WO2012077741A1 - カダベリンの製造方法 - Google Patents

カダベリンの製造方法 Download PDF

Info

Publication number
WO2012077741A1
WO2012077741A1 PCT/JP2011/078391 JP2011078391W WO2012077741A1 WO 2012077741 A1 WO2012077741 A1 WO 2012077741A1 JP 2011078391 W JP2011078391 W JP 2011078391W WO 2012077741 A1 WO2012077741 A1 WO 2012077741A1
Authority
WO
WIPO (PCT)
Prior art keywords
cadaverine
gene
lysine
resistance
strain
Prior art date
Application number
PCT/JP2011/078391
Other languages
English (en)
French (fr)
Inventor
七生 佐々木
耳塚 孝
澤井 秀樹
健司 澤井
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020137012189A priority Critical patent/KR20130135859A/ko
Priority to US13/992,081 priority patent/US9080190B2/en
Priority to BR112013014197-2A priority patent/BR112013014197B1/pt
Priority to CN201180059354.8A priority patent/CN103328643B/zh
Priority to EP11846664.8A priority patent/EP2650374B1/en
Priority to JP2012512116A priority patent/JPWO2012077741A1/ja
Publication of WO2012077741A1 publication Critical patent/WO2012077741A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/001Amines; Imines
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01018Lysine decarboxylase (4.1.1.18)

Definitions

  • the present invention relates to a method for producing cadaverine using coryneform bacteria having cadaverine-producing ability.
  • Cadaverine has a diamine structure and is also called as 1,5-pentanediamine or pentamethylenediamine. Recently, cadaverine has been attracting attention as a monomer raw material for polyamide, and therefore mass production is desired.
  • a method for producing cadaverine a fermentation method using coryneform bacteria is known. Specifically, cadaverine has the ability to produce cadaverine and enhances the ability to synthesize lysine, which is a precursor of cadaverine.
  • a method for producing cadaverine by fermentation see Patent Documents 1 to 4 and Non-patent Document 1) and fermentation of coryneform bacteria with enhanced lysine decarboxylase activity by increasing the copy number of the lysine decarboxylase gene.
  • a manufacturing method see Patent Document 5 is known.
  • JP 2004-2222569 A JP 2002-223770 A WO2007 / 113127 WO2008 / 101850 WO2008 / 092720
  • An object of the present invention is to create a cadaverine production process that is more efficient and has a higher yield than a cadaverine production method by a conventional fermentation method.
  • coryneform bacteria having the ability to produce cadaverine and having resistance to 2,2′-thiobis (ethylamine) are useful as cadaverine-producing bacteria, thereby completing the present invention. It was.
  • the present invention provides the following (1) to (5).
  • a method for producing cadaverine comprising culturing a coryneform bacterium having an ability to produce cadaverine and having resistance to 2,2′-thiobis (ethylamine).
  • cadaverine can be produced more efficiently and with a higher yield than the conventional method for producing cadaverine by fermentation.
  • coryneform bacteria are used in the method of the present invention.
  • the coryneform bacterium is an aerobic gram-positive gonococcus and has been conventionally classified into the genus Brevibacterium, but now includes bacteria integrated into the genus Corynebacterium (Int. J. Syst., Bacteriol. (1981) 41, p. 225). In addition, it includes Brevibacterium bacteria that are very closely related to the genus Corynebacterium.
  • coryneform bacteria examples include Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium colactorium, Corynebacterium. -Carnae (Corynebacterium callumanee), Corynebacterium glutamicum (Corynebacterium glutamicum), Corynebacterium lilium (Corynebacterium lilium), Corynebacterium melacecola (Corynebacterium coribacterium) melassesecola), Corynebacterium thermoaminogenes, Corynebacterium efficiens, Corynebacterium varicumbium bacterium, Brevibacterium bacterium.
  • each coryneform bacterium includes Corynebacterium acetoacidophilum ATCC 13870, Corynebacterium acetoglutamicum ATCC 15806, Corynebacterium alkanolyticum ATCC 21511, Corynebacterium carnae ATCC 15991, Corynebacterium Umm Glutamicum ATCC13020, ATCC13020, ATCC13060, Corynebacterium lilium ATCC15990, Corynebacterium melacecola ATCC17965, Corynebacterium efficiens AJ12340 (Deposit number: FERM BP-1539), Corynebacterium herculis brevis ATCC13838 Divali Katam ATCC1 020, Brevibacterium flavum ATCC13826, ATCC14067, AJ12418 (deposit number: FERM BP-2205), Brevibacterium inmariophyllum ATCC14068, Brevibacterium lactoferment
  • the aforementioned coryneform bacteria can be sold, for example, from the American Type Culture Collection (ATCC).
  • ATCC American Type Culture Collection
  • the ATCC assigns a corresponding registration number to each strain. This registration number is described in the ATCC catalog, and each strain can be distributed with reference to this number.
  • the coryneform bacterium having the ability to produce cadaverine is preferably a coryneform bacterium having lysine decarboxylase activity by introducing a polynucleotide encoding lysine decarboxylase from the outside. used. If it has lysine decarboxylase activity, cadaverine can be produced by decarboxylating lysine as a raw material.
  • the lysine decarboxylase is preferably L-lysine decarboxylase.
  • the origin of lysine decarboxylase is not particularly limited.
  • Bacillus halodurans Bacillus subtilis, Escherichia coli (Escherichia coli), Selenomonas luminanthon (S. coli) ruminumium, Vibrio cholerae, Vibrio parahemolyticus, Streptomyces coelicolor, Streptomyces p.
  • LDC lysine decarboxylases
  • GenBank the base sequence of an LDC gene derived from E. coli that can be preferably used in the present invention is GenBank Accession No. It is registered as M76411.
  • the gene encoding lysine decarboxylase used in the present invention may be redesigned according to the codon usage of the coryneform bacterium used. As described above, the lysine decarboxylase gene derived from each organism described above is registered in the database (GenBank), and the base sequence of each LDC gene can be easily obtained by searching using the organism name and lysine decarboxylase as a keyword. Can know.
  • lysine decarboxylase has its function, in addition to the natural LDC gene of each species described above, substitution of one or several bases in each base sequence of these LDC genes Also included are deletions, insertions or additions of polynucleotides.
  • “several” is usually 1 to 40, preferably 1 to 30, more preferably 1 to 20, particularly preferably 1 to 10, and most preferably about 1 to 5. .
  • the “polynucleotide hybridizing under stringent conditions” means, for example, any one of the continuous sequences of at least 20, preferably 25, more preferably at least 30 of the original base sequence.
  • a known hybridization technique (Current Protocols I Molecular Biology edit. Ausbel et al., (1987) Publisher. John Wily & Sons Section 6.3-6.4), etc. Nucleic acid sequences that hybridize.
  • stringent conditions include, for example, a hybridization temperature of 37 ° C. in the presence of 50% formamide, 42 ° C. as a more severe condition, and 65 ° C. as a more severe condition.
  • sequence identity refers to aligning two sequences so that the bases of the two base sequences to be compared match as much as possible (by inserting a gap if necessary), and calculating the number of matching bases. The value is expressed as a percentage divided by the total number of bases.
  • lysine decarboxylase gene a gene encoding lysine decarboxylase into a coryneform bacterium (hereinafter sometimes referred to as “lysine decarboxylase gene” or “LDC gene”, but not limited to natural genes as described above)
  • the lysine decarboxylase gene may be retained in a plasmid or the like maintained outside the coryneform bacterium chromosome, or may be incorporated and retained in the coryneform bacterium chromosome.
  • the lysine decarboxylase gene When integrating a lysine decarboxylase gene into the chromosome of a coryneform bacterium, the lysine decarboxylase gene can be introduced into the chromosome of the coryneform bacterium by using homologous recombination or its own transfer ability by using a transposon.
  • the construction of the gene sequence to be introduced and the confirmation method thereof are performed by molecular biological techniques well known to those skilled in the art. For example, see Sambrook et al. , Molecular Clonig: A Laboratory Manual, Second Edition (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New Arp., DNACloning: Apollo. M.M. Ausubel et al. (Eds), Current Protocols in Molecular Biology (1994) John Wiley & Sons, Inc. , PCR Technology: Principles and Application for DNA Application, H. Erlich, ed. , Stockton Press, etc. can be referred to
  • the method for introducing the gene construct into the coryneform bacterium is not particularly limited.
  • the protoplast method Gene, (1985), 39, p. 281-286
  • the electroporation method Bio / Technology, (1989), 7, 1067-1070
  • a coryneform bacterium introduced with an exogenous LDC gene and capable of producing cataverine is known, for example, as described in Patent Document 1 (see the following reference example).
  • 2,2-thiobisethylamine is NH 2 — (CH 2 ) 2 —S— (CH 2 ) 2 —NH 2 It is a strongly alkaline chemical substance represented by the structural formula of In the present invention, resistance to 2,2-thiobisethylamine means a property of growing faster than a wild strain in a medium containing 2,2-thiobisethylamine. Specifically, on a plate medium containing 200 mM or more of 2,2-thiobisethylamine, a wild strain cannot form a colony, but a strain that forms a colony in 2 to 3 days has a 2,2-thiobisethylamine content. It can be judged to have ethylamine resistance.
  • concentration of thiobisethylamine to which the coryneform bacterium is resistant on the plate medium is preferably 250 mM or more, more preferably 300 mM or more, and further preferably 400 mM or more.
  • the medium containing 2,2-thiobisethylamine for evaluating the resistance of coryneform bacteria to 2,2-thiobisethylamine is not particularly limited as long as it is a medium in which coryneform bacteria can be cultured.
  • the minimum medium not added is preferable, and the minimum medium shown in Table 1 is more preferable.
  • the method for conferring resistance to 2,2-thiobisethylamine in coryneform bacteria is not particularly limited, and any method may be used as long as it causes some mutation in the chromosome of the parent strain.
  • Techniques for introducing mutations into chromosomes include methods that cause mutations by irradiation with UV, laser, etc., methyl ethanesulfonate (EMS), nitrosoguanidine (NTG), sodium 4-dimethylaminobenzenediazosulfonate (DAPA), etc.
  • EMS methyl ethanesulfonate
  • NVG nitrosoguanidine
  • DAPA sodium 4-dimethylaminobenzenediazosulfonate
  • the coryneform bacterium having an ability to produce cadaverine is imparted with the resistance.
  • the ability to produce cadaverine may be imparted to the coryneform bacterium imparted with the resistance as described above.
  • the above-described mutagenesis treatment may be performed under the well-known conditions employed in the microorganism mutagenesis treatment. For example, in the case of UV irradiation, the irradiation amount depends on the distance from the light source. Irradiate for 10 seconds to 30 minutes.
  • the treatment concentration is, for example, 100 ⁇ g / ml to 2 ⁇ g / ml, preferably 300 ⁇ g / ml to 1.3 ⁇ g / ml.
  • it can be carried out by culturing in a liquid for 12 hours to 48 hours.
  • the coryneform bacterium used in the present invention is preferably a mutant having improved lysine synthesis ability.
  • a mutant strain with improved lysine synthesis ability for example, a mutant strain in which feedback inhibition by L-lysine or L-threonine is released can be used.
  • a method for obtaining these mutant strains for example, a wild-type strain is subjected to the same mutation procedure as in the previous example, and then selected using S- (2-aminoethyl) -L-cysteine (AEC) resistance as an index.
  • An example is a method of obtaining from a mutant strain having L-lysine productivity (see Patent Document 1). Whether or not it has AEC resistance is determined by whether or not growth occurs after culturing at 30 ° C. for 24 hours on a minimal agar medium containing 50 ⁇ g / ml of AEC as described in Patent Document 1. Can do.
  • a method using a genetic engineering technique is used as a more preferable method for imparting AEC resistance to a wild type strain.
  • a method using a genetic engineering technique is used.
  • the method using genetic engineering techniques for example, a method using a recombinant DNA replicable in coryneform bacteria, or a method of recombining a target gene in a chromosome by homologous recombination.
  • mutant aspartokinase gene (sometimes referred to as “desensitized AK gene”) in which the 311th amino acid residue in the amino acid sequence shown in SEQ ID NO: 14 is substituted with an amino acid other than Thr, S— Resistance to (2-aminoethyl) -L-cysteine can be acquired.
  • a more preferred genetic engineering technique is a method of recombining the AK gene in the chromosome of the coryneform bacterium with the desensitized AK gene by homologous recombination.
  • the desensitized AK gene can use a known technique (for example, site-directed mutagenesis) for introducing a desired mutation into the AK gene, and a kit for this purpose is also commercially available.
  • homoserine auxotrophic mutants can be mentioned as mutants with improved lysine synthesis ability.
  • the wild strain does not have homoserine auxotrophy
  • the method for obtaining the homoserine auxotroph is similar to the previous example, for example, after performing a mutation operation from the wild type strain, homoserine auxotrophy And a method for obtaining a homoserine dehydrogenase activity of coryneform bacteria by a genetic engineering technique (Patent Document 1).
  • homoserine dehydrogenase activity is deleted by, for example, inserting other genes into homoserine dehydrogenase gene (hereinafter referred to as HOM gene) in the chromosome by homologous recombination
  • HOM gene homoserine dehydrogenase gene
  • the LDC gene is preferable, and the LDC gene is more preferably a promoter and cassette that can be constitutively expressed in a wild type strain.
  • cadaverine is produced by culturing coryneform bacteria having the ability to produce the cadaverine and having resistance to 2,2-thiobisethylamine.
  • the culture method batch culture, fed-batch culture or continuous culture can be used.
  • continuous culture it is preferable to perform continuous culture by a known method as described in, for example, JP-A-2008-104453.
  • a culture medium for producing cadaverine a normal nutrient medium containing an assimilable carbon source and nitrogen source, inorganic salts, and the like can be used.
  • the carbon source for example, sugars such as glucose, fructose, sucrose, maltose and starch hydrolysate, alcohols such as ethanol, and organic acids such as acetic acid, lactic acid and succinic acid can be used.
  • Nitrogen sources include ammonia, ammonium chloride, ammonium sulfate, ammonium carbonate, ammonium acetate and other inorganic and organic ammonium salts, urea, other nitrogen-containing compounds, meat extract, yeast extract, corn steep liquor, soybean hydrolysate Nitrogen-containing organic substances such as can be used.
  • the inorganic salt potassium monohydrogen phosphate, potassium dihydrogen phosphate, ammonium sulfate, sodium chloride, magnesium sulfate, calcium carbonate and the like can be used.
  • trace nutrient sources such as biotin, thiamine, and vitamin B6 can be added as necessary. These micronutrient sources can be substituted with medium additives such as meat extract, yeast extract, corn steep liquor, casamino acid and the like.
  • lysine which is a precursor of cadaverine
  • lysine may be added in advance to the culture medium. If lysine is added to the culture medium in advance, coryneform bacteria take lysine into the cells, and lysine decarboxylase converts lysine into cadaverine, so that the production efficiency of cadaverine can be increased.
  • the lysine concentration in the culture medium when lysine is added to the culture medium in advance is not particularly limited, but a concentration that does not adversely affect the growth of coryneform bacteria and does not inhibit lysine decarboxylase is preferable. Specifically, it is preferably 0.01 to 2M.
  • the lysine to be added is preferably L-lysine.
  • the lysine to be added may be a free form or a lysine salt, but is preferably a lysine salt, and the lysine salt is preferably lysine hydrochloride or a lysine / dicarboxylate derived from a dicarboxylic acid described later. More preferable specific examples include lysine / adipate, lysine / sebacate, lysine / 1,12-dodecanedicarboxylate, lysine / succinate, lysine / isophthalate, and lysine / terephthalate. A more preferred specific example is lysine adipate.
  • the culture conditions are not particularly limited, and are performed under aerobic conditions such as shaking culture and deep aeration and agitation culture.
  • the culture temperature is generally 25 ° C to 42 ° C, preferably 28 ° C to 38 ° C.
  • the culture time is usually 1 day to 6 days.
  • the culture pH is controlled to 5 to 8, preferably pH 6.5 to 7.5, using these neutralizing agents.
  • a neutralizing agent it uses by gas, a liquid, solid, or aqueous solution. Particularly preferred is an aqueous solution.
  • the dicarboxylic acid preferably used as a neutralizing agent is a dicarboxylic acid substantially free of a functional group other than the two carboxyl groups.
  • the functional group here means an amino group, a carboxyl group or the like during a polyamide polymerization reaction (reaction conditions are, for example, a reaction temperature of 250 to 270 ° C., a pressure of 10 to 20 kg / cm 2 and a reaction time of 1 to 5 hours).
  • acidic groups sulfonic acid groups, phosphoric acid groups, phenolic hydroxyl groups, etc.
  • basic groups hydrazino groups, etc.
  • protonic polar groups hydroxyl groups, etc.
  • cleavable groups epoxy groups, peroxy groups, etc.
  • Oxidation groups, etc. and other highly reactive groups (isocyanate groups, etc.).
  • halogen substituents, aromatic substituents, ether groups, ester groups, amide groups, and the like have low reactivity and do not correspond to the functional groups mentioned here.
  • the dicarboxylic acid is more preferably a dicarboxylic acid represented by the following general formula (1), (2) or (3).
  • the dicarboxylic acid is more preferably adipic acid, sebacic acid, 1,12-dodecanedicarboxylic acid, succinic acid, isophthalic acid, or terephthalic acid.
  • Cadaverine in the culture medium exists as a free cadaverine or a cadaverine salt (in the present invention, these are generically referred to as “cadaverine”).
  • cadaverine In order to recover cadaverine in the culture solution, first, coryneform bacteria are removed from the culture solution. At that time, after coryneform bacteria have grown and fermentation has progressed sufficiently to produce cadaverine, the cells and the culture supernatant are separated (separation methods include precipitation removal, centrifugation, and membrane filtration separation). Alternatively, the cells may be separated, held, or fixed from the beginning with a holding material or the like. A method of recovering cadaverine from a culture solution containing cadaverine from which bacterial cells have been removed is well known.
  • cadaverine is crystallized and collected as cadaverine dicarboxylate as described in JP-A-2009-207495. You can also. Further, as described in JP-A-2009-29872, a free form of cadaverine can be purified and collected using an NF membrane. Also, as described in JP-A-2009-28045, a free form of cadaverine can be collected by extraction with a polar organic solvent and distillation (see the following reference example).
  • Patent Document 1 Production of Corynebacterium glutamicum (TR-CAD1 strain) having L-lysine decarboxylation activity and lacking homoserine dehydrogenase activity (Patent Document 1) (1) Cloning of HOM gene In order to lack HOM activity, a gene corresponding to the 300 amino acid region from the N-terminal was cloned.
  • the oligonucleotide primer 5'-gaagaattctataacctcacatctgccc-3 '(SEQ ID NO: 1) and 5'-gaaggatccagaaggacttgtgtcctgtgtcctgtgtccc ) was synthesized.
  • each of a genomic DNA solution prepared from Corynebacterium glutamicum ATCC13032 according to a conventional method as an amplification template is taken in a 0.2 ml microcentrifuge tube, 20 pmol of each primer, Tris-HCl buffer pH 8.0 (20 mM), Reagents were added to give potassium chloride (2.5 mM), gelatin (100 ⁇ g / ml), each dNTP (50 ⁇ M), LATaq DNA polymerase (2 units) (manufactured by Takara Shuzo) to a total volume of 50 ⁇ l.
  • PCR method 30 cycles of polymerase chaining using a BioRad thermal cycler under conditions of DNA denaturation at 94 ° C for 30 seconds, primer annealing at 55 ° C for 30 seconds, DNA primer extension at 72 ° C for 3 minutes
  • the reaction was carried out (hereinafter abbreviated as PCR method).
  • the PCR method in this reference example was performed under these conditions unless otherwise specified.
  • the product obtained by this PCR method was electrophoresed with 1% agarose, and a DNA fragment of about 0.9 kb containing the HOM gene was excised from the gel and purified by Gene Clean Kit (manufactured by BIO101).
  • oligonucleotide primers 5'-gaaccgcggccgtaatcccccccatcatcc-3 '(SEQ ID NO: 3) and 5'-gaacccatggccccttgttattatg-3' (SEQ ID NO: 4) Synthesized.
  • a product obtained by PCR using plasmid pHSG299 as an amplification template and oligonucleotides (SEQ ID NO: 3) and (SEQ ID NO: 4) as a primer set was subjected to 1.0% agarose gel electrophoresis, and the promoter region of the kanamycin resistance gene was determined.
  • the 0.3 kb DNA fragment was excised from the gel and purified with the Gene Clean Kit. This fragment was ligated with a ligation kit ver. 2 into a gap in which a T base was added to the 3'-end of the EcoRV cleavage site of plasmid vector pT7blue (Novagen).
  • a plasmid that became a single fragment of 3.2 kb when digested with the restriction enzymes HindIII and SacII was named pKMP1.
  • the LDC gene was cloned.
  • the oligonucleotide primer 5'-gaaccatgacgtttattgcaa-3 '(SEQ ID NO: 5), 5'-gaaccgcggtttttttttcttttttttt' was synthesized.
  • a product obtained by PCR using a solution of genomic DNA prepared from Escherichia coli ATCC 10798 according to a conventional method as an amplification template and oligonucleotide (SEQ ID NO: 5) and (SEQ ID NO: 6) as a primer set was used as a 1.0% agarose gel. Electrophoresis was performed, and a 2.1 kb DNA fragment containing the LDC gene was excised from the gel and purified with a gene clean kit. This fragment was ligated with a ligation kit ver. 2 into a gap in which a T base was added to the 3'-end of the EcoRV cleavage site of the plasmid vector pT7blue.
  • a plasmid that became a single fragment of 4.0 kb when digested with HindIII and NcoI was named pCADA.
  • pKMP1 was digested with HindIII and NcoI, the product was subjected to 1.2% agarose gel electrophoresis, and a 0.3 kb DNA fragment containing the promoter region of the kanamycin resistance gene was excised from the gel and purified with a gene clean kit. did.
  • the HindIII-NcoI fragment thus obtained was ligated to the HindIII / NcoI gap of pCADA previously digested with HindIII and NcoI.
  • the resulting plasmid was named pTM100.
  • ATCC13032 strain Corynebacterium glutamicum ATCC13032 (hereinafter abbreviated as ATCC13032 strain) by electroporation [FEMS Microbiology Letters, 65, p. 299 (1989)] and added with kanamycin (25 ⁇ g / ml) LB (tryptone (10 g / l) (Bacto), yeast extract (5 g / l) (Bacto), sodium chloride ( 10 g / l)) Selected on agar medium.
  • ATCC13032 strain Corynebacterium glutamicum ATCC13032 strain
  • kanamycin 25 ⁇ g / ml
  • LB tryptone (10 g / l)
  • yeast extract 5 g / l
  • sodium chloride 10 g / l
  • a genomic DNA solution was prepared from the transformant thus selected according to a conventional method. PCR was carried out using this genomic DNA as a template and oligonucleotides (SEQ ID NO: 5) (SEQ ID NO: 6) as primer sets, and the resulting product was electrophoresed on a 1.0% agarose gel. A single band of 1 kb was observed. From this, it was confirmed that the selected transformant had the LDC gene inserted into the HOM locus. This transformant was named Corynebacterium glutamicum TR-CAD1 (hereinafter abbreviated as TR-CAD1 strain).
  • TR-CAD1 strain did not have LDC activity, but TR-CAD1 strain was confirmed to have LDC activity.
  • the 13032 strain had HOM activity, but the TR-CAD1 strain was deficient in HOM activity.
  • Strain 13032 does not require homoserine, whereas TR-CAD1 strain required homoserine.
  • Corynebacterium glutamicum TR-CAD1 strain having LDC activity and lacking HOM activity could be produced.
  • Reference Example 3 Production of Corynebacterium glutamicum (TR-CAD2) strain having L-lysine decarboxylation activity, homoserine requirement and S- (2-aminoethyl) -L-cysteine resistance (Patent Document 1)
  • TR-CAD2 Corynebacterium glutamicum
  • the oligonucleotide primer 5'-acagaattcgtggccctgggtcgtagagaa-3 '(SEQ ID NO: 7) and 5'-catctcgagttagcgtccgtgtgtggtccgtgtgt ) was synthesized.
  • a product obtained by PCR using oligonucleotides (SEQ ID NO: 7) and (SEQ ID NO: 8) as a primer set is 1.0
  • the DNA fragment of about 1.3 kb containing the AK gene was excised from the gel and purified by Gene Clean Kit. This fragment was digested with EcoRI and XhoI, and the resulting 1.3 kb EcoRI-XhoI fragment was ligated into the EcoRI / XhoI gap of pHSG396 (manufactured by Takara Shuzo), which had been digested with EcoRI and XhoI.
  • the resulting plasmid was named pAK1.
  • oligonucleotide primers 5′-cgacatcatcttactacctcccc-3 ′ (SEQ ID NO: 9) and 5′-ggcaggtgaagatgatgtgt-3 '(SEQ ID NO: 10) was synthesized.
  • the plasmid obtained using the QuikChange site-directed mutagenesis kit (Stratagene) using pAK1 as an amplification template and oligonucleotides (SEQ ID NO: 9) and (SEQ ID NO: 10) as primer sets was designated as pTM102.
  • acc (Thr) from 931 to 933 was mutated to atg (Ile) as intended, and a desensitized AK gene could be created. It could be confirmed.
  • Plasmid pTM102 was introduced into TR-CAD1 strain by electroporation and selected on LB agar medium supplemented with kanamycin (25 ⁇ g / ml) and chloramphenicol (10 ⁇ g / ml).
  • a genomic DNA solution was prepared from the transformant thus selected according to a conventional method. PCR was performed using this genomic DNA as a template and oligonucleotides (SEQ ID NO: 11) (SEQ ID NO: 12) as primer sets, and the resulting product was electrophoresed on a 1.0% agarose gel. A single band of 0 kb was observed. From this, it was confirmed that the selected transformant had the chloramphenicol resistance gene inserted at the AK locus. This transformant was named Corynebacterium glutamicum TR-CAD2 (hereinafter abbreviated as TR-CAD2 strain).
  • a genomic DNA solution was prepared from TR-CAD2 strain according to a conventional method. Using this genomic DNA as a template, PCR was performed using oligonucleotide (SEQ ID NO: 12) (SEQ ID NO: 13) as a primer set, and the resulting product was electrophoresed on a 1.0% agarose gel to obtain AK gene and A 3.1 kb DNA fragment containing the chloramphenicol resistance gene was excised from the gel and purified with Gene Clean Kit. This fragment was ligated with a ligation kit ver. 2 into a gap in which a T base was added to the 3'-end of the EcoRV cleavage site of the plasmid vector pT7blue. The resulting plasmid was named pAK2.
  • TR-CAD2 strain When the AK gene in pAK2 was sequenced by a conventional method, it was confirmed that the desired mutation was included, and therefore, the TR-CAD2 strain was able to introduce a desensitized AK gene that can be expressed on the chromosome. I was able to confirm. Thus, Corynebacterium glutamicum (TR-CAD2 strain) having LDC activity and lacking HOM activity (homoserine auxotrophy) and AEC resistance could be produced.
  • Example 1 Obtaining a coryneform bacterium having an ability to produce cadaverine and having resistance to 2,2′-thiobis (ethylamine), having L-lysine decarboxylase activity obtained as described above, and Corynebacterium glutamicum (TR-CAD1 strain), which has become a homoserine auxotrophic mutant by lacking homoserine dehydrogenase activity, and having L-lysine decarboxylase activity and lacking homoserine dehydrogenase activity Corynebacterium glutamicum (TR-CAD2 strain), which is a homoserine auxotrophic mutant and also has S- (2-aminoethyl) -L-cysteine resistance (AEC resistance), was added to each 5 ml of BHI (Brain Heart Infusion).
  • BHI Brain Infusion
  • the culture was washed twice with trismaleic acid buffer and cultured for 2-3 days in the medium shown in Table 1 supplemented with 2,2-thiobisethylamine 180 mM, 220 mM, 250 mM, 300 mM, or 400 mM.
  • the formed cells were obtained as 2,2-thiobisethylamine-resistant strains, and TR-CADA1-C, TR-CADA1-0 to 6, TR-CADA2-C, TR-CADA2-0 to 6 (Table) 2).
  • the acquired resistant strain was cultured for 3 days in the medium from which the resistant strain was acquired, and it was confirmed that colonies were formed, that is, 2,2-thiobisethylamine resistance was imparted.
  • TR-CADA1-6 and TR-CADA2-5 shares have been deposited internationally with the receipt numbers NITE BP-1002 and NITE BP-1003, respectively, at the National Institute of Technology and Evaluation (NITE).
  • Example 2 was compared with Comparative Example 1, and Comparative Example 2 and Example 3 were compared with Comparative Example 3 and Comparative Example 4, respectively, cadaverine was imparted to the parent strain by imparting resistance to 2,2-thiobisethylamine. It was revealed that the accumulation concentration and the yield to sugar were improved.
  • Cadaverine can be recovered from the obtained culture supernatant by various known methods. Examples of preferable known recovery methods are shown below.
  • Reference Example 4 Recovery of cadaverine from culture supernatant 5N sodium hydroxide is added to the culture supernatant of the cadaverine fermentation broth obtained by the above-described method, and the pH is adjusted to 13. Next, the inorganic salt component and a small amount of residual cells are removed through the nanofiltration membrane, and the nanofiltration membrane permeate is collected. Next, the collected nanofiltration membrane permeate is passed through a reverse osmosis membrane and concentrated and collected until the cadaverine concentration is about 18% by weight. Next, the collected concentrated liquid is further concentrated under reduced pressure using a rotary evaporator or the like to remove water, and a 50% by weight aqueous cadaverine solution is obtained. Next, an equal amount of chloroform is added, and cadaverine is extracted from the chloroform phase. Finally, free cadaverine is isolated by subjecting the chloroform phase to vacuum distillation (30 mmHg, 80 ° C.).
  • cadaverine can be produced industrially.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

従来の発酵法による製造方法よりも効率的且つ高収率にカダベリンを製造することができる、新規なカダベリンの製造方法が開示されている。カダベリンの製造方法は、カダベリンを生産する能力を有し、かつ2,2'-チオビス(エチルアミン)に対する耐性を有するコリネ型細菌を培養することを含む。好ましくは、コリネ型細菌がリジン脱炭酸酵素活性を有し、また、好ましくは、コリネ型細菌は、ホモセリン栄養要求性および/またはS-(2-アミノエチル)-L-システイン耐性を有する。

Description

カダベリンの製造方法
 本発明は、カダベリン生産能を有するコリネ型細菌を用いたカダベリンの製造方法に関する。
 カダベリンはジアミン構造を有し、別名1,5-ペンタンジアミンやペンタメチレンジアミン等と呼ばれているものである。最近カダベリンは、ポリアミドのモノマー原料として注目されているため、大量生産が望まれている。カダベリンの製造方法としては、コリネ型細菌を利用した発酵法が知られており、具体的には、カダベリン生産能を有し、かつカダベリンの前駆物質であるリジン合成能を強化したコリネ型細菌の発酵によるカダベリンの製造方法(特許文献1~4、非特許文献1参照。)や、リジン脱炭酸酵素遺伝子のコピー数を高めることによってリジン脱炭酸酵素活性を強化したコリネ型細菌の発酵によるカダベリンの製造方法(特許文献5参照。)が知られている。
特開2004-222569号公報 特開2002-223770号公報 WO2007/113127号 WO2008/101850号 WO2008/092720号
Stefaine Kind,Metabolic engineering.(メタボリック エンジニアリング)12,341-351,(2010)
 本発明の課題は、従来の発酵法によるカダベリンの製造方法よりも効率的且つ高収率のカダベリン製造プロセスを創出することである。
 本発明者は、カダベリンを生産する能力を有し、かつ2,2’-チオビス(エチルアミン)に対する耐性を有するコリネ型細菌がカダベリン生産菌として有用であることを見出し、本発明を完成させるに至った。
 すなわち、本発明は以下の(1)~(5)を提供する。
 (1)カダベリンを生産する能力を有し、かつ2,2’-チオビス(エチルアミン)に対する耐性を有するコリネ型細菌を培養することを含む、カダベリンの製造方法。
 (2)前記コリネ型細菌が250mM以上の2,2’-チオビス(エチルアミン)に対する耐性を有する、(1)に記載のカダベリンの製造方法。
 (3)前記コリネ型細菌がリジン脱炭酸酵素活性を有する、(1)または(2)に記載のカダベリンの製造方法。
 (4)前記コリネ型細菌がコリネバクテリウム属およびブレビバクテリウム属からなる群より選ばれる、(1)~(3)のいずれかに記載のカダベリンの製造方法。
 (5)前記コリネ型細菌がホモセリン栄養要求性および/またはS-(2-アミノエチル)-L-システイン耐性を有する、(1)~(4)のいずれかに記載のカダベリンの製造方法。
 本発明によれば、従来の発酵法によるカダベリンの製造方法よりも効率的且つ高収率でカダベリンを製造することができる。
 上記の通り、本発明の方法では、コリネ型細菌を用いる。コリネ型細菌とは好気性のグラム陽性桿菌であり、従来ブレビバクテリウム属に分類されていたが、現在、コリネバクテリウム属に統合された細菌も含まれる(Int.J.Syst.,Bacteriol.,(1981)41,p.225)。また、コリネバクテリウム属と非常に近縁なブレビバクテリウム属細菌を含む。
 このようなコリネ型細菌の例として、コリネバクテリウム・アセトアシドフィラム(Corynebacterium acetoacidophylum)、コリネバクテリウム・アセトグルタミカム(Corynebacterium acetoglutamicum)、コリネバクテリウム・アルカノリティカム(Corynebacterium alkanolyticum)、コリネバクテリウム・カルナエ(Corynebacterium callunae)、コリネバクテリウム・グルタミカム(Corynebacterium glutamicum)、コリネバクテリウム・リリウム(Corynebacterium lilium)、コリネバクテリウム・メラセコーラ(Corynebacterium mellassecola)、コリネバクテリウム・サーモアミノゲネス(Corynebacterium thermoaminogenes)、コリネバクテリウム・エッフィシエンス(Corynebacterium efficiens)、コリネバクテリウム・ハーキュリス(Corynebacterium herculis)、ブレビバクテリウム・ディバリカタム(Brevivacterium divaricatum)、ブレビバクテリウム・フラバム(Brevivacterium flavum)、ブレビバクテリウム・インマリオフィラム(Brevivacterium immariophilum)、ブレビバクテリウム・ラクトファーメンタム(Brevivacterium lactofermentum)、ブレビバクテリウム・ロゼウム(Brevivacterium roseum)、ブレビバクテリウム・サッカロリティカム(Brevivacterium saccharolyticum)、ブレビバクテリウム・チオゲニタリス(Brevivacterium thiogenitalis)、コリネバクテリウム・アンモニアゲネス(Corynebacterium ammoniagenes)、ブレビバクテリウム・アルバム(Brevivacterium album)、ブレビバクテリウム・セリヌム(Brevivacterium cerinum)、ミクロバクテリウム・アンモニアフィラム(Microbacterium ammoniaphilum)が挙げられる。
 また、各コリネ型細菌の具体的な菌株として、コリネバクテリウム・アセトアシドフィラム ATCC13870、コリネバクテリウム・アセトグルタミカム ATCC15806、コリネバクテリウム・アルカノリティカム ATCC21511、コリネバクテリウム・カルナエ ATCC15991、コリネバクテリウム・グルタミカム ATCC13020,ATCC13020,ATCC13060、コリネバクテリウム・リリウム ATCC15990、コリネバクテリウム・メラセコーラ ATCC17965、コリネバクテリウム・エッフィシエンス AJ12340(寄託番号:FERM BP-1539)、コリネバクテリウム・ハーキュリス ATCC13868、ブレビバクテリウム・ディバリカタム ATCC14020、ブレビバクテリウム・フラバム ATCC13826,ATCC14067,AJ12418(寄託番号:FERM BP-2205)、ブレビバクテリウム・インマリオフィラム ATCC14068、ブレビバクテリウム・ラクトファーメンタム ATCC13869、ブレビバクテリウム・ロゼウム ATCC13825、ブレビバクテリウム・サッカロリティカム ATCC14066、ブレビバクテリウム・チオゲニタリス ATCC19240、コリネバクテリウム・アンモニアゲネス ATCC6871,ATCC6872、ブレビバクテリウム・アルバム ATCC15111、ブレビバクテリウム・セリヌム ATCC15112、ミクロバクテリウム・アンモニアフィラス ATCC15354が挙げられる。
 前述のコリネ型細菌は、例えばアメリカン・タイプ・カルチャー・コレクション(ATCC)より分譲を受けることができる。ATCCでは菌株毎に対応する登録番号を付与しており、この登録番号はATCCのカタログに記載され、この番号を参照して各菌株の分譲を受けることができる。
 本発明において、カダベリンを生産する能力を有するコリネ型細菌としては、外部からリジン脱炭酸酵素をコードするポリヌクレオチドを導入されることによりリジン脱炭酸酵素活性を有するようになったコリネ型細菌が好ましく使用される。リジン脱炭酸酵素活性を有していれば、リジンを原料とし、これを脱炭酸することによりカダベリンを生産することができる。
 リジン脱炭酸酵素はL-リジン脱炭酸酵素であることが好ましい。また、リジン脱炭酸酵素の由来については特に制限はないが、例えば、バシラス・ハロドゥランス(Bacillus halodurans)、バシラス・サブチリス(Bacillus subtilis)、エシェリシア・コリ(Escherichia coli;大腸菌)、セレノモナス・ルミナンチウム(Selenomonas ruminamtium)、ビブリオ・コレラ(Vibrio cholerae)、ビブリオ・パラヘモリティカス(Vibrio parahaemolyticus)、ストレプトマイセス・コエリカーラ(Streptomyces coelicolor)、ストレプトマイセス・ピロサス(Streptomyces pilosus)、エイケネラ・コロデンス(Eikenella corrodens)、イユバクテリウム・アシダミノフィルム(Eubacterium acidaminophilum)、サルモネラ・ティフィムリウム(Salmonella typhimurium)、ハフニア・アルベイ(Hafnia alvei)、ナイセリア・メニンギチデス(Neisseria meningitidis)、テルモプラズマ・アシドフィルム(Thermoplasma acidophilum)、またはピロコッカス・アビシ(Pyrococcus abyssi)由来のものが好ましく用いられ、安全性の認められている大腸菌由来のものがより好ましく用いられる。これらリジン脱炭酸酵素(「LDC」と呼ぶことがある)のアミノ酸配列及びそれをコードする塩基配列は、データベース(GenBank)に登録されている。例えば、本発明において好ましく用いることができる大腸菌由来のLDC遺伝子の塩基配列は、GenBank Accession No.M76411として登録されている。
 本発明で使用されるリジン脱炭酸酵素をコードする遺伝子は、使用するコリネ型細菌のコドン使用頻度に応じて核酸配列を再設計してもよい。なお、上記の通り、前述の各生物由来のリジン脱炭酸酵素遺伝子は、データベース(GenBank)に登録されており、生物名とリジン脱炭酸酵素をキーワードとして検索すれば容易に各LDC遺伝子の塩基配列を知ることができる。
 リジン脱炭酸酵素をコードする遺伝子としては、その機能を有する限りにおいては、上記した各生物種の天然のLDC遺伝子に加え、これらのLDC遺伝子の各塩基配列において、1又は数個の塩基の置換、欠失、挿入又は付加されたポリヌクレオチドも含まれる。ここで、「数個」とは、通常1~40個、好ましくは1~30個、さらに好ましくは1~20個、特に好ましくは1~10個、最適に好ましくは1~5個程度である。また、前記リジン脱炭酸酵素をコードする遺伝子としては、その機能を有する限りにおいては、該遺伝子を構成するポリヌクレオチドもしくはその相補鎖の全体またはその一部とストリンジェントな条件でハイブリダイズするポリヌクレオチドが挙げられる。ここで、「ストリンジェントな条件でハイブリダイズするポリヌクレオチド」とは、例えば、もとの塩基配列の任意の少なくとも20個、好ましくは25個、より好ましくは少なくとも30個の連続した配列を1つあるいは複数個選択した核酸配列をプローブとして、公知のハイブリダイセーション技術(Current Protocols I Molecular Biology edit. Ausbel et al.,(1987) Publish.John Wily & Sons Section 6.3-6.4)などを用いて、ハイブリダイズする核酸配列である。ここでストリンジェントな条件としては、例えば50%ホルムアミド存在下でハイブリダイゼーション温度が37℃、より厳しい条件としては42℃、さらに厳しい条件としては65℃で、0.1~2倍濃度のSSC溶液(1倍濃度のSSC溶液の組成:150mM 塩化ナトリウム、15mM クエン酸ナトリウム)を用いて洗浄することにより達成することができる。また、前記リジン脱炭酸酵素をコードするポリヌクレオチドとしては、その機能を有する限りにおいては、配列同一性が、通常85%以上、好ましくは90%以上、更に好ましくは95%以上、さらに好ましくは99%以上有するポリヌクレオチドであってもよい。ここで、「配列同一性」は、配列を比較する2つの塩基配列の塩基ができるだけ多く一致するように2つの配列を整列させ(必要に応じてギャップを挿入する)、一致する塩基の数を全塩基数で除し、百分率で表した数値を意味する。両者の塩基数が異なる場合には、長い方の塩基数で除す。配列同一性を算出するソフトは周知であり、インターネット上でも無料公開されている。このようなリジン脱炭酸酵素をコードする遺伝子は、本来の宿主以外からも取得され得るし、本来の宿主から得られた遺伝子を、当業者に周知のインビトロ変異処理、あるいは部位特異的変異処理することによっても取得され得る。
 コリネ型細菌へリジン脱炭酸酵素をコードする遺伝子(以下、「リジン脱炭酸酵素遺伝子」または「LDC遺伝子」と呼ぶことがあるが、上記の通り天然の遺伝子に限定されるものではない)を導入する場合、リジン脱炭酸酵素遺伝子は、コリネ型細菌染色体外で維持されるプラスミドなどにおいて保持されていても、コリネ型細菌の染色体に組み込まれて保持されていてもよい。
 コリネ型細菌の染色体にリジン脱炭酸酵素遺伝子を組み込む場合、トランスポゾンを利用することにより相同組換えまたはそれ自身の転移能によってリジン脱炭酸酵素遺伝子がコリネ型細菌の染色体中に導入することができる。なお、導入する遺伝子配列の構築や、その確認方法については当業者に周知の分子生物学的手法になされるものであり、例えば、Sambrook et al.,Molecular Clonig:A Laboratory Manual,Second Edition (1989) Cold Spring Harbor Laboratory Press,Cold Spring Harbor,New York、DNA Cloning:A Practical Approach,Volumes I andII (D.N.Glovered.1985)、F.M.Ausubel et al. (eds),Current Protocols in Molecular Biology (1994) John Wiley & Sons,Inc.、PCR Technology:Principles and Application for DNA Amplication,H.Erlich,ed.,Stockton Press等を参照することができる。
 前記遺伝子構築物のコリネ型細菌への導入方法は特に限定されず、例えば、プロトプラスト法(Gene,(1985),39,p.281-286)、エレクトロポレーション法(Bio/Technology,(1989),7,1067-1070)等により導入することができる。
 なお、外来のLDC遺伝子を導入し、カタベリン産生能を有するコリネ型細菌は、例えば特許文献1に記載されているとおり公知である(下記参考例参照)。
 次に、2,2-チオビスエチルアミンに耐性を有するコリネ型細菌について具体的に説明する。
 2,2-チオビスエチルアミンは、
NH-(CH-S-(CH-NH
の構造式で表される強アルカリ性の化学物質である。本発明において、2,2-チオビスエチルアミンに対して耐性を有するとは、2,2-チオビスエチルアミンを含有する培地において野生株よりも早く生育する性質をいう。具体的には、200mM以上の2,2-チオビスエチルアミンを含有するプレート培地上では、野生株はコロニーを形成できないが、2~3日でコロニーを形成する株については2,2-チオビスエチルアミン耐性を有すると判断することができる。なお、コリネ型細菌がプレート培地上で耐性を示すチオビスエチルアミンの濃度には特に制限はないが、250mM以上が好ましく、300mM以上がより好ましく、400mM以上がさらに好ましい。
 コリネ型細菌の2,2-チオビスエチルアミン耐性を評価するための2,2-チオビスエチルアミンを含有する培地は、コリネ型細菌が培養可能な培地であれば特に制限はないが、アミノ酸などが添加されていない最小培地であることが好ましく、表1に示される最小培地であることがより好ましい。
Figure JPOXMLDOC01-appb-T000001
 コリネ型細菌に2,2-チオビスエチルアミンに耐性を付与する方法としては、特に制限はないが、例えば、親株の染色体に何らかの変異をもたらすものであればよい。染色体に変異を導入する技術としては、UV、レーザーなどの照射によって変異をもたらす方法、エタンスルホン酸メチル(EMS)、ニトロソグアニジン(NTG)、4-ジメチルアミノベンゼンジアゾスルホン酸ナトリウム(DAPA)等の変異誘発剤を用いる方法などがある。また、コリネ型細菌を培養している際に生じる自然変異を利用してもよい。なお、カダベリンを生産する能力を有し、かつ2,2-チオビスエチルアミンに耐性を有するコリネ型細菌を提供する方法としては、カダベリンを生産する能力を有するコリネ型細菌に該耐性を付与してもよく、また、該耐性を付与したコリネ型細菌に前述の通りカダベリンを生産する能力を付与してもよい。なお、上記した突然変異誘発処理は、微生物の突然変異誘発処理に採用されている周知の条件で行えばよく、例えば、UV照射の場合、照射量は光源からの距離に依存するが、通常、10秒~30分照射を行う。また、上記したNTG等の各変異誘発剤で処理する場合には、処理濃度は、例えば、100μg/ml~2μg/ml、好ましくは300μg/ml~1.3μg/mlであり、この濃度の培養液中で例えば12時間~48時間培養することにより行うことができる。
 このような突然変異誘発処理後、上記した2,2-チオビスエチルアミン耐性を評価するための培地上で培養し、2,2-チオビスエチルアミン耐性を獲得した株をスクリーニングすることにより2,2-チオビスエチルアミン耐性を有するコリネ型細菌を得ることができる。なお、下記実施例に具体的に記載する通り、NTG処理により、2,2-チオビスエチルアミン耐性を獲得した株が複数得られていることから明らかなように、突然変異誘発処理によって2,2-チオビスエチルアミン耐性株を再現性をもって作出することが可能である。
 その他、本発明で使用するコリネ型細菌は、リジン合成能が向上した変異株であることが好ましい。リジン合成能が向上した変異株としては、例えば、L-リジンもしくは、L-スレオニンによるフィードバック阻害が解除された変異株を利用することができる。これら変異株の取得方法としては、例えば、野生型株に、先の例と同様な変異操作を施した後、S-(2-アミノエチル)-L-システイン(AEC)耐性を指標に選択され、L-リジン生産性となった変異株から取得する方法をあげることができる(特許文献1参照)。なお、AEC耐性を有するか否かは、特許文献1に記載の通り、50μg/mlのAECを含む最少寒天培地上で、30℃で24時間の培養後に増殖が起きるか否かにより判定することができる。
 あるいは、野生型株にAEC耐性を付与する更に好ましい方法として、遺伝子工学的手法を用いる方法である。遺伝子工学的手法を用いる方法に特に制限はなく、例えばコリネ型細菌で複製可能な組み換え体DNAを用いる方法、または相同組換えによって染色体中の目的遺伝子を組み換える方法である。例えば、配列番号14記載のアミノ酸配列において311番目のアミノ酸残基がThr以外のアミノ酸に置換された変異アスパルトキナーゼ遺伝子(「脱感作型AK遺伝子」ということがある)を有することによりS-(2-アミノエチル)-L-システイン耐性を獲得することができる。更に好ましい遺伝子工学的手法は、コリネ型細菌の染色体にあるAK遺伝子を脱感作型AK遺伝子に相同組み換えにより組み換える方法である。さらに、脱感作型AK遺伝子は、AK遺伝子に望みの変異導入する周知の技法(例えば、サイトダイレクテッド・ミュータジェネシス)を利用することができ、このためのキットも市販されている。
 また、リジン合成能が向上した変異株として、AEC耐性変異株の他に、ホモセリン栄養要求性変異株があげられる。野生株はホモセリン栄養要求性を有していないが、ホモセリン栄養要求性株を取得する方法としては、先の例と同様に、例えば、野生型株から変異操作を施した後、ホモセリン栄養要求性を指標に選択され、L-リジン生産性となった変異株から取得する方法や、遺伝子工学的手法によりコリネ型細菌のホモセリンデヒドロゲナーゼ活性を欠損させる方法を挙げることができる(特許文献1)。
 また野生型株にホモセリン栄養要求性を付与する更に好ましい方法として、相同組換えによって染色体中のホモセリンデヒドロゲナーゼ遺伝子(以下HOM遺伝子と略す) にその他の遺伝子を挿入する方法等によりホモセリンデヒドロゲナーゼ活性を欠損させる方法があげられる。その他の遺伝子に特に制限はない。好ましくはLDC遺伝子であり、更に好ましくはLDC遺伝子が野生型株で構成的に発現できるプロモーターとカセットになっているものである。
 本発明では、前記カダベリンを生産する能力を有し、かつ2,2-チオビスエチルアミンに対する耐性を有するコリネ型細菌を培養することでカダベリンを製造する。培養方法としては、回分培養、流加培養または連続培養を用いることができる。連続培養の場合、例えば特開2008-104453号公報に記載のような公知の方法により連続培養を行うことが好ましい。
 カダベリンを製造するための培養培地としては、同化可能な炭素源及び窒素源並びに無機塩類などを含む通常の栄養培地を用いることができる。炭素源としては、例えばグルコース、果糖、シュークロース、マルトース、でんぷん加水分解物等の糖類、エタノールなどのアルコール類、酢酸、乳酸、コハク酸等の有機酸類を用いることができる。窒素源としては、アンモニア、塩化アンモニウム、硫酸アンモニウム、炭酸アンモニウム、酢酸アンモニウムなどの各種無機および有機アンモニウム塩類、尿素、その他窒素含有化合物、ならびに肉エキス、酵母エキス、コーン・スティープ・リカー、大豆加水分解物等の窒素含有有機物を用いることができる。無機塩としてはリン酸第一水素カリウム、リン酸第二水素カリウム、硫酸アンモニウム、塩化ナトリウム、硫酸マグネシウム、炭酸カルシウム等を用いることができる。その他、必要に応じて、ビオチン、チアミン、ビタミンB6等の微量栄養源を加えることができる。これら微量栄養源は、肉エキス、酵母エキス、コーン・スティープ・リカー、カザミノ酸等の培地添加物で代用することもできる。
 また、培養培地にカダベリンの前駆体であるリジンを予め添加しておいても良い。培養培地にリジンを予め添加しておけば、コリネ型細菌がリジンを菌体内に取り込み、リジン脱炭酸酵素がリジンを基質にしてカダベリンに変換をするため、カダベリンの製造効率を高めることができる。培養培地に予めリジンを添加する場合の培養培地中のリジン濃度としては特に制限はないが、コリネ型細菌の増殖へ悪影響がおこらずかつリジン脱炭酸酵素への阻害がおこらない濃度が好ましく、具体的には、0.01から2Mであることが好ましい。
 添加するリジンはL-リジンであることが好ましい。また、添加するリジンはフリー体であってもリジン塩であってもよいが、リジン塩であることが好ましく、リジン塩としてはリジン塩酸塩または後述のジカルボン酸由来のリジン・ジカルボン酸塩が好ましく、より好ましい具体例としては、リジン・アジピン酸塩、リジン・セバシン酸塩、リジン・1,12-ドデカンジカルボン酸塩、リジン・コハク酸塩、リジン・イソフタル酸塩、リジン・テレフタル酸塩が挙げられるが、より好ましい具体例としてはリジン・アジピン酸塩が挙げられる。
 培養条件には特に制限はなく、振とう培養、深部通気撹拌培養等の好気的条件下で行う。培養温度は一般に25℃~42℃に、好ましくは28℃~38℃である。培養時間は、通常1日から6日間である。
 培養pH調整にはアルカリ側に調整する場合はアンモニアを使用することが好ましく、酸性側に調整する場合は塩酸またはジカルボン酸を使用することが好ましく、ジカルボン酸を使用することがより好ましい。これら中和剤を用いて培養pHを5~8に、好ましくはpH6.5~7.5に制御するのがよい。なお、中和剤の状態に制限はなく、気体、液体、固体または水溶液で使用される。特に好ましくは水溶液である。
 中和剤として好ましく使用されるジカルボン酸には特に制限はないが、好ましくは、前記2つのカルボキシル基以外には、実質上、官能基が存在しないジカルボン酸である。ここでいう官能基とは、ポリアミド重合反応(反応条件としては、例えば、反応温度250~270℃、圧力10~20kg/cmで反応時間1から5時間)の際にアミノ基やカルボキシル基等と反応して、ポリマーの分岐を引き起こしたり、ポリマーの結晶化度を低下(結晶化度80%以下)させるような反応基であり、例えば、アミノ基やカルボキシル基がこれに該当するが、それ以外には、酸性基(スルホン酸基、リン酸基、フェノール性水酸基等)や塩基性基(ヒドラジノ基等)やプロトニックな極性基(水酸基等)や開裂性を有する基(エポシキ基、過酸化基等)やその他反応性の高い基(イソシアナート基等)が該当する。一方、ハロゲン置換基や芳香族性置換基、エーテル基、エステル基、アミド基等は反応性が低く、ここでいう官能基には該当しない。
 ジカルボン酸として、より好ましくは、以下の一般式(1)、(2)または(3)で示されるジカルボン酸である。
 HOOC-(CH-COOH・・・(1)
(但し、一般式(1)において、m=0~16)。
Figure JPOXMLDOC01-appb-C000002
(但し、一般式(2)において、n,o=0~16)。
Figure JPOXMLDOC01-appb-C000003
(但し、一般式(3)において、p,q=0~16)。
 また、ジカルボン酸として、更に好ましくは、アジピン酸、セバシン酸、1,12-ドデカンジカルボン酸、コハク酸、イソフタル酸、テレフタル酸である。
 培養液中のカダベリンは、カダベリンのフリー体またはカダベリン塩として存在する(なお、本発明ではこれらを総称して「カダベリン」という。)。培養液中のカダベリンを回収するためにはまず、培養液中からコリネ型細菌を除去する。その際、コリネ型細菌が増殖し、発酵が十分進んでカダベリンが生成した後、菌体と培養上清を分離(分離方法としては、菌体を沈殿除去・遠心分離・膜ろ過分離)しても良いし、あるいは始めから菌体を保持材等で分離・保持あるいは固定化していても良い。菌体が除去されたカダベリンを含む培養液からカダベリンを回収する方法自体は周知であり、例えば、特開2009-207495号公報に記載のようにカダベリン・ジカルボン酸塩として晶析して採取することもできる。また、特開2009-29872号公報に記載のようにNF膜を利用してカダベリンのフリー体を精製し採取することもできる。また、特開2009-28045号公報に記載のように極性有機溶媒で抽出し、蒸留することによりカダベリンのフリー体を採取することもできる(下記参考例参照)。
 以下、本発明について、実施例、比較例を挙げて詳細に説明する。
参考例1 カダベリンおよびリジン濃度のHPLCによる分析方法
 分析サンプル25μlに、内標として1,4-ジアミノブタン(0.03M)を25μl、炭酸水素ナトリウム(0.075M)を150μl、2,4-ジニトロフルオロベンゼン(0.2M)のエタノール溶液を添加混合し37℃で1時間保温し、反応溶液50μlを1mlアセトニトリルに溶解後、10,000rpmで5分間遠心した後の上清10μlを以下の条件でHPLC分析した。
使用カラム:CAPCELL PAK C18(資生堂)
移動相:0.1%(w/w)リン酸水溶液:アセトニトリル=4.5:5.5
検出:UV360nm。
参考例2 L-リジン脱炭酸活性を有し、かつホモセリンデヒドロゲナーゼ活性を欠損しているコリネバクテリウム・グルタミカム(TR-CAD1株)の作製(特許文献1)
(1)HOM遺伝子のクローニング
 HOM活性を欠損させるために、N末端から300アミノ酸領域に該当する遺伝子をクローニングを行った。
 データベース(GenBank)に登録されているHOM遺伝子(Accession No.BA000036)の塩基配列を参考にオリゴヌクレオチドプライマー5’-gaagaattctaaacctcagcatctgcccc-3’(配列番号1)および5’-gaaggatccaaaggacttgtttaccgacgc-3’(配列番号2)を合成した。コリネバクテリウム・グルタミカムATCC13032から常法に従い調製したゲノムDNAの溶液を増幅鋳型として0.2mlのミクロ遠心チューブに0.2μlづつ取り、各プライマーを20pmol、トリス塩酸緩衝液pH8.0(20mM)、塩化カリウム(2.5mM)、ゼラチン(100μg/ml)、各dNTP(50μM)、LATaqDNAポリメラーゼ(2単位)(宝酒造製)となるように各試薬を加え、全量を50μlとした。DNAの変性条件を94℃、30秒、プライマーのアニーリング条件を55℃、30秒、DNAプライマーの伸長反応条件を72℃、3分の各条件でBioRad社のサーマルサイクラーを用い、30サイクルポリメラーゼ連鎖反応させた(以下PCR法と略す)。尚、本参考例におけるPCR法は特に断らない限り、本条件にて行った。このPCR法により得られた産物を1%アガロースにて電気泳動し、HOM遺伝子を含む約0.9kbのDNA断片をゲルから切り出しジーン・クリーン・キット(BIO101社製)により精製した。この断片を、制限酵素のEcoRIおよびBamHIで消化し、得られた0.9kbのEcoRI-BamHI断片を、予めEcoRIおよびBamHIで消化しておいたpHSG298(宝酒造製)のEcoRI/BamHI間隙にライゲーションキットver.1(宝酒造製)を用いて挿入し、得られたプラスミドをpHOM1と命名した。
(2)LDC発現カセットの作成
 まず、LDCをコリネバクテリウム・グルタミカムで構成的に発現させるためのプロモーターとしてカナマイシン耐性遺伝子のプロモーターのクローニングを行った。
 データベース(GenBank)に登録されているpHSG299(AccessionNo.M19415)の塩基配列を参考にオリゴヌクレオチドプライマー5’-gaaccgcggcctgaatcgccccatcatcc-3’(配列番号3)および5’-gaaccatggccccttgtattactg-3’(配列番号4)を合成した。プラスミドpHSG299を増幅鋳型とし、オリゴヌクレオチド(配列番号3)、(配列番号4)をプライマーセットとしたPCR法により得られた産物を1.0%アガロースゲル電気泳動し、カナマイシン耐性遺伝子のプロモーター領域を含む0.3kbのDNA断片をゲルから切り出しジーン・クリーン・キットにより精製した。この断片を、プラスミドベクターpT7blue(Novagen社製)のEcoRV切断部位の3’-末端にT塩基が付加された間隙に、ライゲーションキットver.1を用いて挿入し、得られたプラスミドのうち制限酵素のHindIIIおよびSacIIで消化した際に3.2kbの単一断片になるプラスミドをpKMP1と命名した。
 次に、LDC遺伝子のクローニングを行った。データベース(GenBank)に登録されているLDC遺伝子(AccessionNo.M76411)の塩基配列を参考にオリゴヌクレオチドプライマー5’-gaaccatggacgttattgcaa-3’(配列番号5)、5’-gaaccgcggttattttttgctttcttcttt-3’(配列番号6)を合成した。エシェリシア・コリATCC10798から常法に従い調整したゲノムDNAの溶液を増幅鋳型としてオリゴヌクレオチド(配列番号5)、(配列番号6)をプライマーセットとしたPCR法により得られた産物を1.0%アガロースゲル電気泳動し、LDC遺伝子を含む2.1kbのDNA断片をゲルから切り出しジーン・クリーン・キットにより精製した。この断片を、プラスミドベクターpT7blueのEcoRV切断部位の3’-末端にT塩基が付加された間隙に、ライゲーションキットver.1を用いて挿入し、得られたプラスミドのうちHindIIIおよびNcoIで消化した際に4.0kbの単一断片になるプラスミドをpCADAと命名した。
 最後に、pKMP1をHindIIIおよびNcoIで消化し、この産物を1.2%アガロースゲル電気泳動し、カナマイシン耐性遺伝子のプロモーター領域を含む0.3kbのDNA断片をゲルから切り出しジーン・クリーン・キットにより精製した。こうして得られたHindIII-NcoI断片を、予めHindIIIおよびNcoIで消化しておいたpCADAのHindIII/NcoI間隙にライゲーションキットver.1を用い挿入し、得られたプラスミドをpTM100と命名した。
(3)HOM遺伝子破壊およびLDC遺伝子発現ベクターの作成
 pTM100をSacIIで消化し、この産物を1.0%アガロースゲル電気泳動し、LDC発現カセットを含む2.4kbのDNA断片をゲルから切り出しジーン・クリーン・キットにより精製した。こうして得られたSacII断片を、予めSacIIで消化しておいたpHOM1のSacII間隙にライゲーションキットver.1を用い挿入し、得られたプラスミドをpTM101と命名した。
(4)pTM101の染色体への組み込み
 コリネバクテリウム・グルタミカムATCC13032(以下ATCC13032株と略す)にプラスミドpTM101を、電気穿孔法[FEMSMicrobiologyLetters,65,p.299(1989)]により導入し、カナマイシン(25μg/ml)が添加されているLB(トリプトン(10g/l)(Bacto社製)、酵母エキス(5g/l)(Bacto社製)、塩化ナトリウム(10g/l))寒天培地上で選択した。
 こうして選択された形質転換体から常法に従いゲノムDNA溶液を調製した。このゲノムDNAを鋳型として、オリゴヌクレオチド(配列番号5)(配列番号6)をプライマーセットとして用いたPCR法を行い、得られた産物を1.0%アガロースゲルにて電気泳動したところ、2.1kbの単一のバンドが観察された。このことから、選択された形質転換体が、HOM遺伝子座に、LDC遺伝子が挿入されていることが確認できた。この形質転換体を、コリネバクテリウム・グルタミカムTR-CAD1(以下TR-CAD1株と略す)と命名した。
 13032株はLDC活性を有していないが、TR-CAD1株はLDC活性を有していることが確認された。また、13032株はHOM活性を有しているが、TR-CAD1株はHOM活性を欠損していた。13032株はホモセリンを要求しないが、TR-CAD1株は、ホモセリンを要求した。こうして、LDC活性を有し、かつHOM活性を欠損(ホモセリン栄養要求性)しているコリネバクテリウム・グルタミカムTR-CAD1株が作製できた。
参考例3 L-リジン脱炭酸活性を有し、かつホモセリン要求性を有し、かつS-(2-アミノエチル)-L-システイン耐性を有するコリネバクテリウム・グルタミカム(TR-CAD2)株の作製(特許文献1)
(1)脱感作型AK遺伝子の作成
 AK遺伝子に変異を導入し、脱感作型AK遺伝子を作成するためにAK遺伝子をクローニングを行った。
 データベース(GenBank)に登録されているAK遺伝子(Accession No.BA000036)の塩基配列を参考にオリゴヌクレオチドプライマー5’-acagaattcgtggccctggtcgtacagaa-3’(配列番号7)および5’-catctcgagttagcgtccggtgcctgcat-3’(配列番号8)を合成した。コリネバクテリウム・グルタミカムATCC13032から常法に従い調整したゲノムDNAの溶液を増幅鋳型として、オリゴヌクレオチド(配列番号7)、(配列番号8)をプライマーセットとしたPCR法により得られた産物を1.0%アガロースゲル電気泳動し、AK遺伝子を含む約1.3kbのDNA断片をゲルから切り出しジーン・クリーン・キットにより精製した。この断片を、EcoRIおよびXhoIで消化し、得られた1.3kbのEcoRI-XhoI断片を、予めEcoRIおよびXhoIで消化しておいたpHSG396(宝酒造製)のEcoRI/XhoI間隙にライゲーションキットver.1を用いて挿入し、得られたプラスミドをpAK1と命名した。
 次に、クローニングしたAK遺伝子の931番目から933番目のacc(Thr)をatg(Ile)に変異させるためにオリゴヌクレオチドプライマー5’-cgacatcatcttcacctgcc-3’(配列番号9)および5’-ggcaggtgaagatgatgtcg-3’(配列番号10)を合成した。pAK1を増幅鋳型として、オリゴヌクレオチド(配列番号9)、(配列番号10)をプライマーセットとしてQuikChangeサイトダイレクテッド・ミュータジェネシス・キット(ストラタジーン社製)を用い得られたプラスミドをpTM102と命名した。このpTM102中のAK遺伝子を常法によりシークエンスしたところ、目的通り931番目から933番目のacc(Thr)をatg(Ile)に変異されており、脱感作型AK遺伝子が作成できていることが確認できた。
(2)pTM102の染色体への組み込み
 データベース(GenBank)に登録されているpFK398(AccessionNo.D29826)の塩基配列を参考にクロラムフェニコール耐性遺伝子のオリゴヌクレオチドプライマー5’-acggtcgactcgcagaataaataaatcctggtg-3’(配列番号11)および5’-atgaggcctgagaggcggtttgcgtattgga-3’(配列番号12)を合成した。
 TR-CAD1株にプラスミドpTM102を、電気穿孔法により導入し、カナマイシン(25μg/ml)およびクロラムフェニコール(10μg/ml)が添加されているLB寒天培地上で選択した。
 こうして選択された形質転換体から常法に従いゲノムDNA溶液を調製した。このゲノムDNAを鋳型として、オリゴヌクレオチド(配列番号11)(配列番号12)をプライマーセットとして用いたPCR法を行い、得られた産物を1.0%アガロースゲルにて電気泳動したところ、1.0kbの単一のバンドが観察された。このことから、選択された形質転換体が、AK遺伝子座に、クロラムフェニコール耐性遺伝子が挿入されていることが確認できた。この形質転換体を、コリネバクテリウム・グルタミカムTR-CAD2(以下TR-CAD2株と略す)と命名した。
(3)脱感作型AK遺伝子のTR-CAD2株の染色体上への導入の確認
 データベース(GenBank)に登録されているAK遺伝子(Accession No.BA000036)の塩基配列を参考に、AKのN末端より上流0.1kbのオリゴヌクレオチドプライマー5’-ttggaacgcgtcccagtggc-3’(配列番号13)を合成した。
 TR-CAD2株から常法に従いゲノムDNA溶液を調整した。このゲノムDNAを鋳型として、オリゴヌクレオチド(配列番号12)(配列番号13)をプライマーセットとして用いたPCR法を行い、得られた産物を1.0%アガロースゲルにて電気泳動し、AK遺伝子およびクロラムフェニコール耐性遺伝子を含む3.1kbのDNA断片をゲルから切り出しジーン・クリーン・キットにより精製した。この断片を、プラスミドベクターpT7blueのEcoRV切断部位の3’-末端にT塩基が付加された間隙に、ライゲーションキットver.1を用いて挿入し、得られたプラスミドをpAK2と命名した。このpAK2中のAK遺伝子を常法によりシークエンスしたところ、目的通りの変異が含まれていることが確認できたため、TR-CAD2株は染色体上で発現可能な脱感作型AK遺伝子が導入できたことが確認できた。こうして、LDC活性を有し、かつHOM活性を欠損(ホモセリン栄養要求性)し、かつAEC耐性であるコリネバクテリウム・グルタミカム(TR-CAD2株)が作製できた。
実施例1 カダベリンを生産する能力を有し、かつ2,2’-チオビス(エチルアミン)に対する耐性を有するコリネ型細菌の取得
 上記の通り得られた、L-リジン脱炭酸酵素活性を有し、かつホモセリンデヒドロゲナーゼ活性を欠損することによりホモセリン栄養要求性変異株となったコリネバクテリウム・グルタミカム(TR-CAD1株)、およびL-リジン脱炭酸酵素活性を有し、かつホモセリンデヒドロゲナーゼ活性を欠損することによりホモセリン栄養要求性変異株となり、かつS-(2-アミノエチル)-L-システイン耐性(AEC耐性)を有するコリネバクテリウム・グルタミカム(TR-CAD2株)を、各々5mlのBHI(Brain Heart Infusion)液体培地で一晩前培養し、得られた前培養液のうち2.5mlを新しいBHI液体培地に植菌、濁度(A600)が1~2に達するまで培養した。培養後、菌体をトリスマレイン酸緩衝液で2回洗浄し、洗浄した菌体を12mlのトリスマレイン酸緩衝液に懸濁、懸濁液を900μlずつ試験管に分注し、各々640μg/mlのNTG溶液を添加した。混合溶液を、30℃で40分激しく振とうし、2mlのBHI培地に懸濁して氷冷。懸濁液をトリスマレイン酸緩衝液で2回洗浄後、50mlのBHI培地を添加し、28度で一晩培養した。培養液を、トリスマレイン酸緩衝液で2回洗浄し、2,2-チオビスエチルアミンを180mM、220mM、250mM、300mMまたは400mMを添加した表1に示す培地で2~3日培養後、コロニーを形成した菌体を2,2-チオビスエチルアミン耐性株として取得し、それぞれTR-CADA1-C、TR-CADA1-0~6株、TR-CADA2-C、TR-CADA2-0~6株(表2)とした。更に取得した耐性株は、該耐性株を取得した培地で3日間培養し、コロニーを形成すること、すなわち2,2-チオビスエチルアミン耐性が付与されたことを確認した。
 なお、TR-CADA1-6株、TR-CADA2-5株は、独立行政法人製品評価技術基盤機構(NITE)にそれぞれ受領番号NITE BP-1002、NITE BP-1003として国際寄託されている。
Figure JPOXMLDOC01-appb-T000004
実施例2,3、比較例1,2
 TR-CADA1-1~6株(実施例2)、TR-CADA2-1~6(実施例3)、TR-CADA1株(比較例1)、TR-CADA1-0株(比較例2)、TR-CADA2(比較例3)、TR-CADA2-0(比較例4)によるカダベリン発酵を行った。滅菌したBHI培地5mlに各株を1白金耳植菌し、30℃で24時間振とうして前々培養を行った。この前々培養液を前々培養と同じ培地50mlに全量植菌し、30℃、振幅30cmで、120rpmの条件下で24時間培養して前培養を行った。次に、表3に示すMMP培地950mlに前培養液全量を植菌し、滅菌した空気を0.07vvmで通気しながら、30℃、攪拌翼回転数800rpm、pHを6.7に調整しながら50時間培養を行った。中和剤として硫酸水溶液(3M)およびアンモニア水(3M)で行った。
Figure JPOXMLDOC01-appb-T000005
 培養終了後、4℃、8,000rpmで10分間遠心分離することで菌体を除去し、培養上清を回収した。この培養上清中のカダベリンおよびリジンをHPLCにより分析した。また、グルコース濃度の測定には、“グルコーステストワコーC”(登録商標)(和光純薬社製)を用いた。カダベリン対糖収率(生産されたカダベリン重量/消費したグルコース重量)×100(%))を計算し、それら結果を表4に示す。
Figure JPOXMLDOC01-appb-T000006
 その結果、実施例2と比較例1、比較例2及び実施例3と比較例3、比較例4をそれぞれ比較すると、親株に対し、2,2-チオビスエチルアミン耐性を付与することによって、カダベリンの蓄積濃度および対糖収率が向上していることが明らかになった。
 得られた培養上清からのカダベリンの回収は、種々の公知の方法により可能である。以下に好ましい公知の回収方法を例示する。
参考例4 培養上清からのカダベリンの回収
 前述の方法で得られたカダベリン発酵液の培養上清に5規定の水酸化ナトリウムを添加し、pHを13に調整する。次いで、ナノ濾過膜に通じて、無機塩成分および、微量の残留菌体を除去し、ナノ濾過膜透過液を回収する。次いで、回収したナノ濾過膜透過液を逆浸透膜に通じてカダベリン濃度が18重量%程度になるまで濃縮、回収する。次いで、回収した濃縮液をさらにロータリーエバポレーターなどにより減圧濃縮することにより水を除去し、50重量%程度のカダベリン水溶液が得られる。次にクロロホルムを等量加え、クロロホルム相にカダベリンを抽出する。最後にこのクロロホルム相を、減圧蒸留(30mmHg、80℃)することによりフリーのカダベリンを単離する。
 本発明により、カダベリンを工業的に製造することができる。
NITE BP-1002
NITE BP-1003
[規則26に基づく補充 06.01.2012]
 
Figure WO-DOC-RO134

Claims (5)

  1.  カダベリンを生産する能力を有し、かつ2,2’-チオビス(エチルアミン)に対する耐性を有するコリネ型細菌を培養することを含む、カダベリンの製造方法。
  2.  前記コリネ型細菌が250mM以上の2,2’-チオビス(エチルアミン)に対する耐性を有する、請求項1に記載のカダベリンの製造方法。
  3.  前記コリネ型細菌がリジン脱炭酸酵素活性を有する、請求項1または2に記載のカダベリンの製造方法。
  4.  前記コリネ型細菌がコリネバクテリウム属およびブレビバクテリウム属からなる群より選ばれる、請求項1~3のいずれかに記載のカダベリンの製造方法。
  5.  前記コリネ型細菌がホモセリン栄養要求性および/またはS-(2-アミノエチル)-L-システイン耐性を有する、請求項1~4のいずれかに記載のカダベリンの製造方法。
PCT/JP2011/078391 2010-12-08 2011-12-08 カダベリンの製造方法 WO2012077741A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020137012189A KR20130135859A (ko) 2010-12-08 2011-12-08 카다베린의 제조 방법
US13/992,081 US9080190B2 (en) 2010-12-08 2011-12-08 Method for producing cadaverine
BR112013014197-2A BR112013014197B1 (pt) 2010-12-08 2011-12-08 método para produzir cadaverina
CN201180059354.8A CN103328643B (zh) 2010-12-08 2011-12-08 尸胺的制造方法
EP11846664.8A EP2650374B1 (en) 2010-12-08 2011-12-08 Method for producing cadaverine
JP2012512116A JPWO2012077741A1 (ja) 2010-12-08 2011-12-08 カダベリンの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010273340 2010-12-08
JP2010-273340 2010-12-08

Publications (1)

Publication Number Publication Date
WO2012077741A1 true WO2012077741A1 (ja) 2012-06-14

Family

ID=46207224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078391 WO2012077741A1 (ja) 2010-12-08 2011-12-08 カダベリンの製造方法

Country Status (7)

Country Link
US (1) US9080190B2 (ja)
EP (1) EP2650374B1 (ja)
JP (1) JPWO2012077741A1 (ja)
KR (1) KR20130135859A (ja)
CN (1) CN103328643B (ja)
BR (1) BR112013014197B1 (ja)
WO (1) WO2012077741A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014113999A1 (en) * 2013-01-28 2014-07-31 Cathay R&D Center Co., Ltd. Purification of cadaverine
CN105612257A (zh) * 2013-01-28 2016-05-25 上海凯赛生物技术研发中心有限公司 使用高沸点溶剂的尸胺纯化
US9919996B2 (en) 2013-01-28 2018-03-20 Cathay R&D Center Co., Ltd. Preparation of cadaverine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104561221B (zh) * 2013-10-10 2018-12-28 上海凯赛生物技术研发中心有限公司 一种利用两种或者两种以上的微生物菌种生产发酵产品的方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5386089A (en) * 1976-12-29 1978-07-29 Ajinomoto Co Inc Preparation of l-lysine by fermentation
JPH03201978A (ja) * 1989-03-30 1991-09-03 Daiichi Seito Kk L―リジンを生産する微生物およびこれを用いたl―リジンの製造方法
JP2002223770A (ja) 2001-02-01 2002-08-13 Toray Ind Inc 宿主およびカダベリンの製造方法
JP2004222569A (ja) 2003-01-22 2004-08-12 Toray Ind Inc コリネ型細菌、ならびにカダベリンもしくはその塩およびそれらの製造方法
WO2007113127A1 (en) 2006-03-30 2007-10-11 Basf Se Process for the production of cadaverine
JP2008104453A (ja) 2006-09-26 2008-05-08 Toray Ind Inc 連続発酵によるカダベリンの製造方法
WO2008092720A1 (de) 2007-02-01 2008-08-07 Evonik Degussa Gmbh Verfahren zur fermentativen herstellung von cadaverin
WO2008101850A1 (en) 2007-02-19 2008-08-28 Evonik Degussa Gmbh Method of producing methionine in corynebacteria by over-expressing enzymes of the pentose phosphate pathway
JP2009029872A (ja) 2007-07-25 2009-02-12 Toyo Styrene Co Ltd スチレン系樹脂組成物及び発泡シートの製造方法
JP2009028045A (ja) 2002-04-08 2009-02-12 Toray Ind Inc ポリアミド原料用カダベリン
JP2009207495A (ja) 2009-06-15 2009-09-17 Toray Ind Inc カダベリン・脂肪族ジカルボン酸塩

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2007218753B2 (en) * 2006-02-24 2012-08-16 Toray Industries, Inc. Method of producing chemical product and continuous fermentation apparatus

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5386089A (en) * 1976-12-29 1978-07-29 Ajinomoto Co Inc Preparation of l-lysine by fermentation
JPH03201978A (ja) * 1989-03-30 1991-09-03 Daiichi Seito Kk L―リジンを生産する微生物およびこれを用いたl―リジンの製造方法
JP2002223770A (ja) 2001-02-01 2002-08-13 Toray Ind Inc 宿主およびカダベリンの製造方法
JP2009028045A (ja) 2002-04-08 2009-02-12 Toray Ind Inc ポリアミド原料用カダベリン
JP2004222569A (ja) 2003-01-22 2004-08-12 Toray Ind Inc コリネ型細菌、ならびにカダベリンもしくはその塩およびそれらの製造方法
WO2007113127A1 (en) 2006-03-30 2007-10-11 Basf Se Process for the production of cadaverine
JP2008104453A (ja) 2006-09-26 2008-05-08 Toray Ind Inc 連続発酵によるカダベリンの製造方法
WO2008092720A1 (de) 2007-02-01 2008-08-07 Evonik Degussa Gmbh Verfahren zur fermentativen herstellung von cadaverin
WO2008101850A1 (en) 2007-02-19 2008-08-28 Evonik Degussa Gmbh Method of producing methionine in corynebacteria by over-expressing enzymes of the pentose phosphate pathway
JP2009029872A (ja) 2007-07-25 2009-02-12 Toyo Styrene Co Ltd スチレン系樹脂組成物及び発泡シートの製造方法
JP2009207495A (ja) 2009-06-15 2009-09-17 Toray Ind Inc カダベリン・脂肪族ジカルボン酸塩

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
"Current Protocols I Molecular Biology", 1987, JOHN WILY & SONS
"Current Protocols in Molecular Biology", 1994, JOHN WILEY & SONS, INC.
"PCR Technology: Principles and Application for DNA Amplication", STOCKTON PRESS
BIO/TECHNOLOGY, vol. 7, 1989, pages 1067 - 1070
CORPILLO, D. ET AL.: "Induction and characterization of a novel amine oxidase from the yeast Kluyveromyces marxianus", YEAST, vol. 20, 15 April 2003 (2003-04-15), pages 369 - 379, XP055126026 *
D. N. GLOVERED: "DNA Cloning: A Practical Approach", vol. I, II, 1985
EKWEALOR, I.A. ET AL.: "Screening of UV- irradiated and S-2-aminoethyl-Lcysteine resistant mutants of Bacillus megaterium for improved lysine accumulation", AFRICAN JOURNAL OF BIOTECHNOLOGY, vol. 5, 16 November 2006 (2006-11-16), pages 2312 - 2314, XP055126023 *
FEMS MICROBIOLOGY LETTERS, vol. 65, 1989, pages 299
GENE, vol. 39, 1985, pages 281 - 286
INT. J. SYST., BACTERIOL., vol. 41, 1981, pages 225
PISONI, R.L. ET AL.: "Detection and characterization of a transport system mediating cysteamine entry into human fibroblast lysosomes. Specificity for aminoethylthiol and aminoethylsulfide derivatives", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 270, 1995, pages 1179 - 1184, XP055126025 *
SAMBROOK ET AL.: "Molecular Clonig: A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
STEFAINE KIND, METABOLIC ENGINEERING, vol. 12, 2010, pages 341 - 351

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014113999A1 (en) * 2013-01-28 2014-07-31 Cathay R&D Center Co., Ltd. Purification of cadaverine
CN105612257A (zh) * 2013-01-28 2016-05-25 上海凯赛生物技术研发中心有限公司 使用高沸点溶剂的尸胺纯化
CN105658802A (zh) * 2013-01-28 2016-06-08 上海凯赛生物技术研发中心有限公司 尸胺的纯化
EP2948558A4 (en) * 2013-01-28 2016-08-03 Cathay R&D Ct Co Ltd CADAVERIN PURIFICATION USING HIGH BOILING SOLVENT
US9546127B2 (en) 2013-01-28 2017-01-17 Cathay R&D Center Co., Ltd. Purification of cadaverine
US9919996B2 (en) 2013-01-28 2018-03-20 Cathay R&D Center Co., Ltd. Preparation of cadaverine

Also Published As

Publication number Publication date
CN103328643A (zh) 2013-09-25
BR112013014197A2 (pt) 2017-06-06
CN103328643B (zh) 2015-08-19
US9080190B2 (en) 2015-07-14
EP2650374A4 (en) 2015-07-08
BR112013014197B1 (pt) 2020-11-17
EP2650374A1 (en) 2013-10-16
KR20130135859A (ko) 2013-12-11
US20130323800A1 (en) 2013-12-05
EP2650374B1 (en) 2018-05-30
JPWO2012077741A1 (ja) 2014-05-22

Similar Documents

Publication Publication Date Title
JP2019528075A (ja) 新規プロモーター及びその用途
JP2004222569A (ja) コリネ型細菌、ならびにカダベリンもしくはその塩およびそれらの製造方法
JP5853695B2 (ja) カダベリンの製造方法
EP3109318B1 (en) Microorganisms for producing putrescine or ornithine and process for producing putrescine or ornithine using them
JP2020533947A (ja) 新規な5’−イノシン酸デヒドロゲナーゼ及びこれを用いた5’−イノシン酸の製造方法
WO2012077744A1 (ja) カダベリンの製造方法
EP1786899A2 (en) L-glutamic acid-producing microorganism and a method for producing l-glutamic acid
JP2021514602A (ja) 新規なプロモーター及びこれを用いたl−アミノ酸の生産方法
WO2011129293A1 (ja) 1,5-ペンタンジアミンの製造方法
WO2012077741A1 (ja) カダベリンの製造方法
WO2022017223A1 (zh) 丙酮酸羧化酶基因启动子的突变体及其应用
CN109415743A (zh) 制备d-木糖酸盐的方法和棒状杆菌型细菌
JP7350994B2 (ja) 新規なプロモーター及びそれを用いた標的物質生産方法
WO2008088149A1 (en) Corynebacterium glutamicum variety producing l-arginine and method for fabricating the same
EP2837688A1 (en) Method for producing amino acid
JP5170012B2 (ja) カダベリン発酵コリネ型細菌を用いたポリアミドの製造方法
WO2023038066A1 (ja) 芳香族化合物の製造方法
CN116583605A (zh) L-氨基酸的制造方法
AU2021443607A1 (en) Corynebacterium glutamicum variant with improved l-lysine production ability, and method for producing l-lysine using same
JP2023514686A (ja) L-分岐鎖アミノ酸の生産能が強化された微生物及びそれを用いたl-分岐鎖アミノ酸の生産方法
CN116042591A (zh) 磷酸甲基嘧啶合酶突变体及其在构建谷氨酸生产菌株中的应用
CN115449518A (zh) 基于mdh基因的具有启动子活性的多核苷酸及其用途

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012512116

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11846664

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137012189

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13992081

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013014197

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013014197

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130607