WO2008092720A1 - Verfahren zur fermentativen herstellung von cadaverin - Google Patents

Verfahren zur fermentativen herstellung von cadaverin Download PDF

Info

Publication number
WO2008092720A1
WO2008092720A1 PCT/EP2008/050222 EP2008050222W WO2008092720A1 WO 2008092720 A1 WO2008092720 A1 WO 2008092720A1 EP 2008050222 W EP2008050222 W EP 2008050222W WO 2008092720 A1 WO2008092720 A1 WO 2008092720A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
microorganisms
coding
lysine
cadaverine
Prior art date
Application number
PCT/EP2008/050222
Other languages
English (en)
French (fr)
Inventor
Stefan Verseck
Harald HÄGER
Andreas Karau
Lothar Eggeling
Hermann Sahm
Original Assignee
Evonik Degussa Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Degussa Gmbh filed Critical Evonik Degussa Gmbh
Priority to MX2009005666A priority Critical patent/MX2009005666A/es
Priority to CA002670074A priority patent/CA2670074A1/en
Priority to JP2009547620A priority patent/JP2010517519A/ja
Priority to US12/517,923 priority patent/US20110039313A1/en
Priority to EP08707853A priority patent/EP2121899A1/de
Publication of WO2008092720A1 publication Critical patent/WO2008092720A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/001Amines; Imines

Definitions

  • the invention relates to recombinant microorganisms in which polynucleotides encoding lysine decarboxylase are amplified, and cadaverine (1, 5-diaminopentane) is produced by fermentation using the same, preference being given to C source, renewable raw materials, such as e.g. Glucose, sucrose, molasses, etc. are used.
  • Polyamides are an important group of polymers that make up a range of specialty plastics for the automotive, sports and lifestyle industries.
  • Diamines are important monomeric constituents of these polyamides. Together with dicarboxylic acids they condense to a variety of polymers, the chain lengths of the diamines and dicarboxylic determine the properties of the plastics.
  • diamines have been chemically synthesized via the intermediate of dicarboxylic acids from petroleum-based raw materials (Albrecht, Klaus et al., Plastics, Winnacker-Kuechler: Chemical Engineering (5th Edition) (2005), 5 465-819), or by chemical decarboxylation of amino acids (Suyama, Kaneo, The Decarboxylation of Amino Acids (4), Yakugaku Zasshi, (1965), Vol. 85 (6), 513-533). In the face of rising oil prices, a rapid switch to the synthesis of diamines is from renewable sources
  • a cadaverine producer can be produced by introducing an optionally heterologous gene coding for a lysine decarboxylase.
  • Organisms capable of producing cadaverine have previously been described (Tabor, Herbert, Hafner, Edmund W, Tabor, Celia White, Construction of an Escherichia coli strain unable to synthesize putrescine, spermidine, or cadaverine: characterizing two genes controlling lysine decarboxylase Kamios Yoshiyuki Molecular dissection of the Selenomonas ruminantium cell envelope and lysine decarboxylase involved in the biosynthesis of a polyamine covalently linked to the cell wall peptidoglycan layer (Bioscience, 1980), 144 (3), 952-6, Takatsuka Yumiko , biotechnology, and biochemistry (2004), 68 (1), 1-19).
  • E. coli strains carrying a plasmid for overexpression of the host lysine decarboxylase This E. coli strain forms cadaverine in an increased amount after overexpression of its own cadA gene (JP 2002-223770).
  • these organisms were used as whole cell catalysts for the conversion of externally supplied lysine (JP 2002-223771, JP 2004-000114, EP 1482055), the decarboxylase also being present at the cell surface of E. coli can be presented (JP 2004-208646).
  • Another method is the conversion of lysine HCL using the isolated cadA enzyme to cadaverine (JP 2005-060447).
  • the inventors have set themselves the task of providing new processes for the fermentative production of cadaverine from renewable raw materials. Description of the invention
  • the invention relates to cadaverine-forming recombinant microorganisms having a high L-Lysintiter, in which there are polynucleotides coding for lysine decarboxylase in comparison with microorganisms which do not change with respect to this enzyme and which function as parent strain.
  • the label "with a high lysine titer" expresses that the parent strains are preferably L-lysine producers, which differ from the parent strains, such as wild-type strains, in that they produce L-lysine on an increased scale and in the Cell or in the surrounding fermentation medium
  • the titer is measured in mass / volume (g / l).
  • Methods of mutagenesis, selection and mutant selection are used to eliminate the control mechanisms and to improve the performance characteristics of these microorganisms.
  • strains are obtained which are resistant to antimetabolites, e.g. the lysine analogue S- (2-aminoethyl) cysteine or the valine analogue 2-thiazolalanine and chemical compounds for example L-amino acids such as L-lysine or L-valine.
  • Suitable polynucleotides which can code for lysine decarboxylase from strains of eg Escherichia coli, Bacillus halodurans, Bacillus cereus, Bacillus subtilis, Bacillus thuringensis, Burkholderia ambifaria, Burkholderia vietnamensia, Burkholderia cenocepatia, Chromobacterium violaceum, Selenomonas ruminantium, Vibrio cholerae, Vibrio parahaemolyticus, Streptomyces coelicolor, Streptomyces pilosus, Eikenalla corrodens, acidaminophilum Eubacterium, Francisella tulariensis, Geobacillus kaustophilus, Salmonella typhi, Salmonella typhimurium, Hafnia alvei, Neisseria meningitidis, Thermoplasma acidophilum, Plasmodium falciparum, Kine
  • Lysine decarboxylase-encoding polynucleotides are preferably derived from Escherichia coli SEQ ID NO: 1. This is available in internationally available databases, e.g. available from the National Library of Medicine and the National Institute of Health (NIH) of the United States of America, under the accession number NC 007946. The same sequence is also freely available at the Institut Pasteur (France) on the colibri web server under the number b4131 or the cadA. The same sequence is also freely available through the web server ExPasy maintained by the Swiss Institute of Bioinformatics under the number P0A9H4 or the cadA gene.
  • cadaverine is also supported by additionally producing a polynucleotide encoding a protein called cadaverine / lysine antiporter, preferably from Escherichia coli, in the cadaverine-producing recombinant cell (SEQ ID NO: 3; TC 2.A.3.2.2) overexpressed, which facilitates the transport of said compound from the cell into the medium.
  • cadaverine / lysine antiporters are derived from strains of, for example, Escherichia coli, Thermoplasma acidophilum, or Vibrio cholerae.
  • transporters that naturally export cadaverine or related diamines, or those who mutate gain this ability to export cadaverine or related diamines can be used.
  • the invention also includes the overexpression of endogenous transgene genes of C. glutamicum which encode proteins that catalyze the export of cadaverine.
  • the invention implies that preferably no competing lysine or arginine export occurs in cadaverine producing strains, i. H. that the corresponding export genes or export functions are weakened or switched off.
  • the invention relates to recombinant microorganisms, in particular coryneform bacteria, which contain the polynucleotides which code for the proteins mentioned amplified.
  • the nucleotide sequences coding for the lysine decarboxylase and / or the lysine / cadaverine antiporter are preferably amplified, in particular overexpressed.
  • Preferred microorganisms are from the families Enterobacteriaceae, in particular the genus Escherichia, Bacillus and in particular from the species E. coli and B. subtilis, wherein the cadaverine production-promoting lysine decarboxylase may be of endogenous or exogenous origin.
  • the overexpressed polynucleotides encoding the lysine decarboxylase and / or lysine / cadaverine antiporter recombinant microorganisms of the present invention can be derived from microorganisms of various families or genera.
  • microorganisms of the invention Due to the overexpression of said genes, individually or together, these microorganisms produce cadaverine to a greater extent compared to microorganisms in which these genes are not overexpressed.
  • the recombinant microorganisms of the invention are formed by recombinant genetic engineering techniques known to those skilled in the art.
  • the vectors carrying the said genes are introduced into the cells by conventional means.
  • the invention also relates to vectors, in particular plasmids, which contain the polynucleotides used according to the invention and optionally replicate in the bacteria.
  • the invention also relates to the recombinant microorganisms which have been transformed with said vectors.
  • the two polynucleotides may be under the action of a single or two promoters.
  • amplification in this context describes the increase in the intracellular activity or concentration of one or more enzymes or proteins in a microorganism which are encoded by the corresponding DNA, for example by the copy number of the gene (s) of the ORF or ORFs are increased by at least one (1) copy, a functionally linked to a strong promoter to the gene, or a gene or allele or ORF encoding a corresponding enzyme or protein having a high activity and optionally combining these measures.
  • lac, tac and trp are called strong promoters.
  • An open reading frame is a segment of a nucleotide sequence which can encode or encode a protein or polypeptide or ribonucleic acid, according to the state of the art Technique no function can be assigned. After assigning a function to the relevant section of the nucleotide sequence is generally spoken of a gene. Alleles are generally understood as alternative forms of a given gene. The forms are characterized by differences in the nucleotide sequence.
  • the gene product is generally referred to as that of a nucleotide sequence, i. an ORF, a gene or an allele encoded protein or the encoded ribonucleic acid.
  • the activity or concentration of the corresponding protein is generally increased by at least 10%, 25%, 50%, 75%, 100%, 150%, 200%, 300%, 400% or 500%. , Up to 1000% or 2000% based on the wild-type protein or on the activity or concentration of the protein increased in the non-recombinant for the corresponding enzyme or protein microorganism or parent strain.
  • a non-recombinant microorganism or parent strain is understood to be the microorganism on which the enhancement or overexpression according to the invention is carried out.
  • genes or gene constructs may either be present in different copy number plasmids or be integrated and amplified in the chromosome. Alternatively, overexpression of the genes in question can be achieved by changing the composition of the medium and culture.
  • plasmids that are replicated in coryneform bacteria.
  • Numerous known plasmid vectors such as pZ1 (Menkel et al., Applied and Environmental Microbiology (1989) 64: 549-554), pEKEx1 (Eikmanns et al., Gene 102: 93-98 (1991)) or pHS2-l (Sonnen et al., Gene 107: 69-74 (1991)) the cryptic plasmids pHM1519, pBLI or pGAl.
  • Other plasmid vectors such.
  • pCG4 US-A 4,489,160
  • pNG2 Serwold-Davis et al., FEMS Microbiology Letters 66, 119-124 (1990)
  • pAG1 US-A 5,158,891
  • Tauch et al. Journal of Biotechnology 104 (1-3), 27-40 (2003).
  • the method of chromosomal gene amplification can be used to increase the copy number, as described for example by Reinscheid et al. (Applied and Environmental Microbiology 60, 126-132 (1994)) for duplication or amplification of the hom-thrB operon.
  • the complete gene or allele is cloned into a plasmid vector which can replicate in a host (typically E. coli) but not in C. glutamicum.
  • vectors examples include pSUP301 (Simon et al., Bio / Technology 1, 784-791 (1983)), pKl ⁇ mob or pK19mob (Schäfer et al., Gene 145, 69-73 (1994)), pGEM-T (Promega Corporation , Madison, WI, USA), pCR2.1-TOPO (Shuman, Journal of Biological Chemistry 269: 32678-84 (1994), US-A 5,487,993), pCR® Blunt (Invitrogen, Groningen, The Netherlands, Bernard et al.
  • the plasmid vector containing the gene or allele to be amplified is then converted by conjugation or transformation into the desired strain of C. glutamicum.
  • the method of conjugation is described by Shufer et al. (Applied and Environmental Microbiology 60, 756-759 (1994)). Methods for transformation are described by Thierbach et al. (Applied Microbiology and Biotechnology
  • the resulting strain contains at least two copies of the gene or allele in question.
  • the method of tandem amplification as described in WO 03/014330 or the method of amplification by integration to a desired location as described in WO 03/040373 to increase the copy number by at least 1, 2 or 3 can be used ,
  • attenuation or “attenuation” describes the reduction or elimination of the intracellular activity of one or more enzymes or proteins in a microorganism which are encoded by the corresponding DNA, for example by using a weak promoter or a gene or allele used which codes for a corresponding enzyme with a low activity or inactivates the corresponding gene or enzyme or protein and optionally combines these measures.
  • the activity or concentration of the corresponding protein is generally 0 to 75%, 0 to 50%, 0 to 25%, 0 to 10% or 0 to 5% of the activity or concentration of the wild-type protein, respectively the activity or concentration of the protein in the initial microorganism lowered.
  • a “starting microorganism” is meant the microorganism in which the attenuation of the corresponding gene is carried out.
  • Coryneform bacteria in which the said polynucleotides coding for the enzyme lysine decarboxylase are amplified, are preferably present in overexpressed form.
  • coryneform bacteria naturally do not contain any polynucleotide encoding this enzyme, the Presence of a copy of a lysine decarboxylase-encoding gene derived from a foreign organism referred to as overexpression.
  • the invention also provides a process for the production of cadaverine in which microorganisms, in particular coryneform bacteria, are transformed with one of said polynucleotides, the fermented recombinant bacteria being fermented in a suitable medium under conditions suitable for the expression of the lysine decarboxylase encoded by said polynucleotide and the cadaverine formed is accumulated and isolated, if appropriate also with further dissolved constituents from the fermentation broth and / or the biomass (> 0 to 100%).
  • the invention particularly relates to a process for the production of cadaverine, in which the following steps are generally carried out:
  • the nucleotide sequence of the E. coli cadA gene is shown in SEQ ID NO: 1.
  • Corynebacterium in particular the species known in the art Corynebacterium glutamicum is mentioned.
  • Corynebacterium glutamicum is mentioned.
  • Microorganisms serve z.
  • Suitable precursors of the strains used according to the invention are known strains of coryneform bacteria which have the ability to produce L-lysine, for example the strains:
  • DSM Type Culture Collection
  • coryneform bacteria with the species name "Brevibacterium flavum”, “Brevibacterium lactofermentum” and “Brevibacterium divaricatum” are categorized as Corynebacterium glutamicum
  • Corynebacterium molassecola also belongs to the species Corynebacterium glutamicum.
  • the microorganisms suitable for the measures according to the invention preferably have the ability to produce L-lysine, to enrich it in the cell or to precipitate it into the nutrient medium surrounding it and to accumulate it there.
  • the strains used have the ability to have> (at least) 1 g / L,> 15 g / L,> 20 g / L or> _ 30 g / L L-lysine in £ (maximum) 120 hours, £ 96 hours ⁇ 48 hours, ⁇ 36 hours, ⁇ 24 hours or ⁇ 12 hours before being transformed with the lysine decarboxylase gene.
  • These may be strains produced by mutagenesis and selection, by recombinant DNA techniques or by a combination of both.
  • mutagenesis classical in vivo mutagenesis methods using mutagenic substances such as N-methyl-N'-nitro-N-nitrosoguanidine or ultraviolet light may be used. Further, for in vitro mutagenesis, methods such as hydroxylamine treatment (Miller, JH: A Short Course in Bacterial Genetics, A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria, Col. Spring Harbor Laboratory Press, Col.
  • the cadA gene described in the prior art is amplified from isolated total DNA of a wild-type strain by means of the polymerase chain reaction, optionally cloned into suitable plasmid vectors, and then subjected to the mutagenesis method.
  • kits such as the "QuikChange Site-Directed Mutagenesis Kit” by Stratagene (La Jolla, USA, described by Papworth et al., Strategies 9 (3), 3-4 (1996)) ) available. Suitable cadA alleles are then read out by the methods described above and examined.
  • the invention relates to a strain for the fermentative production of cadaverine, preferably coryneforms
  • Bacteria in particular Corynebacterium glutamicum, which has at least one heterologously expressed gene coding for a lysine decarboxylase, preferably cadA from E. coli.
  • the preferred lysine decarboxylase allele or gene may be obtained by the method of gene replacement, as described in Schwarzer and Pühler (Bio / Technology 9, 84-87 (1991)) or Peters-Wendisch et al. (Microbiology 144 The corresponding lysine decarboxylase allele is hereby incorporated into a non-replicative for C.
  • glutamicum vector such as pKl ⁇ mobsacB or pK19mobsacB (Jäger et al., Journal of Bacteriology 174: 5462 -65 (1992)) or pCR® Blunt (Invitrogen, Groningen, The Netherlands; Bernard et al., Journal of Molecular Biology, 234: 534-541 (1993)), and then cloned by transformation or conjugation into the desired host of After homologous recombination by means of a first integration-causing cross-over event and a suitable second excision-causing cross-over event in the target gene or in the Target sequence achieves the incorporation of the mutation.
  • lysine decarboxylase genes or alleles used according to the invention may be advantageous for the production of cadaverine, in addition to the expression of the lysine decarboxylase genes or alleles used according to the invention to simultaneously amplify one or more enzymes of lysine biosynthesis, in particular overexpress.
  • the use of endogenous genes is generally preferred.
  • endogenous genes or “endogenous nucleotide sequences” is meant the genes or nucleotide sequences and alleles present in the population of a species.
  • enhancement in this context describes the enhancement of the intracellular activity or concentration of one or more enzymes or proteins in a microorganism which are encoded by the corresponding DNA, for example by increasing the copy number of the gene (s), a strong promoter used or a gene or allele is used which codes for a corresponding enzyme or protein with a high activity and optionally combines these measures.
  • a dapA gene coding for a dihydrodipicolinate synthase such as, for example, the wild-type dapA gene of Corynebacterium glutamicum described in EP 0 197 335.
  • a gene coding for a glucose-6-phosphate dehydrogenase such as, for example, the wild-type zwf gene of Corynebacterium glutamicum described in JP-A-09224661 and EP-A-1108790.
  • Amino acid sequence is replaced by L-threonine or in which the L-glycine at position 321 is replaced by L-serine.
  • a pyc gene coding for a pyruvate carboxylase such as, for example, the wild-type pyc gene of Corynebacterium glutamicum described in DE-A-198 31 609 and EP 1108790.
  • a lysC FBR allele encoding a feedback-resistant aspartate kinase variant is a lysC FBR allele encoding a feedback-resistant aspartate kinase variant.
  • lysC FBR alleles have been described in the art which code for aspartate kinase variants which have amino acid exchanges compared to the wild-type protein.
  • the coding region of the wild-type lysC gene of Corynebacterium glutamicum corresponds to accession number AX756575 of the NCBI database.
  • lysC FBR alleles are preferred: lysC A279T (exchange of alanine at position 279 of the encoded aspartate kinase protein for threonine), lysC A279V (replacement of alanine at position 279 of the encoded aspartate kinase protein for valine), lysC S301F (replacement of serine at position 301 of the encoded aspartate kinase protein against phenylalanine), lysC T308I (exchange of threonine at position 308 of the encoded aspartate kinase protein for isoleucine), lysC S301Y (replacement of serine at position 308 of the encoded aspartate kinase protein for tyrosine), lysC G345D (replacement of glycine at position 345 of the encoded
  • Aspartate kinase protein to glycine lysC T311I (exchange of threonine at position 311 of the encoded aspartate kinase protein for isoleucine), lysC S381F (replacement of serine at position 381 of the encoded aspartate kinase protein for phenylalanine), lysC S317A (replacement of serine at position 317 of the encoded aspartate kinase protein against Alanine) and lysC T380I (exchange of threonine at position 380 of the encoded aspartate kinase protein for isoleucine).
  • lysC FBR allele lysC T311I exchange of threonine at position 311 of the encoded aspartate kinase protein for isoleucine
  • a lysC FBR allele containing at least one substitution selected from the group A279T exchange of alanine at position 279 of the encoded aspartate kinase protein for threonine
  • S317A replacement of serine at position 317 of the encoded aspartate kinase protein against alanine
  • a lysE gene coding for a lysine export protein such as, for example, the lysE gene of the wild-type Corynebacterium glutamicum described in DE-A-195 48 222, is attenuated or eliminated.
  • a gene ddh coding for a diaminopimelate dehydrogenase such as, for example, the wild-type ddh gene Corynebacterium glutamicum described in EP 1 108 790.
  • the zwal protein-encoding gene of wild-type Corynebacterium glutamicum (US 6,632,644).
  • cadaverine-producing microorganisms of the genus Escherichia are claimed in which simultaneously one or more of the genes from E. coli, selected from the group
  • microorganisms according to the invention can be used continuously or discontinuously in the batch process
  • the culture medium to be used must suitably satisfy the requirements of the respective strains. Descriptions of culture media of various microorganisms are in the
  • sugars and carbohydrates such as e.g. Glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose, oils and fats such as soybean oil, sunflower oil, peanut oil and coconut fat, fatty acids such as palmitic acid, stearic acid and linoleic acid, alcohols such as glycerol and ethanol and organic acids such as acetic acid are used. These substances can be used individually or as a mixture.
  • organic nitrogen-containing compounds such as peptones, yeast extract, meat extract, malt extract, corn steep liquor, soybean meal and urea or inorganic compounds such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and ammonium nitrate may be used.
  • the nitrogen sources can be used singly or as a mixture.
  • phosphorus source can phosphoric acid
  • the culture medium must further contain salts of metals, such as magnesium sulfate or iron sulfate, necessary for growth.
  • essential growth factors such as amino acids and vitamins can be used in addition to the above-mentioned substances.
  • suitable precursors can be added to the culture medium.
  • the mentioned Feedstocks may be added to the culture as a one-time batch or fed in a suitable manner during the cultivation.
  • basic compounds such as sodium hydroxide, potassium hydroxide, ammonia or ammonia water or acidic compounds such as phosphoric acid or sulfuric acid are suitably used.
  • antifoams such as, for example, fatty acid polyglycol esters
  • suitable selective substances such as antibiotics
  • oxygen or oxygen-containing gas mixtures such as air, are introduced into the culture.
  • the temperature of the culture is normally from 20 0 C to 45 ° C and preferably 25 ° C to 40 0 C. The culture is continued until a maximum is formed at cadaverine, or the yield or productivity reaches a desired optimum value Has. This goal is usually reached within 10 hours to 160 hours.
  • the cadaverine prepared in this way is then collected, then preferably isolated and optionally purified.
  • cadaverine and L-amino acids such as L-lysine are known in the art.
  • the analysis may be as described by Spackman et al. (Analytical Chemistry, 30, (1958), 1190) described by anion exchange chromatography followed by ninhydrin derivatization, or it can be done by reversed phase HPLC, as in Lindroth et al. (Analytical Chemistry (1979) 51: 1167-1174).
  • the inventive method is used for improved fermentative production of cadaverine by use high lysine titer microorganisms in which a lysine decarboxylase gene and / or a protein termed lysine / cadaverine antiporter are overexpressed.
  • DNA amplifications were performed with the SAWADY Pwo DNA polymerase (Peqlab Biotechnologie, Erlangen, Germany) or Platinum Pfx DNA polymerase (Invitrogen, Düsseldorf, Germany). Unless otherwise stated, the polymerases were used according to the manufacturer's instructions. Oligonucleotides for PCR amplifications and the introduction of restriction sites were obtained from MWG-Biotech (Ebersberg, Germany). Constructed strains were detected by colony PCR with the Taq polymerase READYMIX (Sigma, Taufkirchen, Germany), as well as
  • Plasmid preparations DNA fragments were purified and recovered with the MinElute Gel Extraction Kit (Quiagen, Hilden, Germany) according to the manufacturer's instructions. Plasmid DNA was isolated using the Qiaprep spin Miniprep kit (Quiagen, Hilden, Germany). All plasmids were constructed by restriction analysis followed by sequencing
  • pEKEx2cadA For the construction of pEKEx2cadA, the vector pEKEx2 was used (Kleinertz et al., 1991 Gene 102: 93), which allows transcription of cloned genes under control of the isopropyl-beta-D-thiogalactopyranoside (IPTG) inducible tac promoter and the lac repressor system (laclq)
  • IPTG isopropyl-beta-D-thiogalactopyranoside
  • laclq lac repressor system
  • the 2.2 kb DNA fragment coding for the cadA gene was amplified by means of the following oligonucleotides and DNA from Escherichia coli DH5 as template.
  • the PCR amplificate was phosphorylated with polynucleotide kinase (Roche, Basel, Switzerland) and blunt end cloned into the SmaI site of the vector pUC18 (Yanisch-Perron et al., 1985, Gene 33: 103-19). The identity and correctness of the insert was confirmed by sequencing. Subsequently, the 2.2 kb fragment was isolated from the pUC18 derivative as a Sall-BamHI fragment and ligated with the Sall-BamHI cut vector pEKEx2. Restriction digests were used to select the desired plasmids and one of them designated pEKEx2cadA.
  • pEKEx2cadBA For the construction of pEKEx2cadBA, the vector pEKEx2 was used (Kleinertz et al., 1991 Gene 102: 93), which allows transcription of cloned genes under the control of the isopropyl-beta-D-thiogalactopyranoside (IPTG) inducible tac promoter and the lac repressor system (laclq) , The 3.6 kb DNA fragment coding for the cadB and the cadA gene was amplified by means of the following oligonucleotides and DNA from Escherichia coli DH5 as a template.
  • IPTG isopropyl-beta-D-thiogalactopyranoside
  • laclq lac repressor system
  • the PCR amplificate was phosphorylated with polynucleotide kinase (Roche, Basel, Switzerland) and blunt end cloned into the SmaI site of the vector pUC18 (Yanisch-Perron et al., 1985, Gene 33: 103-19). The identity and correctness of the insert was confirmed by sequencing. Subsequently, the 3. kB fragment was isolated from the pUC18 derivative as a BamHI fragment and ligated with the BamHI-cut vector pEKEx2, and the desired plasmids were selected by means of restriction digestions, and one of them was designated pEKEx2cadBA.
  • Competent cells of Corynebacterium glutamicum DM1800 were prepared as described by Tauch et al. (Curr Microbiol. (2002) 45: 362-367).
  • DNA of pEKEx2, pEKEx2cadA, and pEKEx2cadBA was introduced by electroporation, and transformants on brain-heart agar from Merck (Darmstadt, Germany) supplemented with 50 mg / l kanamycin (FEMS Microbiol Lett., 1989, 53: 299-303). Plasmid DNA was isolated from transformants and characterized by restriction digestion. In this way, C. glutamicum pEKEx2, C. glutamicum pEKEx2cadA, and C. glutamicum pEKEx2cadBA were obtained.
  • strain C. glutamicum DM1800 is characterized by the properties (in comparison to the wild-type C. glutamicum ATCC 13032): mutations in the alleles pyc P458S
  • C. glutamicum DM1800 strains were grown on CGIII complex medium (Eggeling and Bott, Eds, Handbook of Corynebacterium glutamicum., CRC Press, Taylor Francis Group) containing 25 mg / 1 kanamycin at 30 ° C. overnight. The cells were then harvested by centrifugation at 6000 rpm for 5 minutes each, resuspended, taken up in 0.9% NaCl, recentrifuged, and finally taken up in 0.9% NaCl.
  • CGIII complex medium Eggeling and Bott, Eds, Handbook of Corynebacterium glutamicum., CRC Press, Taylor Francis Group
  • the minimal medium CGXII 4% glucose, 25 mg / l kanamycin (Eggeling and Bott, Eds, Handbook of Corynebacterium glutamicum., CRC Press, Taylor Francis Group) was inoculated with this cell suspension. Subsequently, the cells were incubated at 30 ° C. At least two independent fermentations were ever carried out. After 47 hours samples were taken for amino acid and cadaverine determination. The determination was carried out by means of high pressure liquid chromatography (J Chromat (1983) 266: 471-482). The result of the fermentation is shown in Table 1. Thus, the use of the engineered and described strains provides a method to facilitate microbial cadaverine formation from sugars.
  • Table 1 Accumulation of cadaverine in the culture supernatant of recombinant strains of Corynebacterium glutamicum DM1800.

Abstract

Die Erfindung betrifft rekombinante Mikroorganismen, in denen für Lysindecarboxylase kodierende Polynukleotide verstärkt werden, und unter deren Verwendung Cadaverin (1,5-Diaminopentan) fermentativ hergestellt wird, wobei als C-Quelle bevorzugt nachwachsende Rohstoffe,wie z. B. Glucose, Saccharose, Melasse etc. verwendet werden.

Description

Verfahren zur fermentativen Herstellung von Cadaverin
Gegenstand der Erfindung sind rekombinante Mikroorganismen, in denen für Lysindecarboxylase kodierende Polynukleotide verstärkt werden, und unter deren Verwendung Cadaverin ( 1 , 5-Diaminopentan) fermentativ hergestellt wird, wobei als C-Quelle bevorzugt, nachwachsende Rohstoffe, wie z.B. Glucose, Saccharose, Melasse etc. verwendet werden.
Stand der Technik
Polyamide (PA) stellen eine wichtige Gruppe von Polymeren dar aus denen eine Reihe von Spezialkunststoffen für die Auto-, Sport- und Lifestyle Industrie gewonnen werden. Dabei sind Diamine wichtige monomere Bestandteile dieser Polyamide. Zusammen mit Dicarbonsäuren kondensieren sie zu den unterschiedlichsten Polymeren, wobei die Kettenlängen der Diamine und Dicarbonsäuren die Eigenschaften der Kunststoffe bestimmen.
Bisher werden Diamine chemisch über die Zwischenstufe von Dicarbonsäuren aus erdölbasierten Rohstoffen (Albrecht, Klaus et al . ; Plastics; Winnacker-Kuechler : Chemische Technik (5. Auflage) (2005), 5 465-819), oder mittels der chemischen Decarboxylierung von Aminosäuren hergestellt (Suyama, Kaneo. The Decarboxylation of Amino Acids (4), Yakugaku Zasshi, (1965), Vol. 85(6), 513 - 533). Angesichts der steigenden Ölpreise ist ein schneller Umstieg auf die Synthese von Diaminen aus erneuerbaren
Rohstoffen mittels biotechnologischer Verfahren, wie z.B. der Fermentation, wünschenswert.
Im Rahmen dieser Fragestellung ist nun gefunden worden, dass, ausgehend von einem Lysin produzierenden Mikroorganismus, ein Cadaverin-Produzent durch Einbringen eines gegebenenfalls heterologen für eine Lysindecarboxylase kodierenden Gens hergestellt werden kann . Organismen, die Cadaverin bilden können, sind bereits beschrieben worden (Tabor, Herbert; Hafner, Edmund W.; Tabor, Celia White. Construction of an Escherichia coli strain unable to synthesize putrescine, spermidine, or cadaverine: characterization of two genes Controlling lysine decarboxylase . Journal of Bacteriology (1980), 144(3), 952-6, Takatsuka Yumiko; Kamio Yoshiyuki Molecular dissection of the Selenomonas ruminantium cell envelope and lysine decarboxylase involved in the biosynthesis of a polyamine covalently linked to the cell wall peptidoglycan layer. Bioscience, biotechnology, and biochemistry (2004), 68(1), 1-19). Bei den Versuchen die Cadaverin-Synthese zu erhöhen handelt es sich um Escherichia coli Stämme die ein Plasmid zur Überexpression der wirtseigenen Lysine Decarboxylase (cadA) tragen. Dieser E. coli-Stamm bildet nach Überexpression des eigenen cadA Gens Cadaverin in erhöhter Menge (JP 2002-223770) . In weiteren Ausarbeitungen wurden nach Anzucht, und Expression von cadA in E. coli, diese Organismen als Ganzzellkatalysatoren zur Umsetzung von extern zugeführtem Lysin eingesetzt (JP 2002-223771, JP 2004-000114, EP 1482055) , wobei die Decarboxylase auch an der Zelloberfläche von E. coli präsentiert werden kann (JP 2004-208646). Eine weitere Methode ist die Umwandlung von Lysin-HCL mittels des isolierten cadA-Enzyms zu Cadaverin (JP 2005-060447) .
Die Ablösung der oben beschriebenen biokatalytischen Prozesse durch ein fermentatives Verfahren, bei dem das Produkt direkt gewonnen wird, stellt eine entscheidende Verbesserung der Ökonomie als auch Ökologie des Produktionsverfahrens dar.
Aufgabe der Erfindung
Die Erfinder haben sich zur Aufgabe gestellt, neue Verfahren zur fermentativen Herstellung von Cadaverin aus erneuerbaren Rohstoffen bereitzustellen. Beschreibung der Erfindung
Gegenstand der Erfindung sind Cadaverin bildende rekombinante Mikroorganismen mit einem hohen L-Lysintiter, in denen für Lysindecarboxylase kodierende Polynukleotide im Vergleich zu im Hinblick auf dieses Enzym nicht veränderten Mikroorganismen, die als Elternstamm fungieren, verstärkt vorliegen.
Die Kennzeichnung „mit einem hohen Lysintiter" drückt aus, dass es sich bei den Elternstämmen bevorzugt um L- Lysinproduzenten handelt, die sich von den Ausgangsstämmen wie z. B. Wildtypstämmen dadurch unterscheiden, dass sie in vermehrtem Umfang L-Lysin produzieren und in der Zelle oder in dem umgebenden Fermentationsmedium akkumulieren. Gemessen wird der Titer in Masse/Volumen (g/l) .
In Wildtypstämmen verhindern strikte
Regulationsmechanismen, die über den Eigenbedarf hinausgehende Produktion von Stoffwechselprodukten wie L- Aminosäuren und deren Abgabe ins Medium. Die Konstruktion von aus Herstellersicht als Aminosäureproduzenten bezeichneter Stämme erfordert deshalb, diese StoffWechselregulationen zu überwinden.
Zur Beseitigung der Kontrollmechanismen und Verbesserung der Leistungseigenschaften dieser Mikroorganismen werden Methoden der Mutagenese, Selektion und Mutantenauswahl angewendet. Auf diese Weise erhält man Stämme, die resistent gegen Antimetabolite wie z.B. das Lysin-Analogon S- (2-Aminoethyl) -Cystein oder das Valin-Analogon 2- Thiazolalanin und chemische Verbindungen beispielsweise L- Aminosäuren wie L-Lysin oder L-Valin produzieren.
Seit einigen Jahren werden ebenfalls Methoden der rekombinanten DNA-Technik zur gezielten Stammverbesserung L-Aminosäure produzierender Stämme z. B. von Corynebacterium glutamicum und Escherichia coli eingesetzt, indem man einzelne Aminosäure-Biosynthesegene verstärkt oder abschwächt und die Auswirkung auf die Produktion der chemischen Verbindung untersucht.
Zusammenfassende Darstellungen zur Biologie, Genetik und Biotechnologie von Corynebacterium glutamicum sind im
„Handbook of Corynebacterium glutamicum" (Eds.: L. Eggeling und M. Bott, CRC Press, Taylor & Francis, 2005), in der Spezialausgabe des Journal of Biotechnolgy (Chief Editor: A. Pühler) mit dem Titel „A New Era in Corynebacterium glutamicum Biotechnology" (Journal of Biotechnolgy 104/1-3, (2003)) und im Buch von T. Scheper (Managing Editor) „Microbial Production of L-Amino Acids" (Advances in Biochemical Engineering/Biotechnology 79, Springer Verlag, Berlin, Deutschland, 2003) zu finden.
Die Nukleotidsequenz des Genoms von Corynebacterium glutamicum ist bei Ikeda und Nakagawa (Applied Microbiology and Biotechnology 62, 99-109 (2003)), in der EP 1 108 790 und bei Kalinowski et al . (Journal of Biotechnolgy 104/1-3, (2003)) beschrieben.
Geeignete Polynukleotide, die für Lysin decarboxylase kodieren können aus Stämmen von z.B. Escherichia coli, Bacillus halodurans, Bacillus cereus, Bacillus subtilis, Bacillus thuringensis, Burkholderia ambifaria, Burkholderia vietnamensia, Burkholderia cenocepatia, Chromobacterium violaceum, Selenomonas ruminantium, Vibrio cholerae, Vibrio parahaemolyticus, Streptomyces coelicolor, Streptomyces pilosus, Eikenalla corrodens, Eubacterium acidaminophilum, Francisella tulariensis, Geobacillus kaustophilus, Salmonella typhi, Salmonella typhimurium, Hafnia alvei, Neisseria meningitidis, Thermoplasma acidophilum, Plasmodium falciparum, Kineococcus radiotolerans, Oceanobacillus iheyensis, Pyrococcus abyssi, Porochlorococcus marinus, Proteus vulgaris, Rhodoferax ferrireducens, Saccharophagus degradans, Streptococcus pneumoniae, Synechococcus sp . stammen. Unter geeigneten Lysindecarboxylasen, welche im erfindungsgemäßen Prozess eingesetzt werden können, versteht man Enzyme und deren Allele oder Mutanten, die befähigt sind, Lysin zu decarboxylieren .
Die erfindungsgemäß eingesetzten, für das Enzym
Lysindecarboxylase kodierenden Polynukleotide stammen vorzugsweise aus Escherichia coli SEQ ID NO: 1. Diese ist in international zugänglichen Datenbanken wie z.B. der von der National Library of Medicine and the National Institute of Health (NIH) der United States of America frei unter der Zugangsnummer NC 007946 verfügbar. Die gleiche Sequenz ist ebenso auch beim Institut Pasteur (Frankreich) auf dem colibri web Server unter der Nummer b4131 oder dem Gennamen cadA frei verfügbar. Die gleiche Sequenz ist ebenso auch durch den vom Swiss Institute of Bioinformatics unterhaltenen web Server ExPasy unter der Nummer P0A9H4oder dem Gennamen cadA frei verfügbar.
Die Maßnahme erfindungsgemäße Mikroorganismen einzusetzen, die in erhöhtem Maße L-Lysin produzieren, ist nicht aus dem Stand der Technik abzuleiten.
In der US 5,827,698 wird im Gegenteil beschrieben, dass man die L-Lysinproduktion in E. coli verbessert, wenn die Lysindecarboxylaseaktivität verringert wird.
Unterstützt wird die Produktion von Cadaverin, indem in der Cadaverin produzierenden, rekombinanten Zelle zusätzlich ein für ein als Cadaverin/Lysin Antiporter bezeichnetes Protein kodierendes Polynukleotid, bevorzugt aus Escherichia coli stammend (SEQ ID NO: 3; TC 2. A.3.2.2) überexprimiert wird, welches den Transport der genannten Verbindung aus der Zelle ins Medium erleichtert. Weitere geeignete Cadaverin/Lysin Antiporter stammen aus Stämmen von z.B. Escherichia coli, Thermoplasma acidophilum, oder Vibrio cholerae. Auch können Transporter, die Cadaverin oder verwandte Diamine natürlicherweise exportieren oder die nach Mutation diese Fähigkeit erlangen, Cadaverin oder verwandte Diamine zu exportieren, benutzt werden.
Die Erfindung schließt auch die Überexpression endogener Transporter-gene von C. glutamicum ein, die für Proteine kodieren, die den Export von Cadaverin katalysieren. Ebenso beeinhaltet die Erfindung, dass in Cadaverin produzierenden Stämme bevorzugt kein konkurrierender Lysin- oder Argininexport stattfindet, d. h. dass die entsprechenden Exportgene oder Exportfunktionen abgeschwächt vorliegen oder abgeschaltet sind.
Gegenstand der Erfindung sind rekombinante Mikroorganismen, insbesondere coryneforme Bakterien, die die für die genannten Proteine kodierenden Polynukleotide verstärkt enthalten. Bevorzugt werden die für die Lysindecarboxylase und/oder den Lysin/Cadaverin Antiporter kodierenden Nukleotidsequenzen verstärkt, insbesondere überexprimiert .
Bevorzugte Mikroorganismen stammen aus den Familien Enterobacteriaceae, insbesondere der Gattung Escherichia, Bacillus und insbesondere aus der Species E. coli und B. subtilis, wobei die die Cadaverinproduktion fördernde Lysindecarboxylase endogenen oder exogenen Ursprungs sein kann .
Die in den erfindungsgemäßen rekombinanten Mikroorganismen für die Lysindecarboxylase und/oder den Lysin/Cadaverin Antiporter kodierenden überexprimierten Polynukleotide können aus Mikroorganismen verschiedener Familien oder Gattungen stammen.
Aufgrund der Überexpression der genannten Gene, einzeln oder gemeinsam, produzieren diese Mikroorganismen in erhöhtem Umfang im Vergleich zu Mikroorganismen, in denen diese Gene nicht überexprimiert werden, Cadaverin. Die erfindungsgemäßen rekombinanten Mikroorganismen werden durch die rekombinanten Gentechnikverfahren gebildet, die dem Fachmann bekannt sind.
Im allgemeinen werden die die genannten Gene tragende Vektoren in die Zellen durch konventionelle
Transformations- oder Transfektionstechniken eingeschleust. Geeignete Methoden können gefunden werden bei Sambrook et al . (Molecular Cloning: A Laboratory Manual. 2nd ed., CoId Spring Harbor Laboratory, 1989).
Gegenstand der Erfindung sind ebenfalls Vektoren, insbesondere Plasmide, die die erfindungsgemäß eingesetzten Polynukleotide enthalten und gegebenenfalls in den Bakterien replizieren. Gegenstand der Erfindung sind ebenfalls die rekombinanten Mikroorganismen, die mit den genannten Vektoren transformiert wurden.
Dabei können die beiden Polynukleotide unter der Wirkung eines einzigen oder zweier Promotoren stehen.
Der Begriff "Verstärkung" beschreibt in diesem Zusammenhang die Erhöhung der intrazellulären Aktivität oder Konzentration eines oder mehrerer Enzyme oder Proteine in einem Mikroorganismus, die durch die entsprechende DNA kodiert werden, indem man beispielsweise die Kopienzahl des Gens bzw. der Gene, des ORFs bzw. der ORFs um mindestens eine (1) Kopie erhöht, einen starken Promotor funktionell mit dem Gen verknüpft oder ein Gen oder Allel oder ORF verwendet, das für ein entsprechendes Enzym bzw. Protein mit einer hohen Aktivität kodiert und gegebenenfalls diese Maßnahmen kombiniert. In E. coli werden lac, tac und trp als starke Promotoren genannt.
Als offener Leserahmen (ORF, open reading frame) wird ein Abschnitt einer Nukleotidsequenz bezeichnet, der für ein Protein beziehungsweise Polypeptid oder Ribonukleinsäure kodiert oder kodieren kann, dem (der) nach dem Stand der Technik keine Funktion zugeordnet werden kann. Nach Zuordnung einer Funktion zu dem betreffenden Abschnitt der Nukleotidsequenz wird im Allgemeinen von einem Gen gesprochen. Unter Allelen versteht man im Allgemeinen alternative Formen eines gegebenen Gens. Die Formen zeichnen sich durch Unterschiede in der Nukleotidsequenz aus .
Als Genprodukt bezeichnet man im Allgemeinen das von einer Nukleotidsequenz, d.h. einem ORF, einem Gen oder einem Allel kodierte Protein oder die kodierte Ribonukleinsäure.
Durch die Maßnahmen der Verstärkung, insbesondere Überexpression, wird die Aktivität oder Konzentration des entsprechenden Proteins im allgemeinen um mindestens 10%, 25%, 50%, 75%, 100%, 150%, 200%, 300%, 400% oder 500%, maximal bis 1000% oder 2000% bezogen auf die des Wildtyp- Proteins beziehungsweise auf die Aktivität oder Konzentration des Proteins im für das entsprechende Enzym bzw. Protein nicht rekombinanten Mikroorganismus oder Elternstamm erhöht. Als nicht rekombinanter Mikroorganismus oder Elternstamm (parent strain) wird der Mikroorganismus verstanden, an dem die erfindungsgemäße Verstärkung oder Überexpression durchgeführt wird.
Die Gene oder Genkonstrukte können entweder in Plasmiden mit unterschiedlicher Kopienzahl vorliegen oder im Chromosom integriert und amplifiziert sein. Alternativ kann weiterhin eine Überexpression der betreffenden Gene durch Veränderung der Medienzusammensetzung und Kulturführung erreicht werden.
Zur Erhöhung der Kopienzahl der cadA-Allele eignen sich Plasmide, die in coryneformen Bakterien repliziert werden. Zahlreiche bekannte Plasmidvektoren wie z.B. pZl (Menkel et al . , Applied and Environmental Microbiology (1989) 64: 549- 554), pEKExl (Eikmanns et al . , Gene 102:93-98 (1991)) oder pHS2-l (Sonnen et al . , Gene 107:69-74 (1991)) beruhen auf den kryptischen Plasmiden pHM1519, pBLl oder pGAl . Andere Plasmidvektoren wie z. B. solche, die auf pCG4 (US-A 4,489,160), oder pNG2 (Serwold-Davis et al . , FEMS Microbiology Letters 66, 119-124 (1990)) oder pAGl (US-A 5,158,891) beruhen, können in gleicher Weise verwendet werden. Eine zusammenfassende Darstelung über Plasmidvektoren von Corynebacterium glutamicum findet man bei Tauch et al . (Journal of Biotechnology 104(1-3), 27-40 (2003) .
Weiterhin kann zur Erhöhung der Kopienzahl das Verfahren der chromosomalen Genamplifikation angewendet werden, so wie es beispielsweise von Reinscheid et al . (Applied and Environmental Microbiology 60, 126-132 (1994)) zur Duplikation bzw. Amplifikation des hom-thrB-Operons beschrieben wurde. Bei dieser Methode wird das vollständige Gen bzw. Allel in einen Plasmidvektor kloniert, der in einem Wirt (typischerweise E. coli), nicht aber in C. glutamicum replizieren kann. Als Vektoren kommen beispielsweise pSUP301 (Simon et al . , Bio/Technology 1, 784-791 (1983)), pKlδmob oder pK19mob (Schäfer et al . , Gene 145, 69-73 (1994)), pGEM-T (Promega Corporation, Madison, WI, USA), pCR2.1-TOPO (Shuman, Journal of Biological Chemistry 269:32678-84 (1994); US-A 5,487,993), pCR®Blunt (Firma Invitrogen, Groningen, Niederlande; Bernard et al . , Journal of Molecular Biology, 234: 534-541 (1993)), pEMl (Schrumpf et al . , Journal of Bacteriology 173:4510-4516 (1991)) oder pBGS8 (Spratt et al . , Gene 41: 337-342 (1986)) in Frage. Der Plasmidvektor, der das zu amplifizierende Gen bzw. Allel enthält, wird anschließend durch Konjugation oder Transformation in den gewünschten Stamm von C. glutamicum überführt. Die Methode der Konjugation ist beispielsweise bei Schäfer et al . (Applied and Environmental Microbiology 60, 756-759 (1994)) beschrieben. Methoden zur Transformation sind beispielsweise bei Thierbach et al . (Applied Microbiology and Biotechnology
29, 356-362 (1988)), Dunican und Shivnan (Bio/Technology 7, 1067-1070 (1989)) und Tauch et al . (FEMS Microbiological Letters 123, 343-347 (1994)) beschrieben. Nach homologer Rekombination mittels eines "cross over"-Ereignisses enthält der resultierende Stamm mindestens zwei Kopien des betreffenden Gens bzw. Allels. Insbesondere kann auch die Methode der Tandem-Amplifikation wie sie in der WO 03/014330 beschrieben oder die Methode der Amplifikation durch Integration an einen gewünschten Ort wie in der WO 03/040373 beschrieben zur Erhöhung der Kopienzahl um mindestens 1, 2 oder 3 verwendet werden.
Der Begriff „Abschwächung" bzw. „Abschwächen" beschreibt die Verringerung oder Ausschaltung der intrazellulären Aktivität eines oder mehrerer Enzyme bzw. Proteine in einem Mikroorganismus, die durch die entsprechende DNA kodiert werden, indem man beispielsweise einen schwachen Promotor verwendet oder ein Gen bzw. Allel verwendet, das für ein entsprechendes Enzym mit einer niedrigen Aktivität kodiert bzw. das entsprechende Gen oder Enzym bzw. Protein inaktiviert und gegebenenfalls diese Maßnahmen kombiniert.
Durch die Maßnahmen der Abschwächung wird die Aktivität oder Konzentration des entsprechenden Proteins im allgemeinen auf 0 bis 75%, 0 bis 50%, 0 bis 25%, 0 bis 10% oder 0 bis 5% der Aktivität oder Konzentration des Wildtyp- Proteins, beziehungsweise der Aktivität oder Konzentration des Proteins im Ausgangsmikroorganismus, herabgesenkt. Unter einem „Ausgangsmikroorganismus" versteht man den Mikroorganismus, in dem die Abschwächung des entsprechenden Gens durchgeführt wird.
Beansprucht werden insbesondere coryneforme Bakterien, in denen die genannten, für das Enzym Lysin Decarboxylase kodierenden Polynukleotide verstärkt, bevorzugt überexprimiert vorliegen.
Da coryneforme Bakterien natürlicherweise kein für dieses Enzym kodierendes Polynukleotid enthalten, wird bereits das Vorhandensein einer Kopie eines aus einem Fremdorganismus stammenden für Lysindecarboxylase kodierenden Gens als Überexpression bezeichnet.
Gegenstand der Erfindung ist auch ein Verfahren zur Herstellung von Cadaverin in dem man Mikroorganismen, insbesondere coryneforme Bakterien, mit einer der genannten Polynukleotide transformiert, die erhaltenen rekombinanten Bakterien in einem geeigneten Medium fermentiert unter Bedingungen, die für die Expression der von diesem Polynukleotid kodierten Lysindecarboxylase geeignet sind, und das gebildete Cadaverin akkumuliert und isoliert, gegebenenfalls auch mit weiteren gelösten Bestandteilen aus der Fermentationsbrühe und/oder der Biomasse (> 0 bis 100 %) •
Gegenstand der Erfindung ist insbesondere ein Verfahren zur Herstellung von Cadaverin, bei dem man im Allgemeinen folgende Schritte durchführt:
a) Fermentation von rekombinanten Mikroorganismen, insbesondere coryneformer Bakterien, in denen für Lysindecarboxylase kodierende Nukleotidsequenzen und bevorzugt für ein als Lysin/Cadaverin Antiporter bezeichneter Protein kodierende Polynukleotide verstärkt, insbesondere überexprimiert vorliegen, unter Bedingungen, die für die Bildung des Enzyms und des Cadaverins geeignet sind, und
b) Anreicherung des Cadaverins in der Fermentationsbrühe und/oder in den Zellen der genannten Bakterien.
Daran kann sich die Isolierung des Cadaverins aus der Fermentationsbrühe und/oder aus den Zellen der genannten Bakterien anschließen, wobei gegebenenfalls Bestandteile aus der Fermentationsbrühe und/oder der Biomasse teilweise oder vollständig mit entfernt werden oder aber vollständig im Produkt verbleiben. Die Nukleotidsequenz des cadA-Gens aus E. coli ist in der SEQ ID NO: 1 dargestellt.
Bei der Gattung Corynebacterium ist insbesondere die in der Fachwelt bekannte Spezies Corynebacterium glutamicum zu nennen. Als Ausgangsbasis für die erfindungsgemäßen
Mikroorganismen dienen z. B. bekannte Wildtypstämme der Art Corynebacterium glutamicum wie beispielsweise
Corynebacterium glutamicum ATCC13032 Corynebacterium acetoglutamicum ATCC15806 Corynebacterium acetoacidophilum ATCC13870 Corynebacterium melassecola ATCC17965 Corynebacterium thermoaminogenes FERM BP-1539 Brevibacterium flavum ATCC14067 Brevibacterium lactofermentum ATCC13869 und Brevibacterium divaricatum ATCC14020 geeignet.
Geeignete Vorstufen der erfindungsgemäß eingesetzten Stämme sind bekannte Stämme coryneformer Bakterien, die die Fähigkeit besitzen, L-Lysin zu produzieren, wie beispielsweise die Stämme:
Corynebacterium glutamicum DM58-l/pDM6 (= DSM4697) beschrieben in EP 0 358 940,
Corynebacterium glutamicum MH20 (= DSM5714) beschrieben in EP 0 435 132,
Corynebacterium glutamicum AHP-3 (= FermBP-7382) beschrieben in EP 1 108 790, und
Corynebacterium thermoaminogenes AJ12521 (= FERM BP-
3304) beschrieben in US 5,250,423.
Corynebacterium glutamicum DM1800 (Georgi T, Rittmann
D, Wendisch VF (2005) Metabolie Engeneering 7:291-301)
Stämme mit der Bezeichnung „ATCC" können von der American
Type Culture Collection (Manassas, VA, USA) bezogen werden. Stämme mit der Bezeichnung „DSM" können von der Deutschen Sammlung von Mikroorganismen und Zellkulturen (DSMZ, Braunschweig, Deutschland) bezogen werden. Stämme mit der Bezeichnung „FERM" können vom National Institute of Advanced Industrial Science and Technology (AIST Tsukuba Central 6, 1-1-1 Higashi, Tsukuba Ibaraki, Japan) bezogen werden.
Angaben zur taxonomischen Einordnung von Stämmen dieser Gruppe von Bakterien findet man unter anderem bei Kämpfer und Kroppenstedt (Canadian Journal of Microbiology 42, 989- 1005 (1996)) und in der US-A-5, 250, 434. Seit einigen Jahren (Liebl et al . , International Journal of Systematic
Bacteriology 41(2), 255-260 (1991)) werden coryneforme Bakterien mit Artbezeichnung „Brevibacterium flavum", „Brevibacterium lactofermentum" und,, Brevibacterium divaricatum" in die Art Corynebacterium glutamicum eingeordnet. Coryneforme Bakterien mit Artbezeichnung
„Corynebacterium melassecola" gehören ebenfalls zur Art Corynebacterium glutamicum.
Die für die erfindungsgemäßen Massnahmen geeigneten Mikroorganismen besitzen bevorzugt die Fähigkeit, L-Lysin zu produzieren, in der Zelle anzureichern oder in das sie umgebende Nährmedium auszuscheiden und dort zu akkumulieren. Insbesondere besitzen die eingesetzten Stämme die Fähigkeit > (mindestens) 1 g/l, >_ 15 g/l, >_ 20 g/l oder >_ 30 g/l L-Lysin in £ (maximal) 120 Stunden, £ 96 Stunden, < 48 Stunden, < 36 Stunden, < 24 Stunden oder < 12 Stunden zu prodzuieren, bevor sie mit dem Lysindecarboxylase-Gen transformiert wurden. Hierbei kann es sich um Stämme handeln, die durch Mutagenese und Selektion, durch rekombinante DNA-Techniken oder durch eine Kombination beider Methoden hergestellt wurden.
Für die Mutagenese können klassische in-vivo Mutageneseverfahren unter Verwendung mutagener Stoffe wie beispielsweise N-Methyl-N ' -Nitro-N-Nitrosoguanidin oder ultraviolettes Licht verwendet werden. Weiterhin können für die Mutagenese in-vitro Methoden wie beispielsweise eine Behandlung mit Hydroxylamin (Miller, J. H.: A Short Course in Bacterial Genetics. A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria, CoId Spring Harbor Laboratory Press, CoId Spring Harbor, 1992) oder mutagene Oligonukleotide (T. A. Brown: Gentechnologie für Einsteiger, Spektrum Akademischer Verlag, Heidelberg, 1993) oder die Polymerasekettenreaktion (PCR), wie sie im Handbuch von Newton und Graham (PCR, Spektrum Akademischer Verlag, Heidelberg, 1994) beschrieben ist, verwendet werden.
Weitere Anleitungen zur Erzeugung von Mutationen können dem Stand der Technik und bekannten Lehrbüchern der Genetik und Molekularbiologie wie z.B. dem Lehrbuch von Knippers („Molekulare Genetik", 6. Auflage, Georg Thieme Verlag,
Stuttgart, Deutschland, 1995), dem von Winnacker („Gene und Klone", VCH Verlagsgesellschaft, Weinheim, Deutschland, 1990) oder dem von Hagemann („Allgemeine Genetik", Gustav Fischer Verlag, Stuttgart, 1986) entnommen werden.
Bei Verwendung von in-vitro Methoden wird das im Stand der Technik beschriebene cadA Gen ausgehend von isolierter Gesamt-DNA eines Wildtypstammes mit Hilfe der Polymerasekettenreaktion amplifiziert, gegebenenfalls in geeignete Plasmidvektoren kloniert, und die DNA anschließend dem Mutageneseverfahren unterworfen.
Anleitungen zur Amplifikation von DNA-Sequenzen mit Hilfe der Polymerase-Kettenreaktion (PCR) findet der Fachmann unter anderem im Handbuch von Gait: Oligonucleotide Synthesis: A Practical Approach (IRL Press, Oxford, UK, 1984) und bei Newton und Graham: PCR (Spektrum Akademischer Verlag, Heidelberg, Deutschland, 1994) . In gleicher Weise können auch Methoden der in-vitro Mutagenese verwendet werden wie sie beispielsweise in dem bekannten Handbuch von Sambrook et al . (Molecular Cloning, A Laboratory Manual, 2nd ed., CoId Spring Harbor Laboratory Press, CoId Spring Harbor, New York, USA, 1989) beschrieben sind. Entsprechende Methoden sind auch kommerziell in Form sogenannter „kits" wie beispielsweise der von Papworth et al. (Strategies 9(3), 3-4 (1996)) beschriebene „QuikChange Site-Directed Mutagenesis Kit" der Firma Stratagene (La Jolla, USA) verfügbar. Geeignete cadA-Allele werden anschließend mit den oben beschriebenen Verfahren ausgelesen und untersucht.
Gegenstand der Erfindung ist ein Stamm zur fermentativen Gewinnung von Cadaverin, bevorzugt von coryneformen
Bakterien, insbesondere Corynebacterium glutamicum, welcher mindestens ein heterolog exprimiertes für eine Lysindecarboxylase kodierendes Gen, vorzugsweise cadA aus E. coli, besitzt.
Geeignet sind auch entsprechende Stämme der Gattung Escherichia .
Das bevorzugt verwendete Lysindecarboxylase-Allel oder Gen kann durch das Verfahren des Genaustausches („gene replacement") , wie es bei Schwarzer und Pühler (Bio/Technology 9, 84-87 (1991)) oder Peters-Wendisch et al. (Microbiology 144, 915 - 927 (1998)) beschrieben ist, in geeignete Stämme überführt werden. Das entsprechende Lysin Decarboxylase Allel wird hierbei in einen für C. glutamicum nicht replikativen Vektor wie beispielsweise pKlδmobsacB oder pK19mobsacB (Jäger et al . , Journal of Bacteriology 174: 5462-65 (1992)) oder pCR®Blunt (Firma Invitrogen, Groningen, Niederlande; Bernard et al . , Journal of Molecular Biology, 234: 534-541 (1993)) kloniert und dieser anschließend durch Transformation oder Konjugation in den gewünschten Wirt von C. glutamicum überführt. Nach homologer Rekombination mittels eines ersten, Integration bewirkenden "cross-over"-Ereignisses und eines geeigneten zweiten, eine Exzision bewirkenden "cross-over"-Ereignisses im Zielgen bzw. in der Zielsequenz erreicht man den Einbau der Mutation. Schließlich können die in der WO 03/014330 und WO 03/040373 beschriebenen Methoden der Amplifikation verwendet werden.
Zusätzlich kann es für die Produktion von Cadaverin vorteilhaft sein, zusätzlich zur Expression der erfindungsgemäßen eingesetzten Lysin-decarboxylase-Gene oder Allele gleichzeitig eines oder mehrere Enzyme der Lysin-Biosynthese zu verstärken, insbesondere überzuexprimieren . Die Verwendung endogener Gene wird im allgemeinen bevorzugt.
Unter „endogenen Genen" oder „endogenen Nukleotidsequenzen" versteht man die in der Population einer Art vorhandenen Gene beziehungsweise Nukleotidsequenzen und Allele.
Der Begriff "Verstärkung" beschreibt in diesem Zusammenhang die Erhöhung der intrazellulären Aktivität oder Konzentration eines oder mehrerer Enzyme oder Proteine in einem Mikroorganismus, die durch die entsprechende DNA kodiert werden, indem man beispielsweise die Kopienzahl des Gens bzw. der Gene erhöht, einen starken Promotor verwendet oder ein Gen oder Allel verwendet, das für ein entsprechendes Enzym oder Protein mit einer hohen Aktivität kodiert und gegebenenfalls diese Maßnahmen kombiniert.
Zusätzlich kann es für die verbesserte Produktion von Cadaverin vorteilhaft sein, in den auf die beschriebene Weise hergestellten coryneformen Bakterien eines oder mehrere Enzyme des jeweiligen Biosyntheseweges, der
Glykolyse, der Anaplerotik, des Pentosephosphat-Zyklus, des Aminosäure-Exports und gegebenenfalls regulatorische Proteine überzuexprimieren, um die Lysin-Bildung in den beanspruchten Organismen zu erhöhen. Die Verwendung endogener Gene wird bei den beschriebenen Massnahmen im allgemeinen bevorzugt. So ist es für die erhöhte L-Lysinbildung in corynformen Mikroorganismen vorteilhaft, wenn eines oder mehrere der Gene überexprimiert werden, ausgewählt aus der Gruppe:
Ein für ein Dihydrodipicolinat-Synthase kodierendes Gen dapA, wie beispielsweise das in der EP 0 197 335 beschriebene dapA-Gen des Wildtyps von Corynebacterium glutamicum.
Ein für eine Glucose-6-Phosphat Dehydrogenase kodierendes Gen zwf, wie beispielsweise das in der JP-A-09224661 und EP-A-1108790 beschriebene zwf-Gen des Wildtyps von Corynebacterium glutamicum.
Die in der US-2003-0175911-A1 beschriebenen zwf-Allele von Corynebacterium glutamicum, die für ein Protein kodieren, bei dem beispielsweise das L-Alanin an Position 243 der Aminosäuresequenz durch L-Threonin ersetzt ist oder bei dem die L-Asparaginsäure an Position 245 durch L-Serin ersetzt ist .
Die in der WO 2005/058945 beschriebenen zwf-Allele von Corynebacterium glutamicum, die für ein Protein kodieren, bei dem beispielsweise das L-Serin an Position 8 der
Aminosäuresequenz durch L-Threonin ersetzt ist oder bei dem das L-Glycin an Position 321 durch L-Serin ersetzt ist.
Ein für eine Pyruvat-Carboxylase kodierendes Gen pyc, wie beispielsweise das in der DE-A-198 31 609 und EP 1108790 beschriebene pyc-Gen des Wildtyps von Corynbebacterium glutamicum.
Das für das in der EP 1 108 790 beschriebene pyc-Allel von Corynebacterium glutamicum, das für ein Protein kodiert, bei dem L-Prolin an Position 458 der Aminosäuresequenz durch L-Serin ersetzt ist.
Die in der WO 02/31158 und insbesondere EP1325135B1 beschriebene pyc-Allele von Corynebacterium glutamicum, die für Proteine kodieren, welche einen oder mehrere der Aminosäureaustausche ausgewählt aus der Gruppe L-Valin an Position 1 ersetzt durch L-Methionin, L-Glutaminsäure an Position 153 ersetzt durch L-Asparaginsäure, L-Alanin an Position 182 ersetzt durch L-Serin, L-Alanin an Position 206 ersetzt durch L-Serin, L-Histidin an Position 227 ersetzt durch L-Arginin, L-Alanin an Position 455 ersetzt durch Glycin und L-Asparaginsäure an Position 1120 ersetzt durch L-Glutaminsäure tragen.
Ein für eine Aspartatkinase kodierendes lysC Gen wie beispielsweise das als SEQ ID NO:281 in der EP-A-1108790 (Siehe auch Zugangsnummer AX120085 und 120365) und das als SEQ ID NO:25 in der WO 01/00843 (Siehe Zugangsnummer AX063743) beschriebene lysC-Gen des Wildtyps von Corynebacterium glutamicum.
Ein für eine feed back resistente Aspartatkinase Variante kodierendes lysCFBR Allel.
Unter „feed back" resistenten Aspartatkinasen versteht man Aspartatkinasen, die im Vergleich zur Wildform eine geringere Empfindlichkeit gegenüber der Hemmung durch
Mischungen von Lysin und Threonin oder Mischungen von AEC (Aminoethylcystein) und Threonin oder Lysin allein oder AEC allein aufweisen. Die für diese desensibilisierten Aspartatkinasen kodierenden Gene beziehungsweise Allele werden auch als lysCFBR-Allele bezeichnet. Im Stand der
Technik sind zahlreiche lysCFBR-Allele beschrieben, die für Aspartatkinase-Varianten kodieren, welche Aminosäureaustausche im Vergleich zum Wildtypprotein besitzen. Die Kodierregion des Wildtyp lysC-Gens von Corynebacterium glutamicum entspricht der Zugangsnummer AX756575 der NCBI Datenbank. Bevorzugt werden folgende lysCFBR-Allele : lysC A279T (Austausch von Alanin an Position 279 des kodierten Aspartatkinaseproteins gegen Threonin) , lysC A279V (Austausch von Alanin an Position 279 des kodierten Aspartatkinaseproteins gegen Valin) , lysC S301F (Austausch von Serin an Position 301 des kodierten Aspartatkinaseproteins gegen Phenylalanin) , lysC T308I (Austausch von Threonin an Position 308 des kodierten Aspartatkinaseproteins gegen Isoleucin) , lysC S301Y (Austausch von Serin an Position 308 des kodierten Aspartatkinaseproteins gegen Tyrosin) , lysC G345D (Austausch von Glycin an Position 345 des kodierten
Aspartatkinaseproteins gegen Asparaginsäure) , lysC R320G (Austausch von Arginin an Position 320
Aspartatkinaseproteins gegen Glycin) , lysC T311I (Austausch von Threonin an Position 311 des kodierten Aspartatkinaseproteins gegen Isoleucin) , lysC S381F (Austausch von Serin an Position 381 des kodierten Aspartatkinaseproteins gegen Phenylalanin) , lysC S317A (Austausch von Serin an Position 317 des kodierten Aspartatkinaseproteins gegen Alanin) und lysC T380I (Austausch von Threonin an Position 380 des kodierten Aspartatkinaseproteins gegen Isoleucin) .
Besonders bevorzugt werden das lysCFBR-Allel lysC T311I (Austausch von Threonin an Position 311 des kodierten Aspartatkinaseproteins gegen Isoleucin) und ein lysCFBR- Allel enthaltend mindestens einen Austausch ausgewählt aus der Gruppe A279T (Austausch von Alanin an Position 279 des kodierten Aspartatkinaseproteins gegen Threonin) und S317A (Austausch von Serin an Position 317 des kodierten Aspartatkinaseproteins gegen Alanin) . Ein für ein Lysin-Export-Protein kodierendes Gen lysE, wie beispielsweise das in der DE-A-195 48 222 beschriebene lysE-Gen von des Wildtyps Corynebacterium glutamicum wird dagegen abgeschwächt oder ausgeschaltet.
Ein für eine Diaminopimelat-Dehydrogenase kodierendes Gen ddh, wie beispielsweise das in der EP 1 108 790 beschriebene ddh-Gen des Wildtyps Corynebacterium glutamicum.
Das für das Zwal-Protein kodierende Gen zwal des Wildtyps von Corynebacterium glutamicum (US 6,632,644).
In gleicher Weise werden auch Cadaverin produzierende Mikroorganismen der Gattung Escherichia beansprucht, in denen man gleichzeitig eines oder mehrere der Gene aus E. coli, ausgewählt aus der Gruppe
a) das für eine feedback resistente Aspartkinase Gen oder Allele gemäß US 5,827,698 b) das für die Dihydrodipicolinatsynthase kodierende Gen, c) das für die Dihydrodipicolinatreduktase kodierende Gen, d) das für die Succinyldiaminopimelattransaminase kodierende Gen e) das für die Succinyldiaminopimelatdeacylase kodierende Gen
verstärkt oder überexprimiert .
Die erfindungsgemäßen Mikroorganismen können kontinuierlich oder diskontinuierlich im batch - Verfahren
(Satzkultivierung) oder im fed batch (Zulaufverfahren) oder repeated fed batch Verfahren (repetitives Zulaufverfahren) zum Zwecke der Produktion von Cadaverin kultiviert werden. Eine Zusammenfassung über bekannte Kultivierungsmethoden ist im Lehrbuch von Chmiel (Bioprozesstechnik 1. Einführung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) oder im Lehrbuch von Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)) beschrieben.
Das zu verwendende Kulturmedium muß in geeigneter Weise den Ansprüchen der jeweiligen Stämme genügen. Beschreibungen von Kulturmedien verschiedener Mikroorganismen sind im
Handbuch „Manual of Methods for General Bacteriology,, der American Society for Bacteriology (Washington D. C, USA, 1981) enthalten.
Als Kohlenstoffquelle können Zucker und Kohlehydrate wie z.B. Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, Stärke und Cellulose, Öle und Fette, wie zum Beispiel Sojaöl, Sonnenblumenöl, Erdnußöl und Kokosfett, Fettsäuren, wie zum Beispiel Palmitinsäure, Stearinsäure und Linolsäure, Alkohole wie zum Beispiel Glycerin und Ethanol und organische Säuren, wie zum Beispiel Essigsäure verwendet werden. Diese Stoffe können einzeln oder als Mischung verwendet werden.
Als Stickstoffquelle können organische Stickstoff-haltige Verbindungen wie Peptone, Hefeextrakt, Fleischextrakt, Malzextrakt, Maisquellwasser, Sojabohnenmehl und Harnstoff oder anorganische Verbindungen wie Ammoniumsulfat, Ammoniumchlorid, Ammoniumphosphat, Ammoniumcarbonat und Ammoniumnitrat verwendet werden. Die Stickstoffquellen können einzeln oder als Mischung verwendet werden.
Als Phosphorquelle können Phosphorsäure,
Kaliumdihydrogenphosphat oder Dikaliumhydrogenphosphat oder die entsprechenden Natrium haltigen Salze verwendet werden. Das Kulturmedium muß weiterhin Salze von Metallen enthalten, wie zum Beispiel Magnesiumsulfat oder Eisensulfat, die für das Wachstum notwendig sind.
Schließlich können essentielle Wuchsstoffe wie Aminosäuren und Vitamine zusätzlich zu den oben genannten Stoffen eingesetzt werden. Dem Kulturmedium können überdies geeignete Vorstufen zugesetzt werden. Die genannten Einsatzstoffe können zur Kultur in Form eines einmaligen Ansatzes hinzugegeben oder in geeigneter Weise während der Kultivierung zugefüttert werden.
Zur pH - Kontrolle der Kultur werden basische Verbindungen wie Natriumhydroxid, Kaliumhydroxid, Ammoniak beziehungsweise Ammoniakwasser oder saure Verbindungen wie Phosphorsäure oder Schwefelsäure in geeigneter Weise eingesetzt. Zur Kontrolle der Schaumentwicklung können Antischaummittel, wie zum Beispiel Fettsäurepolyglykolester eingesetzt werden. Zur Aufrechterhaltung der Stabilität von Plasmiden können dem Medium geeignete selektiv wirkende Stoffe, wie zum Beispiel Antibiotika hinzugefügt werden. Um aerobe Bedingungen aufrechtzuerhalten, werden Sauerstoff oder Sauerstoff-haltige Gasmischungen, wie zum Beispiel Luft in die Kultur eingetragen. Die Temperatur der Kultur liegt normalerweise bei 200C bis 45°C und vorzugsweise bei 25°C bis 400C. Die Kultur wird solange fortgesetzt, bis sich ein Maximum an Cadaverin gebildet hat, beziehungsweise die Ausbeute oder Produktivität einen gewünschten optimalen Wert erreicht hat. Dieses Ziel wird normalerweise innerhalb von 10 Stunden bis 160 Stunden erreicht.
Das auf diese Weise hergestellte Cadaverin wird anschließend gesammelt, dann bevorzugt isoliert und gegebenfalls gereinigt.
Methoden zur Bestimmung von Cadaverin und L-Aminosäuren wie L-Lysin sind aus dem Stand der Technik bekannt. Die Analyse kann zum Beispiel so wie bei Spackman et al . (Analytical Chemistry, 30, (1958), 1190) beschrieben durch Anionenaustausch-Chromatographie mit anschließender Ninhydrin-Derivatisierung erfolgen, oder sie kann durch reversed phase HPLC erfolgen, so wie bei Lindroth et al . (Analytical Chemistry (1979) 51: 1167-1174) beschrieben.
Das erfindungsgemäße Verfahren dient zur verbesserten fermentativen Herstellung von Cadaverin durch Verwendung von Mikroorganismen mit einem hohen Lysintiter, in denen ein Lysin-Decarboxylase-Gen und/oder ein als Lysin/Cadaverin Antiporter bezeichnetes Protein überexprimiert werden.
Beispiele
Generelle Techniken
Für DNA Manipulationen wurden Standardtechniken benutzt wie sie zum Beispiel in Sambrook, J. et al . (1989), Molecular Cloning: a laboratory manual, 2nd Ed., CoId Spring Harbor Laboratory Press, CoId Spring Harbor, New York, angegeben sind. DNA Amplifikationen wurden mit der SAWADY Pwo-DNA Polymerase (Peqlab Biotechnologie, Erlangen, Germany) oder Platinum Pfx-DNA-Polymerase (Invitrogen, Karlsruhe, Germany) durchgeführt. Wenn nicht anders angegeben wurden die Polymerasen entsprechend den Angaben der Hersteller benutzt. Oligonukleotide für die PCR Amplifikationen und die Einführung von Restriktionsschnittstellen wurden von MWG-Biotech (Ebersberg, Germany) erhalten. Der Nachweis konstruierter Stämme erfolgte durch Kolonie-PCR mit der Taq Polymerase READYMIX (Sigma, Taufkirchen, Germany) , sowie
Plasmidpräparationen . DNA Fragmente wurden mit dem MinElute Gel Extraction Kit (Quiagen, Hilden, Germany) nach Angaben des Herstellers gereinigt und gewonnen. Plasmid DNA wurde mittels des Qiaprep spin Miniprep Kits (Quiagen, Hilden, Germany) isoliert. Alle konstruierten Plasmide wurden durch Restriktionsanalyse mit nachfolgender Sequenzierung
Beispiel 1: Konstruktion von pEKEx2cadA
Zur Konstruktion von pEKEx2cadA wurde der Vektor pEKEx2 eingesetzt (Kleinertz et al . , 1991 Gene 102:93), welcher Transkription klonierter Gene unter Kontrolle des Isopropyl-beta-D-thiogalactopyranosid (IPTG) induzierbaren tac Promoters und des lac Repressorsystems (laclq) erlaubt Das 2.2 kb große DNA-Fragment, das für das cadA Gen kodiert, wurde mittels der folgenden Oligonukleotide und DNA von Escherichia coli DH5 als Template amplifiziert .
SEQ ID NO 5:
pcadAFr 5 ' - ttgtcgacaaggagatatagatATGAACGTTATTGCAATATTGAATC-3' (Sali)
SEQ ID NO 6:
pcadARe 5'- aaggatccTTATTTTTTGCTTTCTTCTTTCAATACC -3' (Barn HI)
(In Großbuchstaben sind zur Genomsequenz komplementäre Sequenzen angegeben. Es wurden in die Amplifikate zusätzlich Restriktionsschnittstellen für Sali, bezw. BamHI, und eine Ribosomenbindestelle (aaggag) 8 Nukleotide vor dem Startcodon eingeführt) .
Das PCR Amplifikat wurde mit Polynukleotidkinase (Roche, Basel, Switzerland) phosphoryliert und blunt end in die Smal-Schnittstelle des Vektors pUC18 kloniert (Yanisch- Perron et al . , 1985, Gene 33:103-19). Die Identität und Korrektheit des Inserts wurde durch Sequenzierung bestätigt. Anschließend wurde aus dem pUC18 Derivat das 2.2 kb-Fragment als Sall-BamHI-Fragment isoliert und mit dem Sall-BamHI geschnittenen Vektor pEKEx2 ligiert. Anhand von Restriktionsverdaus wurden die gewünschten Plasmide ausgewählt, und eines davon als pEKEx2cadA bezeichnet.
Beispiel 2: Konstruktion von pEKEx2cadBA
Zur Konstruktion von pEKEx2cadBA wurde der Vektor pEKEx2 eingesetzt (Kleinertz et al . , 1991 Gene 102:93), welcher Transkription klonierter Gene unter Kontrolle des Isopropyl-beta-D-thiogalactopyranosid (IPTG) induzierbaren tac Promoters und des lac Repressorsystems (laclq) erlaubt. Das 3.6 kb große DNA-Fragment, das für das cadB und das cadA Gen kodiert wurde mittels der folgenden Oligonukleotide und DNA von Escherichia coli DH5 als Template amplifiziert .
SEQ ID NO:7
pcadBAFr 5'- ttggatccaaggagatatagatATGAGTTCTGCCAAGAAGATCG- 3' Barn HI)
SEQ ID NO: 8
pcadBARe 5 ' -aaggatccTTATTTTTTGCTTTCTTCTTTCAATACC-3 ' (Barn HI) '
(In Großbuchstaben sind zur Genomsequenz komplementäre Sequenzen angegeben. Es wurden in die Amplifikate zusätzlich Restriktionsschnittstellen für BamHI, und eine Ribosomenbindestelle (aaggag) 8 Nukleotide vor dem Startcodon eingeführt.)
Das PCR Amplifikat wurde mit Polynukleotidkinase (Roche, Basel, Switzerland) phosphoryliert und blunt end in die Smal-Schnittstelle des Vektors pUC18 kloniert (Yanisch- Perron et al . , 1985, Gene 33:103-19). Die Identität und Korrektheit des Inserts wurde durch Sequenzierung bestätigt. Anschließend wurde aus dem pUC18 Derivat das 3.( kb-Fragment als BamHI-Fragment isoliert und mit dem BamHI geschnittenen Vektor pEKEx2 ligiert. Anhand von Restriktionsverdaus wurden die gewünschten Plasmide ausgewählt, und eines davon als pEKEx2cadBA bezeichnet.
Beispiel 3: Gewinnung rekombinanter Zellen
Die Herstellung kompetenter Zellen von Corynebacterium glutamicum DM1800 (Georgi et al . , Metab Eng. 7 (2005) 291- 301) erfolgte wie bei Tauch et al . beschrieben (Curr Microbiol. (2002) 45:362-367). DNA von pEKEx2, pEKEx2cadA, und pEKEx2cadBA wurde mittels Elektroporation eingeführt, und Transformanten auf Hirn-Herz-Agar der Firma Merck (Darmstadt, Deutschland) , der mit 50 mg/1 Kanamycin supplementiert worden war selektioniert (FEMS Microbiol Lett., 1989, 53:299-303). Von Transformanten wurde Plasmid DNA isoliert, und diese mittels Restriktionsverdau charakterisiert. Auf diese Weise wurde C. glutamicum pEKEx2, C. glutamicum pEKEx2cadA, und C. glutamicum pEKEx2cadBA erhalten.
Der Stamm C. glutamicum DM1800 ist gekennzeichnet durch die Eigenschaften (im Vergleich zu dem Wildtyp C. glutamicum ATCC 13032) : Mutationen in den Allelen pyc P458S
(Pyruvatdecarboxylase) und lysC T311I (Aspertatkinase) , welche zu einer erhöhten Lysinbildung führen (Georgi T, Rittmann D, Wendisch VF Metab Eng. 2005; 7 (4) : 291-301, Lysine and glutamate production by Corynebacterium glutamicum on glucose, fructose and sucrose: roles of malic enzyme and fructose-1, 6-bisphosphatase . Metab Eng. 2005 JuI; 7 (4) .291-301) .
Beispiel 4: Cadaverinbildung mit Bakterien
Die rekombinanten C. glutamicum DM1800 Stämme wurden auf Komplexmedium CGIII (Eggeling and Bott, Eds, Handbook of Corynebacterium glutamicum., CRC Press, Taylor Francis Group) , das 25 mg/1 Kanamycin enthielt bei 30 0C über Nacht angezogen. Anschließend wurden die Zellen durch jeweils 5- minütige Zentrifugation bei 6000 UpM geerntet, resuspendiert, in 0.9% NaCl aufgenommen, erneut zentrifugiert, und zum Schluß in 0.9% NaCl aufgenommen. Mit dieser Zellsuspension wurde das Minimalmedium CGXII 4% Glukose, 25 mg/1 Kanamycin (Eggeling and Bott, Eds, Handbook of Corynebacterium glutamicum., CRC Press, Taylor Francis Group) beimpft. Anschließend wurden die Zellen bei 30 °C inkubiert. Es wurden je mindestens zwei unabhängige Fermentationen durchgeführt. Nach 47 Stunden wurden Proben zur Aminosäure- und Cadaverinbestimmung entnommen. Die Bestimmung erfolgte mittels Hochdruckflüssigkeitchromatographie (J Chromat (1983) 266: 471-482) . Das Ergebnis der Fermentation ist in Tabelle 1 dargestellt. Somit stellt die Nutzung der konstruierten und beschriebenenen Stämme ein Verfahren dar, um mikrobielle Cadaverinbildung aus Zucker zu ermöglichen.
Tabelle 1: Akkumulation von Cadaverin im Kulturüberstand rekombinanter Stämme von Corynebacterium glutamicum DM1800.
Figure imgf000028_0001

Claims

Patentansprüche :
1. Cadaverin bildende rekombinante Mikroorganismen mit einem hohen Lysintiter, in denen für eine Lysindecarboxylase kodierende Polynukleotide im Vergleich zu im Hinblick auf dieses Enzym nicht veränderte Mikroorganismen, verstärkt vorliegen.
2. Mikroorganismen gemäß Anspruch 1, in denen für einen als Lysin/Cadaverin Antiporter bezeichnetes Protein kodierende Polynukleotide im Vergleich zu in Hinblick auf dieses Protein nicht veränderte Mikroorganismen verstärkt vorliegen.
3. Mikroorganismen gemäß den Ansprüchen 1 oder 2, in denen die für Lysindecarboxylase kodierenden Polynukleotide aus Mikroorganismen stammen, ausgewählt aus der Gruppe, bestehend aus:
Escherichia coli, Bacillus halodurans, Bacillus cereus, Bacillus subtilis, Bacillus thuringensis, Burkholderia ambifaria, Burkholderia vietnamensia, Burkholderia cenocepatia, Chromobacterium violaceum, Selenomonas ruminantium, Vibrio cholerae, Vibrio parahaemolyticus, Streptomyces coelicolor, Streptomyces pilosus, Eikenalla corrodens, Eubacterium acidaminophilum, Francisella tulariensis, Geobacillus kaustophilus, Salmonella typhi, Salmonella typhimurium, Hafnia alvei, Neisseria meningitidis, Thermoplasma acidophilum, Plasmodium falciparum, Kineococcus radiotolerans, Oceanobacillus iheyensis, Pyrococcus abyssi, Porochlorococcus marinus, Proteus vulgaris, Rhodoferax ferrireducens, Saccharophagus degradans, Streptococcus pneumoniae, Synechococcus sp .
4. Mikroorganismen gemäß den Ansprüchen 1 bis 3, bei denen die für das als Lysin/Cadaverin Antiporter bezeichnete Protein kodierenden Polynukleotide aus Mikroorganismen stammen, ausgewählt aus der Gruppe, bestehend aus: Escherichia coli, Thermoplasma acidophilum oder Vibrio cholerae.
5. Mikroorganismen gemäß den Ansprüchen 1 bis 4, bei denen es sich um rekombinante Stämme der Gattungen
Escherichia oder Bacillus oder coryneforme Bakterien, insbesondere der Gattung Corynebacterium handelt.
6. Mikroorganismen gemäß den Ansprüchen 1 bis 5, bei denen die für die Lysindecarboxylase und das als Lysin/Cadaverin Antiporter bezeichnete Protein kodierenden Polynukleotide aus Mikroorganismen der Species Escherichia coli stammen.
7. Mikroorganismen gemäß den Ansprüchen 1 bis 6, bei denen die Überexpression durch Erhöhung der Kopienzahl der genannten Polynukleotide um mindestens eins im Vergleich zum nicht transformierten Mikroorganismus oder durch Kombination der genannten Polynukleotide mit einem stärkeren Promoter im Vergleich zum Ausgangsstamm erfolgt.
8. Mikroorganismen gemäß den Ansprüchen 1 bis 7, bei denen es sich um coryneforme Mikroorganismen handelt und in denen man gleichzeitig eines oder mehrere der Gene aus Corynebacterium, ausgewählt aus der Gruppe:
a) das für die Dihydrodipicolinat-Synthase kodierende Gen dapA,
b) das für die Glyceraldehyd-3-Phosphat Dehydrogenase kodierende Gen gap,
c) das für die Glucose-6-Phosphat Dehydrogenase kodierende Gen zwf und dessen Allele,
d) das für die Pyruvat Carboxylase kodierende Gen pyc und dessen Allele, e) das für die Malat-Chinon-Oxidoreduktase kodierende Gen mqo,
f) das für eine feed back resistente Aspartatkinase kodierende Gen lysC und dessen Allele
g) das für das Zwal-Protein kodierende zwal Gen
verstärkt bzw. überexprimiert .
9. Mikroorganismen gemäß den Ansprüchen 1 bis 8, in denen man das für ein Protein des L-Lysinexports kodierende lysE-Gen abschwächt oder ausschaltet.
10. Mikroorganismen gemäß den Ansprüchen 1 bis 7, bei denen es sich um Mikroorganismen der Gattung Escherichia handelt, in denen man gleichzeitig eines oder mehrere der Gene aus E. coli, ausgewählt aus der Gruppe
a) das für eine feedback resistente Aspartkinase Gen oder Allele b) das für die Dihydrodipicolinatsynthase kodierende Gen, c) das für die Dihydrodipicolinatreduktase kodierende Gen, d) das für die Succinyldiaminopimelattransaminase kodierende Gen e) das für die Succinyldiaminopimelatdeacylase kodierende Gen
verstärkt bzw. überexprimiert.
11. Mikroorganismen gemäß den Ansprüchen 1 bis 10, die die Fähigkeit besitzen, L-Lysin zu prodzuieren, bevor sie mit einem Lysindecarboxylase-Gen transformiert wurden.
12. Vektoren oder Plasmide, die ein für eine Lysindecarboxylase kodierendes Polynukleotid und/oder ein für ein als Lysin/Cadaverin Antiporter bezeichnetes Protein kodierendes Polynukleotid enthalten.
13. Vektoren oder Plasmide gemäß Anspruch 12 bei denen die Polynukleotide aus Escherichia coli stammen.
14. Verfahren zur Herstellung von Cadaverin, indem man
a) Mikroorganismen gemäß den Ansprüchen 1 bis 11 in einem Medium unter Bedingungen fermentiert, unter denen sich Cadaverin bildet,
b) das Cadaverin in den Zellen des Mikroorganismus oder in dem Fermentationsmedium akkumuliert.
15. Verfahren gemäß Anspruch 11, bei dem man
a) das Cadaverin isoliert, wobei gegebenenfalls
b) weitere gelöste Bestandteile der
Fermentationsbrühe und/oder die Biomasse in ihrer Gesamtheit oder Anteilen >0 bis 100%) im isolierten Produkt verbleiben
16. Verfahren gemäß den Ansprüchen 14 oder 15, bei denen man coryneforme Bakterien einsetzt.
17. Verfahren gemäß den Ansprüchen 14 oder 15, bei denen Mikroorganismen der Gattung Escherichia einsetzt.
PCT/EP2008/050222 2007-02-01 2008-01-10 Verfahren zur fermentativen herstellung von cadaverin WO2008092720A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
MX2009005666A MX2009005666A (es) 2007-02-01 2008-01-10 Metodo para la produccion fermentativa de cadaverina.
CA002670074A CA2670074A1 (en) 2007-02-01 2008-01-10 Method for the fermentative production of cadaverine
JP2009547620A JP2010517519A (ja) 2007-02-01 2008-01-10 カダベリンの発酵による製造方法
US12/517,923 US20110039313A1 (en) 2007-02-01 2008-01-10 Method for the fermentative production of cadaverine
EP08707853A EP2121899A1 (de) 2007-02-01 2008-01-10 Verfahren zur fermentativen herstellung von cadaverin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007005072.2 2007-02-01
DE102007005072A DE102007005072A1 (de) 2007-02-01 2007-02-01 Verfahren zur fermentativen Herstellung von Cadaverin

Publications (1)

Publication Number Publication Date
WO2008092720A1 true WO2008092720A1 (de) 2008-08-07

Family

ID=39333053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/050222 WO2008092720A1 (de) 2007-02-01 2008-01-10 Verfahren zur fermentativen herstellung von cadaverin

Country Status (8)

Country Link
US (1) US20110039313A1 (de)
EP (1) EP2121899A1 (de)
JP (1) JP2010517519A (de)
CN (1) CN101240258A (de)
CA (1) CA2670074A1 (de)
DE (1) DE102007005072A1 (de)
MX (1) MX2009005666A (de)
WO (1) WO2008092720A1 (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011073278A1 (en) 2009-12-17 2011-06-23 Basf Se Processes and recombinant microorganisms for the production of cadaverine
WO2011105344A1 (ja) 2010-02-23 2011-09-01 東レ株式会社 カダベリンの製造方法
US8133704B2 (en) 2008-12-12 2012-03-13 Celexion, Llc Biological synthesis of difunctional alkanes from carbohydrate feedstocks
WO2012077741A1 (ja) 2010-12-08 2012-06-14 東レ株式会社 カダベリンの製造方法
WO2012077744A1 (ja) 2010-12-08 2012-06-14 東レ株式会社 カダベリンの製造方法
WO2012114256A1 (en) 2011-02-22 2012-08-30 Basf Se Processes and recombinant microorganisms for the production of cadaverine
US8404465B2 (en) 2009-03-11 2013-03-26 Celexion, Llc Biological synthesis of 6-aminocaproic acid from carbohydrate feedstocks
WO2014028026A1 (en) 2012-08-17 2014-02-20 Celexion, Llc Biological synthesis of difunctional hexanes and pentanes from carbohydrate feedstocks
US9644220B2 (en) 2011-12-22 2017-05-09 Basf Se Processes and recombinant microorganisms for the production of fine chemicals
EP3162889A4 (de) * 2014-06-27 2018-01-03 Institute Of Microbiology, Chinese Academy Of Sciences Manipulierte escherichia coli zur herstellung von 1,5-pentanediamin durch ganzzellige katalyse und verwendung davon
KR20200046551A (ko) 2018-10-25 2020-05-07 대상 주식회사 재조합 코리네박테리움 글루타미쿰 균주 및 이를 이용한 카다베린의 생산방법
EP3649234A4 (de) * 2017-07-06 2021-05-26 Cathay Biotech Inc. Heterologe expression von thermophiler lysindecarboxylase und deren verwendungen

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006025821A1 (de) * 2006-06-02 2007-12-06 Degussa Gmbh Ein Enzym zur Herstellung von Mehylmalonatsemialdehyd oder Malonatsemialdehyd
DE102007052463A1 (de) * 2007-11-02 2009-05-07 Evonik Degussa Gmbh Fermentative Gewinnung von Aceton aus erneuerbaren Rohstoffen mittels neuen Stoffwechselweges
US8906653B2 (en) * 2008-01-23 2014-12-09 Basf Se Method for fermentatively producing 1,5-diaminopentane
DE102008002715A1 (de) * 2008-06-27 2009-12-31 Evonik Röhm Gmbh 2-Hydroxyisobuttersäure produzierende rekombinante Zelle
US8647642B2 (en) 2008-09-18 2014-02-11 Aviex Technologies, Llc Live bacterial vaccines resistant to carbon dioxide (CO2), acidic PH and/or osmolarity for viral infection prophylaxis or treatment
DE102009000592A1 (de) 2009-02-04 2010-08-05 Evonik Degussa Gmbh Verfahren zur Herstellung von Aminogruppen tragenden, multizyklischen Ringsystemen
DE102009009580A1 (de) 2009-02-19 2010-08-26 Evonik Degussa Gmbh Verfahren zur Herstellung freier Säuren aus ihren Salzen
DE102009046623A1 (de) 2009-11-11 2011-05-12 Evonik Röhm Gmbh Verwendung eines zu einem MeaB-Protein homologen Proteins zur Erhöhung der enzymatischen Aktivität einer 3-Hydroxycarbonsäure-CoA-Mutase
DE102009046626A1 (de) 2009-11-11 2011-05-12 Evonik Degussa Gmbh Candida tropicalis Zellen und deren Verwendung
DE102010014680A1 (de) 2009-11-18 2011-08-18 Evonik Degussa GmbH, 45128 Zellen, Nukleinsäuren, Enzyme und deren Verwendung sowie Verfahren zur Herstellung von Sophorolipiden
DE102010015807A1 (de) 2010-04-20 2011-10-20 Evonik Degussa Gmbh Biokatalytisches Oxidationsverfahren mit alkL-Genprodukt
DE102011004465A1 (de) 2010-09-10 2012-03-15 Evonik Degussa Gmbh Verfahren zur direkten Aminierung sekundärer Alkohole mit Ammoniak zu primären Aminen
DE102011075162A1 (de) 2010-12-08 2012-06-14 Evonik Degussa Gmbh Verfahren zur homogen-katalysierte, hochselektiven direkten Aminierung von primären Alkoholen mit Ammoniak zu primären Aminen bei hohem Volumenverhältnis von Flüssig- zu Gasphase und/oder hohen Drücken
CN103370302B (zh) 2011-02-21 2015-06-17 赢创德固赛有限公司 借助Xantphos催化剂体系用氨将醇直接胺化成伯胺的方法
RU2014106109A (ru) 2011-07-20 2015-08-27 Эвоник Дегусса Гмбх Окисление и аминирование первичных спиртов
DE102011084518A1 (de) 2011-10-14 2013-04-18 Evonik Industries Ag Verwendung einer Mehrschichtfolie mit Polyamid- und Polyesterschichten fürdie Herstellung photovoltaischer Module
EP2602328A1 (de) 2011-12-05 2013-06-12 Evonik Industries AG Verfahren zur Oxidation von Alkanen unter Verwendung einer AlkB Alkan 1-Monooxygenase
CN102424811A (zh) * 2011-12-13 2012-04-25 天津科技大学 一种产尸胺工程菌
EP2607479A1 (de) 2011-12-22 2013-06-26 Evonik Industries AG Biotechnologische Herstellung von Alkoholen und Derivaten davon
EP2631298A1 (de) 2012-02-22 2013-08-28 Evonik Industries AG Biotechnologisches Verfahren zur Herstellung von Butanol und Buttersäure
EP2639308A1 (de) 2012-03-12 2013-09-18 Evonik Industries AG Enzymatische omega-Oxidation und -Aminierung von Fettsäuren
EP2647696A1 (de) 2012-04-02 2013-10-09 Evonik Degussa GmbH Verfahren zur aeroben Herstellung von Alanin oder einer unter Verbrauch von Alanin entstehenden Verbindung
CN104379729B (zh) 2012-07-03 2020-07-21 花王株式会社 有用微生物和目标物质的制备方法
US9558667B2 (en) 2012-07-09 2017-01-31 Elwha Llc Systems and methods for cooperative collision detection
US9776632B2 (en) 2013-07-31 2017-10-03 Elwha Llc Systems and methods for adaptive vehicle sensing systems
WO2015196430A1 (en) * 2014-06-26 2015-12-30 Cathay R&D Center Co., Ltd. Expression of polypeptides involved in lysine decarboxylation, and methods and applications thereof
US10400257B2 (en) * 2014-10-09 2019-09-03 Cathay R&D Center Co., Ltd Expression of recombinant tetracycline efflux pumps for the production of lysine or lysine-derived products, and methods and applications thereof
KR20160085602A (ko) 2015-01-08 2016-07-18 광운대학교 산학협력단 재조합 미생물을 이용한 라이신 탈탄산효소의 제조방법
EP3255147B1 (de) * 2015-02-03 2020-04-15 Cathay Biotech Inc. Immobilisierte zelle und herstellungsverfahren dafür
KR20160097691A (ko) 2015-02-09 2016-08-18 씨제이제일제당 (주) 신규 라이신 디카르복실라제 및 이를 이용하여 카다베린을 생산하는 방법
CN105441497B (zh) * 2015-12-29 2020-07-14 天津科技大学 一种利用微生物发酵和微生物转化偶联生产尸胺的方法
EP3497226A4 (de) * 2016-08-15 2020-07-01 Cathay Biotech Inc. Kontrolle der verteilung eines biofilms zur herstellung von aminosäuren oder produkten aus aminosäuren
US11129906B1 (en) 2016-12-07 2021-09-28 David Gordon Bermudes Chimeric protein toxins for expression by therapeutic bacteria
US11180535B1 (en) 2016-12-07 2021-11-23 David Gordon Bermudes Saccharide binding, tumor penetration, and cytotoxic antitumor chimeric peptides from therapeutic bacteria
PT3561066T (pt) * 2016-12-21 2024-04-30 Fertinagro Biotech S L Método para obtenção de poliaminas a partir de um material proteico
EP3562837A4 (de) * 2016-12-30 2020-12-30 Cathay Biotech Inc. Modifizierte lysindecarboxylaseenzyme
CN110291192B (zh) * 2016-12-30 2023-12-08 上海凯赛生物技术股份有限公司 在可滴定氨基酸具有修饰的赖氨酸脱羧酶
KR102011394B1 (ko) * 2017-07-19 2019-10-22 씨제이제일제당 주식회사 퓨트레신을 생산하는 미생물 및 이를 이용한 퓨트레신 생산방법
EP3717628A4 (de) 2017-11-29 2021-07-14 Cathay Biotech Inc. Verminderung der akkumulation von iminen/enaminen zur herstellung von aminosäuren oder von aus aminosäure gewonnenen produkten
CN108342337B (zh) * 2017-12-31 2020-06-16 湖南豫园生物科技股份有限公司 一种哈夫尼菌yybio-001及其制备方法、应用和菌剂
WO2020112497A1 (en) * 2018-11-30 2020-06-04 Zymergen Inc. Engineered biosynthetic pathways for production of 1,5-diaminopentane by fermentation
CN111117940B (zh) * 2019-12-04 2022-06-28 天津大学 一种高产戊二胺的大肠杆菌工程菌与方法
WO2023222510A1 (en) 2022-05-18 2023-11-23 Evonik Operations Gmbh Biotechnological production of desferrioxamines and analogs thereof
WO2023222515A1 (en) 2022-05-18 2023-11-23 Evonik Operations Gmbh Biotechnological production of bisucaberins, desferrioxamines and analogs thereof
WO2023222505A1 (en) 2022-05-18 2023-11-23 Evonik Operations Gmbh Biotechnological production of monomers of bisucaberins, desferrioxamines and analogs thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002223770A (ja) * 2001-02-01 2002-08-13 Toray Ind Inc 宿主およびカダベリンの製造方法
WO2002074944A1 (en) * 2001-03-17 2002-09-26 Degussa Ag Process for the preparation of l-amino acids by using coryneform bacteria
JP2004222569A (ja) * 2003-01-22 2004-08-12 Toray Ind Inc コリネ型細菌、ならびにカダベリンもしくはその塩およびそれらの製造方法
WO2007113127A1 (en) * 2006-03-30 2007-10-11 Basf Se Process for the production of cadaverine

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835197A (ja) 1981-08-26 1983-03-01 Kyowa Hakko Kogyo Co Ltd プラスミドpcg2
GB2165546B (en) 1984-08-21 1989-05-17 Asahi Chemical Ind A plasmid containing a gene for tetracycline resistance and dna fragments derived therefrom
JPH0655149B2 (ja) 1985-03-12 1994-07-27 協和醗酵工業株式会社 L―リジンの製造法
US5250434A (en) 1987-03-27 1993-10-05 Ajinomoto Co., Inc. Microorganisms for production of glutamic acid
GB2223754B (en) 1988-09-12 1992-07-22 Degussa Dna encoding phosphoenolpyruvate carboxylase
DE3943117A1 (de) 1989-12-27 1991-07-04 Forschungszentrum Juelich Gmbh Verfahren zur fermentativen herstellung von aminosaeure, insbesondere l-lysin, dafuer geeignete mikroorganismen und rekombinante dna
JP2990735B2 (ja) 1990-04-20 1999-12-13 味の素株式会社 L―リジンの発酵的製造法
WO1992006189A1 (en) 1990-09-27 1992-04-16 Invitrogen Corporation Direct cloning of pcr amplified nucleic acids
CN101220366B (zh) 1994-12-09 2011-10-05 味之素株式会社 新的赖氨酸脱羧酶基因以及生产l-赖氨酸的方法
DE19548222A1 (de) 1995-12-22 1997-06-26 Forschungszentrum Juelich Gmbh Verfahren zur mikrobiellen Herstellung von Aminosäuren durch gesteigerte Aktivität von Exportcarriern
JPH09224661A (ja) 1996-02-23 1997-09-02 Mitsubishi Chem Corp グルコース−6−リン酸デヒドロゲナーゼおよびそれをコードするdna
DE19831609B4 (de) 1997-10-04 2009-11-12 Evonik Degussa Gmbh Verfahren zur Herstellung von Aminosäuren der Aspartat- und/oder Glutamatfamilie und im Verfahren einsetzbare Mittel
DE19931317A1 (de) * 1999-07-07 2001-01-11 Degussa L-Lysin produzierende coryneforme Bakterien und Verfahren zur Herstellung von L-Lysin
DE19907347A1 (de) * 1999-02-20 2000-08-24 Degussa Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien
CA2383865A1 (en) 1999-06-25 2001-01-04 Basf Aktiengesellschaft Corynebacterium glutamicum genes encoding metabolic pathway proteins
US20020086371A1 (en) * 1999-07-07 2002-07-04 Degussa-Huls Aktiengesellschaft L-lysine-producing corynebacteria and process for the preparation of L-lysine
US6861246B2 (en) * 1999-07-07 2005-03-01 Degussa Ag L-lysine-producing corynebacteria and process for the preparation of lysine
US20060014259A9 (en) * 1999-07-09 2006-01-19 Kevin Burke Process for the preparation of L-amino acids with amplification of the zwf gene
DE19959328A1 (de) 1999-12-09 2001-06-13 Degussa Neue für das zwa1-Gen codierende Nukleotidsequenzen
DE19959329A1 (de) * 1999-12-09 2001-06-13 Degussa Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien
JP4623825B2 (ja) 1999-12-16 2011-02-02 協和発酵バイオ株式会社 新規ポリヌクレオチド
US20050112733A1 (en) * 2000-03-20 2005-05-26 Degussa Ag Process for the preparation of L-amino acids with amplification of the zwf gene
US20030175911A1 (en) 2000-03-20 2003-09-18 Stephen Hans Process for the preparation of L-amino acids with amplification of the zwf gene
ES2234912T3 (es) 2000-10-13 2005-07-01 Archer-Daniels-Midland Company Gen de piruvato carboxilasa resistente a la retroalimentacion de corynebacterium.
JP2002223771A (ja) 2001-02-01 2002-08-13 Toray Ind Inc カダベリンの製造方法
CA2455878A1 (en) 2001-08-06 2003-05-15 Degussa Ag Production of l-lysine by genetically modified corynebacterium glutamicum strains
AU2002355462A1 (en) 2001-08-06 2003-02-24 Degussa Ag Coryneform bacteria which produce chemical compounds ii
JP4196620B2 (ja) 2002-04-08 2008-12-17 東レ株式会社 ポリアミド原料用カダベリンの製造方法
JP4356320B2 (ja) 2003-01-08 2009-11-04 東レ株式会社 カダベリン・ジカルボン酸塩およびポリアミドの製造方法
DE602004000428T2 (de) 2003-05-26 2006-10-19 Ajinomoto Co., Inc. Verfahren zur Herstellung von Cadaverindicarboxylat und dessen Verwendung zur Herstellung von Nylon
JP2005060447A (ja) 2003-08-19 2005-03-10 Toray Ind Inc ポリアミド樹脂
DE10344739A1 (de) * 2003-09-26 2005-04-14 Degussa Ag Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien
DE10359661A1 (de) 2003-12-18 2005-07-28 Basf Ag Genvarianten die für Proteine aus dem Stoffwechselweg von Feinchemikalien codieren
DE102005047596A1 (de) * 2005-10-05 2007-04-12 Degussa Ag Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002223770A (ja) * 2001-02-01 2002-08-13 Toray Ind Inc 宿主およびカダベリンの製造方法
WO2002074944A1 (en) * 2001-03-17 2002-09-26 Degussa Ag Process for the preparation of l-amino acids by using coryneform bacteria
JP2004222569A (ja) * 2003-01-22 2004-08-12 Toray Ind Inc コリネ型細菌、ならびにカダベリンもしくはその塩およびそれらの製造方法
WO2007113127A1 (en) * 2006-03-30 2007-10-11 Basf Se Process for the production of cadaverine

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MIMITSUKA TAKASHI ET AL: "Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation", BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, vol. 71, no. 9, September 2007 (2007-09-01), pages 2130 - 2135, XP002479568, ISSN: 0916-8451 *
SOKSAWATMAEKHIN WARAPORN ET AL: "Excretion and uptake of cadaverine by CadB and its physiological functions in Escherichia coli.", MOLECULAR MICROBIOLOGY, vol. 51, no. 5, March 2004 (2004-03-01), pages 1401 - 1412, XP002479569, ISSN: 0950-382X *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8778642B2 (en) 2008-12-12 2014-07-15 Celexion, Llc Biological synthesis of difunctional alkanes from carbohydrate feedstocks
US9062314B2 (en) 2008-12-12 2015-06-23 Celexion, Llc Biological synthesis of difunctional alkanes from carbohydrate feedstocks
US8133704B2 (en) 2008-12-12 2012-03-13 Celexion, Llc Biological synthesis of difunctional alkanes from carbohydrate feedstocks
US8192976B2 (en) 2008-12-12 2012-06-05 Celexion, Llc Biological synthesis of difunctional alkanes from carbohydrate feedstocks
US9102961B2 (en) 2009-03-11 2015-08-11 Celexion, Llc Biological synthesis of difunctional hexanes and pentanes from carbohydrate feedstocks
US8404465B2 (en) 2009-03-11 2013-03-26 Celexion, Llc Biological synthesis of 6-aminocaproic acid from carbohydrate feedstocks
US8722385B2 (en) 2009-03-11 2014-05-13 Celexion, Llc Biological synthesis of difunctional hexanes and pentanes from carbohydrate feedstocks
WO2011073278A1 (en) 2009-12-17 2011-06-23 Basf Se Processes and recombinant microorganisms for the production of cadaverine
DE112010004851T5 (de) 2009-12-17 2012-09-20 Basf Se Verfahren und rekombinante Mikroorganismen für die Herstellung von Cadaverin
JP2013514069A (ja) * 2009-12-17 2013-04-25 ビーエーエスエフ ソシエタス・ヨーロピア カダベリンの生産のための方法及び組換え微生物
WO2011105344A1 (ja) 2010-02-23 2011-09-01 東レ株式会社 カダベリンの製造方法
US8871477B2 (en) 2010-02-23 2014-10-28 Toray Industries, Inc. Process for production of cadaverine
WO2012077744A1 (ja) 2010-12-08 2012-06-14 東レ株式会社 カダベリンの製造方法
US9080190B2 (en) 2010-12-08 2015-07-14 Toray Industries, Inc. Method for producing cadaverine
WO2012077741A1 (ja) 2010-12-08 2012-06-14 東レ株式会社 カダベリンの製造方法
US8999681B2 (en) 2010-12-08 2015-04-07 Toray Industries, Inc. Method for producing cadaverine
EP2678421A1 (de) * 2011-02-22 2014-01-01 Basf Se Verfahren und rekombinante mikroorganismen zur herstellung von cadaverin
WO2012114256A1 (en) 2011-02-22 2012-08-30 Basf Se Processes and recombinant microorganisms for the production of cadaverine
EP2678421A4 (de) * 2011-02-22 2015-08-19 Basf Se Verfahren und rekombinante mikroorganismen zur herstellung von cadaverin
US9745608B2 (en) 2011-02-22 2017-08-29 Basf Se Processes and recombinant microorganisms for the production of cadaverine
US9644220B2 (en) 2011-12-22 2017-05-09 Basf Se Processes and recombinant microorganisms for the production of fine chemicals
WO2014028026A1 (en) 2012-08-17 2014-02-20 Celexion, Llc Biological synthesis of difunctional hexanes and pentanes from carbohydrate feedstocks
EP3162889A4 (de) * 2014-06-27 2018-01-03 Institute Of Microbiology, Chinese Academy Of Sciences Manipulierte escherichia coli zur herstellung von 1,5-pentanediamin durch ganzzellige katalyse und verwendung davon
EP3649234A4 (de) * 2017-07-06 2021-05-26 Cathay Biotech Inc. Heterologe expression von thermophiler lysindecarboxylase und deren verwendungen
US11155840B2 (en) 2017-07-06 2021-10-26 Cathay Biotech Inc. Heterologous expression of thermophilic lysine decarboxylase and uses thereof
KR20200046551A (ko) 2018-10-25 2020-05-07 대상 주식회사 재조합 코리네박테리움 글루타미쿰 균주 및 이를 이용한 카다베린의 생산방법

Also Published As

Publication number Publication date
US20110039313A1 (en) 2011-02-17
CN101240258A (zh) 2008-08-13
DE102007005072A1 (de) 2008-08-07
CA2670074A1 (en) 2008-08-07
MX2009005666A (es) 2009-06-15
EP2121899A1 (de) 2009-11-25
JP2010517519A (ja) 2010-05-27

Similar Documents

Publication Publication Date Title
WO2008092720A1 (de) Verfahren zur fermentativen herstellung von cadaverin
EP2041276B1 (de) Verfahren zur herstellung von l-aminosäuren mittels mutanten des glta-gens kodierend für citratsynthase
EP2354235B1 (de) Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien
WO2011124477A2 (de) VERFAHREN ZUR HERSTELLUNG VON L- ORNITHIN UNTER VERWENDUNG VON LysE ÜBEREXPRIMIERENDEN BAKTERIEN
EP1029919B1 (de) Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien
DE102004013503A1 (de) Verfahren zur Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien
EP1574582A1 (de) Verfahren zur Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien
EP1136559B1 (de) Für das dapC-Gen kodierende Nukleotidsequenzen und Verfahren zur Herstellung von L-Lysin
EP2089525B1 (de) Allele des oxyr-gens aus coryneformen bakterien
DE60218215T2 (de) Allele des siga gens aus coryneformen bakterien
EP1756279A1 (de) Verfahren zur herstellung von l-aminosäuren unter verwendung rekombinanter coryneformer bakterien mit verminderter aktivität des regulators asur
DE102004009454A1 (de) Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung von rekombinanten Mikroorganismen
DE60312592T2 (de) Verfahren zur Herstellung von L-Lysin unter Verwendung Coryneformer Bakterien die ein attenuiertes Malat Enzym-gen enthalten
DE10162387A1 (de) Für das rpoB-Gen kodierende Nukleotidsequenzen
DE10144493A1 (de) Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung coyneformer Bakterien
DE10162730A1 (de) Allele des glk-Gens aus coryneformen Bakterien
DE10210527A1 (de) Allele des aceA-Gens aus coryneformen Bakterien
DE10344739A1 (de) Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien
DE10001101A1 (de) Neue für das ptsH-Gen codierende Nukleotidsequenzen
DE19958159A1 (de) Neue für das glk-Gen codierende Nukleotidsequenzen
EP1103613A1 (de) Für das pfk-Gen codierende Nukleotidsequenzen
DE10163167A1 (de) Verfahren zur fermentativen Herstellung von L-Aminosäuren und Verwendung coryneformer Bakterien
DE19958160A1 (de) Neue für das gpm-Gen codierende Nukleotidsequenzen
DE10162650A1 (de) Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien
EP1090993A1 (de) Für das lrp-Gen codierende Nukleotidsequenzen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08707853

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2670074

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2009/005666

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 12517923

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008707853

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009547620

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE