WO2012075756A1 - 城乡生活垃圾资源化利用方法 - Google Patents

城乡生活垃圾资源化利用方法 Download PDF

Info

Publication number
WO2012075756A1
WO2012075756A1 PCT/CN2011/072418 CN2011072418W WO2012075756A1 WO 2012075756 A1 WO2012075756 A1 WO 2012075756A1 CN 2011072418 W CN2011072418 W CN 2011072418W WO 2012075756 A1 WO2012075756 A1 WO 2012075756A1
Authority
WO
WIPO (PCT)
Prior art keywords
garbage
waste
anaerobic
tank
biogas
Prior art date
Application number
PCT/CN2011/072418
Other languages
English (en)
French (fr)
Inventor
刘国田
张明泉
胡明恩
Original Assignee
潍坊金丝达实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 潍坊金丝达实业有限公司 filed Critical 潍坊金丝达实业有限公司
Priority to JP2013542340A priority Critical patent/JP5666012B2/ja
Priority to EP11847475.8A priority patent/EP2650273B1/en
Priority to US13/992,113 priority patent/US9776224B2/en
Publication of WO2012075756A1 publication Critical patent/WO2012075756A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/28Magnetic plugs and dipsticks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/30Combinations with other devices, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • C05F17/50Treatments combining two or more different biological or biochemical treatments, e.g. anaerobic and aerobic treatment or vermicomposting and aerobic treatment
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F9/00Fertilisers from household or town refuse
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/46Solid fuels essentially based on materials of non-mineral origin on sewage, house, or town refuse
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • C12P5/023Methane
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/02Combustion or pyrolysis
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/06Heat exchange, direct or indirect
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/26Composting, fermenting or anaerobic digestion fuel components or materials from which fuels are prepared
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/28Cutting, disintegrating, shredding or grinding
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/40Applying a magnetic field or inclusion of magnets in the apparatus
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/545Washing, scrubbing, stripping, scavenging for separating fractions, components or impurities during preparation or upgrading of a fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/52Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a method of utilizing garbage to utilize resources to eliminate urban and rural domestic garbage.
  • BACKGROUND OF THE INVENTION With the advancement of society, sustainable development has become a goal pursued by civilization. As a product of human activities, garbage has become a burden on the earth and has become a serious obstacle to the development of human society. The annual growth rate of garbage in the world is 8.42%, while the growth rate of China's garbage is over 10%. The world produces 490 million tons of garbage every year. China alone produces nearly 150 million tons of municipal waste every year. The accumulated domestic garbage in China has reached 7 billion tons.
  • Urban and rural domestic waste is mainly divided into two categories from the perspective of resource utilization:
  • the first type of anaerobic decomposition waste waste consisting of degradable organic matter with high water content and easy to be corrupted, including kitchen waste, waste wood, waste cotton and waste. Cotton, etc., most of the pollution from garbage comes from this, including the combustible gas and plant fertilizer;
  • the second is non-anaerobic decomposition of waste, including waste plastics, scrap metal and other recyclable materials and a small amount of soil, Ash, glass, ceramics, construction waste, etc., including resources such as scrap metal and plastics, chemical fiber, etc.
  • the garbage dump is a place for mosquitoes, flies, rats, and insects. It is a source of infection for malaria, schistosomiasis, Japanese encephalitis, cholera, dysentery, typhoid fever, hepatitis, plague, leptospirosis, and blood-sucking diseases.
  • the garbage is piled up at random, and the biological action produces C0 2 and CH 4 as well as the toxic gas H 2 S, which can also cause an explosion accident. Harmful substances in the garbage continuously pollute the air, soil and water bodies, and then use air, soil, water, food as a medium or carrier to invade the human body and damage the health of the human body.
  • the landfill method is the most used waste disposal method.
  • the principle is to fill the waste at a certain height in a selected place, and cover the material to achieve a stable state through long-term physical, chemical and biological effects.
  • Specific methods include natural stacking and sanitary landfill.
  • the natural stacking method is simple and easy, the disadvantage is that the environmental pollution caused by it is serious. Serious and long-term pollution of soil and groundwater is a negative emergency measure.
  • the sanitary landfill method is now a method of mass processing urban and rural domestic waste.
  • the sanitary landfill method is widely used in various countries around the world.
  • the disadvantages of the sanitary landfill method are that it occupies a large area, the engineering organization is complex, harmless, and the degree of volume reduction is low.
  • Incineration is to send garbage as a solid fuel into a waste incinerator. Under high temperature conditions, the combustible components in the garbage react with the oxygen in the air in a strong chemical reaction, releasing heat, converting into high-temperature combustion gas and having a small amount and stable nature. Solid residue.
  • the advantage of incineration treatment is that the reduction effect is good, the residue volume after incineration is reduced by more than 90%, the weight is reduced by more than 80%, and the treatment is thorough.
  • the disadvantage is that it destroys resources.
  • the garbage contains about 70% of water. The organic matter consumes energy. The combustible garbage releases energy. When the energy is consumed and the energy is released during the incineration process, the remaining energy is little or negative energy. Therefore, the heat value of the garbage is required.
  • Incineration consumes coal, oil and other combustion-supporting energy, wastes a large amount of recoverable resources, and forms dibenzodioxins (PCDD) and chlorinated dibenzofurans (PCDF)
  • garbage is the most resource-exploiting and inexhaustible "resource deposit", which can become a new starting point for resource recycling and an important part of the circular economy.
  • Organic waste accounts for 60% ⁇ 70% of domestic waste. It is a valuable resource.
  • the proportion of organic matter in garbage has also increased.
  • the deepening and deepening of the understanding of garbage is an important guiding principle for finding the correct way to dispose of garbage.
  • Non-anaerobic waste such as waste plastics and waste fibers in garbage cannot be recycled, and sorting is difficult, resulting in great waste of resources.
  • DISCLOSURE OF THE INVENTION The technical problem to be solved by the present invention is to provide a method for utilizing urban and rural domestic garbage resources that does not require pre-classification of garbage, garbage sorting, and garbage resource utilization, and which can continuously process garbage.
  • the technical solution of the present invention is: a method for utilizing urban and rural domestic garbage resources, comprising an acidified anaerobic tank, a deep anaerobic tank, a biogas gas collecting tank, a gas generating unit, and the gas inlet of the gas generating unit passes
  • the pipeline is connected to the biogas collection tank, including the following steps:
  • Garbage receiving step Discharging the transported garbage into a garbage hopper or a garbage silo;
  • Uniform clothing step Transfer the garbage in the garbage hopper or garbage bin to the next step to ensure the subsequent steps are continued to prevent the subsequent steps from being blocked or interrupted.
  • the garbage in the garbage hopper or garbage bin The bag is torn open, the large plastic garbage, the large waste wood, the textile waste is torn and cut, and the large inorganic garbage and organic garbage which cannot be torn are separated from the garbage; then the waste after the tearing is evenly distributed Transfer to the next step; the volume of the solid waste treated in this step is guaranteed to meet the crushing requirements of the crusher in the primary crushing step;
  • Primary magnetic separation step magnetically selecting the waste transferred from the above steps, and removing the scrap iron from the waste Separated from the garbage to provide convenience for the subsequent crushing process, preventing the scrap iron from damaging the crusher in the primary crushing step, and recycling the scrap iron in the waste;
  • Primary crushing step The waste transferred from the above steps is further broken, the plastic and textile waste are cut off, the scrap iron coated with the solid waste is separated, and part of the organic waste is slurried to make the volume of the solid waste smaller, solid
  • the size of the waste is guaranteed to be transported by the sediment transport device during the primary flotation step, and the size of the plastic and textile waste ensures that screening and separation can be carried out in subsequent procedures;
  • Primary panning flotation step Put the garbage treated in the above steps into the primary panning flotation cell and aerate In the panning, the solid waste with a larger specific gravity at the bottom of the panning flotation cell is transferred to the sediment washing device through the sediment conveying device, and is recycled and reused; the garbage with a light specific gravity in the panning flotation cell is passed through the floating object.
  • the conveying device is transferred to the next step; the primary panning flotation liquid containing the slurry organic waste is transferred to the acidified anaerobic tank through the pipeline; the uniform cutting step: the light weight transmitted in the above step is lighter The garbage is further cut, and the long-shaped garbage is completely cut off; or the long-shaped garbage in the lighter-weight garbage conveyed in the above steps is selected and further cut, and the long-shaped garbage is completely cut off; the subsequent steps are prevented; Blockage of pipes during material transportation, and ensure effective separation of plastics and chemical fibers after acidification and anaerobic;
  • Acidizing anaerobic step the waste treated in the above step is sent to an acidified anaerobic tank, wherein an upper portion of the tank body of the acidified anaerobic tank is an acidification reaction zone, and a lower portion of the tank body cavity is an anaerobic decomposition zone;
  • the waste in the acidification reaction zone comprises a dry acidified layer above the liquid level and a wet acidified layer below the liquid level;
  • the anaerobic decomposition zone comprises a floating layer located above the anaerobic decomposition zone a suspension layer located in the intermediate layer of the anaerobic decomposition zone and a heavy sediment layer located at the bottom layer of the anaerobic decomposition zone;
  • the upper portion of the tank corresponding to the acidification reaction zone is provided with a unidirectional feed
  • the waste coming in from the one-way feed port is evenly sprinkled on the upper surface of the acidification reaction zone, the bottom of the anaerobic decomposition zone is provided with
  • Screening and separating step the first solid-liquid discharge port and the second solid-liquid discharge port discharge material of the acidified anaerobic tank in the above step are respectively sent to a screening device, and the solid content is crushed in the screening device, which is anaerobic
  • the organic waste is further pulverized, and the plastic and chemical fiber are washed and sieved out, and the sieved plastic and chemical fiber are recovered; the biogas slurry mixed with insufficient anaerobic decomposition waste is transferred to the next step; this step is in a closed space.
  • Buffer adjustment step The biogas slurry mixed with anaerobic waste in the above step is temporarily stored in a buffer adjustment tank, and the buffer adjustment tank is provided with a liquid inlet for receiving the liquid inlet of the biogas slurry in the above step, and receiving liquid generated by other steps.
  • Deepening the anaerobic step feeding the biogas slurry conveyed in the above step into the deep anaerobic tank for anaerobic reaction, the top of the deep anaerobic tank is provided with a biogas outlet, and the biogas outlet is connected to the pipeline through the pipeline Biogas collection tank,
  • the bottom of the deep anaerobic tank is provided with a sludge outlet to the sludge sedimentation tank, the upper part of the deep anaerobic tank is provided with a supernatant outlet, and the supernatant outlet is connected with a biogas release tank through a pipeline or Connecting the acidified anaerobic tank, the supernatant liquid passing through the biogas release tank is returned to the step of requiring liquid replenishment before the step; the gas outlet of the biogas release tank is connected to the biogas collecting tank through a pipeline;
  • Sludge sedimentation concentration step the sludge transferred from the above step is placed in a sludge sedimentation tank for precipitation, and the supernatant liquid in the sludge sedimentation tank is sent back to the buffer adjustment tank; the precipitated sludge is taken out and reused; After drying, it is made into fertilizer or coal; this step is carried out in a closed space, the sealed space is provided with a biogas outlet, and the biogas outlet is connected to the biogas collection tank through a pipeline.
  • At least one of the auxiliary crushing step and the auxiliary panning flotation step are added after the primary crushing step and the primary panning flotation step; wherein:
  • Auxiliary crushing step further crushing the lighter weight of the transported waste, slurging some of the remaining organic waste into a slurry, making the volume of the solid waste smaller, and separating the inorganic waste wrapped in the garbage from the organic waste.
  • the separation of organic waste and inorganic waste is convenient for the following steps; the size of the solid waste can be transported by the sediment transport device in the auxiliary panning flotation step, and the size of the plastic and textile waste can be checked and separated in the subsequent procedure;
  • Auxiliary panning flotation panning step the garbage processed in the above step is placed in the auxiliary panning flotation cell, and subjected to aeration panning, and the garbage having a larger specific gravity at the bottom of the panning flotation cell is transported through the sediment.
  • the device is transferred to the sediment cleaning device, and is recycled and reused; the lighter-weighted garbage in the panning flotation cell is transported to the next step through the floating material conveying device; the auxiliary panning flotation liquid containing the slurry organic waste It is transferred to the acidified anaerobic tank through a pipeline.
  • the sediment conveying device is a screw conveyor; and the floating object conveying device is a screw conveyor.
  • the sediment washing device is a sand washing machine, and the washing liquid of the sand washing machine is conveyed to the acidified anaerobic tank through a pipe.
  • the washed precipitate is transported to a building material workshop to manufacture building materials.
  • an auxiliary magnetic separation step is added, and the garbage after the primary crushing step is again subjected to magnetic separation, and the remaining scrap iron in the garbage is separated from the garbage for recycling.
  • the auxiliary magnetic separation step is added before the acidification anaerobic step, and the acidified anaerobic tank is entered.
  • the garbage is again magnetically selected, and the remaining scrap iron in the garbage is separated from the garbage and recycled.
  • all the processing steps and the processing steps involved in the processing are performed in a closed workshop, and the gas generator set and the biogas collecting tank are located outside the closed workshop, and the closed workshop is provided with a plurality of passing pipes.
  • the road is connected to the negative pressure mixed air collection port of the gas generator set air inlet.
  • the negative pressure mixed air collecting port is disposed at a odor emission place in the workshop and/or an odor escape where the odor is diffused outside the workshop.
  • the screening device in the screening and separating step is provided with a mixed gas collecting cover of a mixed gas of biogas and air, and the mixed air outlet of the mixed gas collecting cover is connected to the pipe through the pipeline.
  • the air inlet of the gas generator set is provided with a mixed gas collecting cover of a mixed gas of biogas and air.
  • the buffer adjustment tank in the buffer adjustment step is further provided with a biogas liquid heating device to accelerate the speed of the anaerobic reaction in the subsequent step.
  • the heat medium of the biogas liquid heating device is derived from the cooling water of the gas generator set and/or the exhaust gas of the gas generator set.
  • the cutting of the garbage in the uniform cutting step adopts a stamping and cutting method.
  • the first solid-liquid discharge port and the second solid-liquid discharge port in the acidified anaerobic step alternately open.
  • the biogas release tank in the deepening anaerobic step causes the biogas in the supernatant to escape by spraying.
  • the plastic and chemical fiber sieved in the screening and separating step are cracked to prepare a fuel.
  • the external hydration in the process of utilizing the urban and rural domestic waste resources is derived from domestic sewage or sewage containing higher COD.
  • the sludge taken out in the sludge precipitation concentration step is dried to be a fertilizer or a coal.
  • the garbage does not need manual direct incorporation from the beginning, and the scrap iron is separated by magnetic separation to recycle the scrap iron; the inorganic waste is separated and recycled by aeration washing and flotation; After the anaerobic waste in the crushing and panning flotation, most of the anaerobic tanks enter the acidified anaerobic tank by washing the flotation liquid, and the remaining anaerobic waste Garbage and plastics and textiles with anaerobic waste are cut into acidified anaerobic tanks. In acidified anaerobic tanks, anaerobic waste is acidified and preliminary anaerobic reactions occur. Part of the energy in anaerobic waste is extracted.
  • the anaerobic waste attached to the plastic and chemical fiber is also acidified and stripped, so it can be easily sorted out in the subsequent screening step; in the deep anaerobic tank, the residue of the garbage undergoes sufficient anaerobic reaction, anaerobic
  • the energy contained in the garbage is further released and converted into biogas; the sludge after the waste treatment can be used as fertilizer or coal.
  • the resources contained in the garbage of the whole process are gradually separated or released and collected, and no pollutants are discharged until the treatment is completed; the invention does not need to classify the garbage, and the classification and screening of the garbage runs through the whole process of the garbage utilization.
  • FIG. 1 is a flow chart of an embodiment of the present invention. DETAILED DESCRIPTION OF THE INVENTION The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
  • a method for utilizing urban and rural domestic garbage resources includes an acidified anaerobic tank, a deepened anaerobic tank, a biogas collecting tank, and a gas generator set, and the gas inlet of the gas generating unit is connected to the biogas collecting gas through a pipeline. tank.
  • all the processing steps and the equipment involved in the processing steps are performed in a closed workshop, and the gas generator set and the biogas collecting tank are located outside the closed workshop, and the closed workshop has multiple passes.
  • the pipeline is connected to the negative pressure mixed air collecting port of the gas generator set air inlet, the negative pressure mixed air collecting port is disposed at the odor emission place in the workshop, and the odor escape portion (such as the window) is spread out on the workshop wall. ) There is also a negative pressure mixed air collection port.
  • the polluting gas in the closed workshop is collected and burned by the gas generator set.
  • the closed workshop is only relatively closed, and the outside air is continuously replenished into the closed workshop through the gap, thereby making the whole
  • the treatment plant will not emit odors, completely solve the problem of odor disturbance, thus solving the limitations of the location of the waste treatment plant.
  • Step 1 Garbage receiving step: The urban and rural domestic garbage collected by the garbage truck is discharged into the garbage hopper or the garbage silo, and the garbage truck enters and exits the closed workshop with two gates; firstly, the outer gate is opened, and the inner gate is at this time Close, the garbage truck enters; closes the outer gate, then opens the inner gate, and the garbage truck is unloaded; after the unloading is completed, the inner gate is closed, the outer gate is opened, and the garbage truck is driven out; the odor disappears during the entire unloading process.
  • Step 2 Uniform clothting step: uniformly transfer the garbage in the garbage hopper or the garbage silo to the subsequent steps to ensure the subsequent steps are continuously performed to prevent the subsequent steps from being blocked or interrupted; in this step, the garbage hopper or the garbage silo
  • the garbage bag is torn open, and the large plastic garbage, large waste wood, and textile waste are torn and cut, and the large inorganic garbage and organic garbage that cannot be torn are separated from the garbage; then the tear is cut off.
  • the garbage is uniformly transferred to the next step; the volume of the solid waste processed in this step is guaranteed to meet the crushing requirements of the crusher in the primary crushing step; the biggest problem of the garbage disposal is the plastic and fiber in the garbage, and the conventional crusher cannot afford at all. It will cause entanglement and damage to the crusher. If it is broken directly, the garbage bag cannot be opened, and large garbage cannot be fed, causing blockage and interruption of the process.
  • Step 3 Primary magnetic separation step: magnetically selecting the waste conveyed by the above steps, separating the waste iron in the garbage from the garbage, providing convenience for the subsequent crushing process, preventing the scrap iron from destroying the crusher in the primary crushing step And recycle the scrap iron in the garbage; because the iron is extremely hard and has a certain plasticity, it is easy to damage the crusher.
  • Step 4 Primary crushing step: further break the waste conveyed by the above steps, cut off the plastic and textile waste, separate the scrap iron coated by the solid waste, and slurize part of the organic waste to make the volume of the solid waste. Smaller, the size of the solid waste is guaranteed to be transported by the sediment conveying device in the primary flotation step, and the size of the plastic and textile waste can be checked and separated in the subsequent procedures; some methods of anaerobic treatment in the prior art are adopted. The method of pulverization, plastic and textile waste is also pulverized into fine powder, can not be anaerobic or can not be separated, resulting in waste of resources, and the residue after the treatment has caused new pollution to the soil.
  • Step 5 Two-stage magnetic separation step (auxiliary magnetic separation step): The garbage processed in the above step is again magnetically selected, and the remaining scrap iron in the garbage is separated from the garbage and recycled.
  • Step 6 Primary panning flotation step: Put the garbage processed in the above step into the primary panning flotation cell, and Performing aeration and panning, transferring the solid waste with a larger specific gravity at the bottom of the panning flotation cell to the sand washing machine through the screw conveyor, recycling and recycling, for example, transferring to the building materials workshop for manufacturing building materials; The lighter weight of the selected tank is transferred to the next step through the screw conveyor; the primary panning flotation liquid containing the slurry organic waste is conveyed through the pipeline to the acidified anaerobic tank;
  • Step VII secondary crushing step (assisted crushing step): further crushing the lighter weight of the transported waste, slurging the remaining part of the organic waste into a slurry, making the volume of the solid waste smaller, and wrapping the garbage Inorganic waste is separated from the organic waste to facilitate the separation of organic waste and inorganic waste in the following steps; the size of the solid waste can be transported by the screw conveyor in the auxiliary washing and flotation step, and the size of the plastic and textile waste is guaranteed. Screen separation can be performed in the program;
  • Step 8 Secondary flotation step (assisted flushing and flotation washing step): Put the garbage processed in the above step into the auxiliary panning flotation cell, and perform aeration and panning, which will wash the bottom of the flotation cell.
  • the garbage with a larger specific gravity is transferred to the sediment cleaning device through the sediment conveying device, and is recycled and reused; the lighter weight of the garbage in the panning flotation cell is transported to the next step through the floating material conveying device;
  • the auxiliary panning flotation liquid of the organic waste is conveyed through the pipeline to the acidified anaerobic tank.
  • Step IX Uniform cutting step: further cutting the lighter weight of the garbage conveyed in the above step, completely cutting off the long-shaped garbage; or the long strip in the garbage with a lighter specific gravity transmitted in the above steps
  • the garbage is selected for further cutting, completely cutting off the long-shaped garbage; preventing the blockage of the pipeline during the subsequent step of conveying the material, and ensuring the effective separation of the plastic and the chemical fiber after acidification and anaerobic; after successive processing steps, in this step
  • the waste contains all the plastics and textiles, part of the anaerobic waste (most of the anaerobic waste is broken up and floated into the deep anaerobic tank), in order to avoid the blockage of the pipeline in the subsequent steps, which is beneficial to the subsequent steps.
  • the separation and separation of plastics and chemical fibers, using the stamping and cutting method to process the three-dimensional size of the garbage into the set size range basically eliminates the existence of long strip plastics and textiles.
  • Step 10 three-stage magnetic separation step (auxiliary magnetic separation step): The garbage processed in the above step is again magnetically selected, and the remaining scrap iron in the garbage is separated from the garbage and recycled.
  • Step 11 Acidizing anaerobic step: feeding the waste treated in the above step into an acidified anaerobic tank, wherein an upper portion of the inner cavity of the tank is an acidification reaction zone, and a lower portion of the inner cavity of the tank is an anaerobic decomposition zone;
  • the waste in the acidification reaction zone comprises a dry acidified layer above the liquid level and a wet acidified layer below the liquid level; the anaerobic layer;
  • the decomposition zone includes a floating layer located in an upper layer of the anaerobic decomposition zone, a suspension layer located in an intermediate layer of the anaerobic decomposition zone, and a heavy sediment layer located at a bottom layer of the anaerobic decomposition zone; Providing a unidirectional feed port in an upper portion of the acidification reaction zone, and the garbage coming in from the one-way feed port is evenly sprinkled on the upper surface of the acidification reaction zone, and the bottom of the anaerobic de
  • the main function of the acidified anaerobic tank of the invention is to acidify the waste, and the invention takes into consideration the advantages of both the anaerobic dry fermentation method and the anaerobic wet fermentation method.
  • the advantage of the anaerobic dry fermentation method is that the circulation of air is favorable.
  • the acidification reaction is not conducive to the anaerobic reaction.
  • the advantage of the anaerobic wet fermentation method is that the direct contact with the air is not conducive to the acidification reaction but is beneficial to the anaerobic reaction. Both methods can not give the best performance of the acidification reaction and the anaerobic reaction. .
  • the waste in the acidification reaction zone of the present invention comprises a dry acidified layer above the liquid level and a wet acidified layer below the liquid level, the dry acidified layer enables the waste to be sufficiently acidified and heat is generated, and the wet acidified layer is further acidified and Falling into the anaerobic decomposition zone, and then the anaerobic waste continuously turns into a biogas slurry for preliminary anaerobic reaction, and the lighter weight garbage such as wood blocks, foam, etc. floats on the lower bottom surface of the wet acidified layer, after a certain period of time Accumulation can be discharged through the second solid-liquid discharge port.
  • the first solid-liquid discharge port and the second solid-liquid discharge port in this step are alternately opened, and cannot be simultaneously opened to ensure that no turbulent flow occurs in the acidified anaerobic tank, and the layered distribution structure of the material in the tank is destroyed.
  • Step 12 screening separation step: the first solid liquid discharge port and the second solid liquid discharge port discharge material of the acidified anaerobic tank in the above step are respectively sent to a screening device, and the solid content is crushed in the screening device.
  • the anaerobic organic waste is further pulverized, and the plastic and chemical fiber are washed and sieved, and the sieved plastic and chemical fiber are recovered; the biogas slurry mixed with insufficient anaerobic decomposition waste is transferred to the next step;
  • the mixing device is provided with a mixed gas collecting cover of a mixed gas of biogas and air, and the mixed air outlet of the mixed gas collecting cover is connected to the air inlet of the gas generating unit through a pipeline.
  • the plastic and chemical fiber screened out in this step are cracked to prepare fuel.
  • Step 13 buffer adjustment step: the biogas slurry mixed with anaerobic waste in the above step is temporarily stored in a buffer adjustment tank, and the buffer adjustment tank is provided with a liquid inlet for receiving the biogas slurry in the above step, and receiving other steps.
  • This step is in a confined space
  • the sealed space is provided with a biogas outlet, and the biogas outlet is connected to the biogas collection tank through a pipeline;
  • the heat medium of the biogas heating device in the step is derived from the cooling water of the gas generator set and
  • a known heat exchanger can be used for the biogas liquid heating device.
  • Step 14 Deepening the anaerobic step: feeding the biogas liquid conveyed in the above step into the deep anaerobic tank for performing an anaerobic reaction, wherein the top of the deep anaerobic tank is provided with a biogas outlet, and the biogas outlet is passed through the tube
  • the road is connected to the biogas collecting tank, the bottom of the deep anaerobic tank is provided with a sludge outlet to the sludge sedimentation tank, and the upper part of the deep anaerobic tank is provided with a supernatant outlet, the supernatant
  • the outlet is connected with a biogas release tank or a acidified anaerobic tank through a pipeline, and the supernatant liquid passing through the biogas release tank is sent back to the step of requiring liquid replenishment before the step; the gas outlet of the biogas release tank is connected through a pipeline To the biogas collecting tank; in this step, the energy contained in the organic waste in the garbage is completely released.
  • Step 15 sludge precipitation concentration step: the sludge transferred from the above step is placed in a sludge sedimentation tank for precipitation, and the supernatant liquid in the sludge sedimentation tank is sent back to the buffer adjustment tank; after the precipitated sludge is taken out Reusing; drying and then making fertilizer or burning coal; this step is carried out in a closed space, the sealed space is provided with a biogas outlet, and the biogas outlet is connected to the biogas collecting tank through a pipeline.
  • the water and equipment required for water supply are derived from domestic sewage or sewage containing higher COD, avoiding the consumption of water resources, and treating part of the sewage, thereby making the invention more significant technological progress.
  • the invention does not need to classify garbage, and the classification and screening of garbage runs through the whole process of garbage utilization, overcomes the biggest bottleneck restricting garbage disposal, has strong practicability, not only does not generate processing cost, but also can obtain huge economic benefits.
  • the invention can make the anaerobic method treat the waste continuously, and the treatment amount is large; the invention completely solves the problem that the non-anaerobic wastes such as waste plastics and waste chemical fibers in the garbage cannot be recycled, and the resources in the garbage are completely recovered. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Fertilizers (AREA)

Description

城乡生活垃圾资源化利用方法 技术领域 本发明涉及一种资源化利用垃圾以达到消除城乡生活垃圾的方法。 背景技术 随着社会的进步, 可持续性发展成为人类追求的目标。 垃圾作为人类活动的产物成 为地球的负担, 也成为阻碍人类社会发展的严重障碍。 全世界垃圾年均增长速度为 8. 42%, 而中国垃圾增长率达到 10%以上。全世界每年产生 4. 9亿吨垃圾, 仅中国每年就 产生近 1. 5亿吨城市垃圾, 中国城市生活垃圾累积堆存量已达 70亿吨。
城乡生活垃圾从资源利用的角度主要分为两类: 第一类可厌氧分解垃圾, 由含水率 高、 易腐败的可降解有机物组成的垃圾, 包括厨余垃圾、 废木材、 废棉花及废旧棉织品 等, 垃圾的污染大部分来源于此, 其中包含的资源是可燃气体和植物肥料; 第二类是不 可厌氧分解垃圾, 包括废塑料、废金属等可回收利用的材料及少部分泥土、炉灰、玻璃、 陶瓷、 建筑垃圾等, 其中包含的资源是废旧金属及塑料、 化纤等。
由于有机垃圾中的可厌氧分解垃圾有丰富蛋白质、 脂类和糖类化合物, 在常温情况 下, 微生物分解有机物过程中会产生 NH3、 H2S及有害的碳氢化合物气体, 具有明显的恶 臭和毒性, 直接危害人体。 垃圾堆是蚊、 蝇、 鼠、 虫孳生的场所, 是疟疾、 血吸虫病、 乙型脑炎、 霍乱、 痢疾、 伤寒、 肝炎、 鼠疫、 钩端螺旋体病、 吸血虫病的传染源。 垃圾 随意堆放, 由于生物作用会产生 C02和 CH4以及有毒气体 H2S, 还会导致爆炸事故。 垃圾 中的有害物不断污染空气、 土壤与水体, 进而以空气、 土壤、 水体、 食物为媒体或载体 将附着的危害物质侵入人体, 损害人体的健康。
现有技术垃圾的处理方法:
目前, 世界各国对城市生活垃圾主要采用填埋和焚烧两种处理方法。
1、 填埋法
填埋法是使用最多的垃圾处理方法, 其原理是将垃圾在选定的场所, 填埋到一定高 度, 加上覆盖材料, 让其经过长期的物理、 化学和生物作用达到稳定状态。 具体方式有 自然堆放和卫生填埋。自然堆放法虽然简单易行,但缺点是所带来的环境污染比较严重, 对土壤和地下水造成严重且长期的污染, 是一种消极的应急措施。 卫生填埋法是现在大 量处理城乡生活垃圾的方法, 世界各国普遍采用卫生填埋法; 卫生填埋法的缺点是占地 多、 工程组织复杂, 无害化、 减容化程度较低, 存在着二次污染的潜在威胁, 特别是产 生的沼气排放不易处理, 易发生爆炸事件, 使垃圾中的资源被大大浪费; 操作过程有臭 气产生, 垃圾填埋场远离市区, 运输费用较大, 选地受较多限制, 容易造成地表及地下 水污染。
2、 焚烧法
焚烧是将垃圾作为固体燃料送入垃圾焚烧炉中, 在高温条件下, 垃圾中的可燃成分 与空气中氧气进行剧烈的化学反应, 放出热量, 转化成高温的燃烧气和量少而性质稳定 的固体残渣。 焚烧处理的优点是减量效果好, 焚烧后的残渣体积减少 90%以上, 重量减 少 80%以上, 处理彻底。 缺点是破坏资源, 垃圾含 70%左右的水分, 含水有机物消耗能 量, 可燃垃圾释放能量, 在焚烧过程中消耗能量和释放能量相抵, 剩余能量很少或为负 能量, 因此对垃圾热值有要求, 焚烧中要消耗煤、 油等助燃能源, 浪费了大量的可回收 资源, 且焚烧时会形成氯化二苯并二恶英 (PCDD) , 和氯化二苯并呋喃 (PCDF) , 易造 成空气污染。
鉴于上述分析, 人类将垃圾作为废弃物来进行处理, 观念的错误指导人们采取了上 述错误的处理方法, 造成垃圾堆积如山, 严重影响了人类的生存空间。
发明人认为, 垃圾是最具开发潜力且永不枯竭的 "资源矿藏", 完全可以成为资源 循环的新起点, 同时成为循环经济的重要组成部分。 生活垃圾中有机垃圾占 60%〜70% 以上, 是一种宝贵的资源, 近年来随着人们生活水平的提高, 垃圾中有机物所占比例也 呈上升趋势。 对垃圾认识的深入和深化, 是发现处理垃圾正确方法的重要指导原则。
用厌氧发酵法处理城市有机垃圾是回收生活垃圾中能源的一种有效方法。 近年来, 世界各国在垃圾处理产沼气技术方面研究较多, 如美国等欧美国家普遍采用两步发酵 法、 浸提法来研究城市垃圾厌氧发酵产沼气, 我国也用厌氧干发酵法处理城市垃圾, 产 生的沼气用作燃料, 发酵后的有机垃圾制成有机复合肥。
从现有技术来看, 现有的厌氧发酵法具有以下缺陷:
1. 无论是两步发酵法、 浸提法, 还是厌氧干发酵法, 处理前都需要进行垃圾的分 类, 这是制约垃圾处理的最大瓶颈, 因此造成上述方法实用性较差, 处理成本巨大, 而 且处理不彻底, 无法大规模推广应用。
2. 厌氧处理的间歇性, 造成垃圾处理工厂的垃圾处理容量有限, 占地面积较大, 根本不能适应现代化城市垃圾的应处理量。
3. 垃圾中的废塑料、 废纤维等不可厌氧垃圾无法回收利用, 而且分拣困难, 造成 资源的极大浪费。 发明内容 本发明所要解决的技术问题是提供一种不需要对垃圾进行预先分类、垃圾分类和垃 圾资源化利用同步进行、 并且能够连续处理垃圾的城乡生活垃圾资源化利用方法。
为解决上述技术问题, 本发明的技术方案是: 城乡生活垃圾资源化利用方法, 包括 酸化厌氧罐、 深化厌氧罐、 沼气集气罐、 燃气发电机组, 所述燃气发电机组的燃气进口 通过管路连接至沼气集气罐, 包括以下步骤:
垃圾接收步骤: 将运送来的垃圾卸入垃圾料斗或垃圾料仓中;
均匀布料步骤: 将垃圾料斗或垃圾料仓中的垃圾均匀传送到后续步骤, 保证后续步 骤的连续进行, 防止后续步骤的阻塞或间断; 在本步骤中, 将垃圾料斗或垃圾料仓中的 垃圾袋撕开, 将大的塑料垃圾、 大的废木材、 纺织品垃圾撕裂切断, 并将无法撕裂的大 的无机垃圾和有机垃圾从垃圾中分离出来;然后将撕裂切断后的垃圾均匀地传送到下一 步骤; 该步骤处理后的固体垃圾的体积保证满足初级破碎步骤中破碎机的破碎要求; 初级磁选步骤: 将上述步骤传送来的垃圾进行磁选, 将垃圾中的废铁从垃圾中分离 出来, 为后续的破碎工艺提供方便, 防止废铁破坏初级破碎步骤中的破碎机, 并使垃圾 中的废铁回收利用;
初级破碎步骤: 将上述步骤传送来的垃圾进一步破碎, 将塑料和纺织品垃圾切断, 将固体垃圾包覆的废铁分离出来, 将部分有机垃圾打成浆状, 使固体垃圾的体积变小, 固体垃圾的大小保证在初级浮选步骤中能够被沉淀物输送装置输送,塑料和纺织品垃圾 的大小保证后续程序中能够进行筛选分离;
初级淘洗浮选步骤: 将上述步骤处理后的垃圾放入初级淘洗浮选池中, 并进行曝气 淘洗,将淘洗浮选池底部的比重较大的固体垃圾通过沉淀物输送装置转入沉淀物清洗装 置中, 清洗后回收利用; 将淘洗浮选池中比重较轻的垃圾通过漂浮物输送装置传送到下 一步骤; 包含有浆状有机垃圾的初级淘洗浮选液通过管路传送至所述酸化厌氧罐中; 均匀裁切步骤: 将上述步骤中传递来的比重较轻的垃圾进一步裁切, 彻底切断长条 形的垃圾; 或者将上述步骤中传递来的比重较轻的垃圾中的长条形的垃圾挑选出来进一 步裁切, 彻底切断长条形的垃圾; 防止后续步骤物料输送过程中管道的堵塞, 并保证酸 化厌氧后塑料和化纤的有效分离;
酸化厌氧步骤: 将上述步骤处理后的垃圾送入酸化厌氧罐中, 所述酸化厌氧罐的罐 体内腔的上部为酸化反应区, 所述罐体内腔的下部为厌氧分解区; 在酸化厌氧罐中, 酸 化反应区的垃圾包括位于液位以上的干式酸化层和位于液位以下的湿式酸化层;所述厌 氧分解区包括位于所述厌氧分解区上层的漂浮层、位于所述厌氧分解区中间层的悬浊液 层和位于所述厌氧分解区底层的重物沉淀层;所述罐体上对应于所述酸化反应区的上部 设有单向进料口, 从所述单向进料口进来的垃圾均匀地洒落于所述酸化反应区的上表 面, 所述厌氧分解区的底部设有重物排出口, 所述重物排出口排出的重物进入沉淀物清 洗装置, 所述厌氧分解区的下部设有第一固液排出口, 所述厌氧分解区的中上部设有第 二固液排出口, 所述罐体的顶部还设有沼气出气口, 所述沼气出气口通过管路连接至所 述沼气集气罐, 所述罐体上还设有进液口;
筛选分离步骤:将上述步骤中酸化厌氧罐的第一固液排出口和第二固液排出口排出 物料分别输送至筛选设备, 在筛选设备中将固含物进行碾压, 已厌氧的有机垃圾被进一 步粉碎, 塑料、 化纤清洗后被筛分出来, 并回收筛分出来的塑料和化纤; 混合有未充分 厌氧分解垃圾的沼液被传送到下一步骤; 本步骤在密闭的空间内进行 ;
缓冲调节步骤: 将上述步骤中混合有可厌氧垃圾的沼液暂存在缓冲调节池中, 所述 缓冲调节池设有接收上述步骤沼液的进液口、 接收其它步骤产生的液体的补液口、 接收 外部补水的补水口和向下一步骤供液的沼液出液口; 本步骤在密闭的空间内进行, 所述 密闭的空间设有沼气出气口, 所述沼气出气口通过管路连接至所述沼气集气罐;
深化厌氧步骤: 将上述步骤传送过来的沼液送入深化厌氧罐中进行厌氧反应, 所述 深化厌氧罐的顶部设有沼气出气口, 所述沼气出气口通过管路连接至所述沼气集气罐, 所述深化厌氧罐的底部设有至污泥沉淀罐的污泥出口,所述深化厌氧罐的上部设有上清 液出口, 所述上清液出口通过管路连接有沼气释放罐或连接酸化厌氧罐, 经过沼气释放 罐的所述上清液回送至本步骤前需要液体补充的步骤中;所述沼气释放罐的出气口通过 管路连接至所述沼气集气罐;
污泥沉淀浓縮步骤: 将上述步骤传送过来的污泥放入污泥沉淀罐中沉淀, 污泥沉淀 罐中的上清液回送至缓冲调节池中; 沉淀的污泥取出后再利用; 并干燥后制成肥料或燃 煤; 本步骤在密闭的空间内进行, 所述密闭的空间设有沼气出气口, 所述沼气出气口通 过管路连接至所述沼气集气罐。
作为优选的技术方案,所述初级破碎步骤和所述初级淘洗浮选步骤后至少增加辅助 破碎步骤和辅助淘洗浮选步骤一次; 其中:
辅助破碎步骤: 将传送来的比重较轻的垃圾进一步破碎, 将残存的部分有机垃圾打 成浆状, 使固体垃圾的体积变小, 并将垃圾中包裹的无机垃圾从有机垃圾中脱离出来, 方便下述步骤的有机垃圾和无机垃圾的分离; 固体垃圾的大小保证在辅助淘洗浮选步骤 中能够被沉淀物输送装置输送,塑料和纺织品垃圾的大小保证后续程序中能够进行筛选 分离;
辅助淘洗浮选淘洗步骤: 将上述步骤处理后的垃圾放入辅助淘洗浮选池中, 并进行 曝气淘洗,将淘洗浮选池底部的比重较大的垃圾通过沉淀物输送装置转入沉淀物清洗装 置中, 清洗后回收利用; 将淘洗浮选池中比重较轻的垃圾通过漂浮物输送装置传送到下 一步骤; 包含有浆状有机垃圾的辅助淘洗浮选液通过管路传送至所述酸化厌氧罐中。
作为对上述技术方案的改进, 所述沉淀物输送装置为螺旋输送器; 所述漂浮物输送 装置为螺旋输送器。
作为对上述技术方案的改进, 所述沉淀物清洗装置为洗砂机, 所述洗砂机的洗液通 过管路传送到所述酸化厌氧池。
作为对上述技术方案的改进, 清洗后的沉淀物运送到建材车间制造建材。
作为优选的技术方案, 所述初级破碎步骤后增加辅助磁选步骤, 将初级破碎步骤步 骤处理后的垃圾再次进行磁选, 将垃圾中的剩余废铁从垃圾中分离出来回收利用。
作为优选的技术方案, 所述酸化厌氧步骤前增加辅助磁选步骤, 将进入酸化厌氧罐 的垃圾再次进行磁选, 将垃圾中的剩余废铁从垃圾中分离出来回收利用。 作为优选的技术方案, 所有处理步骤和处理步骤所涉及的设备在封闭车间内进行, 所述燃气发电机组和沼气集气罐位于所述封闭车间外,所述封闭车间内设有多个通过管 路连接至燃气发电机组空气进口的负压混合空气收集口。
作为对上述技术方案的改进,所述负压混合空气收集口设置在车间内的异味散发处 和 /或向车间外扩散异味的异味逃逸处。
作为对上述技术方案的改进,所述筛选分离步骤中的所述筛选设备处设有沼气与空 气混合气体的混合气收集罩,所述混合气收集罩的混合空气出气口通过管路连接至所述 燃气发电机组的空气进口。
作为优选的技术方案,所述缓冲调节步骤中的所述缓冲调节池中还设有沼液加热装 置, 以加快后续步骤厌氧反应的速度。
作为对上述技术方案的改进,所述沼液加热装置的热媒介来自于燃气发电机组的冷 却水和 /或燃气发电机组的尾气。
作为优选的技术方案, 所述均匀裁切步骤中垃圾的裁切采用冲压裁切方法。
作为优选的技术方案,所述酸化厌氧步骤中的第一固液排出口和第二固液排出口交 替开启。
作为优选的技术方案,所述深化厌氧步骤中的所述沼气释放罐通过喷淋使上清液中 的沼气逸出。
作为优选的技术方案, 所述筛选分离步骤中筛分出来的塑料和化纤进行裂解, 制备 燃油。
作为优选的技术方案,所述城乡生活垃圾资源化利用方法过程中的外部补水来源于 生活污水或含 COD较高的污水。
作为优选的技术方案, 所述污泥沉淀浓縮步骤中取出的污泥干燥后制成肥料或燃 煤。
由于采用了上述技术方案, 垃圾自开始就不需要人工的直接参入, 通过磁选分离出 废铁, 使废铁回收利用; 通过曝气淘洗浮选, 使无机垃圾被分离出来回收利用; 垃圾中 的厌氧垃圾在破碎和淘洗浮选后, 大部分通过淘洗浮选液进入酸化厌氧罐, 剩余的厌氧 垃圾和附着厌氧垃圾的塑料、 纺织品被裁切后也进入酸化厌氧罐; 在酸化厌氧罐内, 厌 氧垃圾被酸化并发生初步的厌氧反应, 厌氧垃圾中的部分能量被提取, 而塑料和化纤上 附着的厌氧垃圾也被酸化剥离, 因此在后续筛分步骤中很容易被分选出来; 在深化厌氧 罐中, 垃圾的剩余物发生充分的厌氧反应, 厌氧垃圾中包含的能量被进一步释放并转换 成沼气; 垃圾处理结束后的污泥可以做肥料或者燃煤。 本发明在整个处理过程垃圾包含 的资源被逐步分离或释放并被收集, 直至处理完毕也没有污染物排出; 本发明不需要进 行垃圾予分类, 垃圾的分类和筛选贯穿于垃圾利用的全过程, 克服了制约垃圾处理的最 大瓶颈, 实用性较强; 不但不产生处理成本, 而且还能获得巨大的经济效益; 本发明可 以使厌氧方法处理垃圾连续化, 处理量较大; 本发明彻底解决了垃圾中废塑料、 废化纤 等不可厌氧垃圾无法回收利用的问题, 使垃圾中的资源得到完全地回收。 附图说明 附图 1是本发明实施例的流程图。 具体实施方式 下面结合附图和实施例, 进一步阐述本发明。 在下面的详细描述中, 只通过说明的 方式描述了本发明的某些示范性实施例。毋庸置疑,本领域的普通技术人员可以认识到, 在不偏离本发明的精神和范围的情况下,可以用各种不同的方式对所描述的实施例进行 修正。 因此, 附图和描述在本质上是说明性的, 而不是用于限制权利要求的保护范围。
如附图所示, 城乡生活垃圾资源化利用方法, 包括酸化厌氧罐、 深化厌氧罐、 沼气 集气罐、 燃气发电机组, 所述燃气发电机组的燃气进口通过管路连接至沼气集气罐。 在 本实施例中, 所有处理步骤和处理步骤所涉及的设备均在封闭车间内进行, 所述燃气发 电机组和沼气集气罐位于所述封闭车间外,所述封闭车间内设有多个通过管路连接至燃 气发电机组空气进口的负压混合空气收集口,所述负压混合空气收集口设置在车间内的 异味散发处,而且在车间墙壁上向外扩散异味的异味逃逸处 (例如窗户) 也设有负压混 合空气收集口。 这样封闭车间内的污染气体就被收集并被燃气发电机组燃烧, 所述封闭 车间仅仅是相对封闭的, 外界的空气通过缝隙被不断补充到所述封闭车间内, 从而使整 个处理工厂不会散发异味, 彻底解决了异味扰民的问题, 因此解决了垃圾处理工厂选址 的局限性。
下面详细描述本实施例的基本步骤:
步骤一、 垃圾接收步骤: 将垃圾车收集来的城乡生活垃圾卸入垃圾料斗或垃圾料仓 中,垃圾车进出所述封闭车间处设有两道闸门;首先开启外道闸门,此时内道闸门关闭, 垃圾车进入; 关闭外道闸门, 然后开启内道闸门, 垃圾车卸载; 卸载完成后, 关闭内道 闸门, 开启外道闸门, 垃圾车驶出; 保证了整个卸载过程无异味逸出。
步骤二、 均匀布料步骤: 将垃圾料斗或垃圾料仓中的垃圾均匀传送到后续步骤, 保 证后续步骤的连续进行, 防止后续步骤的阻塞或间断; 在本步骤中, 将垃圾料斗或垃圾 料仓中的垃圾袋撕开, 将大的塑料垃圾、 大的废木材、 纺织品垃圾撕裂切断, 并将无法 撕裂的大的无机垃圾和有机垃圾从垃圾中分离出来;然后将撕裂切断后的垃圾均匀地传 送到下一步骤; 该步骤处理后的固体垃圾的体积保证满足初级破碎步骤中破碎机的破碎 要求; 垃圾处理的最大难题是垃圾中的塑料和纤维, 传统的破碎机根本不起作用, 并会 造成破碎机的缠绕和损坏。 如果直接破碎, 垃圾袋无法打开, 大的垃圾无法喂入, 造成 处理过程的阻塞和间断。
步骤三、 初级磁选步骤: 将上述步骤传送来的垃圾进行磁选, 将垃圾中的废铁从垃 圾中分离出来, 为后续的破碎工艺提供方便, 防止废铁破坏初级破碎步骤中的破碎机, 并使垃圾中的废铁回收利用; 因为铁极硬且具有一定的塑性, 容易给损坏破碎机。
步骤四、 初级破碎步骤: 将上述步骤传送来的垃圾进一步破碎, 将塑料和纺织品垃 圾切断, 将固体垃圾包覆的废铁等分离出来, 将部分有机垃圾打成浆状, 使固体垃圾的 体积变小, 固体垃圾的大小保证在初级浮选步骤中能够被沉淀物输送装置输送, 塑料和 纺织品垃圾的大小保证后续程序中能够进行筛选分离;现有技术中的部分厌氧处理垃圾 方法,采用粉碎的方法,塑料和纺织品垃圾也被粉碎成细末,不能被厌氧也不能被分离, 造成资源的浪费, 处理结束后的残余物又对土壤造成新的污染。
步骤五、 二级磁选步骤(辅助磁选步骤): 将上述步骤处理后的垃圾再次进行磁选, 将垃圾中的剩余废铁从垃圾中分离出来回收利用。
步骤六、 初级淘洗浮选步骤: 将上述步骤处理后的垃圾放入初级淘洗浮选池中, 并 进行曝气淘洗, 将淘洗浮选池底部的比重较大的固体垃圾通过螺旋输送器转入洗砂机 中, 清洗后回收利用, 例如传送到建材车间用于制造建材; 将淘洗浮选池中比重较轻的 垃圾通过螺旋输送器传送到下一步骤;包含有浆状有机垃圾的初级淘洗浮选液通过管路 传送至所述酸化厌氧罐中;
步骤七、 二级破碎步骤(辅助破碎步骤): 将传送来的比重较轻的垃圾进一步破碎, 将残存的部分有机垃圾打成浆状, 使固体垃圾的体积变小, 并将垃圾中包裹的无机垃圾 从有机垃圾中脱离出来, 方便下述步骤的有机垃圾和无机垃圾的分离; 固体垃圾的大小 保证在辅助淘洗浮选步骤中能够被螺旋输送器输送,塑料和纺织品垃圾的大小保证后续 程序中能够进行筛选分离;
步骤八、 二级浮选步骤 (辅助淘洗浮选淘洗步骤): 将上述步骤处理后的垃圾放入 辅助淘洗浮选池中, 并进行曝气淘洗, 将淘洗浮选池底部的比重较大的垃圾通过沉淀物 输送装置转入沉淀物清洗装置中, 清洗后回收利用; 将淘洗浮选池中比重较轻的垃圾通 过漂浮物输送装置传送到下一步骤;包含有浆状有机垃圾的辅助淘洗浮选液通过管路传 送至所述酸化厌氧罐中。
步骤九、 均匀裁切步骤: 将上述步骤中传递来的比重较轻的垃圾进一步裁切, 彻底 切断长条形的垃圾; 或者将上述步骤中传递来的比重较轻的垃圾中的长条形的垃圾挑选 出来进一步裁切, 彻底切断长条形的垃圾; 防止后续步骤物料输送过程中管道的堵塞, 并保证酸化厌氧后塑料和化纤的有效分离; 经过连续的处理步骤, 本步骤中的垃圾包含 全部的塑料和纺织品, 部分的厌氧垃圾(大部分的厌氧垃圾被打碎并通过浮选进入所述 深化厌氧罐), 为避免后续步骤中管道的堵塞, 有利于后续步骤中塑料和化纤的筛选分 离, 采用冲压裁切方法将垃圾的三维尺寸处理到设定的尺寸范围之内, 基本杜绝了长条 形塑料和纺织品的存在。
步骤十、 三级磁选步骤(辅助磁选步骤): 将上述步骤处理后的垃圾再次进行磁选, 将垃圾中的剩余废铁从垃圾中分离出来回收利用。
步骤十一、 酸化厌氧步骤: 将上述步骤处理后的垃圾送入酸化厌氧罐中, 所述罐体 内腔的上部为酸化反应区, 所述罐体内腔的下部为厌氧分解区; 在酸化厌氧罐中, 酸化 反应区的垃圾包括位于液位以上的干式酸化层和位于液位以下的湿式酸化层;所述厌氧 分解区包括位于所述厌氧分解区上层的漂浮层、位于所述厌氧分解区中间层的悬浊液层 和位于所述厌氧分解区底层的重物沉淀层;所述罐体上对应于所述酸化反应区的上部设 有单向进料口, 从所述单向进料口进来的垃圾均匀地洒落于所述酸化反应区的上表面, 所述厌氧分解区的底部设有重物排出口,所述重物排出口排出的重物进入沉淀物清洗装 置, 所述厌氧分解区的下部设有第一固液排出口, 所述厌氧分解区的中上部设有第二固 液排出口, 所述罐体的顶部还设有沼气出气口, 所述沼气出气口通过管路连接至所述沼 气集气罐, 所述罐体上还设有进液口。 本发明酸化厌氧罐的主要作用是使垃圾进行酸化 反应, 且本发明兼顾厌氧干发酵法和厌氧湿发酵法二者的优点, 厌氧干发酵法的优点是 由于空气的流通有利于酸化反应但不利于厌氧反应,厌氧湿发酵法的优点是由于不直接 接触空气不利于酸化反应但有利于厌氧反应,两种方法都不能使酸化反应和厌氧反应得 到最好的发挥。本发明酸化反应区的垃圾包括位于液位以上的干式酸化层和位于液位以 下的湿式酸化层, 干式酸化层使垃圾进行充分高效的酸化, 并产生热量, 湿式酸化层进 行进一步酸化并向所述厌氧分解区下落,然后厌氧垃圾不断变成沼液进行初步的厌氧反 应, 比重较轻的垃圾例如木块、 泡沫塑料等漂浮在湿式酸化层的下底面, 经过一定时间 的累积, 可通过第二固液排出口排出。 本步骤中的第一固液排出口和第二固液排出口交 替开启, 不能同时开启, 以保证酸化厌氧罐中不产生紊流, 破坏罐内物料的层状分布结 构。
步骤十二、 筛选分离步骤: 将上述步骤中酸化厌氧罐的第一固液排出口和第二固液 排出口排出物料分别输送至筛选设备, 在筛选设备中将固含物进行碾压, 已厌氧的有机 垃圾被进一步粉碎, 塑料、 化纤清洗后被筛分出来, 并回收筛分出来的塑料和化纤; 混 合有未充分厌氧分解垃圾的沼液被传送到下一步骤; 本步骤在密闭的空间内进行, 所述 筛选设备处设有沼气与空气混合气体的混合气收集罩,所述混合气收集罩的混合空气出 气口通过管路连接至所述燃气发电机组的空气进口。本步骤中筛分出来的塑料和化纤进 行裂解, 制备燃油。
步骤十三、 缓冲调节步骤: 将上述步骤中混合有可厌氧垃圾的沼液暂存在缓冲调节 池中, 所述缓冲调节池设有接收上述步骤沼液的进液口、 接收其它步骤产生的液体的补 液口、 接收外部补水的补水口和向下一步骤供液的沼液出液口; 本步骤在密闭的空间内 进行, 所述密闭的空间设有沼气出气口, 所述沼气出气口通过管路连接至所述沼气集气 罐;本步骤中的沼液加热装置的热媒介来自于燃气发电机组的冷却水和燃气发电机组的 尾气, 沼液加热装置可以采用公知的热交换器。
步骤十四、 深化厌氧步骤: 将上述步骤传送过来的沼液送入深化厌氧罐中进行厌氧 反应, 所述深化厌氧罐的顶部设有沼气出气口, 所述沼气出气口通过管路连接至所述沼 气集气罐, 所述深化厌氧罐的底部设有至污泥沉淀罐的污泥出口, 所述深化厌氧罐的上 部设有上清液出口, 所述上清液出口通过管路连接有沼气释放罐或连接酸化厌氧罐, 经 过沼气释放罐的所述上清液回送至本步骤前需要液体补充的步骤中;所述沼气释放罐的 出气口通过管路连接至所述沼气集气罐; 本步骤中, 垃圾中的有机垃圾包含的能源被完 全释放。
步骤十五、污泥沉淀浓縮步骤:将上述步骤传送过来的污泥放入污泥沉淀罐中沉淀, 污泥沉淀罐中的上清液回送至缓冲调节池中; 沉淀的污泥取出后再利用; 并干燥后制成 肥料或燃煤; 本步骤在密闭的空间内进行, 所述密闭的空间设有沼气出气口, 所述沼气 出气口通过管路连接至所述沼气集气罐。
本实施例中需要补水的设备和步骤的水来源于生活污水或含 COD较高的污水,避免 了水资源的消耗, 且处理了部分污水, 因而使本发明具有更为显著的技术进步。
本发明不需要进行垃圾予分类, 垃圾的分类和筛选贯穿于垃圾利用的全过程, 克服 了制约垃圾处理的最大瓶颈, 实用性较强, 不但不产生处理成本, 而且还能获得巨大的 经济效益; 本发明可以使厌氧方法处理垃圾连续化, 处理量较大; 本发明彻底解决了垃 圾中废塑料、 废化纤等不可厌氧垃圾无法回收利用的问题, 使垃圾中的资源得到完全地 回收。
以上显示和描述了本发明的基本原理、 主要特征及本发明的优点。 本行业的技术人 员应该了解, 本发明不受上述实施例的限制, 上述实施例和说明书中描述的只是说明本 发明的原理, 在不脱离本发明精神和范围的前提下, 本发明还会有各种变化和改进, 这 些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求 书及其等效物界定。

Claims

权利要求书
1. 城乡生活垃圾资源化利用方法, 包括酸化厌氧罐、 深化厌氧罐、 沼气集气罐、 燃气发电机组,所述燃气发电机组的燃气进口通过管路连接至沼气集气罐,其特征在于, 包括以下步骤:
垃圾接收步骤: 将运送来的垃圾卸入垃圾料斗或垃圾料仓中;
均匀布料步骤: 将垃圾料斗或垃圾料仓中的垃圾均匀传送到后续步骤, 保证后续步 骤的连续进行, 防止后续步骤的阻塞或间断; 在本步骤中, 将垃圾料斗或垃圾料仓中的 垃圾袋撕开, 将大的塑料垃圾、 大的废木材、 纺织品垃圾撕裂切断, 并将无法撕裂的大 的无机垃圾和有机垃圾从垃圾中分离出来;然后将撕裂切断后的垃圾均匀地传送到下一 步骤; 该步骤处理后的固体垃圾的体积保证满足初级破碎步骤中破碎机的破碎要求; 初级磁选步骤: 将上述步骤传送来的垃圾进行磁选, 将垃圾中的废铁从垃圾中分离 出来, 为后续的破碎工艺提供方便, 防止废铁破坏初级破碎步骤中的破碎机, 并使垃圾 中的废铁回收利用;
初级破碎步骤: 将上述步骤传送来的垃圾进一步破碎, 将塑料和纺织品垃圾切断, 将固体垃圾包覆的废铁分离出来, 将部分有机垃圾打成浆状, 使固体垃圾的体积变小, 固体垃圾的大小保证在初级浮选步骤中能够被沉淀物输送装置输送,塑料和纺织品垃圾 的大小保证后续程序中能够进行筛选分离;
初级淘洗浮选步骤: 将上述步骤处理后的垃圾放入初级淘洗浮选池中, 并进行曝气 淘洗,将淘洗浮选池底部的比重较大的固体垃圾通过沉淀物输送装置转入沉淀物清洗装 置中, 清洗后回收利用; 将淘洗浮选池中比重较轻的垃圾通过漂浮物输送装置传送到下 一步骤; 包含有浆状有机垃圾的初级淘洗浮选液通过管路传送至所述酸化厌氧罐中; 均匀裁切步骤: 将上述步骤中传递来的比重较轻的垃圾进一步裁切, 彻底切断长条 形的垃圾; 或者将上述步骤中传递来的比重较轻的垃圾中的长条形的垃圾挑选出来进一 步裁切, 彻底切断长条形的垃圾; 防止后续步骤物料输送过程中管道的堵塞, 并保证酸 化厌氧后塑料和化纤的有效分离;
酸化厌氧步骤: 将上述步骤处理后的垃圾送入酸化厌氧罐中, 所述酸化厌氧罐的罐 体内腔的上部为酸化反应区, 所述罐体内腔的下部为厌氧分解区; 在酸化厌氧罐中, 酸 化反应区的垃圾包括位于液位以上的干式酸化层和位于液位以下的湿式酸化层;所述厌 氧分解区包括位于所述厌氧分解区上层的漂浮层、位于所述厌氧分解区中间层的悬浊液 层和位于所述厌氧分解区底层的重物沉淀层;所述罐体上对应于所述酸化反应区的上部 设有单向进料口, 从所述单向进料口进来的垃圾均匀地洒落于所述酸化反应区的上表 面, 所述厌氧分解区的底部设有重物排出口, 所述重物排出口排出的重物进入沉淀物清 洗装置, 所述厌氧分解区的下部设有第一固液排出口, 所述厌氧分解区的中上部设有第 二固液排出口, 所述罐体的顶部还设有沼气出气口, 所述沼气出气口通过管路连接至所 述沼气集气罐, 所述罐体上还设有进液口;
筛选分离步骤:将上述步骤中酸化厌氧罐的第一固液排出口和第二固液排出口排出 物料分别输送至筛选设备, 在筛选设备中将固含物进行碾压, 已厌氧的有机垃圾被进一 步粉碎, 塑料、 化纤清洗后被筛分出来, 并回收筛分出来的塑料和化纤; 混合有未充分 厌氧分解垃圾的沼液被传送到下一步骤; 本步骤在密闭的空间内进行 ;
缓冲调节步骤: 将上述步骤中混合有可厌氧垃圾的沼液暂存在缓冲调节池中, 所述 缓冲调节池设有接收上述步骤沼液的进液口、 接收其它步骤产生的液体的补液口、 接收 外部补水的补水口和向下一步骤供液的沼液出液口; 本步骤在密闭的空间内进行, 所述 密闭的空间设有沼气出气口, 所述沼气出气口通过管路连接至所述沼气集气罐;
深化厌氧步骤: 将上述步骤传送过来的沼液送入深化厌氧罐中进行厌氧反应, 所述 深化厌氧罐的顶部设有沼气出气口, 所述沼气出气口通过管路连接至所述沼气集气罐, 所述深化厌氧罐的底部设有至污泥沉淀罐的污泥出口,所述深化厌氧罐的上部设有上清 液出口, 所述上清液出口通过管路连接有沼气释放罐或连接酸化厌氧罐, 经过沼气释放 罐的所述上清液回送至本步骤前需要液体补充的步骤中;所述沼气释放罐的出气口通过 管路连接至所述沼气集气罐;
污泥沉淀浓縮步骤: 将上述步骤传送过来的污泥放入污泥沉淀罐中沉淀, 污泥沉淀 罐中的上清液回送至缓冲调节池中; 沉淀的污泥取出后再利用; 并干燥后制成肥料或燃 煤; 本步骤在密闭的空间内进行, 所述密闭的空间设有沼气出气口, 所述沼气出气口通 过管路连接至所述沼气集气罐。
2. 如权利要求 1所述的城乡生活垃圾资源化利用方法, 其特征在于, 所述初级破 碎步骤和所述初级淘洗浮选步骤后至少增加辅助破碎步骤和辅助淘洗浮选步骤一次;其 中:
辅助破碎步骤: 将传送来的比重较轻的垃圾进一步破碎, 将残存的部分有机垃圾打 成浆状, 使固体垃圾的体积变小, 并将垃圾中包裹的无机垃圾从有机垃圾中脱离出来, 方便下述步骤的有机垃圾和无机垃圾的分离; 固体垃圾的大小保证在辅助淘洗浮选步骤 中能够被沉淀物输送装置输送,塑料和纺织品垃圾的大小保证后续程序中能够进行筛选 分离;
辅助淘洗浮选淘洗步骤: 将上述步骤处理后的垃圾放入辅助淘洗浮选池中, 并进行 曝气淘洗,将淘洗浮选池底部的比重较大的垃圾通过沉淀物输送装置转入沉淀物清洗装 置中, 清洗后回收利用; 将淘洗浮选池中比重较轻的垃圾通过漂浮物输送装置传送到下 一步骤; 包含有浆状有机垃圾的辅助淘洗浮选液通过管路传送至所述酸化厌氧罐中。
3. 如权利要求 1或 2所述的城乡生活垃圾资源化利用方法, 其特征在于: 所述沉 淀物输送装置为螺旋输送器; 所述漂浮物输送装置为螺旋输送器。
4. 如权利要求 1或 2所述的城乡生活垃圾资源化利用方法, 其特征在于: 所述沉 淀物清洗装置为洗砂机, 所述洗砂机的洗液通过管路传送到所述酸化厌氧池。
5. 如权利要求 1或 2所述的城乡生活垃圾资源化利用方法, 其特征在于, 清洗后 的沉淀物运送到建材车间制造建材。
6. 如权利要求 1所述的城乡生活垃圾资源化利用方法, 其特征在于, 所述初级破 碎步骤后增加辅助磁选步骤, 将初级破碎步骤步骤处理后的垃圾再次进行磁选, 将垃圾 中的剩余废铁从垃圾中分离出来回收利用。
7. 如权利要求 1所述的城乡生活垃圾资源化利用方法, 其特征在于, 所述酸化厌 氧步骤前增加辅助磁选步骤, 将进入酸化厌氧罐的垃圾再次进行磁选, 将垃圾中的剩余 废铁从垃圾中分离出来回收利用。
8. 如权利要求 1所述的城乡生活垃圾资源化利用方法, 其特征在于: 所有处理步 骤和处理步骤所涉及的设备在封闭车间内进行,所述燃气发电机组和沼气集气罐位于所 述封闭车间外,所述封闭车间内设有多个通过管路连接至燃气发电机组空气进口的负压 混合空气收集口。
9. 如权利要求 8所述的城乡生活垃圾资源化利用方法, 其特征在于: 所述负压混 合空气收集口设置在车间内的异味散发处和 /或向车间外扩散异味的异味逃逸处。
10. 如权利要求 8所述的城乡生活垃圾资源化利用方法, 其特征在于: 所述筛选分 离步骤中的所述筛选设备处设有沼气与空气混合气体的混合气收集罩,所述混合气收集 罩的混合空气出气口通过管路连接至所述燃气发电机组的空气进口。
11. 如权利要求 1所述的城乡生活垃圾资源化利用方法, 其特征在于: 所述缓冲调 节步骤中的所述缓冲调节池中还设有沼液加热装置, 以加快后续步骤厌氧反应的速度。
12. 如权利要求 11所述的城乡生活垃圾资源化利用方法, 其特征在于: 所述沼液 加热装置的热媒介来自于燃气发电机组的冷却水和 /或燃气发电机组的尾气。
13. 如权利要求 1所述的城乡生活垃圾资源化利用方法, 其特征在于: 所述均匀裁 切步骤中垃圾的裁切采用冲压裁切方法。
14. 如权利要求 1所述的城乡生活垃圾资源化利用方法, 其特征在于: 所述酸化厌 氧步骤中的第一固液排出口和第二固液排出口交替开启。
15. 如权利要求 1所述的城乡生活垃圾资源化利用方法, 其特征在于: 所述深化厌 氧步骤中的所述沼气释放罐通过喷淋使上清液中的沼气逸出。
16. 如权利要求 1所述的城乡生活垃圾资源化利用方法, 其特征在于: 所述筛选分 离步骤中筛分出来的塑料和化纤进行裂解, 制备燃油。
17. 如权利要求 1所述的城乡生活垃圾资源化利用方法, 其特征在于: 所述城乡生 活垃圾资源化利用方法过程中的外部补水来源于生活污水或含 COD较高的污水。
18. 如权利要求 1所述的城乡生活垃圾资源化利用方法, 其特征在于: 所述污泥沉 淀浓縮步骤中取出的污泥干燥后制成肥料或燃煤。
PCT/CN2011/072418 2010-12-09 2011-04-02 城乡生活垃圾资源化利用方法 WO2012075756A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013542340A JP5666012B2 (ja) 2010-12-09 2011-04-02 都市部および農村部における廃棄物を資源として利用する方法
EP11847475.8A EP2650273B1 (en) 2010-12-09 2011-04-02 Resource utilizing method of refuses in urban and rural
US13/992,113 US9776224B2 (en) 2010-12-09 2011-04-02 Method of utilizing refuses in urban and rural

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010105812623A CN102172596B (zh) 2010-12-09 2010-12-09 城乡生活垃圾资源化利用方法
CN201010581262.3 2010-12-09

Publications (1)

Publication Number Publication Date
WO2012075756A1 true WO2012075756A1 (zh) 2012-06-14

Family

ID=44515947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072418 WO2012075756A1 (zh) 2010-12-09 2011-04-02 城乡生活垃圾资源化利用方法

Country Status (5)

Country Link
US (1) US9776224B2 (zh)
EP (1) EP2650273B1 (zh)
JP (1) JP5666012B2 (zh)
CN (1) CN102172596B (zh)
WO (1) WO2012075756A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108018199A (zh) * 2017-12-27 2018-05-11 山东明硕新能源科技有限公司 一种秸秆制备沼气的装置
CN109570206A (zh) * 2019-02-12 2019-04-05 德清华得环保设备有限公司 一种花园式地下消融垃圾转型发电设备
CN111054735A (zh) * 2019-12-31 2020-04-24 菲德克(天津)环保科技有限公司 一种厨余垃圾的处理系统及处理方法
CN111196999A (zh) * 2020-01-13 2020-05-26 中国科学院青岛生物能源与过程研究所 一种生物质垃圾批式微生物发酵处理系统及处理方法
CN113388492A (zh) * 2021-06-21 2021-09-14 上海环境工程设计研究院有限公司 一种果蔬垃圾浆料的水解-除杂装置及方法
CN116200218A (zh) * 2023-04-26 2023-06-02 北京鼎创环保有限公司 一种装修垃圾生产燃料棒的生产系统及生产工艺

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102179395A (zh) * 2011-02-16 2011-09-14 潍坊金丝达实业有限公司 垃圾资源化利用车间异味消除装置
CN102553892B (zh) * 2012-01-20 2014-01-01 宁波开诚生态技术有限公司 一种餐厨垃圾处理系统的分拣、清洗筛分、粉碎及筛选出料工艺
CN102671918B (zh) * 2012-05-21 2014-08-20 宁波开诚生态技术有限公司 厨余垃圾生化处理系统
CN102921701A (zh) * 2012-10-31 2013-02-13 刘昆 一种餐厨垃圾综合处理方法和系统
CN103191907A (zh) * 2013-04-17 2013-07-10 林志顺 一种处理餐厨废物的集成技术工艺
CN104117426B (zh) * 2013-04-26 2017-09-26 襄阳市栋梁环保科技有限公司 从生活垃圾焚烧发电余渣中选含金银铜渣的方法及其设备
CN103787699B (zh) * 2014-02-14 2016-02-24 青岛吉曼新能源技术有限公司 一种村镇生活垃圾的处理方法与处理装置
US20150284647A1 (en) * 2014-04-02 2015-10-08 Orion Enterprise International LLC Wte-processes and renewable energy optimization system
CN105315693A (zh) * 2014-07-28 2016-02-10 洪奕杉 一种环保塑料的制法
CN104259176A (zh) * 2014-09-12 2015-01-07 中南林业科技大学 一种生活垃圾综合处理与资源化利用的环保系统
CN105637071B (zh) * 2014-09-25 2017-12-12 高钟成 利用生物质的颗粒制造系统及制造方法
EP3478804A1 (en) * 2017-05-26 2019-05-08 Novelis Inc. System and method for briquetting cyclone dust from decoating systems
CN107475081B (zh) * 2017-08-09 2023-07-04 安徽理工大学 一种沼气发生控制方法及系统
CN107942696A (zh) * 2017-12-07 2018-04-20 美的智慧家居科技有限公司 家电运行方法、系统、家电及计算机可读存储介质
CN110396008A (zh) * 2019-08-05 2019-11-01 德州群峰机械制造有限公司 集装箱式干式发酵系统
CN110788111B (zh) * 2019-09-29 2022-05-27 中原环资科技有限公司 一种易腐有机质协同综合资源化处理的工艺方法
CN110976472B (zh) * 2019-11-14 2021-07-16 武汉龙净环保工程有限公司 餐厨垃圾与生活垃圾协同处理方法
CN110835205A (zh) * 2019-11-22 2020-02-25 中冶南方工程技术有限公司 一种工地有机废物就地处理系统
CN111153518A (zh) * 2019-12-27 2020-05-15 中际通达水处理装备研究院(江苏)有限公司 一种生活污水处理装置及其处理方法
CN111370071B (zh) * 2020-03-03 2023-03-28 重庆市环卫集团有限公司 一种餐厨垃圾厌氧沼液循环利用的方法
CN111548200A (zh) * 2020-05-24 2020-08-18 四川九哈科技股份有限公司 一种采集家庭厨余垃圾补充土壤有机质方法
CN112547758A (zh) * 2020-11-18 2021-03-26 陆良中金环保科技有限公司 一种处理菜叶/果蔬垃圾无害化、资源化的组合工艺
CN113372160A (zh) * 2021-06-10 2021-09-10 魏常炬 一种利用生活垃圾提取分离的优质肥颗粒及其制备方法与应用
CN114716100A (zh) * 2022-04-02 2022-07-08 襄阳先创环保科技有限公司 一种高效厌氧污泥回流的废水处理系统、工艺及应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2258254A1 (fr) * 1998-12-23 2000-06-23 Andre Balu Usine de traitement industriel des dechets domestiques et des boues organiques par le recyclage des produits valorisables et par la production acceleree de gaz biologique (le biogaz) et d'un amendement organique (le digestat) generes par la fermentation anaerobie mesophile des matieres organiques
EP1275443A2 (de) * 2001-07-09 2003-01-15 Porr Umwelttechnik GmbH Verfahren zum physikalischen und chemischen Behandeln und Auftrennen von Gewerbe- und/ oder Haushaltsabfall
WO2003004423A1 (fr) * 2001-07-05 2003-01-16 Nkk Corporation Procede de traitement anaerobie d'un materiau organique et appareil de traitement anaerobie
CN1394701A (zh) * 2001-07-11 2003-02-05 周大成 城市垃圾集中处理再生方法
CN1431159A (zh) * 2003-01-23 2003-07-23 湖南大学 城市垃圾两步厌氧消化处理工艺
CN2585865Y (zh) * 2002-11-29 2003-11-12 李声寿 生活垃圾两相厌氧干发酵处理装置
CN101134684A (zh) * 2007-07-27 2008-03-05 东莞科创未来能源科技发展有限公司 一种餐厨垃圾两相厌氧发酵产氢产甲烷的方法
CN101337838A (zh) * 2008-08-11 2009-01-07 鄂尔多斯市东胜区传祥垃圾处理有限责任公司 有机固体废弃物联合厌氧发酵方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB955338A (en) * 1960-08-05 1964-04-15 Felix Prat Improvements in and relating to the fermentation of waste organic material for agricultural purposes
US3933577A (en) * 1971-01-08 1976-01-20 Penque Ronald A Process of sonically treating municipal waste to produce high quality paper pulp and fertilizer
JPS5515923A (en) 1978-07-13 1980-02-04 Kyokuto Kaihatsu Kogyo Co Garbage manure treatment
JPS55155782A (en) * 1979-05-24 1980-12-04 Toshiro Watanabe Utilization system of municipal waste and related industrial waste
JPS609879B2 (ja) 1982-02-03 1985-03-13 工業技術院長 固形廃棄物の処理方法
NL8201655A (nl) * 1982-04-21 1983-11-16 Rutte Recycling Bv Eentrapswerkwijze voor het bestuurd anaeroob omzetten van de organische fractie van stedelijk afval.
US4785622A (en) * 1984-12-03 1988-11-22 General Electric Company Integrated coal gasification plant and combined cycle system with air bleed and steam injection
CN1085138A (zh) * 1993-10-04 1994-04-13 四川省成都洁世固体废物综合利用研究所 城市垃圾综合利用技术
US6569332B2 (en) * 2000-06-26 2003-05-27 Jack L. Ainsworth Integrated anaerobic digester system
US7252691B2 (en) * 2001-03-06 2007-08-07 John Philipson Conversion of municipal solid waste to high fuel value
JP2002355654A (ja) 2001-06-01 2002-12-10 Murata Mach Ltd 有機廃棄物処理システム
JP3849774B2 (ja) 2002-10-07 2006-11-22 中国電力株式会社 廃棄物のリサイクル処理方法及びそのリサイクル処理施設
CN1513615A (zh) * 2002-12-31 2004-07-21 上海思特经济技术开发公司 生活垃圾无害化综合处理工艺和设备系统
JP2005270950A (ja) 2004-03-25 2005-10-06 Ecolog Recycling Japan:Kk 繊維混合物の分解処理方法
CN1672812A (zh) * 2004-11-01 2005-09-28 杨俊山 垃圾综合处理新工艺方法及装置
CN1676232A (zh) * 2005-05-26 2005-10-05 罗嘉洵 一种无害化垃圾处理方法及设备
EP1966095A1 (de) * 2005-12-14 2008-09-10 Röhren- und Pumpenwerk Bauer Gesellschaft mbH Anlage und verfahren zur erzeugung von biogas aus flüssige und feste bestandteile enthaltendem biologisch abbaubaren material, insbesondere abfallprodukten, sowie biogaserzeugungsbehälter zur verwendung bei der anlage
JP2007216168A (ja) 2006-02-17 2007-08-30 Kurita Water Ind Ltd 有機性廃棄物の処理方法及び処理装置
CN1935400B (zh) * 2006-10-12 2010-09-15 惠州市三峰环保设备科技有限公司 城市生活垃圾综合处理方法
JP2009045612A (ja) 2007-07-20 2009-03-05 Chugoku Electric Power Co Inc:The 廃棄物のリサイクル処理方法及びリサイクル処理施設
FR2924441A1 (fr) * 2007-12-04 2009-06-05 Yves Lebesgue Procede de bio-traitement de matieres organiques a des fins de production de bio-gaz et de compost
GB0802388D0 (en) * 2008-02-11 2008-03-12 Parry Julian D The joint technologies protocol
DE102008032409A1 (de) 2008-07-10 2010-01-14 Rietzler, Johann, Dr. Verfahren zur Herstellung von Methan aus Prozeßwässern und biogenem Material
CN101612631B (zh) * 2009-07-24 2012-10-24 江苏雪枫环保科技有限公司 垃圾分拣处理工艺

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2258254A1 (fr) * 1998-12-23 2000-06-23 Andre Balu Usine de traitement industriel des dechets domestiques et des boues organiques par le recyclage des produits valorisables et par la production acceleree de gaz biologique (le biogaz) et d'un amendement organique (le digestat) generes par la fermentation anaerobie mesophile des matieres organiques
WO2003004423A1 (fr) * 2001-07-05 2003-01-16 Nkk Corporation Procede de traitement anaerobie d'un materiau organique et appareil de traitement anaerobie
EP1275443A2 (de) * 2001-07-09 2003-01-15 Porr Umwelttechnik GmbH Verfahren zum physikalischen und chemischen Behandeln und Auftrennen von Gewerbe- und/ oder Haushaltsabfall
CN1394701A (zh) * 2001-07-11 2003-02-05 周大成 城市垃圾集中处理再生方法
CN2585865Y (zh) * 2002-11-29 2003-11-12 李声寿 生活垃圾两相厌氧干发酵处理装置
CN1431159A (zh) * 2003-01-23 2003-07-23 湖南大学 城市垃圾两步厌氧消化处理工艺
CN101134684A (zh) * 2007-07-27 2008-03-05 东莞科创未来能源科技发展有限公司 一种餐厨垃圾两相厌氧发酵产氢产甲烷的方法
CN101337838A (zh) * 2008-08-11 2009-01-07 鄂尔多斯市东胜区传祥垃圾处理有限责任公司 有机固体废弃物联合厌氧发酵方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2650273A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108018199A (zh) * 2017-12-27 2018-05-11 山东明硕新能源科技有限公司 一种秸秆制备沼气的装置
CN109570206A (zh) * 2019-02-12 2019-04-05 德清华得环保设备有限公司 一种花园式地下消融垃圾转型发电设备
CN109570206B (zh) * 2019-02-12 2024-03-15 德清华得环保设备有限公司 一种花园式地下消融垃圾转型发电设备
CN111054735A (zh) * 2019-12-31 2020-04-24 菲德克(天津)环保科技有限公司 一种厨余垃圾的处理系统及处理方法
CN111196999A (zh) * 2020-01-13 2020-05-26 中国科学院青岛生物能源与过程研究所 一种生物质垃圾批式微生物发酵处理系统及处理方法
CN113388492A (zh) * 2021-06-21 2021-09-14 上海环境工程设计研究院有限公司 一种果蔬垃圾浆料的水解-除杂装置及方法
CN116200218A (zh) * 2023-04-26 2023-06-02 北京鼎创环保有限公司 一种装修垃圾生产燃料棒的生产系统及生产工艺
CN116200218B (zh) * 2023-04-26 2023-08-15 北京鼎创环保有限公司 一种装修垃圾生产燃料棒的生产系统及生产工艺

Also Published As

Publication number Publication date
CN102172596B (zh) 2012-07-11
US20130252314A1 (en) 2013-09-26
EP2650273A4 (en) 2015-06-10
JP2014505581A (ja) 2014-03-06
EP2650273B1 (en) 2016-12-07
JP5666012B2 (ja) 2015-02-04
EP2650273A1 (en) 2013-10-16
US9776224B2 (en) 2017-10-03
CN102172596A (zh) 2011-09-07

Similar Documents

Publication Publication Date Title
WO2012075756A1 (zh) 城乡生活垃圾资源化利用方法
CN101274331B (zh) 生活垃圾处理方法
WO2015062458A1 (zh) 一种固液分开及有机物与无机物分开垃圾处理方法和装置
CN201659136U (zh) 生活垃圾、有机废物气化-液化处置的系统
CN107497831A (zh) 一种城市生活垃圾分选与炭化综合处理的资源回收方法
CN101758059B (zh) 垃圾与污泥的高压热解处理方法与系统及其应用
CN102247969B (zh) 城市生活垃圾资源化分类利用方法
CN108580520B (zh) 一种中小城市生活垃圾分选处理系统与方法
CN102728601A (zh) 生活垃圾全分类资源化处理工艺
CN204999815U (zh) 立式螺旋出料的生活垃圾发酵装置
CN102921695A (zh) 城市生活垃圾水分选资源化无害化自然衍生循环生态系统
WO2017173850A1 (zh) 一种生活垃圾处理装置
CN111408601A (zh) 一种餐厨垃圾资源化利用方法和处理系统
CN104961307B (zh) 一种钻井固废无害化处理工艺及处理系统
CN104646396B (zh) 一种利用固废物制取氢碳燃料的方法
CN1792477A (zh) 生活垃圾无害化处理工艺
CN102220232B (zh) 机械出料酸化厌氧罐
CN205289210U (zh) 一种生活垃圾处理装置
CN211839515U (zh) 一种餐厨垃圾资源化处理系统
CN105327929B (zh) 生活垃圾处理方法及其实现装置
CN208074965U (zh) 一种自动上料的垃圾焚烧系统
WO2021087634A1 (zh) 生活垃圾制备有机复合土的方法
CN216655758U (zh) 一种餐厨垃圾与生活垃圾协同预处理系统
CN109047275A (zh) 一种生活垃圾处理方法
CN203764631U (zh) 城镇小区及农村生活垃圾资源化就地处理的环保设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847475

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13992113

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013542340

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011847475

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011847475

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE