WO2012066762A1 - 回路装置 - Google Patents

回路装置 Download PDF

Info

Publication number
WO2012066762A1
WO2012066762A1 PCT/JP2011/006330 JP2011006330W WO2012066762A1 WO 2012066762 A1 WO2012066762 A1 WO 2012066762A1 JP 2011006330 W JP2011006330 W JP 2011006330W WO 2012066762 A1 WO2012066762 A1 WO 2012066762A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
power source
power supply
state
function control
Prior art date
Application number
PCT/JP2011/006330
Other languages
English (en)
French (fr)
Inventor
正芳 宮原
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN2011800549314A priority Critical patent/CN103210557A/zh
Publication of WO2012066762A1 publication Critical patent/WO2012066762A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/102Parallel operation of dc sources being switching converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a circuit device for an electric device that reduces power consumption during standby.
  • a circuit device intended to reduce standby power mounted in a conventional electric device stops the operation of the power supply connected to the commercial power supply when the operation of the main functions of the electric device is unnecessary, and the voltage of the power supply The output itself is stopped.
  • a method is known in which power consumption of the entire electric device including the power supply configuration is stopped to reduce standby power consumption (see, for example, Patent Document 1).
  • the power supply circuit 102 rectifies and steps down the voltage of the AC power supply 101 and outputs a stable DC voltage to the circuit board 100.
  • the power supply circuit 102 includes a general switching power supply circuit 106 such as a step-down chopper method that generates a stabilized DC voltage by stepping down a DC high voltage obtained by smoothing the voltage of the AC power supply 101. Yes.
  • the switching power supply circuit 106 stops the switching operation and stops the output of the DC voltage.
  • the drive circuit 103 drives each component of the main function of the load device that consumes the DC voltage output from the power supply circuit 102.
  • the microcomputer 104 controls the operations of the power supply control circuit 107 and the drive circuit 103 based on the switches 105a, 105b, and 105c that transmit the user's operation.
  • the switches 105a, 105b, and 105c are configured using one or more two-pole single-throw switches each having two sets of contacts that are always open when not operated.
  • One contact of each of the switches 105a, 105b, and 105c is connected to the microcomputer 104. When the contact is short-circuited, the microcomputer 104 recognizes that the user has operated the switches 105a, 105b, and 105c.
  • the other contacts of the switches 105 a, 105 b, and 105 c that are not connected to the microcomputer 104 are connected to an external connection terminal of the switching power supply circuit 106 that constitutes the power supply circuit 102.
  • the switches 105a, 105b, and 105c When the user operates the switches 105a, 105b, and 105c to change the respective contacts from the open state to the closed state, the contacts are short-circuited, the switching power supply circuit 106 is activated, and a DC voltage output operation is started.
  • the power supply control circuit 107 is configured by a switching element such as a transistor, for example, and the microcomputer 104 switches between the open state and the short circuit state of the external connection terminal of the switching power supply circuit 106 of the power supply circuit 102. Thereby, it is possible to switch between stopping and maintaining the output operation of the DC voltage from the power supply circuit 102.
  • the switching power supply circuit 106 of the power supply circuit 102 starts a switching operation and outputs a DC voltage.
  • a DC voltage is output, power is supplied to the microcomputer 104, and the microcomputer 104 is activated.
  • the microcomputer 104 when the microcomputer 104 is activated, the microcomputer 104 simultaneously brings the external connection terminal of the switching power supply circuit 106 of the power supply circuit 102 into a short circuit state via the power supply control circuit 107. Thereby, the output of the DC voltage of the switching power supply circuit 106 is mainly maintained.
  • the microcomputer 104 recognizes the operation state of the switches 105a, 105b, and 105c in accordance with the description of the software stored in the microcomputer 104. And according to operation of recognized switch 105a, 105b, 105c, the drive circuit 103 is started and each structure of an apparatus is driven.
  • the microcomputer 104 determines the stop of the main function of the device as a result of recognition of the operation state of the switches 105a, 105b, and 105c or control determination according to the description of the software stored therein, the drive circuit 103 is stopped. Then, the maintenance of the switching operation of the switching power supply circuit 106 of the power supply circuit 102 via the power supply control circuit 107 is stopped.
  • the microcomputer 104 stops the output operation of the DC voltage by stopping the switching operation of the switching power supply circuit 106, and the load source of power consumption for all the AC power supplies 101 including the switching power supply circuit 106 and the microcomputer 104 itself is obtained. Stop. As a result, it is possible to reduce standby power in a so-called standby state that is unnecessary in the operation of the device.
  • the contact of the switches 105a, 105b, and 105c mounted on the conventional low standby power circuit device requires two functions by one switch operation by the user.
  • the first function is a contact function for switching from a standby state in which the output of the power supply circuit 102 is stopped to a start state in which the output is started and maintained, or a standby state in which the output is stopped from the output start state. is there.
  • the second function is a contact function for causing the microcomputer 104 to recognize that the user has operated.
  • two-pole single-throw operation switches are generally inexpensive as electronic components because of their simple structure, and the number of parts is limited compared to single-pole single-throw types that are more widely used in many electrical devices.
  • a conduction opening / closing unit that is connected between the common potential and the power conversion unit and switches the conduction of the primary power source, and the input terminal of the power conversion unit and the function control unit And a voltage change blocking unit for blocking the voltage of the primary power source provided in the.
  • a function for accepting the operation of starting the device is assigned to one or more of the operation switches, and if there is an operation by a user of the operation switch to which the function is assigned, the conduction of the primary power supply to the common potential to the power conversion unit is switched.
  • the power conversion unit is activated to output the secondary power supply
  • the function control unit is activated by the conduction of the secondary power supply, determines the operation of the operation switch, and operates the device assigned to the operation switch. It has the structure which controls.
  • the operation of the device can be switched to the operation assigned in advance to the operation switch by the operation of the operation switch by the user.
  • FIG. 1 is a diagram showing a configuration of a circuit device according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram illustrating an operation at the time when commercial power is supplied to the circuit device according to the embodiment.
  • FIG. 3 is a diagram showing an operation at the time when the operation switch of the circuit device in the embodiment is operated.
  • FIG. 4 is a diagram illustrating an operation in a state where the power activation is maintained by the conduction opening / closing unit of the circuit device according to the embodiment.
  • FIG. 5 is a diagram showing another configuration of the circuit device according to the embodiment.
  • FIG. 6 is a flowchart showing a control operation at the time of starting the circuit device according to the present embodiment.
  • FIG. 7 is a diagram showing still another configuration of the circuit device according to the embodiment.
  • FIG. 1 is a diagram showing a configuration of a circuit device according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram illustrating an operation at the time when commercial power is supplied to
  • FIG. 8 is a flowchart showing a control operation when the circuit device shown in FIG. 7 is started.
  • FIG. 9 is a flowchart showing a first control operation when the circuit device according to the present embodiment shifts to the standby state.
  • FIG. 10 is a flowchart showing a second control operation when the circuit device according to the present embodiment shifts to the standby state.
  • FIG. 11 is a flowchart showing a third control operation when the circuit device according to the present embodiment shifts to the standby state.
  • FIG. 12 is a flowchart showing a fourth control operation when the circuit device according to the present embodiment shifts to the standby state.
  • FIG. 13 is a diagram showing a configuration of a circuit device according to Embodiment 2 of the present invention.
  • FIG. 14 is a diagram showing a conventional circuit device.
  • FIG. 1 is a diagram showing a configuration of a circuit device according to Embodiment 1 of the present invention.
  • FIG. 1 shows an example of a control circuit configuration 1 including a circuit device of the present embodiment and a power supply configuration mounted on an electric device.
  • the step-down switching regulator system intermittently conducts power of a primary high-voltage power source such as a commercial power source by a switching operation of a switch element. And it is the system which produces the voltage which stepped down to the secondary side by storing electric power periodically in the inductor arranged at the secondary side used as the output side of a switch element.
  • the control circuit configuration 1 of the present embodiment obtains a power supply source by connecting a commercial power source 2 that is an AC high-voltage power source of, for example, AC 100V (50/60 Hz) from the outside of the device. ing.
  • the commercial power source 2 is connected to a rectifying and smoothing power source unit 3 that obtains a rectifying power source from an AC high-voltage power source at the next stage.
  • the rectifying / smoothing power supply unit 3 includes a diode 4 that is a rectifying element and a capacitor 5 that smoothes the pulsation of the high-voltage power supply rectified through the diode 4. Then, by accumulating the charge of the AC high voltage power supply of the commercial power supply 2 rectified in the capacitor 5, the primary power supply 6 that is a stabilized rectified high voltage power supply is generated.
  • the primary power supply 6 of the present embodiment generates a voltage of, for example, DC 141 V as shown by arrows at both ends of the capacitor 5 in FIG. At this time, the primary power supply 6 generates a voltage that makes the wiring of the common potential 7 a positive potential when the wiring side indicated by a bold line is arranged at the upper side in FIG.
  • the primary power source 6 is connected to the power converter 8 in order to obtain a stabilized low-voltage power source for controlling the equipment.
  • the power conversion unit 8 steps down from the primary power supply 6 and outputs a stabilized voltage.
  • the output voltage of the power conversion unit 8 is accumulated in the capacitor 5a arranged in the next stage to generate the secondary power source 9, thereby further stabilizing power supply to the subsequent control unit.
  • the secondary power supply 9 generates a voltage of, for example, DC 5V as shown by arrows at both ends of the capacitor 5a in FIG.
  • the secondary power supply 9 similarly to the primary power supply 6, the secondary power supply 9 generates a voltage that makes the wiring of the common potential 7 shown in FIG.
  • the power conversion unit 8 is configured by the step-down switching regulator described above, and is connected to the primary power source 6 with respect to the common potential 7, and when the power of the primary power source 6 is supplied, the primary power source 6 is converted to output the power of the secondary power source 9.
  • the power conversion unit 8 includes an oscillation control drive unit 10, a switch element 11, a return diode 4 a, and a coil 12.
  • the oscillation control drive unit 10 of the power conversion unit 8 is connected to the primary power source 6 and feeds back the voltage value of the secondary power source 9 with respect to the common potential 7 to regulate the secondary power source 9 (for example, DC 5V).
  • the switch drive voltage is output by changing the oscillation interval so as to stabilize.
  • the oscillation control drive unit 10 is configured by, for example, a general self-excited oscillation circuit of an output voltage feedback type, and includes a drive power supply terminal 13, a voltage feedback terminal 14, and a drive voltage output terminal 15.
  • the drive power supply terminal 13 of the oscillation control drive unit 10 supplies power based on the primary power supply 6 to the common potential 7.
  • the voltage feedback terminal 14 of the oscillation control drive unit 10 feeds back the voltage of the secondary power supply 9.
  • the drive voltage output terminal 15 of the oscillation control drive unit 10 outputs a switch drive voltage to drive the switch element 11, and makes the power of the primary power supply 6 intermittently conduct to the output side.
  • the switch element 11 is a general circuit element, such as a field effect transistor (FET), and switches between electric power conduction and interruption.
  • FET field effect transistor
  • the coil 12 of the power conversion unit 8 stores the power of the primary power source 6 intermittently conducted by the switch element 11, and generates a voltage stepped down on the output side of the power conversion unit 8 by the power conversion action.
  • the return diode 4a of the power conversion unit 8 is provided to prevent the supply of power from the coil 12 from being interrupted when the switch element 11 is turned off by the switch operation. Increases stability.
  • the oscillation control drive unit 10 stops.
  • the output of the switch drive voltage from the drive voltage output terminal 15 also stops, so that the switch element 11 also stops in the cut-off state.
  • the power conversion unit 8 stops the output of the secondary power supply 9 by power conversion.
  • a function control unit 16 controls the installed device by starting up and operating if there is power supply from the secondary power source 9 with the common potential 7 as a reference potential.
  • the control element 17 has a configuration including one or more devices whose drive states are controlled by the function control unit 16.
  • the operation input unit 18 includes at least one input interface for capturing the operation status of the user who uses the device in the function control unit 16.
  • the function control unit 16 is a random access which is an example of a central processing unit (CPU), an input / output device, an analog / digital conversion input device (A / D), a read only memory (ROM), and a read / write memory.
  • CPU central processing unit
  • a / D analog / digital conversion input device
  • ROM read only memory
  • RAM built-in memory
  • the function control unit 16 includes a power supply terminal 16a for supplying power, an output terminal unit 19 having, for example, output terminals 19a, 19b, and 19c, and an input terminal unit 20 having, for example, the input terminal 20a. ing.
  • the output terminal unit 19 outputs the voltage supplied to the power supply terminal 16a according to the contents of the programmed control operation to output the Hi state, and outputs the Lo state as a voltage of almost 0 V by sucking the current.
  • the input terminal unit 20 recognizes the Hi state when the input voltage is equal to or higher than the specified value within the range of the voltage supplied to the power supply terminal 16a, and sets the Lo state if the voltage is almost 0V. recognize.
  • the control element 17 includes, for example, an illumination notification device 21 using a LED, a DC motor 22, and the like.
  • the lighting notification device 21 is arranged and connected between one output terminal 19a of the output terminal unit 19 of the function control unit 16 and the common potential 7, and when the output terminal 19a is in the Lo state, the lighting notification device 21 is turned on and is used by the user.
  • the DC motor 22 is arranged and connected between one output terminal 19b of the output terminal unit 19 of the function control unit 16 and the common potential 7. When the output terminal 19b is in the Hi state, the DC motor 22 is activated and rotationally driven. .
  • the control element 17 is not limited to the above elements, and any element can be incorporated as long as it is a controlled element.
  • the operation input unit 18 is configured by connecting an operation switch unit 23 having a single-pole single-throw contact with a discharge resistor 24 in series. As shown in FIG. 1, for example, the operation switch unit 23 is arranged between each input terminal 20 a of the input terminal unit 20 of the function control unit 16 and the common potential 7, and the contacts are connected by a pushing operation by the user. To form a closed circuit.
  • the discharging resistor 24 stabilizes the potential of each input terminal 20a of the input terminal unit 20 to a voltage of 0 V in a non-operating state in which the user does not press the operation switch unit 23. This prevents the function control unit 16 from erroneously detecting the input of the operation switch unit 23.
  • the voltage state of the input terminal 20a of the input terminal unit 20 corresponding to the connection destination changes from 0V to the secondary power source. It changes to the Hi state (5 V in this embodiment) which is a voltage of 9.
  • the function control part 16 judges that the operation switch 23a of the operation switch part 23 was pushed in by the user. Then, based on the determination of the function control unit 16, the control element 17 is controlled by performing a control operation defined in advance by a program corresponding to the depressed operation switch 23a.
  • the operation switch 23a of the operation input unit 18 is electrically connected between the common potential 7 and the drive power supply terminal 13 of the oscillation control drive unit 10 of the power conversion unit 8 when the contact is closed by being pushed by the user.
  • the conduction open / close unit 25 is configured by, for example, a PNP transistor 26 and the like, and is provided between the drive power supply terminal 13 of the oscillation control drive unit 10 of the power conversion unit 8 and the common potential 7.
  • electrical_connection opening / closing part 25 changes the output state of one output terminal 19c of the output terminal part 19 of the function control part 16, and is electrically connected between the common electric potential 7 and the drive electric power supply terminal 13.
  • electrical_connection opening / closing part 25 can switch the state of electrical conduction and interruption
  • the emitter terminal of the transistor 26 which is the conduction switching unit 25 is connected to the common potential 7
  • the collector terminal is connected to the driving power supply terminal 13 of the oscillation control driving unit 10
  • the base terminal is the current limiter. It is connected to the output terminal 19c of the function control unit 16 through the resistor 24a.
  • the output terminal 19c of the function control unit 16 when the output terminal 19c of the function control unit 16 is switched from the Hi state to the Lo state, the current flowing through the base terminal of the transistor 26 of the conduction switching unit 25 flows from the common potential 7 through the resistor 24a. At this time, when a current flows through the base terminal of the transistor 26, the emitter terminal and the collector terminal of the transistor 26 change from an electrically disconnected state to a conductive state.
  • the output terminal 19c of the function control unit 16 is designated by the program of the one-chip microcomputer of the function control unit 16 to be in the Lo state, the conduction opening / closing unit 25 is activated and the oscillation control drive is started from the common potential 7.
  • the electrical continuity of the unit 10 with respect to the drive power supply terminal 13 can be switched from the cut-off state to the conductive state.
  • the one-chip microcomputer of the function control unit 16 is connected to the output terminal 19c of the function control unit 16 from the Hi state immediately after the power is supplied from the secondary power source 9 with the common potential 7 as the reference potential.
  • the algorithm of the control operation for switching to the Lo state is defined by describing it in a program.
  • the primary power supply 6 with respect to the common potential 7 is conducted to the drive power supply terminal 13 of the oscillation control drive unit 10 through the conduction open / close unit 25 by the control operation defined by the function control unit 16. Power supply is maintained. Thus, the generation of the secondary power supply 9 by the power conversion unit 8 is maintained.
  • the voltage change blocking unit 27 includes a path connecting the conduction switching unit 25 and the driving power supply terminal 13 of the oscillation control driving unit 10 of the power conversion unit 8 and an input terminal 20 a of the function control unit 16. It arrange
  • the voltage change blocking unit 27 is configured by, for example, a diode 4b, and as shown in FIG. 1, the anode of the diode 4b is used as the input terminal 20a of the function control unit 16, and the cathode of the diode 4b is used as the drive power supply terminal. 13 is provided so as to be connected to the side of the route toward 13.
  • blocking part 27 carries out functional control of the voltage change based on conduction
  • the voltage of the input terminal 20a of the function control unit 16 is the drive power supply terminal. 13 is not affected by the voltage change. And the voltage of the input terminal 20a of the function control part 16 changes based only on the conduction
  • the anode electrode of the diode 4b of the voltage change interrupting unit 27 is connected to the input terminal 20a side of the function control unit 16, even if the operation switch 23a is operated and the contacts are closed, the conduction path is not changed. There is no blocking. Therefore, the primary power supply 6 for the common potential 7 can be conducted to the drive power supply terminal 13 side.
  • the low standby power circuit device of the present embodiment is configured.
  • FIG. 2 is a diagram showing an operation at the time when commercial power is supplied to the circuit device according to the embodiment.
  • FIG. 3 is a diagram showing an operation at the time when the operation switch of the circuit device in the embodiment is operated.
  • FIG. 4 is a diagram illustrating an operation in a state where the power activation is maintained by the conduction opening / closing unit of the circuit device according to the embodiment.
  • the AC power source for example, AC 100 V
  • the AC power source 2 is a diode 4 and a capacitor constituting the rectifying and smoothing power source unit 3. 5 is rectified and smoothed.
  • a primary power source 6 that is a rectified high-voltage power source having a common potential 7 side as a positive potential is generated at both ends of the capacitor 5.
  • the power conversion unit 8 that generates the secondary power supply 9 from the primary power supply 6 includes the drive power supply terminal 13 of the oscillation control drive unit 10 of the power conversion unit 8 and A conduction path indicated by a thick arrow line with a cutoff line (x mark) in FIG. 2 between the common potential 7 is not formed because the transistor 26 of the conduction opening / closing unit 25 is in an OFF (cutoff) state. Therefore, power based on the primary power supply 6 from the common potential 7 is not supplied to the oscillation control drive unit 10 of the power conversion unit 8. That is, when the power supply based on the primary power supply 6 from the common potential 7 cannot be obtained, the oscillation control drive unit 10 of the power conversion unit 8 maintains the stopped state.
  • the switch drive voltage for driving the switch element 11 is not output from the drive voltage output terminal 15 of the oscillation control drive unit 10, the power of the primary power supply 6 via the coil 12 due to intermittent conduction of the switch element 11. There is no conversion effect. Therefore, the secondary power supply 9 having the common potential 7 as a positive potential does not occur at both ends of the capacitor 5a connected to the output side of the power conversion unit 8.
  • the secondary power source 9 is not output from the power conversion unit 8 to both ends of the capacitor 5a only by connecting the commercial power source 2 from the outside of the device.
  • the circuit device can realize low power consumption by keeping the device in a standby state in a state where the power of the commercial power source 2 is not substantially consumed.
  • the drive power supply terminal 13 receives power based on the primary power supply 6. Supplied. As a result, the oscillation control drive unit 10 of the power conversion unit 8 shifts to the activated state.
  • the oscillation control drive unit 10 of the power conversion unit 8 is activated at the moment when the user pushes the operation switch 23a, and starts output of the switch drive voltage to the switch element 11 from the drive voltage output terminal 15. As a result, the power conversion unit 8 starts output of the secondary power source 9 with the common potential 7 being a positive potential at both ends of the capacitor 5a arranged in the next stage.
  • the one-chip microcomputer of the function control unit 16 is activated, and each control element 17 is set in accordance with a prescribed control content (algorithm) described in advance by a program. Make it work. As a result, the device-specific function is activated. And the function control part 16 transfers to a starting state from a standby state.
  • the function control unit 16 switches the output terminal 19c of the function control unit 16 from the Hi state to the Lo state immediately after shifting from the standby state to the activation state based on the description of the program defined in advance.
  • power based on the primary power supply 6 from the common potential 7 is continuously supplied to the drive power supply terminal 13 of the oscillation control drive unit 10 through the conduction opening / closing unit 25. It is done. As a result, the generation of the secondary power supply 9 by the power conversion unit 8 is maintained thereafter.
  • the function control unit 16 determines the operation state of the operation switch unit 23 of the corresponding operation input unit 18 from the voltage change of the input terminal unit 20 of the function control unit 16 while maintaining the generation of the secondary power supply 9. To do. Then, based on the above determination, the function control unit 16 performs a control operation defined in advance by a program in correspondence with, for example, the operation switch 23a of the operation switch unit 23 pushed in by the user.
  • the operation switch 23a which comprises 1 set of the operation input part 18 forms the conduction
  • the function control unit 16 to which the operation switch 23a is connected.
  • the diode 4b of the voltage change blocking unit 27 is connected to the input terminal 20a. Therefore, voltage fluctuation based on the supply of power from the primary power supply 6 to the input terminal 20 a side of the function control unit 16 is blocked by the voltage change blocking unit 27.
  • the function control unit 16 since the voltage change based only on the power supply of the secondary power source 9 based on the operation of the operation switch 23a occurs on the input terminal 20a side of the function control unit 16, the function control unit 16 operates the operation switch 23a by the user. The state of can also be judged. Thereby, based on the above determination, the function control unit 16 executes the control operation of the operation switch unit 23 pushed in by the user, for example, corresponding to the operation switch 23a, which is defined in advance by the program.
  • the primary power supply 6 is generated by the rectifying and smoothing power supply unit 3.
  • the power based on the primary power source 6 is not supplied to the oscillation control drive unit 10 of the power conversion unit 8
  • the power conversion operation of the power conversion unit 8 is not started.
  • the secondary power supply 9 stabilized with a low voltage having the common potential 7 that is the same potential as the primary power supply 6 is not generated, and the function control unit 16 is not activated.
  • the device can maintain a standby state in which almost no power is consumed.
  • the function control unit 16 when the secondary power source 9 is output from the power conversion unit 8, the function control unit 16 is activated, and the device shifts from the standby state to the activated state. At this time, the function control unit 16 supplies power based on the primary power supply 6 to the drive power supply terminal 13 of the oscillation control drive unit 10 via the conduction opening / closing unit 25 immediately after being activated. Thereby, the function control unit 16 performs the control operation of the activation state of the device while maintaining the generation of the secondary power supply 9 by the power conversion unit 8.
  • the voltage change blocking unit 27 causes the input terminal 20a side of the function control unit 16 to operate. Changes in voltage based only on the power supply of the secondary power source 9. That is, the voltage change cut-off unit 27 connects the path of the input terminal 20a of the function control unit 16 and the conduction switching unit 25 and the drive power supply terminal 13 of the oscillation control drive unit 10 of the power conversion unit 8. It is arranged and connected between the route. Therefore, the voltage variation based on the supply of power from the primary power supply 6 to the input terminal 20 a side of the function control unit 16 is blocked by the voltage change blocking unit 27.
  • the power conversion unit 8 in the stopped state is activated using the single-pole single-throw type equipped with one set of contacts as the operation switch 23a to which the device activation operation function is assigned, and the function control is performed.
  • the unit 16 can be shifted from the standby state to the operating state.
  • the operation switch 23a when the user operates the operation switch 23a, for example, the operation switch 23a in a state where the function control unit 16 is activated, the function of the device connected to the operation switch 23a is predetermined. The control operation of the control unit 16 can be switched.
  • the phototransistor output side of the phototransistor coupler that enables transmission using light can be replaced with the operation switch 23a.
  • the current is turned on by lighting the LED side, and the phototransistor output side is changed to the current conduction state, thereby closing the contact between the operation switches 23a. It can be operated in the same manner as in the above state.
  • the operation voltage for changing the current on the LED side and the circuit voltage potential on the phototransistor output side are different (circuit configuration in which the LED side is not connected to the common potential 7), or another power supply from outside the control circuit configuration 1 Needless to say, even in a remote operation configuration in which the operation voltage is inputted, a function capable of reducing standby power can be realized.
  • FIG. 5 is a diagram showing another configuration of the circuit device according to the present embodiment.
  • the circuit device of another configuration of the present embodiment is different from that of the present embodiment in that a voltage change blocking unit 27 is provided corresponding to each of the operation switch units 23 having a plurality of operation switches 23a and the like of the operation input unit 18. Different from the circuit device of the form. Since other configurations are the same as those of the circuit device described above, detailed description thereof is omitted.
  • a plurality of (for example, three) operation switches 23 a, 23 b, and 23 c of the operation switch unit 23 to which the activation operation function of the device that can activate the power conversion unit 8 from the standby state is assigned.
  • the control unit 16 is provided as an input interface for capturing the operation status of the user.
  • the operation switches 23 a, 23 b, and 23 c are individually connected to the voltage change blocking unit 27 for each path that connects the drive power supply terminal 13 of the oscillation control drive unit 10 of the power conversion unit 8. Arranged and connected. Thereby, the power conversion part 8 can be started by operation by a user via each operation switch 23a, 23b, 23c.
  • each operation switch 23a is provided by a voltage change blocking unit 27 provided between the input terminals 20a, 20b, 20c constituting the input terminal unit 20 of the function control unit 16 to which the operation switches 23a, 23b, 23c are connected. Changes in the voltages of the input terminals 20a, 20b, and 20c based on the operations of 23b and 23c can be blocked from the other input terminal portions 20.
  • the one-chip microcomputer of the function control unit 16 individually performs each operation.
  • the operation of the switches 23a, 23b, and 23c can be recognized.
  • the algorithm for switching the control operation individually corresponding to the operation of each operation switch 23a, 23b, 23c is described by software in advance, so that the function control unit 16 switches the control operation separately. Can be controlled.
  • FIG. 6 is a flowchart showing a control operation at the time of starting the circuit device according to the present embodiment.
  • FIG. 6 shows the control operation of the function control unit 16 immediately after the function control unit 16 is activated and the device shifts from the standby state to the activated state.
  • step S10 the output terminal 19c of the function control unit 16 is switched from the Hi state to the Lo state, and the conduction opening / closing unit 25 is activated (step S10). Thereby, the output of the secondary power supply 9 from the power conversion unit 8 is maintained, and the activation state of the function control unit 16 itself is maintained.
  • step S20 it is determined whether or not the voltage state of, for example, the input terminal 20a of the input terminal unit 20 of the function control unit 16 is in the Lo state. That is, it is determined whether, for example, the operation switch 23a of the operation switch unit 23 to which the device activation operation function is assigned is being operated. At this time, when the operation switch 23a is operated and the voltage of the input terminal 20a is in the Hi state (No in Step S20), the process returns to the determination before Step S20, and the determination operation of Step S20 is repeated. On the other hand, when the operation switch 23a is not operated and the voltage of the input terminal 20a is in the Lo state (Yes in step S20), an algorithm for shifting to the next operation is executed.
  • the function control unit 16 performs the subsequent device control operation. Do not carry out. As a result, even if the operation switch 23a assigned to the activation of the device continues to be pressed due to an unexpected situation other than the user's operation, the device is activated from the standby state, but the subsequent control operation is not performed. . As a result, it is possible to realize a circuit device that has higher safety and reduces standby power of the electric device.
  • FIG. 7 is a diagram showing still another configuration of the circuit device according to the embodiment.
  • the circuit device of still another configuration of the present embodiment has a configuration in which a sound generation unit 28 that emits a notification sound is further provided as the control element 17.
  • Other configurations are the same as those of the circuit devices described above, and thus detailed description thereof is omitted.
  • the sound generator 28 is provided between one output terminal 19 d of the one-chip microcomputer of the function controller 16 and the common potential 7.
  • the sound generation unit 28 is constituted by, for example, a piezoelectric buzzer 29 or the like.
  • the piezoelectric buzzer 29 that is the sound generation unit 28 applies a rectangular wave voltage having a predetermined frequency, for example, the piezoelectric buzzer 29 vibrates at a frequency based on the period of the applied rectangular wave voltage to generate a sound as a notification sound. .
  • the piezoelectric buzzer 29 has a periodic voltage based on the secondary power supply 9 with respect to the common potential 7. Applied. As a result, a notification sound is generated from the piezoelectric buzzer 29 of the sound generator 28.
  • a voltage at which the Hi state and the Lo state are switched is applied to the output terminal 19d of the function control unit 16 connected to the piezoelectric buzzer 29 serving as the sound generation unit 28, for example, with a period of 50 msec and a ratio (duty) of 50%. .
  • a notification sound having a frequency of 2 kHz is generated for about 1 second, for example. This is made to sound by describing the algorithm of the above-described control operation in advance in software on the one-chip microcomputer of the function control unit 16.
  • FIG. 8 is a flowchart showing an operation procedure when starting up the circuit device shown in FIG. Since the flowchart of FIG. 8 is basically the same as that of FIG. 6, steps different from those of FIG. 6 will be mainly described.
  • step S10 the conduction control unit 25 is activated by the function control unit 16.
  • step S15 the voltage having the predetermined cycle described above is applied to the output terminal 19d of the function control unit 16, and the piezoelectric buzzer 29, which is the sound generation unit 28, is driven to generate a notification sound (step S15).
  • a notification sound can be generated to notify the user, for example.
  • the notification sound defined by the sound generation unit 28 is generated by the algorithm defined in step S15.
  • the user can easily confirm that the device has been normally started from the standby state.
  • the algorithm of the control operation performed when the circuit device in the present embodiment shifts to the standby state will be described with reference to FIG. 1 and FIG. Specifically, in a state in which the function control unit 16 is activated, the device is put into a standby state by stopping the driving of the power conversion unit 8 from the activated state and stopping the generation of the secondary power supply 9. The algorithm of the control operation to be transferred will be described.
  • FIG. 9 defines a series of control operations that the one-chip microcomputer of the function control unit 16 repeatedly performs to execute the function of the device when the function control unit 16 is activated. An algorithm for a part of the main procedure is shown.
  • FIG. 9 shows the determination of the operation status by the user of the operation switch to which the device activation operation function is not assigned, and the activation state of the power conversion unit 8 through the conduction opening / closing unit 25 based on the determination result.
  • a simplified algorithm for maintaining and stopping is shown.
  • step S60 it is determined whether or not the operation state of the operation switch 23a is continued for a predetermined determination time Ta (step S60).
  • the process proceeds to the control operation of the subsequent main procedure without going through the procedure of Step S70. To do.
  • the process proceeds to the next step S70.
  • the operation switch unit 23 assigned with the function of shifting the device to the standby state includes one or more operation switch units 23 other than the operation switch 23a assigned with the function of starting the power conversion unit 8 from the standby state.
  • An operation switch is predetermined.
  • the operation switch 23 a is connected to the drive power supply terminal 13 of the oscillation control drive unit 10 of the power conversion unit 8 via the voltage change blocking unit 27.
  • the determination time Ta is set in order to distinguish between the operation time of the operation switch unit 23 that shifts the device to the standby state and the operation time for switching the control operation of the normal device assigned to the same operation switch unit 23. Is. Therefore, if a time of about 3 seconds or more is set as the determination time Ta, for example, the device can be shifted to a standby state only when the selected operation switch unit 23 is continuously pressed for a long time.
  • determination time Ta is not described in detail in the flowchart of FIG. 9, it is always initialized (zero state) when the device is started and when the selected operation switch unit 23 is not operated. Are specified in the algorithm.
  • the selected operation switch unit 23 determines the operated state during the determination time Ta. It can be used to assign an operation function for switching a specific control operation of a device.
  • FIG. 10 is a flowchart showing a second control operation when the circuit device according to the present embodiment shifts to a standby state. Since the flowchart of FIG. 10 is basically the same as FIG. 9, steps different from those of FIG. 9 will be mainly described.
  • step S60 it is determined whether or not the operation state of the operation switch unit 23 is continued for a predetermined determination time Ta (step S60). At this time, when the operation time of the operation switch unit 23 is continued for the determination time Ta (Yes in step S60), the process proceeds to the next step S65.
  • step S65 the voltage having the predetermined period described above is applied to the output terminal 19 d of the function control unit 16 to drive the piezoelectric buzzer 29 that is the sound generation unit 28.
  • a notification sound is generated (step S65). Accordingly, for example, the user can be notified of the transition to the standby state of the device by generating a notification sound.
  • a voltage for switching between the Hi state and the Lo state is applied to the sound generation unit 28 at a cycle of 50 msec and a ratio (duty) of 50%, for example, to generate a notification sound having a frequency of 2 kHz.
  • a control operation algorithm for generating the notification sound by switching the sound in 0.5 seconds, for example, as one unit, for example, 2 units with an interval of 0.25 seconds, is described in the program. May be defined. Thereby, a notification sound different from that at the time of activation of the device is generated, and the user can easily identify the shift to the standby state of the device.
  • the operation switch unit 23 to which the function for shifting the device to the standby state is assigned is described as an example in which an operation switch other than the operation switch 23 a to which the device activation operation function is assigned is selected. It is not limited to this.
  • an operation function for shifting to the standby state may be assigned to the operation switch 23a to which the device activation operation function is assigned.
  • FIG. 11 is a flowchart showing a third control operation when the circuit device according to the present embodiment shifts to a standby state.
  • the flowchart of FIG. 11 defines a series of control operations that the one-chip microcomputer of the function control unit 16 repeatedly performs to execute the function of the device when the function control unit 16 is activated. It shows the algorithm of a part of the main procedure.
  • the flowchart of FIG. 11 determines the operation status of the operation switch 23a to which the device activation operation function is assigned, and maintains and stops the activation state of the power conversion unit 8 via the conduction opening / closing unit 25 based on the determination result.
  • the execution algorithm is simplified.
  • step S100 it is determined whether or not the operation switch 23a of the operation switch unit 23, which is a determination target, is pushed in and operated by the user (step S100). At this time, when the operation switch 23a is being operated by the user (Yes in step S100), the process proceeds to the next step S110.
  • step S110 it is determined whether or not the operation state of the operation switch 23a is continued for a predetermined determination time Ta (step S110).
  • the determination time Ta is preferably set based on the same concept as the time described in the algorithm for shifting to the standby state in the flowchart of FIG.
  • step S120 it is determined that the power conversion unit 8 is stopped from maintaining the activation state via the conduction opening / closing unit 25 and stored (step S120), and then the control operation of the subsequent main procedure is performed.
  • step S130 which is different from the flowchart of FIG. 10 and shifts to the case where the operation switch 23a is not operated by the user (No in step S100), will be described.
  • step S130 it is confirmed whether or not the determination of the stop of the power conversion unit 8 is stored (step S130). At this time, when the stop determination of the power conversion unit 8 is not stored (No in Step S130), the process proceeds to the control operation of the subsequent main procedure without going through the procedure of Step S140. On the other hand, when the judgment of the stop of the power converter 8 is stored (Yes in step S130), the process proceeds to the next step S140.
  • step S140 the maintenance of the activation state of the power conversion unit 8 via the conduction opening / closing unit 25 is stopped (step S140), and then the control of a series of subsequent main procedures is performed. Move to operation.
  • the pushing operation by the user of the operation switch 23a is released.
  • the device can be shifted to a standby state only when it is in a non-operating state.
  • the function control unit 16 is in an activated state, an operation for switching a specific control operation of the device by determining a state that the operation switch 23a is operated while the operation switch 23a is less than the determination time Ta.
  • Functions can be assigned and used. Further, it is possible to prevent a problem that the device is restarted in a state where the operation switch 23a is continuously operated during the transition to the standby state.
  • a flow for generating a notification sound may be added to the algorithm of the present embodiment shown in FIG. 11 as shown in FIG. 12 when the device is shifted to the standby state.
  • FIG. 12 is a flowchart showing a third control operation when the circuit device according to the present embodiment shifts to a standby state. Note that the flowchart of FIG. 12 is basically the same as that of FIG. 11, and therefore, steps different from those of FIG. 11 will be mainly described.
  • the voltage having the predetermined period described above is applied to the output terminal 19 d of the function control unit 16 to drive the piezoelectric buzzer 29 that is the sound generation unit 28.
  • a notification sound is generated (step S115). Accordingly, for example, the user can be notified of the transition to the standby state of the device by generating a notification sound.
  • the notification sound generated by the sound generation unit 28 is preferably the same notification sound as that used when the device described in FIG. 10 is shifted to the standby state.
  • step S120 it is determined and stored that the activation state maintenance of the power conversion unit 8 is stopped via the conduction opening / closing unit 25 (step S120), and then the control operation of the subsequent main procedure is performed.
  • the user recognizes more that the user's operation for shifting the device from the activated state to the standby state by the generated notification sound is correctly determined in the device. It becomes easy.
  • Embodiment 2 The configuration of the low standby power circuit device according to Embodiment 2 of the present invention will be described below with reference to FIG. In FIG. 13, the same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • FIG. 13 is a diagram showing a configuration of a circuit device according to Embodiment 2 of the present invention.
  • the circuit device according to the present embodiment is different from the circuit device according to the first embodiment in that a power supply activation unit 30 is provided.
  • Other configurations and operations are the same as those of the circuit device of the first embodiment.
  • the power supply activation unit 30 causes the base terminal current of the transistor 26 of the conduction switching unit 25 to flow and the drive power supply terminal 13 of the power conversion unit 8 to
  • the power converter 8 is configured to be activated by applying the primary power source 6.
  • the power supply activation unit 30 is composed of a capacitor 5 b, a diode 4 c, and a diode 4 d, and is arranged in parallel with the capacitor 5 constituting the rectifying and smoothing power supply unit 3.
  • condenser 5b is arrange
  • the diode 4d is connected in series with the capacitor 5b, the anode side of the diode 4d is connected to the capacitor 5b, and the cathode side of the diode 4d is connected to the common potential 7.
  • the diode 4c is arranged with the cathode electrode side connected between the diode 4d and the capacitor 5b, and the anode electrode side of the diode 4c is connected to the resistor 24a connected to the base terminal of the transistor 26 of the conduction switching unit 25. Has been.
  • the primary power supply 6 for the common potential 7 is applied to the drive power supply terminal 13 of the oscillation control drive unit 10 of the power conversion unit 8 via the power supply activation unit 30 to establish the conduction state.
  • the power conversion unit 8 is configured to start generating the secondary power supply 9.
  • the capacitor 5b of the power supply starting unit 30 is connected to the resistor 24a connected to the base terminal of the transistor 26 of the conduction switching unit 25 and the capacitor 5b when the supply of the primary power supply 6 is started.
  • a charging current flows from the primary power supply 6 to the common potential 7 through the diode 4c connecting the cathode electrode side.
  • condenser 5b flows for a fixed period based on the time constant of the series circuit comprised by the electrostatic capacitance of the capacitor
  • the charging current flows as the base current of the transistor 26 of the conduction switching unit 25.
  • the diode 4d connected between the cathode 5 side of the common potential 7 and the capacitor 5b constituting the power supply starting unit 30 is disconnected from the commercial power supply 2 from the control circuit configuration 1 That is, when the supply of power from the commercial power supply 2 to the device is stopped, the electric charge charged in the capacitor 5b is discharged to the common potential 7 side.
  • the diode 4d of the power supply starting unit 30 is connected to the power supply unit 8 so that the power conversion unit 8 can be started up again when a charging current flows through the capacitor 5b when the control circuit configuration 1 is next connected to the commercial power supply 2.
  • the starter 30 is provided.
  • the function control is connected to both ends of the capacitor 5b via the resistor 24a in order to control the starting state of the conduction opening / closing unit 25.
  • a voltage having a negative potential is generated with respect to the output terminal 19c of the unit 16.
  • the one-chip microcomputer constituting the function control unit 16 may be destroyed. Therefore, it is necessary to cut off the conduction of the negative voltage generated at both ends of the capacitor 5b with respect to the output terminal 19c of the function control unit 16.
  • the diode 4e is provided between the resistor 24a of the conduction switching unit 25 and the output terminal 19c of the function control unit 16 with a cathode electrode disposed on the output terminal 19c side. This prevents a negative voltage generated at both ends of the capacitor 5b from being conducted to the output terminal 19c of the function control unit 16 during charging.
  • the power conversion unit 8 when there is an increase in the voltage of the primary power supply 6, the power conversion unit 8 can be activated by switching the conduction of the primary power supply 6 to the common potential 7 by the power supply activation unit 30. .
  • the power conversion unit 8 when the commercial power source 2 is connected to the control circuit configuration 1, the power conversion unit 8 can be activated via the power source activation unit 30, and the generation of the secondary power source 9 can be started.
  • the function control unit 16 that controls the device is activated by the output of the secondary power source 9, the device can be activated in an operating state from the point when the supply of the commercial power source 2 is started.
  • the circuit device of the present invention can be started and stopped by switching the continuity of the primary power supply in a standby state when the power supply is connected, and the rectifying and smoothing power supply unit that outputs the primary power supply upon connection of the power supply.
  • the primary power source is used as the power supply source
  • the secondary power source that outputs one side of the primary power source as a common potential is output by power conversion
  • the operation of the device is controlled by the output of the power conversion unit.
  • a function control unit including an input terminal unit having one or more input terminals for detecting a change in voltage based on conduction of the power source.
  • It is connected between the common potential and the power conversion unit, and between the common potential and the input terminal unit of the function control unit, and is always open type for switching between conduction of the primary power supply and conduction of the secondary power supply.
  • One or more operation switches having single-pole single-throw contacts, a conductive switching unit that is connected between the common potential and the power conversion unit and switches the conduction of the primary power source, and the power conversion unit and function control
  • a voltage change blocking unit that blocks the voltage of the primary power source provided between the input terminal unit and the input terminal unit.
  • the function for accepting the operation of starting the device is assigned to one or more of the operation switches, and if there is an operation by the user of the operation switch to which the function is assigned, the conduction of the primary power supply to the common potential to the power conversion unit is switched.
  • the power conversion unit is activated to output the secondary power source
  • the function control unit is activated by the output of the secondary power source to determine the operation of the operation switch and control the operation of the device assigned to the operation switch. It has the composition to do.
  • the function control unit When the function control unit is in a standby state, when the operation switch having the normally open single-pole single-throw contact assigned to the device activation operation function is closed, the operation switch and the primary power source are operated by the operation switch.
  • the power conversion unit is activated to output a secondary power supply having one side of the primary power supply as a common potential.
  • the function control unit when the secondary power supply is output, the function control unit is activated, and the conduction of the primary power supply with respect to the common potential is switched to the power conversion unit via the conduction switching unit in a state where the function control unit is operated.
  • movement of an apparatus can be controlled according to the operation
  • the conduction path of the secondary power source is formed by the operation switch to the input terminal of the function control unit.
  • the voltage change based on the switching of the conduction of the primary power source can be shut off from the input terminal of the function control unit via the conduction switching unit by the voltage change blocking unit so as not to affect the power conversion unit.
  • the function control unit only the voltage change based on the continuity of the secondary power source due to operation of the operation switch can be recognized. Furthermore, it is possible to determine the operation of the operation switch by the user and execute the operation of the device that is assigned and specified in advance to the operation switch. As a result, using a single-pole single-throw type switch with a highly versatile contact point as an operation switch to which the device activation operation function is assigned, the stopped power conversion unit is activated and the function control unit is in a standby state. To the operating state.
  • the operation of the device can be switched to an operation assigned in advance to the operation switch.
  • the function control unit of the present invention determines the voltage of the input terminal to which the operation switch to which the device activation operation function is assigned at the start of activation and detects the state where the conduction of the secondary power source is cut off. In this case, the execution of the control operation of the device is started in accordance with the operation procedure in the startup state of the device defined in advance.
  • the circuit device of the present invention further includes a sound generation unit that generates a notification sound, and the function control unit causes the sound generation unit to generate a notification sound at the start of activation.
  • the function control unit when the device shifts from the standby state to the activated state, the function control unit generates a notification sound defined by the sound generation unit. As a result, it can be more easily recognized by the user that the device has started up normally from the standby state.
  • the function control unit of the present invention determines a voltage state of an input terminal to which an operation switch to which an operation function for starting the device is not assigned in the startup state is connected, and changes in the voltage of the secondary power source due to the operation of the operation switch Is continued for a predetermined determination time, the device is shifted to a standby state.
  • the circuit device further includes a sound generation unit that emits a notification sound, and the function control unit determines that the device has shifted to the standby state and then transmits a notification sound from the sound generation unit before shifting to the standby state. generate.
  • the function control unit when the device shifts to the standby state, the function control unit generates a notification sound defined by the sound generation unit.
  • the operation for causing the device to shift from the activated state to the standby state is correctly determined by the device.
  • the transition to the standby state can be more easily recognized by the user.
  • the function control unit of the present invention determines the voltage state of the input terminal to which the operation switch to which the device activation operation function is assigned in the activated state is connected, and changes in the voltage of the secondary power source due to the operation of the operation switch. Voltage change in a state in which the transition to the standby state of the device is judged and the operation of the operation switch is released and the secondary power supply is cut off when continuing for a predetermined determination time When this is detected, the device is shifted to the standby state.
  • the circuit device of the present invention further includes a sound generation unit that emits a notification sound, and the function control unit generates a notification sound from the sound generation unit when it is determined to shift the device to a standby state.
  • the function control unit when it is determined that the device shifts to the standby state, the function control unit generates a notification sound defined by the sound generation unit.
  • the user can more easily recognize that the operation of the user for causing the device to shift from the activated state to the standby state is correctly determined by the device.
  • the sound generation unit of the present invention generates different notification sounds when the device is activated or when the device shifts to the standby state.
  • the circuit device of the present invention further includes a power source starting unit, and the power source starting unit is in a state where the voltage of the primary power source electrically connected to the power converting unit is increased when the power source is connected to the power source. For example, the conduction of the primary power source to the power conversion unit is switched to start the power conversion unit.
  • the power source activation unit is changed to the power conversion unit from the rise in voltage at the start of the supply of the primary power source.
  • a conduction path of the primary power supply is formed.
  • the power conversion unit is activated and outputs a secondary power supply having one side of the primary power supply as a common potential.
  • the function control unit is activated and the function control unit is activated.
  • the function of the device can be activated in the operating state from the time when the supply of commercial power is started.
  • the low standby power circuit device of the present invention uses a highly versatile operation switch, and can shift the device from the standby state that consumes the least amount of power to the operating state. Therefore, it is useful as a circuit device with low standby power that is mounted on a wide range of household and facility electrical devices that include operation switches.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Dc-Dc Converters (AREA)

Abstract

 本発明の回路装置は、1次電源を出力する整流平滑電源部と、1次電源の導通を切り替えることで起動と停止が行え、また起動状態では1次電源を電力の供給源として1次電源の片側を共通電位とした2次電源を電力変換により出力する電力変換部と、1次電源を電力の供給源として2次電源を電力変換により出力する電力変換部と、電力変換部の出力により機器の動作を制御し、2次電源の導通に基づく電圧の変化を検出する入力端子を備える機能制御部とを有している。また、共通電位と電力変換部の間および共通電位と機能制御部の入力端子との間に接続して配置し、1次電源の導通と2次電源の導通を切り替える常時開放型の単極単投式の接点を備えた操作スイッチと、共通電位と電力変換部の間に接続して配置し1次電源の導通を切り替える導通開閉部と、電力変換部と機能制御部の入力端子との間に設けた1次電源の電圧を遮断する電圧変化遮断部とを備えている。そして、機能制御部は、2次電源の導通により起動し、操作スイッチの操作を判断して、操作スイッチに割り当てられている機器の動作を制御する構成を有する。

Description

回路装置
 本発明は、待機時の消費電力を低減させる電気機器の回路装置に関する。
 近年、温暖化防止対策の一環として商用電源を電力の供給源とする各電気機器において、省エネルギーへの取り組みが求められている。そこで、各電気機器の主要機能を構成する部分において、それぞれに消費電力低減への取り組みが推進されている。
 そして、現在では、省エネルギーを達成するために電気機器が商用電源に接続された状態で主要機能を停止する、すなわち待機状態における消費電力の低減の重要性が高まっている。
 従来の電気機器に搭載される待機電力の低減を目的とした回路装置は、電気機器の主要機能の動作が不要なときに、商用電源に接続している電源の動作を停止して電源の電圧の出力自体を停止させている。これにより、電源構成を含む電気機器の全体の電力消費を停止させて、待機電力の消費を低減する方式が知られている(例えば、特許文献1参照)。
 以下、特許文献1に記載の低待機電力の回路構成について、図14を参照しながら説明する。
 図14に示すように、一般に、電気機器には、少なくとも主要機能を制御する電源回路102と、駆動回路103と、マイコン104と、例えば3個のスイッチ105a、105b、105cと、電源制御回路107とを有する回路基板100が内蔵されている。回路基板100は、商用電源である交流電源101と直列に接続され、交流電源101から電力が供給されている。
 電源回路102は、交流電源101の電圧を整流して降圧し、回路基板100に安定した直流電圧を出力する。ここで、電源回路102は、交流電源101の電圧を平滑した直流高電圧を降圧して安定化した直流電圧を生成させる、例えば降圧型チョッパー方式などの一般的なスイッチング電源回路106で構成されている。そして、スイッチング電源回路106は、外部に接続される接点が開状態の場合、スイッチング動作を停止して、直流電圧の出力を停止する。
 駆動回路103は、電源回路102から出力される直流電圧を消費する,負荷となる機器の主要機能の各構成を駆動する。
 マイコン104は、使用者の操作を伝えるスイッチ105a、105b、105cに基づいて、電源制御回路107と駆動回路103の動作を制御する。このとき、スイッチ105a,105b,105cは、1つ以上の非操作時に常時開放であるそれぞれ2組の接点を持つ、2極単投式のスイッチを用いて構成している。なお、スイッチ105a,105b,105cのそれぞれの一方の接点はマイコン104に接続されている。そして、接点が短絡の状態になった場合、マイコン104は、使用者がスイッチ105a,105b,105cを操作したことを認識する。
 また、マイコン104と接続されていないスイッチ105a,105b,105cの他方の接点は、電源回路102を構成するスイッチング電源回路106の外部接続端子に接続されている。そして、使用者がスイッチ105a,105b,105cを操作して、各接点が開状態から閉状態に変わると、接点間が短絡されスイッチング電源回路106が起動して直流電圧の出力動作を開始する。
 また、電源制御回路107は、例えばトランジスタなどのスイッチ素子で構成され、マイコン104で電源回路102のスイッチング電源回路106の外部接続端子の開放と短絡の状態を切り替える。これにより、電源回路102からの直流電圧の出力動作の停止と維持を切り替えることができる。
 以下に、上記で説明した従来の低待機電力の回路装置の動作について、説明する。
 まず、従来の回路装置において、回路基板100に交流電源101が接続されただけの状態の場合、電源回路102のスイッチング電源回路106の外部接続端子は開放の状態となる。そのため、電源回路102からの直流電圧の出力動作は停止の状態を維持される。
 そして、スイッチ105a,105b,105cのいずれかが使用者により操作されると、電源回路102のスイッチング電源回路106はスイッチング動作を開始して、直流電圧を出力する。これにより、直流電圧が出力され、マイコン104に電力が供給されて、マイコン104が起動する。
 つぎに、マイコン104が起動すると、同時にマイコン104は電源制御回路107を介して電源回路102のスイッチング電源回路106の外部接続端子を短絡の状態とする。これにより、スイッチング電源回路106の直流電圧の出力が主体的に維持される。
 その後、マイコン104は、マイコン104の内部に保存されたソフトウェアの記述に従い、スイッチ105a,105b,105cの操作状態を認識する。そして、認識したスイッチ105a,105b,105cの操作に応じて、駆動回路103を起動させ、機器の各構成を駆動する。
 ここで、マイコン104が、スイッチ105a,105b,105cの操作状態の認識や、または内部に保存されたソフトウェアの記述に従った制御判断の結果、機器の主要機能の停止を判断した場合、駆動回路103の起動を停止する。そして、電源制御回路107を介した電源回路102のスイッチング電源回路106のスイッチング動作の維持を停止する。
 これにより、マイコン104は、スイッチング電源回路106のスイッチング動作を停止することで直流電圧の出力を停止して、スイッチング電源回路106やマイコン104自体も含む全ての交流電源101に対する電力消費の負荷源を停止する。その結果、機器の動作において、不要な、いわゆる待機状態における待機電力の低減を図ることができる。
 しかしながら、従来の低待機電力の回路装置に搭載されるスイッチ105a、105b、105cの接点には、使用者の一つのスイッチ押し操作による2つの機能が必要であった。
 すなわち、第1の機能は、電源回路102の出力を停止する待機状態から、出力を起動して維持する起動状態、または出力の起動状態から出力を停止した待機状態へ切り替えるための接点の機能である。第2の機能は、マイコン104に、使用者が操作したことを認識させるための接点の機能である。
 そのため、上記2つの接点の機能を実現するには、それぞれ2組の接点を持つ、2極単投式の操作スイッチの使用が不可欠であった。
 しかし、2極単投式の操作スイッチは電子部品としては、構造が単純なことから一般的に安価で、多くの電気機器においてより多数活用されている単極単投式に対して品数が限られて入手性が劣るなど、汎用性において難点がある。そのため、汎用性に難点がある2極単投式の操作スイッチを用いた待機電力を低減させる回路装置は、低価格商品も含む多様な電気機器への搭載には適していないという課題があった。
 また、交流電源101に接続して電源回路102を待機状態から起動状態となるためには、使用者によるスイッチ105a,105b,105cの操作が必要である。つまり、機器に、交流電源101が接続され電力が供給されただけでは電源は出力されない。そのため、交流電源101の供給により動作状態で起動させる必要がある機器には、上記回路装置を搭載できないという課題があった。
特許第3710466号公報
 従来の課題を解決するために、本発明の回路装置は、電源の接続により1次電源を出力する整流平滑電源部と、電源の接続時点においては待機状態で、1次電源の導通を切り替えることで起動と停止が行え、また起動状態では1次電源を電力の供給源として1次電源の片側を共通電位とした2次電源を電力変換により出力する電力変換部と、電力変換部の出力により機器の動作を制御し、2次電源の導通に基づく電圧の変化を検出する入力端子を備える機能制御部とを有している。また、共通電位と電力変換部の間および共通電位と機能制御部の入力端子との間に接続して配置し、1次電源の導通と2次電源の導通を切り替える常時開放型の単極単投式の接点を備えた操作スイッチと、共通電位と電力変換部の間に接続して配置し1次電源の導通を切り替える導通開閉部と、電力変換部と機能制御部の入力端子との間に設けた1次電源の電圧を遮断する電圧変化遮断部とを備えている。そして、機器起動の操作を受け付ける機能を操作スイッチの1つ以上に割り当てて、機能を割り当てた操作スイッチの使用者による操作があれば電力変換部のへの共通電位に対する1次電源の導通が切り替えられることで電力変換部は起動して2次電源を出力し、機能制御部は、2次電源の導通により起動し、操作スイッチの操作を判断して、操作スイッチに割り当てられている機器の動作を制御する構成を有する。
 これにより、待機状態にある電力変換部を機器起動の操作を割り当てた単極単投式の操作スイッチの操作で起動し、電力変換部から2次電源を出力させることで機能制御部を動作させて機器を制御することとなるので、通電汎用性に優れた単極単投式の操作スイッチを用いても、低価格商品を含む多様な電気機器への搭載に適して待機電力を低減させる回路装置を提供することができる。
 また、機能制御部が起動している場合、使用者による操作スイッチの操作により、操作スイッチに対して予め割り当てている動作に機器の動作を切り替えることができる。
図1は、本発明の実施の形態1における回路装置の構成を示す図である。 図2は、同実施の形態における回路装置に商用電源が供給された時点の動作を示す図である。 図3は、同実施の形態における回路装置の操作スイッチが操作された時点の動作を示す図である。 図4は、同実施の形態における回路装置の導通開閉部により電源起動が維持されている状態の動作を示す図である。 図5は、同実施の形態における回路装置の別の構成を示す図である。 図6は、本実施の形態における回路装置の起動時の制御動作を示すフローチャートである。 図7は、同実施の形態における回路装置のさらに別の構成を示す図である。 図8は、図7に示す回路装置の起動時の制御動作を示すフローチャートである。 図9は、本実施の形態における回路装置の待機状態への移行時の第1の制御動作を示すフローチャートである。 図10は、本実施の形態における回路装置の待機状態への移行時の第2の制御動作を示すフローチャートである。 図11は、本実施の形態における回路装置の待機状態への移行時の第3の制御動作を示すフローチャートである。 図12は、本実施の形態における回路装置の待機状態への移行時の第4の制御動作を示すフローチャートである。 図13は、本発明の実施の形態2における回路装置の構成を示す図である。 図14は、従来の回路装置を示す図である。
 以下、本発明の実施の形態について図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。
 (実施の形態1)
 以下、本発明の実施の形態1における電気機器の待機電力を低減する回路装置の構成について、図1を用いて説明する。
 図1は、本発明の実施の形態1における回路装置の構成を示す図である。なお、図1は、本実施の形態の回路装置と、電気機器に搭載される電源構成とを含む制御回路構成1を例に示している。
 また、以下では、多くの電気機器において一般的に搭載されている降圧型スイッチングレギュレータ方式の回路装置を例に説明するが、これに限られないことは言うまでもない。ここで、降圧型スイッチングレギュレータ方式とは、例えば商用電源などの1次側の高圧電源の電力を、スイッチ素子のスイッチング動作により断続的に導通させる。そして、スイッチ素子の出力側となる2次側に配置したインダクタに電力を周期的に蓄えることで2次側に降圧した電圧を生じさせる方式である。
 また、以下の説明においては、回路装置を搭載し内蔵する電気機器自体の構成の詳細な説明は、本発明の要旨には直接関係がないので省略し、回路装置および回路装置の制御を中心に説明する。
 図1に示すように、本実施の形態の制御回路構成1は、機器の外部から、例えばAC100V(50/60Hz)の交流高圧電源である商用電源2を接続することで電力の供給源を得ている。商用電源2は、次段の交流高圧電源から整流電源を得る整流平滑電源部3に接続されている。
 整流平滑電源部3は、整流素子であるダイオード4と、ダイオード4を通して整流化された高圧電源の脈動を平滑化させるコンデンサ5とから構成されている。そして、コンデンサ5に整流化された商用電源2の交流高圧電源の電荷を蓄積することにより、安定化した整流高圧電源である1次電源6を生成している。
 ここで、本実施の形態の1次電源6は、図1でコンデンサ5の両端の矢印で示すように、例えばDC141Vの電圧を発生する。このとき、1次電源6は、図1の上方向に配置して太線で示す配線の側を共通電位7とする場合に、共通電位7の配線を正電位とする電圧を生じる。
 つぎに、1次電源6は、機器を制御する安定化した低圧電源を得るために電力変換部8に接続されている。電力変換部8は、1次電源6から降圧し安定化された電圧を出力する。これにより、電力変換部8の出力電圧は、次段に配置しているコンデンサ5aに蓄積させて、2次電源9を生成し、以降の制御部への電力供給をさらに安定化させている。ここで、2次電源9は、図1でコンデンサ5aの両端の矢印で示すように、例えばDC5Vの電圧を発生する。このとき、2次電源9も、1次電源6と同様に、図1に示す共通電位7の配線を正電位とする電圧を生じる。なお、電力変換部8は、上記で説明した降圧型スイッチングレギュレータで構成され、共通電位7に対して1次電源6に接続して、1次電源6の電力が供給されると、1次電源6の電力を電力変換して2次電源9の電力を出力する。
 ここで、電力変換部8は、発振制御駆動部10とスイッチ素子11と還流用のダイオード4aとコイル12とから構成され、共通電位7に対する1次電源6に基づく電力が供給されると電力変換の動作を開始する。電力変換部8の発振制御駆動部10は、1次電源6と接続され、共通電位7に対する2次電源9の電圧値を帰還させて、2次電源9を規定した定電圧(例えば、DC5V)に安定化させるように発振間隔を変化させてスイッチ駆動電圧を出力させる。このとき、発振制御駆動部10は、例えば出力電圧帰還型の一般的な自励発振回路で構成され、駆動電力供給端子13と電圧帰還端子14と駆動電圧出力端子15とを備えている。そして、発振制御駆動部10の駆動電力供給端子13は、共通電位7に対して1次電源6に基づく電力を供給する。発振制御駆動部10の電圧帰還端子14は2次電源9の電圧を帰還させる。発振制御駆動部10の駆動電圧出力端子15は、スイッチ駆動電圧を出力してスイッチ素子11を駆動し、1次電源6の電力を断続的に出力側に導通させる。なお、スイッチ素子11は、一般的な回路素子である、例えば電界効果型トランジスタ(FET)などで構成され、電力の導通と遮断を切り替える。
 また、電力変換部8のコイル12は、スイッチ素子11で断続的に導通させた1次電源6の電力を蓄えて、電力変換作用により電力変換部8の出力側に降圧した電圧を生じさせる。
 さらに、電力変換部8の還流用のダイオード4aは、スイッチ素子11がスイッチ動作により導通を停止した場合において、コイル12からの電力供給が途絶えないようにするために設けられ、2次電源9の安定性を高めている。
 したがって、発振制御駆動部10の駆動電力供給端子13に共通電位7から1次電源6に基づく電力の供給が遮断されると、発振制御駆動部10は停止する。そして、発振制御駆動部10が停止すると、駆動電圧出力端子15からのスイッチ駆動電圧の出力も停止するので、スイッチ素子11も遮断状態で停止する。その結果、電力変換部8は電力変換による2次電源9の出力を停止する。
 以下に、本実施の形態の低待機電力の回路装置の2次電源9以降の構成について、図1を用いて、さらに説明する。
 図1に示すように、2次電源9を構成するコンデンサ5a以降には、機能制御部16と、制御要素17と、操作入力部18と、導通開閉部25が接続されている。機能制御部16は、共通電位7を基準電位とした2次電源9からの電力供給があれば起動して動作することで搭載した機器を制御する。制御要素17は、機能制御部16により駆動状態が制御される1つ以上から構成される機器を備えた構成である。操作入力部18は、機能制御部16で機器を使用する使用者の操作状況を取り込むための入力インターフェースを1組以上備えている。
 なお、機能制御部16は、例えば中央演算装置(CPU)、入出力装置、アナログ・デジタル変換入力装置(A/D)、リードオンリーメモリ(ROM)、リード・ライトメモリの一例であるランダム・アクセス・メモリ(RAM)を内蔵したいわゆる1チップマイクロコンピュータなどで構成されている。そして、機能制御部16は、電力が供給されると、予めプログラムにより規定されROM上に記録保持された制御動作を逐次遂行する。
 また、機能制御部16は、電源を供給するための電力供給端子16aと、例えば出力端子19a、19b、19cを有する出力端子部19と、例えば入力端子20aを有する入力端子部20と、を備えている。出力端子部19は、プログラムされた制御動作の内容により電力供給端子16aに供給された電圧を出力してHi状態を出力するとともに、電流を吸い込むことでほぼ0Vの電圧としてLo状態を出力する。入力端子部20は、入力された電圧が、電力供給端子16aに供給された電圧の範囲内で規定値以上の電圧の場合、Hi状態と認識し、ほぼ0Vの電圧状態であればLo状態と認識する。
 また、制御要素17としては、図1に示すように、例えばLEDを用いた照明報知装置21や直流電動機22などから構成される。照明報知装置21は、機能制御部16の出力端子部19の1つの出力端子19aと共通電位7との間に配置して接続され、出力端子19aがLo状態の場合、点灯して使用者に報知する。直流電動機22は、機能制御部16の出力端子部19の1つの出力端子19bと共通電位7との間に配置して接続され、出力端子19bがHi状態の場合、起動して回転駆動される。なお、制御要素17は、上記の要素に限られず、制御される要素であれば任意の要素を組み込むことができる。
 また、操作入力部18は、単極単投式の接点を備えた操作スイッチ部23と放電用の抵抗24とを直列に接続して構成されている。操作スイッチ部23は、図1に示すように、例えば機能制御部16の入力端子部20のそれぞれの入力端子20aと共通電位7との間に配置され、使用者による押し込み操作により接点間が接続して閉路を構成する。放電用の抵抗24は、操作スイッチ部23を使用者が押し込んでいない非操作時の状態において、入力端子部20のそれぞれの入力端子20aの電位を0Vの電圧に安定化させる。これにより、機能制御部16が操作スイッチ部23の入力を誤検知することを防止する。
 このとき、操作入力部18の操作スイッチ部23の、例えば1つの操作スイッチ23aが使用者により押し込まれると、対応した接続先の入力端子部20の入力端子20aの電圧状態が0Vから2次電源9の電圧であるHi状態(本実施の形態では、5V)に変化する。これにより、機能制御部16は、使用者により操作スイッチ部23の操作スイッチ23aが押し込まれたことを判断する。そして、機能制御部16の判断に基づいて、押し込まれた操作スイッチ23aに対応させて予めプログラムにより規定した制御動作を遂行させ、制御要素17を制御する。
 また、操作入力部18の操作スイッチ23aは、使用者に押し込まれて接点間が閉路した場合、共通電位7から電力変換部8の発振制御駆動部10の駆動電力供給端子13との間に電気的な導通回路を生じるように配置して接続されている。
 以下は、ここで示した操作スイッチ23aに機器の起動の操作の機能を割り当てたものとして説明をする。
 また、導通開閉部25は、例えばPNP型のトランジスタ26などで構成され、電力変換部8の発振制御駆動部10の駆動電力供給端子13と、共通電位7との間に設けられている。そして、導通開閉部25は、機能制御部16の出力端子部19の1つの出力端子19cの出力状態を変化させることにより、共通電位7から駆動電力供給端子13との間に電気的な導通回路を生じさせる。これにより、導通開閉部25は、入力側の電圧の状態に応じて、出力側の電気的な導通と遮断の状態を切り替えることができる。このとき、図1に示すように、導通開閉部25であるトランジスタ26のエミッタ端子は共通電位7に、コレクタ端子は発振制御駆動部10の駆動電力供給端子13に接続され、ベース端子は電流制限用の抵抗24aを介して機能制御部16の出力端子19cに接続されている。
 具体的には、機能制御部16の出力端子19cをHi状態からLo状態に切り替えた場合、導通開閉部25のトランジスタ26のベース端子に流れる電流は共通電位7から抵抗24aを介して流れる。このとき、トランジスタ26のベース端子に電流が流れると、トランジスタ26のエミッタ端子とコレクタ端子の間は電気的な遮断状態から導通状態に変化する。これにより、機能制御部16の出力端子19cを、機能制御部16の1チップマイクロコンピュータのプログラムで指定してLo状態にすれば、導通開閉部25が起動して、共通電位7から発振制御駆動部10の駆動電力供給端子13に対する電気的な導通を遮断状態から導通状態に切り替えることができる。
 なお、機能制御部16の1チップマイクロコンピュータには、共通電位7を基準電位とした2次電源9からの電力が供給されて起動した直後に、機能制御部16の出力端子19cをHi状態からLo状態に切り替える制御動作のアルゴリズムをプログラムに記述することで規定しておくものとする。
 したがって、本実施の形態では、機能制御部16で規定された制御動作により導通開閉部25を介して発振制御駆動部10の駆動電力供給端子13に対して共通電位7に対する1次電源6を導通させることで電力供給が維持される。これにより、電力変換部8による2次電源9の生成を維持するように構成されている。
 また、電圧変化遮断部27は、導通開閉部25と電力変換部8の発振制御駆動部10の駆動電力供給端子13との間を接続している経路と、機能制御部16の入力端子20aを接続する経路と、の間に配置され、電気的に接続している。なお、電圧変化遮断部27は、例えばダイオード4bなどで構成され、図1に示すように、ダイオード4bのアノード極を機能制御部16の入力端子20aと、ダイオード4bのカソード極を駆動電力供給端子13に向かう経路の側と接続するように設けられている。
 そして、電圧変化遮断部27は、導通開閉部25が導通され、1次電源6から駆動電力供給端子13に電力を供給している状態において、1次電源6の導通に基づく電圧変化を機能制御部16の入力端子20aとの間で遮断する。これにより、機能制御部16の入力端子20aの側には1次電源6の導通に基づく電圧変化の発生を防止する。つまり、機能制御部16の入力端子20aには、操作スイッチ23aの操作に基づく共通電位7に対する2次電源9の導通に基づく電圧変化のみが生じる。その結果、機能制御部16の1チップマイクロコンピュータは、使用者による操作スイッチ23aの操作の状態のみを判断できる。
 以下に、電圧変化遮断部27の動作について、具体的に説明する。
 まず、導通開閉部25により駆動電力供給端子13に1次電源6が導通されると、駆動電力供給端子13の電圧が入力端子20aの電圧に対して上昇する。しかし、電圧変化遮断部27を構成するダイオード4bにより、機能制御部16の入力端子20aへの導通が遮断されているため、駆動電力供給端子13の電圧上昇は、入力端子20aの電圧は上昇しない。
 つまり、入力端子20aは、ダイオード4bのアノード極に接続され、ダイオード4bのカソード極を駆動電力供給端子13へ接続しているので、機能制御部16の入力端子20aの電圧は、駆動電力供給端子13の電圧変化の影響を受けない。そして、機能制御部16の入力端子20aの電圧は、操作スイッチ23aの操作に基づく2次電源9の導通のみに基づいて変化する。そのため、機能制御部16の1チップマイクロコンピュータは、使用者による操作スイッチ23aの操作の状態のみを判断できる。
 なお、電圧変化遮断部27のダイオード4bのアノード極は、機能制御部16の入力端子20a側に接続されているので、操作スイッチ23aが操作されて、接点間が閉路した場合でも、導通経路を遮断することがない。そのため、駆動電力供給端子13側に、共通電位7に対する1次電源6を導通できる。
 以上で説明したように、本実施の形態の低待機電力の回路装置が構成されている。
 以下では、本実施の形態の低待機電力の回路装置の動作について、図2から図4を用いて、詳細に説明する。
 図2は、同実施の形態における回路装置に商用電源が供給された時点の動作を示す図である。図3は、同実施の形態における回路装置の操作スイッチが操作された時点の動作を示す図である。図4は、同実施の形態における回路装置の導通開閉部により電源起動が維持されている状態の動作を示す図である。
 まず、図2に示す制御回路構成1において、機器の外部から商用電源2が接続された場合、商用電源2の交流電源(例えば、AC100V)は、整流平滑電源部3を構成するダイオード4とコンデンサ5により整流され平滑化される。そして、コンデンサ5の両端に共通電位7の側を正電位とした整流高圧電源である1次電源6が生成される。
 しかし、1次電源6が生成された状態においては、1次電源6から2次電源9を生成する電力変換部8には、電力変換部8の発振制御駆動部10の駆動電力供給端子13と共通電位7との間に、図2の遮断線(×印)を記載した太矢印線で示す導通経路は導通開閉部25のトランジスタ26がOFF(遮断)状態にあることから形成されていない。そのため、電力変換部8の発振制御駆動部10には、共通電位7からの1次電源6に基づく電力が供給されない。つまり、共通電位7からの1次電源6に基づく電力供給が得られない場合、電力変換部8の発振制御駆動部10は停止したままの状態を維持する。
 このとき、発振制御駆動部10の駆動電圧出力端子15から、スイッチ素子11を駆動するスイッチ駆動電圧も出力されないので、スイッチ素子11の断続的な導通によるコイル12を介した1次電源6の電力変換作用も生じない。したがって、電力変換部8の出力側に接続しているコンデンサ5aの両端には、共通電位7を正電位とした2次電源9は生じない。
 つまり、以上の説明では、電気機器に搭載される回路装置は、機器の外部から商用電源2を接続しただけでは、電力変換部8からコンデンサ5aの両端に2次電源9が出力されない。
 また、コンデンサ5aの以降に接続している機能制御部16の電力供給端子16aには、2次電源9に基づく電力が供給されない。そのため、機能制御部16は停止した状態を維持し、機器は、機能を完全に停止した待機状態を維持されることになる。
 つまり、機器が機能を完全に停止して待機状態の場合、電力変換部8の発振制御駆動部10に1次電源6からの電力の供給が遮断され、電力変換部8自体が動作を停止している。そのため、回路装置には商用電源2からの電流は流れ込まないので、回路装置はほぼ商用電源2の電力を消費しない状態で機器を待機状態に保つことにより、低消費電力化を実現できる。
 つぎに、図3に示すように、回路装置に商用電源2が接続されて機器が待機している状態において、操作入力部18の操作スイッチ部23の1組の操作スイッチ23aを使用者が操作して押し込むと、操作スイッチ23aの接点間は閉路される。このとき、操作スイッチ23aの接点間と、電圧変化遮断部27のダイオード4bを通して図3において太矢印線で示す導通経路が形成される。これにより、共通電位7と、電力変換部8を構成する発振制御駆動部10の駆動電力供給端子13とが電気的につながる。
 つまり、使用者の操作により操作スイッチ23aの接点間が閉路され、共通電位7から駆動電力供給端子13につながる導通経路が形成されると、駆動電力供給端子13に1次電源6に基づく電力が供給される。これにより、電力変換部8の発振制御駆動部10は、起動状態に移行する。
 そして、電力変換部8の発振制御駆動部10は、使用者が操作スイッチ23aを押し込んだ瞬間に起動し、駆動電圧出力端子15からはスイッチ素子11に対するスイッチ駆動電圧の出力を開始する。これにより、電力変換部8は、次段に配置しているコンデンサ5aの両端に共通電位7を正電位とした2次電源9の出力を開始する。
 そして、コンデンサ5aの両端に2次電源9が生成されると、コンデンサ5aの以降に接続している機器を制御する機能制御部16の電力供給端子16aに2次電源9に基づいた電力が供給される。
 つぎに、2次電源9から電力が供給されると、機能制御部16の1チップマイクロコンピュータが起動して、予めプログラムにより記述された規定の制御内容(アルゴリズム)に従い、それぞれの制御要素17を動作させる。これにより、機器特有の機能を発動する。そして、機能制御部16は、待機状態から起動状態に移行する。
 このとき、機能制御部16は、予め規定したプログラムの記述に基づいて、待機状態から起動状態に移行した直後に、機能制御部16の出力端子19cをHi状態からLo状態に切り替える。これにより、図4の太矢印線で示すように、導通開閉部25を介して、発振制御駆動部10の駆動電力供給端子13に共通電位7からの1次電源6に基づく電力が供給し続けられる。その結果、電力変換部8による2次電源9の生成が、以降維持される。
 また、機能制御部16は、2次電源9の生成を維持しながら、機能制御部16の入力端子部20の電圧変化から、それぞれ対応する操作入力部18の操作スイッチ部23の操作状態を判断する。そして、機能制御部16は、上記判断に基づいて、使用者に押し込まれた操作スイッチ部23の、例えば操作スイッチ23aに対応させて予めプログラムにより規定している制御動作を遂行する。
 そして、操作入力部18の1組を構成する操作スイッチ23aは、押し込み操作により、電力変換部8の発振制御駆動部10の駆動電力供給端子13につながる導通経路を形成する。このとき、導通開閉部25を介して発振制御駆動部10の駆動電力供給端子13に1次電源6に基づく電力の供給が維持されている場合でも、操作スイッチ23aが接続される機能制御部16の入力端子20aとの間には、電圧変化遮断部27のダイオード4bが接続されている。そのため、機能制御部16の入力端子20a側への1次電源6の電力の供給に基づく電圧変動は、電圧変化遮断部27により遮断される。
 また、機能制御部16の入力端子20a側には操作スイッチ23aの操作に基づく2次電源9の電力供給のみに基づく電圧変化が生じるので、機能制御部16は、使用者による操作スイッチ23aの操作の状態も判断できる。これにより、機能制御部16は、上記判断に基づいて、使用者が押し込んだ操作スイッチ部23の、例えば操作スイッチ23aに対応させて予めプログラムにより規定している制御動作を実行する。
 そして、以上説明では、電気機器に搭載される回路装置は、商用電源2が接続された場合、整流平滑電源部3により1次電源6が生成される。しかし、電力変換部8の発振制御駆動部10には1次電源6に基づく電力が供給されないために、電力変換部8の電力変換の動作が起動することはない。そのため、1次電源6と同電位である共通電位7とする低電圧で安定化した2次電源9も生成されないので、機能制御部16も起動しない。その結果、機器は電力をほぼ消費しない待機状態を維持できる。
 このとき、操作入力部18の1組を構成する1組の接点を備えた単極単投式のスイッチからなる操作スイッチ23aが、使用者により押し込まれると、操作スイッチ23aの接点間が閉路する。これにより、共通電位7と、電力変換部8の発振制御駆動部10の駆動電力供給端子13との間に、1次電源6の導通経路が形成される。そして、形成された導通経路により、発振制御駆動部10に、1次電源6に基づく電力が供給され、電力変換部8を起動して2次電源9を生成して出力する。
 つぎに、電力変換部8から2次電源9が出力されると、機能制御部16が起動し、機器が待機状態から起動状態に移行する。このとき、機能制御部16は、起動した直後において、導通開閉部25を介して発振制御駆動部10の駆動電力供給端子13に1次電源6に基づく電力を供給する。これにより、電力変換部8による2次電源9の生成を維持しながら、機能制御部16は機器の起動状態の制御動作を遂行する。
 つぎに、機能制御部16が起動して制御動作を遂行している状態において、再度、使用者が操作スイッチ23aを操作した場合、電圧変化遮断部27により、機能制御部16の入力端子20a側には、2次電源9の電力供給のみに基づく電圧変化が生じる。つまり、電圧変化遮断部27は、機能制御部16の入力端子20aの経路と、導通開閉部25と電力変換部8の発振制御駆動部10の駆動電力供給端子13との間を接続している経路と、の間に配置して接続されている。そのため、機能制御部16の入力端子20a側への1次電源6の電力の供給に基づく電圧変動が、電圧変化遮断部27により遮断される。
 これにより、機能制御部16は、使用者による操作スイッチ23aの操作状態も判断できる。その結果、機能制御部16は、上記判断に基づいて、操作スイッチ23aの操作に対して予め割り当てている機器の動作を、機能制御部16に格納されたプログラミングの記述に従い実行させることができる。
 本実施の形態によれば、機器起動の操作の機能を割り当てた操作スイッチ23aとして1組の接点を備えた単極単投式を用いて、停止状態の電力変換部8を起動させ、機能制御部16を待機状態から動作状態に移行させることができる。
 これにより、操作スイッチとして汎用性に優れた単極単投式のスイッチを用いることができる、低価格商品も含む多様な電気機器への搭載に適した待機電力を低減させる回路装置を実現することができる。
 また、機能制御部16が起動している状態において、使用者により操作スイッチ部23の、例えば操作スイッチ23aが操作された場合、操作スイッチ23aに接続される機器の予め規定している動作に機能制御部16の制御動作を切り替えることができる。
 なお、電流の通電により光を発するLEDと、LEDの発した光を受光することで電流の通電を遮断状態から導通状態に切り替えるフォトトランジスタとを一体化することにより、異電圧間の電圧信号の伝達を光を用いて可能にするフォトトランジスタカプラのフォトトランジスタ出力側を操作スイッチ23aに替えて構成することもできる。
 つまり、フォトトランジスタカプラを用いた構成の場合、LED側に電流を導通して点灯させることで、フォトトランジスタ出力側を電流の導通状態へと変化させることにより、操作スイッチ23aの接点間を閉路させた状態と同様に操作することができる。
 これにより、LED側の電流を変化させるための操作電圧とフォトトランジスタ出力側の回路電圧の電位が異なる構成(LED側が共通電位7に接続されない回路構成)や、制御回路構成1の外部から別電源を操作電圧として入力する遠隔操作の構成においても、待機電力を低減できる機能を実現できることは言うまでもない。
 以下に、本実施の形態の低待機電力の回路装置の別の例について、図5を用いて説明する。
 図5は、本実施の形態における回路装置の別の構成を示す図である。
 本実施の形態の別の構成の回路装置は、操作入力部18の複数の操作スイッチ23aなどを有する操作スイッチ部23のそれぞれに対応して電圧変化遮断部27を設けた点で、本実施の形態の回路装置とは異なる。他の構成は、上記で説明した回路装置と同様であるので、詳細な説明を省略する。
 つまり、図5に示すように、待機状態から電力変換部8を起動できる機器の起動操作機能を割り当てた操作スイッチ部23の複数(例えば、3つ)の操作スイッチ23a、23b、23cは、機能制御部16に使用者の操作状況を取り込むための入力インターフェースとして備えられている。そして、操作スイッチ23a、23b、23cは、電力変換部8の発振制御駆動部10の駆動電力供給端子13との間を接続しているそれぞれの経路に対して、個別に電圧変化遮断部27を配置して接続されている。これにより、それぞれの操作スイッチ23a、23b、23cを介して、使用者による操作で電力変換部8を起動させることができる。
 また、各操作スイッチ23a、23b、23cが接続される機能制御部16の入力端子部20を構成する各入力端子20a、20b、20c間に設けた電圧変化遮断部27により、各操作スイッチ23a、23b、23cの操作に基づく各入力端子20a、20b、20cの電圧の変化を、他の入力端子部20に対して遮断することができる。これにより、機能制御部16が起動している状態において、使用者により各操作スイッチ23a、23b、23cのいずれかが操作された場合、機能制御部16の1チップマイクロコンピュータは、個別に各操作スイッチ23a、23b、23cの操作を認識できる。その結果、各操作スイッチ23a、23b、23cの操作に対応させて、個別に制御動作を切り替えるアルゴリズムを予めソフトウェアで記述して規定しておくことにより、機能制御部16の別々の制御動作で切り替えて制御することができる。
 以下に、本実施の形態における回路装置の機能制御部で遂行する制御動作のアルゴリズムについて、図1を参照しながら、図6を用いて説明する。
 図6は、本実施の形態における回路装置の起動時の制御動作を示すフローチャートである。なお、図6では、機能制御部16が起動し、機器が待機状態から起動状態に移行した直後の機能制御部16の制御動作を示している。
 まず、図6に示すように、機能制御部16が起動した直後、機能制御部16の出力端子19cをHi状態からLo状態に切り替えて、導通開閉部25を起動する(ステップS10)。これにより、電力変換部8からの2次電源9の出力を維持して、機能制御部16自体の起動状態を維持する。
 つぎに、機能制御部16の入力端子部20の、例えば入力端子20aの電圧状態がLo状態であるか否かを判定する(ステップS20)。つまり、機器起動の操作の機能を割り当てた操作スイッチ部23の、例えば操作スイッチ23aが操作されている状態か否かを判定する。このとき、操作スイッチ23aが操作され、入力端子20aの電圧がHi状態の場合(ステップS20のNo)、ステップS20の判定の前に戻り、ステップS20の判定動作を繰り返す。一方、操作スイッチ23aが操作されず、入力端子20aの電圧がLo状態の場合(ステップS20のYes)、次の動作に移行するアルゴリズムを実行する。
 つまり、操作入力部18の1組となる操作スイッチ部23の操作スイッチ23aを使用者が操作して押し込むと、電力変換部8が起動して2次電源9を生成して出力する。このとき、2次電源9の出力により機能制御部16が起動する。そして、機能制御部16が起動した状態において、機能制御部16は、ステップS20の判定により入力端子20aの電圧がHi状態の場合、ステップS20以降の制御動作を遂行することはない。そのため、使用者が操作スイッチ23aを操作して機器を待機状態から起動させた状態で、継続して操作スイッチ23aの操作を止めずに押し込んだままの状態であれば、入力端子20aの電圧はHi状態に保たれる。したがって、機能制御部16は、以降の機器の制御動作を遂行できないことになる。
 本実施の形態によれば、操作スイッチ23aが操作され、機器が待機状態から起動した状態で、継続して操作スイッチ23aが操作された状態の場合、機能制御部16は以降の機器の制御動作を遂行しない。これにより、使用者の操作以外で、不測の事態により機器起動に割り当てられた操作スイッチ23aが押し続けられる状態が生じても、機器は待機状態から起動はするが、以降の制御動作は遂行されない。その結果、より安全性が高く、電気機器の待機電力を低減する回路装置を実現できる。
 以下に、本実施の形態の低待機電力の回路装置のさらに別の例について、図7を用いて説明する。
 図7は、同実施の形態における回路装置のさらに別の構成を示す図である。
 本実施の形態のさらに別の構成の回路装置は、制御要素17として、さらに報知音を発する発音部28を設けた構成である。他の構成は、上記で説明した各回路装置と同様であるので、詳細な説明を省略する。
 つまり、図7に示すように、発音部28は、機能制御部16の1チップマイクロコンピュータの1つの出力端子19dと、共通電位7との間に接続して設けられている。なお、発音部28は、例えば圧電式ブザー29などで構成される。そして、発音部28である圧電式ブザー29は、例えば所定の周波数を有する矩形波電圧を印加すると、印加した矩形波電圧の周期に基づいた周波数で振動して、報知音となる音を発生する。
 具体的に説明すると、機能制御部16の出力端子19dの電圧をHi状態からLo状態に周期的に切り替えると、圧電式ブザー29に、共通電位7に対する2次電源9に基づく周期的な電圧が印加される。これにより、発音部28の圧電式ブザー29から報知音が発生する。
 このとき、発音部28である圧電式ブザー29と接続している機能制御部16の出力端子19dに、例えば周期50msec、比率(デューティ)50%で、Hi状態とLo状態が切り替わる電圧を印加する。これにより、2kHzの周波数の報知音を、例えば約1秒の間発生させる。これは、上記の制御動作のアルゴリズムを機能制御部16の1チップマイクロコンピュータに、予めソフトウェアで記述することにより、発音させている。
 以下に、上記回路装置の機能制御部で遂行する制御動作のアルゴリズムについて、図7を参照しながら、図8を用いて説明する。図8は、図7に示す回路装置の起動時の動作手順を示すフローチャートである。なお、図8のフローチャートは、基本的には図6と同じであるので、図6と異なるステップについて、主に説明する。
 まず、図8に示すように、機能制御部16が起動した直後、機能制御部16により、導通開閉部25を起動する(ステップS10)。
 つぎに、機能制御部16の出力端子19dに、上記で説明した所定の周期の電圧を印加して、発音部28である圧電式ブザー29を駆動して報知音を発生する(ステップS15)。これにより、機器が起動した直後に、報知音を発生して、例えば使用者に知らせることができる。
 本実施の形態のアルゴリズムによれば、機器が起動した直後に、ステップS15に規定したアルゴリズムにより、発音部28から規定した報知音を発生させる。これにより、機器が待機状態から正常に起動したことを使用者は、容易に確認できる。その結果、機器が起動した状態に移行したことを使用者が判断しやすく、より安全性の高い、電気機器の待機電力を低減する回路装置を実現できる。
 以下に、本実施の形態における回路装置の待機状態への移行時で遂行する制御動作のアルゴリズムについて、図1を参照しながら、図9を用いて説明する。具体的には、機能制御部16が起動した状態で、機器が起動している状態から電力変換部8の駆動を停止して2次電源9の生成を停止させることにより、機器を待機状態に移行させる制御動作のアルゴリズムについて、説明する。
 図9は、本実施の形態における回路装置の待機状態への移行時の第1の制御動作を示すフローチャートである。
 なお、図9のフローチャートは、機能制御部16が起動しているとき、機能制御部16の1チップマイクロコンピュータが、機器の機能を実行させるために繰り返し遂行する一連の制御動作を規定している主要手順の一部分のアルゴリズムを示している。
 また、図9のフローチャートは、機器起動の操作機能が割り当てられていない操作スイッチの使用者による操作状況の判定と、判定の結果に基づく導通開閉部25を介した電力変換部8の起動状態の維持、および停止の実行のアルゴリズムを簡略化して示している。
 まず、図9に示すように、判定対象である、例えば操作スイッチ部23の操作スイッチ23aが使用者により押し込まれて操作されているか否か判断する(ステップS50)。このとき、操作スイッチ23aが使用者により操作されていない状態の場合(ステップS50のNo)、ステップS60とステップS70の手順を経ずに、以降の主要手順の制御動作に移行する。一方、操作スイッチ23aが使用者により操作されている状態の場合(ステップS50のYes)、次のステップS60に移行する。
 つぎに、操作スイッチ23aの操作状態が、予め規定した判定時間Taの間継続されているか否かを判断する(ステップS60)。このとき、操作スイッチ23aの操作時間が判定時間Ta(例えば、3秒)に満たない状態の場合(ステップS60のNo)、ステップS70の手順を経ずに、以降の主要手順の制御動作に移行する。一方、操作スイッチ23aの操作時間が判定時間Taの間継続されている場合(ステップS60のYes)、次のステップS70に移行する。
 つぎに、導通開閉部25を介した電力変換部8の起動状態の維持を停止して(ステップS70)、その後に以降の主要手順の制御動作に移行する。
 なお、機器を待機状態に移行させる機能を割り当てられた操作スイッチ部23は、待機状態から電力変換部8を起動させる機能を割り当てている操作スイッチ23a以外の、1つ以上の操作スイッチ部23の操作スイッチが予め定められている。このとき、操作スイッチ23aは、電力変換部8の発振制御駆動部10の駆動電力供給端子13と、電圧変化遮断部27を介して接続されている。
 また、判定時間Taは、機器を待機状態に移行させる操作スイッチ部23の操作時間と、同じ操作スイッチ部23に割り当てた通常の機器の制御動作を切り替える操作時間と、を区別するために設定するものである。そのため、判定時間Taとして、例えば3秒程度以上の時間を設定すれば、選定している操作スイッチ部23が、連続して長押しされたときのみ、機器を待機状態に移行させることができる。
 また、判定時間Taは、図9のフローチャートには詳細に説明していないが、機器の起動開始時点、および選定した操作スイッチ部23を操作していないとき、常に初期化(零状態)するようにアルゴリズムで規定されている。
 本実施の形態の図9に示すアルゴリズムによれば、機能制御部16が起動した状態にある場合、選定した操作スイッチ部23が、判定時間Taの間に、操作された状態を判断することにより、機器の特定の制御動作を切り替えるための操作機能の割り当てに利用することができる。
 なお、上記図9に示す本実施の形態のアルゴリズムに、機器を待機状態に移行させる時点で、図10に示すように、報知音を発生するフローを加えてもよい。
 図10は、本実施の形態における回路装置の待機状態への移行時の第2の制御動作を示すフローチャートである。なお、図10のフローチャートは、基本的には図9と同じであるので、図9と異なるステップについて、主に説明する。
 まず、図10に示すように、操作スイッチ部23が押し込まれて操作されているか否か判断する(ステップS50)。このとき、操作スイッチ部23が使用者により操作されている状態の場合(ステップS50のYes)、次のステップS60に移行する。
 つぎに、操作スイッチ部23の操作の状態が、予め規定した判定時間Taの間継続されているか否かを判断する(ステップS60)。このとき、操作スイッチ部23の操作時間が判定時間Taの間継続されている場合(ステップS60のYes)、次のステップS65に移行する。
 つぎに、図8を用いて説明したように、機能制御部16の出力端子19dに、上記で説明した所定の周期の電圧を印加して、発音部28である圧電式ブザー29を駆動して報知音を発生する(ステップS65)。これにより、機器の待機状態への移行を、報知音を発生することにより、例えば使用者に知らせることができる。
 つぎに、導通開閉部25を介した電力変換部8の起動状態の維持を停止して(ステップS70)、その後に以降の主要動作の制御動作に移行する。
 なお、図8で説明したように、発音部28に、例えば周期50msec、比率(デュティ)50%で、Hi状態とLo状態が切り替わる電圧を印加して、2kHzの周波数の報知音を発生させる。このとき、上記報知音を、例えば0.5秒で切り替えて発音する状態を1単位として、例えば2単位を0.25秒間の間隔を開けて2回発生させる制御動作のアルゴリズムをプログラムに記述して規定してもよい。これにより、機器の起動時とは異なる報知音を発生させて、機器の待機状態への移行を使用者が容易に識別することができる。
 本実施の形態の図10に示すアルゴリズムによれば、発生する報知音により、機器を起動状態から待機状態へ移行させる使用者の操作が、機器において正しく判断されたことが容易に認識できる。また、機器が待機状態へ移行したことを、使用者がより認識しやすくなる。
 なお、図10のフローチャートでは、機器を待機状態に移行させる機能を割り当てた操作スイッチ部23として、機器起動の操作の機能を割り当てた操作スイッチ23a以外の操作スイッチを選定した例で説明したが、これに限られない。例えば、機器起動の操作機能を割り当てた操作スイッチ23aに待機状態に移行させる操作機能を割り当ててもよい。
 そこで、以下に、上記制御動作のアルゴリズムについて、図11のフローチャートを用いて説明する。
 図11は、本実施の形態における回路装置の待機状態への移行時の第3の制御動作を示すフローチャートである。
 ここで、図11のフローチャートは、機能制御部16が起動しているとき、機能制御部16の1チップマイクロコンピュータが、機器の機能を実行させるために繰り返し遂行する一連の制御動作を規定している主要手順の一部分のアルゴリズムを示している。
 また、図11のフローチャートは、機器起動の操作機能を割り当てた操作スイッチ23aの操作状況の判定と、判定の結果に基づく導通開閉部25を介した電力変換部8の起動状態の維持、および停止の実行のアルゴリズムを簡略化して示している。
 まず、図11に示すように、判定対象である、例えば操作スイッチ部23の操作スイッチ23aが使用者により押し込まれて操作されているか否か判断する(ステップS100)。このとき、操作スイッチ23aが使用者により操作されている状態の場合(ステップS100のYes)、次のステップS110に移行する。
 つぎに、操作スイッチ23aの操作状態が、予め規定した判定時間Taの間継続されているか否かを判断する(ステップS110)。このとき、操作スイッチ23aの操作時間が判定時間Ta(例えば、3秒)に満たない状態の場合(ステップS110のNo)、ステップS120の手順を経ずに、以降の主要手順の制御動作に移行する。一方、操作スイッチ23aの操作時間が判定時間Taの間継続されている場合(ステップS110のYes)、次のステップ120に移行する。なお、上記判定時間Taは、図9のフローチャートで待機状態への移行アルゴリズムにおいて説明した時間と、同様の思想で設定することが好ましい。
 つぎのステップにおいては、導通開閉部25を介した電力変換部8の起動状態維持の停止を判定し、記憶して(ステップS120)、その後に以降の主要手順の制御動作に移行する。
 以下に、図10のフローチャートと異なる、操作スイッチ23aが使用者により操作されていない状態の場合(ステップS100のNo)に移行するステップS130以降のフローについて説明する。
 つまり、操作スイッチ23aが使用者により操作されていない状態の場合(ステップS50のNo)、次のステップS130に移行する。
 そして、電力変換部8の停止の判断が記憶されているか否かを確認する(ステップS130)。このとき、電力変換部8の停止の判断が記憶されていない場合(ステップS130のNo)、ステップS140の手順を経ずに、以降の主要手順の制御動作に移行する。一方、電力変換部8の停止の判断が記憶されている場合(ステップS130のYes)、次のステップS140に移行する。
 つぎに、電力変換部8の停止の判断に基づいて、導通開閉部25を介した電力変換部8の起動状態の維持を停止して(ステップS140)、その後に以降の一連の主要手順の制御動作に移行する。
 本実施の形態の図11に示すアルゴリズムによれば、操作スイッチ23aが連続して判定時間Taの間以上継続して長押しされた後、かつ、操作スイッチ23aの使用者による押し込み操作が解除され非操作の状態になった場合のみ機器を待機状態に移行させることができる。これにより、機能制御部16が起動した状態にある場合、操作スイッチ23aが判定時間Taに満たない間で、操作されたという状態を判断することで、機器の特定の制御動作を切り替えるための操作機能を割り当てて活用することができる。また、待機状態移行時に操作スイッチ23aが継続されて操作されている状態において、機器が再起動してしまう不具合を防止することができる。
 なお、上記図11に示す本実施の形態のアルゴリズムに、機器を待機状態に移行させる時点で、図12に示すように、報知音を発生するフローを加えてもよい。
 図12は、本実施の形態における回路装置の待機状態への移行時の第3の制御動作を示すフローチャートである。なお、図12のフローチャートは、基本的には図11と同じであるので、図11と異なるステップについて、主に説明する。
 まず、図12に示すように、判定対象である、例えば操作スイッチ部23の操作スイッチ23aが使用者により押し込まれて操作されているか否か判断する(ステップS100)。このとき、操作スイッチ23aが使用者により操作されている状態の場合(ステップS100のYes)、次のステップS110に移行する。
 つぎに、操作スイッチ23aの操作状態が、予め規定した判定時間Taの間継続されているか否かを判断する(ステップS110)。このとき、操作スイッチ23aの操作時間が判定時間Taの間継続されている場合(ステップS110のYes)、次のステップ115に移行する。
 つぎに、図8を用いて説明したように、機能制御部16の出力端子19dに、上記で説明した所定の周期の電圧を印加して、発音部28である圧電式ブザー29を駆動して報知音を発生する(ステップS115)。これにより、機器の待機状態への移行を、報知音を発生することにより、例えば使用者に知らせることができる。なお、発音部28は発生する報知音としては、図10で説明した機器の待機状態への移行させるときと同じ形式の報知音が好ましい。
 つぎに、導通開閉部25を介した電力変換部8の起動状態維持の停止を判定し、記憶して(ステップS120)、その後に以降の主要手順の制御動作に移行する。
 本実施の形態の図12に示すアルゴリズムによれば、発生する報知音により機器を起動状態から待機状態へ移行させる使用者の操作が、機器において正しく判断されたことが、使用者においてより認識しやすくなる。
 (実施の形態2)
 以下に、本発明の実施の形態2における低待機電力の回路装置の構成について、図13を用いて説明する。なお、図13において、図1と同様の構成要素については同一の符号を付し、詳細な説明は省略する。
 図13は、本発明の実施の形態2における回路装置の構成を示す図である。
 つまり、図13に示すように、本実施の形態の回路装置は、電源起動部30を備えている点で、実施の形態1の回路装置とは異なる。他の構成や作用は、実施の形態1の回路装置と同様である。
 ここで、電源起動部30は、1次電源6の電圧の上昇変化が生じた場合、導通開閉部25のトランジスタ26のベース端子電流を流して、電力変換部8の駆動電力供給端子13へ、1次電源6を印加して電力変換部8を起動させることができるように構成している。
 具体的には、図13に示すように、電源起動部30は、コンデンサ5bと、ダイオード4cと、ダイオード4dとから構成され、整流平滑電源部3を構成するコンデンサ5に対して並列に配置して接続されている。そして、コンデンサ5bは、整流平滑電源部3を構成するコンデンサ5と並列に配置して接続され電荷を蓄積する。ダイオード4dはコンデンサ5bと直列に接続され、ダイオード4dのアノード極側はコンデンサ5bに、ダイオード4dのカソード側は共通電位7に接続されている。また、ダイオード4cは、ダイオード4dとコンデンサ5b間にカソード極側を接続して配置され、ダイオード4cのアノード極側は、導通開閉部25のトランジスタ26のベース端子に接続している抵抗24aに接続されている。
 以下に、上記電源起動部30の動作について、説明する。
 まず、実施の形態1で説明したように、制御回路構成1の回路装置が商用電源2に接続されると、整流平滑電源部3のダイオード4を介して整流化された高圧電源が印加され、整流平滑電源部3のコンデンサ5に電荷が蓄積される。
 つぎに、整流平滑電源部3のコンデンサ5に電荷が蓄積されてコンデンサ5の両端に1次電源6が発生すると、導通開閉部25が起動する。
 そして、導通開閉部25が起動すると、電源起動部30を介して、電力変換部8の発振制御駆動部10の駆動電力供給端子13に、共通電位7に対する1次電源6を印加して導通状態に切り替えて、電力変換部8で2次電源9の生成を開始するように構成されている。
 このとき、電源起動部30のコンデンサ5bには、1次電源6の供給が開始された時点において、導通開閉部25のトランジスタ26のベース端子に接続している抵抗24aと、およびコンデンサ5bに対してカソード極側を接続しているダイオード4cを介して、共通電位7に対して1次電源6から充電電流が流れる。そして、コンデンサ5bを充電する電流は、コンデンサ5bの静電容量と抵抗24aの抵抗値で構成された直列回路の時定数に基づいて一定期間流れる。同時に、充電電流は、導通開閉部25のトランジスタ26のベース電流として流れる。これにより、電源起動部30のコンデンサ5bに一定期間の間の充電電流が流れる状態において、トランジスタ26のエミッタ端子とコレクタ端子との間は、電気的な遮断状態から導通状態に変化する。その結果、導通開閉部25を介して、共通電位7から発振制御駆動部10の駆動電力供給端子13に対する電気的な導通が、遮断状態から導通状態に切り替わる。
 また、共通電位7の側にカソード極側を配置して電源起動部30を構成するコンデンサ5bとの間に接続しているダイオード4dは、制御回路構成1から商用電源2の接続を解除した場合、つまり機器に対して商用電源2からの電力供給が停止した場合、コンデンサ5bに充電された電荷を共通電位7の側に逃がすことにより放電する。つまり、電源起動部30のダイオード4dは、つぎに制御回路構成1が商用電源2と接続された場合に、再度、コンデンサ5bに充電電流が流れることで電力変換部8が起動できるように、電源起動部30に設けている。
 また、電源起動部30のコンデンサ5bに充電電流が流れている状態においては、コンデンサ5bの両端には、導通開閉部25の起動状態を制御するために抵抗24aを介して接続している機能制御部16の出力端子19cに対して負電位となる電圧が生じる。そして、機能制御部16の出力端子19cに、負電圧が印加されると、機能制御部16を構成する1チップマイクロコンピュータが破壊される場合がある。そのため、機能制御部16の出力端子19cに対してコンデンサ5bの両端に生じる負電圧の導通を遮断する必要がある。
 そこで、本実施の形態では、導通開閉部25の抵抗24aと、機能制御部16の出力端子19cとの間に、出力端子19c側にカソード極を配置してダイオード4eを設けている。これにより、充電時に、コンデンサ5bの両端に生じる負電圧が、機能制御部16の出力端子19cに導通することを防止している。
 本実施の形態によれば、1次電源6の電圧の上昇変化がある場合、電源起動部30により、共通電位7に対する1次電源6の導通を切り替えて電力変換部8を起動することができる。これにより、制御回路構成1に商用電源2が接続された時点において、電源起動部30を介して電力変換部8を起動し、2次電源9の生成を開始することができる。また、2次電源9の出力により、機器を制御する機能制御部16が起動するため、商用電源2の供給が開始された時点から機器を動作状態で起動できる。
 本発明の回路装置は、電源の接続により1次電源を出力する整流平滑電源部と、電源の接続時点においては待機状態で、1次電源の導通を切り替えることで起動と停止が行え、また起動状態では1次電源を電力の供給源として1次電源の片側を共通電位とした2次電源を電力変換により出力する電力変換部と、電力変換部の出力により機器の動作を制御し、2次電源の導通に基づく電圧の変化を検出する1つ以上の入力端子を有する入力端子部を備える機能制御部とを有している。また、共通電位と電力変換部の間と、および共通電位と機能制御部の入力端子部の間に接続して配置し、1次電源の導通と、2次電源の導通を切り替える常時開放型の単極単投式の接点を備えた1つ以上の操作スイッチと、共通電位と電力変換部の間に接続して配置し1次電源の導通を切り替える導通開閉部と、電力変換部と機能制御部の入力端子部との間に設けた1次電源の電圧を遮断する電圧変化遮断部と、を備えている。そして、機器起動の操作を受け付ける機能を操作スイッチの1つ以上に割り当てて、機能を割り当てた操作スイッチの使用者による操作があれば電力変換部への共通電位に対する1次電源の導通が切り替えられることで電力変換部が起動して2次電源を出力し、2次電源の出力により機能制御部が起動し、操作スイッチの操作を判断して、操作スイッチに割り当てられている機器の動作を制御する構成を有する。
 これにより、整流平滑電源部から整流平滑された片側を共通電位とする1次電源が出力された状態において、電力変換部から2次電源が出力されないため、機器を制御する機能制御部を待機状態にできる。
 そして、機能制御部が待機状態した状態において、機器起動の操作機能を割り当てた常時開放型の単極単投式の接点を備えた操作スイッチが閉路すると、操作スイッチで電力変換部と1次電源の導通経路を形成して電力変換部は起動させ、1次電源の片側を共通電位とした2次電源を出力する。
 また、2次電源が出力されると、機能制御部を起動して、機能制御部を動作させた状態で導通開閉部を介して電力変換部に共通電位に対する1次電源の導通を切り替える。これにより、電力変換部の起動の状態を保持しながら予め規定する動作手順に従い機器の動作を制御することができる。
 また、2次電源が出力された状態において、機器起動の操作機能が割り当てられた操作スイッチが閉路すると、操作スイッチにより機能制御部の入力端子に対して2次電源の導通経路が形成される。これにより、機能制御部の入力端子に対して、電圧変化遮断部により導通開閉部を介して、電力変換部に1次電源の導通の切り替えに基づく電圧変化は影響しないように遮断することができる。
 また、機能制御部の入力端子において、操作スイッチの操作による2次電源の導通に基づく電圧の変化だけを認識できる。さらに使用者による操作スイッチの操作を判断して、操作スイッチに予め割り当てて規定している機器の動作を実行することができる。その結果、機器起動の操作機能を割り当てた操作スイッチとして汎用性が高い1組の接点を備えた単極単投式を用いて、停止状態の電力変換部を起動させて機能制御部を待機状態から動作状態に移行させることができる。
 さらに、機能制御部が起動している状態において、使用者による操作スイッチの操作があれば、操作スイッチに対して予め割り当てている動作に機器の動作を切り替えることができる。
 また、本発明の機能制御部は、起動開始時に機器起動の操作の機能を割り当てた操作スイッチが接続された入力端子の電圧を判断し、2次電源の導通が遮断されている状態を検出した場合、予め規定している機器の起動状態における動作手順に従い機器の制御動作の遂行を開始する。
 これにより、機器起動の操作の機能を割り当てた操作スイッチを操作されて、機器が待機状態から起動した状態を継続して操作スイッチが操作されたままの状態の場合、機能制御部は以降の機器の制御動作を遂行しない。その結果、不測の事態により使用者の操作以外で操作スイッチが押し続けられる状態が生じて、機器が待機状態から起動しても、以降の制御動作は遂行されないので、より安全性が高められる。
 また、本発明の回路装置は、さらに報知音を発する発音部を備え、機能制御部は、起動開始時に発音部により報知音を発生させる。
 これにより、機器が待機状態から起動状態に移行したときに、機能制御部は発音部により規定した報知音を発生させる。その結果、機器が待機状態から正常に起動したことが、使用者に、より認識しやすくできる。
 また、本発明の機能制御部は、起動状態において機器起動の操作の機能を割り当てていない操作スイッチが接続された入力端子の電圧の状態を判断し、操作スイッチの操作による2次電源の電圧変化が予め規定している判定時間の間継続されている場合、機器を待機状態に移行させる。
 これにより、機器起動の操作の機能を割り当てていない操作スイッチが判定時間の間継続して長押しされていない場合、判定対象の操作スイッチに割り当てられた予め規定された制御動作を遂行する。また、操作スイッチが判定時間の間継続して長押しされた場合、機能制御部は、導通開閉部を介した電力変換部の起動の維持を停止して機器を待機状態に移行させる。その結果、機器の制御動作の切り替えと、機器の待機状態へ移行を1つの選定した操作スイッチの操作で変更することができる。
 また、本発明は、回路装置は、さらに報知音を発する発音部を備え、機能制御部は、機器の待機状態への移行を判断した後、待機状態へ移行する前に発音部から報知音を発生させる。
 これにより、機器が待機状態へ移行するときに、機能制御部は発音部により規定した報知音を発生させる。その結果、機器が起動状態から待機状態へ移行させる操作が機器に正しく判断される。また、待機状態へ移行することが、使用者に、より認識しやすくできる。
 また、本発明の機能制御部は、起動状態において機器起動の操作の機能を割り当てた操作スイッチが接続された入力端子の電圧の状態を判断し、操作スイッチの操作による2次電源の電圧変化が予め規定している判定時間の間継続されている場合、機器の待機状態への移行を判断し、かつ、操作スイッチの操作が解除されて2次電源の導通が遮断されている状態の電圧変化を検出したとき、機器を待機状態に移行させる。
 これにより、待機状態への移行時に、機器起動の操作機能が割り当てられた操作スイッチが継続して操作されている状態でも、機器が再起動してしまう不具合を防止できる。
 また、本発明の回路装置は、さらに報知音を発する発音部を備え、機能制御部は、機器の待機状態への移行を判断した時点において、発音部から報知音を発生させる。
 これにより、機器の待機状態への移行を判断した場合、機能制御部は発音部により規定した報知音を発生させる。その結果、機器が起動状態から待機状態へ移行させる使用者の操作が機器に正しく判断されたことを、使用者に、より認識しやすくできる。
 また、本発明の発音部は、機器の起動時、または機器の待機状態への移行時において、異なる報知音を発生させる。
 これにより、使用者の操作が機器に正しく判断されたことを、使用者にさらに認識しやすくできる。
 また、本発明の回路装置は、さらに電源起動部を備え、電源起動部は、電力変換部と電気的に接続した1次電源の電圧が電源に接続されたときに上昇している状態にあれば、電力変換部への1次電源の導通を切り替えて電力変換部を起動する。
 これにより、整流平滑電源部から整流平滑された片側を共通電位とする1次電源が出力された状態において、1次電源の供給開始時の電圧の上昇変化から電源起動部は、電力変換部に対して1次電源の導通経路を形成する。そして、電力変換部が起動して、1次電源の片側を共通電位とした2次電源を出力する。さらに、2次電源が出力されると、機能制御部を起動して、機能制御部を動作させた状態になる。その結果、商用電源の供給が開始された時点から、機器の機能を動作状態で起動させることができる。
 本発明の低待機電力の回路装置は、汎用性の高い操作スイッチを用いるとともに、最も電力を消費しない機器の待機状態から、機器を動作状態に移行させることが可能にできる。そのため、操作スイッチを備える広く一般的な家庭用、および設備用の電気機器に搭載される低待機電力の回路装置として有用である。
 1  制御回路構成
 2  商用電源
 3  整流平滑電源部
 4,4a,4b,4c,4d,4e  ダイオード
 5,5a,5b  コンデンサ
 6  1次電源
 7  共通電位
 8  電力変換部
 9  2次電源
 10  発振制御駆動部
 11  スイッチ素子
 12  コイル
 13  駆動電力供給端子
 14  電圧帰還端子
 15  駆動電圧出力端子
 16  機能制御部
 16a  電力供給端子
 17  制御要素
 18  操作入力部
 19  出力端子部
 19a,19b,19c,19d  出力端子
 20  入力端子部
 20a,20b,20c  入力端子
 21  照明報知装置
 22  直流電動機
 23  操作スイッチ部
 23a,23b,23c  操作スイッチ
 24,24a  抵抗
 25  導通開閉部
 26  トランジスタ
 27  電圧変化遮断部
 28  発音部
 29  圧電式ブザー
 30  電源起動部
 100  回路基板
 101  交流電源
 102  電源回路
 103  駆動回路
 104  マイコン
 105a,105b,105c  スイッチ
 106  スイッチング電源回路
 107  電源制御回路

Claims (9)

  1. 電源の接続により1次電源を出力する整流平滑電源部と、
    前記電源の接続時点においては待機状態で、前記1次電源の導通を切り替えることで起動と停止が行え、また起動状態では前記1次電源を電力の供給源として前記1次電源の片側を共通電位とした2次電源を電力変換により出力する電力変換部と、
    前記電力変換部の出力により機器の動作を制御し、前記2次電源の導通に基づく電圧の変化を検出する1つ以上の入力端子を有する入力端子部を備える機能制御部と、
    前記共通電位と前記電力変換部の間と、および前記共通電位と前記機能制御部の入力端子部の間に接続して配置し、前記1次電源の導通と、前記2次電源の導通を切り替える常時開放型の単極単投式の接点を備えた1つ以上の操作スイッチと、
    前記共通電位と前記電力変換部の間に接続して配置し前記1次電源の導通を切り替える導通開閉部と、
    前記電力変換部と前記機能制御部の前記入力端子部との間に設けた前記1次電源の電圧を遮断する電圧変化遮断部と、を備え、
    機器起動の操作を受け付ける機能を前記操作スイッチの1つ以上に割り当てて、
    前記機能を割り当てた前記操作スイッチの使用者による操作があれば前記電力変換部への前記共通電位に対する1次電源の導通が切り替えられることで前記電力変換部が起動して前記2次電源を出力し、
    前記2次電源の出力により前記機能制御部が起動し、前記操作スイッチの操作を判断して、前記操作スイッチに割り当てられている前記機器の動作を制御する回路装置。
  2. 前記機能制御部は、起動開始時に前記機器起動の操作の機能を割り当てた前記操作スイッチが接続された前記入力端子の電圧を判断して、前記2次電源の導通が遮断されている状態を検出した場合、予め規定している前記機器の起動状態における動作手順に従い前記機器の制御動作の遂行を開始する請求項1記載の回路装置。
  3. 前記回路装置は、さらに報知音を発する発音部を備え、前記機能制御部は、起動開始時に前記発音部により報知音を発生させる請求項1記載の回路装置。
  4. 前記機能制御部は、起動状態において機器起動の操作の機能を割り当てていない前記操作スイッチが接続された前記入力端子の電圧の状態を判断し、前記操作スイッチの操作による前記2次電源の電圧変化が予め規定している判定時間の間継続されている場合、前記機器を待機状態に移行させる請求項1記載の回路装置。
  5. 前記回路装置は、さらに報知音を発する発音部を備え、前記機能制御部は、前記機器の待機状態への移行を判断した後、待機状態へ移行する前に前記発音部から前記報知音を発生させる請求項1または請求項4に記載の回路装置。
  6. 前記機能制御部は、起動状態において機器起動の操作の機能を割り当てた前記操作スイッチが接続された前記入力端子の電圧の状態を判断し、前記操作スイッチの操作による前記2次電源の電圧変化が予め規定している判定時間の間継続されている場合、前記機器の待機状態への移行を判断し、かつ、前記操作スイッチの操作が解除されて前記2次電源の導通が遮断されている状態の電圧変化を検出したとき、前記機器を待機状態に移行させる請求項1記載の回路装置。
  7. 前記回路装置は、さらに報知音を発する発音部を備え、前記機能制御部は、前記機器の待機状態への移行を判断した時点において、前記発音部から前記報知音を発生させる請求項1または請求項6に記載の回路装置。
  8. 前記発音部は、前記機器の起動時と、または前記機器の待機状態への移行時において、異なる報知音を発生させる請求項3、請求項5および請求項7のいずれか1項に記載の回路装置。
  9. 前記回路装置は、さらに電源起動部を備え、前記電源起動部は、前記電力変換部と電気的に接続した前記1次電源の電圧が前記電源に接続されたときに上昇している状態にあれば、前記電力変換部への前記1次電源の導通を切り替えて前記電力変換部を起動する請求項1に記載の回路装置。
PCT/JP2011/006330 2010-11-17 2011-11-14 回路装置 WO2012066762A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011800549314A CN103210557A (zh) 2010-11-17 2011-11-14 电路装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-256559 2010-11-17
JP2010256559A JP5640688B2 (ja) 2010-11-17 2010-11-17 低待機電力の回路構成

Publications (1)

Publication Number Publication Date
WO2012066762A1 true WO2012066762A1 (ja) 2012-05-24

Family

ID=46083712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006330 WO2012066762A1 (ja) 2010-11-17 2011-11-14 回路装置

Country Status (3)

Country Link
JP (1) JP5640688B2 (ja)
CN (1) CN103210557A (ja)
WO (1) WO2012066762A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110741529A (zh) * 2017-06-12 2020-01-31 松下知识产权经营株式会社 车载用电源装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147490A (ja) * 1984-12-19 1986-07-05 株式会社東芝 調理器
JP2000287837A (ja) * 1999-04-09 2000-10-17 Zojirushi Corp 炊飯器
JP2002119418A (ja) * 2000-10-16 2002-04-23 Zojirushi Corp 炊飯器
JP2005312174A (ja) * 2004-04-21 2005-11-04 Sharp Corp 電源制御装置およびそれを備えた洗濯機

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000139039A (ja) * 1998-10-30 2000-05-16 Toshiba Corp 電源回路の保護装置
JP3578124B2 (ja) * 2001-08-31 2004-10-20 ソニー株式会社 スイッチング電源装置
CN101059693A (zh) * 2006-04-18 2007-10-24 周先谱 一种基于激活的零功耗待机电源控制装置
CN201113791Y (zh) * 2007-06-18 2008-09-10 全汉企业股份有限公司 启动时序控制电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147490A (ja) * 1984-12-19 1986-07-05 株式会社東芝 調理器
JP2000287837A (ja) * 1999-04-09 2000-10-17 Zojirushi Corp 炊飯器
JP2002119418A (ja) * 2000-10-16 2002-04-23 Zojirushi Corp 炊飯器
JP2005312174A (ja) * 2004-04-21 2005-11-04 Sharp Corp 電源制御装置およびそれを備えた洗濯機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110741529A (zh) * 2017-06-12 2020-01-31 松下知识产权经营株式会社 车载用电源装置
CN110741529B (zh) * 2017-06-12 2023-02-17 松下知识产权经营株式会社 车载用电源装置

Also Published As

Publication number Publication date
CN103210557A (zh) 2013-07-17
JP5640688B2 (ja) 2014-12-17
JP2012110115A (ja) 2012-06-07

Similar Documents

Publication Publication Date Title
JP4687958B2 (ja) Dc−dcコンバータ
JP5168010B2 (ja) スイッチング電源装置
JPWO2005006527A1 (ja) 電源装置及び電源装置の制御方法
JP2009189183A (ja) 電源装置及び照明器具
JP2014082831A (ja) スイッチング電源装置
JP4093185B2 (ja) スイッチング電源装置
JP2007336726A (ja) 電源装置及びこれを備えた電気機器
JP4400426B2 (ja) スイッチング電源装置
US9262708B2 (en) Low-capacity power supply, power supply system, and image forming apparatus
CN113726176A (zh) 具有延迟高压供电的转换电路、控制器及其延时高压供电方法
JP2008072830A (ja) スイッチング電源装置
WO2012066762A1 (ja) 回路装置
JP5545839B2 (ja) スイッチング電源装置
JP2007329996A (ja) スイッチング電源装置
JP2007068248A (ja) スイッチング電源装置
JP2004180385A (ja) スイッチング電源
JPH043598Y2 (ja)
JP3841017B2 (ja) 電子機器の電源装置およびその制御方法
WO2005088819A1 (ja) スイッチング電源装置
JP2004328837A (ja) スイッチング電源回路およびこれを備えたスイッチングレギュレータ
JPH08111292A (ja) 電源回路及びそれを用いた放電灯点灯装置
JP4272870B2 (ja) スイッチングレギュレータ
JP2002017086A (ja) スイッチング電源
JP2003111397A (ja) スイッチング電源装置の制御方法およびスイッチング電源装置
JP2008193803A (ja) スイッチング電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11841074

Country of ref document: EP

Kind code of ref document: A1