WO2012060258A1 - 多孔質電極基材、その製造方法、多孔質電極基材前駆体シート、膜-電極接合体、および固体高分子型燃料電池 - Google Patents

多孔質電極基材、その製造方法、多孔質電極基材前駆体シート、膜-電極接合体、および固体高分子型燃料電池 Download PDF

Info

Publication number
WO2012060258A1
WO2012060258A1 PCT/JP2011/074671 JP2011074671W WO2012060258A1 WO 2012060258 A1 WO2012060258 A1 WO 2012060258A1 JP 2011074671 W JP2011074671 W JP 2011074671W WO 2012060258 A1 WO2012060258 A1 WO 2012060258A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
fibers
precursor
short
porous electrode
Prior art date
Application number
PCT/JP2011/074671
Other languages
English (en)
French (fr)
Inventor
和宏 隅岡
佐古 佳弘
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to US13/882,842 priority Critical patent/US9325016B2/en
Priority to KR1020137009746A priority patent/KR101536835B1/ko
Priority to CA2816253A priority patent/CA2816253A1/en
Priority to CN201180052030.1A priority patent/CN103181011B/zh
Priority to JP2011546507A priority patent/JP5356540B2/ja
Priority to EP11837908.0A priority patent/EP2637239B1/en
Publication of WO2012060258A1 publication Critical patent/WO2012060258A1/ja
Priority to US14/740,637 priority patent/US9780383B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/36Inorganic fibres or flakes
    • D21H13/46Non-siliceous fibres, e.g. from metal oxides
    • D21H13/50Carbon fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8626Porous electrodes characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8875Methods for shaping the electrode into free-standing bodies, like sheets, films or grids, e.g. moulding, hot-pressing, casting without support, extrusion without support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5268Orientation of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5272Fibers of the same material with different length or diameter
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/652Reduction treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • C04B2235/663Oxidative annealing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/38Fiber or whisker reinforced
    • C04B2237/385Carbon or carbon composite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/58Forming a gradient in composition or in properties across the laminate or the joined articles
    • C04B2237/582Forming a gradient in composition or in properties across the laminate or the joined articles by joining layers or articles of the same composition but having different additives
    • C04B2237/584Forming a gradient in composition or in properties across the laminate or the joined articles by joining layers or articles of the same composition but having different additives the different additives being fibers or whiskers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a porous electrode substrate used for a polymer electrolyte fuel cell and a method for producing the same.
  • a polymer electrolyte fuel cell is characterized by using a proton-conducting polymer electrolyte membrane, and is an apparatus for obtaining an electromotive force by electrochemically reacting a fuel gas such as hydrogen and an oxidizing gas such as oxygen. is there.
  • a fuel gas such as hydrogen
  • an oxidizing gas such as oxygen.
  • two sets of gas diffusion electrodes each having a catalyst layer mainly composed of carbon powder supporting a noble metal catalyst and a gas diffusion electrode substrate are arranged on the inner side of each catalyst layer.
  • the polymer electrolyte membrane has a structure bonded to both surfaces.
  • the gas diffusion electrode substrate is generally made of a carbonaceous material.
  • the following gas diffusion electrode substrates are known.
  • Patent Document 1 Under conditions of a thickness of 0.05 to 0.5 mm, a bulk density of 0.3 to 0.8 g / cm 3 , a strain rate of 10 mm / min, a fulcrum distance of 2 cm, and a specimen width of 1 cm.
  • a porous carbon electrode substrate for a fuel cell having a bending strength of 10 MPa or more and a bending deflection of 1.5 mm or more.
  • Patent Document 2 A mat comprising a plurality of carbon fibers; and a plurality of acrylic pulp fibers incorporated into the carbon fiber mat, the acrylic pulp fibers being cured and carbonized after being incorporated into the carbon fiber mat.
  • Patent Document 3 Thickness 0.15 to 1.0 mm, bulk density 0.15 to 0.45 g / cm 3 , carbon fiber content 95% by mass or more, compression deformation 10 to 35%, electric resistance 6 m ⁇ or less, Carbon fiber sheet with a texture of 5 to 70 g.
  • Patent Document 4 High with a thickness of 0.15 to 0.60 mm, a weight per unit area of 50 to 150 g / m 2 , a specific resistance value in the thickness direction of 0.20 ⁇ cm or less, and a surface scraping number of 15 pieces / mm 2 or less Carbon fiber nonwoven fabric for molecular electrolyte fuel cell electrode material.
  • the porous carbon electrode substrate disclosed in Patent Document 1 has high mechanical strength and surface smoothness and sufficient gas permeability and conductivity, but is expensive to manufacture.
  • the fuel cell gas diffusion layer disclosed in Patent Document 2 can be manufactured at low cost, but there are few entanglements between carbon fibers and acrylic pulp when forming into a sheet, and handling may be difficult. .
  • acrylic pulp since acrylic pulp has a smaller molecular orientation of the polymer compared to the fibrous material, the carbonization rate during carbonization is low, and in order to improve handling properties, it was necessary to add a large amount of acrylic pulp.
  • the carbon fiber sheet and the carbon fiber nonwoven fabric disclosed in Patent Documents 3 and 4 can be produced at low cost, but the shrinkage during firing is large, and the resulting sheet or the like undulates (the sheet cross section is wavy). State or warped state) could be large. Furthermore, since the handling property is improved by fiber entanglement, the surface of the sheet is fluffed by carbon fibers, and the polymer electrolyte membrane may be damaged when the sheet is incorporated into a fuel cell.
  • the present invention is excellent in handling properties, improved sheet waviness, has sufficient gas permeability and conductivity, and does not damage the polymer electrolyte membrane when incorporated in a fuel cell. It aims at providing an electrode base material and its manufacturing method.
  • the present invention also provides a porous electrode substrate precursor sheet that can be suitably used to obtain the porous electrode substrate, and a membrane-electrode assembly and a solid polymer using the porous electrode substrate.
  • An object of the present invention is to provide a fuel cell.
  • the present invention provides the following inventions [1] to [12].
  • the three-dimensional structure Y-1 is a three-dimensional structure in which short carbon fibers (A1) are joined to each other by a three-dimensional network carbon fiber (B).
  • Electrode material precursor sheet In the precursor sheet X-2 ′, the short carbon fibers (A1) form a three-dimensional entangled structure, A porous electrode substrate precursor sheet, wherein the short carbon fibers (A2) do not form a three-dimensional entangled structure in the precursor sheet X-3 ′.
  • a mass ratio of the amount of the carbon short fibers (A1) to the total amount of the carbon fiber precursor short fibers (b1) and the fibrillar carbon precursor fibers (b1 ′) is 20:80 to 80 : 20,
  • the mass ratio of the amount of the carbon short fibers (A2) and the total amount of the carbon fiber precursor short fibers (b2) and the fibrillar carbon precursor fibers (b2 ′) is 20:80 to 80:20
  • step (3) a slurry in which the short carbon fibers (A2) are dispersed in the liquid medium is supplied onto the precursor sheet X-2, and the paper is made to produce the short carbon fibers (A1).
  • step (1) carbon short fiber (A1) and carbon fiber precursor short fiber (b1) and / or fibrillar carbon precursor fiber (b1 ′) are dispersed, and in step (3), short carbon fiber The porous electrode substrate according to [5] or [6] above, wherein carbon fiber precursor short fibers (b2) and / or fibrillar carbon precursor fibers (b2 ′) are dispersed together with (A2) Manufacturing method.
  • step (3) After the step (3) and before the step (4), further comprising a step (5) of heat-pressing the porous electrode substrate precursor sheet X-4 at a temperature of less than 200 ° C.
  • the porous electrode substrate precursor sheet X-4 that has been heat-pressed is oxidized at a temperature of 200 ° C. or higher and lower than 300 ° C.
  • a membrane-electrode assembly comprising the porous electrode substrate according to [1], [2] or [10].
  • a polymer electrolyte fuel cell comprising the membrane-electrode assembly according to [11].
  • the handleability is excellent, the swell of the sheet is improved, the gas permeability and conductivity are sufficient, and the polymer electrolyte membrane is not damaged when incorporated into a fuel cell.
  • a porous electrode substrate and a method for producing the same are provided.
  • porous electrode substrate precursor sheet that can be suitably used to obtain the porous electrode substrate, and a membrane-electrode assembly and a solid using the porous electrode substrate A polymer fuel cell is provided.
  • FIG. 2 is a scanning electron micrograph of a cross section of a three-dimensional structure having a three-dimensional entangled structure of a porous electrode substrate obtained in Example 1.
  • FIG. 2 is a scanning electron micrograph of a cross section of a three-dimensional structure having no three-dimensional entangled structure of the porous electrode substrate obtained in Example 1.
  • FIG. (A) is a figure explaining the observation surface (A surface) of the porous electrode base material obtained in Example 1
  • (b) is a scanning electron micrograph of A surface.
  • (A) is a figure explaining the observation surface (B surface) of the porous electrode base material obtained in Example 1
  • (b) is a scanning electron micrograph of the B surface.
  • FIG. 2 is a diagram in which a straight line is drawn with a dotted line on the carbon fiber to be measured in the scanning electron micrograph shown in FIG. 1 in order to measure the angle between the short carbon fiber and the horizontal plane.
  • FIG. 3 is a diagram in which a straight line is drawn with a dotted line on the carbon fiber to be measured in the scanning electron micrograph shown in FIG. 2 in order to measure the angle between the short carbon fiber and the horizontal plane.
  • It is a schematic diagram of a three-dimensional structure in which short carbon fibers (A1) are joined together by a three-dimensional network carbon fiber (B). It is a schematic diagram of the three-dimensional structure which does not have a three-dimensional entanglement structure where carbon short fiber (A2) was joined by two-dimensional network-like carbon fiber (C).
  • the porous electrode substrate of the present invention has a three-dimensional structure Y-1 in which short carbon fibers (A1) are bonded by carbon (D) and short carbon fibers (A2) are bonded by carbon (D). And a three-dimensional structure Y-2 that is laminated and integrated.
  • the short carbon fibers (A1) form a three-dimensional entangled structure.
  • the short carbon fibers (A2) do not form a three-dimensional entangled structure.
  • the carbon short fibers (A1) and the carbon short fibers (A2) (hereinafter sometimes collectively referred to as “carbon short fibers (A)”) may be the same or different.
  • the three-dimensional structure Y-1 is a three-dimensional structure formed by joining carbon short fibers (A1) with carbon (D), and the carbon short fibers (A1) constituting the structure Y-1 are structured. It is a structure that is three-dimensionally entangled in the body Y-1.
  • the three-dimensional structure Y-2 is a three-dimensional structure formed by joining carbon short fibers (A2) with carbon (D), and the carbon short fibers (A2) constituting the structure Y-2 are:
  • the structure Y-2 is a structure that is not three-dimensionally entangled.
  • the three-dimensional structure Y-1 may be a three-dimensional structure in which short carbon fibers (A1) are joined together by a three-dimensional network carbon fiber (B).
  • a three-dimensional structure in which the short fibers (A2) are joined to each other by a two-dimensional network carbon fiber (C) may be used.
  • the porous electrode base material in which the three-dimensional structure Y-1 and the three-dimensional structure Y-2 are laminated and integrated can take a sheet shape, a spiral shape, or the like.
  • the basis weight of the porous electrode substrate is preferably about 15 to 100 g / m 2
  • the porosity is preferably about 50 to 90%
  • the thickness is preferably about 50 to 300 ⁇ m
  • the undulation is preferably 5 mm or less.
  • the gas gas permeability of the porous electrode substrate is preferably 50 to 3000 ml / hr / cm 2 / Pa.
  • the electrical resistance (penetration direction resistance) of the thickness direction of a porous electrode base material is 50 m (ohm) * cm ⁇ 2 > or less.
  • the measuring method of the gas air permeability and penetration direction resistance of a porous electrode base material is mentioned later.
  • the total content of the three-dimensional network carbon fiber (B) and the two-dimensional network carbon fiber (C) in the porous electrode substrate is 5 to 90% by mass from the viewpoint of the mechanical strength of the porous electrode substrate. It is preferably 10 to 60% by mass. That is, the content of the short carbon fibers (A) in the porous electrode substrate is preferably 10 to 95% by mass, and more preferably 40 to 90% by mass.
  • the short carbon fibers (A) form a three-dimensional entangled structure depends on whether the sheet-like measurement object (three-dimensional structure Y-1, three-dimensional structure Y-2, porous electrode) Substrate, precursor sheet X-2 ′, precursor sheet X-3 ′, porous electrode substrate precursor sheet, precursor sheet X-1, precursor sheet X-2, precursor sheet X-3) This can be determined by observing the cross section and measuring the angle between each short carbon fiber and the sheet surface in the cross section.
  • the cross section which performs cross-sectional observation is a cross section perpendicular
  • the short carbon fibers are three-dimensional. It is determined that an entangled structure is formed (the measurement object has a three-dimensional entangled structure). Otherwise, the short carbon fibers do not form a three-dimensional entangled structure (the measurement object has a three-dimensional entangled structure). It is determined that it does not have. Specifically, as shown in FIG. 5 and FIG.
  • the straight line 1 in FIGS. 5 and 6 is a line parallel to the sheet surface.
  • the number of measurement points when determining the average value and the maximum value of the angle can be set to 50 points, for example.
  • FIG. 7 shows a schematic diagram of a three-dimensional structure in which short carbon fibers (A1) are joined together by a three-dimensional network carbon fiber (B). In this three-dimensional structure, the short carbon fibers (A1) are joined by the carbon fibers 2 constituting the three-dimensional network carbon fiber (B).
  • FIG. 8 shows a schematic diagram of a three-dimensional structure in which short carbon fibers (A2) are joined together by two-dimensional network carbon fibers (C). In this three-dimensional structure, the short carbon fibers (A2) are joined together by the carbon fibers 3 constituting the two-dimensional network carbon fiber (C).
  • the determination of whether the network carbon fiber joining the short carbon fibers is two-dimensional or three-dimensional is performed by observing a cross section of the sheet-like measurement object (three-dimensional structure Y-1, three-dimensional structure Y-2) In cross section, determination is made by measuring the angle between each carbon fiber (carbon fiber 2 shown in FIG. 7 and carbon fiber 3 shown in FIG. 8) constituting the reticulated carbon fiber joining the short carbon fibers and the sheet surface. it can.
  • the cross section which performs cross-sectional observation is a cross section perpendicular
  • carbon fiber constituting the network carbon fiber joining the short carbon fibers is referred to as “network-constituting carbon fiber”.
  • the average angle of the measured network-constituting carbon fiber with the horizontal plane is 3 ° or more, it is determined as three-dimensional.
  • the average angle of the measured network-constituting carbon fiber with the horizontal plane is less than 2 °, 2 is determined. Determined as a dimension.
  • an SEM photograph of a cross section perpendicular to the sheet surface is used, and a dotted line similar to the dotted line in FIGS. The angle between the line and the sheet surface may be measured. Note that the number of measurement points when determining the average value of the angles can be set to 50 points, for example.
  • Examples of the short carbon fibers (A) include those obtained by cutting carbon fibers such as polyacrylonitrile-based carbon fibers (hereinafter referred to as “PAN-based carbon fibers”), pitch-based carbon fibers, and rayon-based carbon fibers to an appropriate length. It is done. From the viewpoint of the mechanical strength of the porous electrode substrate, PAN-based carbon fibers are preferred.
  • the average fiber length of the short carbon fibers (A) is preferably about 2 to 12 mm from the viewpoint of dispersibility.
  • the average fiber diameter of the short carbon fibers (A) is preferably 3 to 9 ⁇ m from the viewpoint of dispersibility of the short carbon fibers, and is preferably 4 to 8 ⁇ m from the viewpoint of smoothness of the porous electrode substrate. More preferred.
  • Carbon (D) is used for binding the carbon short fibers (A), and a carbide can be used as the carbon (D).
  • a carbide a carbon material obtained by carbonizing a polymer compound by heating can be used.
  • the shape of carbon (D) is not particularly limited.
  • the carbon short fibers (A) described later may be bound with carbon having a net-like shape, the carbon short fibers (A) may be bound with a carbonized resin, and a combination thereof is used. You can also When carbon (D) is a carbonized resin, a resin (f) that can be carbonized by heating can be used as a raw material.
  • the resin (f) that can be carbonized by heating can be appropriately selected from known resins that can bind the carbon short fibers (A) at the stage of carbonization.
  • the resin (f) is preferably a phenol resin, an epoxy resin, a furan resin, pitch, or the like, and particularly preferably a phenol resin having a high carbonization rate upon carbonization by heating.
  • the phenol resin a resol type phenol resin obtained by reaction of phenols and aldehydes in the presence of an alkali catalyst can be used.
  • a novolac type phenolic resin which shows a solid heat-fusible property and is produced by the reaction of phenols and aldehydes under an acidic catalyst by a known method can be dissolved and mixed in the resol type flowable phenolic resin.
  • a self-crosslinking type containing a curing agent such as hexamethylenediamine is preferred.
  • the phenol resin a phenol resin solution dissolved in a solvent of alcohol or ketones, a phenol resin dispersion liquid dispersed in a dispersion medium such as water, or the like can be used.
  • the three-dimensional network carbon fiber (B) is a fiber that joins the short carbon fibers (A) to each other, and is present in a state of being bent or curved at the joint, thereby providing a three-dimensional network structure. Can be formed.
  • the two-dimensional network carbon fiber (C) is a fiber that joins the short carbon fibers (A) to each other, and is present in a state of being bent or curved at the joint, and is formed in a two-dimensional plane.
  • a structure can be formed.
  • the porous electrode substrate of the present invention can be produced, for example, by the following method.
  • the first manufacturing method is A step (1) for producing a precursor sheet X-1 having no three-dimensional entangled structure in which short carbon fibers (A1) are dispersed; A step (2) of obtaining a precursor sheet X-2 having a three-dimensional entangled structure by entanglement of the precursor sheet X-1; On the precursor sheet X-2, a precursor sheet X-3 having a three-dimensional entanglement structure in which short carbon fibers (A2) are dispersed is laminated and integrated to obtain a porous electrode substrate precursor sheet X-. (3) to obtain 4, This is a method of sequentially performing the step (4) of carbonizing the porous electrode substrate precursor sheet X-4 at a temperature of 1000 ° C. or higher.
  • the short carbon fibers (A1) are joined by carbon (D)
  • the three-dimensional structure Y-1 having a three-dimensional entangled structure
  • the short carbon fibers (A2) are joined by carbon (D).
  • a porous electrode substrate in which a three-dimensional structure Y-2 having no dimensional entanglement structure is laminated and integrated can be obtained.
  • the carbon fiber precursor short fibers (b1) and / or the fibrillar carbon precursor fibers (b1 ′) are dispersed together with the carbon short fibers (A1) in the step (1), and the step (3). It is preferable to disperse the carbon fiber precursor short fibers (b2) and / or the fibrillar carbon precursor fibers (b2 ′) together with the carbon short fibers (A2).
  • the resin (f) that can be carbonized by heating may be impregnated before the step (4), or in addition to the above, the resin can be carbonized by heating before the step (4).
  • the resin (f) may be impregnated.
  • step (5) is further performed.
  • the porous electrode base material precursor sheet X-4 that has been heat and pressure molded is 200 ° C. or higher and lower than 300 ° C. This is a method of further performing the step (6) of oxidizing treatment at the temperature.
  • carbon fiber precursor short fiber (b1) and / or fibrillar carbon precursor fiber (b1 ') are disperse
  • the carbon fiber precursor short fibers (b2) and / or the fibrillar carbon precursor fibers (b2 ′) are preferably dispersed together with the carbon short fibers (A2).
  • precursor sheet X-2 ′ having a three-dimensional entangled structure in which carbon short fibers (A1), carbon fiber precursor short fibers (b1) and / or fibrillar carbon precursor fibers (b1 ′) are dispersed.
  • a precursor sheet X-3 ′ having no entangled structure can be obtained in the step (3). Since the precursor sheet X-2 'is entangled in the step (2), it has a three-dimensional entanglement structure.
  • the carbon fiber precursor short fibers (b1) and the carbon fiber precursor short fibers (b2) may be the same, May be different. Further, the fibrillar carbon precursor fiber (b1 ′) and the fibrillar carbon precursor fiber (b2 ′) (hereinafter, sometimes collectively referred to as “fibrillar carbon precursor fiber (b ′)”) are the same. But it may be different.
  • the porous electrode substrate precursor sheet X-4 is impregnated with the resin (f) that can be carbonized by heating, and then cured by heating and pressing, and then the carbon By making it, it can be set as a porous electrode base material.
  • a method using a squeezing device or a method of stacking a resin film on the precursor sheet is preferable.
  • the method using a squeezing device is a method in which a precursor sheet is impregnated in a resin solution, the squeezing device uniformly applies the intake liquid to the entire carbon sheet, and the amount of liquid is adjusted by changing the roll interval of the squeezing device. is there. If the viscosity is relatively low, a spray method or the like can also be used.
  • a carbonizable resin (f) is first coated on a release paper to obtain a carbonizable resin (f) film. Thereafter, the film is laminated on the precursor sheet and subjected to heat and pressure treatment to transfer the carbonizable resin (f).
  • the carbon fiber precursor short fiber (b) can be obtained by cutting a carbon fiber precursor fiber having a long fiber shape into an appropriate length.
  • the fiber length of the carbon fiber precursor short fiber (b) is preferably about 2 to 20 mm from the viewpoint of dispersibility.
  • the cross-sectional shape of the carbon fiber precursor short fiber (b) is not particularly limited, a high roundness is preferable from the viewpoint of mechanical strength after carbonization and production cost.
  • the diameter of the carbon fiber precursor short fiber (b) is preferably 5 ⁇ m or less in order to suppress breakage due to shrinkage during carbonization.
  • a polymer can be used as the material of the carbon fiber precursor short fiber (b), and it is preferable to use a polymer having a residual mass of 20% by mass or more in the carbonization process.
  • examples of such polymers include acrylic polymers, cellulose polymers, and phenolic polymers.
  • Carbon fiber precursor short fibers (b) may be used alone or in combination of two or more types having different fiber diameters and polymer types. Mixing ratio of these carbon fiber precursor short fibers (b) and fibrillar carbon precursor fibers (b ′) described later and carbon short fibers (A), oxidation treatment at 200 ° C. to 300 ° C. (process) Depending on the presence or absence of (6)), the ratio of remaining three-dimensional network carbon fibers (B) or two-dimensional network carbon fibers (C) in the finally obtained porous electrode substrate varies.
  • the fibrillar carbon precursor fiber (b ′) for example, Carbon precursor fiber (b′-1) having a structure in which a large number of fibrils having a diameter of several ⁇ m or less (for example, 0.1 to 3 ⁇ m) are branched from a fibrous trunk having a diameter of about 0.1 to 10 ⁇ m (hereinafter simply referred to as “fiber” (B'-1) "))
  • fiber B'-1)
  • fibers obtained by beating a carbon precursor short fiber (b′-2) hereinafter sometimes simply referred to as “fiber (b′-2)” that is fibrillated by beating.
  • the short carbon fiber (A) and the fibrillar carbon precursor fiber (b ′) are entangled well in the precursor sheet, and the handling property and mechanical strength are excellent. It becomes easy to obtain a precursor sheet.
  • the freeness of the fibrillar carbon precursor fiber (b ′) is not particularly limited. In general, the use of the fibrillar fiber having a low freeness improves the mechanical strength of the precursor sheet. There exists a tendency for the gas gas permeability of a base material to fall.
  • one type of fiber (b′-1) or one type of beaten fiber (b′-2) may be used as the fibrillar carbon precursor fiber (b ′).
  • a plurality of these fibers having different fiber diameters, polymer types, and the like may be used in combination. That is, two or more types of fibers (b′-1) can be used in combination, two or more types of fibers obtained by beating fibers (b′-2) can be used in combination, or fibers (b′-1) One or more types of fibers and one or more types of fibers obtained by beating the fibers (b′-2) can be used in combination.
  • the polymer used for the fiber (b′-1) preferably has a residual mass of 20% by mass or more in the carbonization treatment step.
  • examples of such polymers include acrylic polymers, cellulose polymers, and phenolic polymers.
  • the short carbon fibers (A) can be bonded to each other from low temperature to high temperature, the remaining mass at the time of carbonization is large, and the entanglement with the short carbon fibers (A) and the sheet strength are taken into consideration. It is preferable to use an acrylic polymer containing 50% by mass or more of units.
  • the method for producing the fiber (b′-1) is not particularly limited, but it is preferable to produce the fiber (b′-1) using an injection coagulation method in which the freeness can be easily controlled.
  • the average fiber length of the fibers (b′-1) is preferably 1 to 20 mm.
  • the fiber (b′-2) a fiber obtained by cutting a long fiber easily split sea-island composite fiber into an appropriate length can be used. Such fibers can be beaten and refined with a refiner or a pulper.
  • the fiber (b′-2) can be produced using two or more different types of polymers that are soluble in a common solvent and are incompatible. In this case, at least one type of polymer is carbonized.
  • the residual mass in the process is preferably 20% by mass or more.
  • the polymers used for the easily splittable sea-island composite fibers those having a residual mass in the carbonization treatment step of 20% by mass or more include acrylic polymers, cellulose polymers, and phenolic polymers. Among them, it is preferable to use an acrylic polymer containing 50% by mass or more of an acrylonitrile unit from the viewpoint of spinnability and the remaining mass in the carbonization treatment step.
  • the acrylic polymer that can be used for the fiber (b) and the fiber (b ') may be a homopolymer of acrylonitrile or a copolymer of acrylonitrile and other monomers.
  • the monomer copolymerized with acrylonitrile is not particularly limited as long as it is an unsaturated monomer constituting a general acrylic fiber.
  • Methacrylic acid esters acrylic acid, methacrylic acid, maleic acid, itaconic acid, acrylamide, N-methylol acrylamide, diacetone acrylamide, styrene, vinyl toluene, vinyl acetate, vinyl chloride, vinylidene chloride, vinylidene bromide, vinyl fluoride, And vinylidene fluoride.
  • the weight average molecular weight of the acrylic polymer is not particularly limited, but is preferably 50,000 to 1,000,000.
  • the weight average molecular weight of the acrylic polymer is 50,000 or more, the spinnability is improved and the yarn quality of the fiber tends to be good.
  • the weight average molecular weight of the acrylic polymer is 1,000,000 or less, the polymer concentration that gives the optimum viscosity of the spinning dope increases, and the productivity tends to improve.
  • the fiber (b′-2) when the above-mentioned acrylic polymer is used as the polymer having a residual mass of 20% by mass or more in the carbonization treatment step, as another polymer, it is desirable that a spinning stock solution in which both polymers are dissolved is stably present in a solvent common to the acrylonitrile-based polymer. That is, in the spinning undiluted solution, if the degree of incompatibility between the two types of polymers is large, the fibers become inhomogeneous and cause yarn breakage at the time of spinning.
  • the other polymer is incompatible with the acrylonitrile polymer when dissolved in the same solvent as the acrylonitrile polymer, but has a miscibility enough to form a sea-island structure during spinning. Polymers are desirable.
  • the other polymer is preferably poorly soluble in water.
  • Examples of the other polymer that satisfies these requirements include polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, polyvinyl pyrrolidone, cellulose acetate, acrylic resin, methacrylic resin, and phenol resin. Acrylic resins and methacrylic resins are preferred in terms of the balance of the above requirements.
  • the other polymer may be one kind or two or more kinds.
  • the easily splittable sea-island composite fiber used as the fiber (b'-2) can be produced by a normal wet spinning method.
  • a spinning stock solution obtained by dissolving an acrylonitrile-based polymer in a solvent and a spinning stock solution obtained by dissolving another polymer in a solvent may be mixed with a static mixer or the like to obtain a spinning stock solution.
  • dimethylamide, dimethylformamide, dimethyl sulfoxide and the like can be used as the solvent.
  • An easily split fiber sea-island composite fiber can be obtained by supplying these spinning stock solutions to a spinning machine, spinning from a nozzle, and performing wet heat drawing, washing, drying and dry heat drawing.
  • the cross-sectional shape of the fiber (b′-2) is not particularly limited. From the viewpoint of dispersibility, and in order to suppress breakage due to shrinkage during carbonization, the fineness of the fiber (b′-2) is preferably 1 to 10 dtex.
  • the average fiber length of the fiber (b′-2) is preferably 1 to 20 mm from the viewpoint of dispersibility after beating.
  • the fiber (b'-2) is beaten by peeling of the phase separation interface by mechanical external force, and at least a part of the fiber is split and fibrillated.
  • the beating method is not particularly limited, and for example, fibrillation can be performed by a refiner, a pulper, a beater, or a jet of pressurized water (water jet punching).
  • fibrillation can be performed by a refiner, a pulper, a beater, or a jet of pressurized water (water jet punching).
  • the fibrillation state changes depending on the beating method and beating time.
  • freeness evaluation ISO-5267-2 (Canadian Standard freeness method)
  • the freeness of the fiber (b′-2) is not particularly limited.
  • the precursor sheet X-1 can be obtained by dispersing the carbon short fibers (A1), the carbon fiber precursor short fibers (b1), and / or the fibrillar carbon precursor fibers (b1 ′). Has no structure.
  • the precursor sheet X-3 can be obtained by dispersing the short carbon fibers (A2), the short carbon fiber precursor fibers (b2), and / or the fibrillar carbon precursor fibers (b2 ′). Has no structure.
  • the short carbon fibers (A) are dispersed in a two-dimensional plane. That is, the short carbon fibers (A1) are dispersed in the two-dimensional plane in the precursor sheet X-1, and the short carbon fibers (A2) are dispersed in the two-dimensional plane in the precursor sheet X-3.
  • the mass ratio of the carbon short fibers (A1) to the total of the carbon fiber precursor short fibers (b1) and the fibrillar carbon precursor fibers (b1 ′) 20:80 to 80:20 is preferable from the viewpoint of securing the electrode base material handling property.
  • the mass ratio between the short carbon fibers (A2) and the total of the short carbon fiber precursor fibers (b2) and the fibrillar carbon precursor fibers (b2 ′) is the porosity after the carbonization treatment. 20:80 to 80:20 is preferable from the viewpoint of securing the electrode base material handling property.
  • the precursor sheets X-1 and X-3 can be produced by a wet method or a dry method.
  • the wet method is a method of making a precursor sheet by dispersing carbon short fibers (A), carbon fiber precursor short fibers (b) and / or fibrillar carbon precursor fibers (b ′) in a liquid medium. is there.
  • the dry method is a method in which a short carbon fiber (A), a short carbon fiber precursor fiber (b), and / or a fibrillar carbon precursor fiber (b ′) are dispersed in air and are deposited to obtain a precursor sheet. It is.
  • the carbon short fibers (A) and the carbon fiber precursor short fibers (b) are further added.
  • the precursor sheet is preferably produced by a wet method using the fibrillar carbon precursor fiber (b ′).
  • Examples of the medium in which the carbon short fibers (A), the carbon fiber precursor short fibers (b), and / or the fibrillar carbon precursor fibers (b ′) are dispersed include, for example, water, alcohol, and the like. Although the medium in which (b) and / or the fibrillar carbon precursor fiber (b ′) is not dissolved is mentioned, water is preferable from the viewpoint of productivity.
  • Precursor sheets X-1 and X-3 can be manufactured by either a continuous process or a batch process, but are manufactured by a continuous process from the viewpoint of the productivity and mechanical strength of precursor sheets X-1 and X-3. It is preferable to do.
  • the precursor sheet X-2 is obtained by entanglement of the precursor sheet X-1.
  • the entanglement treatment for entanglement of the short carbon fibers (A), the short carbon fiber precursor fibers (b) and / or the fibrillar carbon precursor fibers (b ′) in the precursor sheet X-1 has a three-dimensional entangled structure. Any method can be used as long as it is formed, and it can be carried out by a known method. For example, a mechanical entanglement method such as a needle punching method, a high pressure liquid injection method such as a water jet punching method, a high pressure gas injection method such as a steam jet punching method, or a combination thereof can be used.
  • the high-pressure liquid jet treatment method is preferable from the viewpoint that the short carbon fibers (A) in the entanglement process can be prevented from being broken and sufficient entanglement can be obtained.
  • a precursor sheet is placed on a substantially smooth support member, and a precursor is produced by, for example, acting a liquid columnar flow, a liquid fan-shaped flow, a liquid slit flow, or the like ejected at a pressure of 1 MPa.
  • This is a treatment method in which the short carbon fibers (A) and the short carbon fiber precursor fibers (b) and / or the fibrillar carbon precursor fibers (b ′) in the body sheet are entangled.
  • the support member having a substantially smooth surface is such that the pattern of the support member is not formed in the resulting structure having a three-dimensional entangled structure, and the ejected liquid is quickly removed.
  • Any support member can be used. Specific examples thereof include a 30-200 mesh wire net, a plastic net, or a roll.
  • the precursor sheet X-2 having a three-dimensional entangled structure is continuously produced by high-pressure liquid injection processing. It is preferable to manufacture from the viewpoint of productivity.
  • the liquid used for the high-pressure liquid jet treatment may be any solvent that does not dissolve the fibers constituting the precursor sheet X-1, but it is usually preferable to use water. There is no restriction
  • the hole diameter of each injection nozzle in the high-pressure liquid injection nozzle is preferably in the range of 0.06 to 1.0 mm, more preferably in the range of 0.1 to 0.3 mm in the case of a columnar flow.
  • the distance between the nozzle injection hole and the precursor sheet X-1 is preferably in the range of about 0.5 to 5 cm.
  • the pressure of the liquid is preferably 1 MPa or more and 7 MPa or less, and more preferably 1 MPa or more and 5 MPa or less.
  • the confounding process may be performed in one row or in a plurality of rows. When performing in a plurality of rows, it is effective to increase the pressure of the high-pressure liquid ejection processing in the second and subsequent rows rather than the first row.
  • the entanglement process by high-pressure liquid injection of the precursor sheet X-1 may be repeated a plurality of times. That is, after the precursor sheet X-1 is subjected to the high-pressure liquid jetting process, another precursor sheet X-1 is laminated on the precursor sheet X-1 after the high-pressure liquid jetting process is finished. An injection process may be performed.
  • the precursor sheet X-1 in which the three-dimensional entangled structure is being formed by high-pressure liquid injection may be turned over, and further, high-pressure liquid injection processing may be performed from the opposite side. These operations may be repeated.
  • the high-pressure liquid injection nozzle having one or a plurality of rows of nozzle holes is vibrated in the sheet width direction to perform high-pressure liquid injection processing of the sheet in the sheet forming direction.
  • the formation of the derived streaky locus pattern can be suppressed.
  • the mechanical strength in the sheet width direction can be expressed.
  • the three-dimensional entanglement structure is controlled by controlling the frequency at which the high-pressure liquid jet nozzle vibrates in the sheet width direction and the phase difference thereof Periodic patterns appearing on the precursor sheet can also be suppressed.
  • the porous electrode substrate precursor sheet X-4 is obtained by laminating and integrating a precursor sheet X-3 having no three-dimensional entangled structure on a precursor sheet X-2 having a three-dimensional entangled structure.
  • the precursor sheet X-2 and the precursor sheet X-3 are separately manufactured and then overlapped, or the precursor sheet X-3 is directly manufactured on the precursor sheet X-2.
  • the method of doing is mentioned. Since the joining between the precursor sheet X-2 and the precursor sheet X-3 is easy and the joining force between the sheets is strong, the precursor sheet X-3 is placed on the precursor sheet X-2. A direct production method is preferred.
  • carbon short fibers (A2), carbon fiber precursor short fibers (b2) and / or fibrillar carbon precursor fibers (b2 ′) are formed on the precursor sheet X-2 produced in advance.
  • the precursor sheet X-2 having a three-dimensional entangled structure and the precursor sheet X-3 not having a three-dimensional entangled structure are laminated and integrated by directly supplying and making a slurry in which a liquid is dispersed in a liquid medium.
  • a porous electrode substrate precursor sheet X-4 can be obtained. It is also possible to obtain a porous electrode substrate precursor sheet X-4 by laminating a plurality of precursor sheets X-3 on the precursor sheet X-2.
  • the basis weight of the porous electrode substrate precursor sheet X-4 is preferably about 10 to 200 g / m 2 and the thickness is preferably about 20 to 400 ⁇ m.
  • the basis weight of the precursor sheet X-3 having no three-dimensional entangled structure is that the handling property of the porous electrode substrate precursor sheet X-4 and the porous electrode substrate is enhanced. 70% or less of the precursor sheet X-4 is preferable, and the porous electrode substrate precursor sheet X-4 is preferable in that it reduces damage to the polymer electrolyte membrane when the porous electrode substrate is incorporated in a fuel cell. Is preferably 20% or more. That is, the basis weight of the precursor sheet X-2 having a three-dimensional entangled structure is preferably 30 to 80% of the porous electrode substrate precursor sheet X-4.
  • the porous electrode substrate precursor sheet X-4 can be carbonized as it is, and can be carbonized after heat-pressure molding, and can be carbonized after heat-pressure molding and subsequent oxidation treatment. You can also. Manufacturing cost can be reduced by performing carbonization treatment as it is.
  • the short carbon fiber (A) is fused with the short carbon fiber precursor fiber (b) and / or the fibrillar carbon precursor fiber (b ′), and the short carbon fiber precursor fiber (b) and / or the fibrillar carbon is used.
  • the precursor fiber (b ′) By carbonizing the precursor fiber (b ′) to form a three-dimensional network carbon fiber (B) or a two-dimensional network carbon fiber (C), the mechanical strength and conductivity of the obtained porous electrode substrate are increased. Can be increased.
  • the carbonization treatment is preferably performed in an inert gas in order to increase the conductivity of the porous electrode substrate.
  • the carbonization treatment is usually performed at a temperature of 1000 ° C. or higher.
  • the temperature range of the carbonization treatment is preferably 1000 to 3000 ° C, more preferably 1000 to 2200 ° C.
  • the time for the carbonization treatment is, for example, about 10 minutes to 1 hour.
  • a pretreatment by firing in an inert atmosphere of about 300 to 800 ° C. can be performed before the carbonization treatment.
  • carbon is continuously applied over the entire length of the porous electrode substrate precursor sheet X-4 from the viewpoint of reducing the production cost. It is preferable to perform the conversion treatment. If the porous electrode base material is long, the handling property is high, the productivity of the porous electrode base material is high, and the subsequent production of the membrane-electrode assembly (MEA) can also be performed continuously. The manufacturing cost of the fuel cell can be reduced. Moreover, it is preferable to wind up the manufactured porous electrode base material continuously from a viewpoint of productivity and reduction of manufacturing cost of a porous electrode base material and a fuel cell.
  • the carbon short fiber (A) in the porous electrode substrate precursor sheet X-4 is fused with the carbon fiber precursor short fiber (b) and / or the fibrillar carbon precursor fiber (b ′), and the porous material is porous. From the viewpoint of reducing the thickness unevenness of the electrode base material and further suppressing the fluffing of each fiber in the vicinity of the surface on one side of the sheet due to the entanglement treatment, the porous electrode base material precursor sheet X-4 is formed before the carbonization treatment. It is preferable to perform heat and pressure molding at a temperature of less than 200 ° C. Any technique can be applied to the heat and pressure molding as long as the technique enables uniform heating and pressure molding of the porous electrode substrate precursor sheet X-4. Examples thereof include a method in which a smooth rigid plate is applied to both surfaces of the porous electrode substrate precursor sheet X-4 and hot pressing, and a method using a continuous roll press device or a continuous belt press device.
  • a method using a continuous roll press device or a continuous belt press device is preferable. This facilitates continuous carbonization treatment.
  • Examples of the pressing method in the continuous belt press apparatus include a method of applying pressure to the belt with a linear pressure by a roll press, a method of pressing with a surface pressure by a hydraulic head press, and the like. The latter is preferred in that a smoother porous electrode substrate can be obtained.
  • the temperature at the time of heat and pressure molding is preferably less than 200 ° C. and more preferably 120 to 190 ° C. in order to effectively smooth the surface of the porous electrode substrate precursor sheet X-4.
  • the pressure at the time of heat and pressure molding is not particularly limited, but is preferably about 20 kPa to 10 MPa from the viewpoint of preventing destruction of the short carbon fiber (A) at the time of heat and pressure molding and preventing the densification of the porous electrode substrate.
  • the content ratio of the carbon fiber precursor short fiber (b) and / or the fibrillar carbon precursor fiber (b ′) in the porous electrode substrate precursor sheet X-4 is large, it is easy even if the molding pressure is low.
  • the surface of the precursor sheet Y can be smoothed.
  • the time for heat and pressure molding can be, for example, 30 seconds to 10 minutes.
  • the porous electrode substrate precursor sheet X-4 is sandwiched between two rigid plates or heated and pressed with a continuous roll press or continuous belt press, the carbon fiber precursor is applied to the rigid plate or roll or belt.
  • the carbon fiber precursor short fiber (b) and / or the carbon fiber precursor short fiber (b) and / or the carbon fiber precursor short fiber (b) and / or the fibrillar carbon precursor fiber (b ′) are fused well.
  • the porous electrode substrate precursor sheet X-4 obtained by heat and pressure molding is 200 ° C. or more and 300 ° C. in the atmosphere. It is preferable to oxidize at a temperature below. The oxidation treatment is more preferably performed at 240 to 270 ° C.
  • Continuous oxidation treatment by direct pressure heating using a heated perforated plate or continuous oxidation treatment by intermittent direct pressure heating using a heating roll or the like is a low cost, carbon short fiber (A) and carbon fiber precursor This is preferable in that the short fibers (b) and / or the fibrillar carbon precursor fibers (b ′) can be fused.
  • the oxidation treatment time can be, for example, 1 minute to 2 hours.
  • the oxidation treatment is continuously performed over the entire length of the porous electrode substrate precursor sheet X-4.
  • the carbonization treatment can be easily performed continuously, and the productivity of the porous electrode substrate, the membrane-electrode assembly, and the fuel cell can be improved and the manufacturing cost can be reduced.
  • the porous electrode substrate of the present invention can be suitably used for a membrane-electrode assembly.
  • the membrane-electrode assembly is composed of a polymer electrolyte membrane, a catalyst layer, and a porous carbon electrode base material.
  • a cathode side catalyst layer comprising an oxidizing gas catalyst is provided on one surface of the polymer electrolyte membrane having proton conductivity.
  • an anode side catalyst layer made of a catalyst for fuel gas on the other surface, and a cathode side porous electrode substrate and an anode side porous electrode substrate are provided outside each catalyst layer. Yes.
  • the three-dimensional structure Y-2 side having no three-dimensional entangled structure of the porous electrode substrate is arranged on the surface in contact with the polymer electrolyte membrane It is preferable to do.
  • the membrane-electrode assembly of the present invention can be suitably used for a polymer electrolyte fuel cell.
  • the polymer electrolyte fuel cell includes a cathode-side separator in which a cathode-side gas channel is formed and an anode-side separator in which an anode-side gas channel is formed so as to sandwich a membrane-electrode assembly.
  • Each separator is provided with an oxidizing gas inlet and an oxidizing gas outlet, and a fuel gas inlet and a fuel gas outlet.
  • the handleability is excellent, the swell of the sheet is improved, the gas permeability and conductivity are sufficient, and the polymer electrolyte membrane is not damaged when incorporated into a fuel cell.
  • a porous electrode substrate can be obtained.
  • the said porous electrode base material can be manufactured at low cost.
  • the thickness of the porous electrode base material was measured using a thickness measuring device dial thickness gauge (manufactured by Mitutoyo Corporation, trade name: 7321). The size of the probe was 10 mm in diameter, and the measurement pressure was 1.5 kPa.
  • the electrical resistance (through-direction resistance) in the thickness direction of the porous electrode substrate is 10 mA / cm 2 when the porous electrode substrate is sandwiched between gold-plated copper plates and pressed from above and below the copper plate at 1 MPa.
  • the resistance value when a current was passed at a current density of was measured from the following equation.
  • Through-direction resistance (m ⁇ ⁇ cm 2 ) Measured resistance value (m ⁇ ) ⁇ Sample area (cm 2 ) (4) Total content of three-dimensional network carbon fiber (B) and two-dimensional network carbon fiber (C) The total content of three-dimensional network carbon fiber (B) and two-dimensional network carbon fiber (C) is From the basis weight of the obtained porous electrode base material and the basis weight of the carbon short fiber (A) used, it was calculated from the following formula.
  • Total content (mass%) of the three-dimensional network carbon fiber (B) and the two-dimensional network carbon fiber (C) [Porous electrode substrate basis weight (g / m 2 ) ⁇ carbon short fiber (A) basis weight ( g / m 2 )] ⁇ Porous electrode substrate basis weight (g / m 2 ) ⁇ 100 (5) Waviness of the porous electrode substrate The undulation of the porous electrode substrate is calculated from the difference between the maximum value and the minimum value when the porous electrode substrate having a length of 250 mm and a width of 250 mm is placed on a flat plate. did.
  • a catalyst layer (catalyst layer area: 25 cm 2 , Pt adhesion amount) comprising catalyst-supported carbon (catalyst: Pt, catalyst support amount: 50 mass%) on both sides : 0.3 mg / cm 2 ) of the perfluorosulfonic acid polymer electrolyte membrane (film thickness: 30 ⁇ m) so that the three-dimensional structure side having no three-dimensional entangled structure is in contact with the polymer electrolyte membrane.
  • the sheet was sandwiched between porous electrode substrates and joined to obtain an MEA.
  • the MEA was sandwiched between two carbon separators having a bellows-like gas flow path to produce a polymer electrolyte fuel cell (single cell). Then, by measuring the open circuit voltage (OCV) when hydrogen gas and air are supplied to a single cell at 80 ° C. through a bubbler at 80 ° C., the polymer electrolyte when incorporated in a fuel cell Damage to the film was confirmed.
  • OCV open circuit voltage
  • Example 1 As the carbon short fiber (A), a PAN-based carbon fiber having an average fiber diameter of 7 ⁇ m and an average fiber length of 3 mm was prepared.
  • the carbon fiber precursor short fiber (b) an acrylic short fiber (product name: D122, manufactured by Mitsubishi Rayon Co., Ltd.) having an average fiber diameter of 4 ⁇ m and an average fiber length of 3 mm is prepared.
  • fiber (b ′) easily split fiber acrylic sea-island composite short fiber (b′-2) made of acrylic polymer and diacetate (cellulose acetate) that is fibrillated by beating (product manufactured by Mitsubishi Rayon Co., Ltd.) Name: Bonnell MVP-C651, average fiber length: 3 mm).
  • the precursor sheet X-1, a precursor sheet X-2 having a three-dimensional entangled structure, and a precursor sheet X-3 having no three-dimensional entangled structure are laminated on the precursor sheet X-2 by the following operations.
  • the integrated porous electrode substrate precursor sheet X-4 was continuously produced to obtain a carbon electrode substrate.
  • the short carbon fibers (A) are dispersed in water so that the fiber concentration is 1% by mass (10 g / L), and are disaggregated through a disc refiner (manufactured by Kumagai Riki Kogyo Co., Ltd.). SA).
  • the carbon fiber precursor short fiber (b) is dispersed in water so that the fiber concentration is 1% by mass (10 g / L), and is disaggregated through a disc refiner (manufactured by Kumagaya Rikyu Kogyo Co., Ltd.). A slurry fiber (Sb) was obtained.
  • the mass ratio of the short carbon fiber (A), the short carbon fiber precursor fiber (b), and the fibrillar carbon precursor fiber (b ′) is 50:30:20, and the concentration of the fiber in the slurry is 1.44 g.
  • the disaggregated slurry fibers (SA), the disaggregated slurry fibers (Sb), the disaggregated slurry fibers (Sb ′), and the dilution water were weighed so as to be / L, and charged into the slurry supply tank. Further, polyacrylamide was added to prepare a papermaking slurry having a viscosity of 22 centipoise (22 mPa ⁇ s).
  • the papermaking slurry was supplied onto the plain weave mesh by a metering pump.
  • the papermaking slurry was supplied after being widened to a predetermined size through a flow box for rectification into a uniform flow. Thereafter, the mixture was allowed to stand, passed through a portion to be naturally dehydrated, and dehydrated with a vacuum dehydrator to obtain a precursor sheet X-1.
  • the target weight of the precursor sheet X-1 was 35 g / m 2 .
  • Precursor sheet X-1 was loaded on the net of the pressurized water jet treatment apparatus.
  • the pressurized water jet pressure is set to 1 MPa (nozzle 1), 2 MPa (nozzle 2), and 1 MPa (nozzle 3), and the precursor sheet X-1 is passed through nozzle 1, nozzle 2, and nozzle 3 in this order, and entangled.
  • Treatment was performed to obtain a precursor sheet X-2 having a three-dimensional entangled structure.
  • the target weight of the precursor sheet X-2 having a three-dimensional entangled structure is 35 g / m 2 which is the same as the target weight of the precursor sheet X-1.
  • the above papermaking slurry was supplied from above the precursor sheet X-2 having a three-dimensional entangled structure loaded on a plain weave mesh by a metering pump.
  • the papermaking slurry was supplied after being widened to a predetermined size through a flow box for rectification into a uniform flow. Thereafter, it is allowed to stand, and the part to be naturally dehydrated is passed through, dehydrated by a vacuum dehydration apparatus, and a precursor sheet X-3 having no three-dimensional entangled structure is laminated to form a precursor sheet X- having a three-dimensional entangled structure
  • a porous electrode substrate precursor sheet X-4 in which the precursor sheet X-3 having no two-dimensional entangled structure was laminated and integrated was obtained. Since the target weight of the precursor sheet X-3 was 35 g / m 2 , the target weight of the porous electrode base material precursor sheet X-4 was 70 g / m 2 .
  • the porous electrode substrate precursor sheet X-4 was dried at 150 ° C. for 3 minutes by a pin tenter tester (trade name: PT-2A-400, manufactured by Sakurai Dyeing Machine Co., Ltd.).
  • the basis weight of the porous electrode substrate precursor sheet X-4 was 70.2 g / m 2 .
  • the dispersion state of the short carbon fibers (A), the short carbon fiber precursor fibers (b), and the fibrillar carbon precursor fibers (b ′) in the porous electrode substrate precursor sheet X-4 is good, Further, the entanglement of the fibers in the precursor sheet X-2 was good, and the handling property was also good.
  • porous electrode substrate precursor sheet X-4 was carbonized in a batch carbonization furnace in a nitrogen gas atmosphere at 2000 ° C. for 1 hour to obtain a porous electrode substrate.
  • the obtained porous electrode base material has almost no in-plane shrinkage at the time of carbonization treatment, swell is as small as 2 mm or less, and surface smoothness is good, and gas permeability, thickness, and penetration direction resistance are also good respectively.
  • Met. The total content of the three-dimensional network carbon fiber (B) and the two-dimensional network carbon fiber (C) was 24% by mass.
  • a scanning electron micrograph of the cross section of the obtained porous electrode substrate is shown in FIG. 1 (cross section of a three-dimensional structure having a three-dimensional entangled structure) and FIG. 2 (three-dimensional structure having no three-dimensional entangled structure). Cross section).
  • FIG.3 and FIG.4 the scanning electron micrograph of the front and back of the obtained porous electrode base material was shown.
  • FIG. 1 it can be confirmed that the short carbon fibers (A) are joined by the three-dimensional network carbon fibers (B).
  • the short carbon fibers (A) are two-dimensional network carbons. It has confirmed that it was joined by the fiber (C).
  • FIG. 3 since the A surface has no entangled structure, it was confirmed that the fluffing of the carbon short fibers (A) and the carbonized acrylic fibers was suppressed.
  • FIG. 4 since the B surface has an entangled structure, fibers protruding from the surface could be observed (the positions of the round frames).
  • the OCV of a single cell using this porous electrode substrate was as high as 0.902 V, and the damage to the polymer electrolyte membrane when incorporated in a fuel cell was small.
  • the above evaluation results are shown in Table 2 together with the basis weight of the porous electrode substrate.
  • Example 2 The target weights of the precursor sheet X-2 having a three-dimensional entangled structure and the precursor sheet X-3 not having a three-dimensional entangled structure are 25 g / m 2 and 45 g / m 2 (Example 2) or 55 g / m, respectively.
  • a porous electrode substrate was obtained in the same manner as in Example 1 except that m 2 and 15 g / m 2 (Example 3) were used.
  • the obtained porous electrode base material has almost no in-plane shrinkage during the carbonization treatment, the sheet waviness is as small as 2 mm or less, the surface smoothness is good, and the gas permeability, thickness, and penetration direction resistance are also good. Each was good.
  • the porous electrode substrate includes a three-dimensional structure in which short carbon fibers (A) are joined together by a three-dimensional network carbon fiber (B), and short carbon fibers (A) are two-dimensional network carbon fibers.
  • the three-dimensional structure joined by (C) had a laminated and integrated structure. Further, the damage to the polymer electrolyte membrane when incorporated in the fuel cell was also small. The above evaluation results are shown in Table 2.
  • Example 4 The target weights of the precursor sheet X-2 having a three-dimensional entangled structure, the precursor sheet X-3 not having a three-dimensional entangled structure, and the porous electrode substrate precursor sheet X-4 obtained by laminating and integrating these, Example 1 with the exception of 30 g / m 2 , 30 g / m 2 and 60 g / m 2 (Example 4), or 20 g / m 2 , 20 g / m 2 and 40 g / m 2 (Example 5). Similarly, a porous electrode substrate was obtained.
  • the obtained porous electrode base material has almost no in-plane shrinkage during the carbonization treatment, the sheet waviness is as small as 2 mm or less, the surface smoothness is good, and the gas permeability, thickness, and penetration direction resistance are also good. Each was good.
  • the porous electrode substrate includes a three-dimensional structure in which short carbon fibers (A) are joined together by a three-dimensional network carbon fiber (B), and short carbon fibers (A) are two-dimensional network carbon fibers.
  • the three-dimensional structure joined by (C) had a laminated and integrated structure. Further, the damage to the polymer electrolyte membrane when incorporated in the fuel cell was also small.
  • Table 2 The above evaluation results are shown in Table 2.
  • Example 6 Example except that the mass ratio of the short carbon fiber (A), the short carbon fiber precursor fiber (b), and the fibrillar carbon precursor fiber (b ′) in the papermaking slurry was 50:40:10
  • a porous electrode substrate was obtained.
  • the obtained porous electrode base material has almost no in-plane shrinkage during the carbonization treatment, the sheet waviness is as small as 2 mm or less, the surface smoothness is good, and the gas permeability, thickness, and penetration direction resistance are also good. Each was good.
  • the porous electrode substrate includes a three-dimensional structure in which short carbon fibers (A) are joined together by a three-dimensional network carbon fiber (B), and short carbon fibers (A) are two-dimensional network carbon fibers.
  • the three-dimensional structure joined by (C) had a laminated and integrated structure. Further, the damage to the polymer electrolyte membrane when incorporated in the fuel cell was also small. The above evaluation results are shown in Table 2.
  • Example 7 The mass ratio of carbon short fibers (A), carbon fiber precursor short fibers (b), and fibrillar carbon precursor fibers (b ′) in the papermaking slurry is 40:40:20 and has a three-dimensional entangled structure.
  • Precursor weights of the precursor sheet X-2, the precursor sheet X-3 having no three-dimensional entangled structure, and the porous electrode substrate precursor sheet X-4 obtained by stacking and integrating these are 40 g / m 2 and 40 g, respectively.
  • a porous electrode substrate was obtained in the same manner as in Example 1 except that it was set to / m 2 and 80 g / m 2 .
  • the obtained porous electrode base material has almost no in-plane shrinkage during the carbonization treatment, the sheet waviness is as small as 2 mm or less, the surface smoothness is good, and the gas permeability, thickness, and penetration direction resistance are also good. Each was good.
  • the porous electrode substrate includes a three-dimensional structure in which short carbon fibers (A) are joined together by a three-dimensional network carbon fiber (B), and short carbon fibers (A) are two-dimensional network carbon fibers.
  • the three-dimensional structure joined by (C) had a laminated and integrated structure. Further, the damage to the polymer electrolyte membrane when incorporated in the fuel cell was also small.
  • Table 2 The above evaluation results are shown in Table 2.
  • Example 8 The mass ratio of carbon short fibers (A), carbon fiber precursor short fibers (b), and fibrillar carbon precursor fibers (b ′) in the papermaking slurry is 30:50:20 and has a three-dimensional entangled structure.
  • the target weights of the precursor sheet X-2, the precursor sheet X-3 having no three-dimensional entangled structure, and the porous electrode substrate precursor sheet X-4 obtained by stacking and integrating these are 45 g / m 2 and 45 g, respectively.
  • a porous electrode substrate was obtained in the same manner as in Example 1 except that it was set to / m 2 and 90 g / m 2 .
  • the obtained porous electrode base material has almost no in-plane shrinkage during the carbonization treatment, the sheet waviness is as small as 2 mm or less, the surface smoothness is good, and the gas permeability, thickness, and penetration direction resistance are also good. Each was good.
  • the porous electrode substrate includes a three-dimensional structure in which short carbon fibers (A) are joined together by a three-dimensional network carbon fiber (B), and short carbon fibers (A) are two-dimensional network carbon fibers.
  • the three-dimensional structure joined by (C) had a laminated and integrated structure. Further, the damage to the polymer electrolyte membrane when incorporated in the fuel cell was also small.
  • Table 2 The above evaluation results are shown in Table 2.
  • Example 9 The mass ratio of carbon short fibers (A), carbon fiber precursor short fibers (b), and fibrillar carbon precursor fibers (b ′) in the papermaking slurry is 70:10:20 and has a three-dimensional entangled structure.
  • the target weights of the precursor sheet X-2, the precursor sheet X-3 having no three-dimensional entangled structure, and the porous electrode substrate precursor sheet X-4 obtained by laminating and integrating these are 30 g / m 2 and 30 g, respectively.
  • a porous electrode substrate was obtained in the same manner as in Example 1 except that it was set to / m 2 and 60 g / m 2 .
  • the obtained porous electrode base material has almost no in-plane shrinkage during the carbonization treatment, the sheet waviness is as small as 2 mm or less, the surface smoothness is good, and the gas permeability, thickness, and penetration direction resistance are also good. Each was good.
  • the porous electrode substrate includes a three-dimensional structure in which short carbon fibers (A) are joined together by a three-dimensional network carbon fiber (B), and short carbon fibers (A) are two-dimensional network carbon fibers.
  • the three-dimensional structure joined by (C) had a laminated and integrated structure. Further, the damage to the polymer electrolyte membrane when incorporated in the fuel cell was also small.
  • Table 2 The above evaluation results are shown in Table 2.
  • Example 10 A porous electrode substrate was obtained in the same manner as in Example 1 except that the pressurized water jet pressure was set to 2 MPa (nozzle 1), 3 MPa (nozzle 2), and 2 MPa (nozzle 3).
  • the obtained porous electrode base material has almost no in-plane shrinkage during the carbonization treatment, the sheet waviness is as small as 2 mm or less, the surface smoothness is good, and the gas permeability, thickness, and penetration direction resistance are also good. Each was good.
  • the porous electrode substrate includes a three-dimensional structure in which short carbon fibers (A) are joined together by a three-dimensional network carbon fiber (B), and short carbon fibers (A) are two-dimensional network carbon fibers.
  • the three-dimensional structure joined by (C) had a laminated and integrated structure. Further, the damage to the polymer electrolyte membrane when incorporated in the fuel cell was also small. The above evaluation results are shown in Table 2.
  • Example 11 A porous electrode substrate was obtained in the same manner as in Example 1 except that the pressurized water jet pressure was set to 3.5 MPa (nozzle 1), 4.5 MPa (nozzle 2), and 3.5 MPa (nozzle 3). .
  • the obtained porous electrode base material has almost no in-plane shrinkage during the carbonization treatment, the sheet waviness is as small as 2 mm or less, the surface smoothness is good, and the gas permeability, thickness, and penetration direction resistance are also good. Each was good.
  • the porous electrode substrate includes a three-dimensional structure in which short carbon fibers (A) are joined together by a three-dimensional network carbon fiber (B), and short carbon fibers (A) are two-dimensional network carbon fibers.
  • the three-dimensional structure joined by (C) had a laminated and integrated structure. Further, the damage to the polymer electrolyte membrane when incorporated in the fuel cell was also small. The above evaluation results are shown in Table 2.
  • Example 12 As in Example 1, except that polyacrylonitrile pulp (b′-1) in which a large number of fibrils having a diameter of 3 ⁇ m or less were branched from the fibrous trunk was used as the fibrillar carbon precursor fiber (b ′). A porous electrode substrate was obtained. The polyacrylonitrile pulp (b′-1) was produced by spray coagulation. The obtained porous electrode base material has almost no in-plane shrinkage during the carbonization treatment, the sheet waviness is as small as 2 mm or less, the surface smoothness is good, and the gas permeability, thickness, and penetration direction resistance are also good. Each was good.
  • the porous electrode substrate includes a three-dimensional structure in which short carbon fibers (A) are joined together by a three-dimensional network carbon fiber (B), and short carbon fibers (A) are two-dimensional network carbon fibers.
  • the three-dimensional structure joined by (C) had a laminated and integrated structure. Further, the damage to the polymer electrolyte membrane when incorporated in the fuel cell was also small. The above evaluation results are shown in Table 2.
  • Example 13 A porous electrode base material was obtained in the same manner as in Example 12 except that the three-dimensional entanglement treatment by the pressurized water jet was repeated twice from the same surface.
  • the obtained porous electrode base material has almost no in-plane shrinkage during the carbonization treatment, the sheet waviness is as small as 2 mm or less, the surface smoothness is good, and the gas permeability, thickness, and penetration direction resistance are also good. Each was good.
  • the porous electrode substrate includes a three-dimensional structure in which short carbon fibers (A) are joined together by a three-dimensional network carbon fiber (B), and short carbon fibers (A) are two-dimensional network carbon fibers.
  • the three-dimensional structure joined by (C) had a laminated and integrated structure. Further, the damage to the polymer electrolyte membrane when incorporated in the fuel cell was also small.
  • Table 2 The above evaluation results are shown in Table 2.
  • Example 14 A porous electrode substrate was obtained in the same manner as in Example 12 except that the three-dimensional entanglement treatment by the pressurized water jet was performed from the front surface and then the pressurized water jet was performed again from the back surface.
  • the obtained porous electrode base material has almost no in-plane shrinkage during the carbonization treatment, the sheet waviness is as small as 2 mm or less, the surface smoothness is good, and the gas permeability, thickness, and penetration direction resistance are also good. Each was good.
  • the porous electrode substrate includes a three-dimensional structure in which short carbon fibers (A) are joined together by a three-dimensional network carbon fiber (B), and short carbon fibers (A) are two-dimensional network carbon fibers.
  • the three-dimensional structure joined by (C) had a laminated and integrated structure. Further, the damage to the polymer electrolyte membrane when incorporated in the fuel cell was also small. The above evaluation results are shown in Table 2.
  • Example 15 Without using the fibrillar carbon precursor fiber (b ′), the mass ratio of the carbon short fiber (A) and the carbon fiber precursor short fiber (b) in the papermaking slurry was 50:50, A porous electrode substrate was obtained in the same manner as in Example 1.
  • the obtained porous electrode base material has almost no in-plane shrinkage during the carbonization treatment, the sheet waviness is as small as 2 mm or less, the surface smoothness is good, and the gas permeability, thickness, and penetration direction resistance are also good. Each was good.
  • the porous electrode substrate includes a three-dimensional structure in which short carbon fibers (A) are joined together by a three-dimensional network carbon fiber (B), and short carbon fibers (A) are two-dimensional network carbon fibers.
  • the three-dimensional structure joined by (C) had a laminated and integrated structure. Further, the damage to the polymer electrolyte membrane when incorporated in the fuel cell was also small.
  • Table 2 The above evaluation results are shown in Table 2.
  • Example 16 Without using the carbon fiber precursor short fiber (b), except that the mass ratio of the carbon short fiber (A) and the fibrillar carbon precursor fiber (b ′) in the papermaking slurry was 50:50, A porous electrode substrate was obtained in the same manner as in Example 1.
  • the obtained porous electrode base material has almost no in-plane shrinkage during the carbonization treatment, the sheet waviness is as small as 2 mm or less, the surface smoothness is good, and the gas permeability, thickness, and penetration direction resistance are also good. Each was good.
  • the porous electrode substrate includes a three-dimensional structure in which short carbon fibers (A) are joined together by a three-dimensional network carbon fiber (B), and short carbon fibers (A) are two-dimensional network carbon fibers.
  • the three-dimensional structure joined by (C) had a laminated and integrated structure. Further, the damage to the polymer electrolyte membrane when incorporated in the fuel cell was also small.
  • Table 2 The above evaluation results are shown in Table 2.
  • Example 17 As in Example 16, except that polyacrylonitrile pulp (b′-1) in which a large number of fibrils having a diameter of 3 ⁇ m or less were branched from the fibrous trunk was used as the fibrillar carbon precursor fiber (b ′). A porous electrode substrate was obtained. The polyacrylonitrile pulp (b′-1) was produced by spray coagulation. The obtained porous electrode base material has almost no in-plane shrinkage during the carbonization treatment, the sheet waviness is as small as 2 mm or less, the surface smoothness is good, and the gas permeability, thickness, and penetration direction resistance are also good. Each was good.
  • the porous electrode substrate includes a three-dimensional structure in which short carbon fibers (A) are joined together by a three-dimensional network carbon fiber (B), and short carbon fibers (A) are two-dimensional network carbon fibers.
  • the three-dimensional structure joined by (C) had a laminated and integrated structure. Further, the damage to the polymer electrolyte membrane when incorporated in the fuel cell was also small. The above evaluation results are shown in Table 2.
  • Example 18 Prior to carbonization treatment, both surfaces of the porous electrode base material precursor sheet X-4 that has been heat-pressed are sandwiched between stainless punching plates coated with a silicone release agent, and then in the atmosphere using a batch press device.
  • a porous electrode substrate was obtained in the same manner as in Example 1 except that the oxidation treatment was performed at 280 ° C. and 0.5 MPa for 1 minute.
  • the obtained porous electrode base material has almost no in-plane shrinkage during the carbonization treatment, the sheet waviness is as small as 2 mm or less, the surface smoothness is good, and the gas permeability, thickness, and penetration direction resistance are also good. Each was good.
  • the porous electrode substrate includes a three-dimensional structure in which short carbon fibers (A) are joined together by a three-dimensional network carbon fiber (B), and short carbon fibers (A) are two-dimensional network carbon fibers.
  • the three-dimensional structure joined by (C) had a laminated and integrated structure. Further, the damage to the polymer electrolyte membrane when incorporated in the fuel cell was also small. The above evaluation results are shown in Table 2.
  • Example 19 A porous electrode substrate was obtained in the same manner as in Example 1 except that heating and pressing were not performed.
  • the obtained porous electrode base material has almost no in-plane shrinkage during the carbonization treatment, the sheet waviness is as small as 2 mm or less, the surface smoothness is good, and the gas permeability, thickness, and penetration direction resistance are also good. Each was good.
  • the porous electrode substrate includes a three-dimensional structure in which short carbon fibers (A) are joined together by a three-dimensional network carbon fiber (B), and short carbon fibers (A) are two-dimensional network carbon fibers.
  • the three-dimensional structure joined by (C) had a laminated and integrated structure. Further, the damage to the polymer electrolyte membrane when incorporated in the fuel cell was also small.
  • Table 2 The above evaluation results are shown in Table 2.
  • Example 20 The mass ratio of carbon short fibers (A), carbon fiber precursor short fibers (b), and fibrillar carbon precursor fibers (b ′) in the papermaking slurry is 20:30:50 and has a three-dimensional entangled structure.
  • the target weights of the precursor sheet X-2, the precursor sheet X-3 having no three-dimensional entangled structure, and the porous electrode substrate precursor sheet X-4 obtained by stacking and integrating these are 45 g / m 2 and 45 g, respectively.
  • a porous electrode substrate was obtained in the same manner as in Example 1 except that it was set to / m 2 and 90 g / m 2 .
  • the resulting porous electrode substrate had an appearance in which wrinkles were formed by in-plane shrinkage during the carbonization treatment, but the swell was as small as 3 mm, the surface smoothness was good, the gas permeability, Thickness and penetration direction resistance were good respectively.
  • the porous electrode substrate includes a three-dimensional structure in which short carbon fibers (A) are joined together by a three-dimensional network carbon fiber (B), and short carbon fibers (A) are two-dimensional network carbon fibers.
  • the three-dimensional structure joined by (C) had a laminated and integrated structure. Further, the damage to the polymer electrolyte membrane when incorporated in the fuel cell was also small. The above evaluation results are shown in Table 2.
  • Example 21 The mass ratio of carbon short fibers (A), carbon fiber precursor short fibers (b), and fibrillar carbon precursor fibers (b ′) in the papermaking slurry is 80:10:10 and has a three-dimensional entangled structure.
  • the target weights of the precursor sheet X-2, the precursor sheet X-3 having no three-dimensional entangled structure, and the porous electrode substrate precursor sheet X-4 obtained by laminating and integrating these are 30 g / m 2 and 30 g, respectively.
  • a porous electrode substrate was obtained in the same manner as in Example 1 except that it was set to / m 2 and 60 g / m 2 .
  • the resulting porous electrode substrate had an appearance in which wrinkles were formed by in-plane shrinkage during the carbonization treatment, but the swell was as small as 3 mm, the surface smoothness was good, the gas permeability, Thickness and penetration direction resistance were good respectively.
  • the porous electrode substrate includes a three-dimensional structure in which short carbon fibers (A) are joined together by a three-dimensional network carbon fiber (B), and short carbon fibers (A) are two-dimensional network carbon fibers.
  • the three-dimensional structure joined by (C) had a laminated and integrated structure. Further, the damage to the polymer electrolyte membrane when incorporated in the fuel cell was also small. The above evaluation results are shown in Table 2.
  • Example 22 A precursor sheet X-2 having a three-dimensional entangled structure and a precursor sheet X-3 not having a three-dimensional entangled structure are separately manufactured, dried, and then superposed on each other at 180 ° C. in a batch press apparatus.
  • a porous electrode base material was obtained in the same manner as in Example 1 except that a laminated sheet integrated precursor sheet was produced by heating and pressing under a condition of 3 MPa for 3 minutes.
  • the precursor sheet X-3 was produced in the same manner as the production method of X-1 in Example 1.
  • the resulting porous electrode substrate has an appearance in which wrinkles are formed by in-plane shrinkage during the carbonization treatment, the swell is as small as 2 mm or less, the surface smoothness is also good, the gas permeability, thickness, The penetration direction resistance was good.
  • the porous electrode substrate includes a three-dimensional structure in which short carbon fibers (A) are joined together by a three-dimensional network carbon fiber (B), and short carbon fibers (A) are two-dimensional network carbon fibers.
  • the three-dimensional structure joined by (C) had a laminated and integrated structure. Further, the damage to the polymer electrolyte membrane when incorporated in the fuel cell was also small.
  • Table 2 The above evaluation results are shown in Table 2.
  • Example 23 Polyvinyl alcohol (PVA) short fibers (manufactured by Kuraray Co., Ltd.) having an average fiber length of 3 mm instead of the disaggregation slurries Sb and Sb ′ of the carbon fiber precursor short fibers (b) and the fibrillar carbon precursor fibers (b ′) , Trade name: VBP105-1) was used in the same manner as the disaggregation slurry Sb. And mass ratio of the short carbon fiber (A) and the polyvinyl alcohol (PVA) short fiber in the papermaking slurry was set to 80:20. Otherwise in the same manner as in Example 5, a porous electrode substrate precursor sheet X-4 was obtained.
  • PVA Polyvinyl alcohol
  • porous electrode base material precursor sheet X-4 and the phenol resin (trade name: phenotype) are prepared so that the mass ratio of the non-volatile content of the phenol resin is 50:50.
  • the porous electrode substrate precursor sheet X-4 impregnated with a phenol resin was obtained by impregnating a methanol solution of Wright J-325 (manufactured by Dainippon Ink and Chemicals) and thoroughly drying the methanol at room temperature. It was. Thereafter, heat and pressure molding and carbonization treatment were performed under the same conditions as in Example 1 to obtain a porous electrode substrate.
  • the obtained porous electrode base material has almost no in-plane shrinkage during the carbonization treatment, the sheet waviness is as small as 2 mm or less, the surface smoothness is good, and the gas permeability, thickness, and penetration direction resistance are also good. Each was good.
  • the porous electrode base material has a three-dimensional structure having an entangled structure in which carbon short fibers (A) are bonded to each other by carbon (D), and carbon short fibers (A) are bonded to each other by carbon (D).
  • the three-dimensional structure having no entangled structure was laminated and integrated. Further, the damage to the polymer electrolyte membrane when incorporated in the fuel cell was also small. The above evaluation results are shown in Table 2.
  • Example 24 [Production of membrane-electrode assembly (MEA)] Using the two porous electrode substrates obtained in Example 1 as the cathode and anode porous carbon electrode substrates, the above-mentioned OCV measurement method (polymer electrolyte membrane when incorporated in a fuel cell) MEA was obtained in the same manner as described in the method for evaluating damage to
  • the fuel cell characteristics were evaluated by measuring the current density-voltage characteristics of this single cell. Hydrogen gas was used as the fuel gas, and air was used as the oxidizing gas. The temperature of the single cell was 80 ° C., the fuel gas utilization rate was 60%, and the oxidizing gas utilization rate was 40%. Further, the humidification of the fuel gas and the oxidizing gas was performed by passing the fuel gas and the oxidizing gas through an 80 ° C. bubbler, respectively. As a result, when the current density was 0.8 A / cm 2 , the cell voltage of the fuel cell was 0.644 V, the internal resistance of the cell was 2.9 m ⁇ , and good characteristics were exhibited.
  • Example 1 A porous electrode substrate was obtained in the same manner as in Example 1 except that the three-dimensional entanglement treatment by the pressurized water jet was not performed. That is, the precursor sheet X-3 was formed on the precursor sheet X-1, but none of them has a three-dimensional entanglement structure. ”Column.
  • the obtained porous electrode base material has almost no in-plane shrinkage during the carbonization treatment, the sheet waviness is as small as 2 mm or less, the surface smoothness is good, and the gas permeability, thickness, and penetration direction resistance are also good. Although each was satisfactory, the hand linkability of the porous electrode substrate precursor sheet X-4 was greatly reduced. Further, the porous electrode base material has a structure in which the three-dimensional network carbon fibers (B) are not observed and the carbon short fibers (A) are joined together by the two-dimensional network carbon fibers (C). It was. Moreover, the damage to the polymer electrolyte membrane when incorporated in the fuel cell was small. The above evaluation results are shown in Table 2.
  • Example 2 (Comparative Example 2) After the precursor sheet X-2 having a three-dimensional entangled structure and the precursor sheet X-3 not having a three-dimensional entangled structure are laminated and integrated, the entanglement process by pressurized water flow injection similar to that in Example 1 is further performed. Thus, a porous electrode substrate was obtained in the same manner as in Example 1 except that the porous electrode substrate precursor sheet X-4 was obtained. That is, since the precursor sheet X-3 has a two-dimensional entanglement structure in addition to the precursor sheet X-2, the target weights of both are totaled in the “X-2 basis weight” column in Table 2. It was shown to.
  • the obtained porous electrode base material has almost no in-plane shrinkage during the carbonization treatment, the sheet waviness is as small as 2 mm or less, the surface smoothness is good, and the gas permeability, thickness, and penetration direction resistance are also good. Each was good.
  • the porous electrode base material has a structure in which the two-dimensional network carbon fibers (C) are not observed and the carbon short fibers (A) are joined together by the three-dimensional network carbon fibers (B). It was. However, the OCV of a single cell using this porous electrode substrate was as low as 0.883 V, and the polymer electrolyte membrane was greatly damaged when incorporated in a fuel cell. The above evaluation results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 ハンドリング性、表面平滑性に優れ、十分なガス透気度および導電性を持ち、燃料電池に組み込んだ際の高分子電解質膜へのダメージを低減できる多孔質電極基材およびその製造方法を提供する。炭素短繊維が炭素によって接合されてなる3次元構造体Y-1と、炭素短繊維が炭素によって接合されてなる3次元構造体Y-2とが積層一体化された多孔質電極基材であって、Y-1中で炭素短繊維は3次元交絡構造を形成しており、Y-2中で炭素短繊維は3次元交絡構造を形成していない。この電極基材の製造方法。この電極基材を得るための前駆体シート。この電極基材を含む膜-電極接合体および固体高分子型燃料電池。

Description

多孔質電極基材、その製造方法、多孔質電極基材前駆体シート、膜-電極接合体、および固体高分子型燃料電池
 本発明は、固体高分子型燃料電池に用いられる多孔質電極基材およびその製造方法に関する。
 固体高分子型燃料電池は、プロトン伝導性の高分子電解質膜を用いることを特徴としており、水素等の燃料ガスと酸素等の酸化ガスを電気化学的に反応させることにより起電力を得る装置である。このような固体高分子型燃料電池は、貴金属系触媒を担持したカーボン粉末を主成分とする触媒層とガス拡散電極基材とを有する2組のガス拡散電極が、その各触媒層側を内側にして、高分子電解質膜の両面に接合された構造を有する。
 ガス拡散電極基材は、一般的に、炭素質材料から構成されており、例えば以下に示すガス拡散電極基材が知られている。
特許文献1:厚みが0.05~0.5mmで嵩密度が0.3~0.8g/cmであり、かつ、歪み速度10mm/min、支点間距離2cmおよび試験片幅1cmの条件での3点曲げ試験において、曲げ強度が10MPa以上でかつ曲げの際のたわみが1.5mm以上であることを特徴とする燃料電池用多孔質炭素電極基材。
特許文献2:複数の炭素繊維を含んで成るマット;および該炭素繊維マットに組み込まれた複数のアクリルパルプ繊維を含んでなり、該アクリルパルプ繊維は、炭素繊維マットに組み込まれた後に硬化され炭化される燃料電池用ガス拡散層。
特許文献3:厚さ0.15~1.0mm、嵩密度0.15~0.45g/cm、炭素繊維含有率95質量%以上、圧縮変形率10~35%、電気抵抗値6mΩ以下、風合度5~70gの炭素繊維シート。
特許文献4:厚さが0.15~0.60mm、目付が50~150g/m、厚さ方向の比抵抗値が0.20Ωcm以下、表面ケバ数が15ヶ/mm以下である高分子電解質型燃料電池電極材用炭素繊維不織布。
国際公開第2001/056103号パンフレット 特開2007-273466号公報 国際公開第2002/042534号パンフレット 特開2003-45443号公報
 しかし、特許文献1に開示されている多孔質炭素電極基材は、機械的強度および表面平滑性が高く、十分なガス透気度および導電性を有しているが、製造コストが高い。特許文献2に開示されている燃料電池用ガス拡散層は、低コストでの製造は可能であるが、シート化する際の炭素繊維とアクリルパルプの絡みが少なく、ハンドリングが困難なることがあった。また、アクリルパルプは繊維状材料と比較してポリマーの分子配向が小さいため、炭素化時の炭素化率が低く、ハンドリング性を高めるためには、多くのアクリルパルプを添加する必要があった。特許文献3および4に開示されている炭素繊維シート及び炭素繊維不織布は、低コストでの製造は可能であるが、焼成時の収縮が大きく、得られるシート等のうねり(シート断面が波打った状態または反った状態)が大きいことがあった。さらに繊維交絡によりハンドリング性を改善させているため、シート表面が炭素繊維によって毛羽立ち、シートを燃料電池に組み込んだ際に高分子電解質膜へダメージを与えることがあった。
 本発明は、ハンドリング性に優れ、シートのうねりが改善され、且つ十分なガス透気度および導電性を持ち、さらに燃料電池に組み込んだ際、高分子電解質膜へダメージを与えることのない多孔質電極基材およびその製造方法を提供することを目的とする。
 また本発明は、上記多孔質電極基材を得るために好適に用いることのできる多孔質電極基材前駆体シート、ならびに、上記多孔質電極基材を用いた膜-電極接合体および固体高分子型燃料電池を提供することを目的とする。
 本発明により、以下の発明〔1〕~〔12〕が提供される。
 〔1〕炭素短繊維(A1)が炭素(D)によって接合されてなる3次元構造体Y-1と、
炭素短繊維(A2)が炭素(D)によって接合されてなる3次元構造体Y-2と
が積層一体化された多孔質電極基材であって、
3次元構造体Y-1中で炭素短繊維(A1)は3次元交絡構造を形成しており、
3次元構造体Y-2中で炭素短繊維(A2)は3次元交絡構造を形成していない
多孔質電極基材。
 〔2〕3次元構造体Y-1が、炭素短繊維(A1)同士が3次元網目状炭素繊維(B)によって接合された3次元構造体であり、
3次元構造体Y-2が、炭素短繊維(A2)同士が2次元網目状炭素繊維(C)によって接合された3次元構造体である
前記〔1〕に記載の多孔質電極基材。
 〔3〕炭素短繊維(A1)と、炭素繊維前駆体短繊維(b1)および/またはフィブリル状炭素前駆体繊維(b1’)とを分散させた前駆体シートX-2’と、
炭素短繊維(A2)と、炭素繊維前駆体短繊維(b2)および/またはフィブリル状炭素前駆体繊維(b2’)とを分散させた前駆体シートX-3’と
が積層一体化された多孔質電極基材前駆体シートであって、
前駆体シートX-2’中で炭素短繊維(A1)は3次元交絡構造を形成しており、
前駆体シートX-3’中で炭素短繊維(A2)は3次元交絡構造を形成していない
ことを特徴とする多孔質電極基材前駆体シート。
 〔4〕前記炭素短繊維(A1)の量と、前記炭素繊維前駆体短繊維(b1)および前記フィブリル状炭素前駆体繊維(b1’)の合計量との質量比が、20:80~80:20であり、
前記炭素短繊維(A2)の量と、前記炭素繊維前駆体短繊維(b2)および前記フィブリル状炭素前駆体繊維(b2’)の合計量との質量比が、20:80~80:20である
前記〔3〕に記載の多孔質電極基材前駆体シート。
 〔5〕炭素短繊維(A1)を分散させ、炭素短繊維(A1)の3次元交絡構造を持たない前駆体シートX-1を製造する工程(1)と、
前記前駆体シートX-1を交絡処理することにより、炭素短繊維(A1)の3次元交絡構造を持つ前駆体シートX-2を得る工程(2)と、
前記前駆体シートX-2上に、炭素短繊維(A2)を分散させ、炭素短繊維(A2)の3次元交絡構造を持たない前駆体シートX-3を積層一体化することにより、多孔質電極基材前駆体シートX-4を得る工程(3)と、
前記多孔質電極基材前駆体シートX-4を1000℃以上の温度で炭素化処理する工程(4)と
を有する多孔質電極基材の製造方法。
 〔6〕工程(3)において、前駆体シートX-2上に、炭素短繊維(A2)を液体の媒体中に分散させたスラリーを供給し、抄造することにより、炭素短繊維(A1)の3次元交絡構造を持つ前駆体シートX-2と、炭素短繊維(A2)の3次元交絡構造を持たない前駆体シートX-3を積層一体化させる前記〔5〕に記載の多孔質電極基材の製造方法。
 〔7〕工程(1)において、炭素短繊維(A1)と共に炭素繊維前駆体短繊維(b1)および/またはフィブリル状炭素前駆体繊維(b1’)を分散させ、工程(3)において炭素短繊維(A2)と共に炭素繊維前駆体短繊維(b2)および/またはフィブリル状炭素前駆体繊維(b2’)を分散させることを特徴とする前記〔5〕または〔6〕に記載の多孔質電極基材の製造方法。
 〔8〕前記工程(3)の後で前記工程(4)の前に、前記多孔質電極基材前駆体シートX-4を200℃未満の温度で加熱加圧成型する工程(5)をさらに有する前記〔5〕~〔7〕のいずれかに記載の多孔質電極基材の製造方法。
 〔9〕前記工程(5)の後で前記工程(4)の前に、加熱加圧成型した前記多孔質電極基材前駆体シートX-4を200℃以上300℃未満の温度で酸化処理する工程(6)をさらに有する前記〔8〕に記載の多孔質電極基材の製造方法。
 〔10〕前記〔5〕~〔9〕のいずれかに記載の方法により得られる多孔質電極基材。
 〔11〕前記〔1〕、〔2〕または〔10〕に記載の多孔質電極基材を含む膜-電極接合体。
 〔12〕前記〔11〕に記載の膜-電極接合体を含む固体高分子型燃料電池。
 本発明によれば、ハンドリング性に優れ、シートのうねりが改善され、且つ十分なガス透気度および導電性を持ち、さらに燃料電池に組み込んだ際、高分子電解質膜へダメージを与えることのない多孔質電極基材およびその製造方法が提供される。
 また本発明によれば、上記多孔質電極基材を得るために好適に用いることのできる多孔質電極基材前駆体シート、ならびに、上記多孔質電極基材を用いた膜-電極接合体および固体高分子型燃料電池が提供される。
実施例1で得られた多孔質電極基材の3次元交絡構造を持つ3次元構造体の断面の走査型電子顕微鏡写真である。 実施例1で得られた多孔質電極基材の3次元交絡構造を持たない3次元構造体の断面の走査型電子顕微鏡写真である。 (a)は実施例1で得られた多孔質電極基材の観察面(A面)を説明する図であり、(b)はA面の走査型電子顕微鏡写真である。 (a)は実施例1で得られた多孔質電極基材の観察面(B面)を説明する図であり、(b)はB面の走査型電子顕微鏡写真である。 炭素短繊維と水平面との角度を測定するために、図1に示した走査型電子顕微鏡写真に、測定する炭素繊維に点線にて直線を引いた図である。 炭素短繊維と水平面との角度を測定するために、図2に示した走査型電子顕微鏡写真に、測定する炭素繊維に点線にて直線を引いた図である。 炭素短繊維(A1)同士が3次元網目状炭素繊維(B)によって接合された3次元構造体の模式図である。 炭素短繊維(A2)同士が2次元網目状炭素繊維(C)によって接合された、3次元交絡構造を持たない3次元構造体の模式図である。
 <多孔質電極基材>
 本発明の多孔質電極基材は、炭素短繊維(A1)が炭素(D)によって接合されてなる3次元構造体Y-1と、炭素短繊維(A2)が炭素(D)によって接合されてなる3次元構造体Y-2とが積層一体化された構造体からなる。3次元構造体Y-1中で炭素短繊維(A1)は3次元交絡構造を形成している。3次元構造体Y-2中で炭素短繊維(A2)は3次元交絡構造を形成していない。なお、炭素短繊維(A1)および炭素短繊維(A2)(以下、まとめて「炭素短繊維(A)」と称することがある。)は、同一でもよく、異なっていてもよい。
 3次元構造体Y-1は、炭素短繊維(A1)が炭素(D)によって接合されてなる3次元構造体であって、構造体Y-1を構成する炭素短繊維(A1)が、構造体Y-1の中で3次元交絡している構造体である。
 また3次元構造体Y-2は、炭素短繊維(A2)が炭素(D)によって接合されてなる3次元構造体であって、構造体Y-2を構成する炭素短繊維(A2)が、構造体Y-2の中で3次元交絡していない構造体である。
 3次元構造体Y-1は、炭素短繊維(A1)同士が3次元網目状炭素繊維(B)によって接合された3次元構造体であってもよく、3次元構造体Y-2は、炭素短繊維(A2)同士が2次元網目状炭素繊維(C)によって接合された3次元構造体であってもよい。
 3次元構造体Y-1と3次元構造体Y-2とが積層一体化された多孔質電極基材は、シート状、渦巻き状等の形状をとることができる。シート状にした場合、多孔質電極基材の目付は15~100g/m程度が好ましく、空隙率は50~90%程度が好ましく、厚みは50~300μm程度が好ましく、うねりは5mm以下が好ましい。多孔質電極基材のガス透気度は、50~3000ml/hr/cm/Paであることが好ましい。また、多孔質電極基材の厚さ方向の電気抵抗(貫通方向抵抗)は、50mΩ・cm以下であることが好ましい。なお、多孔質電極基材のガス透気度および貫通方向抵抗の測定方法は後述する。
 多孔質電極基材における3次元網目状炭素繊維(B)と2次元網目状炭素繊維(C)の合計含有率は、多孔質電極基材の機械的強度の観点から、5~90質量%であることが好ましく、10~60質量%であることがより好ましい。すなわち、多孔質電極基材における炭素短繊維(A)の含有率は、10~95質量%であることが好ましく、40~90質量%であることがより好ましい。
 <3次元交絡構造の有無>
 本発明において、炭素短繊維(A)が3次元交絡構造を形成しているか否かは、シート状の測定対象物(3次元構造体Y-1、3次元構造体Y-2、多孔質電極基材、前駆体シートX-2’、前駆体シートX-3’、多孔質電極基材前駆体シート、前駆体シートX-1、前駆体シートX-2、前駆体シートX-3)の断面観察を行い、断面における各炭素短繊維とシート面との角度を測定することにより判定できる。なお、断面観察を行う断面は、シート状の測定対象物のシート面に対して垂直方向の断面である。
 測定した炭素短繊維の水平面(シート面)との角度の平均が3°以上、または測定した炭素短繊維と水平面との角度の最大値が10°以上である場合は、炭素短繊維が3次元交絡構造を形成している(測定対象物が3次元交絡構造を持つ)と判定され、そうでない場合は炭素短繊維が3次元交絡構造を形成していない(測定対象物が3次元交絡構造を持たない)と判定される。具体的には、図5、図6のように、シート面に対して垂直方向の断面のSEM写真を用い、測定する炭素短繊維に点線で示すような線を引き、この線とシート面との角度を測定すればよい(図5、6における直線1はシート面と並行な線である。)。なお、角度の平均値および最大値を決める際の測定点数は例えば50点とすることができる。
 <炭素短繊維(A1)同士が3次元網目状炭素繊維(B)によって接合された3次元構造体>
 炭素短繊維(A1)同士が3次元網目状炭素繊維(B)によって接合された3次元構造体の模式図を図7に示す。この3次元構造体においては、炭素短繊維(A1)同士が、3次元網目状炭素繊維(B)を構成する各炭素繊維2によって接合されている。
 <炭素短繊維(A2)同士が2次元網目状炭素繊維(C)によって接合された3次元構造体>
 炭素短繊維(A2)同士が2次元網目状炭素繊維(C)によって接合された3次元構造体の模式図を図8に示す。この3次元構造体においては、炭素短繊維(A2)同士が、2次元網目状炭素繊維(C)を構成する各炭素繊維3によって接合されている。
<炭素短繊維を接合する網目状炭素繊維が2次元か3次元かの判断>
 炭素短繊維を接合する網目状炭素繊維が2次元か3次元かの判断は、シート状の測定対象物(3次元構造体Y-1、3次元構造体Y-2)の断面観察を行い、断面において、炭素短繊維を接合する網目状炭素繊維を構成する各炭素繊維(図7に示される炭素繊維2,図8に示される炭素繊維3)とシート面との角度を測定することにより判定できる。なお、断面観察を行う断面は、シート状の測定対象物のシート面に対して垂直方向の断面である。(以下「炭素短繊維を接合する網目状炭素繊維を構成する炭素繊維」を「網目構成炭素繊維」という。)
 測定した網目構成炭素繊維の水平面との角度の平均が3°以上である場合は3次元と判定され、一方、測定した網目構成炭素繊維の水平面との角度の平均が2°より小さい場合は2次元と判定される。具体的には、3次元交絡構造の有無の測定と同様に、シート面に対して垂直方向の断面のSEM写真を用い、測定する網目構成炭素繊維に図5,6における点線と同様の点線を引き、この線とシート面との角度を測定すればよい。なお、角度の平均値を決める際の測定点数は例えば50点とすることができる。
 <炭素短繊維(A)>
 炭素短繊維(A)としては、ポリアクリロニトリル系炭素繊維(以下「PAN系炭素繊維」という。)、ピッチ系炭素繊維、レーヨン系炭素繊維等の炭素繊維を適当な長さに切断したものが挙げられる。多孔質電極基材の機械的強度の観点から、PAN系炭素繊維が好ましい。炭素短繊維(A)の平均繊維長は、分散性の点から、2~12mm程度であることが好ましい。炭素短繊維(A)の平均繊維径は、炭素短繊維の分散性の面から、3~9μmであることが好ましく、多孔質電極基材の平滑性の面から、4~8μmであることがより好ましい。
 <炭素(D)>
 炭素(D)は、炭素短繊維(A)間を結着するために用いられ、炭素(D)として炭化物を用いることができる。炭化物として、高分子化合物を加熱によって炭素化して得られる炭素材を用いることができる。炭素(D)の形状は特に限定されない。後述する炭素短繊維(A)間を網目状の形状を持つ炭素で結着してもよく、炭素短繊維(A)間を炭化した樹脂で結着してもよく、さらにこれらの組合せを用いることもできる。また、炭素(D)が炭化した樹脂である場合は、その原料として加熱によって炭素化可能な樹脂(f)を用いることができる。
 この加熱によって炭素化可能な樹脂(f)としては、炭素化した段階で炭素短繊維(A)間を結着することのできる公知の樹脂から適宜選んで用いることができる。炭素化後に導電性物質として残存しやすいという観点から、樹脂(f)としてはフェノール樹脂、エポキシ樹脂、フラン樹脂、ピッチ等が好ましく、加熱による炭素化の際の炭化率の高いフェノール樹脂が特に好ましい。前記フェノール樹脂としては、アルカリ触媒存在下においてフェノール類とアルデヒド類の反応によって得られるレゾールタイプフェノール樹脂を用いることができる。また、レゾールタイプの流動性フェノール樹脂に、公知の方法によって酸性触媒下においてフェノール類とアルデヒド類の反応によって生成する、固体の熱融着性を示すノボラックタイプのフェノール樹脂を溶解混入させることもできるが、この場合は硬化剤、例えばヘキサメチレンジアミンを含有した、自己架橋タイプのものが好ましい。フェノール樹脂としては、アルコールやケトン類の溶媒に溶解したフェノール樹脂溶液や、水などの分散媒に分散したフェノール樹脂分散液などを用いることができる。
 <3次元網目状炭素繊維(B)>
 3次元網目状炭素繊維(B)は、炭素短繊維(A)同士を接合する繊維であり、接合部において屈曲状または湾曲状になっている状態で存在することによって、3次元的な網目構造を形成することができる。
 <2次元網目状炭素繊維(C)>
 2次元網目状炭素繊維(C)は、炭素短繊維(A)同士を接合する繊維であり、接合部において屈曲状または湾曲状になっている状態で存在し、2次元平面内において形成した網目構造を形成することができる。
 <多孔質電極基材の製造方法>
 本発明の多孔質電極基材は、例えば、次のような方法により製造することができる。
 第1の製法は、
炭素短繊維(A1)を分散させた、3次元交絡構造を持たない前駆体シートX-1を製造する工程(1)と、
前記前駆体シートX-1を交絡処理して、3次元交絡構造を持つ前駆体シートX-2を得る工程(2)と、
前記前駆体シートX-2上に、炭素短繊維(A2)を分散させた、3次元交絡構造を持たない前駆体シートX-3を積層一体化して、多孔質電極基材前駆体シートX-4を得る工程(3)と、
前記多孔質電極基材前駆体シートX-4を1000℃以上の温度で炭素化処理する工程(4)と
を順次行う方法である。
 この製法によって、炭素短繊維(A1)が炭素(D)によって接合され、3次元交絡構造を持つ3次元構造体Y-1と、炭素短繊維(A2)が炭素(D)によって接合され、3次元交絡構造を持たない3次元構造体Y-2とが積層一体化された多孔質電極基材を得ることができる。
 この製法においては、工程(1)において炭素短繊維(A1)と共に炭素繊維前駆体短繊維(b1)および/またはフィブリル状炭素前駆体繊維(b1’)を分散させること、また、工程(3)において炭素短繊維(A2)と共に炭素繊維前駆体短繊維(b2)および/またはフィブリル状炭素前駆体繊維(b2’)を分散させることが好ましい。なお、上記に変えて、工程(4)より前に加熱によって炭素化可能な樹脂(f)に含浸させてもよいし、上記に加えて、工程(4)より前に加熱によって炭素化可能な樹脂(f)に含浸させてもよい。これら繊維(b1)(b1’)(b2)および(b2’)、ならびに樹脂(f)は、炭素化処理を経た後に、多孔質電極基材において炭素(D)として機能することが可能である。
 第2の製法は、上記第1の製法における工程(3)の後で工程(4)の前に、多孔質電極基材前駆体シートX-4を200℃未満の温度で加熱加圧成型する工程(5)をさらに行う方法である。
 第3の製法は、上記第2の製法における工程(5)の後で工程(4)の前に、加熱加圧成型した多孔質電極基材前駆体シートX-4を200℃以上300℃未満の温度で酸化処理する工程(6)をさらに行う方法である。
 なお上記の製法において、工程(1)で炭素短繊維(A1)と共に炭素繊維前駆体短繊維(b1)および/またはフィブリル状炭素前駆体繊維(b1’)を分散させること、また、工程(3)において炭素短繊維(A2)と共に炭素繊維前駆体短繊維(b2)および/またはフィブリル状炭素前駆体繊維(b2’)を分散させることが好ましい。こうして、炭素短繊維(A1)と炭素繊維前駆体短繊維(b1)および/またはフィブリル状炭素前駆体繊維(b1’)とを分散させた、3次元交絡構造を持つ前駆体シートX-2’を工程(1)において得ることができ、また、炭素短繊維(A2)と炭素繊維前駆体短繊維(b2)および/またはフィブリル状炭素前駆体繊維(b2’)とを分散させた、3次元交絡構造を持たない前駆体シートX-3’を工程(3)において得ることができる。なお、前駆体シートX-2’は工程(2)において交絡処理されるため、3次元交絡構造を持つ。
 なお、炭素繊維前駆体短繊維(b1)および炭素繊維前駆体短繊維(b2)(以下、まとめて「炭素繊維前駆体短繊維(b)」と称することがある。)は、同一でもよく、異なっていてもよい。また、フィブリル状炭素前駆体繊維(b1’)およびフィブリル状炭素前駆体繊維(b2’)(以下、まとめて「フィブリル状炭素前駆体繊維(b’)」と称することがある。)は、同一でもよく、異なっていてもよい。
 <樹脂含浸>
 炭素(D)が炭化した樹脂である場合は、加熱によって炭素化可能な樹脂(f)を多孔質電極基材前駆体シートX-4に含浸し、その後、加熱加圧により硬化し、次いで炭素化することにより多孔質電極基材とすることができる。
 炭素化可能な樹脂(f)を前駆体シートに含浸する方法としては、絞り装置を用いる方法もしくは樹脂フィルムを前駆体シートに重ねる方法が好ましい。絞り装置を用いる方法は樹脂溶液に前駆体シートを含浸し、絞り装置で取り込み液が炭素シート全体に均一に塗布されるようにし、液量は絞り装置のロール間隔を変えることで調節する方法である。比較的粘度が低い場合はスプレー法等も用いることができる。
 樹脂フィルムを用いる方法は、まず炭素化可能な樹脂(f)を離型紙に一旦コーティングし、炭素化可能な樹脂(f)フィルムとする。その後、前駆体シートに前記フィルムを積層して加熱加圧処理を行い、炭素化可能な樹脂(f)を転写する方法である。
 <炭素繊維前駆体短繊維(b)>
 炭素繊維前駆体短繊維(b)は、長繊維状の炭素繊維前駆体繊維を適当な長さにカットして得ることができる。炭素繊維前駆体短繊維(b)の繊維長は、分散性の点から、2~20mm程度が好ましい。炭素繊維前駆体短繊維(b)の断面形状は特に限定されないが、炭素化した後の機械的強度、製造コストの面から、真円度の高いものが好ましい。また、炭素繊維前駆体短繊維(b)の直径は、炭素化時の収縮による破断を抑制するため、5μm以下であることが好ましい。
 炭素繊維前駆体短繊維(b)の材料としてポリマーを用いることができ、炭素化処理する工程における残存質量が20質量%以上であるポリマーを用いることが好ましい。このようなポリマーとしては、アクリル系ポリマー、セルロース系ポリマー、フェノール系ポリマーが挙げられる。紡糸性および低温から高温にかけて炭素短繊維(A)同士を接合させることができ、炭素化時の残存質量が大きい点、さらに、後述する交絡処理を行う際の繊維弾性、繊維強度を考慮すると、アクリロニトリル単位を50質量%以上含有するアクリル系ポリマーを用いることが好ましい。
 炭素繊維前駆体短繊維(b)は、1種類を単独で用いてもよく、繊維直径、ポリマー種が異なるものを複数種類併用してもよい。これらの炭素繊維前駆体短繊維(b)や後述するフィブリル状炭素前駆体繊維(b’)の種類や炭素短繊維(A)との混合比、200℃以上300℃以下での酸化処理(工程(6))の有無によって、最終的に得られる多孔質電極基材中に3次元網目状炭素繊維(B)もしくは2次元網目状炭素繊維(C)として残る割合が異なる。
 <フィブリル状炭素前駆体繊維(b’)>
 フィブリル状炭素前駆体繊維(b’)としては、例えば、
直径0.1~10μm程度の繊維状の幹から直径が数μm以下(例えば0.1~3μm)のフィブリルが多数分岐した構造を有する炭素前駆体繊維(b’-1)(以下単に「繊維(b’-1)」という場合がある。)や、
叩解によってフィブリル化する炭素前駆体短繊維(b’-2)(以下単に「繊維(b’-2)」という場合がある。)を叩解処理した繊維
が挙げられる。
 このフィブリル状炭素前駆体繊維(b’)を用いることにより、前駆体シート中で炭素短繊維(A)とフィブリル状炭素前駆体繊維(b’)が良く絡み合い、ハンドリング性と機械的強度の優れた前駆体シートを得ることが容易となる。フィブリル状炭素前駆体繊維(b’)の濾水度は特に限定されないが、一般的に、濾水度が小さいフィブリル状繊維を用いると前駆体シートの機械的強度が向上するが、多孔質電極基材のガス透気度が低下する傾向がある。
 フィブリル状炭素前駆体繊維(b’)としては、繊維(b’-1)1種類、または繊維(b’-2)を叩解処理したもの1種類を使用してもよく、また濾水度、繊維直径、ポリマー種等が異なるこれら繊維の複数種類を併用してもよい。つまり、繊維(b’-1)を二種類以上併用することができ、繊維(b’-2)を叩解処理した繊維を二種類以上併用することができ、あるいは、繊維(b’-1)を一種類以上と繊維(b’-2)を叩解処理した繊維を一種類以上とを併用することができる。
 繊維(b’-1)に用いられるポリマーは、炭素化処理工程における残存質量が20質量%以上であることが好ましい。このようなポリマーとしては、アクリル系ポリマー、セルロース系ポリマー、フェノール系ポリマーを挙げることができる。紡糸性および低温から高温にかけて炭素短繊維(A)同士を接合させることができ、炭素化時の残存質量が大きい点、さらに、炭素短繊維(A)との交絡、シート強度を考慮すると、アクリロニトリル単位を50質量%以上含有するアクリル系ポリマーを用いることが好ましい。繊維(b’-1)の製造方法は特に限定されないが、濾水度のコントロールが容易な噴射凝固法を用いて製造することが好ましい。
 繊維(b’-1)の平均繊維長は、1~20mmであることが好ましい。
 繊維(b’-2)として、長繊維状の易割繊性海島複合繊維を適当な長さにカットした繊維を用いることができる。このような繊維をリファイナーやパルパーなどによって叩解しフィブリル化することができる。繊維(b’-2)は、共通の溶剤に溶解し、かつ非相溶性である2種類以上の異種ポリマーを用いて製造することができ、その場合、少なくとも1種類のポリマーが、炭素化処理工程における残存質量20質量%以上であることが好ましい。易割繊性海島複合繊維に用いられるポリマーのうち、炭素化処理工程における残存質量が20質量%以上であるものとしては、アクリル系ポリマー、セルロース系ポリマー、フェノール系ポリマーが挙げられる。中でも、紡糸性および炭素化処理工程における残存質量の観点から、アクリロニトリル単位を50質量%以上含有するアクリル系ポリマーを用いることが好ましい。
 繊維(b)および繊維(b’)に用いることできるアクリル系ポリマーとしては、アクリロニトリルの単独重合体であっても、アクリロニトリルとその他のモノマーとの共重合体であってもよい。アクリロニトリルと共重合されるモノマーとしては、一般的なアクリル系繊維を構成する不飽和モノマーであれば特に限定されないが、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸2-エチルヘキシル、アクリル酸2-ヒドロキシエチル、アクリル酸ヒドロキシプロピルなどに代表されるアクリル酸エステル類;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸t-ブチル、メタクリル酸n-ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ラウリル、メタクリル酸2-ヒドロキシエチル、メタクリル酸ヒドロキシプロピル、メタクリル酸ジエチルアミノエチルなどに代表されるメタクリル酸エステル類;アクリル酸、メタクリル酸、マレイン酸、イタコン酸、アクリルアミド、N-メチロールアクリルアミド、ジアセトンアクリルアミド、スチレン、ビニルトルエン、酢酸ビニル、塩化ビニル、塩化ビニリデン、臭化ビニリデン、フッ化ビニル、フッ化ビニリデンなどが挙げられる。
 アクリル系ポリマーの重量平均分子量は、特に限定されないが、5万~100万であることが好ましい。アクリル系ポリマーの重量平均分子量が5万以上であることで、紡糸性が向上すると同時に、繊維の糸質が良好になる傾向にある。アクリル系ポリマーの重量平均分子量が100万以下であることで、紡糸原液の最適粘度を与えるポリマー濃度が高くなり、生産性が向上する傾向にある。
 繊維(b’-2)である易割繊性海島複合繊維に用いられるポリマーのうち、炭素化処理工程における残存質量が20質量%以上であるポリマーとして、上述するアクリル系ポリマーを用いた場合、他のポリマーとしては、そのアクリロニトリル系ポリマーと共通の溶剤に溶解し、両ポリマーを溶解した紡糸原液が安定に存在することが望まれる。すなわち、紡糸原液においては、2種のポリマーの非相溶性の度合いが大きい場合、繊維が不均質となるとともに、紡糸時における糸切れの原因となるため、繊維賦形できない場合がある。したがって、前記他のポリマーとしては、アクリロニトリル系ポリマーと共通の溶剤に溶解した場合に、アクリロニトリル系ポリマーに対して非相溶であるが、紡糸の際に海島構造を形成できる程度の混和性を持つポリマーが望ましい。また、湿式紡糸する場合、凝固槽、および洗浄槽において前記他のポリマーが水に溶解すると、脱落が起こり製造上不利になるため、前記他のポリマーは水に難溶性であることが好ましい。
 これらの要求を満足する前記他のポリマーとしては、例えば、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリビニルピロリドン、酢酸セルロース、アクリル樹脂、メタクリル樹脂、フェノール樹脂などが挙げられるが、酢酸セルロース、アクリル樹脂およびメタクリル樹脂は、前述要件のバランスの点で、好ましい。前記他のポリマーは、1種でもよく、2種以上でもよい。
 繊維(b’-2)として用いられる易割繊性海島複合繊維は、通常の湿式紡糸法で製造することができる。先ず、アクリロニトリル系ポリマーと他のポリマーとを溶剤に溶解して紡糸原液を調製する。または、アクリロニトリル系ポリマーを溶剤に溶解して得られる紡糸原液と、他のポリマーを溶剤に溶解して得られる紡糸原液とを、スタティックミキサー等で混合して紡糸原液としてもよい。溶剤としては、ジメチルアミド、ジメチルホルムアミド、ジメチルスルフォキシドなどを用いることができる。これらの紡糸原液を紡糸機に供給してノズルより紡糸し、湿熱延伸、洗浄、乾燥および乾熱延伸を施こすことで、易割繊性海島複合繊維を得ることができる。
 繊維(b’-2)の断面形状は、特に限定されない。分散性の観点から、また炭素化時の収縮による破断を抑制するため、繊維(b’-2)の繊度は、1~10dtexであることが好ましい。繊維(b’-2)の平均繊維長は、叩解後の分散性の観点から、1~20mmが好ましい。
 繊維(b’-2)は、機械的外力により相分離界面の剥離により叩解して、その少なくとも一部分が割繊し、フィブリル化する。叩解方法は、特に限定されないが、例えば、リファイナーやパルパー、ビーター、または加圧水流の噴射(ウオータージェットパンチング)によりフィブリル化することが可能である。繊維(b’-2)を機械的外力により相分離界面の剥離により叩解する際には、叩解方法、叩解時間に依存して、フィブリル化の状態は変化する。フィブリル化の度合いを評価する方法として、濾水度評価(ISO-5267-2(Canadian Standard freeness method))を用いることができる。繊維(b’-2)の濾水度は特に限定されない。
 <3次元交絡構造を持たない前駆体シート>
 前駆体シートX-1は、炭素短繊維(A1)と炭素繊維前駆体短繊維(b1)および/またはフィブリル状炭素前駆体繊維(b1’)とを分散させて得ることができ、3次元交絡構造を持たない。前駆体シートX-3は、炭素短繊維(A2)と炭素繊維前駆体短繊維(b2)および/またはフィブリル状炭素前駆体繊維(b2’)とを分散させて得ることができ、3次元交絡構造を持たない。炭素短繊維(A)は、2次元平面内に分散される。つまり、前駆体シートX-1において炭素短繊維(A1)は2次元平面内に分散され、前駆体シートX-3において炭素短繊維(A2)は2次元平面内に分散される。
 前駆体シートX-1において、炭素短繊維(A1)と、炭素繊維前駆体短繊維(b1)およびフィブリル状炭素前駆体繊維(b1’)の合計との質量比は、炭素化処理後の多孔質電極基材ハンドリング性を確保する観点から20:80~80:20が好ましい。前駆体シートX-3において、炭素短繊維(A2)と、炭素繊維前駆体短繊維(b2)およびフィブリル状炭素前駆体繊維(b2’)の合計との質量比は、炭素化処理後の多孔質電極基材ハンドリング性を確保する観点から20:80~80:20が好ましい。
 前駆体シートX-1およびX-3は、湿式法や乾式法によって製造することができる。湿式法は、液体の媒体中に炭素短繊維(A)と炭素繊維前駆体短繊維(b)および/またはフィブリル状炭素前駆体繊維(b’)を分散させて前駆体シートを抄造する方法である。乾式法は、空気中に炭素短繊維(A)と炭素繊維前駆体短繊維(b)および/またはフィブリル状炭素前駆体繊維(b’)を分散させて降り積もらせて前駆体シートを得る方法である。炭素短繊維(A)が単繊維に開繊するのを助け、開繊した単繊維が再収束することを防止するために、さらに炭素短繊維(A)と炭素繊維前駆体短繊維(b)とが絡み合ってシート強度を向上させ実質的にバインダーフリーとするためにも、フィブリル状炭素前駆体繊維(b’)を使用して、湿式法によって前駆体シートを製造することが好ましい。
 炭素短繊維(A)と炭素繊維前駆体短繊維(b)および/またはフィブリル状炭素前駆体繊維(b’)を分散させる媒体としては、例えば、水、アルコールなど、繊維炭素繊維前駆体短繊維(b)および/またはフィブリル状炭素前駆体繊維(b’)が溶解しない媒体が挙げられるが、生産性の観点から、水が好ましい。
 前駆体シートX-1およびX-3は、連続法とバッチ法のいずれによっても製造できるが、前駆体シートX-1およびX-3の生産性および機械的強度の観点から、連続法で製造することが好ましい。
 <交絡処理>
 前駆体シートX-2は、前駆体シートX-1を交絡処理して得られる。前駆体シートX-1中の炭素短繊維(A)と炭素繊維前駆体短繊維(b)および/またはフィブリル状炭素前駆体繊維(b’)を交絡させる交絡処理は、3次元交絡交構造が形成される方法であればよく、公知の方法で実施できる。例えば、ニードルパンチング法などの機械交絡法、ウォータージェットパンチング法などの高圧液体噴射法、スチームジェットパンチング法などの高圧気体噴射法、またはこれらの組み合わせによる方法を用いることができる。交絡工程での炭素短繊維(A)の破断を抑制でき、かつ十分な交絡性が得られるという点から、高圧液体噴射処理法が好ましい。
 <高圧液体噴射処理法>
 高圧液体噴射処理法は、実質的に表面平滑な支持部材上に前駆体シートを載せ、例えば1MPaの圧力で噴射される液体柱状流、液体扇形流、液体スリット流等を作用させることによって、前駆体シート中の炭素短繊維(A)と炭素繊維前駆体短繊維(b)および/またはフィブリル状炭素前駆体繊維(b’)を交絡させる処理方法である。ここで、実質的に表面平滑な支持部材には、支持部材の模様が、得られる3次元交絡構造を持つ構造体に形成されることなく、かつ噴射された液体が速やかに除かれるようなものであればどのような支持部材でも用いることができる。その具体例としては、30~200メッシュの金網またはプラスチックネット或いはロール等を挙げることができる。
 本発明では、実質的に表面平滑な支持部材上で、前駆体シートX-1を連続的に製造した後、高圧液体噴射処理によって3次元交絡構造を持つ前駆体シートX-2を連続的に製造することが、生産性の観点から好ましい。
 高圧液体噴射処理に用いる液体としては、前駆体シートX-1を構成する繊維を溶解しない溶剤なら何でもよいが、通常は水を用いることが好ましい。噴射する水の温度には特に制限はなく、室温の水を用いてもよい。高圧液体噴射ノズル中のそれぞれの噴射ノズルの孔径は、柱状流の場合、0.06~1.0mmの範囲が好ましく、0.1~0.3mmの範囲がより好ましい。ノズル噴射孔と前駆体シートX-1の間の距離は、0.5~5cm程度の範囲が好ましい。液体の圧力は、1MPa以上7MPa以下が好ましく、1MPa以上5MPa以下がより好ましい。交絡処理は、1列で行ってもよく、複数列で行ってもよい。複数列で行う場合、1列目よりも2列目以降の高圧液体噴射処理の圧力を高めることが有効である。
 前駆体シートX-1の高圧液体噴射による交絡処理は、複数回繰り返してもよい。即ち、前駆体シートX-1の高圧液体噴射処理を行った後、高圧液体噴射処理を終えた前駆体シートX-1の上に、さらに別の前駆体シートX-1を積層して高圧液体噴射処理を行ってもよい。高圧液体噴射により3次元交絡交構造が形成されつつある前駆体シートX-1を裏返し、さらに反対側から高圧液体噴射処理を行ってもよい。また、これらの操作を繰り返してもよい。
 前駆体シートX-2を連続的に製造する場合、1列または複数列のノズル孔を備える高圧液体噴射ノズルをシートの幅方向に振動させことにより、シート化方向にシートの高圧液体噴射処理に由来する筋状の軌跡パターンの形成を抑制することができる。シート化方向の筋状の軌跡パターンを抑制することにより、シート幅方向の機械的強度を発現することができる。また1列または複数列のノズル孔を備える高圧液体噴射ノズルを複数本使用する場合、高圧液体噴射ノズルをシートの幅方向に振動させる振動数、またその位相差を制御することにより3次元交絡構造前駆体シートに現れる周期的な模様を抑制することもできる。
 <積層一体化>
 多孔質電極基材前駆体シートX-4は、3次元交絡構造を持つ前駆体シートX-2上に、3次元交絡構造を持たない前駆体シートX-3を積層一体化したものである。積層一体化方法としては、前駆体シートX-2と前駆体シートX-3をそれぞれ別に製造した後、重ね合わせる方法や、前駆体シートX-2の上に前駆体シートX-3を直接製造する方法などが挙げられる。前駆体シートX-2と前駆体シートX-3との間の接合が容易であり、さらにシート間の接合力が強いことから、前駆体シートX-2の上に前駆体シートX-3を直接製造する方法が好ましい。例えば湿式法で抄造する場合は、あらかじめ製造した前駆体シートX-2上に、炭素短繊維(A2)と炭素繊維前駆体短繊維(b2)および/またはフィブリル状炭素前駆体繊維(b2’)を液体の媒体中に分散させたスラリーを直接供給し、抄造することで、3次元交絡構造を持つ前駆体シートX-2と3次元交絡構造を持たない前駆体シートX-3を積層一体化させた多孔質電極基材前駆体シートX-4を得ることができる。前駆体シートX-2上に前駆体シートX-3を複数積層して多孔質電極基材前駆体シートX-4を得ることもできる。
 多孔質電極基材前駆体シートX-4の目付は10~200g/m程度が好ましく、厚みは20~400μm程度が好ましい。なお、3次元交絡構造を持たない前駆体シートX-3の目付は、多孔質電極基材前駆体シートX-4および多孔質電極基材のハンドリング性を高くする点で、多孔質電極基材前駆体シートX-4の70%以下が好ましく、多孔質電極基材の燃料電池に組み込んだ際の高分子電解質膜へのダメージを低減する点で、多孔質電極基材前駆体シートX-4の20%以上が好ましい。すなわち、3次元交絡構造を持つ前駆体シートX-2の目付は、多孔質電極基材前駆体シートX-4の30~80%が好ましい。
 <炭素化処理>
 多孔質電極基材前駆体シートX-4は、そのまま炭素化処理することができ、加熱加圧成型後に炭素化処理することもでき、加熱加圧成型とそれに続く酸化処理後に炭素化処理することもできる。そのまま炭素化処理することによって製造コストを低減できる。炭素短繊維(A)を炭素繊維前駆体短繊維(b)および/またはフィブリル状炭素前駆体繊維(b’)で融着させ、かつ炭素繊維前駆体短繊維(b)および/またはフィブリル状炭素前駆体繊維(b’)を炭素化して3次元網目状炭素繊維(B)や2次元網目状炭素繊維(C)とすることより、得られる多孔質電極基材の機械的強度および導電性を高めることができる。
 炭素化処理は、多孔質電極基材の導電性を高めるために、不活性ガス中で行うことが好ましい。炭素化処理は、通常1000℃以上の温度で行なわれる。炭素化処理の温度範囲は、1000~3000℃が好ましく、1000~2200℃がより好ましい。炭素化処理の時間は、例えば10分間~1時間程度である。また、炭素化処理の前に、300~800℃の程度の不活性雰囲気での焼成による前処理を行うことができる。
 連続的に製造された多孔質電極基材前駆体シートX-4を炭素化処理する場合は、製造コスト低減化の観点から、多孔質電極基材前駆体シートX-4の全長にわたって連続で炭素化処理を行うことが好ましい。多孔質電極基材が長尺であればハンドリング性が高く、多孔質電極基材の生産性が高くなり、かつその後の膜-電極接合体(MEA)の製造も連続で行うことができるので、燃料電池の製造コストを低減できる。また、多孔質電極基材や燃料電池の生産性および製造コスト低減化の観点から、製造された多孔質電極基材を連続的に巻き取ることが好ましい。
 <加熱加圧成型>
 多孔質電極基材前駆体シートX-4中の炭素短繊維(A)を炭素繊維前駆体短繊維(b)および/またはフィブリル状炭素前駆体繊維(b’)で融着させ、かつ多孔質電極基材の厚みムラを低減させ、さらに、交絡処理によるシート片側表面近傍における各繊維の毛羽立ちを抑制するという観点から、炭素化処理の前に、多孔質電極基材前駆体シートX-4を200℃未満の温度で加熱加圧成型することが好ましい。加熱加圧成型は、多孔質電極基材前駆体シートX-4を均等に加熱加圧成型できる技術であれば、いかなる技術も適用できる。例えば、多孔質電極基材前駆体シートX-4の両面に平滑な剛板を当てて熱プレスする方法や、連続ロールプレス装置または連続ベルトプレス装置を用いる方法が挙げられる。
 連続的に製造された多孔質電極基材前駆体シートX-4を加熱加圧成型する場合には、連続ロールプレス装置や連続ベルトプレス装置を用いる方法が好ましい。これによって、炭素化処理を連続で行うことが容易となる。連続ベルトプレス装置におけるプレス方法としては、ロールプレスによりベルトに線圧で圧力を加える方法、液圧ヘッドプレスにより面圧でプレスする方法などが挙げられる。後者の方がより平滑な多孔質電極基材が得られるという点で好ましい。
 加熱加圧成型時の温度は、多孔質電極基材前駆体シートX-4の表面を効果的に平滑にするために、200℃未満が好ましく、120~190℃がより好ましい。
 加熱加圧成型時の圧力は特に限定されないが、加熱加圧成型時の炭素短繊維(A)破壊防止の観点、多孔質電極基材の緻密化防止の観点より、20kPa~10MPa程度が好ましい。多孔質電極基材前駆体シートX-4中における炭素繊維前駆体短繊維(b)および/またはフィブリル状炭素前駆体繊維(b’)の含有比率が多い場合は、成型圧が低くても容易に前駆体シートYの表面を平滑にすることができる。
 加熱加圧成型の時間は、例えば30秒~10分とすることができる。多孔質電極基材前駆体シートX-4を2枚の剛板に挟んでまたは連続ロールプレス装置や連続ベルトプレス装置で加熱加圧成型する時は、剛板またはロールやベルトに、炭素繊維前駆体短繊維(b)および/またはフィブリル状炭素前駆体繊維(b’)などが付着しないように、あらかじめ剥離剤を塗っておくことや、前駆体シートと剛板またはロールやベルトとの間に離型紙を挟むことが好ましい。
 <酸化処理>
 炭素繊維前駆体短繊維(b)および/またはフィブリル状炭素前駆体繊維(b’)による炭素短繊維(A)の融着を良好に行い、かつ、炭素繊維前駆体短繊維(b)および/またはフィブリル状炭素前駆体繊維(b’)の炭素化率を向上させるという観点から、加熱加圧成型によって得られた多孔質電極基材前駆体シートX-4を大気中で200℃以上300℃未満の温度で酸化処理することが好ましい。酸化処理は、240~270℃で行うことがより好ましい。
 加熱多孔板を用いた加圧直接加熱による連続酸化処理、または加熱ロール等を用いた間欠的な加圧直接加熱による連続酸化処理が、低コストで、炭素短繊維(A)と炭素繊維前駆体短繊維(b)および/またはフィブリル状炭素前駆体繊維(b’)を融着させることができるという点で好ましい。
 酸化処理の時間は、例えば1分間~2時間とすることができる。連続的に製造された多孔質電極基材前駆体シートX-4を酸化処理する場合は、多孔質電極基材前駆体シートX-4の全長にわたって連続で酸化処理を行うことが好ましい。これによって、炭素化処理を連続で行うことが容易となり、多孔質電極基材、膜-電極接合体および燃料電池の生産性を向上させ製造コストを低減することができる。
 <膜-電極接合体(MEA)>
 本発明の多孔質電極基材は、膜-電極接合体に好適に用いることができる。膜-電極接合体は、高分子電解質膜、触媒層、および多孔質炭素電極基材からなり、プロトン伝導性を有する高分子電解質膜の一方の面に酸化ガス用触媒からなるカソード側触媒層を備え、もう一方の面に燃料ガス用触媒からなるアノード側触媒層を備えており、それぞれの触媒層の外側には、カソード側多孔質電極基材およびアノード側多孔質電極基材が備えられている。多孔質電極基材の高分子電解質膜へのダメージを低減するために、多孔質電極基材の3次元交絡構造を持たない3次元構造体Y-2側を高分子電解質膜と接する面に配置することが好ましい。
 <固体高分子型燃料電池>
 本発明の膜-電極接合体は、固体高分子型燃料電池に好適に用いることができる。固体高分子型燃料電池は、膜-電極接合体を挟持するように、カソード側ガス流路が形成されたカソード側セパレーター、およびアノード側ガス流路が形成されたアノード側セパレーターを備えている。また、それぞれのセパレーターには、酸化ガス導入部と酸化ガス排出部、および燃料ガス導入部と燃料ガス排出部が備えられている。
 本発明によれば、ハンドリング性に優れ、シートのうねりが改善され、且つ十分なガス透気度および導電性を持ち、さらに燃料電池に組み込んだ際、高分子電解質膜へダメージを与えることのない多孔質電極基材を得ることができる。また、本発明の多孔質電極基材の製造方法によれば、前記多孔質電極基材を低コストで製造することができる。
 以下、本発明を実施例により、さらに具体的に説明する。実施例中の各物性値等は以下の方法で測定した。「部」は「質量部」を意味する。
 (1)ガス透気度
 ISO-5636-5に準拠し、ガーレーデンソメーターを使用して200mLの空気が透過するのにかかった時間を測定し、多孔質電極基材のガス透気度(ml/hr/cm/Pa)を算出した。
 (2)厚み
 多孔質電極基材の厚みは、厚み測定装置ダイヤルシックネスゲージ((株)ミツトヨ製、商品名:7321)を使用して測定した。測定子の大きさは直径10mmで、測定圧力は1.5kPaとした。
 (3)貫通方向抵抗
 多孔質電極基材の厚さ方向の電気抵抗(貫通方向抵抗)は、金メッキした銅板に多孔質電極基材を挟み、銅板の上下から1MPaで加圧し、10mA/cmの電流密度で電流を流したときの抵抗値を測定し、次式より求めた。
貫通方向抵抗(mΩ・cm)=測定抵抗値(mΩ)×試料面積(cm
 (4)3次元網目状炭素繊維(B)と2次元網目状炭素繊維(C)の合計含有率
 3次元網目状炭素繊維(B)と2次元網目状炭素繊維(C)の合計含有率は、得られた多孔質電極基材の目付と、使用した炭素短繊維(A)の目付とから次式より算出した。
3次元網目状炭素繊維(B)と2次元網目状炭素繊維(C)の合計含有率(質量%)=[多孔質電極基材目付(g/m)-炭素短繊維(A)目付(g/m)]÷多孔質電極基材目付(g/m)×100
 (5)多孔質電極基材のうねり
 多孔質電極基材のうねりは、平板上に縦250mm横250mmの多孔質電極基材を静置した際の高さの最大値と最小値の差より算出した。
 (6)燃料電池に組み込んだ際の高分子電解質膜へのダメージ
 両面に触媒担持カーボン(触媒:Pt、触媒担持量:50質量%)からなる触媒層(触媒層面積:25cm、Pt付着量:0.3mg/cm)を形成したパーフルオロスルホン酸系の高分子電解質膜(膜厚:30μm)を、3次元交絡構造を持たない3次元構造体側が高分子電解質膜と接するように2枚の多孔質電極基材で挟持し、これらを接合してMEAを得た。そのMEAを、蛇腹状のガス流路を有する2枚のカーボンセパレーターによって挟み、固体高分子型燃料電池(単セル)を作製した。そして、温度を80℃にした単セルに、水素ガスと空気を80℃のバブラーを介して供給したときの開回路電圧(OCV)を測定することで、燃料電池に組み込んだ際の高分子電解質膜へのダメージを確認した。
 (実施例1)
 炭素短繊維(A)として、平均繊維径が7μm、平均繊維長が3mmのPAN系炭素繊維を用意した。また、炭素繊維前駆体短繊維(b)として、平均繊維径が4μm、平均繊維長が3mmのアクリル短繊維(三菱レイヨン(株)製、商品名:D122)を用意し、フィブリル状炭素前駆体繊維(b’)として、叩解によってフィブリル化するアクリル系ポリマーとジアセテート(酢酸セルロース)とからなる易割繊性アクリル系海島複合短繊維(b’-2)(三菱レイヨン(株)製、商品名:ボンネルM.V.P.-C651、平均繊維長:3mm)を用意した。
 以下の操作によって、前駆体シートX-1、3次元交絡構造を持つ前駆体シートX-2、および、前駆体シートX-2上に3次元交絡構造を持たない前駆体シートX-3を積層一体化した多孔質電極基材前駆体シートX-4を連続的に製造し、炭素電極基材を得た。
 〔炭素短繊維(A)の離解〕
 炭素短繊維(A)を、繊維濃度が1質量%(10g/L)になるように水中へ分散して、ディスクリファイナー(熊谷理機工業(株)製)を通して離解処理し、離解スラリー繊維(SA)とした。
 〔炭素繊維前駆体短繊維(b)の離解〕
 炭素繊維前駆体短繊維(b)を、繊維濃度が1質量%(10g/L)になるように水中へ分散して、ディスクリファイナー(熊谷理機工業(株)製)を通して離解処理し、離解スラリー繊維(Sb)とした。
 〔フィブリル状炭素前駆体繊維(b’)の離解〕
 前記易割繊性アクリル系海島複合短繊維を、繊維濃度が1質量%(10g/L)になるように水中へ分散させディスクリファイナー(熊谷理機工業(株)製)を通して叩解・離解処理し、離解スラリー繊維(Sb’)とした。
 〔抄紙用スラリーの調製〕
 炭素短繊維(A)と炭素繊維前駆体短繊維(b)とフィブリル状炭素前駆体繊維(b’)との質量比が50:30:20となり、かつスラリー中の繊維の濃度が1.44g/Lとなるように、離解スラリー繊維(SA)、離解スラリー繊維(Sb)、離解スラリー繊維(Sb’)および希釈水を計量し、スラリー供給タンクに投入した。さらに、ポリアクリルアマイドを添加して、粘度22センチポイズ(22mPa・s)の抄紙用スラリーを調製した。
 〔前駆体シートX-1の製造〕
 幅60cm×長さ585cmのプラスチックネット製平織メッシュをベルト状につなぎあわせた連続的に回転可能なネットと、ネット駆動部よりなるシート状物搬送装置;スラリー供給部幅が48cmで供給スラリー量が30L/minである抄紙用スラリー供給装置;および、ネット下部に配置した減圧脱水装置を備える処理装置を用いた。
 そして、上述の抄紙用スラリーを定量ポンプにより平織メッシュ上に供給した。抄紙用スラリーは、均一な流れに整流するためのフローボックスを通して所定サイズに拡幅して供給した。その後、静置し、自然脱水する部分を通過させ、減圧脱水装置により脱水して、前駆体シートX-1を得た。なお、前駆体シートX-1の目標目付は35g/mとした。
 〔3次元交絡構造を持つ前駆体シートX-2の製造〕
 前記処理装置の下流に、下記の表1に示す3本のウォータージェットノズルを備えた加圧水流噴射処理装置を配置した。
Figure JPOXMLDOC01-appb-T000001
 前駆体シートX-1を加圧水流噴射処理装置のネット上に積載した。そして、加圧水流噴射圧力を1MPa(ノズル1)、2MPa(ノズル2)、1MPa(ノズル3)に設定し、前駆体シートX-1をノズル1、ノズル2およびノズル3の順で通過させて交絡処理を加え、3次元交絡構造を持つ前駆体シートX-2を得た。なお、3次元交絡構造を持つ前駆体シートX-2の目標目付は、前駆体シートX-1の目標目付と同じ35g/mである。
 〔前駆体シートX-2上に3次元交絡構造を持たない前駆体シートX-3を積層一体化した多孔質電極基材前駆体シートX-4の製造〕
 加圧水流噴射処理装置のさらに下流に、前駆体シートX-1の製造に用いた処理装置と同様の処理装置(シート状物搬送装置と、抄紙用スラリー供給装置と、ネット下部に配置した減圧脱水装置とを備える処理装置)を配置した。
 そして、上述の抄紙用スラリーを定量ポンプにより、平織メッシュ上に積載した3次元交絡構造を持つ前駆体シートX-2の上から供給した。抄紙用スラリーは、均一な流れに整流するためのフローボックスを通して所定サイズに拡幅して供給した。その後、静置し、自然脱水する部分を通過させ、減圧脱水装置により脱水して、3次元交絡構造を持たない前駆体シートX-3を積層し、3次元交絡構造を持つ前駆体シートX-2と3次元交絡構造を持たない前駆体シートX-3を積層一体化させた多孔質電極基材前駆体シートX-4を得た。なお、前駆体シートX-3の目標目付は35g/mとしたので、多孔質電極基材前駆体シートX-4の目標目付は70g/mである。
 〔乾燥処理〕
 多孔質電極基材前駆体シートX-4を、ピンテンター試験機(辻井染機工業(株)製、商品名:PT-2A-400)により150℃で3分間乾燥させた。多孔質電極基材前駆体シートX-4の目付は70.2g/mであった。この多孔質電極基材前駆体シートX-4中での炭素短繊維(A)、炭素繊維前駆体短繊維(b)およびフィブリル状炭素前駆体繊維(b’)の分散状態は良好であり、さらに前駆体シートX-2中での繊維の絡み合いも良好であり、ハンドリング性も良好であった。
 〔加熱加圧成型〕
 次に、多孔質電極基材前駆体シートX-4の両面を、シリコーン系離型剤をコートした紙で挟んだ後、バッチプレス装置にて180℃、3MPaの条件下で3分間加熱加圧成型した。
 〔炭素化処理〕
 その後、多孔質電極基材前駆体シートX-4をバッチ炭素化炉にて、窒素ガス雰囲気中、2000℃の条件下で1時間炭素化処理して、多孔質電極基材を得た。
 〔評価結果〕
 得られた多孔質電極基材は、炭素化処理時における面内の収縮がほとんどなく、うねりも2mm以下と小さく表面平滑性は良好であり、ガス透気度、厚み、貫通方向抵抗もそれぞれ良好であった。3次元網目状炭素繊維(B)と2次元網目状炭素繊維(C)の合計含有率は24質量%であった。また、得られた多孔質電極基材の断面の走査型電子顕微鏡写真を図1(3次元交絡構造を持つ3次元構造体の断面)、図2(3次元交絡構造を持たない3次元構造体の断面)に示した。また、図3及び図4においては、得られた多孔質電極基材の表裏面の走査型電子顕微鏡写真を示した。図1においては、炭素短繊維(A)同士が3次元網目状炭素繊維(B)によって接合されていることが確認でき、図2においては、炭素短繊維(A)同士が2次元網目状炭素繊維(C)によって接合されていることが確認できた。図3において、A面は交絡構造を持たないため、炭素短繊維(A)、炭化したアクリル繊維の毛羽立ちが抑制されていることを確認できた。一方、図4において、B面は交絡構造を持つため、面から突出している繊維が観察できた(丸枠の箇所)。この多孔質電極基材を用いた単セルのOCVは0.902Vと高く、燃料電池に組み込んだ際の高分子電解質膜へのダメージが小さかった。以上の評価結果を、多孔質電極基材の目付とともに、表2に示した。
 (実施例2および3)
 3次元交絡構造を持つ前駆体シートX-2および3次元交絡構造を持たない前駆体シートX-3の目標目付を、それぞれ25g/mおよび45g/m(実施例2)、または55g/mおよび15g/m(実施例3)としたこと以外は、実施例1と同様にして多孔質電極基材を得た。得られた多孔質電極基材は、炭素化処理時における面内の収縮がほとんどなく、シートのうねりも2mm以下と小さく表面平滑性は良好であり、ガス透気度、厚み、貫通方向抵抗もそれぞれ良好であった。また、多孔質電極基材は、炭素短繊維(A)同士が3次元網目状炭素繊維(B)によって接合された3次元構造体と、炭素短繊維(A)同士が2次元網目状炭素繊維(C)によって接合された3次元構造体とが積層一体化された構造を有していた。また、燃料電池に組み込んだ際の高分子電解質膜へのダメージも小さかった。以上の評価結果を表2に示した。
 (実施例4および5)
 3次元交絡構造を持つ前駆体シートX-2、3次元交絡構造を持たない前駆体シートX-3およびこれらを積層一体化した多孔質電極基材前駆体シートX-4の目標目付を、それぞれ30g/m、30g/mおよび60g/m(実施例4)、または20g/m、20g/mおよび40g/m(実施例5)としたこと以外は、実施例1と同様にして多孔質電極基材を得た。得られた多孔質電極基材は、炭素化処理時における面内の収縮がほとんどなく、シートのうねりも2mm以下と小さく表面平滑性は良好であり、ガス透気度、厚み、貫通方向抵抗もそれぞれ良好であった。また、多孔質電極基材は、炭素短繊維(A)同士が3次元網目状炭素繊維(B)によって接合された3次元構造体と、炭素短繊維(A)同士が2次元網目状炭素繊維(C)によって接合された3次元構造体とが積層一体化された構造を有していた。また、燃料電池に組み込んだ際の高分子電解質膜へのダメージも小さかった。以上の評価結果を表2に示した。
 (実施例6)
 抄紙用スラリー中の炭素短繊維(A)と炭素繊維前駆体短繊維(b)とフィブリル状炭素前駆体繊維(b’)との質量比を50:40:10としたこと以外は、実施例1と同様にして多孔質電極基材を得た。得られた多孔質電極基材は、炭素化処理時における面内の収縮がほとんどなく、シートのうねりも2mm以下と小さく表面平滑性は良好であり、ガス透気度、厚み、貫通方向抵抗もそれぞれ良好であった。また、多孔質電極基材は、炭素短繊維(A)同士が3次元網目状炭素繊維(B)によって接合された3次元構造体と、炭素短繊維(A)同士が2次元網目状炭素繊維(C)によって接合された3次元構造体とが積層一体化された構造を有していた。また、燃料電池に組み込んだ際の高分子電解質膜へのダメージも小さかった。以上の評価結果を表2に示した。
 (実施例7)
 抄紙用スラリー中の炭素短繊維(A)と炭素繊維前駆体短繊維(b)とフィブリル状炭素前駆体繊維(b’)との質量比を40:40:20とし、3次元交絡構造を持つ前駆体シートX-2、3次元交絡構造を持たない前駆体シートX-3およびこれらを積層一体化した多孔質電極基材前駆体シートX-4の目標目付を、それぞれ40g/m、40g/mおよび80g/mとしたこと以外は、実施例1と同様にして多孔質電極基材を得た。得られた多孔質電極基材は、炭素化処理時における面内の収縮がほとんどなく、シートのうねりも2mm以下と小さく表面平滑性は良好であり、ガス透気度、厚み、貫通方向抵抗もそれぞれ良好であった。また、多孔質電極基材は、炭素短繊維(A)同士が3次元網目状炭素繊維(B)によって接合された3次元構造体と、炭素短繊維(A)同士が2次元網目状炭素繊維(C)によって接合された3次元構造体とが積層一体化された構造を有していた。また、燃料電池に組み込んだ際の高分子電解質膜へのダメージも小さかった。以上の評価結果を表2に示した。
