本発明の電池モジュールに使用する電池は、ノート型パソコン等の携帯用電子機器の電源として単体でも使用できる電池であってもよい(以下、電池モジュールに使用する電池を、「素電池」と呼ぶ)。この場合、高性能の汎用電池を、電池モジュールの素電池として使用することができるため、電池モジュールの高性能化、低コスト化をより容易に図ることができる。
 本発明の電池モジュールに使用する素電池10は、例えば、図1に示すような、円筒形のリチウムイオン二次電池を採用することができる。このリチウムイオン二次電池は、通常の構成をなすもので、内部短絡等の発生により電池内の圧力が上昇したとき、ガスを電池外に放出する安全機構を備えている。以下、図1を参照しながら、素電池10の具体的な構成を説明する。
 図1に示すように、素電池10は、電池ケース7の開口部がガスケット9を介して封口板8で封止されている。電池ケース7内には、正極板1と負極板2とがセパレータ3を介して捲回されて構成された電極群4が、非水電解質と共に収容されている。正極板1は、正極リード5を介して正極端子を兼ねる封口板8に接続されている。また、負極板2は、負極リード6を介して、負極端子を兼ねる電池ケース7の底部に接続されている。なお、封口板8には、開放部8aが形成されおり、素電池10に異常ガスが発生したとき、異常ガスが、開放部8aから電池ケース7外へ排出される。
 図2は、本発明の一実施形態における電池パックを構成する電池モジュール100の構成を模式的に示した図で、(a)は断面図、(b)は斜視図である。
 図2(a)に示すように、本実施形態における電池モジュール100は、複数の素電池10が配列されてケース30に収容されている。各素電池10は、ホルダ20に形成された収容部に収容されている。ここで、ホルダ20は、熱伝導性を有する材料で構成されており、素電池10は、その外周面が収容部21の内周面に当接して収容部21内に収容されていることが好ましい。これにより、素電池10で発生した熱を、ホルダ20側に速やかに放熱させることができるため、素電池10の温度上昇を効果的に抑制することができる。
 複数の素電池10の正極端子8側には、平板31が配設されており、これにより、ケース30と平板31との間に排気室32が区画されている。平板31には、各素電池10の正極端子8が挿入される貫通孔31aが設けられており、素電池10の開放部8aから排出された異常ガスは、排気室32を介して、図2(b)に示すように、ケース30の一側面に設けられた排出口33から、ケース30の外に排出される。なお、このような排気機構は、図2(a)に示した構造に限定されず、また、排気室32のない電池モジュールであってもよい。
 図3(a)は、複数の電池モジュール100が積層して構成された電池パック200の構成を模式的に示した斜視図で、図3(b)は、図3(a)の矢印Aで示した部分を拡大した断面図である。
 本実施形態における電池パック200は、中空構造の枠体が直方体状に枠組みされたフレーム40に固定されている。なお、電池パック200の固定方法は特に制限されないが、例えば、電池モジュール100のケース30に固定用のタブを設け、これをフレーム40に設けた連結部とボルト等で固定してもよい。
 ここで、各電池モジュール100の排出口33は、フレーム40の一部に設けられた吸気口に連結されている。例えば、最下段の電池モジュール100の排出口33は、図3(a)の矢印Aで示したフレーム40の箇所で、図3(b)に示すように、フレーム40に設けられた吸気口61に連結されている。なお、排出口33と吸気口61との連結方法は特に制限されないが、例えば、図3(b)に示すように、電池モジュール100のケース30と、フレーム40との間に出来た隙間を、環状の弾性部材(例えば、スポンジやゴム等)で密閉し、この密閉空間を介して、排出口33と吸気口61とを連結してもよい。
 また、図3(a)に示すように、フレーム40の一部には、排気口60が設けられており、これにより、電池モジュール100の排出口33から排出されたガスは、フレーム40の中空部を通って、排気口60から外部に排出される。
 このような構成により、電池モジュール100の排出口33から排出されるガスの排気経路を、電池パック200を固定する中空構造のフレーム40と兼用することによって、簡単な構成で排気経路を構築でき、これにより、モジュール化技術に適合した安全性の高い電池パック200を実現することができる。
 ここで、フレーム40の吸気口61及び排気口60の配設位置は特に制限されないが、例えば、図3(a)に示すように、吸気口61と排気口60とは、直方体状のフレームにおいて、互いに対角線上に位置する角近傍に配置することが好ましい。これにより、吸気口61から排気口60に至るガスの排気経路を長くすることができるため、電池モジュール100の排出口33から排出されるガスが高温状態であっても、ガスが酸素と接触して燃焼するのを防止ししつつ、温度の低下したガスを排気口60から外部に排出させることができる。
 また、本発明におけるフレーム40の構成は特に制限されないが、例えば、横断面が矩形であることが好ましい。これにより、電池モジュール100の排出口33と、フレーム40の吸気口61との連結が容易になる。また、フレーム40の材料は、熱伝導性の高い材料、特に金属が好ましい。これにより、フレーム40の中空部を流れるガスの熱を、フレーム40に伝えて、外部に効率よく放熱させることができる。また、フレーム40の排気経路において、排気ガスの圧力損失が生じると、ガスが逆流する畏れがある。そのため、フレーム40の断面積を、ガスの圧力損失の生じない程度の大きさにすることが好ましい。例えば、リチウムイオン電池に場合、筒状の排気ダクトを用いた排気試験から、フレーム40の断面積は、400mm以上であることが好ましい。なお、フレーム30の断面積を大きくすると、排気ダクトを流れるガスが層流である場合、排気ダクトの壁面に接触するガスの割合が相対的に減少するため、フレーム40における熱交換の効率が低下する。しかしながら、フレーム40の吸気口61及び排気口60の配設位置を、排気ガスの流れがフレーム40の壁と衝突するように調整することによって、ガスの流れを乱流に変えれば、フレーム40における熱交換効率の低下を抑制することができる。
 図4は、本発明の他の実施形態における電池パック210の構成を模式的に示した断面図である。
 図4に示すように、本実施形態におけるフレーム40は、電池モジュール100の積層方向における上枠体40aと下枠体40b、及び上枠体40aと下枠体40bとを連結する縦枠体40cを有している。そして、電池パック210は、複数の電池モジュール100の各排出口33をそれぞれ積層方向に連結した排気ダクト70を有している。そして、排気ダクト70の排出口71は、フレーム40の縦枠体40cの下端部に設けられた吸気口61に連結されている。これにより、電池モジュール100の排出口33から排出されたガスは、排気ダクト70、フレーム40の縦枠体40cの中空部を通って、縦枠体40cの上端部に設けられた排気口60から外部に排出される。
 このような構成により、電池モジュール100の排出口33から排出されるガスを、排気ダクト70を介して、縦枠体40cの下端部に設けられた吸気口61まで導出させ、そこからさらに縦枠体40cの中空部を介して、縦枠体40cの上端部に設けられた排気口60から排出させることができる。これにより、電池モジュール100の排出口33から排気口60に至るガスの排気経路を長くすることができるため、電池モジュール100の排出口33から排出されるガスが高温状態であっても、ガスが酸素と接触して燃焼するのを防止ししつつ、フレーム40との熱交換によって温度の低下したガスを排気口60から外部に排出させることができる。
 なお、図4では、吸気口61をフレーム40の縦枠体40cの下端部に設けたが、下枠体40bに設けてもよい。また、排気口60をフレーム40の縦枠体40cの上端部に設けたが、上枠体40aに設けてもよい。
 また、本実施形態において、排気ダクト70の構成は特に限定されない。例えば、排気ダクト70は、電池モジュール100の各排出口33に対応した開口部(不図示)を有し、排出口33と開口部とを、図3(b)に示したような連結方法で連結させてもよい。また、例えば、図2(a)に示したような構成の電池モジュール100の場合には、電池モジュール100の積層方向において互いに対向するケース側面(図2(a)では、紙面に垂直な方向)に、排気室32と連通する排出口33及び吸気口(不図示)を設け、各電池モジュール100の排出口33を、その下段に位置する電池モジュール100の吸気口と、例えば、中空の連結部材で連結することによっても、排気ダクト70を構成することができる。この場合、最下段に位置する電池モジュール100の排出口33が、フレーム40の縦枠体40cの下端部(または下枠体40b)に設けられた吸気口61に連結される。また、最上段に位置する電池モジュール100の吸気口は、排気ガスがそこから外部に逃げないよう、密閉部材等で密閉しておけばよい。
 図5は、 本発明の他の実施形態における電池パックを固定するフレーム40の構成を模式的に示した斜視図である。
 図5に示すように、本実施形態におけるフレーム40は、電池モジュール100(不図示)の積層方向における上枠体40aと下枠体40b、及び上枠体40aと下枠体40bとを連結する縦枠体40cに加えて、電池モジュール100の積層数(図5では、4個)に対応した個数(図5では、3個)の中間枠体40d、40d、40dをさらに有している。
 電池モジュール100の排出口33(不図示)は、各電池モジュール100に対応した中間枠体40d、40d、40d、及び下枠体40bに設けられた吸気口61a、61b、61c、61dにそれぞれ連結されている。これにより、電池モジュール100の排出口33から排出されたガスは、フレーム40の中間枠体40d、40d、40d、及び縦枠体40cの中空部を通って、フレーム40の上枠体40aに設けられた排気口60から外部に排出される。
 このような構成により、各電池モジュール100の排出口33は、電池モジュール100毎に対応した中間枠体40d、40d、40dに設けられた吸気口61a、61b、61cにそれぞれ連結できるため、電池モジュール100のケース30に設ける排出口33の配置自由度を高めることができる。
 ここで、図5に示すように、フレーム40の中間枠体40d、40d、40dに及び縦枠体40cの中空部の一部に、電池モジュール100の排出口33から排出されたガスの流れを遮断する仕切り62を複数個設けておいてもよい。
 ここで、仕切り62は、電池モジュール100の排出口33から排出されたガスを、積層方向下方に位置するフレーム40の中間枠体40d、40d、40dまたは下枠体40bの中空部を経由して、フレーム40の上枠体40aに設けられた排気口60から外部に排出するように配置される。
 例えば、図5に示すような位置に、仕切り62A~62Eを配置した場合、最上段の電池モジュール100の排出口33に連結された吸気口61aに排出されたガスは、上枠体40a、中間枠体40d、40dの中空部を経由して、排気口60に流れる経路が遮断されている。そのため、吸気口61aに排出されたガスは、図5の矢印に示した経路に沿って、下段に位置する中間枠体40dを経由して、上枠体40aに設けられた排気口60から外部に排出されることになる。これにより、最上段の電池モジュール100の排出口33から排気口60に至るガスの排気経路を長くすることができるため、電池モジュール100の排出口33から排出されるガスが高温状態であっても、ガスが酸素と接触して燃焼するのを防止ししつつ、温度の低下したガスを排気口60から外部に排出させることができる。
 なお、本発明において、「仕切り」を設ける位置は特に限定されず、電池モジュール100の排出口33から排出されたガスが、枠体の中空部を経由して、フレーム40の一部に設けられた排気口60から外部に排出される経路が長くなるような位置に、フレーム40の構成に応じて、適宜決めることができる。
 図6は、本発明の他の実施形態における電池パック220の構成を模式的に示した斜視図である。
 図6に示すように、本実施形態における電池パック220は、中空構造の平板が直方体状に連結された筐体80に固定されている点が、図3に示したような、電池パック200が中空構造のフレーム40に固定された構成と異なる。ここで、筐体80は、電池モジュール100の積層方向における上平板80aと下平板80b、及び上平板80aと下平板80bとを連結する縦平板80cを有している。
 図6に示すように、複数の電池モジュール100A~100Dが積層されて電池パック220が構成されており、各電池モジュール100A~100Dの排出口33(不図示)は、筐体80の一部に設けられた吸気口61A~61Dにそれぞれ連結されている。そして、各電池モジュール100A~100Dの排出口から排出されたガスは、筐体80の中空部を通って、筐体80の一部に設けられた排気口60から外部に排出される。
 このような構成により、各電池モジュール100A~100Dの排出口33から排出されるガスの排気経路を、電池パック220を固定する中空構造の筐体80と兼用することによって、簡単な構成で排気経路を構築でき、これにより、モジュール化技術に適合した安全性の高い電池パック220を実現することができる。
 なお、図6では、各電池モジュール100A~100Dの排出口33を、筐体80の一部に設けられた吸気口61A~61Dにそれぞれ連結させたが、図4に示したように、各電池モジュール100A~100Dの排出口33をそれぞれ積層方向に連結した排気ダクトを設け、この排気ダクトの排出口を、縦平板80cの下端部に設けられた吸気口61Dに連結させてもよい。
 このような構成にすれば、電池モジュール100A~100Dの排出口33から排出されるガスを、排気ダクト70を介して、縦平板80cの下端部に設けられた吸気口61Dまで導出させ、そこからさらに縦平板80cの中空部を介して、縦平板80cの上端部に設けられた排気口60から排出させることができる。これにより、電池モジュール100A~100Dの排出口33から排気口60に至るガスの排気経路を長くすることができるため、電池モジュール100A~100Dの排出口33から排出されるガスが高温状態であっても、ガスが酸素と接触して燃焼するのを防止ししつつ、温度の低下したガスを排気口60から外部に排出させることができる。
 なお、図6では、吸気口61Dを筐体80の縦平板80cの下端部に設けたが、下平板80bに設けてもよい。また、排気口60を筐体80の縦平板80cの上端部に設けたが、上平板80aに設けてもよい。
 図7は、本実施形態における電池パック220を固定する筐体80を構成する平板80a、80b、80cの構造を示した縦断面図である。
 図7に示すように、平板80a、80b、80cの内部は、ガスの流れを規制する遮蔽部81と、ガスを流通させる中空部82とに区画されている。ここで、遮蔽部81は、中空部82内でのガスの流れが蛇行するように、中空部82を区画している。これにより、平板80a、80b、80cの中空部82を流れるガスの経路を長くすることができるため、電池モジュール100A~100Dの排出口33から排出されるガスが高温状態であっても、ガスが酸素と接触して燃焼するのを防止ししつつ、温度の低下したガスを排気口60から外部に排出させることができる。
 図8は、本発明の他の実施形態における電池モジュール100の排出口33と、フレーム40に設けられた吸気口61との連結方法を示した断面図である。
 図8に示すように、電池モジュール100の排出口33と、フレーム40に設けられた吸気口61とは、連結部材90によって連結される。ここで、連結部材90は、中空の円筒部に形成されたフランジ部に、環状の弾性部材91が設け、この連結部材90の円筒部を、電池モジュール100の排出口33及び、フレーム40の吸気口61に嵌入することによって、排出口33と吸気口61とを連結することができる。
 以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、もちろん、種々の改変が可能である。例えば、上記実施形態においては、フレーム40及び筐体80は直方体状としたが、電池パックを固定するものであれば、どのような形態であってもよい。また、中間枠体40d、40d、40dは、各電池モジュール100に対応して設けたが、中間枠体の数は特に限定されない。また、フレーム40は、平面状に枠組みされた少なくとも一組の枠体に代えて、中空構造の平板が、他の枠体に連結されて構成されていてもよい。また、素電池10をリチウムイオン二次電池としたが、これ以外の二次電池(例えばニッケル水素電池)であってもよい。
 本発明は、自動車、電動バイクまたは電動遊具等の駆動用電源、あるいは蓄電ユニット等に有用である。
 1   正極板 
 2   負極板 
 3   セパレータ 
 4   電極群 
 5   正極リード 
 6   負極リード 
 7   電池ケース 
 8   正極端子(封口板)
 8a  開放部 
 9   ガスケット 
 10  素電池 
 20  ホルダ 
 21  収容部 
 30  ケース 
 31  平板 
 31a 貫通孔 
 32  排気室 
 33  排出口 
 40  フレーム 
 40a 上枠体 
 40b 下枠体 
 40c 縦枠体 
 40d 中間枠体 
 60  排気口 
 61  吸気口 
 70  排気ダクト 
 71  排出口 
 80  筐体 
 80a 上平板 
 80b 下平板 
 80c 縦平板 
 81  遮蔽部 
 82  中空部 
 100  電池モジュール 
 200、210、220  電池パック 

Claims (11)

  1.  複数の電池モジュールが積層された電池パックであって、
     前記電池モジュールは、
      複数の素電池が収容されたケースと、
      前記ケースの一側面に設けられ、前記素電池から排出されるガスを前記ケース外に排出する排出口と
     を有し、
     前記電池パックは、中空構造の枠体が枠組みされたフレームに固定されており、
     前記電池モジュールの前記排出口は、前記フレームの一部に設けられた吸気口に連結されており、
     前記電池モジュールの前記排出口から排出されたガスは、前記フレームの中空部を通って、該フレームの一部に設けられた排気口から外部に排出される、電池パック。
  2.  前記枠体の中空部の一部には、前記電池モジュールの前記排出口から排出されたガスの流れを遮断する仕切りが設けられており、
     前記仕切りは、前記電池モジュールの前記排出口から排出されたガスが、前記枠体の中空部を経由して、前記フレームの一部に設けられた排気口から外部に排出される経路が長くなるような位置に配置されている、請求項1に記載の電池パック。
  3.  前記フレームは、前記電池モジュールの積層方向における上枠体と下枠体、及び該上枠体と下枠体とを連結する縦枠体を有し、
     前記電池パックは、前記複数の電池モジュールの各排出口をそれぞれ積層方向に連結した排気ダクトをさらに有し、
     前記排気ダクトの排出口は、前記フレームの下枠体または縦枠体の下端部に設けられた吸気口に連結されており、
     前記電池モジュールの前記排出口から排出されたガスは、前記排気ダクト、前記フレームの下枠体または縦枠体の中空部を通って、前記フレームの上枠体または縦枠体の上端部に設けられた排気口から外部に排出される、請求項1に記載の電池パック。
  4.  前記フレームは、前記電池モジュールの積層方向における上枠体、下枠体、及び中間枠体、並びに前記上枠体、下枠体、及び中間枠体とを連結する縦枠体を有し、
     前記電池モジュールの前記排出口は、各電池モジュールに対応した前記中間枠体に設けられた吸気口にそれぞれ連結されており、
     前記電池モジュールの前記排出口から排出されたガスは、前記フレームの中間枠体及び縦枠体の中空部を通って、前記フレームの上枠体に設けられた排気口から外部に排出される、請求項1に記載の電池パック。
  5.  前記フレームの中間枠体及び縦枠体の中空部の一部には、前記電池モジュールの前記排出口から排出されたガスの流れを遮断する仕切りが設けられており、
     前記仕切りは、前記電池モジュールの前記排出口から排出されたガスが、積層方向下方に位置する前記フレームの中間枠体または下枠体の中空部を経由して、前記フレームの上枠体に設けられた排気口から外部に排出されるように、配置されている、請求項4に記載の電池パック。
  6.  前記フレームの中空部の断面積は、500mm以上である、請求項1に記載の電池パック。
  7.  前記フレームは、熱伝導性の高い材料で構成されている、請求項1に記載の電池パック。
  8.  前記フレームは、平面状に枠組みされた少なくとも一組の枠体に代えて、中空構造の平板が、他の枠体に連結されて構成されている。請求項1に記載の電池パック。
  9.  前記電池パックは、前記フレームに代えて、中空構造の平板が連結された筐体に固定されており、
     前記電池モジュールの前記排出口は、前記筐体の一部に設けられた吸気口に連結されており、
     前記電池モジュールの前記排出口から排出されたガスは、前記筐体の中空部を通って、該筐体の一部に設けられた排気口から外部に排出される、請求項1に記載の電池パック。
  10.  前記筐体は、前記電池モジュールの積層方向における上平板と下平板、及び該上平板と下平板とを連結する縦平板を有し、
     前記電池パックは、前記複数の電池モジュールの各排出口をそれぞれ積層方向に連結した排気ダクトをさらに有し、
     前記排気ダクトの排出口は、前記下平板または前記縦平板の下端部に設けられた吸気口に連結されており、
     前記電池モジュールの前記排出口から排出されたガスは、前記排気ダクト、前記筐体の下平板及び縦平板の中空部を通って、前記上平板または前記縦平板の上端部に設けられた排気口から外部に排出される、請求項7に記載の電池パック。
  11.  前記電池モジュールは、前記複数の素電池を収容する電池室と区画された排気室をさらに備え、
     前記素電池に形成されたガスの開放部は、前記排気室に連通するとともに、該排気室は、前記ケースの一側面に設けられた前記排出口に連通している、請求項1または7に記載の電池パック。
PCT/JP2011/003753 2010-12-13 2011-06-30 電池パック WO2012081137A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180004331.7A CN102656718B (zh) 2010-12-13 2011-06-30 电池包
JP2012510055A JP5420064B2 (ja) 2010-12-13 2011-06-30 電池パック
US13/504,362 US20120288738A1 (en) 2010-12-13 2011-06-30 Battery pack
EP11831783.3A EP2654100A4 (en) 2010-12-13 2011-06-30 BATTERY PACK

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010276486 2010-12-13
JP2010-276486 2010-12-13

Publications (1)

Publication Number Publication Date
WO2012081137A1 true WO2012081137A1 (ja) 2012-06-21

Family

ID=46244258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003753 WO2012081137A1 (ja) 2010-12-13 2011-06-30 電池パック

Country Status (5)

Country Link
US (1) US20120288738A1 (ja)
EP (1) EP2654100A4 (ja)
JP (1) JP5420064B2 (ja)
CN (1) CN102656718B (ja)
WO (1) WO2012081137A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014065110A1 (ja) * 2012-10-25 2014-05-01 日産自動車株式会社 電池モジュールのガス排出構造
WO2014156001A1 (ja) * 2013-03-29 2014-10-02 三洋電機株式会社 電池パック
JP2018527704A (ja) * 2015-10-15 2018-09-20 エルジー・ケム・リミテッド バッテリーパック
WO2020158522A1 (ja) * 2019-01-31 2020-08-06 パナソニックIpマネジメント株式会社 蓄電池モジュール
JP2022515552A (ja) * 2018-12-29 2022-02-18 ビーワイディー カンパニー リミテッド 電池トレイ及び動力電池パック
JP2022516519A (ja) * 2018-12-29 2022-02-28 ビーワイディー カンパニー リミテッド 動力電池パック及び車両
WO2022172742A1 (ja) * 2021-02-15 2022-08-18 パナソニックIpマネジメント株式会社 蓄電池モジュール
JP2022550521A (ja) * 2020-04-29 2022-12-02 エルジー エナジー ソリューション リミテッド 電池パックおよびそれを含むデバイス
JP2023511027A (ja) * 2020-10-19 2023-03-16 ジアンス・コンテンポラリー・アンプレックス・テクノロジー・リミテッド ボックス、電池及び装置
WO2024090052A1 (ja) * 2022-10-26 2024-05-02 パナソニックエナジー株式会社 電池パック
JP7483028B2 (ja) 2020-04-14 2024-05-14 エルジー エナジー ソリューション リミテッド 電池パックおよびこれを含むデバイス

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5914828B2 (ja) * 2011-07-29 2016-05-11 パナソニックIpマネジメント株式会社 電池パック
JP6056499B2 (ja) * 2013-01-21 2017-01-11 株式会社豊田自動織機 バッテリケース
JP6284085B2 (ja) * 2013-09-30 2018-02-28 パナソニックIpマネジメント株式会社 電池固定用フレーム部材、電池固定部材及び蓄電装置
US10826036B2 (en) 2014-07-21 2020-11-03 Ford Global Technologies, Llc Battery pack venting
US20160218338A1 (en) * 2015-01-22 2016-07-28 Ford Global Technologies, Llc Battery pack venting assembly and method
CN104659309B (zh) * 2015-01-29 2017-04-12 奇瑞新能源汽车技术有限公司 电池组废气排放系统
KR102061872B1 (ko) * 2016-01-28 2020-01-02 주식회사 엘지화학 이차전지 팩 케이스 및 이를 포함하는 이차전지 팩
DE102018125446A1 (de) * 2018-10-15 2020-04-16 Webasto SE Batteriegehäuse mit Funkenfalle
FR3091415B1 (fr) * 2018-12-28 2021-06-18 Safran Aerosystems Boitier de stockage de pile et émetteur de localisation d’urgence
CN110190211B (zh) * 2018-12-29 2020-03-31 比亚迪股份有限公司 电池托盘、动力电池包及车辆
EP4329056A2 (en) 2019-01-09 2024-02-28 BYD Company Limited Power battery pack and electric vehicle
WO2020189424A1 (ja) * 2019-03-18 2020-09-24 パナソニックIpマネジメント株式会社 支持体および蓄電池モジュール
US20220140434A1 (en) * 2019-03-19 2022-05-05 Sanyo Electric Co., Ltd. Battery module
CN112259937A (zh) * 2019-07-05 2021-01-22 宁德时代新能源科技股份有限公司 电池包
FR3101200B1 (fr) * 2019-09-20 2022-08-12 Faurecia Systemes Dechappement Batterie de stockage d’éléctricité et véhicule équipé d’une telle batterie
KR102665192B1 (ko) * 2020-04-29 2024-05-09 주식회사 엘지에너지솔루션 전지 팩 및 이를 포함하는 디바이스
DE102020120042A1 (de) 2020-07-29 2022-02-03 Audi Aktiengesellschaft Batterie und Kraftfahrzeug mit Batterie
EP4080662A4 (en) * 2020-09-14 2023-12-27 Contemporary Amperex Technology Co., Limited BATTERY, ELECTRICAL DEVICE AND MANUFACTURING METHOD AND SYSTEM FOR BATTERY
FR3115163B1 (fr) 2020-10-14 2023-04-21 Renault Sas Pack batterie comprenant des moyens d'évacuation de gaz

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07245089A (ja) * 1994-03-01 1995-09-19 Honda Motor Co Ltd 電動車両用バッテリのガス排出装置
JPH10255736A (ja) * 1997-03-12 1998-09-25 Toyota Motor Corp 電池モジュール
JP2001126691A (ja) * 1999-10-28 2001-05-11 Hino Motors Ltd 電池モジュール
JP2005322434A (ja) * 2004-05-06 2005-11-17 Toyota Motor Corp 電池モジュールと組電池
JP2006244981A (ja) * 2005-02-03 2006-09-14 Sanyo Electric Co Ltd 電源装置
JP2008117765A (ja) 2006-10-13 2008-05-22 Matsushita Electric Ind Co Ltd 電池パック及び電池搭載機器並びに電池パックの接続構造

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07228153A (ja) * 1994-02-17 1995-08-29 Nissan Motor Co Ltd 電気自動車のバッテリフレーム構造
JPH09181460A (ja) * 1995-12-25 1997-07-11 Hitachi Telecom Technol Ltd 屋外設置筐体の防水構造
CN100490215C (zh) * 2004-03-31 2009-05-20 日本电气株式会社 膜覆盖电子装置、框架部件和用于膜覆盖电子装置的壳体系统
JP5030500B2 (ja) * 2006-07-31 2012-09-19 三洋電機株式会社 電源装置
CN1996641A (zh) * 2006-12-25 2007-07-11 程浩川 一种便于铅酸蓄电池温控的电池外壳
JP2008218210A (ja) * 2007-03-05 2008-09-18 Lenovo Singapore Pte Ltd 電池パックおよび携帯式電子機器
JP5300416B2 (ja) * 2008-10-31 2013-09-25 三洋電機株式会社 バッテリシステム
JP4935802B2 (ja) * 2008-12-10 2012-05-23 パナソニック株式会社 電池モジュールとそれを用いた集合電池モジュール

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07245089A (ja) * 1994-03-01 1995-09-19 Honda Motor Co Ltd 電動車両用バッテリのガス排出装置
JPH10255736A (ja) * 1997-03-12 1998-09-25 Toyota Motor Corp 電池モジュール
JP2001126691A (ja) * 1999-10-28 2001-05-11 Hino Motors Ltd 電池モジュール
JP2005322434A (ja) * 2004-05-06 2005-11-17 Toyota Motor Corp 電池モジュールと組電池
JP2006244981A (ja) * 2005-02-03 2006-09-14 Sanyo Electric Co Ltd 電源装置
JP2008117765A (ja) 2006-10-13 2008-05-22 Matsushita Electric Ind Co Ltd 電池パック及び電池搭載機器並びに電池パックの接続構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2654100A4

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014065110A1 (ja) * 2012-10-25 2014-05-01 日産自動車株式会社 電池モジュールのガス排出構造
WO2014156001A1 (ja) * 2013-03-29 2014-10-02 三洋電機株式会社 電池パック
JPWO2014156001A1 (ja) * 2013-03-29 2017-02-16 三洋電機株式会社 電池パック
US9985259B2 (en) 2013-03-29 2018-05-29 Sanyo Electric Co., Ltd. Battery pack
JP2018527704A (ja) * 2015-10-15 2018-09-20 エルジー・ケム・リミテッド バッテリーパック
JP7377271B2 (ja) 2018-12-29 2023-11-09 ビーワイディー カンパニー リミテッド 動力電池パック及び車両
JP7457025B2 (ja) 2018-12-29 2024-03-27 ビーワイディー カンパニー リミテッド 電池トレイ、動力電池パック、及び車両
JP2022515552A (ja) * 2018-12-29 2022-02-18 ビーワイディー カンパニー リミテッド 電池トレイ及び動力電池パック
JP2022516519A (ja) * 2018-12-29 2022-02-28 ビーワイディー カンパニー リミテッド 動力電池パック及び車両
WO2020158522A1 (ja) * 2019-01-31 2020-08-06 パナソニックIpマネジメント株式会社 蓄電池モジュール
JP7233020B2 (ja) 2019-01-31 2023-03-06 パナソニックIpマネジメント株式会社 蓄電池モジュール
JP2020123540A (ja) * 2019-01-31 2020-08-13 パナソニックIpマネジメント株式会社 蓄電池モジュール
JP7483028B2 (ja) 2020-04-14 2024-05-14 エルジー エナジー ソリューション リミテッド 電池パックおよびこれを含むデバイス
JP2022550521A (ja) * 2020-04-29 2022-12-02 エルジー エナジー ソリューション リミテッド 電池パックおよびそれを含むデバイス
JP7357779B2 (ja) 2020-04-29 2023-10-06 エルジー エナジー ソリューション リミテッド 電池パックおよびそれを含むデバイス
JP2023511027A (ja) * 2020-10-19 2023-03-16 ジアンス・コンテンポラリー・アンプレックス・テクノロジー・リミテッド ボックス、電池及び装置
US11799168B2 (en) 2020-10-19 2023-10-24 Jiangsu Contemporary Amperex Technology Limited Box, battery, and apparatus
JP7403665B2 (ja) 2020-10-19 2023-12-22 ジアンス・コンテンポラリー・アンプレックス・テクノロジー・リミテッド ボックス、電池及び装置
WO2022172742A1 (ja) * 2021-02-15 2022-08-18 パナソニックIpマネジメント株式会社 蓄電池モジュール
WO2024090052A1 (ja) * 2022-10-26 2024-05-02 パナソニックエナジー株式会社 電池パック

Also Published As

Publication number Publication date
US20120288738A1 (en) 2012-11-15
CN102656718A (zh) 2012-09-05
JP5420064B2 (ja) 2014-02-19
CN102656718B (zh) 2015-04-15
EP2654100A4 (en) 2016-11-02
JPWO2012081137A1 (ja) 2014-05-22
EP2654100A1 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
JP5420064B2 (ja) 電池パック
US8956747B2 (en) Battery module
JP6004282B2 (ja) 電池モジュール
JP5903607B2 (ja) 電池パック
JP5296884B2 (ja) 電池パック
WO2012017586A1 (ja) 電池モジュール
WO2013018151A1 (ja) 電池モジュール
JP2013030384A (ja) 電池ブロックおよび電池パック
JP5033271B2 (ja) 電池モジュール
JP2010211950A (ja) 組電池、その製造方法および組電池用筐体
JP2011249107A (ja) 蓄電モジュール
JP2004039582A (ja) 集合電池
JP2008311016A (ja) 電池パック
JP2018190486A (ja) 電池モジュール
KR102672588B1 (ko) 배터리 모듈 및 배터리 팩
JP5320731B2 (ja) バッテリパック
JP2013186995A (ja) 組電池
US20230327278A1 (en) Battery pack with improved gas venting path
JP5870290B2 (ja) 蓄電装置
WO2013018305A1 (ja) 電池ブロック
JP6129329B2 (ja) 蓄電装置
WO2013161292A1 (ja) 電池モジュール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180004331.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012510055

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011831783

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13504362

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11831783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE