WO2012063746A1 - 着色透光性ジルコニア焼結体及びその製造方法並びにその用途 - Google Patents

着色透光性ジルコニア焼結体及びその製造方法並びにその用途 Download PDF

Info

Publication number
WO2012063746A1
WO2012063746A1 PCT/JP2011/075500 JP2011075500W WO2012063746A1 WO 2012063746 A1 WO2012063746 A1 WO 2012063746A1 JP 2011075500 W JP2011075500 W JP 2011075500W WO 2012063746 A1 WO2012063746 A1 WO 2012063746A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
zirconia sintered
colored translucent
translucent zirconia
mol
Prior art date
Application number
PCT/JP2011/075500
Other languages
English (en)
French (fr)
Inventor
山内 正一
勲 山下
津久間 孝次
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Priority to CN2011800544471A priority Critical patent/CN103201233A/zh
Priority to EP11839963.3A priority patent/EP2639210B1/en
Priority to US13/883,151 priority patent/US9174877B2/en
Publication of WO2012063746A1 publication Critical patent/WO2012063746A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3237Substoichiometric titanium oxides, e.g. Ti2O3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/652Reduction treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • C04B2235/663Oxidative annealing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9661Colour

Definitions

  • the present invention relates to a colored translucent zirconia sintered body having a deep color tone and high translucency, and a method for producing the same.
  • Non-Patent Document 1 zirconia single crystals, so-called cubic zirconia, have been used for decorative purposes and jewelry. Furthermore, cubic zirconia colored by adding a colorant such as a transition metal or a rare earth element is also used for the same purpose (Non-Patent Document 1).
  • cubic zirconia When producing these cubic zirconia, it was necessary to first produce a bulk body of zirconia single crystal by a skull melt method or the like, and then process the produced bulk body into a target shape by cutting or polishing. Therefore, it is difficult to process cubic zirconia into an arbitrary shape, and cubic zirconia can be used for applications that require high design such as complex shapes or applications that require fine processing. could not.
  • Patent Document 1 a translucent zirconia sintered body obtained by molding and firing zirconia powder and having high transparency has been reported (Patent Document 1, Patent Document 2, Patent Document 3, and Non-Patent Document 2).
  • These translucent zirconia sintered bodies can be produced by molding such as injection molding. Therefore, it is easy to manufacture a translucent zirconia sintered body as a sintered body having an arbitrary shape.
  • Such a translucent zirconia sintered body having high transparency can be a member having a shape that cannot be processed by cubic zirconia.
  • a colored translucent zirconia sintered body using a conventional lanthanoid rare earth element as a colorant it is necessary to add about 1 mol% of a lanthanoid rare earth element in order to obtain a desired color.
  • Lanthanoid rare earth elements are expensive, and there has been a demand for a colored translucent zirconia sintered body using an inexpensive colorant instead of the lanthanoid rare earth element and having a clear coloration.
  • the coloring of the light-transmitting zirconia sintered body which is a polycrystal, is different from the coloring of the zirconia single crystal. That is, when the translucent zirconia sintered body contains a colorant, there is a problem that the transparency is remarkably lowered. Therefore, the colored translucent zirconia sintered body having high transparency has been obtained only in a sintered body containing a small amount of a colorant such as Nd. Therefore, a colored translucent zirconia sintered body having various colors and high translucency has not been obtained.
  • the colored translucent zirconia sintered body containing a specific transition metal element as a colorant and having a controlled porosity is a small amount of the colorant.
  • the present inventors have found that the sintered body exhibits a clear color tone and has high transparency.
  • a primary sintered body that contains a specific transition metal element and does not have pores inside crystal grains hereinafter referred to as “intragranular pores”. It has been found that by performing hot isostatic pressing, a colored translucent zirconia sintered body having not only high transparency but also a clear color tone can be obtained.
  • the present invention contains 6 to 15 mol% of yttria, and at least one selected from the group consisting of iron, nickel, manganese, cobalt, chromium, copper and vanadium is 0.02 mol% or more in terms of oxide.
  • a colored translucent zirconia sintered body containing 0.6 mol% or less and having a porosity of at most 1000 ppm.
  • “containing at least one selected from the group consisting of iron, nickel, manganese, cobalt, chromium, copper and vanadium in an oxide conversion of 0.02 mol% or more and 0.6 mol% or less” means iron. And at least one selected from the group consisting of nickel, manganese, cobalt, chromium, copper and vanadium, and containing 0.02 mol% to 0.6 mol% of an oxide composed of 1 mol of those transition metal elements and oxygen atoms It means to do.
  • vanadium not containing vanadium oxide (V 2 O 5 ) but containing 0.02 mol% or more and 0.6 mol% or less of oxide in terms of VO 2.5 composed of 1 mol of vanadium and oxygen atoms. means.
  • the zirconia sintered body of the present invention is a colored translucent zirconia sintered body, is a zirconia polycrystalline body having a color tone other than colorless and having translucency. Therefore, the colored translucent zirconia sintered body of the present invention includes a colorless translucent zirconia sintered body (hereinafter, transparent zirconia sintered body), an opaque zirconia sintered body (hereinafter, opaque zirconia sintered body), And different from zirconia single crystals.
  • transparent zirconia sintered body an opaque zirconia sintered body
  • the transparent zirconia sintered body here has a maximum linear transmittance of 10% or more at a sample thickness of 1 mm at a measurement wavelength of 400 nm to 800 nm, for example, ⁇ 3 ⁇ a * ⁇ 3 and ⁇ 3 ⁇ b *. It is a sintered body satisfying ⁇ 3.
  • the colored translucent zirconia sintered body of the present invention contains yttria in an amount of 6 mol% to 15 mol% and preferably 8 mol% to 12 mol% with respect to zirconia.
  • the crystal phase tends to have a cubic fluorite structure. Thereby, a colored translucent zirconia sintered compact shows high transparency.
  • the yttria content is less than 6 mol% or the yttria content exceeds 15 mol%, crystal phases other than cubic crystals tend to be mixed, and the transparency of the sintered body is lowered.
  • the colored translucent zirconia sintered body of the present invention preferably contains 3 to 20 mol% of titania, more preferably 8 to 15 mol%.
  • the transparency of the sintered body tends to be high.
  • an average crystal grain tends to become small by containing titania. Thereby, it exists in the tendency for mechanical strength, especially bending strength to become high.
  • the titania content of the sintered body By setting the titania content of the sintered body to 3 mol% or more, the transparency of the sintered body tends to increase.
  • the titania content is 20 mol% or less, a pyrochlore-type oxide (ZrTiO 4 or the like) compound is hardly generated in the sintered body, so that the transparency of the sintered body is hardly lowered.
  • the content of titania is mol% with respect to the total amount of zirconia and yttria in the colored translucent zirconia sintered body.
  • the colored translucent zirconia sintered body of the present invention is from the group consisting of iron (Fe), nickel (Ni), manganese (Mn), cobalt (Co), chromium (Cr), copper (Cu) and vanadium (V). It is preferable to contain at least one selected from the group consisting of nickel (Ni), cobalt (Co), iron (Fe), and vanadium (V).
  • the colored translucent zirconia sintered body of the present invention is composed of iron (Fe), nickel (Ni), manganese (Mn), cobalt (Co), chromium (Cr), copper (Cu) and vanadium (V).
  • the colored translucent zirconia sintered body has high transparency even if the content of the colored transition metal element is small. It becomes a sintered body which exhibits a clear color tone while maintaining it.
  • the colored translucent zirconia sintered body of the present invention contains at least one selected from the group consisting of iron (Fe), nickel (Ni), and cobalt (Co) as the colored transition metal element. While maintaining transparency, the sintered body tends to have a particularly deep color tone.
  • these colored transition metal elements may be contained as oxides.
  • the colored translucent zirconia sintered body of the present invention contains at least 0.02 mol%, preferably at least 0.05 mol%, preferably at least 0.075 mol% of a colored transition metal element in terms of oxide. More preferred. When the content of the colored transition metal element contained in the sintered body is less than 0.02 mol% in terms of oxide, the color tone of the sintered body becomes thin, and in particular, the value of the lightness L * becomes too large.
  • the colored transition metal element contained in the colored translucent zirconia sintered body of the present invention is at most 0.6 mol% in terms of oxide, preferably at most 0.5 mol%, and at most 0 0.3 mol% is more preferable, at most 0.2 mol% is further preferable, at most 0.15 mol% is even more preferable, and at most 0.1 mol% is particularly preferable.
  • the content of the colored transition metal element is mol% with respect to the total amount of zirconia and yttria in the colored translucent zirconia sintered body.
  • the content of the colored transition metal element is mol% with respect to the total amount of zirconia, yttria and titania in the colored translucent zirconia sintered body.
  • the colored translucent zirconia sintered body of the present invention it is preferable that yttria and the colored transition metal element are solid-solved in zirconia. Furthermore, when the colored translucent zirconia sintered body of the present invention contains titania, it is preferable that yttria, titania and the colored transition metal element are dissolved in zirconia.
  • the colored translucent zirconia sintered body of the present invention preferably contains no fluorine. When elemental fluorine or a fluorine-containing compound is included, the transparency of the sintered body tends to be low. Fluorine affects the sinterability of the sintered body.
  • the colored translucent zirconia sintered body of the present invention is preferably less than 0.5% by weight with respect to the weight of the sintered body using fluorine as a fluorinated product, and more preferably not containing a fluorinated product. preferable.
  • the colored translucent zirconia sintered body of the present invention has a high porosity of 1000 ppm (0.1% by volume).
  • the present inventors have found that the transparency of the sintered zirconia is caused by residual pores, and have revealed the correlation between the transparency and the amount of residual pores using a light scattering model based on Mie scattering. According to this, the translucent zirconia sintered body has a correlation between the linear transmittance and the porosity at the same measurement wavelength (J. Am. Ceram. Soc, 91 [3] p813-818 (2008). )).
  • the porosity V of the colored translucent zirconia sintered body of the present invention is at most 1000 ppm (0.1% by volume), preferably at most 700 ppm (0.07% by volume), and at most 500 ppm (0 0.05 volume%), more preferably at most 200 ppm (0.02 volume%).
  • the porosity V exceeds 1000 ppm, the transparency is lowered.
  • the porosity V is 500 ppm or less, the maximum linear transmittance tends to be as high as 30% or more.
  • the porosity is a ratio (volume%) of residual pores to the volume of the colored translucent zirconia sintered body.
  • the porosity in this invention can be calculated
  • the scattering coefficient C in the equation (1) is a value obtained by the following equation (2).
  • the value of the scattering efficiency Q varies depending on the measurement wavelength ⁇ for measuring the linear transmittance. Therefore, when obtaining the porosity V in the equation (1), it is necessary to use the scattering coefficient Q having the same ⁇ as the measurement wavelength ⁇ in which the maximum linear transmittance T of the sintered body in the equation (2) is measured. is there.
  • the measurement wavelength ⁇ and the scattering efficiency Q can be approximately obtained using the following equation (3).
  • the maximum linear transmittance at a sample thickness of 1 mm and a measurement wavelength of 300 nm to 800 nm is preferably at least 30%, more preferably at least 40%, and at least 50%. % Is more preferable.
  • a sintered body having a maximum linear transmittance of at least 30% has high transparency and tends to have high aesthetics.
  • the colored translucent zirconia sintered body of the present invention preferably has a maximum total light transmittance at a sample thickness of 1 mm and a measurement wavelength of 300 nm to 800 nm of at least 50%, more preferably at least 55%. More preferably, it is at least 60%, particularly preferably at least 65%.
  • a sintered body having a maximum total light transmittance of at least 50% tends to have high translucency.
  • the linear transmittance and the total light transmittance are values having the relationship of the formula (4).
  • Ti Tt ⁇ Td (4)
  • Tt Total light transmittance (%)
  • Td diffuse transmittance (%)
  • Ti Linear transmittance (%)
  • the haze ratio at a sample thickness of 1 mm is preferably at most 70%, more preferably at most 55%, and at most 45%. More preferred, at most 25% is particularly preferred. The transparency of the colored translucent zirconia sintered body becomes higher when the haze ratio at the sample thickness of 1 mm is at most 70%.
  • the haze ratio H (%) can be obtained from the equation (5).
  • H 100 ⁇ Td / Tt (5)
  • Tt Total light transmittance (%)
  • Td diffuse transmittance (%)
  • the color tone of the colored translucent zirconia sintered body of the present invention is defined by lightness L * and hues a * and b * .
  • the color tone in the colored translucent zirconia sintered body of the present invention is measured by reflecting the light transmitted through the sintered body with a white plate and measuring the light transmitted through the sintered body again.
  • the color tone changes as the translucency of the sintered body changes.
  • the linear transmittance increases, the lightness L * and the hues a * and b * tend to increase.
  • the linear transmittance decreases, the lightness L * and the hues a * and b * tend to decrease.
  • the hues a * and b * are susceptible to transparency.
  • the color tone in the present invention is determined by the color tone of the opaque zirconia sintered body having no translucency, that is, the lightness L * and the hue a * , b * determined from the reflected light on the surface of the sintered body.
  • the value is different from the value.
  • the lightness L * at a sample thickness of 1 mm is preferably at most 85, more preferably at most 75, and more preferably at most 70. Even more preferably, it is at most 65. Further, when L * is within this range, the color of the sintered body becomes clear. Furthermore, when L * is at most 70, the sintered body tends to have a deeper color tone.
  • the lightness L * is preferably at least 5, more preferably at least 40, and even more preferably at least 50.
  • the hue tends to be clear.
  • the hues a * and b * of the colored translucent zirconia sintered body of the present invention are not determined unconditionally because they greatly change when the translucency of the sintered body changes.
  • the hues a * and b * when the sample thickness is 1 mm are 4 ⁇ a * ⁇ 10 and ⁇ 25 ⁇ b * ⁇ 0. Is mentioned.
  • the hues a * and b * when the sample thickness is 1 mm are ⁇ 20 ⁇ a * ⁇ 0 and 40 ⁇ b * ⁇ 70. It can be illustrated.
  • the crystal phase of the colored translucent zirconia sintered body of the present invention is preferably a cubic crystal, more preferably a cubic fluorite structure, and a single phase of a cubic fluorite structure. Further preferred. Since the cubic crystal has a crystal structure with no optical anisotropy, there is no birefringence at the polycrystalline interface. Therefore, since the crystal phase of the sintered body is a cubic single phase, the sintered body tends to have particularly high transparency.
  • the average crystal grain size of the colored translucent zirconia sintered body of the present invention is preferably at most 60 ⁇ m, more preferably at most 50 ⁇ m, further preferably at most 40 ⁇ m, and at most 35 ⁇ m. Even more preferably, it is particularly preferably at most 30 ⁇ m.
  • the lower limit of the average crystal grain size is not particularly limited, but may be at least 10 ⁇ m.
  • the colored translucent zirconia sintered body of the present invention preferably has a bending strength of at least 100 MPa, more preferably at least 300 MPa, and even more preferably at least 350 MPa. If the bending strength is at least 100 MPa, a sintered body having high mechanical strength is obtained. Therefore, when the colored translucent zirconia sintered body of the present invention is used for an application such as an exterior member, it is difficult to break.
  • the colored translucent zirconia sintered body of the present invention is composed of iron (Fe), nickel (Ni), manganese (Mn), cobalt (Co), chromium (Cr), copper (Cu), and vanadium (V).
  • the primary sintered body having 99% or less and an average crystal grain size of 10 ⁇ m at most can be obtained by subjecting it to HIP treatment.
  • Zirconia powder (hereinafter referred to as “raw material powder”) containing at least one (colored transition metal element) selected from the group consisting of iron, nickel, manganese, cobalt, chromium, copper and vanadium and yttria used in the production method of the present invention. ”)" Is not particularly limited as long as it contains a predetermined amount of a colored transition metal element and yttria.
  • the content of the colored transition metal element and yttria in the raw material powder may be the same as the composition of the target colored translucent zirconia sintered body. From an industrial viewpoint, it is preferable to use, as a raw material powder, a mixed powder obtained by mixing a yttria solid solution zirconia powder and a colored transition metal element oxide powder.
  • the yttria solid solution zirconia powder used for the mixed powder is preferably a powder having a purity of 99.9% or more and a specific surface area of 3 m 2 / g to 20 m 2 / g. Further, the yttria solid solution zirconia powder is preferably a powder having an average crystallite size of 10 nm to 50 nm and an average secondary particle size of 100 nm to 500 nm, and particularly preferably a powder produced by a wet synthesis method such as a hydrolysis method. .
  • the colored transition metal element oxide powder used as the mixed powder preferably has a colored transition metal element oxide purity of 99% or more.
  • the raw material powder preferably further contains titania.
  • the titania powder used for the raw material powder preferably has a titania purity of 99.9% or more, a specific surface area of 10 m 2 / g to 100 m 2 / g, a titania purity of 99.95% or more, and an average crystallite diameter. Is more preferably a fine powder having an average secondary particle diameter of 500 nm or less.
  • the raw material powder contains titania
  • a mixed powder obtained by mixing yttria solid solution zirconia powder, colored transition metal element oxide powder, and titania powder.
  • the method is not particularly limited as long as these powders are uniformly dispersed, but wet mixing such as a wet ball mill and a wet stirring mill is preferable because they can be mixed more uniformly.
  • a raw material powder is molded to obtain a molded body to be subjected to atmospheric pressure sintering (hereinafter referred to as “primary sintering”).
  • the raw material powder molding method is not limited as long as it can obtain a molded body having a shape suitable for primary sintering, and is generally used for ceramic molding, such as press molding and cold isostatic pressing.
  • a molding method such as cast molding, extrusion molding, and injection molding can be used.
  • a primary sintered body to be subjected to HIP treatment by primary sintering of the molded body is produced.
  • the relative density of the primary sintered body is not less than 90% and not more than 99%, and the average crystal grain size is at most 10 ⁇ m.
  • the relative density of the primary sintered body is preferably 91% or more, and more preferably 92% or more. Further, the relative density of the primary sintered body is preferably 98.5% or less, and more preferably 97.5% or less.
  • the translucency of the colored translucent zirconia sintered body of the present invention strongly depends on the primary sintered body structure. Therefore, when the average crystal grain size of the primary sintered body exceeds 10 ⁇ m, the intragranular pores are likely to remain in the primary sintered body, and the pores are not easily excluded even after the HIP treatment. On the other hand, when the average crystal grain size is at most 10 ⁇ m, pores in the primary sintered body exist at the grain boundaries. This facilitates pore removal by HIP processing. Further, when the average grain size of the primary sintered body is at most 10 ⁇ m, plastic flow of the crystal grains easily occurs during the HIP process. Thereby, it is considered that pore removal during HIP processing becomes efficient.
  • the average crystal grain size of the primary sintered body is preferably at most 5 ⁇ m, more preferably at most 4 ⁇ m, and further preferably at most 3.5 ⁇ m. Thereby, pore elimination is easily promoted.
  • the lower limit of the average crystal grain size of the primary sintered body is not particularly limited, for example, it may be at least 0.5 ⁇ m.
  • primary sintering is performed by atmospheric pressure sintering.
  • the primary sintering conditions are not particularly limited as long as a primary sintered body having the above relative density and average crystal grain size is obtained.
  • the primary sintering temperature varies depending on the composition of the target colored translucent zirconia sintered body, the type and content of the colored transition metal element, and the like. Therefore, the primary sintering temperature can be appropriately changed according to the composition of the target colored translucent zirconia sintered body, the type and content of the colored transition metal element.
  • the primary sintering temperature may be 1250 ° C. or higher and 1550 ° C.
  • the more preferable primary sintering temperature may be 1300 ° C. or higher and 1450 ° C. or lower.
  • Examples of the sintering temperature include 1325 ° C. or higher and 1400 ° C. or lower.
  • the primary sintering sintering in an atmosphere such as air, oxygen, and vacuum can be applied. It is preferable to perform primary sintering in the air because it is the simplest.
  • the primary sintered body is subjected to HIP treatment.
  • the HIP treatment temperature is preferably 1400 ° C. or higher and lower than 1800 ° C., more preferably 1450 ° C. or higher and 1650 ° C. or lower.
  • the HIP treatment temperature is less than 1800 ° C., abnormal grain growth of the sintered body crystal grains is suppressed, and the strength tends to increase.
  • the HIP processing temperature is preferably higher than the primary sintering temperature.
  • the primary sintering temperature is 1325 ° C. or higher and 1400 ° C. or lower and the HIP treatment temperature is 1450 ° C. or higher and 1650 ° C. or lower.
  • the HIP treatment time is preferably at least 1 hour. By setting the HIP treatment for at least one hour, the elimination of pores from the sintered body during the HIP treatment is easily promoted.
  • the pressure medium for the HIP process is not particularly limited as long as it is a non-oxidizing atmosphere. Examples of the pressure medium include nitrogen gas and argon gas, and argon gas generally used for HIP processing is preferable.
  • the pressure of the HIP treatment is preferably at least 50 MPa, more preferably from 100 MPa to 200 MPa.
  • the pressure of the HIP process is at least 50 MPa, pore removal during the HIP process tends to be efficient. Further, by setting the pressure to 100 MPa or more, pore elimination is further promoted, and the transparency of the obtained sintered body tends to be high.
  • titanium in the primary sintered body When the primary sintered body containing titania is subjected to HIP treatment, it is preferable to reduce titanium in the primary sintered body.
  • the translucency of the colored translucent zirconia sintered body obtained by this tends to be high.
  • the reduction of titanium means that tetravalent Ti in titania (TiO 2 ) is reduced to trivalent Ti (TiO 1.5 ).
  • TiO 2 tetravalent Ti in titania
  • TiO 1.5 trivalent Ti
  • the container in which the sample is placed by the HIP process is preferably a container made of a reducing material.
  • a reducing material is carbon.
  • the HIP-treated body after the HIP treatment is annealed. Since the HIP-treated body after the HIP treatment tends to exhibit dark black, it can be made into a transparent colored translucent zirconia sintered body by annealing treatment. In particular, when the HIP-treated body contains titania, the HIP-treated body tends to exhibit a dark black color due to the reduction of titanium.
  • the annealing treatment is preferably held at a temperature of 800 ° C. to 1200 ° C. for 1 hour or more in an oxidizing atmosphere at normal pressure.
  • the oxidizing atmosphere include air or oxygen, and it is easy to carry out in the air.
  • the colored translucent zirconia sintered body of the present invention is a zirconia polycrystal containing a specific transition metal element as a colorant and having both high translucency and a clear color.
  • a transition metal element By appropriately selecting a transition metal element, a colored translucent zirconia sintered body having various colors can be obtained. Furthermore, these colorants not only show a clear coloration in a small amount, but also are industrially advantageous because they are inexpensive.
  • Example 1 It is a graph which shows the linear transmittance
  • the haze ratio was measured using a haze meter (Nippon Denshoku Co., Ltd., NDH5000) in accordance with JIS K7105 “Plastic Optical Properties Test Method” and JIS K7136 “Plastics—How to Obtain Haze of Transparent Materials”.
  • the light source used was D65 light.
  • Total light transmittance and linear transmittance The linear transmittance was measured with a double beam type spectrophotometer (manufactured by JASCO Corporation, model V-650). The measurement sample was the same as that used for haze rate measurement. Using a deuterium lamp and a halogen lamp as a light source, the measurement wavelength of 300 nm to 800 nm was scanned, and the linear transmittance at each wavelength was measured.
  • D average crystal grain size ( ⁇ m)
  • L average length ( ⁇ m) of crystal grains crossing an arbitrary straight line. The value of L was an average value of 100 or more measured lengths.
  • Biaxial bending strength was measured as a measure of mechanical strength. The measurement was performed according to ISO 6872 using a precision universal testing machine (manufactured by Shimadzu Corporation). The measurement was performed three times, and the average value was defined as the biaxial bending strength. (Measurement of X-ray diffraction) The crystal phases of the samples of Examples and Comparative Examples were measured by X-ray diffraction. The measurement was performed with an X-ray diffractometer (RINT Ultima III, manufactured by Rigaku Corporation).
  • Example 1 (Preparation of raw material powder) 8 mol% yttria-containing zirconia powder produced by hydrolysis method (manufactured by Tosoh, TZ-8Y; specific surface area 13 m 2 / g, crystallite diameter 40 nm) and vanadium oxide so as to be 0.05 mol% in terms of VO 2.5 (V 2 O 5 ) powder (manufactured by Kojundo Chemical Laboratory, purity 99.9%) was weighed. These powders were mixed in a ball mill for 72 hours using a zirconia ⁇ 10 mm ball in an ethanol solvent, and then dried to prepare a raw material powder.
  • the raw material powder was molded at a pressure of 50 MPa by a mold press and then processed at a pressure of 200 MPa using a cold isostatic press to obtain a cylindrical molded body having a diameter of 20 mm and a thickness of 3 mm.
  • the obtained molded body was sintered in the atmosphere at a heating rate of 100 ° C./h, a sintering temperature of 1350 ° C., and a sintering time of 2 hours, and then allowed to cool naturally to give a primary sintered body (sample number: No. 1-1) was obtained.
  • the characteristics of the obtained primary sintered body are shown in Table 1.
  • the composition of the primary sintered body was the same as that of the raw material powder, the relative density was 90% or more, and the average crystal grain size was 5 ⁇ m or less.
  • HIP treatment and annealing treatment Sample number: No.
  • the primary sintered body of 1-1 was subjected to HIP treatment at a temperature of 1650 ° C., a pressure of 150 MPa, and a holding time of 1 hour.
  • Argon gas having a purity of 99.9% was used as the pressure medium.
  • the HIP apparatus is an apparatus provided with a carbon heater and a carbon heat insulating material, and an alumina lid crucible having a vent is used as a container for installing the primary sintered body.
  • the HIP-treated body obtained by the HIP treatment was annealed by holding at 1000 ° C. for 5 hours at a heating rate of 250 ° C./h in the atmosphere to obtain a colored translucent zirconia sintered body.
  • the obtained colored translucent zirconia sintered body had the same composition as the raw material powder.
  • the crystal phase was a fluorite cubic single phase.
  • Table 1 shows the results of the raw material powder, the primary sintering conditions and the primary sintered body, and Table 2 shows the results of the obtained colored translucent zirconia sintered body.
  • Example 2 The primary sintered body (sample number: No) .1-2) was obtained.
  • the obtained primary sintered body was subjected to HIP treatment and annealing treatment under the same conditions as in Example 1 to obtain a colored translucent zirconia sintered body of Example 2.
  • the obtained colored translucent zirconia sintered body had the same composition as the raw material powder.
  • the crystal phase was a fluorite cubic single phase.
  • Table 1 shows the results of the raw material powder, the primary sintering conditions and the primary sintered body, and Table 2 shows the results of the obtained colored translucent zirconia sintered body.
  • Example 3 And except that VO 2.5 to 0.05 mol% of vanadium oxide powder converted was 0.5 mol% of cobalt oxide powder is subjected to primary sintering under the same conditions as in Example 1 primary sintered body (Sample No.: No. 1-3) was obtained.
  • the obtained primary sintered body was subjected to HIP treatment under the same conditions as in Example 1 to obtain a colored translucent zirconia sintered body of Example 3.
  • the obtained colored translucent zirconia sintered body had the same composition as the raw material powder.
  • the crystal phase was a fluorite cubic single phase.
  • Table 1 shows the results of the raw material powder, the primary sintering conditions and the primary sintered body, and Table 2 shows the results of the obtained colored translucent zirconia sintered body.
  • Example 4 VO 2.5 0.02 mol% of copper oxide vanadium oxide powder 0.05 mol% in terms of (CuO) powder (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.9%) and other than the in the same manner as in Example 1
  • Primary sintering was performed under the conditions to obtain a primary sintered body (sample number: No. 1-4).
  • the obtained primary sintered body was subjected to HIP treatment under the same conditions as in Example 1 to obtain a colored translucent zirconia sintered body of Example 4.
  • the obtained colored translucent zirconia sintered body had the same composition as the raw material powder.
  • the crystal phase was a fluorite cubic single phase.
  • Table 1 shows the results of the raw material powder, the primary sintering conditions and the primary sintered body
  • Table 2 shows the results of the obtained colored translucent zirconia sintered body.
  • Example 5 Primary sintering was performed under the same conditions as in Example 1 except that 0.05 mol% of vanadium oxide powder in terms of VO 2.5 was changed to 0.025 mol% vanadium oxide powder and 0.025 mol% cobalt oxide powder.
  • a primary sintered body (sample number: No. 1-5) was obtained.
  • the obtained primary sintered body was subjected to HIP treatment under the same conditions as in Example 1 to obtain a colored translucent zirconia sintered body of Example 5.
  • the obtained colored translucent zirconia sintered body had the same composition as the raw material powder.
  • the crystal phase was a fluorite cubic single phase.
  • Table 1 shows the results of the raw material powder, the primary sintering conditions and the primary sintered body, and Table 2 shows the results of the obtained colored translucent zirconia sintered body.
  • the colored translucent zirconia sintered bodies of Examples 1 to 5 had both high translucency and clear coloration.
  • the linear transmittance (sample thickness 1 mm, measurement wavelength 300 to 800 nm) of the colored translucent zirconia sintered bodies of Examples 1, 2 and 5 is shown in FIG.
  • Example 6 (Preparation of raw material powder) 10 mol% yttria-containing zirconia powder (manufactured by Tosoh, TZ-10YS; specific surface area 6 m 2 / g, crystallite diameter 20 nm) and iron oxide (Fe 2 O 3 powder) powder (high purity chemical research) (Purity 99.9%) was weighed to 0.1 mol% in terms of FeO 1.5 and titania powder (super titania, F-4) to 10 mol%. These powders were ball mill mixed with ⁇ 10 mm balls made of zirconia in an ethanol solvent for 72 hours and then dried to prepare raw material powders.
  • the raw material powder was molded at a pressure of 50 MPa by a mold press and then processed at a pressure of 200 MPa using a cold isostatic press to obtain a cylindrical molded body having a diameter of 20 mm and a thickness of 3 mm.
  • the obtained molded body was primarily sintered in the atmosphere at a heating rate of 100 ° C./h, 1350 ° C. for 2 hours, and then naturally cooled to obtain a primary sintered body (sample number: No. 1-6). It was.
  • the properties of the obtained primary sintered body are shown in Table 3.
  • the composition of the primary sintered body was the same as that of the raw material powder.
  • the primary sintered body had a relative density of 95% or more and an average crystal grain size of 5 ⁇ m or less.
  • HIP treatment and annealing treatment No. Using a primary sintered body of 1-6, HIP treatment was performed at a temperature of 1500 ° C., a pressure of 150 MPa, and a holding time of 1 hour. Argon gas having a purity of 99.9% was used as the pressure medium.
  • the HIP apparatus is an apparatus including a carbon heater and a carbon heat insulating material, and a crucible with a carbon lid was used as a container for installing the primary sintered body.
  • the HIP-treated body obtained by the HIP treatment was further annealed at 1000 ° C. for 2 hours at a heating rate of 250 ° C./h in the atmosphere to obtain a colored translucent zirconia sintered body of Example 6.
  • the obtained colored translucent zirconia sintered body had the same composition as the raw material powder.
  • the crystal phase was a fluorite cubic single phase.
  • Table 3 shows the results of the raw material powder, the primary sintering conditions, and the primary sintered body, and Table 4 shows the results of the obtained colored translucent zirconia sintered body.
  • Example 7 A primary sintered body (sample number: No.) was subjected to primary sintering under the same conditions as in Example 6 except that the iron oxide powder was changed to nickel oxide (NiO) powder (manufactured by High-Purity Chemical Laboratory, purity 99.9%). . 1-7) was obtained. The obtained primary sintered body was subjected to HIP treatment and annealing treatment under the same conditions as in Example 6 to obtain a colored translucent zirconia sintered body of Example 7. The obtained colored translucent zirconia sintered body had the same composition as the raw material powder. The crystal phase was a fluorite cubic single phase. Table 3 shows the results of the raw material powder, the primary sintering conditions, and the primary sintered body, and Table 4 shows the results of the obtained colored translucent zirconia sintered body.
  • Example 8 A primary sintered body (sample number: No. 1-8) was obtained by primary sintering under the same conditions as in Example 6 except that the iron oxide powder was changed to cobalt oxide powder.
  • the obtained primary sintered body was subjected to HIP treatment and annealing treatment under the same conditions as in Example 6 to obtain a colored translucent zirconia sintered body in Example 8.
  • the obtained colored translucent zirconia sintered body had the same composition as the raw material powder.
  • the crystal phase was a fluorite cubic single phase.
  • Table 3 shows the results of the raw material powder, the primary sintering conditions, and the primary sintered body, and Table 4 shows the results of the obtained colored translucent zirconia sintered body.
  • Example 9 A primary sintered body (sample number: No. 1-9) was obtained by performing primary sintering under the same conditions as in Example 8 except that the primary sintering temperature was 1300 ° C.
  • a colored translucent zirconia sintered body of Example 9 was obtained by performing HIP treatment and annealing under the same conditions as in Example 8 except that the primary sintered body was at a HIP treatment temperature of 1550 ° C.
  • the obtained colored translucent zirconia sintered body had the same composition as the raw material powder.
  • the crystal phase was a fluorite cubic single phase.
  • Table 3 shows the results of the raw material powder, the primary sintering conditions, and the primary sintered body, and Table 4 shows the results of the obtained colored translucent zirconia sintered body.
  • Example 10 A primary sintered body (sample number: No. 1-10) was obtained by performing primary sintering under the same conditions as in Example 8 except that the primary sintering temperature was 1400 ° C. The primary sintered body was subjected to HIP treatment and annealing treatment under the same conditions as in Example 6 to obtain a colored translucent zirconia sintered body of Example 10. The obtained colored translucent zirconia sintered body had the same composition as the raw material powder. The crystal phase was a fluorite cubic single phase. Table 3 shows the results of the raw material powder, the primary sintering conditions, and the primary sintered body, and Table 4 shows the results of the obtained colored translucent zirconia sintered body.
  • Example 11 A primary sintered body (sample number: No. 1-11) was obtained by primary sintering under the same conditions as in Example 8 except that the cobalt oxide powder was changed to 0.15 mol%.
  • the primary sintered body was subjected to HIP treatment and annealing treatment under the same conditions as in Example 6 to obtain a colored translucent zirconia sintered body of Example 11.
  • the obtained colored translucent zirconia sintered body had the same composition as the raw material powder.
  • the crystal phase was a fluorite cubic single phase.
  • Table 3 shows the results of the raw material powder, the primary sintering conditions, and the primary sintered body, and Table 4 shows the results of the obtained colored translucent zirconia sintered body.
  • Table 5 shows the bending strength of the obtained colored zirconia sintered body.
  • Example 12 A primary sintered body (sample number: No. 1-12) was obtained by primary sintering under the same conditions as in Example 8 except that the cobalt oxide powder was changed to 0.29 mol%.
  • the primary sintered body was subjected to HIP treatment and annealing treatment under the same conditions as in Example 6 to obtain a colored translucent zirconia sintered body of Example 12.
  • the obtained colored translucent zirconia sintered body had the same composition as the raw material powder.
  • the crystal phase was a fluorite cubic single phase.
  • Table 3 shows the results of the raw material powder, the primary sintering conditions, and the primary sintered body, and Table 4 shows the results of the obtained colored translucent zirconia sintered body.
  • Table 5 shows the bending strength of the obtained colored zirconia sintered body.
  • Example 13 A primary sintered body (sample number: No. 1-13) was obtained by primary sintering under the same conditions as in Example 8 except that the cobalt oxide powder was changed to 0.44 mol%.
  • the primary sintered body was subjected to HIP treatment and annealing treatment under the same conditions as in Example 6 to obtain a colored translucent zirconia sintered body of Example 13.
  • the obtained colored translucent zirconia sintered body had the same composition as the raw material powder.
  • the crystal phase was a fluorite cubic single phase.
  • Table 3 shows the results of the raw material powder, the primary sintering conditions, and the primary sintered body, and Table 4 shows the results of the obtained colored translucent zirconia sintered body.
  • Table 5 shows the bending strength of the obtained colored zirconia sintered body.
  • Example 14 A primary sintered body (sample number: No. 1-14) was obtained by primary sintering under the same conditions as in Example 8 except that the cobalt oxide powder was changed to 0.58 mol%.
  • the primary sintered body was subjected to HIP treatment and annealing treatment under the same conditions as in Example 6 to obtain a colored translucent zirconia sintered body of Example 14.
  • the obtained colored translucent zirconia sintered body had the same composition as the raw material powder.
  • the crystal phase was a fluorite cubic single phase.
  • Table 3 shows the results of the raw material powder, the primary sintering conditions, and the primary sintered body, and Table 4 shows the results of the obtained colored translucent zirconia sintered body.
  • Table 5 shows the bending strength of the obtained colored zirconia sintered body.
  • any colored translucent zirconia sintered body showed high linear transmittance, and a specific wavelength was absorbed. From this, it was confirmed that the colored translucent zirconia sintered bodies of Examples 6 to 10 had high transparency and clear coloration.
  • the linear transmittance of Example 8 is shown in FIG. Furthermore, it was confirmed that the colored translucent zirconia sintered body containing titania has an average crystal grain size of 50 ⁇ m at most, is composed of small crystal grains, and has high mechanical properties. Further, FIG. 8 shows the relationship between the added amount of the colored transition metal element and the residual pores. It was confirmed that when the amount of the colored transition metal element added exceeds 0.6 mol%, the residual pores in the sintered body rapidly increase and the translucency is remarkably reduced.
  • Comparative Example 1 A primary sintered body (sample number: No. 2-1) and a zirconia sintered body were obtained in the same manner as in Example 1 except that the vanadium oxide powder was changed to 1.0 mol% in terms of VO 2.5 . .
  • the obtained zirconia sintered body had the same composition as the raw material powder.
  • the crystal phase was a fluorite cubic single phase.
  • Table 6 shows the results of the raw material powder, the primary sintering conditions and the primary sintered body
  • Table 7 shows the results of the obtained zirconia sintered body.
  • the porosity exceeded 1000 ppm.
  • Such a sintered body has low transparency and is an opaque zirconia sintered body as confirmed by visual observation.
  • Example 2 A primary sintered body (sample number: No. 2-2) and a zirconia sintered body were obtained in the same manner as in Example 8 except that the cobalt oxide powder was changed to 0.8 mol%.
  • the obtained zirconia sintered body had the same composition as the raw material powder.
  • the crystal phase was a fluorite cubic single phase.
  • Table 6 shows the results of the raw material powder, the primary sintering conditions and the primary sintered body
  • Table 7 shows the results of the obtained zirconia sintered body.
  • the porosity exceeded 1000 ppm.
  • Such a sintered body has low transparency and is an opaque zirconia sintered body as confirmed by visual observation.
  • Example 3 A primary sintered body (sample number: No. 2-3) was prepared in the same manner as in Example 1 except that scandium oxide (ScO) powder was changed to 0.05 mol% in terms of ScO 1.5 instead of vanadium oxide powder. And the zirconia sintered compact was obtained. The obtained zirconia sintered body had the same composition as the raw material powder. The crystal phase was a fluorite cubic single phase. Table 6 shows the results of the raw material powder, the primary sintering conditions and the primary sintered body, and Table 7 shows the results of the obtained zirconia sintered body.
  • ScO scandium oxide
  • Table 6 shows the results of the raw material powder, the primary sintering conditions and the primary sintered body
  • Table 7 shows the results of the obtained zirconia sintered body.
  • the zirconia sintered body containing only scandium which is a transition metal element other than the transition metal element contained in the colored translucent zirconia sintered body of the present invention has a hue of ⁇ 3 ⁇ a * ⁇ 3 and ⁇ 3 ⁇ b *. ⁇ 3 and there was almost no coloration.
  • the sintered body was a colorless translucent zirconia sintered body.
  • Reference example 1 According to the same method as in Example 6 except that neodymium oxide (Nd 2 O 3 ) powder (manufactured by Shin-Etsu Chemical Co., Ltd., neodymium purity 99.9%) was changed to 0.1 mol% in terms of NdO 1.5 instead of iron oxide powder.
  • a primary sintered body (sample number: No. 3-1) and a zirconia sintered body were obtained.
  • Table 8 shows the results of the raw material powder, the primary sintering conditions and the primary sintered body, and Table 9 shows the results of the obtained zirconia sintered body.
  • a zirconia sintered body containing a small amount of a lanthanoid rare earth element of less than 0.5 mol% has a large L * , satisfies ⁇ 3 ⁇ a * ⁇ 3, and satisfies ⁇ 3 ⁇ b * ⁇ 3.
  • the sintered body was a colorless transparent zirconia sintered body. From this, it can be seen that the zirconia sintered body containing the transition metal element of the present invention is a colored translucent zirconia sintered body having a clear coloration despite a small amount of colorant content. It was.
  • the colored translucent zirconia sintered body of the present invention has a highly transparent and dark color tone as well as conventional ornamental, jewelry and craft applications. Therefore, it can be suitably used as a small and thin member such as an exterior part of an electronic device, in addition to a jewelry use and a decoration use.
  • a small and thin member such as an exterior part of an electronic device, in addition to a jewelry use and a decoration use.

Abstract

 遷移金属元素を着色剤として明確な色調及び高い透明性を有し、意匠性および審美性が共に優れる着色透光性ジルコニア焼結体及びその製造方法を提供する。 イットリアを6mol%以上15mol%以下含有し、鉄、ニッケル、マンガン、コバルト、クロム、銅及びバナジウムからなる群から選ばれる少なくとも1種以上を酸化物換算で0.02mol%以上0.5mol%以下含有し、気孔率が高くとも1000ppmであることを特徴とする着色透光性ジルコニア焼結体。平均結晶粒径が大きくとも60μmであることが好ましい。

Description

着色透光性ジルコニア焼結体及びその製造方法並びにその用途
 本発明は、濃い色調と高い透光性を兼ね備えた着色透光性ジルコニア焼結体及びその製造方法に関する。
 従来から、ジルコニア単結晶、いわゆるキュービックジルコニアは、装飾用途や宝飾用途に使用されている。さらに、遷移金属や希土類元素などの着色剤を添加することによって着色されたキュービックジルコニアも同様な用途に使用されている(非特許文献1)。
 これらのキュービックジルコニアを作製する場合は、スカルメルト法等によりジルコニア単結晶のバルク体を最初に作製し、その後、作製したバルク体を切断や研磨によって目的形状に加工する必要があった。そのため、キュービックジルコニアを任意の形状に加工することは困難であり、複雑形状等の高い意匠性が必要とされる用途や、微細加工が必要とされる用途などにはキュービックジルコニアを使用することができなかった。
 一方、ジルコニア粉末を成型、焼成して得られ、高い透明性を有する透光性ジルコニア焼結体が報告されている(特許文献1、特許文献2、特許文献3、非特許文献2)。これらの透光性ジルコニア焼結体は、射出成型等のモールディング成型で作製できる。そのため、透光性ジルコニア焼結体は任意の形状の焼結体として製造することが容易である。このような高い透明性を有する透光性ジルコニア焼結体は、キュービックジルコニアでは加工できない形状の部材とすることができる。
 透光性ジルコニア焼結体の意匠性をさらに向上させるため、着色剤として希土類酸化物を添加した透光性ジルコニア焼結体、いわゆる着色透光性ジルコニア焼結体が検討されている(特許文献1~3)。
特開2007-246384号公報 特開昭62-091467号公報 特開2010-47460号公報
Jounal of the Electrochemical Society、第130巻、No.4、962頁(1983) Jounal of the European Ceramic Society、第29巻、283頁(2009)
 従来のランタノイド系希土類元素を着色剤として使用した着色透光性ジルコニア焼結体では、所望の呈色を得るために1mol%程度のランタノイド系希土類元素を添加する必要があった。ランタノイド系希土類元素は高価であり、これに代わる安価な着色剤を用い、かつ、明確な呈色を有する着色透光性ジルコニア焼結体が求められていた。
 さらに、多結晶体である透光性ジルコニア焼結体の着色は、ジルコニア単結晶の着色とは異なる。すなわち、透光性ジルコニア焼結体が着色剤を含有すると、その透明性が著しく低下するという問題を有している。そのため、高い透明性を有した着色透光性ジルコニア焼結体は、Ndなどごく一部の着色剤を少量含有した焼結体のみしか得られていなかった。したがって、多彩な色彩を有し、なおかつ、高い透光性を有する着色透光性ジルコニア焼結体は得られていなかった。
 本研究者らは、上記の課題に鑑み、着色透光性ジルコニア焼結体の色調及び透明性と、焼結体組成及び組織との関係について鋭意検討を重ねた。その結果、着色剤として特定の遷移金属元素を着色剤として含有した透光性ジルコニア焼結体は、着色剤の含有量が微量であるにも関わらず、明確な呈色を示すことを見出した。
 さらに、着色剤としての特定の遷移金属元素を含有するジルコニア焼結体であって、なおかつ、気孔率が制御された着色透光性ジルコニア焼結体は、少量の着色剤であるにも関わらず、焼結体が明確な色調を呈し、かつ、高い透明性を有することを見出した。さらには、特定の遷移金属元素を含有し、かつ、結晶粒子内部の気孔(以下、「粒内気孔」とする)を有さない一次焼結体を作製し、その後、当該一次焼結体を熱間静水圧プレス処理することによって、高い透明性を有するだけでなく、明確な色調をも呈する着色透光性ジルコニア焼結体が得られることを見出した。
 すなわち、本発明は、イットリアを6mol%以上15mol%以下含有し、鉄、ニッケル、マンガン、コバルト、クロム、銅及びバナジウムからなる群から選ばれる少なくとも1種以上を酸化物換算で0.02mol%以上0.6mol%以下含有し、気孔率が高くとも1000ppmであることを特徴とする着色透光性ジルコニア焼結体である。
 本発明において、「鉄、ニッケル、マンガン、コバルト、クロム、銅及びバナジウムからなる群から選ばれる少なくとも1種以上を酸化物換算で0.02mol%以上0.6mol%以下含有し」とは、鉄、ニッケル、マンガン、コバルト、クロム、銅及びバナジウムからなる群から選ばれる少なくとも1種以上を、それらの遷移金属元素1モルと酸素原子からなる酸化物を0.02mol%以上0.6mol%以下含有することを意味するものとする。例えば、バナジウムの場合は、酸化バナジウム(V)ではなく、バナジウム1モルと酸素原子からなるVO2.5換算での酸化物を0.02mol%以上0.6mol%以下含有することを意味する。
 以下、本発明の着色透光性ジルコニア焼結体について説明する。
 本発明のジルコニア焼結体は、着色透光性ジルコニア焼結体であり、無色以外の色調を有し、かつ、透光性を有するジルコニア多結晶体である。従って、本発明の着色透光性ジルコニア焼結体は、無色の透光性ジルコニア焼結体(以下、透明ジルコニア焼結体)、不透明のジルコニア焼結体(以下、不透明ジルコニア焼結体)、及びジルコニア単結晶とは異なる。なお、ここでいう透明ジルコニア焼結体とは、測定波長400nm~800nmにおいて試料厚さ1mmの最大直線透過率が10%以上であり、例えば、-3≦a≦3かつ-3≦b≦3を満たす焼結体である。
 本発明の着色透光性ジルコニア焼結体は、ジルコニアに対してイットリアを6mol%以上15mol%以下含有し、8mol%以上12mol%以下含有することが好ましい。イットリア含有量がこの範囲であると、結晶相が立方晶蛍石型構造となりやすい。これにより、着色透光性ジルコニア焼結体が高い透明性を示す。
 イットリア含有量が6mol%未満、もしくは、イットリア含有量が15mol%を超えると立方晶以外の結晶相が混在しやすくなり、焼結体の透明性が低下する。
 本発明の着色透光性ジルコニア焼結体は、チタニアを3mol%以上20mol%以下含有することが好ましく、8mol%以上15mol%以下含有することがより好ましい。焼結体がこの範囲のチタニアを含有することで、焼結体の透明性が高くなりやすい。さらに、チタニアを含有することで平均結晶粒が小さくなりやすい。これにより、機械的強度、特に曲げ強度が高くなる傾向にある。焼結体のチタニア含有量が3mol%以上とすることで、焼結体の透明性が高くなりやすい。また、チタニアの含有量が20mol%以下であることで、焼結体中にパイロクロア型酸化物(ZrTiO等)の化合物が生成しにくくなるため、焼結体の透明性が低下しにくくなる。
 なお、チタニアの含有量は、着色透光性ジルコニア焼結体中のジルコニア及びイットリアの合計量に対するmol%である。
 本発明の着色透光性ジルコニア焼結体は鉄(Fe)、ニッケル(Ni)、マンガン(Mn)、コバルト(Co)、クロム(Cr)、銅(Cu)及びバナジウム(V)からなる群から選ばれる少なくとも1種以上を含有し、ニッケル(Ni)、コバルト(Co)、鉄(Fe)及びバナジウム(V)からなる群から選ばれる少なくとも1種以上を含有することが好ましい。本発明の着色透光性ジルコニア焼結体が、鉄(Fe)、ニッケル(Ni)、マンガン(Mn)、コバルト(Co)、クロム(Cr)、銅(Cu)及びバナジウム(V)からなる群から選ばれる少なくとも1種以上(以下、「着色遷移金属元素」とする)を含有した場合、着色遷移金属元素の含有量が少量であっても着色透光性ジルコニア焼結体が高い透明性を維持したまま、明確な色調を呈する焼結体となる。また、着色遷移金属元素として、鉄(Fe)、ニッケル(Ni)及びコバルト(Co)からなる群から選ばれる少なくとも1種以上を含有することで、本発明の着色透光性ジルコニア焼結体が透明性を維持したまま、特に深い色調を有する焼結体となる傾向にある。なお、本発明の着色透光性ジルコニア焼結体中では、これらの着色遷移金属元素は酸化物として含有されていてもよい。
 本発明の着色透光性ジルコニア焼結体は、着色遷移金属元素を酸化物換算で少なくとも0.02mol%含有し、少なくとも0.05mol%含有することが好ましく、少なくとも0.075mol%含有することがより好ましい。焼結体が含有する着色遷移金属元素の含有量が酸化物換算で0.02mol%未満では、焼結体の色調が薄くなり、特に明度Lの値が大きくなりすぎる。
 焼結体が含有する着色遷移金属元素が多くなると、明度Lの値が低くなり、より深い色調とすることができる。しかしながら、着色遷移金属元素が多くなりすぎると焼結体中にジルコニア以外の遷移金属酸化物が生成し、焼結体の透光性が低下する傾向にある。そのため、本発明の着色透光性ジルコニア焼結体が含有する着色遷移金属元素は、酸化物換算で多くとも0.6mol%であり、多くとも0.5mol%であることが好ましく、多くとも0.3mol%であることがより好ましく、多くとも0.2mol%であることが更に好ましく、多くとも0.15mol%であることが更により好ましく、多くとも0.1mol%であることが特に好ましい。
 なお、着色遷移金属元素の含有量は、着色透光性ジルコニア焼結体中のジルコニア、及びイットリアの合計量に対するmol%である。
 また、着色透光性ジルコニア焼結体がチタニアを含有する場合、着色遷移金属元素の含有量は、着色透光性ジルコニア焼結体中のジルコニア、イットリア及びチタニアの合計量に対するmol%である。
 本発明の着色透光性ジルコニア焼結体は、イットリア及び着色遷移金属元素がジルコニアに固溶していることが好ましい。
 さらに、本発明の着色透光性ジルコニア焼結体がチタニアを含有している場合は、イットリア、チタニア及び着色遷移金属元素がジルコニアに固溶していることが好ましい。
 本発明の着色透光性ジルコニア焼結体はフッ素を含まないことが好ましい。フッ素元素やフッ素含有化合物を含んだ場合、焼結体の透明性が低くなりやすい。フッ素は焼結体の焼結性に影響を与える。そのため、焼結過程においてフッ素が焼結体中の気孔排除を抑制し、焼結体中に気孔が多く残存するためと考えられる。そのため、本発明の着色透光性ジルコニア焼結体はフッ素をフッ素化物として焼結体の重量に対して0.5重量%未満であることが好ましく、実質的にフッ素化物を含有しないことがより好ましい。
 本発明の着色透光性ジルコニア焼結体は、気孔率が高くとも1000ppm(0.1体積%)である。
 本発明者らはジルコニア焼結体の透明性が残留気孔に起因することを見出し、Mie散乱による光散乱モデルを用いて透明性と残留気孔量の相関を明らかにした。これによると、透光性ジルコニア焼結体は、同一の測定波長における直線透過率と気孔率に相関関係を有している(J.Am.Ceram.Soc,91[3] p813-818(2008))。さらなる検討の結果、着色剤として遷移金属元素を含有する着色透光性ジルコニア焼結体においては、最大直線透過率と気孔率との間に上記と同様な相関関係があることを本発明者らは見出した。
 本発明の着色透光性ジルコニア焼結体の気孔率Vは高くとも1000ppm(0.1体積%)であり、高くとも700ppm(0.07体積%)であることが好ましく、高くとも500ppm(0.05体積%)であることがより好ましく、高くとも200ppm(0.02体積%)であることがさらに好ましい。気孔率Vが1000ppmを越えると透明性が低くなる。さらに、気孔率Vが500ppm以下であることで、最大直線透過率が30%以上と高くなりやすい。ここで、本発明においては、気孔率とは、着色透光性ジルコニア焼結体の体積に対する、残留気孔の割合(体積%)である。
 一方、気孔率Vは低いほど透明性は高くなる。そのため、本発明の着色透光性ジルコニア焼結体は実質的に気孔を含まないことが好ましい。しかしながら、気孔率が1ppm(0.0001体積%)、さらには気孔率が10ppm(0.001体積%)であっても本発明の目的とする透明性を有する焼結体となる。
 本発明における気孔率は以下の(1)式で求めることができる。
 V=100×(4・r・C)/(3・Q) ・・・(1)
(但し、V:気孔率(体積%)、C:散乱係数(1/m)、r:残留気孔半径(m)、Q:散乱効率(-)であり、r=0.05μmである。)
 なお、(1)式における散乱係数Cは以下の(2)式で求まる値である。
 C=-(1/t)・Ln{(T/100)/(1-R)} ・・・(2)
(但し、C:散乱係数(1/m)、T:焼結体の最大直線透過率(%)、R:反射率(-)、t:サンプル厚み(m)であり、R=0.14である)。
 また、散乱効率Qの値は直線透過率を測定する測定波長λにより異なる。そのため、(1)式において気孔率Vを求める場合は、(2)式における焼結体の最大直線透過率Tが測定された測定波長λと同じλの散乱係数Qを使用することが必要である。測定波長λと散乱効率Qは、以下の(3)式を用いて近似的に求めることができる。
Q=5.010-2.370e-2・λ+4.813e-5・λ
  -5.032e-8・λ+2.638e-11・λ-5.435e-15・λ (3)
(但し、λ:最大直線透過率が測定されたときの測定波長(nm))
 本発明の着色透光性ジルコニア焼結体は、試料厚さ1mm、測定波長300nm~800nmにおける最大直線透過率が少なくとも30%であることが好ましく、少なくとも40%であることがより好ましく、少なくとも50%であることがさらに好ましい。最大直線透過率が少なくとも30%である焼結体は透明性が高く、高い審美性を有しやすい。
 本発明の着色透光性ジルコニア焼結体は、試料厚さ1mm、測定波長300nm~800nmにおける最大全光線透過率が、少なくとも50%であることが好ましく、少なくとも55%であることがより好ましく、少なくとも60%であることがさらに好ましく、少なくとも65%であることが特に好ましい。最大全光線透過率が少なくとも50%の焼結体は透光性が高くなりやすい。
 なお、直線透過率及び全光線透過率は(4)式の関係を有する値である。
 Ti=Tt-Td ・・・(4)
  Tt:全光線透過率(%)
  Td:拡散透過率(%)
  Ti:直線透過率(%)
 本発明の着色透光性ジルコニア焼結体は、試料厚さ1mmにおけるヘーズ率が高くとも70%であることが好ましく、高くとも55%であることがより好ましく、高くとも45%であることが更に好ましく、高くとも25%であることが特に好ましい。試料厚さ1mmにおけるヘーズ率が高くとも70%であることで、着色透光性ジルコニア焼結体の透明性がより高くなる。
 ヘーズ率H(%)は(5)式から求めることができる。
  H=100×Td/Tt ・・・(5)
  H :ヘーズ率(%)
  Tt:全光線透過率(%)
  Td:拡散透過率(%)
 本発明の着色透光性ジルコニア焼結体の色調は明度L、色相a、bで規定される。ここで、明度L値が大きくなると色調は明るくなり、反対にL値が小さくなると色調は暗くなる。さらに、本発明の着色透光性ジルコニア焼結体における色調は、焼結体を透過した光を白板で反射させ、これが再度焼結体を透過した光を測定することによって測定される。そのため、色調は焼結体の透光性が変化することに伴って変化する。例えば、直線透過率が大きくなると、明度L、色相a、bはいずれも大きくなりやすい。反対に、直線透過率が小さくなると、明度L、色相a、bはいずれも小さくなりやすい。特に、色相a、bは透明性に影響を受けやすい。
 このように、本発明における色調は、透光性を有さない不透明ジルコニア焼結体の色調、すなわち、焼結体表面の反射光から求められる明度L、色相a、bにより求められる値とは異なる値である。
 本発明の着色透光性ジルコニア焼結体は、試料厚さ1mmにおける明度Lが大きくとも85であることが好ましく、大きくとも75であることがさらに好ましく、大きくとも70であることがより好ましく、大きくとも65であることがさらにより好ましい。また、Lがこの範囲であることで、焼結体の色合いが明確になる。さらに、Lが大きくとも70であることで、焼結体がより深い色調となりやすい。
 また、明度Lが低くなりすぎると色相が黒色に近くなるため、明度Lは少なくとも5であることが好ましく、少なくとも40であることがより好ましく、少なくとも50であることが更に好ましい。明度Lが少なくとも5であることで、色相が明確になりやすい。
 本発明の着色透光性ジルコニア焼結体の色相a及びbは焼結体の透光性が変化すると大きく変化するため、一概に決まるものではない。例えば、本発明の着色透光性ジルコニア焼結体が紫色を呈する場合、試料厚さ1mmの際の色相a及びbが4≦a≦10、-25≦b≦0であることが挙げられる。同様に、着色透光性ジルコニア焼結体が黄色を呈する場合、試料厚さ1mmの際の色相a及びbが、-20≦a≦0、40≦b≦70であることが例示できる。
 本発明の着色透光性ジルコニア焼結体の結晶相は、立方晶であることが好ましく、立方晶蛍石型構造であることがより好ましく、立方晶蛍石型構造の単相であることがさらに好ましい。立方晶は光学異方性がない結晶構造であるため、多結晶界面における複屈折が存在しない。そのため、焼結体の結晶相が立方晶の単相となることで、焼結体が特に高い透明性を有しやすい。
 本発明の着色透光性ジルコニア焼結体の平均結晶粒径は、大きくとも60μmであることが好ましく、大きくとも50μmであることがより好ましく、大きくとも40μmであることがさらに好ましく、大きくとも35μmであることがさらにより好ましく、大きくとも30μmであることが特に好ましい。焼結体の平均結晶粒径を大きくとも50μmとすることで、機械的強度、特に曲げ強度が高くなる。平均結晶粒径の下限は特に限定されないが、小さくとも10μmであることが挙げられる。
 本発明の着色透光性ジルコニア焼結体は、曲げ強度が少なくとも100MPaであることが好ましく、少なくとも300MPaであることがより好ましく、少なくとも350MPaであることが更に好ましい。曲げ強度が低くとも100MPaであれば、高い機械的強度を有する焼結体となる。そのため、本発明の着色透光性ジルコニア焼結体を外装部材等の用途で使用した場合に壊れにくくなる。
 次に、本発明の着色透光性ジルコニア焼結体の製造方法について説明する。
 本発明の着色透光性ジルコニア焼結体は、鉄(Fe)、ニッケル(Ni)、マンガン(Mn)、コバルト(Co)、クロム(Cr)、銅(Cu)及びバナジウム(V)からなる群から選ばれる少なくとも1種以上及びイットリアを含有するジルコニア粉末を成型後、常圧焼結した後、さらに熱間静水圧プレス(HIP)処理し、アニールする製造方法であって、相対密度が90%以上99%以下、平均結晶粒径が大きくとも10μmである一次焼結体をHIP処理に供することによって得ることができる。
 本発明の製造方法で使用する鉄、ニッケル、マンガン、コバルト、クロム、銅及びバナジウムからなる群から選ばれる少なくとも1種以上(着色遷移金属元素)及びイットリアを含有するジルコニア粉末(以下、「原料粉末」とする)は、着色遷移金属元素及びイットリアを所定量含有していれば特に制限はない。原料粉末中の着色遷移金属元素及びイットリアの含有量は、目的とする着色透光性ジルコニア焼結体の組成と同じ組成にすればよい。
 工業的な観点より、イットリア固溶ジルコニア粉末及び着色遷移金属元素の酸化物粉末を混合した混合粉末を原料粉末として用いることが好ましい。
 混合粉末に用いるイットリア固溶ジルコニア粉末は、純度99.9%以上、比表面積3m/g~20m/gの粉末を用いることが好ましい。さらに、イットリア固溶ジルコニア粉末は、平均結晶子径10nm~50nm、平均二次粒子径は100nm~500nmの粉末であることが好ましく、加水分解法等の湿式合成法で製造された粉末が特に好ましい。
 混合粉末として用いる着色遷移金属元素の酸化物粉末は、着色遷移金属元素の酸化物の純度が99%以上であることが好ましい。
 本発明の製造方法では、原料粉末がさらにチタニアを含有していることが好ましい。これにより、最終的に得られる着色透光性ジルコニア焼結体の平均結晶粒径が小さくなりやすい。
 原料粉末に用いるチタニア粉末は、チタニアの純度が99.9%以上、比表面積が10m/g~100m/gであることが好ましく、チタニアの純度が99.95%以上、平均結晶子径が30nm以下、平均2次粒子径が500nm以下の微細な粉末であることがより好ましい。
 原料粉末がチタニアを含む場合、イットリア固溶ジルコニア粉末、着色遷移金属元素の酸化物粉末、及びチタニア粉末を混合した混合粉末を原料粉末として用いることが好ましい。
 これらの粉末を混合する場合は、これらの粉末が均一に分散すれば特に方法に制限はないが、湿式ボールミル、湿式攪拌ミル等の湿式混合がより均一に混合できるため好ましい。
 本発明の製造方法では、原料粉末を成型して常圧焼結(以下、「一次焼結」とする)に供する成型体を得る。
 原料粉末の成型方法は、一次焼結に供するに適切な形状の成型体が得られる方法であれば制限はなく、一般的にセラミックスの成型に用いられているプレス成型、冷間静水圧プレス成型、鋳込み成型、押し出し成型、及び射出成型等の成型方法を用いることができる。
 本発明の製造方法では、成型体を一次焼結してHIP処理に供する一次焼結体を作製する。一次焼結体の相対密度は90%以上99%以下であり、平均結晶粒径が大きくとも10μmである。
 一次焼結体の相対密度は、91%以上であることが好ましく、92%以上であることがより好ましい。また、一次焼結体の相対密度は98.5%以下であることが好ましく、97.5%以下であることがより好ましい。一次焼結体の相対密度が90%未満もしくは99%を越えると、HIP処理による気孔排除が十分に進行しない。その結果、得られる着色透光性ジルコニア焼結体の透明性が低下する。
 本発明の着色透光性ジルコニア焼結体の透光性は一次焼結体組織に強く依存する。そのため、一次焼結体の平均結晶粒径が10μmを超える場合は、一次焼結体において粒内気孔が残存しやすく、HIP処理後も気孔が排除されにくい。一方、平均結晶粒径が大きくとも10μmであると、一次焼結体中の気孔は粒界に存在する。これにより、HIP処理による気孔排除がされやすくなる。また、一次焼結体の平均結晶粒径が大きくとも10μmであると、HIP処理中に結晶粒の塑性流動が起こりやすくなる。これにより、HIP処理中の気孔除去が効率的になると考えられる。一次焼結体の平均結晶粒径は大きくとも5μmであることが好ましく、大きくとも4μmであることがより好ましく、大きくとも3.5μmであることが更に好ましい。これにより、気孔排除が促進されやすい。一次焼結体の平均結晶粒径の下限は特に制限されないが、例えば、少なくとも0.5μmであることが挙げられる。
 本発明の製造方法では、一次焼結を常圧焼結で行なう。上記の相対密度及び平均結晶粒径を有する一次焼結体が得られれば一次焼結の条件は特に限定されない。特に一次焼結温度は、目的とする着色透光性ジルコニア焼結体の組成、着色遷移金属元素の種類及び含有量などにより異なる。そのため、一次焼結温度は目的とする着色透光性ジルコニア焼結体の組成、着色遷移金属元素の種類及び含有量に応じて適宜変えることがきる。着色遷移金属元素としてコバルトを含有する場合、一次焼結の温度として1250℃以上1550℃以下であることが例示でき、より好ましい一次焼結温度として1300℃以上1450℃以下が例示でき、さらに好ましい一次焼結温度として1325℃以上1400℃以下を例示することができる。
 一次焼結は大気、酸素、真空等の雰囲気中での焼結を適用することができる。大気中で一次焼結を行うことが最も簡便であるため好ましい。
 本発明の製造方法では、一次焼結体をHIP処理する。
 HIP処理温度は1400℃以上1800℃未満であることが好ましく、1450℃以上1650℃以下であることがより好ましい。HIP処理温度を1400℃以上とすることで焼結体の気孔排除がより促進され、得られる焼結体の透光性が向上する。一方、HIP処理温度を1800℃未満とすることで焼結体の結晶粒の異常粒成長が抑制され、強度が高くなりやすい。さらに、HIP処理温度は一次焼結温度よりも高い温度であることが好ましい。HIP処理温度が一次焼結温度よりも高いことで、一次焼結体中の残留気孔の排除が促進されやすい。
 本発明の製造方法では、一次焼結温度が1325℃以上1400℃以下であり、かつHIP処理温度が1450℃以上1650℃以下であることが特に好ましい。
 HIP処理の時間は、少なくとも1時間であることが好ましい。HIP処理を少なくとも1時間とすることで、HIP処理中の焼結体からの気孔の排除が促進されやすい。
 HIP処理の圧力媒体は、非酸化雰囲気であれば特に限定されない。圧力媒体としては、窒素ガスやアルゴンガスなどが例示でき、一般的にHIP処理に用いられているアルゴンガスが好ましい。
 HIP処理の圧力は、低くとも50MPaであることが好ましく、100MPa以上200MPa以下であることがより好ましい。HIP処理の圧力が低くとも50MPaであることで、HIP処理中の気孔排除が効率よくなりやすい。また100MPa以上とすることで気孔排除がより促進され、得られる焼結体の透明性が高くなりやすい。
 チタニアを含有する一次焼結体をHIP処理する場合、一次焼結体中のチタンを還元することが好ましい。これにより得られる着色透光性ジルコニア焼結体の透光性が高くなりやすい。なお、チタンの還元とは、チタニア(TiO)中の4価のTiが3価のTi(TiO1.5)に還元されることを指す。チタンの還元が促進されることにより、酸素空孔が形成され、気孔の移動(消滅)が促進される。
 本発明の製造方法において、HIP処理で試料を設置する容器は還元性の材質でできた容器であることが好ましい。還元性の材質としてはカーボンを挙げることができる。
 本発明の製造方法では、HIP処理後のHIP処理体をアニール処理する。HIP処理後のHIP処理体は暗黒色を呈しやすいため、アニール処理により透明な着色透光性ジルコニア焼結体とすることができる。特に、HIP処理体がチタニアを含有する場合、チタンの還元のため、HIP処理体が暗黒色を呈しやすい。
 アニール処理は、酸化雰囲気中、温度800℃~1200℃で1時間以上、常圧で保持することが好ましい。酸化雰囲気としては、大気又は酸素中が例示でき、大気中で行なうことが簡便である。
 本発明の着色透光性ジルコニア焼結体は、着色剤として特定の遷移金属元素を含有し、高い透光性と明確な色合いを兼ね備えたジルコニア多結晶体である。遷移金属元素を適宜選択することで、多彩な色彩の着色透光性ジルコニア焼結体とすることができる。さらに、これらの着色剤は少量で明確な呈色を示すだけでなく、安価であるため、工業的にも有利である。
実施例1、2及び5の着色透光性ジルコニア焼結体の直線透過率(測定波長300~800nm,試料厚さ1mm)を示す図の直線透過率を示すグラフである(グラフ中、a):実施例1、b):実施例2、c):実施例5) 実施例1、2の着色透光性ジルコニア焼結体のXRD図である(下図:実施例1、上図:実施例2) 実施例1の着色透光性ジルコニア焼結体の組織図である(図中スケールは20μm) 実施例8の着色透光性ジルコニア焼結体の直線透過率を示すグラフである(測定波長300~800nm,試料厚さ1mm) 実施例8の着色透光性ジルコニア焼結体のXRD図である 実施例6の着色透光性ジルコニア焼結体の組織図である(図中スケールは20μm) 本発明の着色透光性ジルコニア焼結体における気孔率Vと最大直線透過率との関係を示すグラフである 着色添加剤の含有量と残留気孔の関係を示すグラフである(○:実施例、▲:比較例)
 以下、実施例及び比較例により本発明を具体的に説明する。
 (ヘーズ率)
 実施例又は比較例の焼結体を、試料厚み1mmに加工し、表面粗さRa=0.02μm以下に両面鏡面研磨したものを測定試料として用いた。ヘーズ率はJIS K7105「プラスチックの光学的特性試験方法」、JIS K7136「プラスチック-透明材料のヘーズの求め方」に準じた方法で、ヘーズメーター(日本電色、NDH5000)を用いて測定した。使用光源はD65光線とした。
 (全光線透過率及び直線透過率)
 直線透過率はダブルビーム方式の分光光度計(日本分光株式会社製、V-650型)で測定した。測定試料はヘーズ率測定に用いたのと同様のものとした。重水素ランプおよびハロゲンランプを光源として測定波長300nm~800nmをスキャンして各波長での直線透過率を測定した。
 (平均結晶粒径)
 測定試料は平面研削した後、ダイヤモンド砥粒9μm、6μm及び1μmを用いて鏡面研磨した。研磨面を熱エッチングした後、SEM観察した。
 なお、熱エッチングは試料を電気炉に入れ、その試料のHIP処理温度より50℃~100℃低い温度で2時間保持することで行った。SEM写真から、平均粒径をJ.Am.Ceram.Soc.,52[8]443-6(1969)に記載されている方法に従い、(6)式により求めた。
 D=1.56L   (6)
 ここで、D:平均結晶粒径(μm)、L:任意の直線を横切る結晶粒子の平均長さ(μm)である。Lの値は100本以上の実測長さの平均値とした。
 (明度、色相)
 測定試料には、試料厚みを1mmに加工し、表面粗さRa=0.02μm以下に両面鏡面研磨したものを用いた。測定はJIS K7105「プラスチックの光学的特性試験方法」の5.3項、5.4項に準じて、精密型分光光度色彩計(東京電色製、TC-1500SX)を用いて行った。光源としてD65光線を使用し、試料の裏面に常用標準白色板を置き、透過した光を当該白色板で反射させ、再度測定試料を透過した光を測定して、明度L、色相aおよびbを求めた。
 (機械的強度の測定)
 機械的強度の測定として二軸曲げ強度を測定した。測定はISO 6872に準じ、精密万能試験機(島津製作所製)を用いて行った。測定は3回行い、その平均値を二軸曲げ強度とした。
(X線回折の測定)
 実施例及び比較例の試料の結晶相をX線回折によって測定した。測定は、X線回折装置(リガク社製、RINT Ulitima III)で測定した。線源には、CuKα線(λ=1.5405Å)を用い、測定モードはステップスキャン、スキャン条件は、毎秒0.04°、計測時間は3秒、及び測定範囲は2θとして5°~80°の範囲で測定した。
 実施例1
 (原料粉末の調製)
 加水分解法で製造された8mol%イットリア含有ジルコニア粉末(東ソー製、TZ-8Y;比表面積13m/g、結晶子径40nm)と、VO2.5換算で0.05mol%となるよう酸化バナジウム(V)粉末(高純度化学研究所製、純度99.9%)を秤量した。これらの粉末をエタノール溶媒中でジルコニア製φ10mmボールを用いて72時間ボールミル混合した後、乾燥して原料粉末を調製した。
 (一次焼結)
 原料粉末を金型プレスによって圧力50MPaで成型した後、冷間静水圧プレス装置を用い圧力200MPaで処理し、直径20mm、厚さ3mmの円柱状の成型体を得た。
 得られた成型体は、大気中において昇温速度を100℃/h、焼結温度1350℃、焼結時間2時間で焼結し、自然放冷して一次焼結体(試料番号:No.1-1)を得た。得られた一次焼結体の特性を表1に示した。一次焼結体の組成は原料粉末の組成と同一であり、また、相対密度が90%以上、平均結晶粒径が5μm以下であった。
 (HIP処理及びアニール処理)
 試料番号:No.1-1の一次焼結体を用い、温度1650℃、圧力150MPa、保持時間1時間でHIP処理した。なお、圧力媒体として純度99.9%のアルゴンガスを用いた。HIP装置はカーボンヒーター、カーボン断熱材を備えた装置であり、一次焼結体を設置する容器として通気孔のあるアルミナ製蓋付きルツボを用いた。
 HIP処理によって得られたHIP処理体を、大気中昇温速度250℃/hで1000℃に5時間保持してアニール処理して、着色透光性ジルコニア焼結体を得た。
 得られた着色透光性ジルコニア焼結体は原料粉末と同じ組成であった。また、結晶相は蛍石型立方晶単相であった。
 原料粉末、一次焼結条件及び一次焼結体の結果を表1に、得られた着色透光性ジルコニア焼結体の結果を表2に示した。
 実施例2
 酸化バナジウム粉末を酸化コバルト(CoO)粉末(高純度化学研究所製、純度99.9%)とした以外は実施例1と同様な条件で一次焼結して一次焼結体(試料番号:No.1-2)を得た。得られた一次焼結体を実施例1と同様な条件でHIP処理及びアニール処理をして実施例2の着色透光性ジルコニア焼結体を得た。
 得られた着色透光性ジルコニア焼結体は原料粉末と同じ組成であった。また、結晶相は蛍石型立方晶単相であった。
 原料粉末、一次焼結条件及び一次焼結体の結果を表1に、得られた着色透光性ジルコニア焼結体の結果を表2に示した。
 実施例3
 VO2.5換算で0.05mol%の酸化バナジウム粉末を0.5mol%の酸化コバルト粉末とした以外は実施例1と同様な条件で一次焼結して一次焼結体(試料番号:No.1-3)を得た。得られた一次焼結体を実施例1と同様な条件でHIP処理して実施例3の着色透光性ジルコニア焼結体を得た。
 得られた着色透光性ジルコニア焼結体は原料粉末と同じ組成であった。また、結晶相は蛍石型立方晶単相であった。
 原料粉末、一次焼結条件及び一次焼結体の結果を表1に、得られた着色透光性ジルコニア焼結体の結果を表2に示した。
 実施例4
 VO2.5換算で0.05mol%の酸化バナジウム粉末を0.02mol%の酸化銅(CuO)粉末(高純度化学研究所製、純度99.9%)とした以外は実施例1と同様な条件で一次焼結して一次焼結体(試料番号:No.1-4)を得た。得られた一次焼結体を実施例1と同様な条件でHIP処理して実施例4の着色透光性ジルコニア焼結体を得た。
 得られた着色透光性ジルコニア焼結体は原料粉末と同じ組成であった。また、結晶相は蛍石型立方晶単相であった。
 原料粉末、一次焼結条件及び一次焼結体の結果を表1に、得られた着色透光性ジルコニア焼結体の結果を表2に示した。
 実施例5
  VO2.5換算で0.05mol%の酸化バナジウム粉末を、0.025mol%の酸化バナジウム粉末及び0.025mol%の酸化コバルト粉末とした以外は実施例1と同様な条件で一次焼結して一次焼結体(試料番号:No.1-5)を得た。得られた一次焼結体を実施例1と同様な条件でHIP処理して実施例5の着色透光性ジルコニア焼結体を得た。
 得られた着色透光性ジルコニア焼結体は原料粉末と同じ組成であった。また、結晶相は蛍石型立方晶単相であった。
 原料粉末、一次焼結条件及び一次焼結体の結果を表1に、得られた着色透光性ジルコニア焼結体の結果を表2に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 いずれも高い直線透過率を示し、これらの遷移金属酸化物の存在により特定の波長が吸収され、着色していることが確認された。実施例1乃至5の着色透光性ジルコニア焼結体は、高い透光性と明確な呈色とを兼ね備えていた。実施例1、2及び5の着色透光性ジルコニア焼結体の直線透過率(試料厚さ1mm、測定波長300~800nm)を図1に示した。
 実施例6
 (原料粉末の調製)
 加水分解法で製造された10mol%イットリア含有ジルコニア粉末(東ソー製、TZ-10YS;比表面積6m/g、結晶子径20nm)と、酸化鉄(Fe粉末)粉末(高純度化学研究所製、純度99.9%)をFeO1.5換算で0.1mol%、及びチタニア粉末(スーパータイタニア、F-4)を10mol%となるように秤量した。これらの粉体を、エタノール溶媒中ジルコニア製φ10mmボールで72時間ボールミル混合した後に乾燥し、原料粉末を調製した。
 (一次焼結)
 原料粉末を金型プレスによって圧力50MPaで成型した後、冷間静水圧プレス装置を用い圧力200MPaで処理し、直径20mm、厚さ3mmの円柱状の成型体を得た。
 得られた成型体を大気中、昇温速度100℃/h、1350℃、2時間で一次焼結した後、自然放冷して一次焼結体(試料番号:No.1-6)を得た。
 得られた一次焼結体の特性を表3に示した。一次焼結体の組成は原料粉末の組成と同一であった。また、一次焼結体は相対密度が95%以上、平均結晶粒径が5μm以下であった。
 (HIP処理及びアニール処理)
 No.1-6の一次焼結体を用い、温度1500℃、圧力150MPa、保持時間1時間でHIP処理した。なお、圧力媒体として純度99.9%のアルゴンガスを用いた。HIP装置はカーボンヒーター、カーボン断熱材を備えた装置であり、一次焼結体を設置する容器としてカーボン製蓋付きルツボを用いた。
 HIP処理によって得られたHIP処理体をさらに大気中昇温速度250℃/hで1000℃に2時間保持してアニール処理して、実施例6の着色透光性ジルコニア焼結体を得た。
 得られた着色透光性ジルコニア焼結体は原料粉末と同じ組成であった。また、結晶相は蛍石型立方晶単相であった。
 原料粉末、一次焼結条件及び一次焼結体の結果を表3に、得られた着色透光性ジルコニア焼結体の結果を表4に示した。
 実施例7
 酸化鉄粉末を酸化ニッケル(NiO)粉末(高純度化学研究所製、純度99.9%)とした以外は実施例6と同様な条件で一次焼結して一次焼結体(試料番号:No.1-7)を得た。得られた一次焼結体を実施例6と同様な条件でHIP処理及びアニール処理して実施例7の着色透光性ジルコニア焼結体を得た。
 得られた着色透光性ジルコニア焼結体は原料粉末と同じ組成であった。また、結晶相は蛍石型立方晶単相であった。
 原料粉末、一次焼結条件及び一次焼結体の結果を表3に、得られた着色透光性ジルコニア焼結体の結果を表4に示した。
 実施例8
 酸化鉄粉末を酸化コバルト粉末とした以外は実施例6と同様な条件で一次焼結して一次焼結体(試料番号:No.1-8)を得た。得られた一次焼結体を実施例6と同様な条件でHIP処理及びアニール処理して、実施例8の着色透光性ジルコニア焼結体を得た。
 得られた着色透光性ジルコニア焼結体は原料粉末と同じ組成であった。また、結晶相は蛍石型立方晶単相であった。
 原料粉末、一次焼結条件及び一次焼結体の結果を表3に、得られた着色透光性ジルコニア焼結体の結果を表4に示した。
 実施例9
 一次焼結温度を1300℃とした以外は実施例8と同様な条件で一次焼結して一次焼結体(試料番号:No.1-9)を得た。一次焼結体をHIP処理温度1550℃にした以外は実施例8と同様な条件でHIP処理及びアニール処理して実施例9の着色透光性ジルコニア焼結体を得た。
 得られた着色透光性ジルコニア焼結体は原料粉末と同じ組成であった。また、結晶相は蛍石型立方晶単相であった。
 原料粉末、一次焼結条件及び一次焼結体の結果を表3に、得られた着色透光性ジルコニア焼結体の結果を表4に示した。
 実施例10
 一次焼結温度を1400℃とした以外は実施例8と同様な条件で一次焼結して一次焼結体(試料番号:No.1-10)を得た。一次焼結体を実施例6と同様な条件でHIP処理及びアニール処理して実施例10の着色透光性ジルコニア焼結体を得た。
 得られた着色透光性ジルコニア焼結体は原料粉末と同じ組成であった。また、結晶相は蛍石型立方晶単相であった。
 原料粉末、一次焼結条件及び一次焼結体の結果を表3に、得られた着色透光性ジルコニア焼結体の結果を表4に示した。
 実施例11
 酸化コバルト粉末を0.15mol%としたこと以外は実施例8と同様な条件で一次焼結して一次焼結体(試料番号:No.1-11)を得た。一次焼結体を実施例6と同様な条件でHIP処理及びアニール処理して実施例11の着色透光性ジルコニア焼結体を得た。
 得られた着色透光性ジルコニア焼結体は原料粉末と同じ組成であった。また、結晶相は蛍石型立方晶単相であった。
 原料粉末、一次焼結条件及び一次焼結体の結果を表3に、得られた着色透光性ジルコニア焼結体の結果を表4に示した。また、得られた着色ジルコニア焼結体の曲げ強度を表5に示した。
 実施例12
 酸化コバルト粉末を0.29mol%としたこと以外は実施例8と同様な条件で一次焼結して一次焼結体(試料番号:No.1-12)を得た。一次焼結体を実施例6と同様な条件でHIP処理及びアニール処理して実施例12の着色透光性ジルコニア焼結体を得た。
 得られた着色透光性ジルコニア焼結体は原料粉末と同じ組成であった。また、結晶相は蛍石型立方晶単相であった。
 原料粉末、一次焼結条件及び一次焼結体の結果を表3に、得られた着色透光性ジルコニア焼結体の結果を表4に示した。また、得られた着色ジルコニア焼結体の曲げ強度を表5に示した。
 実施例13
 酸化コバルト粉末を0.44mol%としたこと以外は実施例8と同様な条件で一次焼結して一次焼結体(試料番号:No.1-13)を得た。一次焼結体を実施例6と同様な条件でHIP処理及びアニール処理して実施例13の着色透光性ジルコニア焼結体を得た。
 得られた着色透光性ジルコニア焼結体は原料粉末と同じ組成であった。また、結晶相は蛍石型立方晶単相であった。
 原料粉末、一次焼結条件及び一次焼結体の結果を表3に、得られた着色透光性ジルコニア焼結体の結果を表4に示した。また、得られた着色ジルコニア焼結体の曲げ強度を表5に示した。
 実施例14
 酸化コバルト粉末を0.58mol%としたこと以外は実施例8と同様な条件で一次焼結して一次焼結体(試料番号:No.1-14)を得た。一次焼結体を実施例6と同様な条件でHIP処理及びアニール処理して実施例14の着色透光性ジルコニア焼結体を得た。
 得られた着色透光性ジルコニア焼結体は原料粉末と同じ組成であった。また、結晶相は蛍石型立方晶単相であった。
 原料粉末、一次焼結条件及び一次焼結体の結果を表3に、得られた着色透光性ジルコニア焼結体の結果を表4に示した。また、得られた着色ジルコニア焼結体の曲げ強度を表5に示した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 直線透過率(測定波長600nm、試料厚さ1mm)の測定結果より、いずれの着色透光性ジルコニア焼結体も高い直線透過率を示し、かつ、特定の波長が吸収されていた。これより実施例6乃至10の着色透光性ジルコニア焼結体は、高い透明性と明確な呈色とを有することが確認できた。実施例8の直線透過率を図4に示した。
 さらに、チタニアを含有する着色透光性ジルコニア焼結体は平均結晶粒径が大きくとも50μmであり、小さい結晶粒からなり、機械的特性が高いことが確認できた。
 さらに、着色遷移金属元素の添加量と残留気孔の関係を図8に示した。着色遷移金属元素の添加量が0.6mol%を超えると、焼結体中の残留気孔が急激に高くなり、透光性が著しく低下することが確認できた。
 比較例1
 酸化バナジウム粉末をVO2.5換算で1.0mol%とした以外は実施例1と同様な方法により一次焼結体(試料番号:No.2-1)、および、ジルコニア焼結体を得た。
 得られたジルコニア焼結体は原料粉末と同じ組成であった。また、結晶相は蛍石型立方晶単相であった。
 原料粉末、一次焼結条件及び一次焼結体の結果を表6に、得られたジルコニア焼結体の結果を表7に示した。
 バナジウムの含有量が1.0mol%を越えたジルコニア焼結体では気孔率が1000ppmを越えていた。このような焼結体は、透明性が低く、目視による確認では不透明のジルコニア焼結体であった。
 比較例2
 酸化コバルト粉末を0.8mol%とした以外は実施例8と同様な方法により一次焼結体(試料番号:No.2-2)、および、ジルコニア焼結体を得た。
 得られたジルコニア焼結体は原料粉末と同じ組成であった。また、結晶相は蛍石型立方晶単相であった。
 原料粉末、一次焼結条件及び一次焼結体の結果を表6に、得られたジルコニア焼結体の結果を表7に示した。
 コバルトの含有量が0.5mol%を越えた焼結体では気孔率が1000ppmを越えていた。このような焼結体は、透明性が低く、目視による確認では不透明のジルコニア焼結体であった。
 比較例3
 酸化バナジウム粉末の代わりに、酸化スカンジウム(ScO)粉末をScO1.5換算で0.05mol%とした以外は実施例1と同様な方法により一次焼結体(試料番号:No.2-3)、および、ジルコニア焼結体を得た。
 得られたジルコニア焼結体は原料粉末と同じ組成であった。また、結晶相は蛍石型立方晶単相であった。
 原料粉末、一次焼結条件及び一次焼結体の結果を表6に、得られたジルコニア焼結体の結果を表7に示した。
 本発明の着色透光性ジルコニア焼結体が含有する遷移金属元素以外の遷移金属元素であるスカンジウムのみを含有したジルコニア焼結体は、色相が-3≦a≦3かつ-3≦b≦3であり呈色がほとんどなかった。また、目視による確認では、当該焼結体は無色の透光性ジルコニア焼結体であった。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 参考例1
 酸化鉄粉末の代わりに酸化ネオジム(Nd)粉末(信越化学製、ネオジム純度99.9%)をNdO1.5換算で0.1mol%とした以外は実施例6と同様な方法により一次焼結体(試料番号:No.3-1)、および、ジルコニア焼結体を得た。
 原料粉末、一次焼結条件及び一次焼結体の結果を表8に、得られたジルコニア焼結体の結果を表9に示した。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 0.5mol%未満の微量のランタノイド系希土類元素を含有したジルコニア焼結体では、Lが大きく、かつ、-3≦a≦3かつ-3≦b≦3を満たしており、呈色が弱かった。また、目視による確認では、当該焼結体は無色の透明ジルコニア焼結体であった。これより、本発明の遷移金属元素を含有するジルコニア焼結体は、少量の着色剤含有量であるにも関わらず、明確な呈色を有する着色透光性ジルコニア焼結体であることがわかった。
 本発明の着色透光性ジルコニア焼結体は、従来の装飾品、宝飾品、及び工芸品用途のみならず、高透明かつ濃い色調を有している。そのため、宝飾用途、装飾用途以外にも、電子機器の外装部品等の小型、薄型部材としても好適に使用することができる。
 なお、2010年11月11日に出願された日本特許出願2010-253254号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (12)

  1.  イットリアを6mol%以上15mol%以下含有し、鉄、ニッケル、マンガン、コバルト、クロム、銅及びバナジウムからなる群から選ばれる少なくとも1種以上を酸化物換算で0.02mol%以上0.6mol%以下含有し、気孔率が高くとも1000ppmであることを特徴とする着色透光性ジルコニア焼結体。
  2.  平均結晶粒径が大きくとも60μmであることを特徴とする請求項1に記載の着色透光性ジルコニア焼結体。
  3.  3mol%以上20mol%以下のチタニアを含有することを特徴とする請求項1又は2に記載の着色透光性ジルコニア焼結体。
  4.  結晶相が立方晶蛍石型構造であることを特徴とする請求項1乃至3のいずれかに記載の着色透光性ジルコニア焼結体。
  5.  試料厚さ1mm、測定波長300nm~800nmにおける最大直線透過率が少なくとも30%であることを特徴とする請求項1乃至4のいずれかに記載の着色透光性ジルコニア焼結体。
  6.  試料厚さ1mmにおけるヘーズ率が高くとも70%であることを特徴とする請求項1乃至5のいずれかに記載の着色透光性ジルコニア焼結体。
  7.  鉄、ニッケル、マンガン、コバルト、クロム、銅及びバナジウムからなる群から選ばれる少なくとも1種以上及びイットリアを含有するジルコニア粉末を成型後、常圧焼結した後、さらに熱間静水圧プレス(HIP)処理し、アニールする製造方法であって、相対密度が90%以上99%以下、平均結晶粒径が大きくとも10μmである一次焼結体をHIP処理に供することを特徴とする請求項1乃至6のいずれかに記載の着色透光性ジルコニア焼結体の製造方法。
  8.  鉄、ニッケル、マンガン、コバルト、クロム、銅及びバナジウムからなる群から選ばれる少なくとも1種以上及びイットリアを含有するジルコニア粉末が、さらにチタニアを含有することを特徴とする請求項7に記載の着色透光性ジルコニア焼結体の製造方法。
  9.  一次焼結温度が1325℃以上1400℃以下であり、かつHIP処理温度が1450℃以上1650℃以下であることを特徴とする請求項7又は8に記載の着色透光性ジルコニア焼結体の製造方法。
  10.  請求項1乃至6のいずれかに記載の着色透光性ジルコニア焼結体を含むことを特徴とする部材。
  11.  請求項10に記載の部材を含むことを特徴とする宝飾品。
  12.  請求項10に記載の部材を含むことを特徴とする外装部品。
PCT/JP2011/075500 2010-11-11 2011-11-04 着色透光性ジルコニア焼結体及びその製造方法並びにその用途 WO2012063746A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2011800544471A CN103201233A (zh) 2010-11-11 2011-11-04 着色透光性氧化锆烧结体及其制造方法以及其用途
EP11839963.3A EP2639210B1 (en) 2010-11-11 2011-11-04 Colored light-transmitting zirconia sintered compact, method for producing same, and use thereof
US13/883,151 US9174877B2 (en) 2010-11-11 2011-11-04 Colored translucent zirconia sintered body, its production process and its use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010253254 2010-11-11
JP2010-253254 2010-11-11

Publications (1)

Publication Number Publication Date
WO2012063746A1 true WO2012063746A1 (ja) 2012-05-18

Family

ID=46050893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075500 WO2012063746A1 (ja) 2010-11-11 2011-11-04 着色透光性ジルコニア焼結体及びその製造方法並びにその用途

Country Status (5)

Country Link
US (1) US9174877B2 (ja)
EP (1) EP2639210B1 (ja)
JP (1) JP5861397B2 (ja)
CN (1) CN103201233A (ja)
WO (1) WO2012063746A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104884408A (zh) * 2012-12-28 2015-09-02 东曹株式会社 着色透光性氧化锆烧结体及其用途

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102001261B1 (ko) 2010-12-20 2019-07-17 토소가부시키가이샤 질화갈륨 소결체 또는 질화갈륨 성형물 및 그들의 제조방법
EP2738147B1 (en) 2011-07-29 2021-12-29 Tosoh Corporation Colored and light-transmitting sintered zirconia compact and use of same
JP5991050B2 (ja) * 2012-07-04 2016-09-14 東ソー株式会社 セラミックス接合体の製造方法および装飾部材
CN104918900B (zh) * 2012-09-20 2020-03-17 3M创新有限公司 氧化锆陶瓷的着色
EP2799411A1 (fr) * 2013-05-03 2014-11-05 Comadur S.A. Procédé de fabrication d'un article coloré; en particulier de couleur orange; à base de zircone et article décoratif coloré à base de zircone obtenu selon ce procédé
JP6252113B2 (ja) * 2013-11-06 2017-12-27 東ソー株式会社 複合プレート及びその製造方法
US9737383B2 (en) * 2013-12-24 2017-08-22 Tosoh Corporation Translucent zirconia sintered body and zirconia powder, and use therefor
US9962247B2 (en) 2014-06-23 2018-05-08 Tosoh Corporation Colored translucent zirconia sintered body and powder, and application thereof
PT3012239T (pt) 2014-10-22 2020-01-20 Comadur Sa Processo de fabrico de um artigo colorido, em especial de cor cinzenta, à base de zircónia e artigo decorativo colorido à base de zircónia, obtido de acordo com este processo
KR101699221B1 (ko) * 2014-11-20 2017-01-24 이광진 지르코니아 조성물, 이를 사용하는 성형물 제작 방법, 이 방법에 의하여 제작되는 벨트 버클, 선글라스 프레임 및 전등용 갓
JP6672766B2 (ja) * 2014-12-24 2020-03-25 東ソー株式会社 ジルコニア焼結体及びその用途
JP6672765B2 (ja) * 2014-12-24 2020-03-25 東ソー株式会社 ジルコニア焼結体及びその用途
JP6657765B2 (ja) * 2015-10-19 2020-03-04 東ソー株式会社 黒色ジルコニア焼結体及びその用途
JP6916593B2 (ja) * 2016-01-19 2021-08-11 クラレノリタケデンタル株式会社 ジルコニア焼結体及び歯科用製品
CN108975909B (zh) * 2017-06-02 2021-04-06 东莞华晶粉末冶金有限公司 氧化锆陶瓷坯件的退火方法及氧化锆陶瓷的制备方法
CN108341668B (zh) * 2018-04-20 2020-04-21 内蒙古科技大学 一种黑色氧化锆陶瓷及其制备方法
KR20210037612A (ko) * 2018-08-02 2021-04-06 토소가부시키가이샤 흑색 소결체 및 이의 제조 방법
JP7433806B2 (ja) 2018-08-22 2024-02-20 株式会社松風 歯科切削加工用ジルコニア被切削体及びその製造方法
JP2022034289A (ja) * 2020-08-18 2022-03-03 第一稀元素化学工業株式会社 黒色系ジルコニア焼結体、黒色系ジルコニア粉末、及び、黒色系ジルコニア粉末の製造方法
WO2024063028A1 (ja) 2022-09-20 2024-03-28 東ソー株式会社 ジルコニア組成物及びその製造方法
CN116477941B (zh) * 2023-04-19 2024-02-23 中物院成都科学技术发展中心 一种人工玉陶及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259571A (ja) * 1985-09-06 1987-03-16 東レ株式会社 着色ジルコニア焼結体とその製造方法
JPS6291467A (ja) 1985-06-20 1987-04-25 東ソー株式会社 透光性ジルコニア焼結体の製造法
JPH0543316A (ja) * 1991-02-20 1993-02-23 Jgc Corp 着色ジルコニアセラミツクス
JP2007246384A (ja) 2006-02-17 2007-09-27 Tosoh Corp 透明ジルコニア焼結体
JP2010047460A (ja) 2008-07-22 2010-03-04 Schott Ag 透明セラミック及びその製造方法ならびにその透明セラミックスを用いた光学素子
JP2010253254A (ja) 2009-04-27 2010-11-11 Medison Co Ltd 3次元超音波映像を整列させる超音波システムおよび方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045013B2 (ja) * 1978-08-07 1985-10-07 株式会社日立製作所 管端部の真円矯正方法
US4758541A (en) 1985-06-20 1988-07-19 Toyo Soda Manufacturing Co., Ltd. Zirconia sintered body of improved light transmittance
EP0218853B1 (en) * 1985-09-06 1994-11-09 Toray Industries, Inc. Method for manufacturing a sintered zirconia material
JP2977867B2 (ja) * 1990-06-21 1999-11-15 住友特殊金属株式会社 磁気ヘッドスライダ用材料
DE19938143A1 (de) * 1999-08-16 2001-02-22 Espe Dental Ag Verwendung von Zirkonoxidkeramiken mit Sinterzusatz zur Herstellung von Zahnersatz
DE10107451B4 (de) * 2001-02-14 2004-04-15 3M Espe Ag Verfahren zur Herstellung von Zahnersatz, nach dem Verfahren herstellbares Zahnersatzteil sowie vorgesinterter Rohling
DE102006024489A1 (de) 2006-05-26 2007-11-29 Forschungszentrum Karlsruhe Gmbh Grünkörper, Verfahren zur Herstellung einer Keramik und deren Verwendung
WO2008013099A1 (fr) 2006-07-25 2008-01-31 Tosoh Corporation Zircone frittée ayant une transmission de lumière élevée et une résistance élevée, son utilisation et son procédé de fabrication
US8722555B2 (en) * 2009-06-04 2014-05-13 Tosoh Corporation High-strength transparent zirconia sintered body, process for producing the same, and uses thereof
CN102791653A (zh) 2010-03-09 2012-11-21 东曹株式会社 红色透光性氧化锆烧结体、其制造方法、由该烧结体形成的构件、及使用该构件的珠宝首饰及外部部件
CN104918577B (zh) 2012-08-03 2018-10-23 3M创新有限公司 用于氧化锆陶瓷的半透明度增强溶液

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291467A (ja) 1985-06-20 1987-04-25 東ソー株式会社 透光性ジルコニア焼結体の製造法
JPS6259571A (ja) * 1985-09-06 1987-03-16 東レ株式会社 着色ジルコニア焼結体とその製造方法
JPH0543316A (ja) * 1991-02-20 1993-02-23 Jgc Corp 着色ジルコニアセラミツクス
JP2007246384A (ja) 2006-02-17 2007-09-27 Tosoh Corp 透明ジルコニア焼結体
JP2010047460A (ja) 2008-07-22 2010-03-04 Schott Ag 透明セラミック及びその製造方法ならびにその透明セラミックスを用いた光学素子
JP2010253254A (ja) 2009-04-27 2010-11-11 Medison Co Ltd 3次元超音波映像を整列させる超音波システムおよび方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
J. AM. CERAM. SOC, vol. 91, no. 3, 2008, pages 813 - 818
J. AM. CERAM. SOC., vol. 52, no. 8, 1969, pages 443 - 6
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 130, no. 4, 1983, pages 962
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, vol. 29, 2009, pages 283
See also references of EP2639210A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104884408A (zh) * 2012-12-28 2015-09-02 东曹株式会社 着色透光性氧化锆烧结体及其用途

Also Published As

Publication number Publication date
JP5861397B2 (ja) 2016-02-16
EP2639210B1 (en) 2016-02-03
JP2012116745A (ja) 2012-06-21
EP2639210A1 (en) 2013-09-18
US20130217562A1 (en) 2013-08-22
CN103201233A (zh) 2013-07-10
EP2639210A4 (en) 2014-07-30
US9174877B2 (en) 2015-11-03

Similar Documents

Publication Publication Date Title
JP5861397B2 (ja) 着色透光性ジルコニア焼結体及びその製造方法並びにその用途
KR101699525B1 (ko) 고강도 투명 지르코니아 소결체, 그리고 그의 제조방법 및 그의 용도
JP5125065B2 (ja) 透明ジルコニア焼結体
JP5708050B2 (ja) 赤色透光性ジルコニア焼結体及びその製造方法
WO2017038937A1 (ja) 赤色ジルコニア焼結体及びその製造方法
JP6331840B2 (ja) 赤色ジルコニア焼結体及びその製造方法
JP5655512B2 (ja) 着色透光性ジルコニア焼結体及びその製造方法並びにその用途
CN112585103A (zh) 氧化锆烧结体及其制造方法
JP2018002495A (ja) 着色透光性ジルコニア焼結体及びその製造方法並びにその用途
JP5505063B2 (ja) 高透明ジルコニア焼結体
JP6672833B2 (ja) 着色ジルコニア焼結体及びその製造方法
JP5685831B2 (ja) 赤色透光性アルミナ焼結体及びその製造方法
JP2021042117A (ja) ジルコニア焼結体及びその製造方法
JP2021042119A (ja) ジルコニア焼結体及びその製造方法
JP6885021B2 (ja) オレンジ色ジルコニア焼結体及びその製造方法
JP2019182740A (ja) ジルコニア焼結体及びその製造方法
JP2021042118A (ja) ジルコニア焼結体及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11839963

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13883151

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011839963

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE