WO2012075964A1 - 钕系均相稀土催化剂及其应用 - Google Patents

钕系均相稀土催化剂及其应用 Download PDF

Info

Publication number
WO2012075964A1
WO2012075964A1 PCT/CN2011/083777 CN2011083777W WO2012075964A1 WO 2012075964 A1 WO2012075964 A1 WO 2012075964A1 CN 2011083777 W CN2011083777 W CN 2011083777W WO 2012075964 A1 WO2012075964 A1 WO 2012075964A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
aluminum
solution
isoprene
polymerization
Prior art date
Application number
PCT/CN2011/083777
Other languages
English (en)
French (fr)
Inventor
张�杰
李传清
梁爱民
谭金枚
张国娟
赵姜维
徐林
于国柱
欧阳素芳
杨亮亮
孙伟
辛益双
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司北京化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201010594908.1A external-priority patent/CN102553471B/zh
Priority claimed from CN201010594870.8A external-priority patent/CN102532353B/zh
Priority claimed from CN201010594959.4A external-priority patent/CN102532366B/zh
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司北京化工研究院 filed Critical 中国石油化工股份有限公司
Priority to BR112013014478-5A priority Critical patent/BR112013014478B1/pt
Priority to EP11846459.3A priority patent/EP2650313B1/en
Publication of WO2012075964A1 publication Critical patent/WO2012075964A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated

Definitions

  • the present invention relates to a rare earth catalyst, and in particular to a novel lanthanide homogeneous rare earth catalyst, a preparation method thereof and use thereof.
  • the lanthanide homogeneous rare earth catalyst provided by the present invention is particularly suitable for use as a catalyst for conjugated diene polymerization to synthesize a polyconjugated diene elastomer having a high cis structure content. Background technique
  • Cis-1,4-isoprene rubber because of its structure and properties similar to natural rubber, is called “synthetic natural rubber", especially when the content of cis structure in IR is more than 99%. Comparable to natural rubber.
  • Rare earth catalysts are characterized by high activity and high directionality and are the preferred catalyst for the synthesis of IR. Most of the currently disclosed technologies are heterogeneous catalysts, such as rare earth chloride systems (CN1834121A, CN1861649A) and rare earth acid (phosphonic acid) salt systems.
  • Heterogeneous catalysts have poor stability and are difficult to store and transport. They may have multiple active centers, and polymers with a wide molecular weight distribution are often obtained, which increases the viscosity of the polymerization system, and transfers heat, transport, spray, and coagulation. The production process brings difficulties. In addition, heterogeneous catalysts are difficult to accurately measure, making the polymerization process and product structure difficult to control and master, and difficult to apply in industrialization.
  • the conjugated diene is subjected to directional polymerization under the action of a rare earth catalyst, and can be synthesized to have a high cis structure content.
  • high molecular weight polymers such as polybutadiene and polyisoprene
  • the polyisoprene rubber catalyzed by rare earth catalyst is superior to the titanium-based catalyst in the synthesis of polyisoprene rubber, and its microstructure and macroscopic properties are closest to natural rubber, which is the most natural rubber.
  • the polybutadiene rubber catalyzed by rare earth catalysis has better green rubber strength and vulcanizate performance than the polybutadiene rubber catalyzed by conventional titanium, cobalt and nickel catalysts, and is suitable for high-speed driving of automobiles. Requires that it can be used to make high performance tires.
  • the composition and preparation conditions of the catalyst can determine the activity of the catalyst as well as the structure of the synthesized polymer.
  • Rare Earth Catalyst Synthetic Rubber (1980, Science Press, pp. 72-82) refers to a heterogeneous catalyst consisting of bismuth naphthenate/triisobutylaluminum/dichloroaluminum chloride. , 4-isomers having a structural content of less than 95%, but due to the low content of cis 1,4-structure, the polymer properties are not satisfactory.
  • the heterogeneous catalytic system may have problems such as poor stability due to the existence of multiple active centers, and difficulty in controlling the catalytic process and the polymerization process.
  • a homogeneous rare earth catalyst can be obtained by changing the catalyst composition and preparation conditions to solve the above problems.
  • the conjugated diene is introduced into the three-way catalytic system.
  • homogeneous catalysts (CN1347923A, CN101045768A) can be prepared.
  • the molar ratio of strontium to monomer is usually above 3.4 ⁇ 10 4 , and the cis-structure of polyisoprene is relatively low, ranging from 96.1 to 97.2%.
  • the 13 ⁇ 4 hydrocarbons such as tert-butyl chloride, benzyl chloride and allyl chloride and the 13 ⁇ 4 silane are 13 ⁇ 4 donors, and the rare earth carboxylate and alkyl aluminum form a three-way catalytic system, which can be less than Cl/Nd ratio.
  • the prepared polyisoprene has a low cis structure content of about 96%.
  • chloroalkanes such as trichloroethane, chloroform and 1,4-bis(2-chloro-propanyl)benzene and chlorocarboxylates are (3 ⁇ 4 prime donors, with rare earth carboxylates, alkyl groups)
  • CN100448898C discloses a homogeneous catalyst consisting of ruthenium carboxylate/alkylaluminum/organic (3 ⁇ 4 hydrocarbon/conjugated olefin or carboxylic acid) in a catalyst component ratio of 1: 1 ⁇ 30:1 ⁇ 50:0 ⁇
  • ruthenium carboxylate/alkylaluminum/organic 3 ⁇ 4 hydrocarbon/conjugated olefin or carboxylic acid
  • US 2005/0137338 A1 proposes the addition of a small amount of a diene monomer during the aging of the catalyst, which is advantageous for increasing the activity of the catalyst.
  • the catalyst is composed of ruthenium carboxylate/alkylaluminum (triisobutylaluminum or diisobutylaluminum hydride) / (3 ⁇ 4 element, ruthenium carboxylate, alkyl aluminum, (3 ⁇ 4) in the order of addition catalyst, synthetic Polyisoprene rubber has a cis 1,4-structure content between 98.0 and 99.5% and a molecular weight distribution between 1.0 and 2.5.
  • halogens such as chlorine
  • CN101045768A Disclosed is a homogeneous catalyst consisting of ruthenium carboxylate or phosphorus/phosphonium phosphonate/alkylaluminum/chloride/conjugated diene, which is first formed to form ruthenium carboxylate or phosphorus/phosphonate ruthenium, conjugated A mixed solution of a diene and an alkyl aluminum, followed by a chloride addition sequence to prepare a catalyst, which can synthesize a polyisoprene having a cis 1,4-structure content of greater than 96% and a molecular weight distribution of less than 3. However, its 1,4-structure content is still lower than that of titanium isoprene rubber and natural rubber (>98).
  • Patent CN1347923A mentions that neodymium neodecanoate is reacted with (3 ⁇ 4) compound and then diisobutylaluminum hydride is added, but the catalyst obtained after aging reaction precipitates within 10 hours at room temperature, which means The catalyst prepared by the preparation is a heterogeneous catalyst.
  • the prior art cannot solve the following problems: When a compound (3 ⁇ 4) is first contacted with an aluminum alkyl group and a ruthenium carboxylate, a stable homogeneous rare earth catalyst cannot be obtained.
  • solution polymerization is usually carried out by solution polymerization for conjugated diene. Due to the structural characteristics of the polymer, the viscosity of the polymer solution during the synthesis process is large, which is not conducive to mass transfer heat transfer and material transport in the polymerization process. To solve this problem, industrial equipment and equipment are required to be high, and energy consumption is increased. Especially for the domestically developed rare earth butadiene rubber and rare earth isoprene rubber varieties, the polymer molecular chain has no branching structure, high linearity and high molecular weight. These structural characteristics give higher performance to the product, and also cause The viscosity of the glue is greater during the synthesis process, which puts higher requirements on industrial production.
  • the chemical method refers to the purpose of reducing the viscosity of the polymer solution by changing the structure of the polymer molecular chain (such as branching, lowering molecular weight, etc.) during the synthesis. Chemical methods of viscosity reduction typically result in changes in the polymer structure that affect the properties of the polymer.
  • Physical viscosity reduction refers to reducing the viscosity of the polymer solution by means of external additives, without changing the polymer structure, and selecting suitable additives and amounts does not affect the performance of the product.
  • ком ⁇ онент such as carboxylic acid (salt) and sulfonic acid (salt) are widely used in many fields such as heavy oil viscosity reduction, ore flotation, dyes, and pesticides.
  • a high-thick crude oil viscosity reducer is prepared by using sodium oleate, fatty acid alkanolamide, alkylphenol ethoxylate, penetrant and water.
  • CN1093099A using oleic acid polyoxyethylene ester, polyoxyethylene oxide
  • a high-thick crude oil viscosity reducer is prepared from phenyl ether, polyphenol and water.
  • CN1147007A A natural mixed carboxylate is used as an oil displacing agent.
  • a carboxylic acid (salt), a sulfonic acid (salt) or the like is used for viscosity reduction of a polymer solution.
  • the premixed state of the polymerization materials (including isoprene monomer, solvent and catalyst) will directly affect the rate of subsequent polymerization, the amount of catalyst, and the yield of the resulting rubber product.
  • Formulation content, molecular weight and molecular weight distribution Therefore, it is necessary to create a good mass transfer environment before the polymerization of the isoprene monomer solution, so that the polymerization materials can be thoroughly mixed to form a highly homogenous mixture.
  • the conventional raw material premixing process is carried out by a static mixer, but since the static mixer usually has a fluid stagnant zone at the outlet, The material flow velocity distribution is unevenly distributed, and the disturbance effect is poor, which makes the mixing effect less than ideal.
  • a stirred tank mixer with relatively complicated structure as the raw material premixer. Under the action of the stirring paddle, the material turbulence is increased. This results in an enhanced mixing effect.
  • the structural design of the stirred tank is also important because in the premixing process, the catalyst is required to be highly dispersed in the raw material system, and the upper and lower mixing in the entire stirred tank is required to be as uniform as possible, and the conventionally constructed stirred tank It is often impossible to achieve the requirements of highly dispersed and mixed hooks.
  • US 005 397 179 A discloses a device for fluid mixing, which is a tubular turbulent mixing device with a diffusion-contraction section.
  • Kauchuk of Russia built the world's first 10,000-ton rare earth isoprene rubber production plant, in which the pre-mixing of raw materials was carried out using the tubular turbulent mixing device of the above-mentioned US patent.
  • This type of mixing device is actually equivalent to a static mixer, except that the material undergoes repeated diffusion and contraction to increase the turbulent diffusion coefficient, and the mixing between the materials is enhanced, and the mixing is more uniform.
  • this fluid mixing device has the disadvantage of being difficult to manufacture.
  • CN201415984Y discloses a premixing device for producing rare earth isoprene rubber, which comprises a pipeline high speed mixer and a premixed kettle in series.
  • the polymerization material can be premixed by this premixing device to achieve a high degree of microscopic uniform mixing before entering the polymerization vessel, thereby improving the catalytic efficiency of the catalyst and reducing the product.
  • the degree of branching makes the molecular weight distribution more uniform and ultimately improves the product quality of the isoprene rubber.
  • the premixing device has the disadvantage that the average residence time of the material in the premixing kettle is 20-30 min for a long time, and then after a plurality of reactors connected in series, the final conversion rate can only reach 85-90 wt. Therefore, the production capacity is relatively low.
  • the composition and preparation conditions of the catalyst determine the activity of the catalyst and the structure of the synthesized polymer.
  • a highly active lanthanide rare earth catalyst can be obtained, and a higher cis structure content can be synthesized.
  • the present invention provides a novel lanthanide homogeneous rare earth catalyst based on the prior art relating to the polymerization of conjugated diene.
  • the catalyst has the advantages of homogeneous phase, good stability and high orientation.
  • the catalyst has relatively high catalytic activity, and the catalyst can be used for conjugated diene polymerization to prepare a poly-cis content of more than 98%.
  • Conjugated diene elastomer also provides a method for synthesizing a conjugated diene polymer based on the above catalyst, wherein an ionic surfactant, especially an anionic surfactant, can be used in the method Effectively reducing the viscosity of the polymer solution, a premixing operation can also be employed in the process to increase catalytic efficiency.
  • an ionic surfactant especially an anionic surfactant
  • a lanthanide homogeneous rare earth catalyst which is prepared by a process comprising the steps of:
  • organoaluminum compound is selected from the general formula A1R 3 alkyl aluminum and alkylaluminum hydride of formula A1HR 2, wherein R is a linear or branched dC 6 of alkane, the components of the catalyst
  • the molar ratio a:b:c:d is 1:5 ⁇ 30:2 ⁇ 10:35 ⁇ 65.
  • the molar ratio of the components is 1:10 to 25:2 to 4:37 to 60 in terms of a:b:c:d.
  • the cerium carboxylate compound is dC ⁇ carboxylic acid hydrazine; preferably, the cerium carboxylate compound is C 6 -C 10 carboxylic acid cerium; more preferably cerium naphthenate, cerium octoate, cerium octylate, cerium Acid bismuth, neodecanoate or bismuth citrate.
  • the organoaluminum compound is selected from the group consisting of trimethyl aluminum, triethyl aluminum, tripropyl aluminum, tributyl aluminum, triamyl aluminum, trihexyl aluminum, diethyl aluminum hydride, and dibutyl hydrogenhydride.
  • Aluminum preferably selected from the group consisting of tributyl aluminum and dibutyl aluminum hydride; more preferably selected from the group consisting of triisobutyl aluminum and diisobutyl aluminum hydride.
  • the halogen-containing compound is selected from the group consisting of an alkyl aluminum halide of the formula A1R 2 X and a silsesquioxane of the formula A1 2 R 3 X 3 wherein R is an ethyl group , propyl, isopropyl, butyl, isobutyl or tert-butyl, X is bromine or chlorine; preferably selected from diethylaluminum chloride, sesquiethylaluminum and dichlorodiisobutylaluminum.
  • the conjugated diene d means any monomer having a conjugated double bond in its molecule, and examples thereof include, but are not limited to, a C 4 -C 6 conjugated diene; preferably the conjugated two
  • the olefin is selected from the group consisting of butadiene, isoprene, 1,3-pentadiene, 1,3-hexadiene and 2,3-dimethylbutadiene; more preferably from butadiene and isoprene Alkene; most preferred is isoprene.
  • the inert solvent used in the production method is not particularly limited, and a saturated aliphatic hydrocarbon or an alicyclic hydrocarbon solvent which is generally inert to the reaction component which is generally used in the art may be used, and a C 5 -C 1 () alkane is often used. Or a cycloalkane such as pentane, isopentane, hexane, cyclohexane, heptane, octane or the like or a mixture thereof.
  • the following components may be added to the inert solvent for changing the activity of the catalyst and adjusting the molecular weight and molecular weight distribution of the polymer, such as: aromatic hydrocarbons such as benzene, toluene, ethylbenzene, xylene, and cumene.
  • An ether compound such as a compound such as diethyl ether or diphenyl ether. This component can be added at any step of the catalyst preparation, and the molar ratio of the component to a is from about 1 to 500.
  • the method for preparing the lanthanide homogeneous rare earth catalyst comprises: first mixing component a) with component d) in an inert solvent, and then adding component c) to the foregoing In the mixed solution, the component b) is finally added, and the obtained mixture of components a)-d) is subjected to an aging reaction; or the components a), c), d) are first mixed, and then the component b) is added. To the above mixture, the resulting mixture of components a) - d) is subjected to an aging reaction.
  • the component c) is reacted with a mixture of a) and d) for 5 to 120 minutes, and the reaction step may be -30 ° C to 80 ° C, preferably 0 °.
  • the reaction is carried out at C ⁇ 70 ° C; the component b) is further added for 0.5 to 48 hours, and the reaction step can be carried out at -30 ° C to 60 ° C, preferably at -10 ° C to 50 ° C.
  • the synthesis method of the above catalyst is simple and easy to control, and the catalyst is prepared as a homogeneous catalyst.
  • the homogeneous catalyst has simple composition, good stability, and can maintain a homogeneous state, high activity and high orientation for a long period of time, and preparation thereof.
  • the method is easy and suitable for industrial production.
  • the homogenous rare earth catalyst can be used to synthesize a polymer having a cis structure content of more than 98%, a weight average molecular weight of 100 to 2.5 million, a molecular weight distribution of 3.0 to 4.0, and a smooth and easy control of the polymerization process, which is suitable for continuous process operation.
  • Synthetic polymers have excellent physical and mechanical properties such as processability, self-adhesiveness, abrasion resistance, flexibility, and aging properties, and can partially replace natural rubber for tire products.
  • a lanthanide homogeneous rare earth catalyst which is produced by a process comprising the steps of:
  • organoaluminum compound is selected from the general formula A1R 3 alkyl aluminum and alkylaluminum hydride of formula A1HR 2, wherein R is a linear or branched dC 6 of alkane; of each component in the catalyst
  • the molar ratio is 1:10 ⁇ 30:2 ⁇ 5:25 ⁇ 100:0.2 ⁇ 4 with a:b:c:d:e.
  • the molar ratio of each component in the catalyst is 1:10 to 30:2 to 5:26 to 70:0.2 to 4 in terms of a:b:c:d:e.
  • the ruthenium carboxylate compound in the catalyst is dC ⁇ carboxylic acid ruthenium; preferably C 6 -C 10 ruthenium carboxylate; more preferably selected from the group consisting of bismuth naphthenate, bismuth octoate, bismuth octylate, bismuth ruthenate, Neodymium citrate and bismuth citrate.
  • the organoaluminum compound in the catalyst is selected from the group consisting of trimethyl aluminum, triethyl aluminum, tripropyl aluminum, tributyl aluminum, triamyl aluminum, trihexyl aluminum, diethyl aluminum hydride, hydrogenation Propyl aluminum, dibutyl aluminum hydride, dipentyl aluminum hydride and dihexyl aluminum hydride, preferably selected from the group consisting of triethyl aluminum, tributyl aluminum, diethyl aluminum hydride and dibutyl hydrogen hydride aluminum.
  • the (3 ⁇ 4) compound contained in the catalyst is selected from the group consisting of an alkyl group of the formula A1R 2 X (aluminum compound and a silsesquioxane aluminum of the formula A1 2 R 3 X 3 , R is d ⁇ C 6 alkyl, X is bromine or chlorine, preferably selected from the group consisting of diethylaluminum chloride, sesquiethylaluminum and dichlorodiisobutylaluminum.
  • the conjugated diene in the catalyst is a C 4 -C 6 conjugated diene; preferably selected from butadiene, isoprene, 1, 3-pentadiene, 1,3-hexane Alkene and 2,3-dimethylbutadiene; more preferably selected from butadiene and isoprene; most preferred isoprene.
  • the carboxylic acid is a C 5 -C 1 () carboxylic acid, preferably selected from the group consisting of naphthenic acid, octanoic acid, isooctanoic acid, decanoic acid, neodecanoic acid and citric acid.
  • the kind of the carboxylic acid e may be the same as or different from the kind of the ligand in the cerium carboxylate compound component a.
  • the inert solvent used in the production method is not particularly limited, and a saturated aliphatic hydrocarbon or an alicyclic hydrocarbon solvent which is generally used in the art and is inert to the reaction component can be used, and C 5 -d is often used.
  • An alkane or a cycloalkane such as pentane, isopentane, hexane, cyclohexane, heptane, octane or the like or a mixture thereof.
  • components a), d) and e) are first mixed, then component c) is added to the aforementioned mixture for aging, and finally component b is added.
  • a mixture of the obtained components a) -e) is subjected to an aging reaction; or the components a), c), d), e) are first mixed, and then the component b) is added to the above mixture, The resulting mixture of components a) -e) is subjected to an aging reaction.
  • the components a), d) and e) are first mixed, and then the component c) is aged at -30 to 60 ° C for 5 to 250 minutes, and then added to the group.
  • the fraction b) is further aged at -30 to 60 ° C for 0.5 to 48 hours to prepare a catalyst for conjugated diene polymerization.
  • the synthesis method of the above catalyst is simple and easy to control, and the catalyst is a homogeneous catalyst, and the homogeneous catalyst has the advantages of homogeneous phase, good stability, high activity and orientation.
  • the catalyst comprising component e) because of the addition of component e), can improve the stability of the catalyst and improve the orientation ability of the catalyst, and the catalyst can maintain a homogeneous state, high activity and high orientation for more than one year.
  • the catalyst of the present invention is particularly suitable for the polymerization of isoprene having a cis-polymerization selectivity of 98% or more and even more than 99%.
  • the prepared high cis polyisoprene has a weight average molecular weight of 60 to 2 million, a molecular weight distribution of 2.0 - 5.0, and its mechanical properties, processability, self-adhesiveness, wear resistance, flexibility, and aging. Excellent performance and performance, suitable for manufacturing high performance tires or other applications.
  • a process for producing a conjugated diene polymer which is subjected to solution polymerization in a solvent under the action of the above catalyst to obtain a polymer solution.
  • the conjugated diene monomer means any monomer having a conjugated double bond in its molecule, and examples thereof include, but are not limited to, a C 4 -C 6 conjugated diene; specific examples include butadiene , isoprene, 1,3-pentadiene, 1,3-hexadiene, 2,3-dimethylbutadiene.
  • the conjugated diene is preferably butadiene or isoprene.
  • the conjugated diene monomer is isoprene.
  • the conjugated diene monomer may be the same or different from the conjugated diene in the catalyst.
  • an ionic surfactant is added during or after completion of the solution polymerization to terminate the polymerization and lower the viscosity of the polymer solution, and the ionic surfactant is preferably an anionic surfactant.
  • the anionic surfactant mention may be made, but not limited to, carboxylic acids and carboxylates, sulfonic acids and sulfonates, quaternary ammonium salts, ether compounds, and starting from natural oils or polymers. Synthetic surfactant.
  • the anionic surfactant comprises a C 10 -C 18 long chain fatty carboxylic acid or a carboxylate, preferably including stearic acid, sodium stearate, potassium stearate, oleic acid, oleic acid. Sodium or potassium oleate.
  • the anionic surfactant comprises a sulfonic acid or a sulfonate
  • the molecular structure of the sulfonic acid and the sulfonate contains a linear, branched chain of C 8 ⁇ C 2 Q
  • the cyclic saturated or unsaturated carbon chain preferably comprises sodium dodecylbenzenesulfonate, potassium dodecylbenzenesulfonate, sodium dodecylsulfonate or sodium methylene dinaphthalenesulfonate.
  • the anionic surfactant comprises a phosphate ester comprising a C 8 -C 20 linear, branched, cyclic saturated or unsaturated carbon chain, preferably comprising an octyl phosphate, Mercaptophosphate, trimethylphosphonium phosphate or cetyl phosphate.
  • the anionic surfactant comprises sulfuric acid and a salt thereof comprising a C 8 -C 20 linear, branched, cyclic saturated or unsaturated carbon chain, preferably comprising twelve Sodium alkyl sulfate, sodium stearyl succinate, sodium octadecyl 3 ⁇ 4 or sodium polyoxyethylene fatty alcohol ether 3 ⁇ 4.
  • the anionic surfactant comprises a chemical structure of
  • R-0-(CH 2 CH 2 0) N -H ether compound wherein R is a C 8 ⁇ C 2 o linear, branched, cyclic saturated or unsaturated carbon chain, n ranging from 3 to 10
  • R is selected from the group consisting of polyoxyethylene fatty alcohol ethers and polyoxyethylene secondary alcohol ethers.
  • the anionic surfactant comprises natural oils or synthetic polymeric surfactants, preferably selected from the group consisting of cellulosics and lignins, more preferably hydroxymethylcellulose, Sodium carboxymethyl cellulose and sodium lignosulfonate.
  • the anionic surfactant when the anionic surfactant is applied to the conjugated diene polymer solution, the anionic surfactant is added in an amount of 0.01 to 2% by weight, preferably 0.02 to 1.5% by weight, based on the weight of the polymer solution. More preferably, it is 0.05 - 1.0% by weight.
  • the ionic surfactant and the polymerization terminator are added together.
  • polymerization terminator means that the living polymer can be directly terminated in a solution polymerization process in a manner commonly used in the art.
  • the terminator used is mostly water or an alcohol such as water, methanol, ethanol or n-isopropyl. Alcohol, isopropanol, 2,6-di-tert-butyl hydroquinone methanol, and the like.
  • the anionic surfactant and water are formulated together as an aqueous solution, i.e., the ionic surfactant can be formulated into an aqueous solution for use in the viscosity reduction of the conjugated diene polymer solution.
  • concentration of the aqueous solution of the ionic surfactant may vary over a wide range as long as the surfactant is soluble in water. For example, the concentration can be as high as 50%.
  • the viscosity reducing agent may be first dissolved in water, and then an alkali solution is added thereto to react to form a corresponding salt and then used;
  • an alkali solution for a carboxylic acid, sulfonic acid, phosphoric acid and/or sulfuric acid viscosity reducing agent, it may be directly contacted with an alkali solution and reacted to produce a corresponding salt for reuse.
  • the base used to prepare the viscosity reducing agent solution includes, but is not limited to, the following: sodium hydroxide, potassium hydroxide.
  • the alkali solution may be formulated to any concentration, but is preferably from 10% to 50%, more preferably from 15% to 40%.
  • the pH of the aqueous solution may range from 7 to 9 after the acid is contacted with the base.
  • the polymerization further comprises a conjugated diene monomer and a lanthanide homogeneous rare earth
  • the catalyst and solvent are added to the premixer system for premixing, and then the mixed materials are subjected to solution polymerization.
  • the monomer, the catalyst and the solvent do not enter the loop mixer together in the form of a mixture, at least the conjugated diene monomer and the lanthanide homogeneous rare earth catalyst are separately added to the premixer Premixing is done in the system.
  • the solvent may be entered separately or together with any of the former two into the loop mixer. The purpose of this operation is to better avoid the occurrence of prepolymerization, thereby facilitating subsequent mixing operations and subsequent solution polymerization.
  • the conjugated diene monomer and the lanthanide homogeneous rare earth catalyst are separately cooled and then added to the premixer system.
  • the target temperature for the cooling is -30-20 ° C, preferably -20-1 CTC, more preferably -10-0 ° C.
  • the isoprene monomer and the catalyst are preferably previously cooled to a corresponding low temperature range by different coolers, respectively, and the solvent may be cooled alone or together with any of the former two.
  • three coolers are used to separately cool the isoprene monomer, catalyst and solvent, preferably two coolers to separately cool the isoprene monomer and catalyst, taking into account solution polymerization.
  • the feed of isoprene monomer and solvent during the reaction is much higher than the amount of catalyst fed, and most preferably the solvent is cooled with the catalyst.
  • the cooler may be a cooler commonly used in the art, for example, a plate heat exchanger, wherein the cooling medium may be low temperature water and chilled brine, preferably chilled brine.
  • the amount of the polymerization material can be determined in accordance with the requirements of the subsequent solution polymerization.
  • the concentration of the monomer may be from 10 to 20% by weight, preferably from 13 to 17% by weight, based on the total weight of the entire polymerization material.
  • the premixer system comprises an axial flow pump and a loop mixer connected to the axial flow pump, the loop mixer comprising at least two straight pipe sections connected straight The pipe section forms an elbow of the loop pipe, a material outlet at the lower part of the loop pipe mixer and at least two material inlets.
  • two material inlets are used to separately introduce the isoprene monomer and the catalyst, and the solvent may be added together with the isoprene monomer and/or the catalyst, in consideration of the difference in the solution polymerization process.
  • the feed amount of pentadiene monomer and solvent is much higher than the feed amount of the catalyst, and most preferably the solvent is introduced together with the catalyst; three material inlets may be provided for introducing isoprene monomer, catalyst and solvent, respectively.
  • the material outlet is preferably located at the bottom of the loop mixer for discharging the mixed material.
  • the axial flow pump can be any axial flow pump commonly used in the art, and those skilled in the art can select accordingly depending on the range of circulating flow within the loop mixer required by the process.
  • the straight pipe section of the loop pipe mixer has an aspect ratio of 2 to 100, preferably 3 to 50, more preferably 4 to 20.
  • the loop mixer is connected to the axial flow pump at a lower portion to control circulation of material in the loop mixer inside the loop mixer
  • Flow Q r and flow out of the ring Mixer tube outlet flow Q out QJQ out ratio is 100-140, preferably 120-130.
  • the premixing system comprising the loop mixer according to the present invention
  • the polymerization reaction material is rapidly circulated in the loop mixer, and there is substantially no dead zone in the mixer, all reactions
  • the materials can be thoroughly mixed under turbulent conditions to form a highly homogenous mixture.
  • the premixer system comprises a premixing kettle comprising:
  • a rotatable central shaft disposed longitudinally within the mixing kettle
  • At least two radial flow paddles mounted on the central shaft;
  • annular disk located between adjacent two radial flow agitating blades, wherein the central shaft passes through the annular disk, and the annular disk is connected at its outer peripheral portion to the inner wall of the mixing kettle.
  • the material to be mixed is broken by the high shear dispersion generated by the radial stirring paddle provided on the central shaft, and on the other hand, the ring provided between the stirring blades is used.
  • the plate promotes the formation of a large overall cycle of the mixture, so that the material can achieve a high degree of micro-mixing in a short time. This facilitates the progress of the subsequent polymerization.
  • the outer diameter of the annular disk is matched to the inner diameter of the mixing vessel, and is connected to the inner wall of the mixing vessel at at least two circumferentially symmetric joints on the outer peripheral portion.
  • the connection of the annular disk to the inner wall of the kettle can be a suitable connection method commonly used in the art, for example, a bracket is provided on the inner wall of the kettle to support the annular disk.
  • the number of the linking sites can be selected as needed, for example, 2-8, preferably 3-6, more preferably 4.
  • the annular disk is provided with a central bore through which the central shaft passes.
  • the diameter of the center hole can be, for example, 1-1.5 times the diameter of the paddle.
  • the annular disk is provided with a radially inward groove between the two attachment locations.
  • the material can flow not only through the passage formed by the center hole of the annular disk but also through the passage formed by the groove and the inner wall of the mixing tank. Therefore, the fluidity of the mixture to be mixed in the mixing vessel is further enhanced to facilitate thorough mixing of the materials.
  • the respective grooves of the adjacent two annular disks are shifted from each other by an angle in the circumferential direction. More preferably, the grooves of one annular disk are offset by an angle from each other in the circumferential direction relative to the corresponding grooves in the other annular disks.
  • the passage formed by the groove and the inner wall of the mixing tank is completely non-linear in the longitudinal direction, thereby further enhancing the mixing effect of the material.
  • the number of grooves may be, for example, 2-8, preferably 3-6, more preferably 4.
  • the area of the groove is, for example, 1/4 to 1/2, preferably 1/3, of the area of the annular disk occupying the area of the fan ring between the respective two connecting portions.
  • the bottom curve of the groove is symmetrical about the radius axis passing through the midpoint of the line connecting the respective two joint locations.
  • the mixing vessel according to the present invention has an aspect ratio of, for example, 1-4, preferably 2-3.
  • the number of the radial flow stirring blades is, for example, 1-3 times, preferably 1.5-2 times, the height to diameter ratio.
  • the diameter of the agitating paddle is, for example, 1/4 to 2/3 of the diameter of the mixing vessel, preferably 1/3 to 1/2.
  • the above dimensions, e.g., the aspect ratio should be selected such that the average residence time of the reaction mass in the mixing vessel is from 1.0 to 10 min, preferably from 3 to 8 min, more preferably from 4 to 6 min.
  • the spacing between the agitating blades is, for example, 0.5 to 2 times the diameter of the agitating paddle.
  • the spacing gradually increases from bottom to top in the longitudinal direction.
  • This kind of stirring paddle is arranged from the bottom to the top from the dense to the sparse floor, which can better exert the shearing and dispersing action of the stirring paddle, which is beneficial to the sufficient mixing of the materials.
  • the annular disk can be disposed from the bottom to the top, that is, the number of annular disks located in the lower portion of the mixing vessel is less than the number of annular disks located in the upper region of the mixing kettle. .
  • the number of annular disks located in the lower portion of the mixing vessel is less than the number of annular disks located in the upper region of the mixing kettle.
  • the annular disk can be disposed from the bottom to the top, that is, the number of annular disks located in the lower portion of the mixing vessel is less than the number of annular disks located in the upper region of the mixing kettle.
  • an inlet is provided at the lower portion of the mixing tank for introducing the material to be mixed, and an outlet is provided at the upper portion of the mixing vessel for discharging the mixed material.
  • the materials to be mixed are preferably introduced separately into the premixed kettle.
  • the isoprene monomer and the catalyst need to enter the mixing kettle from different inlets, and the solvent can be entered separately or together with any of the former two. kettle. This can better avoid the occurrence of the prepolymerization reaction, thereby facilitating the subsequent mixing operation and solution polymerization.
  • the mixing vessel of the present invention may be provided with three inlets at the lower portion to introduce an isoprene monomer, a catalyst and a solvent, respectively.
  • the mixing vessel of the present invention may be provided with three inlets at the lower portion to introduce an isoprene monomer, a catalyst and a solvent, respectively.
  • the feed amount of the isoprene monomer and the solvent during the solution polymerization reaction is much higher than the amount of the catalyst fed, and therefore it is preferred to introduce the solvent together with the catalyst.
  • the high shearing action of the radial flow agitating paddle and the promotion of the overall circulation of the polymerization reaction material in the kettle by the annular disk cause the polymerization reaction material to be broken and dispersed in the kettle.
  • the inlet flow rate and the outlet flow rate of the polymerization reaction material can be determined according to the production scale, and accordingly, the size of the loop pipe mixer can be determined accordingly, for example, the height of the straight pipe section of the loop pipe mixer is determined.
  • the ratio of the average residence time of the polymerization reaction material in the loop mixer is 0.5-5 min, preferably 2-4 min; accordingly, the size of the raw material premixed kettle of the present invention can be determined accordingly, for example, the pre-determination
  • the aspect ratio of the autoclave is such that the average residence time of the polymerization material in the premixed kettle is from 1.0 to 1 Omin, preferably from 3 to 8 min, more preferably from 4 to 6 min.
  • the amount of the catalyst used for solution polymerization can be varied within a wide range.
  • the solvent to be used in the polymerization of the solution is not particularly limited, and a saturated aliphatic hydrocarbon or an alicyclic hydrocarbon solvent which is generally used in the art and is inert to the reaction component can be used, and C 5 to d are often used.
  • Alkane or cycloalkane typical solvents include, but are not limited to, hexane, cyclohexane, heptane, pentane, isopentane or, octane, methylcyclohexane, benzene, toluene, xylene, cumene, etc. .
  • the solvent is the same as or different from the inert solvent used in the preparation of the catalyst.
  • the reaction conditions of the solution polymerization are: the temperature of the polymerization reaction is -30 ° C ⁇ 80 ° C, preferably 0. C ⁇ 70 °C, more preferably 10 °C ⁇ 60 °C; time is 20 ⁇ 300 minutes, preferably 30 - 200 minutes.
  • the addition of an ionic surfactant, especially an anionic surfactant has a significant viscosity reducing effect on a highly viscous conjugated diene polymer solution.
  • the viscosity reducing method of the invention is simple in operation and easy to implement on an industrial production device, and can solve the problem of difficulty in conveying high energy polymer solution and high energy consumption.
  • the viscous surfactant-based viscosity reducing agent of the invention is prepared by using water as a medium, is harmless and environmentally friendly, and functions to terminate the polymerization reaction while achieving viscosity reduction of the polymer solution; no separate elution or treatment is required.
  • the process of the viscosity reducing agent in the polymer solution; the product obtained by the viscosity-reducing polymer solution after the treatment method generally employed in the art is not affected.
  • the viscosity of the polymer solution can be lowered by 10 to 60%, preferably 12% to 56%, more preferably 15% to 50%.
  • the premixing step in the premixing system by the premixing step in the premixing system, a highly homogenous mixture can be obtained, so that the catalyst is highly dispersed in the mixture, thereby improving the catalytic efficiency; and the polymerization reaction material is in the premixing kettle.
  • the average residence time is very short, only a few minutes, so that the degree of polymerization of each component in the polymerization reaction material flowing out of the premixing kettle is low, thereby facilitating the solution polymerization reaction in the subsequent polymerization reaction stage.
  • the conjugated diene polymer prepared by the method of the present invention that is, the rare earth isoprene rubber product, has a relatively high content of cis-1,4-configuration, and the obtained rare earth isoprene rubber has cis-1,4 -
  • the content of the configuration can reach 98wt, even up to 99 wt%.
  • the quality of the rare earth isoprene rubber product obtained by the preparation method of the present invention can be remarkably improved relative to the prior art.
  • Figure 1 shows a premixed kettle according to the present invention, in which a plurality of radial agitating paddles and an annular disk disposed between each two adjacent agitating paddles are provided;
  • Figure 2 shows a top view of the annular disk shown in Figure 1;
  • Figure 3 is a schematic flow chart showing the polymerization of an isoprene monomer solution for preparing a rare earth isoprene rubber, wherein the crucible according to the present invention is used as a raw material premixing kettle;
  • Figure 4 shows a loop mixer of the present invention; and a schematic flow diagram wherein the crucible is premixed with a premix system of a loop mixer and an axial flow pump in accordance with the present invention.
  • the synthesized conjugated diene polymerization is determined by a German Bruker Tensor 27 mid-infrared spectrometer and a German Bruker 400 MHz nuclear magnetic resonance spectrometer, and the solvent is deuterated chloroform; molecular weight and molecular weight distribution are used by Shimadzu LC-
  • the 10AT gel permeation chromatography (GPC) was used to determine the THF as the mobile phase and the narrowly distributed polystyrene as the standard. The temperature was 25 °C. catalyst
  • the isoprene solution polymerization was carried out using the prepared catalyst. Under a nitrogen atmosphere, 400 g of isoprene, 1541 g of cyclohexane and 82 ml of a catalyst were successively added to a 5 L polymerization vessel at a monomer concentration of 20%. After reacting at 40 ° C for 50 minutes, the polymer solution was discharged from the kettle and the reaction was terminated by adding 2,6-di-tert-butyl hydroquinone methanol solution. Before releasing the polymer solution, a small amount of the polymer solution was weighed and weighed, and then placed in a vacuum oven to dry to constant weight. The monomer conversion was calculated by the weight of the sample before and after drying, and the calculated conversion was 83%. The polymer had a cis 1,4-structure content of 98.0%, a weight average molecular weight of 1,301,324, and a molecular weight distribution of 3.6.
  • Example 2 Example 2
  • Triisobutylaluminum and monochloroaluminum chloride were separately prepared into a hexane solution at a concentration of 0.5 mol/l for use.
  • the bismuth naphthenate/hexane solution was prepared by direct extraction, wherein the hydrazine concentration [Nd 3+ ] was 0.21 mol/l.
  • the solvent and the aging kettle were treated in the same manner as in Example 1.
  • the isoprene solution polymerization was carried out using the prepared catalyst. Under a nitrogen atmosphere, 350 g of isoprene, 1800 g of hexane, and 306 ml of a catalyst were sequentially added to a 5 L polymerization vessel at a monomer concentration of 15%. After reacting at 25 ° C for 60 minutes, the polymer solution was discharged from the kettle to terminate the reaction by adding 2,6-di-tert-butyl hydroquinone methanol solution. The monomer conversion was 90%. The polymer had a cis 1,4 structure content of 98.2%, a weight average molecular weight of 1,607,402, and a molecular weight distribution of 3.4.
  • Example 3 The reagents used were prefabricated as described in Example 2. The solvent and the aging kettle were treated in the same manner as in Example 1. Under nitrogen protection, add 15g butadiene, 713g hexane solution, 31ml bismuth naphthenate solution to the 2L catalyst aging kettle, then add 45ml-dichloroaluminum solution at 10 °C and stir. After 20 minutes of reaction, 130 ml of a solution of triisobutylaluminum was added and the aging was continued for 2 hours. The catalyst concentration is 0.5 x 10 - 5 mol / ml.
  • the isoprene solution polymerization was carried out using the prepared catalyst. Under a nitrogen atmosphere, 350 g of isoprene, 1800 g of hexane and 180 ml of a catalyst were successively added to a 5 L polymerization vessel at a monomer concentration of 15.4%. After reacting at 25 ° C for 1.5 hours, the polymer solution was discharged from the kettle to terminate the reaction by adding 2,6-di-tert-butyl hydroquinone methanol solution. The monomer conversion rate was 87%; the polymer cis 1,4-structure content was 98.2%, the weight average molecular weight was 1,821,602, and the molecular weight distribution was 3.2.
  • a hexane solution of neodymium ruthenate was prepared by direct extraction, and the enthalpy concentration [Nd 3+ ] was 0.5 mol/l.
  • Triisobutylaluminum and monochloroaluminum chloride were separately prepared into a hexane solution at a concentration of 0.5 mol/l. The solvent and the aging kettle were treated in the same manner as in Example 1.
  • the isoprene solution polymerization was carried out using the prepared catalyst. Under a nitrogen atmosphere, 250 g of isoprene, 2150 g of hexane and 80 ml of a catalyst were successively added to a 5 L polymerization vessel at a monomer concentration of 10% and a polymerization temperature of 30 °C. After 1.5 hours of reaction, the polymer solution was discharged from the autoclave to terminate the reaction by adding 2,6-di-tert-butyl hydroquinone methanol solution. The monomer conversion rate was 85%; the polymer had a cis 1,4 structure content of 98.1%, a weight average molecular weight of 1,549,621, and a molecular weight distribution of 3.6.
  • the reagents used were prefabricated as described in Example 4.
  • the solvent and the aging kettle were treated in the same manner as in Example 1.
  • 103 g of isoprene, 1802 g of hexane solution and 80 ml of neodymium neodecanoate solution were added to a 20 L catalyst aging kettle, and then 240 ml of a solution of diethylaluminum chloride was added at 15 ° C under stirring.
  • 800 ml of a solution of triisobutylaluminum was added and the aging was continued for 4 hours.
  • the catalyst concentration is 1.0 x 10 - 5 mol / ml.
  • the isoprene solution polymerization was carried out using the prepared catalyst. Under a nitrogen atmosphere, 350 g of isoprene, 1845 g of hexane and 77 ml of a catalyst were successively added to a 5 L polymerization vessel at a monomer concentration of 15%. After reacting at 25 ° C for 1.5 hours, the polymer solution was discharged from the autoclave to terminate the reaction by adding a methanol solution of 2,6-di-tert-butyl hydroquinone. The monomer conversion rate was 90%; the polymer cis 1,4-structure content was 98.6%; the polymer weight average molecular weight was 2,001,123, and the molecular weight distribution was 3.2.
  • a hexane solution of neodymium ruthenate was prepared by direct extraction, and the enthalpy concentration [Nd3+] was 0.5 mol/l.
  • Hydrogenated diisobutyl The base aluminum and the diethylaluminum dichloride were respectively prepared into a hexane solution having a concentration of 0.5 mol/l for use.
  • the solvent and the aging kettle were treated in the same manner as in Example 1.
  • the isoprene solution polymerization was carried out using the prepared catalyst. Under a nitrogen atmosphere, 350 g of isoprene, 1860 g of cyclohexane and 139 ml of a catalyst were successively added to a 5 L polymerization vessel at a monomer concentration of 15%. After reacting at 30 ° C for 1.0 hour, the polymer solution was discharged from the autoclave to terminate the reaction by adding 2,6-di-tert-butyl hydroquinone methanol solution. The monomer conversion rate was 90%; the polymer cis 1,4-structure content was 98.2%, the polymer weight average molecular weight was 1,954,798, and the molecular weight distribution was 3.3.
  • the reagents used were prefabricated as described in Example 4.
  • the solvent and the aging kettle were treated in the same manner as in Example 1.
  • Under nitrogen protection add 136 g of isoprene, 80 ml of neodymium neodecanoate solution and 4409 g of hexane solution to a 20 L catalyst aging kettle, and then add 240 ml of a solution of diethylaluminum chloride at 0 ° C under stirring. After the contact reaction for 15 minutes, 800 ml of triisobutylaluminum solution was added, and the aging was continued for 18 hours.
  • the catalyst concentration is 0.5 x 10 -5 mol/ml.
  • the concentration of neodecanoic acid hexane solution and the concentration of dichloroaluminum hexane solution were 0.5 mol/l, and the concentration of triisobutylaluminum hexane solution was 2 mol/l.
  • the solvent and the aging kettle were treated in the same manner as in Example 1.
  • the reagents used were prefabricated as described in Example 4.
  • the solvent and the aging kettle were treated in the same manner as in Example 1.
  • Under nitrogen protection add 400 ml of isoprene, 80 ml of neodymium neodecanoate solution and 6.48 L of hexane solution to a 20 L catalyst aging kettle, and then add 240 ml of diethylaluminum chloride at 0 ° C under stirring. Solution, contact reaction 15 After a minute, 800 ml of triisobutylaluminum solution was added and the aging was continued for 18 hours.
  • the catalyst concentration was 0.5 x 10 -5 mol/ml.
  • Example 4 The reagents used were prefabricated as described in Example 4. The solvent and the aging kettle were treated in the same manner as in Example 1. The catalyst preparation process is the same as 7. The catalyst was stored at 0 °C for 6 months.
  • Example 4 The reagents used were prefabricated as described in Example 4. The solvent and the aging kettle were treated in the same manner as in Example 1. The catalyst preparation process is the same as 7. The catalyst was stored at 0 °C for 1 year.
  • Example 2 The catalyst of Example 2 was placed in a sealed glass vial under nitrogen atmosphere and the catalyst was still in a homogeneous state when stored at room temperature for 15 months.
  • the reagents used were prefabricated as described in Example 4.
  • the solvent and the aging kettle were treated in the same manner as in Example 1.
  • Under a nitrogen atmosphere add 80 ml of isoprene, 80 ml of neodymium neodecanoate solution and 6.80 L of hexane solution to a 20 L catalyst aging kettle, and then add 240 ml of diethylaluminum chloride at 0 ° C under stirring.
  • the solution after 15 minutes of contact reaction, was added 800 ml of a solution of triisobutylaluminum and continued to age for 18 hours.
  • the catalyst concentration is 0.5 x 10 - 5 mol / ml.
  • the catalyst was stored at 0 ° C for 6 months.
  • a rare earth catalyst for polyisoprene and a preparation method thereof and a method for preparing polyisoprene 24 ml of 0.1 M Nd(vers) 3 hexane is sequentially added to a dry catalyst reactor under a nitrogen atmosphere.
  • the solution 48 ml of a 1.0 M solution of butadiene in hexane, 36 ml of a 2.0 M solution of Al(i-Bu) 3 in hexane, was reacted at 80 ° C for 1 minute to obtain a dark yellow-green solution; then 12 ml of the solution was added.
  • a 0.2 M Al(i-Bu) 2Cl solution in hexane was reacted at 40 ° C for 120 minutes to obtain a homogeneous rare earth catalyst for isoprene polymerization.
  • the polymerization was terminated with a solution of 1.0% 2,6-di-tert-butyl-p-methylphenol in ethanol, and the polymer was precipitated in excess ethanol, and washed with ethanol and then dried at 40 After drying under vacuum at °C for 24 hours, 249 g of the isoprene polymerization product was obtained.
  • the polymer yield was 98%.
  • the content of cis 1,4-structure was 96.3% by infrared spectroscopy, and the weight average molecular weight was 1270000, the number average molecular weight was 512000, the molecular weight was 2.48, and the Mooney viscosity was 59 by GPC.
  • Viscosity reducer embodiment
  • the viscosity of the polymer solution was measured by a Japanese Mitsubishi HAAKE C35 at a test temperature of 50 °C.
  • the treatment of the polymer solution and the polymer solution after the addition of the viscosity reducing agent is the same.
  • the unreacted monomer and solvent in the polymer solution are removed by steam stripping to obtain a polymer solid sample containing water and a very small amount of solvent, monomer, and then dried using an open mill to obtain a product.
  • the Mooney viscosity of the polymer is determined in accordance with GB/T 1232.1-2000, and is measured by an automatic Shimani viscometer of Shimadzu SMV-300.
  • the raw rubber crucible was kneaded by an open mill at a roll temperature of 70 ⁇ 5 ° C; the vulcanization formula and vulcanization conditions were carried out in accordance with national standards.
  • the tensile strength was measured using an AG-30kNG electronic tensile machine from Shimadzu Corporation, Japan.
  • Isoprene is a monomer
  • cyclohexane is used as a solvent to synthesize polyisoprene.
  • the polymerization was carried out under the protection of nitrogen.
  • 350 g of isoprene, 1800 g of hexane and 106 g of catalyst were sequentially added to a 5 L polymerization vessel.
  • the monomer concentration was 15.5 wt%, and the amount of the catalyst was 2.2 x 10 6 mol Nd/g IP.
  • the temperature was 25 ° C and the reaction time was 3 hours.
  • the weight percentage of the polymer was 11.54%.
  • the polyisoprene had a weight average molecular weight of 1,744,102 and a molecular weight distribution of 2.53.
  • the viscosity of the polymer solution was 10700 cp.
  • the product ash is 0.46%, and the vulcanized rubber has a tensile strength of 26.0 MPa.
  • neodymium neodymium hydride/diisobutylaluminum hydride/dichlorodiethylaluminum (molar ratio 1/18/3) rare earth catalyst system butadiene as monomer, hexane as solvent to synthesize polybutadiene .
  • the polymerization was carried out under the protection of nitrogen. 800 g of butadiene, 3858 g of hexane and 48 g of catalyst were sequentially added to a 10 L polymerization vessel.
  • the monomer concentration was 17 wt%, and the amount of the catalyst was 2.2 x 10" 6 mol Nd / g IP.
  • the polymerization temperature was 50. °C, reaction time 1.5 hours.
  • the weight percentage of the polymer is 16.4%.
  • the weight average molecular weight of polybutadiene is 654,102, and the molecular weight distribution is 2.7.
  • the viscosity of the polymer solution is 14000 cp.
  • the product ash is 0.48. % , vulcanizate tensile strength is 17.0 MPa.
  • Example 3 To 50 g of the above polyisoprene solution, 25 g of the prepared sodium oleate solution was added at 50 ° C, and the mixture was uniformly mixed to terminate the polymerization. The viscosity of the polymer solution dropped to 9600 cp.
  • the polybutadiene had a weight average molecular weight of 611,332 and a molecular weight distribution of 2.8.
  • the product has a ash content of 0.48% and a tensile strength of 16.9 MPa.
  • Example 3 To 50 g of the above polyisoprene solution, 25 g of the prepared sodium oleate solution was added at 50 ° C, and the mixture was uniformly mixed to terminate the polymerization. The viscosity of the polymer solution dropped to 9600 cp.
  • the polybutadiene had a weight average molecular weight of 611,332 and a molecular weight distribution of 2.8.
  • the product has a ash content of 0.48% and
  • the polymerization reaction was carried out under nitrogen, to a 5L autoclave polymerization 98 g of isoprene were added successively, hexane 1768g, 302g of butadiene, and 54g of catalyst, the monomer concentration was 18wt%, the amount of catalyst 2.0x10- 6 molNd / g
  • the monomer had a polymerization temperature of 40 ° C and a reaction time of 2.0 hours.
  • the copolymer composition was such that the molar ratio of butadiene to isoprene was 4, and the weight percentage of the polymer in the copolymer solution was 15.5%.
  • the copolymer had a weight average molecular weight of 866,700 and a molecular weight distribution of 3.2.
  • the viscosity of the polymer solution was 75,500 mpa.s.
  • the ash is 0.5% and the tensile strength is 12.6 MPa.
  • the weight percentage of the polymer was 13.9%.
  • the polymer had a weight average molecular weight of 1,760,711 and a molecular weight distribution of 3.3.
  • the viscosity of the polymer solution was 11200 cp.
  • the ash is 0.48% and the tensile strength is 25.8 MPa.
  • the ruthenium octoate/diisobutylaluminum hydride/semi-aluminum (molar ratio is 1/20/2) rare earth catalyst system butadiene is a monomer, and hexane is used as a solvent to synthesize polybutadiene.
  • the polymerization reaction was carried out under nitrogen, to a 5L autoclave polymerization of butadiene were added 500g, 1960g of hexane and catalyst 40g, monomer concentration was 20wt%, the amount of catalyst 2.4x10- 6 molNd / gBD, the polymerization temperature was 50 °C, reaction time 1.0 hours. In the polybutadiene solution, the weight percentage of the polymer was 16.8%.
  • the polybutadiene had a weight average molecular weight of 591,212 and a molecular weight distribution of 3.2.
  • the viscosity of the polymer solution was 14300 cp.
  • the product has a ash content of 0.45% and a tensile strength of 16.6 MPa.
  • the weight percentage of the polymer was 12.4%.
  • the polyisoprene had a weight average molecular weight of 2,011,579 and a molecular weight distribution of 3.0.
  • the viscosity of the polymer solution was 12600 cp.
  • the product has a ash content of 0.44% and a tensile strength of 27.0 MPa.
  • Polyisoprene In the olefin solution, the polymer weight percentage was 13.4%.
  • the polyisoprene had a weight average molecular weight of 1,821,602 and a molecular weight distribution of 3.2.
  • the viscosity of the polymer solution was 14700 cp.
  • the product has a ash content of 0.21% and a tensile strength of 27.0 MPa.
  • Example 8 (adding 0.6% viscosity reducer)
  • the weight percentage of the polymer was 13.5%.
  • the polyisoprene had a weight average molecular weight of 1,954,798 and a molecular weight distribution of 3.3.
  • the viscosity of the polymer solution was 16100 cp.
  • the product has a ash content of 0.26% and a tensile strength of 27.0 MPa.
  • a mixing kettle 10 As shown in Fig. 1, a mixing kettle 10 according to the present invention includes a central shaft 8 disposed in a longitudinal direction in a kettle, which can be rotated by a motor M.
  • At least two radial agitating paddles 1 are mounted on the central shaft 8.
  • the number of paddles can be selected according to the actual situation, for example 2-10, and four paddles are shown in the example of Fig. 1.
  • the radial flow paddle 1 can be of a type commonly used in the art and can have a rotational speed of 200 to 800 rpm, preferably 300 to 700 rpm, more preferably 350 to 600 rpm.
  • the materials to be mixed such as the reaction monomers and catalysts
  • the mixing is carried out under the action of 1, and then discharged from the material outlet 5 provided above the mixing tank 10 for further processing.
  • annular disk 2 located between adjacent two radial flow paddles 1 is also provided in the mixing kettle 10.
  • the annular disk 2 is preferably disposed at an axial midpoint position of two adjacent agitating blades 1.
  • the annular disk 2 includes a central bore 11 having an inner diameter larger than the diameter of the central shaft 8 so that the central shaft 8 can pass through the central bore 11 of the annular disk 2.
  • the annular disk 2 is connected to the inner wall of the mixing vessel 10 through its outer peripheral portion.
  • the material to be mixed is broken by the high shear dispersion generated by the radial agitating paddle 1 provided on the central shaft 8, and on the other hand, the annular disk disposed between the agitating paddles 1 is used. 2
  • the material to be mixed is formed into a large overall cycle, so that the material can achieve a high degree of micro-mixing in a short time. This advantageously promotes the progress of the subsequent polymerization.
  • the outer diameter of the annular disk 2 is matched to the inner diameter of the mixing vessel 10, and is connected to the inner wall of the mixing vessel at at least two circumferentially symmetrical connection portions on the outer peripheral portion.
  • the number of the linking sites can be selected according to the actual situation, for example, 2-8, preferably 3-6, and more preferably 4. These connecting portions are preferably located at circumferentially symmetrical positions.
  • the annular disk 2 is attached to the inner wall of the mixing vessel 10 at four circumferentially symmetrical joint portions on its outer circumference.
  • a radially inward groove 12 is provided at the sector between the adjacent two connection points.
  • the mixing kettle 10 is provided with two or more annular disks, wherein respective ones of the respective annular disks are offset from each other by an angle in the circumferential direction. Therefore, the passage formed by the groove 12 and the inner wall of the mixing vessel 10 is non-linear in the longitudinal direction of the mixing vessel 10, which further enhances the mixing effect of the material.
  • the area of the recess 12 should ensure the maximum material flow area as much as possible without damaging the strength of the entire annular disk 2.
  • the area of the recess 12 may be, for example, 1/4 - 1/2, preferably 1/3, of the area of the sector between adjacent connecting portions on the annular disk 2.
  • the bottom shape of the groove 12 may be a straight line or a curve which is preferably symmetrical with respect to a radius axis at a midpoint of a line segment connecting adjacent two joint portions.
  • the premixing system includes a loop mixer 50 and an axial pump 22, which includes a straight pipe section 21, an elbow 26, an elbow 26 and a straight pipe section 21.
  • the connections form a loop mixer 50.
  • the polymerization raw materials to be mixed that is, the catalyst and the solvent and the reaction monomers
  • enter the loop mixer 50 through the two material inlets 23, 24 provided in the lower portion of the mixing tank 50, wherein the reaction monomers and catalysts Entering the loop mixer 50 through different inlets, and then, under the action of the axial pump 22, the raw materials to be mixed are rapidly circulated in the loop mixer 50, and there is substantially no dead zone in the loop mixer 50.
  • the reaction materials can be thoroughly mixed under turbulent conditions to form a highly homogenous mixture which is then discharged from the material outlet 25 provided at the bottom of the mixing vessel 50 for further processing.
  • the axial flow pump is any axial flow pump commonly used in the art.
  • the mixing kettle and loop mixer according to the present invention will be specifically described below by taking a raw material premixing tank and a loop mixer for preparing a rare earth isoprene rubber as an example. It will be understood, however, that the mixing kettle and loop mixer according to the present invention can be used in any application where it is desired to mix the reaction materials.
  • Example 1 Example 1
  • the isoprene monomer 14. 6 kg / h, polymerization grade, commercially available
  • solvent first available in the polymerization material for preparing rare earth isoprene rubber in a conventional heat exchanger
  • cyclohexane commercially available
  • the ruthenium catalyst was diluted to the above concentration with cyclohexane. Wherein, the catalyst and the solvent are pre-mixed and then pre-cooled by a heat exchanger, and the isoprene monomer is pre-cooled in a separate heat exchanger.
  • the cooling medium used was 3 wt% sodium chloride chilled brine.
  • each component of the pre-cooled polymerization material is separately introduced into the mixing kettle 10 of the present invention for premixing, wherein the catalyst and the solvent are introduced into the mixing vessel through the center inlet 3 of the bottom of the bottom, and the isoprene monomer is passed through.
  • the bottom side inlet 4 is introduced into the mixing kettle.
  • the mixing kettle used herein had a volume of 5 L and a cylindrical portion having a diameter of 150 mm and a height of 300 mm.
  • the diameter of the stirring paddle is 1/2 of the diameter of the mixing kettle, the rotation speed is 400 rpm, the distance between the bottom stirring paddle and the bottom of the bottom is 30 mm, and the axial spacing between the mixing paddles is from the bottom.
  • the upper order is 56mm, 70mm, and 98mm.
  • Three annular discs are provided in the mixing tank, which are disposed at an axially intermediate position between each of the two stirring blades.
  • the center hole diameter of the annular disk is 1.15 times the diameter of the stirring paddle.
  • the annular disk is connected to the inner wall of the mixing vessel at four circumferentially symmetrical joint portions on its outer peripheral portion, and includes four grooves each having an area of 1/3 of the area of the corresponding fan ring.
  • the polymerization materials were thoroughly mixed in the mixing kettle, and the average residence time in the kettle was 2.0 min, thereby obtaining a uniform polymerization reaction material after premixing.
  • the material discharged from the outlet 5 of the mixing tank 10 sequentially flows through the first reactor 20, the second reactor 30, and the third reactor 40, and the average residence time in each reactor is 20 min, and the inside of each reactor is
  • the reaction temperature was sequentially controlled at 30 ° C, 40 ° C and 50 ° C.
  • the polymerization product is discharged from the outlet 45.
  • the conversion of the isoprene monomer at the outlet of the first reactor was 60 wt%, and the final conversion at the outlet of the autoclave was 96 wt%.
  • Example 2 is substantially the same as Example 1, except that the diameter of the center hole of the annular disk is 1.3 times the diameter of the stirring paddle.
  • the conversion of the isoprene monomer at the outlet of the first reactor was 60.5 wt%, and the final conversion at the outlet of the autoclave was 96.2 wt%.
  • Example 3 is substantially the same as Example 1, except that: the total amount of the polymerization material is reduced, and the mass ratio of the isoprene monomer, the catalyst and the solvent as in Example 1 is maintained to cause polymerization.
  • the average residence time of the materials in the mixing kettle was 5 min. According to this example, the conversion of the isoprene monomer at the outlet of the first reactor was 65 wt%, and the final conversion at the outlet of the autoclave was 98.3 wt%.
  • Example 4 is substantially the same as Example 1, except that the diameter of the stirring paddle is 2/3 of the diameter of the premixing kettle; while reducing the total amount of the polymerization material, and maintaining the same isoprene as in Example 1.
  • the mass ratio of the diene monomer, the catalyst and the solvent was such that the average residence time of the polymerization material in the mixing vessel was 5 min.
  • the conversion of the isoprene monomer at the outlet of the first reactor was 66 wt%, and the final conversion at the outlet of the autoclave was 98.3 wt%.
  • Comparative Example 1 was substantially the same as Example 1, except that only the second agitating paddle from the bottom in the mixing vessel was retained, and the other agitating paddles and all the annular disks were removed.
  • the conversion ratio of the isoprene monomer at the outlet of the first reactor was 40% by weight, and the final conversion at the outlet of the outlet was 80% by weight.
  • Comparative Example 2 was substantially the same as Comparative Example 1, except that: the total amount of the polymerization material was reduced, and the mass ratio of the isoprene monomer, the catalyst, and the solvent was maintained as in Comparative Example 1, and the polymerization was allowed to proceed.
  • the average residence time of the material in the premixed kettle was 5 min.
  • the conversion ratio of the isoprene monomer at the outlet of the first reactor was 43% by weight, and the final conversion at the outlet of the outlet was 84% by weight.
  • Comparative Example 3 is approximately the same as Comparative Example 1, except that the amount of catalyst used therein is increased to the original
  • the conversion ratio of the isoprene monomer at the outlet of the first reactor was 55 wt%, and the final conversion at the outlet of the autoclave was 93 wt%.
  • the catalyst and the solvent are pre-mixed and then pre-cooled by a heat exchanger, and the isoprene monomer is pre-cooled in a separate heat exchanger.
  • the cooling medium used was 3 wt% sodium chloride chilled brine.
  • each component of the pre-cooled polymerization material is separately introduced into a loop mixer for premixing, wherein the isoprene monomer is introduced into the loop mixer through the material inlet 3 after flowing out of the heat exchanger.
  • the catalyst and solvent are introduced into the loop mixer through the material inlet 4 after exiting the heat exchanger.
  • the polymerization material is rapidly circulated in the loop mixer, wherein the circulating flow rate Q r of the polymerization reaction material in the loop mixer and the outlet flow rate flowing out of the loop mixer Q.
  • QJQ ut ratio of. Ut was 100, and the average residence time of the polymerization material in the loop mixer was 1.5 min.
  • a solution polymerization operation of the isoprene monomer was carried out in accordance with the procedure shown in Fig. 5.
  • the material discharged from the outlet 25 of the uniform polymerization material formed by the premixing of the loop mixer 50 sequentially flows through the first reactor 60, the second reactor 70, and the third reactor 80 for reaction in each reactor.
  • the average residence time in the reactor was 30 min, and the reaction temperature inside each reactor was controlled at 30 ° C, 40 ° C and 50 ° C in turn.
  • the polymerized material is discharged from the outlet 85 of the reactor 80.
  • the final conversion of the isoprene monomer was 95% by weight.
  • Example 5 was substantially repeated, except for the QJQ in which the loop mixer was made.
  • Ut is 125.
  • the final conversion of the isoprene monomer was 96% by weight.
  • Example 5 was substantially repeated, except for the QJQ in which the loop mixer was made. Ut is 140.
  • the final conversion of the isoprene monomer was 96.3 wt%.
  • Example 5 was substantially repeated, except for the QJQ in which the loop mixer was made.
  • Ut is 125, and the total amount of polymerization material is reduced, and the same mass ratio of isoprene monomer, catalyst and solvent as in Example 1 is maintained, so that the polymerization material is in the loop mixer
  • the average residence time is 2.5 min.
  • the final conversion of the isoprene monomer was 96.8 wt%.
  • Example 5 was substantially repeated, except for the QJQ in which the loop mixer was made.
  • Ut is 125, and the total amount of polymerization material is reduced, and the same mass ratio of isoprene monomer, catalyst and solvent as in Example 1 is maintained, so that the polymerization material is in the loop mixer
  • the average residence time is 4 minutes.
  • the final conversion of the isoprene monomer was 97.2% by weight.
  • Example 5 was substantially repeated except that the components of the pre-cooled polymerization material were fed directly to the respective reactors of the polymerization stage without the premixing stage of the loop mixer.
  • the final conversion of the isoprene monomer was 90% by weight.
  • the basic repeat ratio of 5 is simply increased by twice the amount of catalyst used.
  • the final conversion of the isoprene monomer was 95% by weight.
  • Cis-1,4-configuration content (wt%) number average molecular weight (million) molecular weight distribution coefficient
  • Example 5 96 37 3
  • Example 6 97 38 3
  • Comparative Example 5 96.5 38 3.1 It can be seen from the data listed in Tables 1 and 2 that when the pre-cooled polymerization material is premixed by the premixing system according to the present invention in the production process of the rare earth isoprene rubber, Since the highly homopolymerized polymerization material can be obtained, the obtained isoprene rubber product has a significantly higher cis-1,4-configuration content, a larger number average molecular weight, and a smaller molecular weight distribution coefficient. Therefore, the obtained isoprene rubber product is of better quality. In addition, the amount of catalyst can be significantly reduced by utilizing the premixing system of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Polymerization Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

钕系均相稀土催化剂及其应用
技术领域:
本发明涉及一种稀土催化剂, 具体而言涉及一种新型的钕系均相稀土催化剂、 其制 备方法以及应用。 利用本发明提供的钕系均相稀土催化剂尤其适用于做共轭二烯烃聚合 的催化剂, 以合成具有高顺式结构含量的聚共轭二烯烃弹性体。 背景技术
顺式 -1,4-异戊橡胶( IR ), 因其结构和性能与天然橡胶相似, 被称为 "合成天然橡胶", 特别是当 IR中顺式结构含量大于 99%时其性能即可与天然橡胶相媲美。稀土催化剂具有 高活性高定向性的特征, 是合成 IR的首选催化剂。 目前公开的技术中大部分为非均相催 化剂, 如氯化稀土体系 ( CN1834121A 、 CN1861649A ) 和稀土碑酸 (膦酸) 盐体系
( CN1484657A, CN1479754A ) 等。 非均相催化剂的稳定性较差, 难以储存和运输, 其 可能存在多活性中心, 常获得分子量分布较宽的聚合物, 使得聚合体系粘度增大, 给传 热、 输送、 喷胶和凝聚等生产过程带来困难。 此外, 非均相催化剂难以准确计量, 使得 聚合过程和产品结构难以控制和掌握, 难以在工业化中应用。
共轭二烯烃在稀土催化剂作用下进行定向聚合, 可合成具有高顺式结构含量
( >96% )、 高分子量的聚合物 (如聚丁二烯和聚异戊二烯)。 稀土催化剂催化合成的聚异 戊二烯橡胶在微观结构和物理机械性能方面优于钛系催化剂催化合成的聚异戊二烯橡 胶, 且其微观结构和宏观性能最接近天然橡胶, 是天然橡胶最理想的替代品。 而稀土催 化合成的聚丁二烯橡胶与传统的钛系、 钴系、 镍系催化剂催化得到的聚丁二烯橡胶相比, 具有更好的生胶强度和硫化胶性能, 适应汽车高速行驶的要求, 可用于制造高性能轮胎。
催化剂的组成和制备条件能够决定催化剂的活性以及合成的聚合物的结构。稀土催 化剂合成橡胶文集 ( 1980 , 科学出版社, 第 72-82 页) 中提到由环烷酸钕 /三异丁基铝 / 一氯二乙基铝组成的非均相催化剂, 可合成顺 1,4-结构含量均低于 95 %的聚异戊二烯, 但由于顺 1,4-结构含量偏低, 使得聚合物性能不理想。 另外, 非均相催化体系由于可能 存在多活性中心, 存在稳定性较差、 催化过程和聚合过程较难控制等问题。 通过改变催 化剂组成和制备条件可获得均相稀土催化剂以解决上述问题。 在三元催化体系上引入共 轭二烯烃, 在特殊的加料方式和制备条件下, 可以制备出均相的催化剂 (CN1347923A、 CN101045768A ), 用于异戊二烯聚合时, 催化剂用量较大, 羧酸钕与单体的摩尔比值通 常在 3.4xl04以上, 得到聚异戊二烯的顺式结构含量相对较低, 在 96.1 ~ 97.2%之间。 以 叔丁基氯、 苄基氯和烯丙基氯等 1¾代烃以及 1¾代硅烷为 1¾素给体, 与稀土羧酸盐和烷基 铝组成三元催化体系, 可以在 Cl/Nd 比值小于 5 的条件下制备出均相催化剂
( CN85101899A, CN1296982A ), 制备的聚异戊二烯的顺式结构含量较低, 为 96%左右。 釆用三氯乙烷、 三氯甲烷和 1,4-二 (2-氯-丙烷基) 苯等氯代烷以及氯代羧酸酯为 (¾素给 体, 与稀土羧酸盐、 烷基铝和共轭烯烃或羧酸组成四元催化体系 ( CN1840552A ), 可以 在 Cl/Nd 比值范围相对较宽的条件下 (Cl/Nd=l-50 ) 形成均相催化剂, 但只获得顺式结 构含量为 95.3%的聚异戊二烯。
CN100448898C公开了一种由羧酸钕 /烷基铝 /有机 (¾代烃 /共轭烯烃或羧酸组成的均 相催化剂, 在催化剂组分比例为 1: 1 ~ 30:1 ~ 50:0 ~ 17/6的条件下,可合成顺 1,4-结构含量 为 95.32% , 分子量为 5.75xl05的聚异戊二烯。 由于顺 1,4-结构含量偏低且分子量较低, 所得聚异戊二烯产品不适用于轮胎制品。
US2005/0137338A1 提出在催化剂陈化过程中加入少量二烯烃单体, 有利于提高催 化剂活性。 催化剂由羧酸钕 /烷基铝(三异丁基铝或氢化二异丁基铝) / (¾素组成, 釆用羧 酸钕、 烷基铝、 (¾素的加料顺序制备催化剂, 合成的聚异戊二烯橡胶的顺 1,4-结构含量 在 98.0 - 99.5%之间, 分子量分布在 1.0 - 2.5之间。 但由于催化剂制备过程中使用了卤素 (如氯气), 对设备腐蚀性大, 且易造成环境污染。
CN101045768A 公开了一种由羧酸钕或磷 /膦酸钕 /烷基铝 /氯化物 /共轭二烯烃组成 的均相催化剂, 其釆用先形成羧酸钕或磷 /膦酸钕、 共轭二烯烃和烷基铝的混合溶液, 然 后加入氯化物的加料顺序来制备催化剂, 可以合成顺 1,4-结构含量大于 96% , 分子量分 布小于 3 的聚异戊二烯。 但其顺 1,4-结构含量仍低于钛系异戊二烯橡胶和天然橡胶 ( >98 )。
专利 CN1347923A 中提到将新癸酸钕与 (¾素化合物接触反应后再加入氢化二异丁 基铝, 但其经陈化反应后得到的催化剂室温下在 10小时内出现沉淀, 也就意味着其制备 得到的催化剂为非均相催化剂。 现有技术不能解决以下问题: 釆用 (¾素化合物先于烷基 铝与羧酸钕接触时, 不能得到稳定的均相稀土催化剂。
目前,工业上通常釆用溶液聚合进行共轭二烯的配位聚合。由于聚合物的结构特点, 导致合成过程中聚合物溶液粘度大, 不利于聚合过程传质传热及物料输送。 要解决这一 问题对工业装置及设备要求较高, 并且能耗增大。 尤其对于目前国内发展迅速的稀土顺 丁橡胶和稀土异戊橡胶品种, 聚合物分子链没有支化结构、 线型程度很高且分子量高, 这些结构特点在赋予产品更加优异性能的同时, 也导致合成过程中胶液粘度更大, 对工 业生产提出了更高的要求。
针对聚合物溶液粘度高的问题, 可釆用物理方法或化学方法进行降粘。 化学方法指 在合成过程中通过改变聚合物分子链的结构 (如支化、 降低分子量等) 达到降低聚合物 溶液粘度的目的。 化学方法降粘通常会带来聚合物结构的变化, 从而影响聚合物的性能。 物理降粘指通过外加助剂等方式降低聚合物溶液的粘度, 不改变聚合物结构, 同时选择 合适的助剂和用量也不会影响产品的性能。
羧酸 (盐)、 磺酸 (盐) 等表面活性剂广泛应用于稠油降粘、 矿石浮选、 染料、 农 药等多个领域。 如 CN1071690A中, 釆用油酸钠、 脂肪酸烷醇酰胺、 烷基酚聚氧乙烯醚、 渗透剂和水制备高稠原油降粘剂。 CN1093099A 中, 釆用油酸聚氧乙烯酯、 聚氧乙烯烷 基苯基醚、 多酚和水配制高稠原油降粘剂。 CN1147007A 中釆用天然混合羧酸盐作为驱 油剂。 但将羧酸 (盐)、 磺酸 (盐) 等用于聚合物溶液降粘未见报道。
在制备稀土异戊橡胶的溶液聚合过程中, 聚合反应物料(包括异戊二烯单体、 溶剂 和催化剂)的预混状态将直接影响后续聚合反应的速率、 催化剂用量、 以及所得橡胶产品 的顺式构型含量、 分子量和分子量分布。 因此, 在进行异戊二烯单体溶液聚合反应之前 需要创造一个良好的传质环境, 使聚合反应物料能够充分混合, 形成高度均勾的混合物。
在现有技术中, 对于制备稀土异戊橡胶的溶液聚合过程来说, 常规的原料预混过程 多釆用静态混合器进行, 但由于静态混合器在出口处通常存在流体滞流区, 因此, 物料 流速分布不均勾, 扰动效果较差, 致使混合效果不够理想; 也有釆用结构相对复杂的搅 拌釜式混合器作为原料预混器, 其中在搅拌桨的作用下, 物料湍流程度加大, 致使混合 效果加强。 但由于搅拌桨的特性导致釜内流场分布不均勾, 且容易存在体积较大的混合 死区, 致使最终的混合效果也不够理想; 若要改善这种不理想的混合效果, 往往需要设 置内构件, 这样搅拌釜内的结构必然更加复杂, 能量消耗亦相应增加, 再加上转动部件 的存在, 整个设备维护起来比较困难。 另外, 搅拌釜的结构设计也很重要, 因为在所述 预混过程中既要求催化剂在原料体系中高度均勾分散, 又要求整个搅拌釜内的上下混合 尽可能均匀 , 而传统结构的搅拌釜往往不能达到高度分散且混勾的要求。
US005397179A公开了一种用于流体混合的装置,所述装置为带有扩散 -收缩段的管 式湍流混合装置。 2003年, 俄罗斯 Kauchuk公司建成了世界上第一套万吨级稀土异戊橡 胶生产装置, 其中就釆用上述美国专利中的管式湍流混合装置进行原料预混。 这类混合 装置实际上与静态混合器相当, 只是其中物料反复经历扩散和收缩致使湍流扩散系数提 高, 物料之间的混合加强, 进而混合更均勾。 但这种流体混合装置的缺点是不易加工制 造。
在现有技术中, 也有将静混器和搅拌釜串联起来进行原料预混的预混工艺。 CN201415984Y 就公开了这样一种稀土异戊橡胶生产用预混合装置, 其中包括相串联的 管道高速混合器和预混釜。 对于制备稀土异戊橡胶的溶液聚合过程来说, 在进入聚合釜 之前, 聚合反应物料经过这种预混合装置预混后可达到高度的微观均匀混合, 从而提高 催化剂的催化效率, 而且减少了产品的支化度, 使分子量分布更加均匀, 最终提高了异 戊橡胶的产品质量。 但这种预混合装置的缺点在于, 物料在预混釜内的平均停留时间为 20-30min 的较长时间, 然后经多台串联的聚合反应釜反应后, 最终转化率只能达到 85-90wt , 因此, 生产能力比较低。
因此, 催化剂的组成和制备条件决定催化剂的活性以及合成的聚合物的结构, 通过 优选催化剂组分、 配方和制备条件, 可得到高活性的钕系稀土催化剂, 且合成出更高顺 式结构含量的共轭二烯烃聚合物产品; 进一步优化合成工艺, 开发用于共轭二烯烃聚合 的新型催化剂是值得业内关注的。 其次, 对于制备稀土异戊橡胶的溶液聚合过程来说, 仍然需要一种合理的物理降粘方法对共轭二烯聚合物溶液进行降粘, 从而有利于工业装 置的顺利生产, 并能在很大程度上降低能耗, 符合现代工业节能低碳的发展方向。 另夕卜, 对于制备稀土异戊橡胶的溶液聚合过程来说, 需要进一步改进聚合反应物料的预混过程 , 从而进一步改进所得稀土异戊橡胶产品的质量, 同时提高生产能力和降低能耗。
发明内容
本发明在充分研究了有关共轭二烯烃聚合现有技术的基础上,提供了新型的钕系均 相稀土催化剂。 该催化剂具有均相、 稳定性好和高定向性等优点, 所述催化剂具有相对 较高的催化活性, 将该催化剂用于共轭二烯烃聚合, 可以制备出顺式结构含量大于 98% 的聚共轭二烯烃弹性体; 本发明还提供了一种使用上述催化剂的基础上合成共轭二烯烃 聚合物的方法, 在所述方法中釆用离子型表面活性剂尤其是阴离子型表面活性剂能够有 效地降低聚合物溶液粘度, 在所述方法中还可以釆用预混合操作, 以提高催化效率。
根据本发明的一个方面, 提供了一种钕系均相稀土催化剂, 通过包括以下步骤的方 法制备:
1 )在惰性溶剂中, 制备包含羧酸钕化合物组分 a、 含 (¾素化合物组分 c以及共轭二 烯烃组分 d的混合液;
2 ) 向步骤 1 ) 得到的混合液中加入有机铝化合物组分 b, 得到所述的钕系均相稀土 催化剂;
其中, 所述有机铝化合物选自通式为 A1R3的烷基铝和通式为 A1HR2的氢化烷基铝, 其中 R为 d-C6的直链或支链烷烃, 所述催化剂中各组分的摩尔比计 a:b:c:d计为 1:5 ~ 30:2 ~ 10:35 ~ 65 。
在上述催化剂中, 优选所述各组分的摩尔比以 a:b:c:d计为 1:10~25:2~4:37~60。
上述催化剂中,所述羧酸钕化合物为 d-C^羧酸钕;优选所述羧酸钕化合物为 C6-C10 羧酸钕; 更优选为环烷酸钕、 辛酸钕、 异辛酸钕、 壬酸钕、 新癸酸钕或癸酸钕。
上述催化剂中, 所述有机铝化合物选自三甲基铝、 三乙基铝、 三丙基铝、 三丁基铝、 三戊基铝、 三己基铝、 氢化二乙基铝和氢化二丁基铝; 优选选自三丁基铝和氢化二丁基 铝; 更优选选自三异丁基铝和氢化二异丁基铝。
在上述催化剂的一个具体实施例中,所述含卤素化合物选自通式为 A1R2X的烷基卤 化铝和通式为 A12R3X3的倍半烷基铝, 其中 R为乙基、 丙基、 异丙基、 丁基、 异丁基或 叔丁基, X为溴或氯; 优选选自一氯二乙基铝、 倍半乙基铝和一氯二异丁基铝。
在上述催化剂的另一个具体实施例中, 所述含 (¾素化合物选自通式为 RX的 (¾代烃、 含硅 (¾化物和 (¾素, 其中 R为 d ~ C6的烷基, X为溴或氯; 优选选自氯代甲基硅烷、 四 氯化硅中、 倍半异丁基铝、 液溴、 氯气、 苄基氯、 苄基溴和叔丁基氯。
上述催化剂中, 所述共轭二烯烃 d是指在其分子中具有共轭双键的任何单体, 其实 例包括但不限于为 C4-C6共轭二烯烃; 优选所述共轭二烯烃选自丁二烯、 异戊二烯、 1,3- 戊二烯、 1,3-己二烯和 2,3-二甲基丁二烯; 更优选选自丁二烯和异戊二烯; 最优选为异戊 二烯。 上述催化剂中, 对制备方法中使用的惰性溶剂没有特别的限制, 可选用本领域通常 使用的对反应组分呈惰性的饱和脂肪烃或脂环烃溶剂, 常选用 C5-C1()烷烃或环烷烃, 如 戊烷、 异戊烷、 己烷、 环己烷、 庚烷、 辛烷等或其混合物。
上述催化剂中, 根据实际需要, 所述惰性溶剂中可以加入以下组分, 用于改变催化 剂活性和调节聚合物分子量和分子量分布, 如: 苯、 甲苯、 乙苯、 二甲苯、 异丙苯等芳 烃化合物, 乙醚、 二苯醚等醚类化合物。 该组分可在催化剂制备的任一步骤加入, 该组 分与 a的摩尔比为约 1 ~ 500。
在上述催化剂的一个具体实施例中, 所述钕系均相稀土催化剂的制备方法包括: 在 惰性溶剂中, 首先将组分 a ) 与组分 d ) 混合, 然后将组分 c )加入到前述混合液中, 最 后加入组分 b ), 使得到的组分 a ) -d ) 的混合物经历陈化反应; 或者先将组分 a )、 c )、 d)混合, 再将组分 b )加入到前述混合液, 使得到的组分 a ) -d )的混合物经历陈化反应。
上述催化剂中, 优选在惰性溶剂中, 组分 c )与 a )、 d )的混合液接触后需反应 5 ~ 120分钟, 该反应步骤可在 -30 °C ~ 80 °C、 优选在 0°C ~ 70°C下进行; 再加入组分 b )反应 0.5 ~ 48小时, 该反应步骤可在 -30°C ~ 60°C、 优选在 -10°C ~ 50°C下进行。
上述催化剂的合成方法简单容易控制, 制得催化剂为均相催化剂, 所述均相催化剂 组成简单、 稳定性好, 可在较长的时间内保持均相态、 高活性以及高定向性, 其制备方 法容易, 适合用于工业化生产。 使用该均相稀土催化剂可以合成顺式结构含量大于 98%、 重均分子量在 100 - 250万范围内可调, 分子量分布为 3.0 - 4.0的聚合物, 并且聚合过程 平稳易于控制, 适合连续工艺操作。 合成的聚合物加工性能、 自粘性、 耐磨性、 屈挠性、 老化性能等物理机械性能优异, 可部分代替天然橡胶用于轮胎制品。
根据本发明的另一方面, 提供了一种钕系均相稀土催化剂, 通过包括以下步骤的方 法制备:
1 )在惰性溶剂中, 制备包含羧酸钕化合物组分 a、 含 (¾素化合物组分 c、 羧酸组分 e 以及共轭二烯烃组分 d的混合液;
2 ) 向步骤 1 ) 得到的混合液中加入有机铝化合物组分 b , 得到所述的钕系均相稀土 催化剂;
其中, 所述有机铝化合物选自通式为 A1R3的烷基铝和通式为 A1HR2的氢化烷基铝, 其中 R为 d-C6的直链或支链烷烃;所述催化剂中各组分的摩尔比以 a:b:c:d:e计为 1:10 ~ 30:2 ~ 5:25 ~ 100:0.2 ~ 4。
在上述催化剂的一个具体实施例中, 所述催化剂中各组分的摩尔比以 a:b:c:d:e计为 1:10 ~ 30:2 ~ 5:26 ~ 70:0.2 ~ 4。
上述催化剂中, 所述催化剂中羧酸钕化合物为 d-C^羧酸钕; 优选为 C6-C10羧酸钕; 更优选选自环烷酸钕、 辛酸钕、 异辛酸钕、 壬酸钕、 新癸酸钕和癸酸钕。
上述催化剂中, 所述催化剂中有机铝化合物选自三甲基铝、 三乙基铝、 三丙基铝、 三丁基铝、 三戊基铝、 三己基铝、 氢化二乙基铝、 氢化二丙基铝、 氢化二丁基铝、 氢化 二戊基铝和氢化二己基铝, 优选选自三乙基铝、 三丁基铝、 氢化二乙基铝和氢化二丁基 铝。
上述催化剂中,所述催化剂中的含 (¾素化合物选自通式为 A1R2X的烷基 (¾化铝和通 式为 A12R3X3的倍半烷基铝, R为 d ~ C6的烷基, X为溴或氯, 优选选自一氯二乙基铝、 倍半乙基铝和一氯二异丁基铝。
上述催化剂中, 所述催化剂中的共轭二烯烃为 C4-C6共轭二烯烃; 优选选自丁二烯、 异戊二烯、 1 ,3-戊二烯、 1,3-己二烯和 2,3-二甲基丁二烯; 更优选选自丁二烯和异戊二烯; 最优选异戊二烯。
上述催化剂中, 所述羧酸为 C5-C1()羧酸, 优选选自环烷酸、 辛酸、 异辛酸、 壬酸、 新癸酸和癸酸。 所述羧酸 e的种类与羧酸钕化合物组分 a中的配体的种类可以相同, 也 可以不同。
上述催化剂中, 对制备方法中使用的惰性溶剂没有特别的限制, 可选用本领域通常 使用的对反应组分呈惰性的饱和脂肪烃或脂环烃溶剂, 常选用 C5-d。烷烃或环烷烃, 如 戊烷、 异戊烷、 己烷、 环己烷、 庚烷、 辛烷等或其混合物。
在上述方法的另一个实施例中, 在惰性有机溶剂中, 首先将组分 a )、 d ) 和 e ) 混 合, 然后将组分 c )加入到前述混合液中陈化, 最后加入组分 b ), 使得到的组分 a ) -e ) 的混合物经历陈化反应; 或者先将组分 a )、 c )、 d)、 e ) 混合, 再将组分 b )加入到前述 混合液中, 使得到的组分 a ) -e ) 的混合物经历陈化反应。
上述催化剂中,优选在惰性溶剂中, 首先将组分 a )、 d )和 e )混合, 然后将组分 c ), 于 -30 ~ 60°C下陈化 5 ~ 250分钟后,再加入组分 b )于-30 ~ 60°C下继续陈化 0.5 ~ 48小时, 制得用于共轭二烯烃聚合的催化剂。
上述催化剂的合成方法简单容易控制, 制得催化剂为均相催化剂, 所述均相催化剂 具有均相、 稳定性好、 高活性和定向性的优点。 特别是包含组分 e )的催化剂, 由于组分 e )的加入可以提高催化剂的稳定性和提高催化剂的定向能力, 催化剂可以在一年以上保 持均相态, 高活性以及高定向性。 本发明的催化剂尤其适合用于异戊二烯的聚合, 其顺 式聚合选择性在 98%以上,甚至大于 99%。所制备的高顺式聚异戊二烯重均分子量在 60 ~ 200万范围内可调, 分子量分布为 2.0 - 5.0 , 其力学性能、 加工性能、 自粘性、 耐磨性、 屈挠性、 老化性能等性能优异, 适合用于制造高性能轮胎或其他用途。
根据本发明的另一方面, 提供了一种制备共轭二烯烃聚合物的方法, 所述共轭二烯 烃单体在上述催化剂的作用下于溶剂中进行溶液聚合得到聚合物溶液。
上述方法中, 所述共轭二烯烃单体是指在其分子中具有共轭双键的任何单体, 其实 例包括但不限于 C4-C6共轭二烯烃; 具体实例包括丁二烯、 异戊二烯、 1,3-戊二烯、 1,3- 己二烯、 2,3-二甲基丁二烯。 所述共轭二烯烃优选为丁二烯或异戊二烯。 在本发明方法的 一个具体实施例中, 所述共轭二烯烃单体为异戊二烯。 所述共轭二烯烃单体与催化剂中 的共轭二烯烃可相同或不同。
在上述方法中, 在所述溶液聚合的过程中或完成后, 加入离子型表面活性剂以终止 聚合并降低聚合物溶液粘度, 所述离子型表面活性剂优选阴离子型表面活性剂。 上述方法中, 作为阴离子表面活性剂的例子, 可以提及, 但不限于, 羧酸和羧酸盐、 磺酸和磺酸盐、 季铵盐、 醚类化合物、 以及由天然油脂或高分子出发合成的表面活性剂。
在上述方法中, 所述阴离子型表面活性剂包括 C10~C18长链的脂肪羧酸或羧酸盐, 优选包括硬脂酸、 硬脂酸钠、 硬脂酸钾、 油酸、 油酸钠或油酸钾。
在上述方法的一个具体实施例中, 所述阴离子型表面活性剂包括磺酸或磺酸盐, 所 述磺酸和磺酸盐的分子结构中含有 C8~C2Q的直链、 支链、 环状饱和或不饱和的碳链, 优 选包括十二烷基苯磺酸钠、 十二烷基苯磺酸钾、 十二烷基磺酸钠或亚甲基二萘磺酸钠。
在上述方法的另一个具体实施例中, 所述阴离子型表面活性剂包括含有 C8~C20直 链、 支链、 环状饱和或不饱和碳链的磷酸脂, 优选包括辛基磷酸酯、 癸基磷酸酯、 三甲 基壬基磷酸酯或十六烷基磷酸酯。
在上述方法的另一个具体实施例中, 所述阴离子型表面活性剂包括含有 C8~C20直 链、 支链、 环状饱和或不饱和的碳链的硫酸及其盐, 优选包括十二烷基硫酸钠、 十八烯 醇石克酸钠、 十八碳醇 ¾酸钠或聚氧乙烯脂肪醇醚 ¾酸钠。
在上述方法的另一个具体实施例中, 所述阴离子型表面活性剂包括化学结构为
R-0-(CH2CH20)N-H的醚类化合物, 其中 R为 C8~C2o直链、 支链、 环状饱和或不饱和的 碳链, n范围在 3~10 , 优选选自聚氧乙烯脂肪醇醚和聚氧乙烯仲醇醚。
在上述方法的另一个具体实施例中, 所述阴离子型表面活性剂包括天然油脂或合成 的高分子表面活性剂, 优选选自纤维素类和木质素类, 更优选为羟甲基纤维素、 羧甲基 纤维素钠盐和木质素磺酸钠。
在上述方法中, 阴离子型表面活性剂应用于共轭二烯烃聚合物溶液时, 所述阴离子 型表面活性剂的加入量占聚合物溶液的重量为 0.01~2wt% , 优选 0.02 ~ 1.5 %重量, 更优 选 0.05 - 1.0 %重量。
在上述方法的一个具体实施例中, 所述离子型表面活性剂和聚合反应终止剂一起加 入。 所述聚合反应终止剂是指溶液聚合过程中可釆用本领域常用的方式对活性聚合物直 接进行终止, 可选用的终止剂多为水或醇类, 例如水、 甲醇、 乙醇、 正异丙醇、 异丙醇、 2,6-二叔丁基对苯二酚甲醇等。 优选将阴离子型表面活性剂和水配制成水溶液一起加入, 即所述离子型表面活性剂可配制成水溶液后再用于共轭二烯聚合物溶液的降粘。 所述离 子型表面活性剂的水溶液的浓度可以在较宽范围内变化, 只要表面活性剂能够溶解在水 中。 例如, 所述浓度可以高至 50%。 具体而言, 对于例如羧酸、 磺酸、 碑酸和 /或硫酸类 降粘剂, 可以先将降粘剂溶解在水中, 再将碱溶液加入其中, 使之反应生成相应的盐再 使用; 或者, 对于羧酸、 磺酸、 磷酸和 /或硫酸类降粘剂, 可以将其直接与碱溶液接触并 反应生产相应的盐再使用。 配制降粘剂溶液所使用的碱包括, 但不限于下列物质: 氢氧 化钠、 氢氧化钾。 所述碱溶液可以配制为任意浓度, 但优选 10 % ~ 50 % , 更优选 15 % ~ 40 %。 根据本发明的具体实施方案, 酸与碱接触反应后, 水溶液的 pH值可以在 7~9范 围。
在上述方法的一个具体实施例中, 所述聚合还包括共轭二烯烃单体和钕系均相稀土 催化剂、 溶剂加入到预混合器系统中进行预混合的步骤, 然后混合后的物料进行溶液聚 合。
在上述预混合步骤中, 优选单体、 催化剂和溶剂不以混合物的形式一起进入所述环管 混合器, 至少所述共轭二烯烃单体和钕系均相稀土催化剂分别加入到预混合器系统中进 行预混合。 溶剂则可以单独进入, 也可以与前两者之中的任何一种一起进入所述环管混 合器。 这样操作的目的是为了更好地避免预聚反应的发生, 从而有利于后续的混合操作 以及更后续的溶液聚合反应。
在上述预混合步骤中,优选所述共轭二烯烃单体和钕系均相稀土催化剂分别冷却后 再加入到预混合器系统中。 经冷却操作, 可以更好地避免所述环管混合器内预聚反应的 发生, 和更好地控制后续溶液聚合的反应温度, 一般将所述聚合反应物料预先经冷却器 冷却到一定的低温范围内。 在一个具体的实施例中, 所述冷却的目标温度为 -30-20°C , 优 选为 -20-1CTC , 更优选为 -10-0°C。
上述预混合步骤中, 异戊二烯单体和催化剂优选分别预先经不同的冷却器冷却至相 应的低温范围, 而溶剂则可以单独冷却, 或者与前两者之中的任何一种一起冷却。 在一 个具体实施例中, 使用三个冷却器以分别冷却异戊二烯单体、 催化剂和溶剂, 优选使用 两个冷却器以分别冷却异戊二烯单体和催化剂, 此时考虑到溶液聚合反应过程中异戊二 烯单体和溶剂的进料量均远高于催化剂的进料量, 最优选溶剂与催化剂一起冷却。 所述 冷却器可以为本领域常用的冷却器, 例如可以为板式换热器, 其中的冷却介质可以为低 温水和冷冻盐水, 优选为冷冻盐水。
上述预混合步骤中, 聚合反应物料(单体、 催化剂和溶剂) 的进料量可以按照后续溶 液聚合反应的要求确定。 具体地, 单体的浓度可以为 10-20wt% , 优选为 13-17wt% , 以 整个聚合反应物料的总重量为基准。
在上述预混合步骤的一个具体实施例中, 所述预混合器系统包含轴流泵和与轴流泵 相连的环管混合器, 所述环管混合器包括, 至少两根直管段, 连接直管段形成环管的弯 头, 环管混合器下部的物料出口和至少两个物料进口。
上述环管混合器中, 两个物料进口用于分别引入异戊二烯单体和催化剂, 溶剂可以 和异戊二烯单体和 /或催化剂一起加入, 此时考虑到溶液聚合反应过程中异戊二烯单体和 溶剂的进料量均远高于催化剂的进料量, 最优选溶剂与催化剂一起引入; 也可设置三个 物料进口用于分别引入异戊二烯单体、 催化剂和溶剂。 物料出口优选位于环管混合器的 底部, 用于将混合后的物料排出。 所述轴流泵可以为本领域中通常使用的任何轴流泵, 本领域技术人员可以依据过程所要求的环管混合器内的循环流量范围而相应地进行选 择。
根据本发明的环管混合器, 所述环管混合器的直管段的高径比为 2-100 , 优选为 3-50 , 更优选为 4-20。
根据本发明的包含环管混合器的预混合系统, 所述环管混合器在下部与所述轴流泵 相连, 控制所述环管混合器中的物料在所述环管混合器内部的循环流量 Qr与流出所述环 管混合器的出口流量 Qout的比值 QJQout为 100-140 , 优选为 120-130。
根据本发明的包含环管混合器的预混合系统, 由于轴流泵的大流量作用, 使得聚合 反应物料在所述环管混合器内快速循环流动, 混合器内基本不存在死区, 所有反应物料 可以在湍流条件下充分混合以形成高度均勾的混合物。
在上述预混合步骤的另一个具体实施例中, 所述预混合器系统包含预混合釜, 所述 预混合釜包括:
沿纵向设置在混合釜内的可旋转的中心轴;
安装在所述中心轴上的至少两个径流式搅拌桨; 和
位于相邻两个径流式搅拌桨之间的环状盘, 其中所述中心轴从所述环状盘中穿过, 并且所述环状盘在其外周部分处连接到混合釜的内壁上。
在根据本发明的混合釜中, 一方面通过设于中心轴上的径流式搅拌桨所产生的高剪 切分散作用将待混合的物料打碎, 另一方面利用设于搅拌桨之间的环状盘促使待混合物 料形成整体大循环, 从而使物料在短时间内就能够达到高度的微观混匀。 这有利于后续 聚合反应的进行。
在一个实施例中, 环状盘的外径与混合釜的内径相匹配, 并且在外周部分上的至少 两个圆周对称的连接部位处连接到混合釜的内壁上。 环状盘与釜内壁的连接方式可以为 本领域常用的合适连接方式, 例如在釜内壁上设置支架来支撑环状盘。 连接部位的数量 可以根据具体情况的需要加以选择, 例如为 2-8个, 优选为 3-6个, 更优选为 4个。
在一个实施例中, 环状盘设有中心孔, 中心轴从该中心孔中穿过。 中心孔的直径例 如可为搅拌桨直径的 1-1.5倍。
在一个实施例中, 环状盘在两个连接部位之间设有径向向内的凹槽。 这样, 物料不 仅能穿过由环状盘的中心孔所形成的通道而流动, 同时也能穿过由凹槽和混合釜的内壁 所形成的通道而流动。 因此, 待混合物料在混合釜内的流动性得到进一步的增强, 有利 于物料的充分混合。
在设有两个或更多环状盘的情况下, 优选的是相邻两个环状盘的相应凹槽在周向上 彼此间错开一个角度。 更优选地是, 一个环状盘的凹槽相对于其它环状盘中的相应凹槽 在周向上彼此错开间均错开一个角度。 这样, 由凹槽和混合釜的内壁所形成的通道在纵 向上完全为非线性的, 从而进一步增强物料的混合效果。
凹槽的数量例如可为 2-8个, 优选为 3-6个, 更优选为 4个。 凹槽的面积例如为环状 盘在相应两个连接部位之间所占扇环区域的面积的 1/4到 1/2, 优选为 1/3。 在一个优选 实施例中, 凹槽的底部曲线关于穿过连接相应两个连接部位的连线的中点的半径轴线对 称。
根据本发明的混合釜, 其高径比例如选择为 1-4, 优选为 2-3。 径流式搅拌桨的数量 例如为所述高径比的 1-3倍,优选为 1.5-2倍。搅拌桨的直径例如为混合釜直径的 1/4-2/3 , 优选为 1/3-1/2。 上述尺寸、 例如高径比应选择为使得反应物料在混合釜内的平均停留时间 为 1.0-10min, 优选为 3-8min, 更优选为 4-6min。 根据本发明的混合釜, 搅拌桨之间的间距例如为搅拌桨直径的 0.5-2倍。 在一个优选 实施例中, 所述间距沿纵向方向自下而上地逐渐增大。 这种自下而上从密到疏地逐层设 置搅拌桨, 能够更好地发挥搅拌桨的剪切分散作用, 有利于物料的充分混合。
此外, 在一个优选实施例中, 环状盘可自下而上地从疏到密地设置, 即位于混合釜 下部区域的环状盘的数量少于位于混合釜上部区域的环状盘的数量。 例如, 在混合釜的 下部区域中, 在相邻两个搅拌桨之间仅设置一个环状盘, 而在混合釜的上部区域中, 在 相邻两个搅拌桨之间设置两个或更多个环状盘。 这样可在整个混合釜内形成强有力的整 体大循环, 从宏观上更加有利于分散后的物料进入充分混合。
根据本发明, 在混合釜的下部设有进口, 用于引入待混合的物料, 而在混合釜的上 部设有出口, 用于排出混合后的物料。 待混合的各物料优选单独地引入所述预混釜。 对 于制备稀土异戊橡胶的预混来说,异戊二烯单体和催化剂需要从不同的进口进入混合釜, 溶剂则可以单独进入, 也可以与前两者之中的任何一种一起进入混合釜。 这样能够更好 地避免预聚反应的发生, 从而有利于后续的混合操作以及溶液聚合反应。
因此, 在一个用于制备稀土异戊橡胶的具体实施例中, 本发明的混合釜可在下部设 有三个进口, 以分别引入异戊二烯单体、 催化剂和溶剂。 备选地, 也可以只设有两个进 口以分别引入异戊二烯单体和催化剂。 此时考虑到在溶液聚合反应过程中异戊二烯单体 和溶剂的进料量均远高于催化剂的进料量, 因此优选将溶剂与催化剂一起引入。
根据本发明的原料预混釜,由于组合了径流式搅拌桨的高剪切作用和环状盘对釜内聚 合反应物料整体大循环的促进作用, 使得聚合反应物料在釜内被打碎、 分散和进行大循 环, 因此可在短时间内达到高度^:观混勾, 即混合效果良好。
在上述预混合系统中,可以根据生产规模确定聚合反应物料的进口流量和出口流量, 并可以据此相应确定所述环管混合器的尺寸例如确定所述环管混合器的直管段部分的高 径比, 从而使聚合反应物料在所述环管混合器内的平均停留时间为 0.5-5min , 优选为 2-4min; 可以据此相应确定本发明的原料预混釜的尺寸例如确定所述预混釜的高径比, 从而使聚合反应物料在所述预混釜内的平均停留时间为 1.0-1 Omin , 优选为 3 - 8min , 更优 选为 4-6min。
上述方法中,用于溶液聚合的催化剂量可以在宽范围内变化。在一个具体实施例中, 所述催化剂的用量以组分 a与共轭二烯烃单体的摩尔比计为 1x10— 5 ~ 4x10— 4, 优选为 1.5x10— 5 ~ 5 ~ 3.5x10— 4。 在另一个具体实施例中, 所述催化剂的用量以组分 a与共轭二烯 烃单体的摩尔比计为 3.0x10— 5 - 6.0x10— 4。 催化剂用量过太不仅增加成本, 而且还可能使 聚合物产物中灰分含量增大。
上述方法中, 对所述溶液聚合时釆用的溶剂没有特别限制, 可选用本领域通常使用的对 反应组分呈惰性的饱和脂肪烃或脂环烃溶剂, 常选用 C5~d。烷烃或环烷烃, 典型的溶剂包括 但不限于己烷、 环己烷、 庚烷、 戊烷、 异戊烷或、 辛烷、 甲基环己烷、 苯、 甲苯、 二甲苯和 异丙苯等。 所述溶剂与催化剂制备中使用的惰性溶剂相同或不同。
在上述方法的一个具体实施例中, 所述溶液聚合的反应条件为: 聚合反应的温度为 -30 °C ~ 80 °C , 优选为 0。C ~ 70 °C , 更优选为 10 °C ~ 60 °C ; 时间为 20 ~ 300分钟, 优选为 30 - 200分钟。
根据本发明提供的方法, 加入离子型表面活性剂、 尤其是阴离子型表面活性剂对于 高粘度的共轭二烯聚合物溶液有显著的降粘效果。 本发明的降粘方法操作简单、 易于在 工业生产装置上实现, 可解决高粘度聚合物溶液输送困难、 能耗大的问题。 同时, 本发 明基于离子型表面活性剂的降粘剂的配制使用水为介质时, 无害环保, 在实现聚合物溶 液降粘的同时起到终止聚合反应的作用; 无需单独的洗脱或处理聚合物溶液中的降粘剂 的过程; 经降粘处理的聚合物溶液经过本领域通常釆用的处理方法后所得到的产品, 其 性能不受影响。
通过本发明的方法, 聚合物溶液的粘度可下降 10 ~ 60% , 优选 12 % ~ 56 % , 更优 选 15 % - 50 % 。
上述方法中, 通过预混合系统中的预混和步骤, 可以得到高度均勾的混合物, 使得催 化剂在混合物中得到高度分散, 进而提高催化效率; 并且所述聚合反应物料在所述预混 釜内的平均停留时间很短, 只有几分钟, 因此, 从所述预混釜流出的聚合反应物料中各 组分的聚合程度很低, 从而有利于在后续的聚合反应阶段进行溶液聚合反应。
通过本发明提供的方法制备得到的共轭二烯烃聚合物即稀土异戊橡胶产品具有相对 高的顺式 - 1 ,4-构型含量 , 所得到的稀土异戊橡胶的顺式 - 1 ,4-构型含量可以达到 98wt , 甚至达到 99 wt%。 相对于现有技术, 通过本发明制备方法得到的稀土异戊橡胶产品质量 可以有明显改进。 附图说明
下面将参照附图来进一步描述本发明。 容易理解, 这些附图仅是对本发明的示例性 说明, 并不构成任何限制性作用。 在图中:
图 1显示了根据本发明的预混釜, 其中设有多个径流式搅拌桨和设在每两个相邻搅 拌桨之间的环状盘;
图 2显示了图 1所示环状盘的俯视图;
图 3显示了用于制备稀土异戊橡胶的异戊二烯单体溶液聚合反应的流程示意图, 其 中釆用根据本发明的混合釜作为原料预混釜;
图 4显示了本发明的环管混合器; 和 流程示意图, 其中所述釆用根据本发明的环管混合器和轴流泵的预混合系统进行原料预 混。
具体实施方式
下面借助实施例对本发明进行进一步描述, 但本发明的范围并不限于这些实施例。 本发明中, 合成的共轭二烯烃聚合的^:观结构釆用德国 Bruker Tensor 27中红外光 谱仪和德国 Bruker 400MHz核磁共振仪测定, 溶剂为氘代氯仿; 分子量和分子量分布釆 用岛津 LC- 10AT型凝胶渗透色谱仪 (GPC)测定, THF为流动相, 窄分布聚苯乙烯为标样, 温度为 25 °C。 催化剂
实施例 1
由三氧化二钕出发,使用环己烷为溶剂,釆用直接萃取法制得环烷酸钕 /环己烷溶液, 其中钕浓度 [Nd3+]为 0.21mol/l。 将三异丁基铝和一氯二乙基铝分别配制成 2mol/l浓度的 环己烷溶液备用。 溶剂水值低于 20ppm, 使用前用氮气进行排氧处理; 陈化釜经干燥和 排氧处理。
在氮气保护下, 向 2L催化剂陈化釜中加入 435g环己烷溶液, 然后将 35g异戊二烯 和 62ml环烷酸钕溶液加入陈化釜中, 再在 20°C及搅拌条件下将 16ml—氯二乙基铝溶液 加入陈化釜中, 使异戊二烯、 环烷酸钕和一氯二乙基铝于 20 °C下接触反应 15分钟, 随后 加入 98ml三异丁基铝溶液, 于 20°C下陈化 60分钟。 催化剂浓度为 1.5x10— 5mol/ml。
使用制备的催化剂进行异戊二烯溶液聚合。 在氮气保护下, 向 5L聚合釜中依次加入 400g异戊二烯、 1541g环己烷和 82ml催化剂, 单体浓度为 20%。 在 40°C条件下反应 50 分钟后, 将聚合物溶液自釜中放出并加入 2,6-二叔丁基对苯二酚甲醇溶液终止反应。 放 出聚合物溶液前, 用称量瓶取少量聚合物溶液并称重, 然后置于真空烘箱干燥至恒重, 通过干燥前后样品重量计算单体转化率, 经计算转化率为 83%。 聚合物顺 1,4-结构含量 为 98.0% , 重均分子量为 1 ,301,324、 分子量分布为 3.6。 实施例 2
将三异丁基铝和一氯二乙基铝分别配制成 0.5mol/l浓度的己烷溶液备用。 釆用直接 萃取法制得环烷酸钕 /己烷溶液, 其中钕浓度 [Nd3+]为 0.21mol/l。 溶剂和陈化釜的处理方 式与实施例 1相同。
在氮气保护下, 向 20L催化剂陈化釜中加入 102g异戊二烯、 130ml环烷酸钕溶液和 5280g己烷溶液, 再在 0°C和搅拌条件下加入 163ml—氯二乙基铝溶液, 于 0°C下接触反 应 20分钟后加入 655ml三异丁基铝溶液,继续陈化 8小时。催化剂浓度为 0.3x10— 5mol/ml。
使用制备的催化剂进行异戊二烯溶液聚合。 在氮气保护下, 向 5L聚合釜中依次加入 350g异戊二烯、 1800g 己烷和 306ml催化剂, 单体浓度为 15%。 在 25 °C条件下反应 60 分钟后, 将聚合物溶液自釜中放出加入 2,6-二叔丁基对苯二酚甲醇溶液终止反应。 单体 转化率为 90%。 聚合物顺 1 ,4-结构含量为 98.2% , 重均分子量为 1,607,402、 分子量分布 为 3.4。 实施例 3 如实施例 2中所述, 预制好所用试剂。 溶剂和陈化釜的处理方式与实施例 1相同。 在氮气保护下, 向 2L催化剂陈化釜中加入 15g丁二烯、 713g己烷溶液、 31ml环烷 酸钕溶液, 再于 10 °C和搅拌条件下加入 45ml—氯二乙基铝溶液, 接触反应 20分钟后加 入 130ml三异丁基铝溶液, 继续陈化 2小时。 催化剂浓度为 0.5x10— 5mol/ml。
使用制备的催化剂进行异戊二烯溶液聚合。 在氮气保护下, 向 5L聚合釜中依次加入 350g异戊二烯、 1800g己烷和 180ml催化剂, 单体浓度为 15.4%。 在 25 °C下反应 1.5小 时后, 将聚合物溶液自釜中放出加入 2,6-二叔丁基对苯二酚甲醇溶液终止反应。 单体转 化率为 87% ; 聚合物顺 1,4-结构含量为 98.2% , 重均分子量为 1,821,602、 分子量分布为 3.2。 实施例 4
釆用直接萃取法制得新癸酸钕的己烷溶液, 钕浓度 [Nd3+]为 0.5mol/l。 将三异丁基铝 和一氯二乙基铝分别配制成 0.5mol/l浓度的己烷溶液。 溶剂和陈化釜的处理方式与实施 例 1相同。
在氮气保护下,向 20L催化剂陈化釜中加入 136g异戊二烯、 3029g己烷溶液和 80ml 新癸酸钕溶液, 再于 0°C和搅拌条件下加入 200ml—氯二乙基铝溶液, 接触反应 20分钟 后加入 1.6L三异丁基铝溶液, 继续陈化 6小时。 催化剂浓度为 0.6x10— 5mol/ml。
使用制备的催化剂进行异戊二烯溶液聚合。 在氮气保护下, 向 5L聚合釜中依次加入 250g异戊二烯、 2150g 己烷和 80ml催化剂, 单体浓度为 10% , 聚合反应温度为 30°C。 反应 1.5小时后,将聚合物溶液自釜中放出加入 2,6-二叔丁基对苯二酚甲醇溶液终止反应。 单体转化率为 85% ; 聚合物顺 1 ,4-结构含量为 98.1 % , 重均分子量为 1,549,621、 分子量 分布为 3.6。 实施例 5
如实施例 4中所述, 预制好所用试剂。 溶剂和陈化釜的处理方式与实施例 1相同。 在氮气保护下, 向 20L催化剂陈化釜中加入 103g异戊二烯、 1802g己烷溶液和 80ml 新癸酸钕溶液, 再于 15 °C和搅拌条件下加入 240ml—氯二乙基铝溶液, 接触反应 10分 钟后加入 800ml三异丁基铝溶液, 继续陈化 4小时。 催化剂浓度为 1.0x10— 5mol/ml。
使用制备的催化剂进行异戊二烯溶液聚合。 在氮气保护下, 向 5L聚合釜中依次加入 350g异戊二烯、 1845g己烷和 77ml催化剂,单体浓度为 15%。在 25 °C下反应 1.5小时后, 将聚合物溶液自釜中放出加入 2,6-二叔丁基对苯二酚甲醇溶液终止反应。 单体转化率为 90% ; 聚合物顺 1,4-结构含量为 98.6% ; 聚合物重均分子量为 2,001,123、 分子量分布为 3.2。 实施例 6
釆用直接萃取法制得新癸酸钕的己烷溶液,钕浓度 [Nd3+]为 0.5mol/l。将氢化二异丁 基铝和一氯二乙基铝分别配制成 0.5mol/l 浓度的己烷溶液备用。 溶剂和陈化釜的处理方 式与实施例 1相同。
在氮气保护下, 向 20L催化剂陈化釜中加入 109g异戊二烯、 4435g己烷溶液和 80ml 新癸酸钕溶液, 再于 0°C和搅拌条件下加入 240ml—氯二乙基铝溶液, 接触反应 30分钟 后加入 800ml氢化二异丁基铝溶液, 继续陈化 8小时。 催化剂浓度为 0.5xl0-5mol/ml。
使用制备的催化剂进行异戊二烯溶液聚合。 在氮气保护下, 向 5L聚合釜中依次加入 350g异戊二烯、 1860g环己烷和 139ml催化剂, 单体浓度为 15%。在 30 °C条件下反应 1.0 小时后, 将聚合物溶液自釜中放出加入 2,6-二叔丁基对苯二酚甲醇溶液终止反应。 单体 转化率为 90% ; 聚合物顺 1,4-结构含量为 98.2% , 聚合物重均分子量为 1,954,798、 分子 量分布为 3.3。 实施例 Ί
如实施例 4中所述, 预制好所用试剂。 溶剂和陈化釜的处理方式与实施例 1相同。 在氮气保护下, 向 20L催化剂陈化釜中加入 136g异戊二烯、 80ml新癸酸酸钕溶液 和 4409g己烷溶液, 再于 0°C和搅拌条件下加入 240ml—氯二乙基铝溶液, 接触反应 15 分钟后加入 800ml三异丁基铝溶液, 继续陈化 18小时。 催化剂浓度为 0.5xl0-5mol/ml。
在氮气保护下, 向 5L聚合釜中依次加入 350g异戊二烯、 1860g己烷和 134ml催化 剂, 单体浓度为 15%。 在 20°C下反应 1.5小时后, 将聚合物溶液自釜中放出加入 2,6-二 叔丁基对苯二酚甲醇溶液终止反应。单体转化率为 92% ;聚合物顺 1,4-结构含量为 98.7% , 聚合物重均分子量为 2,113,456、 分子量分布为 3.2。 实施例 8
新癸酸钕己烷溶液浓度和一氯二乙基铝己烷溶液浓度为 0.5mol/l , 三异丁基铝己烷 溶液浓度为 2mol/l。 溶剂和陈化釜的处理方式与实施例 1相同。
在氮气保护下,向 2L催化剂陈化釜中依次加入 50ml新癸酸钕溶液、 13.6g异戊二烯、 437ml三异丁基铝溶液和 284g己烷, 于 0 °C下接触反应 15分钟, 然后加入 150ml—氯二 乙基铝溶液, 于 0°C下陈化 18分钟。 催化剂浓度为 2.3xl0-5mol/ml。
在氮气保护下, 向 5L聚合釜中依次加入 300g异戊二烯、 1690g环己烷和 38ml催化 剂, 单体浓度为 15%。 在 20°C下反应 3.5小时后, 将聚合物溶液自釜中放出加入 2,6-二 叔丁基对苯二酚甲醇溶液终止反应。单体转化率为 65% ;聚合物顺 1,4-结构含量为 96.3% , 聚合物重均分子量为 956,534、 分子量分布为 2.7。 实施例 9
如实施例 4中所述, 预制好所用试剂。 溶剂和陈化釜的处理方式与实施例 1相同。 在氮气保护下, 向 20L催化剂陈化釜中加入 400ml异戊二烯、 80ml新癸酸酸钕溶液 和 6.48L己烷溶液, 再于 0°C和搅拌条件下加入 240ml—氯二乙基铝溶液, 接触反应 15 分钟后加入 800ml三异丁基铝溶液, 继续陈化 18小时。 催化剂浓度为 0.5xl 0-5mol/ml。 在氮气保护下, 向 5L聚合釜中依次加入 350g异戊二烯、 1860g己烷和 206ml催化 剂, 单体浓度为 15%。 在 20 °C下反应 1.5小时后, 将聚合物溶液自釜中放出加入 2,6-二 叔丁基对苯二酚甲醇溶液终止反应。单体转化率为 76% ;聚合物顺 1 ,4-结构含量为 98.0% , 聚合物重均分子量为 1 ,870,156、 分子量分布为 3.7。 实施例 10
如实施例 4中所述, 预制好所用试剂。 溶剂和陈化釜的处理方式与实施例 1相同。 催化剂制备过程同 7。 催化剂在 0 °C下保存 6个月。
在氮气保护下, 向 5L聚合釜中依次加入 350g异戊二烯、 1860g己烷和 134ml催化 剂, 单体浓度为 15%。 在 20 °C下反应 1.5小时后, 将聚合物溶液自釜中放出加入 2,6-二 叔丁基对苯二酚甲醇溶液终止反应。单体转化率为 89% ;聚合物顺 1 ,4-结构含量为 98.5% , 聚合物重均分子量为 2,257,901、 分子量分布为 3.2。 实施例 11
如实施例 4中所述, 预制好所用试剂。 溶剂和陈化釜的处理方式与实施例 1相同。 催化剂制备过程同 7。 催化剂在 0 °C下保存 1年。
在氮气保护下, 向 5L聚合釜中依次加入 350g异戊二烯、 1860g己烷和 134ml催化 剂, 单体浓度为 15%。 在 20 °C下反应 1.5小时后, 将聚合物溶液自釜中放出加入 2,6-二 叔丁基对苯二酚甲醇溶液终止反应。单体转化率为 88% ;聚合物顺 1 ,4-结构含量为 98.3% , 聚合物重均分子量为 2,367,867、 分子量分布为 3.2。 实施例 12
在氮气保护下向干燥的陈化釜中加入 8.0 kg己烷、 87 ml浓度为 0.51 mol/L的新癸 酸钕 /己烷溶液、 2ml 新癸酸、 237 ml异戊二烯和 66 ml浓度为 2.0 mol/L的一氯二乙基铝 /己烷溶液, 于 9 °C下搅拌反应 14分钟后加入 389 ml浓度为 1.14 mol/L的三异丁基铝 /己 烷溶液, 继续陈化 41小时, 制备出均相催化剂, 备用。
在氮气保护下, 于 40 °C下向聚合釜中依次加入 1800g 己烷、 360g异戊二烯和上述 214ml催化剂, 搅拌下反应 2小时, 将聚合物溶液自釜中放出加入 2,6-二叔丁基对苯二酚 甲醇溶液终止反应。 挥发溶剂后干燥得聚异戊二烯 355g , 单体转化率为 98.6%。 聚合物 顺 1 ,4-结构含量为 98.3% , 重均分子量为 1.09x l06、 分子量分布指数为 4.13。 实施例 13
在氮气保护下向干燥的陈化釜中加入 4.5kg己烷、 80 ml浓度为 0.51 mol/L的新癸酸 钕 /己烷溶液、 6ml 新癸酸、 200 ml异戊二烯和 250 ml浓度为 0.5 mol/L的一氯二乙基铝 / 己烷溶液, 于 8 °C下搅拌反应 240分钟后加入 1600 ml浓度为 0.5 mol/L的三异丁基铝 /己 烷溶液, 继续陈化 28小时, 制备出均相催化剂, 备用。
在氮气保护下, 于 16 °C下向聚合釜中依次加入 1800g己烷、 360g异戊二烯和 241 ml 催化剂, 搅拌下反应 0.5小时, 将聚合物溶液自釜中放出加入 2,6-二叔丁基对苯二酚甲醇 溶液终止反应。挥发溶剂后干燥得聚异戊二烯 317g ,单体转化率为 88.1% , 聚合物顺 1,4- 结构含量为 98.2%。 实施例 14
在氮气保护下, 将实施例 2中催化剂置于密封的玻璃瓶中, 室温保存 15个月时, 催 化剂仍呈均相态。
在氮气保护下, 于 30°C下向聚合釜中依次加入 1500g己烷、 340g异戊二烯和 230 ml 催化剂, 搅拌下反应 40分钟, 将聚合物溶液自釜中放出加入 2,6-二叔丁基对苯二酚甲醇 溶液终止反应。挥发溶剂后干燥得聚异戊二烯 280g , 单体转化率为 82.4% , 聚合物顺 1,4- 结构含量为 98.7%。 实施例 15
在氮气保护下向干燥的陈化釜中加入 4.5kg己烷、 80 ml浓度为 0.51 mol/L的新癸酸 钕 /己烷溶液、 7ml 新癸酸、 140 ml异戊二烯和 160 ml浓度为 0.5 mol/L的一氯二乙基铝 / 己烷溶液, 于 8 °C下搅拌反应 15分钟后加入 740 ml浓度为 1.14 mol/L的三异丁基铝 /己 烷溶液, 继续陈化 30小时, 制备出均相催化剂, 备用。
在氮气保护下, 于 25 °C下向聚合釜中依次加入 1800g己烷、 300g异戊二烯和 150 ml 催化剂, 搅拌下反应 3 小时, 将聚合物溶液自釜中放出加入 2,6-二叔丁基对苯二酚甲醇 溶液终止反应。挥发溶剂后干燥得聚异戊二烯 260g ,单体转化率为 86.7%。 聚合物顺 1,4- 结构含量为 98.6% , 重均分子量为 8.47xl05、 分子量分布指数为 3.24。 实施例 16
在氮气保护下向干燥的陈化釜中加入 5.0 kg己烷、 80 ml浓度为 0.51 mol/L的新癸酸 钕 /己烷溶液、 2ml 新癸酸和 22ml环烷酸、 180 ml异戊二烯和 60 ml浓度为 2.0 mol/L的 一氯二乙基铝 /己烷溶液, 于 15 °C下搅拌反应 30分钟后加入 400 ml浓度为 1.14 mol/L的 三异丁基铝 /己烷溶液, 在 25 °C下继续陈化 48小时, 制备出均相催化剂, 备用。
在氮气保护下, 于 25 °C下向聚合釜中依次加入 1800g 己烷、 350g 异戊二烯和上述 155ml催化剂, 搅拌下反应 3小时, 将聚合物溶液自釜中放出加入 2,6-二叔丁基对苯二酚 甲醇溶液终止反应。 挥发溶剂后干燥得聚异戊二烯 248g , 单体转化率为 70.9%。 聚合物 顺 1,4-结构含量为 98.6% , 重均分子量为 1.74xl06、 分子量分布指数为 2.53。 实施例 17
在氮气保护下向干燥的陈化釜中加入 6.0 kg己烷、 80 ml浓度为 0.51 mol/L的新癸 酸钕 /己烷溶液、 2ml 异辛酸和 280 ml异戊二烯,搅拌混合后于 15 °C下加入 52 ml浓度为 2.0 mol/L的一氯二乙基铝 /己烷溶液, 反应 25分钟后加入 380 ml浓度为 1.14 mol/L的三 异丁基铝 /己烷溶液, 继续陈化 17小时, 制备出均相催化剂, 备用。
在氮气保护下, 于 30 °C下向聚合釜中依次加入 1800g 己烷、 280g异戊二烯和上述 160ml催化剂, 搅拌下反应 3小时, 将聚合物溶液自釜中放出加入 2,6-二叔丁基对苯二酚 甲醇溶液终止反应。 挥发溶剂后干燥得聚异戊二烯 242g , 单体转化率为 86.4%。 聚合物 顺 1,4-结构含量为 98.2% , 重均分子量为 9.24xl05、 分子量分布指数为 3.26。 实施例 18
在氮气保护下向干燥的陈化釜中加入 4.0 kg己烷、 60 ml浓度为 0.51 mol/L的新癸 酸钕 /己烷溶液、 2ml 新癸酸和 80 ml异戊二烯, 搅拌混合后于 15 °C下加入 65 ml浓度为 2.0 mol/L的一氯二乙基铝 /己烷溶液, 反应 25分钟后加入 780 ml浓度为 1.14 mol/L的三 异丁基铝 /己烷溶液, 继续陈化 12小时, 制备出均相催化剂, 备用。
在氮气保护下, 于 25 °C下向聚合釜中依次加入 1800g己烷、 260g异戊二烯和上述 120ml 催化剂, 搅拌下反应 1.5小时, 将聚合物溶液自釜中放出加入 2,6-二叔丁基对苯二酚甲醇 溶液终止反应。挥发溶剂后干燥得聚异戊二烯 218g , 单体转化率为 83.8%。 聚合物顺 1,4- 结构含量为 98.1% , 重均分子量为 6.24xl05、 分子量分布指数为 4.06。 实施例 19
在氮气保护下向干燥的陈化釜中加入 5. 0 kg己烷、 60 ml浓度为 0. 51 mo l /L的新 癸酸钕 /己烷溶液、 4ml 新癸酸和 300 ml异戊二烯, 搅拌混合后于 15 °C下加入 46 ml浓 度为 1. 0 mo l /L的一氯二乙基铝 /己烷溶液,反应 1 30分钟后加入 540 ml浓度为 1. 14 mo l /L 的三异丁基铝 /己烷溶液, 继续陈化 10小时, 制备出均相催化剂, 备用。
在氮气保护下,于 25 °C下向聚合釜中依次加入 1700g己烷、 250g异戊二烯和上述 210ml 催化剂, 搅拌下反应 2. 0小时, 将聚合物溶液自釜中放出加入 2, 6-二叔丁基对苯二酚甲醇 溶液终止反应。 挥发溶剂后干燥得聚异戊二烯 175g , 单体转化率为 70. 0% , 聚合物顺 1 , 4- 结构含量为 98. 0%。 对比例 1
如实施例 4中所述, 预制好所用试剂。 溶剂和陈化釜的处理方式与实施例 1相同。 在氮气保护下, 向 20L催化剂陈化釜中加入 80ml异戊二烯、 80ml新癸酸酸钕溶液 和 6.80L己烷溶液, 再于 0 °C和搅拌条件下加入 240ml—氯二乙基铝溶液, 接触反应 15 分钟后加入 800ml三异丁基铝溶液, 继续陈化 18小时。 催化剂浓度为 0.5x10— 5mol/ml。 催化剂于 0°C下存放 6个月。
在氮气保护下, 向 5L聚合釜中依次加入 350g异戊二烯、 1860g己烷和 134ml催化 剂, 单体浓度为 15%。 在 20°C下反应 1.5小时后, 将聚合物溶液自釜中放出加入 2,6-二 叔丁基对苯二酚甲醇溶液终止反应。单体转化率为 89% ;聚合物顺 1,4-结构含量为 96.9% , 聚合物重均分子量为 1,876,369、 分子量分布为 3.8。 对比例 2
参照 CN101045768A 制备聚异戊二烯的稀土催化剂及制法和制备聚异戊二烯的方 法, 在氮气保护下, 向干燥的催化剂反应器中依次加入 24ml的 0.1M Nd(vers)3的己烷溶 液, 48ml的 1.0M丁二烯的己烷溶液, 36ml的 2.0M Al(i-Bu)3的己烷溶液, 于 80 °C下反 应 1分钟, 得深黄绿色的溶液; 然后加入 12ml的 0.2M Al(i-Bu)2Cl的己烷溶液, 于 40 °C 下反应 120分钟后, 得到用于异戊二烯聚合的均相稀土催化剂。
在氮气保护下, 向 5L干燥除氧的高压釜中加入 2560ml的庚烷溶剂, 440ml的异戊 二烯( 300g )单体, 此时单体浓度为 10g/100ml。 而后加入上述配制好的催化剂, 催化剂 Nd的摩尔数与加入单体的克数比为 8.0x10— 6mol/g。 40°C下反应 5小时后, 以含 1.0% 2,6- 二叔丁基对甲基苯酚的乙醇溶液终止聚合, 再于过量乙醇中沉出聚合物, 经乙醇洗涤挤 压后, 于 40°C真空干燥 24小时, 得异戊二烯聚合产物 249g。
聚合物收率为 98%。 经红外光谱测得顺 1,4-结构含量为 96.3% , 经 GPC测得重均分 子量为 1270000 , 数均分子量为 512000 , 分子量为 2.48 , 门尼粘度为 59。 降粘剂实施例
聚合物溶液的粘度釆用日本三菱 HAAKE C35测定, 测试温度 50 °C。
对于聚合物溶液和加入降粘剂后的聚合物溶液的处理方法相同。 使用蒸汽和热水, 釆用汽提的方法除去聚合物溶液中未反应完全的单体和溶剂, 得到含水和极少量溶剂、 单体的聚合物固体样品, 然后使用开炼机干燥得到产品。 聚合物的门尼粘度按照 GB/T 1232.1-2000规定, 釆用日本岛津 SMV-300型自动门尼粘度计测定。 生胶釆用开炼机在 辊温为 70±5 °C下进行混炼; 硫化配方和硫化条件均按照国家标准进行。 釆用日本岛津公 司 AG-20kNG型电子拉力机测试拉伸强度。
实施例 1 (加入 0.1 %降粘剂)
釆用新癸酸钕 /三异丁基铝 /一氯二乙基铝 /异戊二烯 /新癸酸及环烷酸稀土 (摩尔比为 1/11/3/44/3 )催化体系, 异戊二烯为单体, 环己烷为溶剂合成聚异戊二烯。 聚合反应在氮 气保护下进行, 向 5L聚合釜中依次加入异戊二烯 350g、 己烷 1800g和催化剂 106g , 单 体浓度为 15.5wt% , 催化剂用量为 2.2x10— 6molNd/g IP , 聚合反应温度为 25 °C , 反应时间 3小时后。 聚异戊二烯溶液中, 聚合物重量百分比为 11.54%。 聚异戊二烯重均分子量为 1,744,102, 分子量分布为 2.53。 聚合物溶液粘度为 10700 cp。 产品灰分为 0.46% , 硫化 胶拉伸强度为 26.0MPa。
向 5L反应器中加入油酸 200g , 然后加入 1742g水, 在搅拌条件下将浓度为 15wt% 的氢氧化钠溶液 213g加入反应器中, 反应完全后得到浓度为 10wt%的油酸钠水溶液。
在 25 °C条件下, 向上述聚异戊二烯溶液 1000g中加入 20g配制好的油酸钠溶液, 混 合均勾后终止聚合反应。 聚合物溶液粘度降至 7200cp。 聚异戊二烯重均分子量为 1,631,243 , 分子量分布为 2.54。 产品灰分为 0.46% , 硫化胶拉伸强度为 26.0MPa。。 实施例 2
釆用新癸酸钕 /氢化二异丁基铝 /一氯二乙基铝(摩尔比为 1/18/3 )稀土催化体系, 丁 二烯为单体, 己烷为溶剂合成聚丁二烯。 聚合反应在氮气保护下进行, 向 10L聚合釜中 依次加入丁二烯 800g、 己烷 3858g 和催化剂 48g, 单体浓度为 17wt% , 催化剂用量为 2.2x10"6molNd/gIP, 聚合反应温度为 50°C , 反应时间 1.5 小时。 聚丁二烯溶液中, 聚合 物重量百分比为 16.4%。 聚丁二烯重均分子量为 654,102, 分子量分布为 2.7。 聚合物溶 液粘度为 14000 cp。 产品灰分为 0.48% , 硫化胶拉伸强度为 17.0MPa。
向 3L反应器中加入油酸 200g , 然后加入 736g水, 在搅拌条件下将浓度为 2(½1%的 氢氧化钠溶液 142g加入反应器中, 反应完全后得到浓度为 20wt%的油酸钠水溶液。
在 50°C下, 向上述聚异戊二烯溶液 1000g中加入 25g配制好的油酸钠溶液, 混合均 匀后终止聚合反应。 聚合物溶液粘度降至 9600cp。 聚丁二烯重均分子量为 611,332, 分子 量分布为 2.8。 产品灰分为 0.48% , 拉伸强度为 16.9MPa。 实施例 3
釆用新癸酸钕 /三异丁基铝 /一氯二乙基铝 (摩尔比为 1/20/3.5 )稀土催化体系, 异戊 二烯和丁二烯为单体, 己烷为溶剂合成丁二烯 -异戊二烯共聚物。 聚合反应在氮气保护下 进行, 向 5L聚合釜中依次加入异戊二烯 98g、 己烷 1768g、 丁二烯 302g和催化剂 54g , 单体浓度为 18wt% , 催化剂用量为 2.0x10— 6molNd/g单体, 聚合反应温度为 40°C , 反应 时间 2.0小时。 共聚物组成为丁二烯与异戊二烯的摩尔比为 4, 共聚物溶液中, 聚合物重 量百分比为 15.5%。 共聚物重均分子量为 866,700 , 分子量分布为 3.2。 聚合物溶液粘度 为 75500 mpa.s。 灰分为 0.5% , 拉伸强度为 12.6MPa。
向 2L反应器中加入油酸 150g , 然后加入 713g水, 在搅拌条件下将浓度为 1(½1%的 氢氧化钠溶液 215g加入反应器中, 反应完全后得到浓度为 15wt%的油酸钠水溶液。
在 40°C下, 向上述聚异戊二烯溶液 1000g中加入 53g配制好的油酸钠溶液, 混合均 匀后终止聚合反应。 聚合物溶液粘度降至 36000cp。 共聚物重均分子量为 826,605 , 分子 量分布为 3.3。 灰分为 0.5% , 拉伸强度为 12.6MPa。 实施例 4 (加入 0.5%降粘剂)
釆用新癸酸钕 /三异丁基铝 /叔丁基氯 /异戊二烯(摩尔比为 1/12/10/39 )稀土催化体系, 异戊二烯为单体, 己烷为溶剂合成聚异戊二烯。 聚合反应在氮气保护下进行, 向 5L聚合 釜中依次加入异戊二烯 400g、 己烷 2044g和催化剂 56g, 单体浓度为 16wt% , 催化剂用 量为 2.0x10— 6molNd/gIP, 聚合反应温度为 40°C , 聚合反应时间 1.5小时。 聚异戊二烯溶 液中, 聚合物重量百分比为 13.9%。 聚合物重均分子量为 1,760,711 , 分子量分布为 3.3。 聚合物溶液粘度为 11200 cp。 灰分为 0.48% , 拉伸强度为 25.8MPa。
在 40°C下, 向上述聚异戊二烯溶液 1000g中加入 5g油酸, 混合均勾后终止聚合反 应。 聚合物溶液粘度降至 6800cp。 共聚物重均分子量为 1,731,535 , 分子量分布为 3.3。 灰分为 0.5% , 拉伸强度为 25.6MPa。 实施例 5 (加入 0.2%降粘剂)
釆用辛酸钕 /氢化二异丁基铝 /倍半铝(摩尔比为 1/20/2 )稀土催化体系, 丁二烯为单 体, 己烷为溶剂合成聚丁二烯。 聚合反应在氮气保护下进行, 向 5L聚合釜中依次加入丁 二烯 500g、 己烷 1960g 和催化剂 40g , 单体浓度为 20wt% , 催化剂用量为 2.4x10— 6molNd/gBD , 聚合反应温度为 50°C , 反应时间 1.0小时。 聚丁二烯溶液中, 聚合 物重量百分比为 16.8%。 聚丁二烯重均分子量为 591,212, 分子量分布为 3.2。 聚合物溶 液粘度为 14300 cp。 产品灰分为 0.45%,拉伸强度为 16.6MPa。
向 2L反应器中加入十二烷基苯磺酸钾 210g , 然后加入 390g水, 溶解完全后得到 浓度为 35wt%的水溶液。
在 50°C下, 向上述聚丁二烯溶液 1000g中加入 5.7g配制好的十二烷基苯磺酸钾溶 液, 混合均勾后终止聚合反应。 聚合物溶液粘度降至 10900cp。 聚丁二烯重均分子量为 586,216 , 分子量分布为 3.3。 产品灰分为 0.45%,拉伸强度为 16.2MPa。 实施例 6 (加入 0.5%降粘剂)
釆用新癸酸钕 /三异丁基铝 /一氯二乙基铝(摩尔比为 1/10/3 )稀土催化体系, 异戊二 烯为单体, 己烷为溶剂合成聚异戊二烯。 聚合反应在氮气保护下进行, 向 5L聚合釜中依 次加入异戊二烯 350g、 己烷 1940g 和催化剂 44g, 单体浓度为 15wt% , 催化剂用量为 1.86x10— 6molNd/gIP, 聚合反应温度为 15°C , 反应时间 1.5小时。 聚异戊二烯溶液中, 聚 合物重量百分比为 12.4%。 聚异戊二烯重均分子量为 2,011,579 , 分子量分布为 3.0。 聚合 物溶液粘度为 12600 cp。 产品灰分为 0.44% , 拉伸强度为 27.0MPa。
向 2L反应器中加入木质素磺酸钠 200g , 然后加入 800g水, 溶解完全后得到浓度为 20wt%的水溶液。
在 30°C下, 向上述聚异戊二烯溶液 1000g中加入 25g配制好的木质素磺酸钠溶液, 混合均勾后终止聚合反应。 聚合物溶液粘度降至 8800cp。 聚异戊二烯重均分子量为 1,960,460 , 分子量分布为 3.0。 产品灰分为 0.44% , 拉伸强度为 26.8MPa。 实施例 7 (加入 0.5%降粘剂)
釆用新癸酸钕 /三异丁基铝 /一氯二乙基铝 /丁二烯 (摩尔比为 1/10/3.5/42 ) 稀土催化 体系, 异戊二烯为单体, 己烷为溶剂合成聚异戊二烯。 聚合反应在氮气保护下进行, 向 5L聚合釜中依次加入异戊二烯 350g、 己烷 1800g和催化剂 122g , 单体浓度为 15wt% , 催化剂用量为 2.5x10— 6molNd/gIP, 聚合反应温度为 25 °C , 反应时间 1.5小时。 聚异戊二 烯溶液中, 聚合物重量百分比为 13.4%。 聚异戊二烯重均分子量为 1,821,602 , 分子量分 布为 3.2。 聚合物溶液粘度为 14700 cp。 产品灰分为 0.21% , 拉伸强度为 27.0MPa。
向 2L反应器中加入癸基磷酸钠 100g , 然后加入 1000g水, 溶解完全后得到浓度为 10wt%的水溶液。
在 25 °C下, 向上述聚异戊二烯溶液 1000g中加入 50g配制好的木质素磺酸钠溶液, 混合均勾后终止聚合反应。 聚合物溶液粘度降至 9300cp。 聚异戊二烯重均分子量为 1,960,460 , 分子量分布为 3.0。 产品灰分为 0.21% , 拉伸强度为 26.8MPa。 实施例 8 (加入 0.6%降粘剂)
釆用新癸酸钕 /三异丁基铝 /一氯二乙基铝 /异戊二烯 (摩尔比为 1/10/3/40 ) 稀土催化 体系, 异戊二烯为单体, 己烷为溶剂合成聚异戊二烯。 聚合反应在氮气保护下进行, 向 5L聚合釜中依次加入异戊二烯 350g、 己烷 1860g和催化剂 95g , 单体浓度为 15wt% , 催 化剂用量为 2.0x10— 6molNd/gIP , 聚合反应温度为 30°C , 反应时间 1.0小时。 聚异戊二烯 溶液中, 聚合物重量百分比为 13.5%。 聚异戊二烯重均分子量为 1,954,798 , 分子量分布 为 3.3。 聚合物溶液粘度为 16100 cp。 产品灰分为 0.26% , 拉伸强度为 27.0MPa。
向 2L反应器中加入聚氧乙烯月桂醇醚 100g , 然后加入 1000g水, 溶解完全后得到 浓度为 1(½1%的水溶液。
在 25 °C下,向上述聚异戊二烯溶液 1000g中加入 60g配制好的聚氧乙烯月桂醇醚溶 液, 混合均勾后终止聚合反应。 聚合物溶液粘度降至 10300cp。 聚异戊二烯重均分子量为 1 ,960,460 , 分子量分布为 3.3。 产品灰分为 0.26% , 拉伸强度为 26.8MPa。 预混合系统 如图 1所示, 根据本发明的混合釜 10包括沿纵向设置在釜内的中心轴 8 , 其可由电 机 M带动旋转。 在中心轴 8上安装有至少两个径流式搅拌桨 1。 搅拌桨的数量可根据实 际情况加以选择, 例如 2-10个, 在图 1的例子中显示了四个搅拌桨。 径流式搅拌桨 1可 釆用本领域常用的类型,其转速可以为 200-800 rpm,优选为 300-700 rpm,更优选 350-600 rpm。
在混合过程中,待混合的物料例如反应单体和催化剂等经设于混合釜 10的底部处的 两个物料进口 3、 4进入到混合釜 10中, 在由中心轴 8带动旋转的搅拌桨 1的作用下进 行混合, 之后从设于混合釜 10上方的物料出口 5中排出以用于进一步的处理。 这些结构 和 /或工艺过程均是本领域的技术人员所熟知的, 因此具体的介绍在此略去。
根据本发明,在混合釜 10内还设置有位于相邻两个径流式搅拌桨 1之间的环状盘 2。 环状盘 2优选设置在相邻两个搅拌桨 1的轴向中点位置处。 如图 2所示, 环状盘 2包括 有中心孔 11 , 其内径大于中心轴 8的直径, 以便使中心轴 8能够从环状盘 2的中心孔 11 中穿过。 环状盘 2通过其外周部分连接到混合釜 10的内壁上。 这样, 在根据本发明的混 合釜 10中,一方面通过设于中心轴 8上的径流式搅拌桨 1产生的高剪切分散作用将待混 合的物料打碎, 另一方面利用设于搅拌桨 1之间的环状盘 2促使待混合的物料形成整体 大循环, 从而使物料在短时间内就能够达到高度的微观混匀。 这有利地促进了后续聚合 反应的进行。
在一个典型实施例中, 环状盘 2的外径与混合釜 10的内径相匹配, 并且在外周部分 上的至少两个圆周对称的连接部位处连接到混合釜的内壁上。 连接部位的数量可以根据 实际情况加以选择, 例如为 2-8个, 优选为 3-6个, 更优选为 4个。 这些连接部位优选处 于圆周上对称的位置处。
如图 2所示, 在一个优选实施例中, 环状盘 2在其外周上的周向对称的四个连接部 位处连接到混合釜 10的内壁上。 同时, 在相邻两个连接部位之间的扇形部分处设有径向 向内的凹槽 12。 这样, 物料不仅能穿过由环状盘 2的中心孔 11所形成的通道而流动, 同 时也能穿过由凹槽 12和混合釜 10的内壁所形成的通道而流动。 因此, 待混合物料在混 合釜 10内的流动性得到进一步的增强, 有利于物料的充分混合。
在一个未示出的实施例中, 混合釜 10设有两个或更多个环状盘, 其中各个环状盘中 的相应凹槽在周向上彼此间均错开一个角度。 因此, 由凹槽 12和混合釜 10的内壁所形 成的通道在混合釜 10的纵向上是非线性的, 这样可以进一步增强物料的混合效果。
凹槽 12的面积应在不破坏整个环状盘 2的强度的前提下尽可能地保证最大的物料流 通面积。 凹槽 12 的面积例如可为环状盘 2 上相邻两个连接部位之间的扇形区面积的 1/4-1/2, 优选为 1/3。 凹槽 12的底部形状可以为直线或曲线, 该底部形状优选相对于经 过连接相邻两个连接部位的线段中点处的半径轴线对称。
如图 4中所示, 根据本发明的预混合系统包括环管混合器 50和轴流泵 22, 所述环 管混合器 50中包含直管段 21 , 弯头 26, 弯头 26与直管段 21连接形成环管混合器 50。 在混合过程中,待混合的聚合反应原料即催化剂和溶剂与反应单体经设于混合釜 50的下 部的两个物料进口 23、 24进入到环管混合器 50中, 其中反应单体与催化剂通过不同的 进口分别进入环管混合器 50, 然后在轴流泵 22 的作用下, 使得待混合的原料在环管混 合器 50 内快速循环流动, 环管混合器 50内基本不存在死区, 所有反应原料可以在湍流 条件下充分混合以形成高度均勾的混合物, 之后从设于混合釜 50底部的物料出口 25中 排出以用于进一步的处理。 所述轴流泵是本领域内通常使用的任何轴流泵。 下面将以用于制备稀土异戊橡胶的原料预混釜和环管混合器为例来具体说明根据本 发明的混合釜和环管混合器。 然而可以理解, 根据本发明的混合釜和环管混合器可用于 任何需要对反应物料进行混合的场合。 实施例 1
在常温常压下, 首先在传统的换热器中对用于制备稀土异戊橡胶的聚合反应物料中 的异戊二烯单体 ( 14.6kg/h, 聚合级, 商购获得)、 溶剂 (95kg/h, 环己烷, 商购获得) 和钕系催化剂 (2.9kg/h, 浓度为 6x10— 6molNd/ml ) 进行预冷, 预冷温度为 -5 °C。 这里使 用的钕系催化剂的各具体组成与异戊二烯之间的摩尔比为异戊二烯: 新癸酸钕: 三异丁 基铝: 一氯二乙基铝 =50: 1 : 10:3。 该钕系催化剂用环己烷稀释至上述浓度。 其中, 催化剂 和溶剂预先混合后再经换热器预冷, 异戊二烯单体则在单独的换热器中预冷。 在此, 所 使用的冷却介质为 3wt%的氯化钠冷冻盐水。
然后,将预冷后的聚合反应物料的各组分分别引入到本发明的混合釜 10中进行预混, 其中催化剂和溶剂经釜底中心进口 3引入混合釜中, 异戊二烯单体经釜底侧边进口 4引 入混合釜中。
在此所使用的混合釜的体积为 5L, 其柱体部分的直径为 150mm, 高度为 300mm。 在混合釜中设有四个搅拌桨, 搅拌桨的直径为混合釜直径的 1/2 , 转速为 400rpm, 底部 搅拌桨离釜底的距离为 30mm, 各搅拌桨之间的轴向间距自下而上依次为 56mm、 70mm, 98mm。 在混合釜中设有三个环状盘, 其设在每两个搅拌桨之间的轴向中间位置处。 环状 盘的中心孔直径为搅拌桨直径的 1.15倍。 环状盘在其外周部分上的周向对称的 4个连接 部位处与混合釜的内壁相连,并且包括有 4个凹槽,各凹槽的面积为相应扇环面积的 1/3。
在搅拌桨和环状盘的作用下, 聚合反应物料在混合釜内进行充分混合, 釜内的平均 停留时间为 2.0min , 从而获得预混后的均匀的聚合反应物料。
接下来, 按照图 3所示流程进行聚合阶段的操作。 从混合釜 10的出口 5中排出的物 料依次流经第一反应釜 20、 第二反应釜 30和第三反应釜 40 , 在各反应釜中的平均停留 时间均为 20min, 各反应釜内部的反应温度依次控制在 30°C、 40°C和 50°C。 聚合产物从 出口 45中排出。
按照该实施例, 异戊二烯单体在第一反应釜出口处的转化率为 60wt% , 在末釜出口 处的最终转化率为 96wt%。
最后, 分析确定所得稀土异戊橡胶产品的顺式 -1,4-构型含量、 数均分子量和分子量 分布系数, 结果列于下表 1中。 实施例 2
实施例 2与实施例 1 大致相同, 不同之处仅在于环状盘的中心孔直径为搅拌桨直径 的 1.3倍。
按照该实施例, 异戊二烯单体在第一反应釜出口处的转化率为 60.5wt% , 在末釜出 口处的最终转化率为 96.2wt%。
所得稀土异戊橡胶产品的质量分析结果列于下表 1中。 实施例 3
实施例 3与实施例 1大致相同, 不同之处在于: 减少聚合反应物料的总进料量, 且 保持与实施例 1相同的异戊二烯单体、 催化剂和溶剂的质量比, 使聚合反应物料在混合 釜内的平均停留时间为 5min。 按照该实施例, 异戊二烯单体在第一反应釜出口处的转化率为 65wt% , 在末釜出口 处的最终转化率为 98.3wt%。
所得稀土异戊橡胶产品的质量分析结果列于下表 1中。 实施例 4
实施例 4与实施例 1大致相同, 不同之处在于: 搅拌桨的直径为预混釜直径的 2/3; 同时减少聚合反应物料的总进料量, 且保持与实施例 1相同的异戊二烯单体、 催化剂和 溶剂的质量比, 使聚合反应物料在混合釜内的平均停留时间为 5min。
按照该实施例, 异戊二烯单体在第一反应釜出口处的转化率为 66wt% , 在末釜出口 处的最终转化率为 98.3wt%。
所得稀土异戊橡胶产品的质量分析结果列于下表 1中。 对比例 1
对比例 1与实施例 1 大致相同, 不同之处在于仅保留混合釜内的从下数起的第二个 搅拌桨, 拆除其它的搅拌桨和所有的环状盘。
按照该对比例, 异戊二烯单体在第一反应釜出口处的转化率为 40wt% , 在末釜出口 处的最终转化率为 80wt%。
所得稀土异戊橡胶产品的质量分析结果列于下表 1中。 对比例 2
对比例 2与对比例 1大致相同, 不同之处在于: 减少聚合反应物料的总进料量, 且 保持与对比例 1相同的异戊二烯单体、 催化剂和溶剂的质量比, 使聚合反应物料在所述 预混釜内的平均停留时间为 5min。
按照该对比例, 异戊二烯单体在第一反应釜出口处的转化率为 43wt% , 在末釜出口 处的最终转化率为 84wt%。
所得稀土异戊橡胶产品的质量分析结果列于下表 1中。 对比例 3
对比例 3与对比例 1大致相同, 不同之处仅在于将其中催化剂的用量提高为原来的
4倍。
按照该对比例, 异戊二烯单体在第一反应釜出口处的转化率为 55wt% , 在末釜出口 处的最终转化率为 93wt%。
所得稀土异戊橡胶产品的质量分析结果列于下表 1中。 实施例 5
在常温常压下, 首先将用于制备稀土异戊橡胶的聚合反应物料中的异戊二烯单体 (23.5kg/h, 聚合级, 商购获得)、 溶剂(152kg/h, 此处所使用的溶剂为环己烷, 商购获得) 和钕系催化剂(4.5kg/h, 浓度为 6x10— 6molNd/ml, 溶剂为环己烷, 此处所使用的钕系催化 剂的具体组成按各组分的摩尔比计为异戊二烯:新癸酸钕:三异丁基铝:一氯二乙基铝 =50:1:10:3 , 该催化剂由申请人自行制备且将制备好的钕系催化剂用环己烷稀释至上述浓 度)在传统的换热器中进行预冷, 预冷温度为 -5°C。 其中, 催化剂和溶剂预先混合后再经 换热器预冷, 异戊二烯单体则在单独的换热器中预冷。 在此, 所使用的冷却介质为 3wt% 的氯化钠冷冻盐水。
然后, 将预冷后的聚合反应物料的各组分分别引入到环管混合器中进行预混, 其中 所述异戊二烯单体在流出换热器后经物料进口 3 引入环管混合器中, 和所述催化剂和溶 剂在流出换热器后经物料进口 4引入环管混合器中。
在轴流泵作用下, 聚合反应物料在所述环管混合器内快速循环, 其中使聚合反应物 料在所述环管混合器内的循环流量 Qr与流出所述环管混合器的出口流量 Q。ut之比 QJQ。ut 为 100 , 和使聚合反应物料在所述环管混合器内的平均停留时间为 1.5min。
接下来, 按照图 5所示流程进行异戊二烯单体的溶液聚合反应操作。 经环管混合器 50预混后形成的均匀的聚合反应物料的出口 25中排出的物料依次流经第一反应釜 60、 第二反应釜 70和第三反应釜 80进行反应, 在各反应釜中的平均停留时间均为 30min, 其中各反应釜内部的反应温度依次控制在 30°C、 40°C和 50°C。 聚合后的物料从反应釜 80 的出口 85排出。
按照该实施例, 异戊二烯单体的最终转化率为 95wt%。
最后, 分析确定该实施例所得到的稀土异戊橡胶产品的顺式 -1,4-构型含量、 数均分 子量和分子量分布系数, 结果列于下表 2中。 实施例 6
基本重复实施例 5 , 只是其中使所述环管混合器的 QJQ。ut为 125。
按照该实施例, 异戊二烯单体的最终转化率为 96wt%。
反应完成后所获得的稀土异戊橡胶产品的质量分析结果列于下表 2中。 实施例 7
基本重复实施例 5 , 只是其中使所述环管混合器的 QJQ。ut为 140。
按照该实施例, 异戊二烯单体的最终转化率为 96.3wt%。
反应完成后所获得的稀土异戊橡胶产品的质量分析结果列于下表 2中。 实施例 8
基本重复实施例 5 , 只是其中使所述环管混合器的 QJQ。ut为 125 , 和减少总的聚合 反应物料的进料量, 且保持与实施例 1相同的异戊二烯单体、 催化剂和溶剂的质量比, 使聚合反应物料在所述环管混合器内的平均停留时间为 2.5min。 按照该实施例, 异戊二烯单体的最终转化率为 96.8wt%。
反应完成后所获得的稀土异戊橡胶产品的质量分析结果列于下表 2中。 实施例 9
基本重复实施例 5 , 只是其中使所述环管混合器的 QJQ。ut为 125 , 和减少总的聚合 反应物料的进料量, 且保持与实施例 1相同的异戊二烯单体、 催化剂和溶剂的质量比, 使聚合反应物料在所述环管混合器内的平均停留时间为 4min。
按照该实施例, 异戊二烯单体的最终转化率为 97.2wt%。
反应完成后所获得的稀土异戊橡胶产品的质量分析结果列于下表 2中。 对比例 4:
基本重复实施例 5 ,只是其中预冷后的聚合反应物料各组分不经环管混合器的预混阶 段, 而是直接进料到聚合反应阶段的各反应釜中进行反应。
按照该对比例, 异戊二烯单体的最终转化率为 90wt%。
反应完成后所获得的稀土异戊橡胶产品的质量分析结果列于下表 2中。 对比例 5
基本重复对比例 5 , 只是将其中催化剂的用量提高为原来的两倍。
按照该对比例, 异戊二烯单体的最终转化率为 95wt%。
反应完成后所获得的稀土异戊橡胶产品的质量分析结果列于下表 2中。
表 1
Figure imgf000028_0001
表 2 实施例 稀土异戊橡胶产品质量
顺式 -1,4-构型含量 (wt%) 数均分子量 (万) 分子量分布系数 实施例 5 96 37 3 实施例 6 97 38 3
实施例 7 97.5 38.9 2.9
实施例 8 98 39.6 2.8
实施例 9 98.3 40.2 2.8
对比例 4 94 34 3.5
对比例 5 96.5 38 3.1 由表 1和表 2所列数据可以看出,当在稀土异戊橡胶的生产过程中利用根据本发明 的预混合系统对预冷后的聚合反应物料进行预混时, 由于能够获得高度均勾的聚合反应 物料, 使得所得到的异戊橡胶产品的顺式 -1 ,4-构型含量明显更高, 数均分子量更大, 并 且分子量分布系数更小。 因此, 所得到的异戊橡胶产品质量更好。 另外, 利用本发明的 预混合系统还能明显减少了催化剂用量。

Claims

权利要求书
1. 一种钕系均相稀土催化剂, 通过包括以下步骤的方法制备:
1 )在惰性溶剂中, 制备包含羧酸钕化合物组分 a、 含 (¾素化合物组分 c以及共轭二 烯烃组分 d的混合液;
2 ) 向步骤 1 )得到的混合液中加入有机铝化合物组分 b , 得到所述的钕系均相稀土 催化剂;
其中, 所述有机铝化合物选自通式为 A1R3的烷基铝和通式为 A1HR2的氢化烷基铝, 其中 R为 d-C6的直链或支链烷烃; 所述催化剂中各组分的摩尔比以 a:b:c:d计为 1 :5 ~ 30:2 ~ 10:35 ~ 65。
2. 根据权利要求 1 所述的催化剂, 其特征在于, 所述催化剂中各组分的摩尔比以 a:b:c:d计为 1 : 10~25:2~4:37~60„
3. 根据权利要求 1或 2所述的催化剂, 其特征在于, 所述羧酸钕化合物为 CrC20羧 酸钕; 优选所述羧酸钕化合物为 C6-C1()羧酸钕; 更优选为环烷酸钕、 辛酸钕、 异辛酸钕、 壬酸钕、 新癸酸钕或癸酸钕。
4. 根据权利要求 1或 2所述的催化剂, 其特征在于, 所述有机铝化合物选自三甲基 铝、 三乙基铝、 三丙基铝、 三丁基铝、 三戊基铝、 三己基铝、 氢化二乙基铝和氢化二丁 基铝; 优选选自三丁基铝和氢化二丁基铝; 更优选选自三异丁基铝和氢化二异丁基铝。
5. 根据权利要求 1或 2所述催化剂, 其特征在于, 所述含 (¾素化合物选自通式为 A1R2X的烷基卤化铝和通式为 A12R3X3的倍半烷基铝, 其中 R为乙基、 丙基、 异丙基、 丁基、 异丁基或叔丁基, X 为溴或氯; 优选选自为一氯二乙基铝、 倍半乙基铝和一氯二 异丁基铝。
6. 根据权利要求 1或 2所述的催化剂, 其特征在于, 所述含 (¾素化合物选自通式为 RX的卤代烃、 含硅卤化物和卤素, 其中 R为 d ~ C6的烷基, X为溴或氯; 优选选自氯 代甲基硅烷、 四氯化硅中、 倍半异丁基铝、 液溴、 氯气、 苄基氯、 苄基溴和叔丁基氯。
7. 根据权利要求 1的催化剂, 其特征在于, 所述共轭二烯烃为 C4-C6共轭二烯烃; 优选选自丁二烯、 异戊二烯、 1 ,3-戊二烯、 1 ,3-己二烯和 2,3-二甲基丁二烯; 更优选选自 丁二烯和异戊二烯; 最优选异戊二烯。
8. 一种钕系均相稀土催化剂, 通过包括以下步骤的方法制备:
1 )在惰性溶剂中, 制备包含羧酸钕化合物组分 a、 含 (¾素化合物组分 c、 羧酸组分 e 以及共轭二烯烃组分 d的混合液;
2 ) 向步骤 1 ) 得到的混合液中加入有机铝化合物组分 b , 得到所述的钕系均相稀土 催化剂;
其中, 所述有机铝化合物选自通式为 A1R3的烷基铝和通式为 A1HR2的氢化烷基铝, 其中 R为 d-C6的直链或支链烷烃;所述催化剂中各组分的摩尔比以 a:b:c:d:e计为 1 :10 ~ 30:2 ~ 5:25 ~ 100:0.2 ~ 4。
9. 根据权利要求 8 所述的催化剂, 其特征在于, 所述催化剂中各组分的摩尔比以 a:b:c:d:e计为 1:10 ~ 30:2 ~ 5:26 ~ 70:0.2 ~ 4。
10. 根据权利要求 8或 9所述的催化剂, 其特征在于, 所述催化剂中羧酸钕化合物 为 CrC2。羧酸钕; 优选为 C6-C1()羧酸钕; 更优选选自环烷酸钕、 辛酸钕、 异辛酸钕、 壬 酸钕、 新癸酸钕和癸酸钕。
11. 根据权利要求 8或 9所述的催化剂, 其特征在于, 所述催化剂中有机铝化合物 选自三甲基铝、 三乙基铝、 三丙基铝、 三丁基铝、 三戊基铝、 三己基铝、 氢化二乙基铝、 氢化二丙基铝、 氢化二丁基铝、 氢化二戊基铝和氢化二己基铝, 优选选自三乙基铝、 三 丁基铝、 氢化二乙基铝和氢化二丁基铝。
12. 根据权利要求 8或 9所述的催化剂, 其特征在于, 所述催化剂中的含 (¾素化合 物选自通式为 A1R2X的烷基卤化铝和通式为 A12R3X3的倍半烷基铝, R为 d ~ C6的烷基, X为溴或氯, 优选选自一氯二乙基铝、 倍半乙基铝和一氯二异丁基铝。
13. 根据权利要求 8或 9所述的催化剂, 其特征在于, 所述催化剂中的共轭二烯烃 为 C4-C6共轭二烯烃; 优选选自丁二烯、 异戊二烯、 1,3-戊二烯、 1,3-己二烯和 2,3-二甲 基丁二烯; 更优选选自丁二烯和异戊二烯; 最优选异戊二烯。
14. 根据权利要求 8或 9所述的催化剂, 其特征在于, 所述羧酸为 C5-C1()羧酸, 优 选选自环烷酸、 辛酸、 异辛酸、 壬酸、 新癸酸和癸酸。
15. 一种制备共轭二烯烃聚合物的方法, 所述共轭二烯烃单体在权利要求 1~7 中任 意一项所述的催化剂和 /或权利要求 8~14 中任意一项所述催化剂的作用下于溶剂中进行 溶液聚合得到聚合物溶液。
16. 根据权利要求 15所述的方法, 其特征在于, 所述共轭二烯烃为异戊二烯。
17. 根据权利要求 15所述的方法, 其特征在于, 所述催化剂的用量以组分 a与共轭 二烯烃单体的摩尔比计为 1x10— 5 ~ 4x10— 4, 优选为 1.5x10— 5 ~ 3.5x10— 4
18. 根据权利要求 15所述的方法, 其特征在于, 所述催化剂的用量以组分 a与共轭 二烯烃单体的摩尔比计为 3.0X 10—5 ~ 6.0X 10—4
19. 根据权利要求 15所述的方法, 其特征在于, 在所述溶液聚合的过程中或聚合完 成后, 加入离子型表面活性剂降低聚合物溶液粘度, 所述离子型表面活性剂优选阴离子 型表面活性剂。
20. 根据权利要求 19 所述的方法, 其特征在于, 所述阴离子型表面活性剂的加入 量占聚合物溶液的重量的 0.01~2wt%。
21. 根据权利要求 19所述的方法, 其特征在于, 所述阴离子型表面活性剂和聚合反 应终止剂一起力。入。
22. 根据权利要求 21所述的方法, 其特征在于, 将阴离子型表面活性剂和水配制成 水溶液, 一起加入。
23. 根据权利要求 21 所述的方法, 其特征在于, 所述阴离子型表面活性剂包括 C10~C18长链的脂肪羧酸或羧酸盐, 优选包括油酸、 油酸钠或油酸钾。
24. 根据权利要求 21 所述的方法, 其特征在于, 所述阴离子型表面活性剂包括磺 酸或磺酸盐, 所述磺酸和磺酸盐的分子结构中含有 C8~C2。的直链、 支链、 环状饱和或不 饱和的碳链, 优选包括十二烷基苯磺酸钠、 十二烷基苯磺酸钾、 十二烷基磺酸钠或亚甲 基二萘磺酸钠。
25. 根据权利要求 21 所述的方法, 其特征在于, 所述阴离子型表面活性剂包括含 有 C8~C2。直链、 支链、 环状饱和或不饱和碳链的磷酸脂, 优选包括辛基磷酸酯、 癸基磷 酸酯、 三甲基壬基磷酸酯或十六烷基磷酸酯。
26. 根据权利要求 21 所述的方法, 其特征在于, 所述阴离子型表面活性剂包括含 有 C8~C2Q直链、 支链、 环状饱和或不饱和的碳链的硫酸或硫酸盐, 优选包括十二烷基硫 酸钠、 十八烯醇 ¾酸钠、 十八碳醇 ¾酸钠或聚氧乙烯脂肪醇醚 ¾酸钠。
27. 根据权利要求 21 所述的方法, 其特征在于, 所述阴离子型表面活性剂包括化 学结构为 R-0-(CH2CH20)N-H的醚类化合物, 其中 R为 C8~C2。直链、 支链、 环状饱和或 不饱和的碳链, n范围在 3~10 , 优选选自聚氧乙烯脂肪醇醚和聚氧乙烯仲醇醚。
28. 根据权利要求 21 所述的方法, 其特征在于, 所述阴离子型表面活性剂包括天 然油脂或合成的高分子表面活性剂, 优选选自纤维素类和木质素类, 更优选为羟甲基纤 维素、 羧甲基纤维素钠盐和木质素磺酸钠。
29. 根据权利要求 15 所述的方法, 其特征在于, 所述聚合包括共轭二烯烃单体和 钕系均相稀土催化剂、 溶剂先加入到预混合器系统中进行预混合的步骤, 然后混合后的 物料进行溶液聚合
30. 根据权利要求 29 所述的方法, 其特征在于, 所述共轭二烯烃单体和钕系均相 稀土催化剂分别加入到预混合器系统中进行预混合。
31. 根据权利要求 30 所述的方法, 其特征在于, 所述共轭二烯烃单体和钕系均相 稀土催化剂分别冷却后再加入到预混合器系统中。
32. 根据权利要求 31 所述的方法, 其特征在于, 所述冷却的目标温度为 -30-20 °C , 优选为 -20-10 °C , 更优选为 -10-0°C。
33. 根据权利要求 29或 30所述的方法, 其特征在于, 所述预混合器系统包含轴流 泵和与轴流泵相连的环管混合器, 所述环管反应器包括, 至少两根直管段, 连接直管段 形成环管的弯头, 物料出口和至少两个物料进口。
34. 根据权利要求 33 所述的方法, 其特征在于, 所述环管混合器的直管段的高径 比为 2-100 , 优选为 3-50 , 更优选为 4-20。
35. 根据权利要求 33所述的方法, 其特征在于, 所述环管混合器中的物料在所述环 管混合器内部的循环流量 Qr与流出所述环管混合器的出口流量 Q。ut的比值 QJQ。ut为 100-140 , 优选为 120-130。
36. 根据权利要求 33所述的方法, 其特征在于, 所述环管混合器内的物料的平均停 留时间为 0.5-5min, 优选为 2-4min。
37. 根据权利要求 29或 30所述的方法, 其特征在于, 所述预混合器系统包含预混 合釜, 所述预混合釜包括: 沿纵向设置在混合釜内的可旋转的中心轴;
安装在所述中心轴上的至少两个径流式搅拌桨; 和
位于相邻两个径流式搅拌桨之间的环状盘, 其中所述中心轴从所述环状盘中穿过, 并且所述环状盘在其外周部分处连接到混合釜的内壁上。
38. 根据权利要求 37所述的混合釜, 其特征在于, 所述环状盘的外径与混合釜的内 径相匹配,并且在外周部分上的至少两个圆周对称的连接部位处连接到混合釜的内壁上。
39. 根据权利要求 37所述的混合釜, 其特征在于, 所述连接部位为 2-8个, 优选为 3-6个, 更优选为 4个。
40. 根据权利要求 37所述的混合釜, 其特征在于, 所述环状盘在两个连接部位之间 设有径向向内的凹槽。
41. 根据权利要求 40所述的混合釜, 其特征在于, 所述凹槽的底部曲线关于穿过连 接所述两个连接部位的连线的中点的半径轴线对称。
42. 根据权利要求 40所述的混合釜, 其特征在于, 所述凹槽的面积为所述环状盘在 所述两个连接部位之间的扇形区域的面积的 1/4到 1/2 , 优选为 1/3。
43. 根据权利要求 40所述的混合釜,其特征在于,所述混合釜包括至少两个环状盘, 其中一个环状盘中的凹槽相对于其它环状盘中的对应凹槽在周向上彼此错开。
44. 根据权利要求 43所述的混合釜, 其特征在于, 设置在所述混合釜的下部区域中 相邻两个搅拌桨之间的环状盘的数量少于设置在所述混合釜的上部区域中相邻两个搅拌 桨之间的环状盘的数量。
45. 根据权利要求 37所述的混合釜, 其特征在于, 所述环状盘的内径为所述搅拌桨 直径的 1- 1.5倍。
46. 根据权利要求 37所述的混合釜, 其特征在于, 所述环状盘位于相邻两个径流式 搅拌桨之间的轴向中点位置。
47. 根据权利要求 37所述的混合釜, 其特征在于, 相邻两个搅拌桨之间的间距为所 述搅拌桨的直径的 0.5-2倍。
48. 根据权利要求 37所述的混合釜, 其特征在于, 相邻两个径流式搅拌桨之间的间 距沿纵向自下而上地逐渐增大。
49. 根据权利要求 37所述的混合釜,其特征在于,所述混合釜在上部设有物料出口; 在下部设有物料进口。
50. 根据权利要求 49所述的混合釜, 其特征在于, 所述混合釜在下部设有两个物料 进口, 其中一个用于引入聚合反应物料中的异戊二烯单体, 另一个用于引入聚合反应物 料中的催化剂和溶剂。
51. 根据权利要求 37所述的混合釜, 其特征在于, 所述混合釜的高径比为 1-4 , 优 选为 2-3。
52. 根据权利要求 37所述的混合釜, 其特征在于, 所述径流式搅拌桨的数量为所述 混合釜的高径比的 1-3倍, 优选为 1.5-2倍。
53. 根据权利要求 37所述的混合釜, 其特征在于, 所述搅拌桨的直径为所述混合釜 的直径的 1/4-2/3 , 优选为 1/3-1/2。
PCT/CN2011/083777 2010-12-09 2011-12-09 钕系均相稀土催化剂及其应用 WO2012075964A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BR112013014478-5A BR112013014478B1 (pt) 2010-12-09 2011-12-09 Catalisador de terras raras de fase homogênea à base de neodímio e processo para preparar um polímero de dieno conjugado
EP11846459.3A EP2650313B1 (en) 2010-12-09 2011-12-09 Neodymium based homogeneous phase rare earth catalyst and use thereof

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN201010594959.4 2010-12-09
CN201010594944.8 2010-12-09
CN201010594908.1A CN102553471B (zh) 2010-12-09 2010-12-09 制备稀土异戊橡胶的原料预混方法
CN201010594944 2010-12-09
CN201010594908.1 2010-12-09
CN201010594914.7 2010-12-09
CN201010594870.8A CN102532353B (zh) 2010-12-09 2010-12-09 钕系均相稀土催化剂、其制备方法及其应用
CN201010594914 2010-12-09
CN201010594959.4A CN102532366B (zh) 2010-12-09 2010-12-09 降低共轭二烯聚合物溶液粘度的方法
CN201010594870.8 2010-12-09

Publications (1)

Publication Number Publication Date
WO2012075964A1 true WO2012075964A1 (zh) 2012-06-14

Family

ID=46206638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083777 WO2012075964A1 (zh) 2010-12-09 2011-12-09 钕系均相稀土催化剂及其应用

Country Status (3)

Country Link
EP (1) EP2650313B1 (zh)
BR (1) BR112013014478B1 (zh)
WO (1) WO2012075964A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107522816A (zh) * 2017-09-26 2017-12-29 青岛瑞林材料科技有限公司 一种合成高顺式二烯烃聚合物的方法
CN107652381A (zh) * 2017-09-26 2018-02-02 青岛瑞林材料科技有限公司 一种高顺式二烯烃聚合物的制备方法
US10316121B2 (en) 2015-01-28 2019-06-11 Bridgestone Corporation Cis-1,4-polydienes with improved cold flow resistance
US10774162B2 (en) 2015-01-28 2020-09-15 Bridgestone Corporation Aged lanthanide-based catalyst systems and their use in the preparation of cis-1,4-polydienes
CN112194748A (zh) * 2019-07-08 2021-01-08 中国石油化工股份有限公司 聚异戊二烯及其制备方法
CN112409520A (zh) * 2019-08-21 2021-02-26 中国石油化工股份有限公司 采用均相稀土催化剂制备聚丁二烯及其催化剂
CN112409539A (zh) * 2019-08-21 2021-02-26 中国石油化工股份有限公司 丁二烯-异戊二烯共聚物及其制备方法
CN113004461A (zh) * 2019-12-20 2021-06-22 固特异轮胎和橡胶公司 异戊二烯-丁二烯共聚物橡胶的合成
CN113929802A (zh) * 2020-06-29 2022-01-14 中国石油天然气股份有限公司 稀土催化剂及其制备方法和应用
CN114539521A (zh) * 2022-02-25 2022-05-27 中国地质科学院矿产综合利用研究所 一种稀土催化降粘剂及其制备方法和应用
CN116726860A (zh) * 2023-08-14 2023-09-12 振华新材料(东营)有限公司 一种稀土系顺丁橡胶的连续制备装置
CN117619313A (zh) * 2023-11-29 2024-03-01 振华新材料(东营)有限公司 一种钕系稀土顺丁橡胶聚合装置及其进料系统
CN118406172A (zh) * 2024-07-04 2024-07-30 新疆天利石化股份有限公司 可溶性氯化稀土催化剂及其制备方法和异戊二烯聚合的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105330763B (zh) * 2014-07-10 2020-04-07 中国石油化工股份有限公司 稀土催化剂用组合物和稀土催化剂及其制备方法和应用和烯烃聚合方法
JP6574326B2 (ja) 2014-08-26 2019-09-11 クレイトン・ポリマーズ・ユー・エス・エル・エル・シー ネオジム触媒イソプレン成分を含んだ、透明かつ強靭かつ耐熱性のあるゴム組成物およびその製造方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85101899A (zh) 1985-04-01 1986-03-10 中国科学院长春应用化学研究所 双烯烃聚合催化剂
CN86103327A (zh) * 1985-05-15 1986-11-12 埃尼凯姆·埃拉斯托麦里公司 丁二烯聚合和共聚的改进方法
CN1071690A (zh) 1992-04-03 1993-05-05 山东大学 高稠原油降粘剂及其制备、使用方法
CN1093099A (zh) 1994-03-25 1994-10-05 辽河石油勘探局钻采工艺研究院 高稠原油降粘剂及其配制、使用方法
US5397179A (en) 1992-08-28 1995-03-14 Turbocom, Inc. Method and apparatus for mixing fluids
CN1147007A (zh) 1996-07-23 1997-04-09 山东大学 驱油剂及其制备方法
CN1296982A (zh) 1999-11-19 2001-05-30 中国科学院长春应用化学研究所 用于双烯烃聚合和共聚合的稀土催化剂
CN1347923A (zh) 2001-10-12 2002-05-08 中国科学院长春应用化学研究所 稀土催化体系及丁二烯聚合工艺
CN1479754A (zh) 2000-11-13 2004-03-03 �����ּ�����˾ 合成聚异戊二烯及其制备方法
CN1484657A (zh) 2000-11-09 2004-03-24 �����ּ�����˾ 催化体系与使用此体系制备弹性体的方法
US20050013738A1 (en) 2003-04-14 2005-01-20 Cellular Process Chemistry, Inc. System and method for determining optimal reaction parameters using continuously running process
CN1834121A (zh) 2006-03-24 2006-09-20 中国科学院长春应用化学研究所 用于双烯烃聚合的稀土催化剂及制备方法
CN1840552A (zh) 2005-03-30 2006-10-04 中国石油化工股份有限公司 一种稀土催化剂及共轭二烯烃的聚合方法
CN1861649A (zh) 2006-06-16 2006-11-15 中国科学院长春应用化学研究所 用于双烯烃聚合或共聚合的稀土催化剂的制备方法
CN101045768A (zh) 2007-04-12 2007-10-03 中国科学院长春应用化学研究所 制备聚异戊二烯的稀土催化剂及制法和制备聚异戊二烯的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6780948B2 (en) * 2002-03-28 2004-08-24 The Goodyear Tire & Rubber Company Synthesis of polyisoprene with neodymium catalyst

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85101899A (zh) 1985-04-01 1986-03-10 中国科学院长春应用化学研究所 双烯烃聚合催化剂
CN86103327A (zh) * 1985-05-15 1986-11-12 埃尼凯姆·埃拉斯托麦里公司 丁二烯聚合和共聚的改进方法
CN1071690A (zh) 1992-04-03 1993-05-05 山东大学 高稠原油降粘剂及其制备、使用方法
US5397179A (en) 1992-08-28 1995-03-14 Turbocom, Inc. Method and apparatus for mixing fluids
CN1093099A (zh) 1994-03-25 1994-10-05 辽河石油勘探局钻采工艺研究院 高稠原油降粘剂及其配制、使用方法
CN1147007A (zh) 1996-07-23 1997-04-09 山东大学 驱油剂及其制备方法
CN1296982A (zh) 1999-11-19 2001-05-30 中国科学院长春应用化学研究所 用于双烯烃聚合和共聚合的稀土催化剂
CN1484657A (zh) 2000-11-09 2004-03-24 �����ּ�����˾ 催化体系与使用此体系制备弹性体的方法
CN1479754A (zh) 2000-11-13 2004-03-03 �����ּ�����˾ 合成聚异戊二烯及其制备方法
CN1347923A (zh) 2001-10-12 2002-05-08 中国科学院长春应用化学研究所 稀土催化体系及丁二烯聚合工艺
US20050013738A1 (en) 2003-04-14 2005-01-20 Cellular Process Chemistry, Inc. System and method for determining optimal reaction parameters using continuously running process
CN1840552A (zh) 2005-03-30 2006-10-04 中国石油化工股份有限公司 一种稀土催化剂及共轭二烯烃的聚合方法
CN100448898C (zh) 2005-03-30 2009-01-07 中国石油化工股份有限公司 一种稀土催化剂及共轭二烯烃的聚合方法
CN1834121A (zh) 2006-03-24 2006-09-20 中国科学院长春应用化学研究所 用于双烯烃聚合的稀土催化剂及制备方法
CN1861649A (zh) 2006-06-16 2006-11-15 中国科学院长春应用化学研究所 用于双烯烃聚合或共聚合的稀土催化剂的制备方法
CN101045768A (zh) 2007-04-12 2007-10-03 中国科学院长春应用化学研究所 制备聚异戊二烯的稀土催化剂及制法和制备聚异戊二烯的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Collection of the Rare-earth Catalyst Synthesized Rubber", 1980, SCIENCE PRESS, pages: 72 - 82

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10316121B2 (en) 2015-01-28 2019-06-11 Bridgestone Corporation Cis-1,4-polydienes with improved cold flow resistance
US10774162B2 (en) 2015-01-28 2020-09-15 Bridgestone Corporation Aged lanthanide-based catalyst systems and their use in the preparation of cis-1,4-polydienes
CN107652381B (zh) * 2017-09-26 2021-07-09 青岛瑞林材料科技有限公司 一种高顺式二烯烃聚合物的制备方法
CN107652381A (zh) * 2017-09-26 2018-02-02 青岛瑞林材料科技有限公司 一种高顺式二烯烃聚合物的制备方法
CN107522816B (zh) * 2017-09-26 2021-07-09 青岛瑞林材料科技有限公司 一种合成高顺式二烯烃聚合物的方法
CN107522816A (zh) * 2017-09-26 2017-12-29 青岛瑞林材料科技有限公司 一种合成高顺式二烯烃聚合物的方法
CN112194748A (zh) * 2019-07-08 2021-01-08 中国石油化工股份有限公司 聚异戊二烯及其制备方法
CN112194748B (zh) * 2019-07-08 2022-07-12 中国石油化工股份有限公司 聚异戊二烯及其制备方法
CN112409520A (zh) * 2019-08-21 2021-02-26 中国石油化工股份有限公司 采用均相稀土催化剂制备聚丁二烯及其催化剂
CN112409539A (zh) * 2019-08-21 2021-02-26 中国石油化工股份有限公司 丁二烯-异戊二烯共聚物及其制备方法
CN112409539B (zh) * 2019-08-21 2023-07-21 中国石油化工股份有限公司 丁二烯-异戊二烯共聚物及其制备方法
CN112409520B (zh) * 2019-08-21 2023-07-21 中国石油化工股份有限公司 采用均相稀土催化剂制备聚丁二烯及其催化剂
CN113004461A (zh) * 2019-12-20 2021-06-22 固特异轮胎和橡胶公司 异戊二烯-丁二烯共聚物橡胶的合成
CN113929802A (zh) * 2020-06-29 2022-01-14 中国石油天然气股份有限公司 稀土催化剂及其制备方法和应用
CN113929802B (zh) * 2020-06-29 2024-04-30 中国石油天然气股份有限公司 稀土催化剂及其制备方法和应用
CN114539521A (zh) * 2022-02-25 2022-05-27 中国地质科学院矿产综合利用研究所 一种稀土催化降粘剂及其制备方法和应用
CN114539521B (zh) * 2022-02-25 2023-09-29 中国地质科学院矿产综合利用研究所 一种稀土催化降粘剂及其制备方法和应用
CN116726860A (zh) * 2023-08-14 2023-09-12 振华新材料(东营)有限公司 一种稀土系顺丁橡胶的连续制备装置
CN116726860B (zh) * 2023-08-14 2023-10-20 振华新材料(东营)有限公司 一种稀土系顺丁橡胶的连续制备装置
CN117619313A (zh) * 2023-11-29 2024-03-01 振华新材料(东营)有限公司 一种钕系稀土顺丁橡胶聚合装置及其进料系统
CN118406172A (zh) * 2024-07-04 2024-07-30 新疆天利石化股份有限公司 可溶性氯化稀土催化剂及其制备方法和异戊二烯聚合的方法

Also Published As

Publication number Publication date
EP2650313A1 (en) 2013-10-16
BR112013014478A2 (pt) 2016-09-20
EP2650313A4 (en) 2014-10-29
EP2650313B1 (en) 2016-03-02
BR112013014478B1 (pt) 2020-08-04

Similar Documents

Publication Publication Date Title
WO2012075964A1 (zh) 钕系均相稀土催化剂及其应用
US8119736B2 (en) Branched polymers and methods for their synthesis and use
CN104736574B (zh) 氢化用催化剂组合物的制造方法和氢化用催化剂组合物
JP2008163144A (ja) ビニル・シス−ポリブタジエンゴムの製造方法及びビニル・シス−ポリブタジエンゴム
CN110396150A (zh) 一种铁系超高分子量聚共轭烯烃及其制备方法
US20130137838A1 (en) Nickel-based catalyst composition
CN1043999C (zh) 丁二烯本体聚合方法
CN1528794A (zh) 稀土顺丁橡胶分子质量分布的调节方法
CN102532379A (zh) 制备稀土异戊橡胶的聚合方法
CN110869398B (zh) 制备共轭二烯类聚合物的方法及制备共轭二烯类聚合物的设备
CN104231133B (zh) 一种稀土催化剂及其用于制备髙顺式共轭二烯烃聚合物的方法
JP2011184570A (ja) ビニル・シス−ポリブタジエンゴムの製造方法及びビニル・シス−ポリブタジエンゴム
CN102532353B (zh) 钕系均相稀土催化剂、其制备方法及其应用
WO2016152890A1 (ja) 重合体溶液と水との分離方法
JP2017132955A (ja) ビニル・シス−ポリブタジエンゴム及びその製造方法
JP2984379B2 (ja) 高弾性ゴムコンパウンド
CN101870745B (zh) 用于合成橡胶生产的钕催化剂
CN111100232A (zh) 用于星形支化聚合物合成的稀土催化剂及星形支化聚合物的合成方法
CN103554365A (zh) 一类基于稀土催化体系丁二烯异戊二烯二元共聚物及其制备方法
CN102234342B (zh) 应用于异戊橡胶生产的稀土催化剂的制备方法
JP2017132954A (ja) ビニル・シス−ポリブタジエンゴム及びその製造方法
CN105732868B (zh) 稀土异戊橡胶的连续溶液聚合方法和稀土异戊橡胶以及硫化橡胶
CN1267464C (zh) 用于乙烯和苯乙烯共聚合的催化剂
JP7487117B2 (ja) ポリマー製造のための反応構成及び手順
WO2024088247A1 (zh) 共聚物及其制备方法和硫化胶及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11846459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011846459

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013014478

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013014478

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130610