 (実施例8)
 抄紙用スラリー中の炭素短繊維(A)と炭素繊維前駆体短繊維(b)とフィブリル状炭素前駆体繊維(b’)との質量比を30:50:20とし、3次元交絡構造を持つ前駆体シートX-2、3次元交絡構造を持たない前駆体シートX-3およびこれらを積層一体化した多孔質電極基材前駆体シートX-4の目標目付を、それぞれ45g/m、45g/mおよび90g/mとしたこと以外は、実施例1と同様にして多孔質電極基材を得た。得られた多孔質電極基材は、炭素化処理時における面内の収縮がほとんどなく、シートのうねりも2mm以下と小さく表面平滑性は良好であり、ガス透気度、厚み、貫通方向抵抗もそれぞれ良好であった。また、多孔質電極基材は、炭素短繊維(A)同士が3次元網目状炭素繊維(B)によって接合された3次元構造体と、炭素短繊維(A)同士が2次元網目状炭素繊維(C)によって接合された3次元構造体とが積層一体化された構造を有していた。また、燃料電池に組み込んだ際の高分子電解質膜へのダメージも小さかった。以上の評価結果を表2に示した。
 (実施例9)
 抄紙用スラリー中の炭素短繊維(A)と炭素繊維前駆体短繊維(b)とフィブリル状炭素前駆体繊維(b’)との質量比を70:10:20とし、3次元交絡構造を持つ前駆体シートX-2、3次元交絡構造を持たない前駆体シートX-3およびこれらを積層一体化した多孔質電極基材前駆体シートX-4の目標目付を、それぞれ30g/m、30g/mおよび60g/mとしたこと以外は、実施例1と同様にして多孔質電極基材を得た。得られた多孔質電極基材は、炭素化処理時における面内の収縮がほとんどなく、シートのうねりも2mm以下と小さく表面平滑性は良好であり、ガス透気度、厚み、貫通方向抵抗もそれぞれ良好であった。また、多孔質電極基材は、炭素短繊維(A)同士が3次元網目状炭素繊維(B)によって接合された3次元構造体と、炭素短繊維(A)同士が2次元網目状炭素繊維(C)によって接合された3次元構造体とが積層一体化された構造を有していた。また、燃料電池に組み込んだ際の高分子電解質膜へのダメージも小さかった。以上の評価結果を表2に示した。
 (実施例10)
 加圧水流噴射圧力を2MPa(ノズル1)、3MPa(ノズル2)、2MPa(ノズル3)に設定したこと以外は、実施例1と同様にして多孔質電極基材を得た。得られた多孔質電極基材は、炭素化処理時における面内の収縮がほとんどなく、シートのうねりも2mm以下と小さく表面平滑性は良好であり、ガス透気度、厚み、貫通方向抵抗もそれぞれ良好であった。また、多孔質電極基材は、炭素短繊維(A)同士が3次元網目状炭素繊維(B)によって接合された3次元構造体と、炭素短繊維(A)同士が2次元網目状炭素繊維(C)によって接合された3次元構造体とが積層一体化された構造を有していた。また、燃料電池に組み込んだ際の高分子電解質膜へのダメージも小さかった。以上の評価結果を表2に示した。
 (実施例11)
 加圧水流噴射圧力を3.5MPa(ノズル1)、4.5MPa(ノズル2)、3.5MPa(ノズル3)に設定したこと以外は、実施例1と同様にして多孔質電極基材を得た。得られた多孔質電極基材は、炭素化処理時における面内の収縮がほとんどなく、シートのうねりも2mm以下と小さく表面平滑性は良好であり、ガス透気度、厚み、貫通方向抵抗もそれぞれ良好であった。また、多孔質電極基材は、炭素短繊維(A)同士が3次元網目状炭素繊維(B)によって接合された3次元構造体と、炭素短繊維(A)同士が2次元網目状炭素繊維(C)によって接合された3次元構造体とが積層一体化された構造を有していた。また、燃料電池に組み込んだ際の高分子電解質膜へのダメージも小さかった。以上の評価結果を表2に示した。
 (実施例12)
 フィブリル状炭素前駆体繊維(b’)として、繊維状の幹より直径3μm以下のフィブリルが多数分岐したポリアクリロニトリル系パルプ(b’-1)を用いたこと以外は、実施例1と同様にして多孔質電極基材を得た。なお、ポリアクリロニトリル系パルプ(b’-1)は、噴射凝固によって製造した。得られた多孔質電極基材は、炭素化処理時における面内の収縮がほとんどなく、シートのうねりも2mm以下と小さく表面平滑性は良好であり、ガス透気度、厚み、貫通方向抵抗もそれぞれ良好であった。また、多孔質電極基材は、炭素短繊維(A)同士が3次元網目状炭素繊維(B)によって接合された3次元構造体と、炭素短繊維(A)同士が2次元網目状炭素繊維(C)によって接合された3次元構造体とが積層一体化された構造を有していた。また、燃料電池に組み込んだ際の高分子電解質膜へのダメージも小さかった。以上の評価結果を表2に示した。
 (実施例13)
 加圧水流噴射による3次元交絡処理を同一面から繰り返し2度実施したこと以外は、実施例12と同様にして多孔質電極基材を得た。得られた多孔質電極基材は、炭素化処理時における面内の収縮がほとんどなく、シートのうねりも2mm以下と小さく表面平滑性は良好であり、ガス透気度、厚み、貫通方向抵抗もそれぞれ良好であった。また、多孔質電極基材は、炭素短繊維(A)同士が3次元網目状炭素繊維(B)によって接合された3次元構造体と、炭素短繊維(A)同士が2次元網目状炭素繊維(C)によって接合された3次元構造体とが積層一体化された構造を有していた。また、燃料電池に組み込んだ際の高分子電解質膜へのダメージも小さかった。以上の評価結果を表2に示した。
 (実施例14)
 加圧水流噴射による3次元交絡処理を表面から実施した後、裏面から再び加圧水流噴射を実施したこと以外は、実施例12と同様にして多孔質電極基材を得た。得られた多孔質電極基材は、炭素化処理時における面内の収縮がほとんどなく、シートのうねりも2mm以下と小さく表面平滑性は良好であり、ガス透気度、厚み、貫通方向抵抗もそれぞれ良好であった。また、多孔質電極基材は、炭素短繊維(A)同士が3次元網目状炭素繊維(B)によって接合された3次元構造体と、炭素短繊維(A)同士が2次元網目状炭素繊維(C)によって接合された3次元構造体とが積層一体化された構造を有していた。また、燃料電池に組み込んだ際の高分子電解質膜へのダメージも小さかった。以上の評価結果を表2に示した。
 (実施例15)
 フィブリル状炭素前駆体繊維(b’)を用いずに、抄紙用スラリー中の炭素短繊維(A)と炭素繊維前駆体短繊維(b)との質量比を50:50としたこと以外は、実施例1と同様にして多孔質電極基材を得た。得られた多孔質電極基材は、炭素化処理時における面内の収縮がほとんどなく、シートのうねりも2mm以下と小さく表面平滑性は良好であり、ガス透気度、厚み、貫通方向抵抗もそれぞれ良好であった。また、多孔質電極基材は、炭素短繊維(A)同士が3次元網目状炭素繊維(B)によって接合された3次元構造体と、炭素短繊維(A)同士が2次元網目状炭素繊維(C)によって接合された3次元構造体とが積層一体化された構造を有していた。また、燃料電池に組み込んだ際の高分子電解質膜へのダメージも小さかった。以上の評価結果を表2に示した。
 (実施例16)
 炭素繊維前駆体短繊維(b)を用いずに、抄紙用スラリー中の炭素短繊維(A)とフィブリル状炭素前駆体繊維(b’)との質量比を50:50としたこと以外は、実施例1と同様にして多孔質電極基材を得た。得られた多孔質電極基材は、炭素化処理時における面内の収縮がほとんどなく、シートのうねりも2mm以下と小さく表面平滑性は良好であり、ガス透気度、厚み、貫通方向抵抗もそれぞれ良好であった。また、多孔質電極基材は、炭素短繊維(A)同士が3次元網目状炭素繊維(B)によって接合された3次元構造体と、炭素短繊維(A)同士が2次元網目状炭素繊維(C)によって接合された3次元構造体とが積層一体化された構造を有していた。また、燃料電池に組み込んだ際の高分子電解質膜へのダメージも小さかった。以上の評価結果を表2に示した。
 (実施例17)
 フィブリル状炭素前駆体繊維(b’)として、繊維状の幹より直径3μm以下のフィブリルが多数分岐したポリアクリロニトリル系パルプ(b’-1)を用いたこと以外は、実施例16と同様にして多孔質電極基材を得た。なお、ポリアクリロニトリル系パルプ(b’-1)は、噴射凝固によって製造した。得られた多孔質電極基材は、炭素化処理時における面内の収縮がほとんどなく、シートのうねりも2mm以下と小さく表面平滑性は良好であり、ガス透気度、厚み、貫通方向抵抗もそれぞれ良好であった。また、多孔質電極基材は、炭素短繊維(A)同士が3次元網目状炭素繊維(B)によって接合された3次元構造体と、炭素短繊維(A)同士が2次元網目状炭素繊維(C)によって接合された3次元構造体とが積層一体化された構造を有していた。また、燃料電池に組み込んだ際の高分子電解質膜へのダメージも小さかった。以上の評価結果を表2に示した。
 (実施例18)
 炭素化処理の前に、加熱加圧成型した多孔質電極基材前駆体シートX-4の両面を、シリコーン系離型剤をコートしたステンレスパンチングプレートで挟んだ後、バッチプレス装置にて大気中、280℃、0.5MPaの条件下で1分間酸化処理したこと以外は、実施例1と同様にして多孔質電極基材を得た。得られた多孔質電極基材は、炭素化処理時における面内の収縮がほとんどなく、シートのうねりも2mm以下と小さく表面平滑性は良好であり、ガス透気度、厚み、貫通方向抵抗もそれぞれ良好であった。また、多孔質電極基材は、炭素短繊維(A)同士が3次元網目状炭素繊維(B)によって接合された3次元構造体と、炭素短繊維(A)同士が2次元網目状炭素繊維(C)によって接合された3次元構造体とが積層一体化された構造を有していた。また、燃料電池に組み込んだ際の高分子電解質膜へのダメージも小さかった。以上の評価結果を表2に示した。
 (実施例19)
 加熱加圧成型しなかったこと以外は、実施例1と同様にして多孔質電極基材を得た。得られた多孔質電極基材は、炭素化処理時における面内の収縮がほとんどなく、シートのうねりも2mm以下と小さく表面平滑性は良好であり、ガス透気度、厚み、貫通方向抵抗もそれぞれ良好であった。また、多孔質電極基材は、炭素短繊維(A)同士が3次元網目状炭素繊維(B)によって接合された3次元構造体と、炭素短繊維(A)同士が2次元網目状炭素繊維(C)によって接合された3次元構造体とが積層一体化された構造を有していた。また、燃料電池に組み込んだ際の高分子電解質膜へのダメージも小さかった。以上の評価結果を表2に示した。
 (実施例20)
 抄紙用スラリー中の炭素短繊維(A)と炭素繊維前駆体短繊維(b)とフィブリル状炭素前駆体繊維(b’)との質量比を20:30:50とし、3次元交絡構造を持つ前駆体シートX-2、3次元交絡構造を持たない前駆体シートX-3およびこれらを積層一体化した多孔質電極基材前駆体シートX-4の目標目付を、それぞれ45g/m、45g/mおよび90g/mとしたこと以外は、実施例1と同様にして多孔質電極基材を得た。得られた多孔質電極基材は、炭素化処理時における面内の収縮により皺が形成される外観となったが、うねりは3mmと小さく、表面平滑性も良好であり、ガス透気度、厚み、貫通方向抵抗はそれぞれ良好であった。また、多孔質電極基材は、炭素短繊維(A)同士が3次元網目状炭素繊維(B)によって接合された3次元構造体と、炭素短繊維(A)同士が2次元網目状炭素繊維(C)によって接合された3次元構造体とが積層一体化された構造を有していた。また、燃料電池に組み込んだ際の高分子電解質膜へのダメージも小さかった。以上の評価結果を表2に示した。
 (実施例21)
 抄紙用スラリー中の炭素短繊維(A)と炭素繊維前駆体短繊維(b)とフィブリル状炭素前駆体繊維(b’)との質量比を80:10:10とし、3次元交絡構造を持つ前駆体シートX-2、3次元交絡構造を持たない前駆体シートX-3およびこれらを積層一体化した多孔質電極基材前駆体シートX-4の目標目付を、それぞれ30g/m、30g/mおよび60g/mとしたこと以外は、実施例1と同様にして多孔質電極基材を得た。得られた多孔質電極基材は、炭素化処理時における面内の収縮により皺が形成される外観となったが、うねりは3mmと小さく、表面平滑性も良好であり、ガス透気度、厚み、貫通方向抵抗はそれぞれ良好であった。また、多孔質電極基材は、炭素短繊維(A)同士が3次元網目状炭素繊維(B)によって接合された3次元構造体と、炭素短繊維(A)同士が2次元網目状炭素繊維(C)によって接合された3次元構造体とが積層一体化された構造を有していた。また、燃料電池に組み込んだ際の高分子電解質膜へのダメージも小さかった。以上の評価結果を表2に示した。
 (実施例22)
 3次元交絡構造を持つ前駆体シートX-2と、3次元交絡構造を持たない前駆体シートX-3を別々に製造し、乾燥させた後、両者を重ね合わせてバッチプレス装置にて180℃、3MPaの条件下で3分間加熱加圧成型することで、積層一体化した前駆体シート製造したこと以外は、実施例1と同様にして多孔質電極基材を得た。なお、前駆体シートX-3は、実施例1におけるX-1の製造方法と同様にして製造した。得られた多孔質電極基材は、炭素化処理時における面内の収縮により皺が形成される外観となり、うねりは2mm以下と小さく、表面平滑性も良好であり、ガス透気度、厚み、貫通方向抵抗はそれぞれ良好であった。また、多孔質電極基材は、炭素短繊維(A)同士が3次元網目状炭素繊維(B)によって接合された3次元構造体と、炭素短繊維(A)同士が2次元網目状炭素繊維(C)によって接合された3次元構造体とが積層一体化された構造を有していた。また、燃料電池に組み込んだ際の高分子電解質膜へのダメージも小さかった。以上の評価結果を表2に示した。
 (実施例23)
 炭素繊維前駆体短繊維(b)およびフィブリル状炭素前駆体繊維(b’)の離解スラリーSbおよびSb’の代わりに、平均繊維長が3mmのポリビニルアルコール(PVA)短繊維(クラレ(株)製、商品名:VBP105-1)を用いて離解スラリーSbと同様にして作成した離解スラリーを用いた。そして、抄紙用スラリー中の炭素短繊維(A)とポリビニルアルコール(PVA)短繊維との質量比を80:20とした。それ以外は、実施例5と同様にして多孔質電極基材前駆体シートX-4を得た。
 その後、多孔質電極基材前駆体シートX-4とフェノール樹脂の不揮発分の質量比が50:50となるように、多孔質電極基材前駆体シートX-4にフェノール樹脂(商品名:フェノライトJ-325、大日本インキ化学株式会社製)のメタノール溶液を含浸させ、室温でメタノールを十分に乾燥させることで、フェノール樹脂を含浸させた多孔質電極基材前駆体シートX-4を得た。その後実施例1と同様の条件で、加熱加圧成型と炭素化処理を行い、多孔質電極基材を得た。得られた多孔質電極基材は、炭素化処理時における面内の収縮がほとんどなく、シートのうねりも2mm以下と小さく表面平滑性は良好であり、ガス透気度、厚み、貫通方向抵抗もそれぞれ良好であった。また、多孔質電極基材は、炭素短繊維(A)同士が炭素(D)によって接合された交絡構造を持つ3次元構造体と、炭素短繊維(A)同士が炭素(D)によって接合された交絡構造を持たない3次元構造体とが積層一体化された構造を有していた。また、燃料電池に組み込んだ際の高分子電解質膜へのダメージも小さかった。以上の評価結果を表2に示した。
 (実施例24)
 〔膜-電極接合体(MEA)の製造〕
 実施例1で得られた多孔質電極基材の2枚を、カソード用およびアノード用の多孔質炭素電極基材として用い、前述のOCVの測定方法(燃料電池に組み込んだ際の高分子電解質膜へのダメージの評価方法)に記載された手法と同様にして、MEAを得た。
 〔MEAの燃料電池特性評価〕
 得られたMEAを、蛇腹状のガス流路を有する2枚のカーボンセパレーターによって挟み、固体高分子型燃料電池(単セル)を形成した。
 この単セルの電流密度-電圧特性を測定することによって、燃料電池特性評価を行った。燃料ガスとしては水素ガスを用い、酸化ガスとしては空気を用いた。単セルの温度を80℃とし、燃料ガス利用率を60%とし、酸化ガス利用率を40%とした。また、燃料ガスと酸化ガスへの加湿は、80℃のバブラーにそれぞれ燃料ガスと酸化ガスを通すことによって行った。その結果、電流密度が0.8A/cmのときの燃料電池セルのセル電圧が0.644Vであり、セルの内部抵抗が2.9mΩであり、良好な特性を示した。
 (比較例1)
 加圧水流噴射による3次元交絡処理を実施しなかったこと以外は、実施例1と同様にして多孔質電極基材を得た。すなわち前駆体シートX-1の上に前駆体シートX-3を形成したが、いずれも3次元交絡構造を持たないため、表2には両者の目標目付を合計して「X-3の目付」の欄に示した。
 得られた多孔質電極基材は、炭素化処理時における面内の収縮がほとんどなく、シートのうねりも2mm以下と小さく表面平滑性は良好であり、ガス透気度、厚み、貫通方向抵抗もそれぞれ良好であったが、多孔質電極基材前駆体シートX-4のハンドリンク性が大きく低下した。また、多孔質電極基材には、3次元網目状炭素繊維(B)は観察されず、炭素短繊維(A)同士が2次元網目状炭素繊維(C)によって接合された構造を有していた。また、燃料電池に組み込んだ際の高分子電解質膜へのダメージは小さかった。以上の評価結果を表2に示した。
 (比較例2)
 3次元交絡構造を持つ前駆体シートX-2と3次元交絡構造を持たない前駆体シートX-3を積層一体化させた後に、さらに実施例1と同様の加圧水流噴射による交絡処理を実施して多孔質電極基材前駆体シートX-4を得た以外は、実施例1と同様にして多孔質電極基材を得た。すなわち、前駆体シートX-2に加えて前駆体シートX-3も2次元交絡構造を持つ結果となったため、表2には両者の目標目付を合計して「X-2の目付」の欄に示した。
 得られた多孔質電極基材は、炭素化処理時における面内の収縮がほとんどなく、シートのうねりも2mm以下と小さく表面平滑性は良好であり、ガス透気度、厚み、貫通方向抵抗もそれぞれ良好であった。また、多孔質電極基材には、2次元網目状炭素繊維(C)は観察されず、炭素短繊維(A)同士が3次元網目状炭素繊維(B)によって接合された構造を有していた。しかし、この多孔質電極基材を用いた単セルのOCVは0.883Vと低く、燃料電池に組み込んだ際の高分子電解質膜へのダメージが大きかった。以上の評価結果を表2に示した。
 (比較例3)
 炭素短繊維(A)を用いずに、抄紙用スラリー中の炭素繊維前駆体短繊維(b)とフィブリル状炭素前駆体繊維(b’)との質量比を質量比60:40としたこと以外は、実施例1と同様にして多孔質電極基材を得た。得られた多孔質電極基材は、炭素化処理時における面内の収縮が大きく、シート形態を保つことができなかった。
 (比較例4)
 炭素繊維前駆体短繊維(b)およびフィブリル状炭素前駆体繊維(b’)の離解スラリーSbおよびSb’の代わりに、平均繊維長が3mmのポリビニルアルコール(PVA)短繊維(クラレ(株)製、商品名:VBP105-1)を用いて離解スラリーSbと同様にして作成した離解スラリーを用いた。そして、抄紙用スラリー中の炭素短繊維(A)とポリビニルアルコール(PVA)短繊維との質量比を80:20とした。それ以外は、実施例1と同様にして多孔質電極基材を得た。得られた多孔質電極基材には、3次元網目状炭素繊維(B)や2次元網目状炭素繊維(C)が形成されておらず、シート形態を保つことができなかった。
Figure JPOXMLDOC01-appb-T000002
1 :シート面と並行な線
2 :3次元網目状炭素繊維(B)を構成する炭素繊維
3 :2次元網目状炭素繊維(C)を構成する炭素繊維
A1:炭素短繊維
A2:炭素短繊維

Claims (12)

  1.  炭素短繊維(A1)が炭素(D)によって接合されてなる3次元構造体Y-1と、
    炭素短繊維(A2)が炭素(D)によって接合されてなる3次元構造体Y-2と
    が積層一体化された多孔質電極基材であって、
    3次元構造体Y-1中で炭素短繊維(A1)は3次元交絡構造を形成しており、
    3次元構造体Y-2中で炭素短繊維(A2)は3次元交絡構造を形成していない
    多孔質電極基材。
  2.  3次元構造体Y-1が、炭素短繊維(A1)同士が3次元網目状炭素繊維(B)によって接合された3次元構造体であり、
    3次元構造体Y-2が、炭素短繊維(A2)同士が2次元網目状炭素繊維(C)によって接合された3次元構造体である
    請求項1に記載の多孔質電極基材。
  3.  炭素短繊維(A1)と、炭素繊維前駆体短繊維(b1)および/またはフィブリル状炭素前駆体繊維(b1’)とを分散させた前駆体シートX-2’と、
    炭素短繊維(A2)と、炭素繊維前駆体短繊維(b2)および/またはフィブリル状炭素前駆体繊維(b2’)とを分散させた前駆体シートX-3’と
    が積層一体化された多孔質電極基材前駆体シートであって、
    前駆体シートX-2’中で炭素短繊維(A1)は3次元交絡構造を形成しており、
    前駆体シートX-3’中で炭素短繊維(A2)は3次元交絡構造を形成していない
    ことを特徴とする多孔質電極基材前駆体シート。
  4.  前記炭素短繊維(A1)の量と、前記炭素繊維前駆体短繊維(b1)および前記フィブリル状炭素前駆体繊維(b1’)の合計量との質量比が、20:80~80:20であり、
    前記炭素短繊維(A2)の量と、前記炭素繊維前駆体短繊維(b2)および前記フィブリル状炭素前駆体繊維(b2’)の合計量との質量比が、20:80~80:20である
    請求項3に記載の多孔質電極基材前駆体シート。
  5.  炭素短繊維(A1)を分散させ、炭素短繊維(A1)の3次元交絡構造を持たない前駆体シートX-1を製造する工程(1)と、
    前記前駆体シートX-1を交絡処理することにより、炭素短繊維(A1)の3次元交絡構造を持つ前駆体シートX-2を得る工程(2)と、
    前記前駆体シートX-2上に、炭素短繊維(A2)を分散させ、炭素短繊維(A2)の3次元交絡構造を持たない前駆体シートX-3を積層一体化することにより、多孔質電極基材前駆体シートX-4を得る工程(3)と、
    前記多孔質電極基材前駆体シートX-4を1000℃以上の温度で炭素化処理する工程(4)と
    を有する多孔質電極基材の製造方法。
  6.  工程(3)において、前駆体シートX-2上に、炭素短繊維(A2)を液体の媒体中に分散させたスラリーを供給し、抄造することにより、炭素短繊維(A1)の3次元交絡構造を持つ前駆体シートX-2と、炭素短繊維(A2)の3次元交絡構造を持たない前駆体シートX-3を積層一体化させる請求項5に記載の多孔質電極基材の製造方法。
  7.  工程(1)において、炭素短繊維(A1)と共に炭素繊維前駆体短繊維(b1)および/またはフィブリル状炭素前駆体繊維(b1’)を分散させ、工程(3)において炭素短繊維(A2)と共に炭素繊維前駆体短繊維(b2)および/またはフィブリル状炭素前駆体繊維(b2’)を分散させることを特徴とする請求項5または6に記載の多孔質電極基材の製造方法。
  8.  前記工程(3)の後で前記工程(4)の前に、前記多孔質電極基材前駆体シートX-4を200℃未満の温度で加熱加圧成型する工程(5)をさらに有する請求項5~7のいずれかに記載の多孔質電極基材の製造方法。
  9.  前記工程(5)の後で前記工程(4)の前に、加熱加圧成型した前記多孔質電極基材前駆体シートX-4を200℃以上300℃未満の温度で酸化処理する工程(6)をさらに有する請求項8に記載の多孔質電極基材の製造方法。
  10.  請求項5~9のいずれかに記載の方法により得られる多孔質電極基材。
  11.  請求項1、2または10に記載の多孔質電極基材を含む膜-電極接合体。
  12.  請求項11に記載の膜-電極接合体を含む固体高分子型燃料電池。
PCT/JP2011/074671 2010-11-01 2011-10-26 多孔質電極基材、その製造方法、多孔質電極基材前駆体シート、膜-電極接合体、および固体高分子型燃料電池 WO2012060258A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US13/882,842 US9325016B2 (en) 2010-11-01 2011-10-26 Porous electrode substrate and process for production thereof, porous electrode substrate precursor sheet, membrane-electrode assembly, and polymer electrolyte fuel cell
KR1020137009746A KR101536835B1 (ko) 2010-11-01 2011-10-26 다공질 전극 기재, 그의 제조 방법, 다공질 전극 기재 전구체 시트, 막-전극 접합체 및 고체 고분자형 연료 전지
CA2816253A CA2816253A1 (en) 2010-11-01 2011-10-26 Porous electrode substrate and process for production thereof, porous electrode substrate precursor sheet, membrane-electrode assembly, and polymer electrolyte fuel cell
CN201180052030.1A CN103181011B (zh) 2010-11-01 2011-10-26 多孔电极基材及其制法、多孔电极基材前体片、膜-电极接合体、以及固体高分子型燃料电池
JP2011546507A JP5356540B2 (ja) 2010-11-01 2011-10-26 多孔質電極基材、その製造方法、多孔質電極基材前駆体シート、膜−電極接合体、および固体高分子型燃料電池
EP11837908.0A EP2637239B1 (en) 2010-11-01 2011-10-26 Porous electrode base material and process for production thereof, porous electrode base material precursor sheet, membrane-electrode assembly, and solid polymer fuel cell
US14/740,637 US9780383B2 (en) 2010-11-01 2015-06-16 Porous electrode substrate and process for production thereof, porous electrode substrate precursor sheet, membrane-electrode assembly, and polymer electrolyte fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010245133 2010-11-01
JP2010-245133 2010-11-01

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/882,842 A-371-Of-International US9325016B2 (en) 2010-11-01 2011-10-26 Porous electrode substrate and process for production thereof, porous electrode substrate precursor sheet, membrane-electrode assembly, and polymer electrolyte fuel cell
US14/740,637 Division US9780383B2 (en) 2010-11-01 2015-06-16 Porous electrode substrate and process for production thereof, porous electrode substrate precursor sheet, membrane-electrode assembly, and polymer electrolyte fuel cell

Publications (1)

Publication Number Publication Date
WO2012060258A1 true WO2012060258A1 (ja) 2012-05-10

Family

ID=46024374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074671 WO2012060258A1 (ja) 2010-11-01 2011-10-26 多孔質電極基材、その製造方法、多孔質電極基材前駆体シート、膜-電極接合体、および固体高分子型燃料電池

Country Status (7)

Country Link
US (2) US9325016B2 (ja)
EP (1) EP2637239B1 (ja)
JP (1) JP5356540B2 (ja)
KR (1) KR101536835B1 (ja)
CN (1) CN103181011B (ja)
CA (1) CA2816253A1 (ja)
WO (1) WO2012060258A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130337366A1 (en) * 2012-06-13 2013-12-19 Scott Blanchet Flow structures for use with an electrochemical cell
EP3229299A4 (en) * 2014-10-17 2018-04-18 Toray Industries, Inc. Carbon sheet, gas diffusion electrode base material, and fuel cell

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012099036A1 (ja) 2011-01-21 2012-07-26 三菱レイヨン株式会社 多孔質電極基材、その製造方法、膜-電極接合体、固体高分子型燃料電池、前駆体シート、およびフィブリル状繊維
US8631190B2 (en) 2011-07-22 2014-01-14 International Business Machines Corporation Prefetching data tracks and parity data to use for destaging updated tracks
KR102469497B1 (ko) 2016-12-13 2022-11-22 도레이 카부시키가이샤 전극, 레독스 플로우 전지 및 전극의 제조 방법
CN113508478B (zh) * 2018-12-28 2024-04-19 凸版印刷株式会社 电极催化剂层、膜电极接合体以及固体高分子型燃料电池
US20230275238A1 (en) * 2021-03-12 2023-08-31 Lawrence Livermore National Security, Llc Inertially enhanced mass transport using porous flow-through electrodes with periodic lattice structures
CN114105666A (zh) * 2021-12-13 2022-03-01 西南交通大学 一种仿树-根结构增强碳基复合材料及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0997612A (ja) * 1995-09-29 1997-04-08 Achilles Corp 電池電極用基材
WO2001056103A1 (fr) 2000-01-27 2001-08-02 Mitsubishi Rayon Co., Ltd. Materiau d'electrode a base de carbone poreux, son procede de fabrication, et papier a fibres de carbone
JP2001216973A (ja) * 2000-02-01 2001-08-10 Toray Ind Inc 電極およびその製造方法並びにそれを用いた燃料電池
WO2002042534A1 (fr) 2000-11-24 2002-05-30 Toho Tenax Co., Ltd. Feuille de fibres de carbone et son procede de production
JP2003045443A (ja) 2001-07-27 2003-02-14 Toho Tenax Co Ltd 高分子電解質型燃料電池電極材用炭素繊維不織布、及びその製造方法
JP2003234106A (ja) * 2002-02-08 2003-08-22 Aisin Seiki Co Ltd 燃料電池用ガス拡散電極の製造方法、燃料電池
JP2004220843A (ja) * 2003-01-10 2004-08-05 Toyota Central Res & Dev Lab Inc 膜電極接合体
JP2007273466A (ja) 2006-03-20 2007-10-18 Gm Global Technology Operations Inc 燃料電池用ガス拡散媒体としてのアクリル繊維結合炭素繊維紙
JP2009004102A (ja) * 2007-06-19 2009-01-08 Toyota Motor Corp 燃料電池

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100525140B1 (ko) * 1998-05-27 2005-11-01 도레이 가부시끼가이샤 고체 고분자형 연료 전지용 탄소 섬유지
US7510626B2 (en) 2001-10-09 2009-03-31 Mitsubishi Rayon Co., Ltd. Carbon fiber paper and porous carbon electrode substrate for fuel cell therefrom
JP2011040386A (ja) * 2001-10-09 2011-02-24 Mitsubishi Rayon Co Ltd 燃料電池用多孔質炭素電極基材
JPWO2004031465A1 (ja) * 2002-09-30 2006-02-02 東レ株式会社 アクリル耐炎繊維不織布、炭素繊維不織布、および、それらの製造方法
US20080038589A1 (en) * 2004-06-21 2008-02-14 Mitsubishi Rayon Co., Ltd. Porous Electrode Base Material and Production Method Thereof
JP2006040886A (ja) * 2004-06-21 2006-02-09 Mitsubishi Rayon Co Ltd 多孔質電極基材およびその製造方法
CN100527496C (zh) * 2004-06-21 2009-08-12 三菱丽阳株式会社 多孔质电极基材及其制造方法
CN101034746A (zh) * 2007-04-12 2007-09-12 上海交通大学 一种质子交换膜燃料电池用膜电极及其制备方法
JP5433147B2 (ja) * 2007-11-21 2014-03-05 三菱レイヨン株式会社 多孔質電極基材、その製造方法、膜−電極接合体、および固体高分子型燃料電池
US20100279177A1 (en) * 2008-01-03 2010-11-04 Hsiharng Yang Carbon fiber conductive sheet and manufacturing method thereof
JP2009295509A (ja) * 2008-06-06 2009-12-17 Toyota Motor Corp 燃料電池用ガス拡散層およびそれを用いた燃料電池
US8016485B2 (en) * 2008-07-31 2011-09-13 Mccann James Brent Theater popcorn container featuring side pockets, handles, and a resealable opening
CN102301509B (zh) 2009-02-04 2015-11-25 三菱丽阳株式会社 多孔质电极基材、其制造方法、膜-电极接合体以及固体高分子型燃料电池
CA2767204C (en) 2009-07-08 2018-05-15 Mitsubishi Rayon Co., Ltd. Porous electrode substrate and method for producing the same
EP2506353B1 (en) 2009-11-24 2018-01-17 Mitsubishi Chemical Corporation Porous electrode base material, process for production thereof, precursor sheet, film-electrode assembly, and solid polymer fuel cell
CN102422471B (zh) 2009-11-24 2014-10-22 三菱丽阳株式会社 多孔质电极基材及其制造方法
WO2012099036A1 (ja) 2011-01-21 2012-07-26 三菱レイヨン株式会社 多孔質電極基材、その製造方法、膜-電極接合体、固体高分子型燃料電池、前駆体シート、およびフィブリル状繊維
EP2669977A4 (en) 2011-01-27 2016-06-22 Mitsubishi Rayon Co POROUS ELECTRODE SUBSTRATE, PROCESS FOR PRODUCING THE SAME, PRECURSOR SHEET, MEMBRANE-ELECTRODE ASSEMBLY, AND SOLID POLYMER TYPE FUEL CELL

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0997612A (ja) * 1995-09-29 1997-04-08 Achilles Corp 電池電極用基材
WO2001056103A1 (fr) 2000-01-27 2001-08-02 Mitsubishi Rayon Co., Ltd. Materiau d'electrode a base de carbone poreux, son procede de fabrication, et papier a fibres de carbone
JP2001216973A (ja) * 2000-02-01 2001-08-10 Toray Ind Inc 電極およびその製造方法並びにそれを用いた燃料電池
WO2002042534A1 (fr) 2000-11-24 2002-05-30 Toho Tenax Co., Ltd. Feuille de fibres de carbone et son procede de production
JP2003045443A (ja) 2001-07-27 2003-02-14 Toho Tenax Co Ltd 高分子電解質型燃料電池電極材用炭素繊維不織布、及びその製造方法
JP2003234106A (ja) * 2002-02-08 2003-08-22 Aisin Seiki Co Ltd 燃料電池用ガス拡散電極の製造方法、燃料電池
JP2004220843A (ja) * 2003-01-10 2004-08-05 Toyota Central Res & Dev Lab Inc 膜電極接合体
JP2007273466A (ja) 2006-03-20 2007-10-18 Gm Global Technology Operations Inc 燃料電池用ガス拡散媒体としてのアクリル繊維結合炭素繊維紙
JP2009004102A (ja) * 2007-06-19 2009-01-08 Toyota Motor Corp 燃料電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2637239A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130337366A1 (en) * 2012-06-13 2013-12-19 Scott Blanchet Flow structures for use with an electrochemical cell
US11105010B2 (en) 2012-06-13 2021-08-31 Nuvera Fuel Cells, LLC Flow structures for use with an electrochemical cell
EP3229299A4 (en) * 2014-10-17 2018-04-18 Toray Industries, Inc. Carbon sheet, gas diffusion electrode base material, and fuel cell

Also Published As

Publication number Publication date
US20150280244A1 (en) 2015-10-01
US9325016B2 (en) 2016-04-26
US9780383B2 (en) 2017-10-03
CN103181011B (zh) 2015-09-30
EP2637239B1 (en) 2015-12-16
KR20130098366A (ko) 2013-09-04
EP2637239A1 (en) 2013-09-11
CA2816253A1 (en) 2012-05-10
US20130224625A1 (en) 2013-08-29
EP2637239A4 (en) 2014-04-09
JP5356540B2 (ja) 2013-12-04
JPWO2012060258A1 (ja) 2014-05-12
CN103181011A (zh) 2013-06-26
KR101536835B1 (ko) 2015-07-14

Similar Documents

Publication Publication Date Title
JP5561171B2 (ja) 多孔質電極基材、その製法、前駆体シート、膜−電極接合体、および固体高分子型燃料電池
JP5356540B2 (ja) 多孔質電極基材、その製造方法、多孔質電極基材前駆体シート、膜−電極接合体、および固体高分子型燃料電池
US9716278B2 (en) Porous electrode base material, method for manufacturing same, and precursor sheet
JP5751309B2 (ja) 多孔質電極基材、膜−電極接合体及び固体高分子型燃料電池
JP6044639B2 (ja) 多孔質電極基材、その製造方法および固体高分子型燃料電池
JP2013020842A (ja) 多孔質電極基材
JP5532334B2 (ja) 多孔質電極基材及びその製造方法
JP5590419B2 (ja) 多孔質電極基材前駆体シートの製造方法、多孔質電極基材の製造方法、多孔質電極基材、膜−電極接合体、および固体高分子型燃料電池
JP2013206704A (ja) 多孔質電極基材、その製造方法、膜−電極接合体、および固体高分子型燃料電池
JP5501332B2 (ja) 多孔質電極基材前駆体シート、その製造方法、多孔質電極基材、膜−電極接合体、および固体高分子型燃料電池
JP2013251070A (ja) 多孔質電極基材、その製造方法
JP6277653B2 (ja) 多孔質電極基材の製造方法
JP2013118051A (ja) 多孔質電極基材の製造方法及び多孔質電極基材
JP6115756B2 (ja) 多孔質電極基材前駆体シート、その製造方法、多孔質電極基材、膜−電極接合体、および固体高分子型燃料電池
JP2016012474A (ja) 多孔質電極基材の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011546507

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11837908

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137009746

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2816253

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13882842

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011837908

Country of ref document: EP