WO2012060079A1 - 酸化アニール処理装置及び酸化アニール処理を用いた薄膜トランジスタの製造方法 - Google Patents

酸化アニール処理装置及び酸化アニール処理を用いた薄膜トランジスタの製造方法 Download PDF

Info

Publication number
WO2012060079A1
WO2012060079A1 PCT/JP2011/006065 JP2011006065W WO2012060079A1 WO 2012060079 A1 WO2012060079 A1 WO 2012060079A1 JP 2011006065 W JP2011006065 W JP 2011006065W WO 2012060079 A1 WO2012060079 A1 WO 2012060079A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
substrate
annealing treatment
oxidation
oxidation annealing
Prior art date
Application number
PCT/JP2011/006065
Other languages
English (en)
French (fr)
Inventor
純史 太田
真人 橋本
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to EP11837733.2A priority Critical patent/EP2637201A4/en
Priority to US13/883,027 priority patent/US9076742B2/en
Priority to JP2012541737A priority patent/JP5372264B2/ja
Priority to KR1020137013719A priority patent/KR101609429B1/ko
Priority to CN201180053396.0A priority patent/CN103201828B/zh
Publication of WO2012060079A1 publication Critical patent/WO2012060079A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/477Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67178Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers vertical arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/6719Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the processing chambers, e.g. modular processing chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Definitions

  • the present invention relates to an oxidation annealing treatment apparatus and a method of manufacturing a thin film transistor using the oxidation annealing treatment.
  • a thin film transistor (hereinafter also referred to as “TFT”) is provided as a switching element for each pixel which is the minimum unit of an image.
  • a typical bottom gate type TFT has, for example, a gate electrode provided on an insulating substrate, a gate insulating film provided so as to cover the gate electrode, and an island shape so as to overlap the gate electrode on the gate insulating film. And a source electrode and a drain electrode provided to face each other on the semiconductor layer.
  • an IGZO In-Ga-Zn-O
  • amorphous silicon semiconductor layer as a switching element of each pixel which is the minimum unit of an image.
  • a TFT using an oxide semiconductor layer (hereinafter also referred to as an “oxide semiconductor layer”) formed of an oxide semiconductor film is proposed.
  • Patent Document 1 for example, in the diffusion furnace, a thermal oxidation annealing process is performed in the atmosphere gas (nitrogen, oxygen, water vapor) from the substrate charging to the heat treatment process (temperature increase, stability, temperature decrease). Things are known.
  • an infrared radiation plate is provided with a space on the inner periphery of a furnace body made of a heat insulating material, and a gas supply hole is provided on one side of the infrared radiation plate, A number of infrared radiation plates are provided horizontally at the required intervals between the left and right infrared radiation plates, and supported by the space between each horizontal infrared radiation plate.
  • a multi-stage glass substrate firing furnace in which a glass substrate is supported by a bar is known.
  • TFT characteristics vary at the target seam in AC sputtering film formation, so it is necessary to improve the characteristics locally rather than the entire substrate.
  • the present invention has been made in view of such a point, and the object of the present invention is to enable an oxidation annealing process to be performed at a high throughput and at a low cost while preventing the occurrence of leakage current even for a large substrate. There is to do.
  • an oxygen supplement gas containing water vapor and oxygen is supplied only to the oxygen-deficient site.
  • nitrogen gas that suppresses oxidation was blown to places other than the oxygen-deficient site, in other words, oxygen-excess sites.
  • a sealed container-like device body A far-infrared planar heater disposed inside the apparatus body; An oxygen supplement gas supply pipe for supplying an oxygen supplement gas containing water vapor and oxygen into the apparatus body; A gas exhaust pipe for exhausting the gas in the apparatus body; And a nozzle injection port that is connected to the oxygen supplement gas supply pipe and injects the oxygen supplement gas containing water vapor and oxygen into the oxygen deficient portion of the substrate.
  • the large substrate is efficiently heated by the far-infrared planar heater in the apparatus main body.
  • the oxygen supplement gas containing water vapor and oxygen is injected only from the nozzle injection port to the oxygen deficient part of the substrate, the water vapor is not filled more than necessary, and the leakage current (dielectric breakdown) of the far-infrared planar heater is generated. Is suppressed.
  • oxygen gas containing water vapor is blown and heated, the oxidation efficiency is improved, and it is not necessary to keep the inside of the apparatus body at a high temperature of about 450 ° C., and the apparatus body can be made of metal.
  • the oxygen replenishing gas is injected from the nozzle injection port in a state where the apparatus main body is filled with the nitrogen gas.
  • the oxygen supplement gas containing water vapor and oxygen is injected only from the nozzle injection port to the oxygen deficient portion of the substrate to promote the oxidation, since oxygen is filled in the apparatus main body, Oxidation is suppressed at unnecessary portions, and water vapor is not filled more than necessary, and the occurrence of leakage current (dielectric breakdown) of the far-infrared planar heater is suppressed.
  • the substrate is a thin film transistor
  • the oxygen deficient site is a target seam generated by AC sputtering.
  • the nozzle injection ports are arranged according to the number of seams of the target.
  • the nozzle can be arranged in accordance with the target seam that needs to be oxidized, thus simplifying the apparatus.
  • a sealed container-like device body A far-infrared planar heater disposed inside the apparatus body; A nitrogen gas supply pipe for supplying nitrogen gas into the apparatus body; A gas exhaust pipe for exhausting the gas in the apparatus body; A nozzle injection port that is communicated with the nitrogen gas supply pipe and injects nitrogen gas to the oxygen excess portion of the substrate.
  • the large substrate is efficiently heated by the far-infrared planar heater in the apparatus main body.
  • the present invention on the contrary, it is possible to make the entire substrate uniform by injecting nitrogen gas that suppresses oxidation only from the nozzle injection port to the oxygen excess portion of the substrate.
  • nitrogen gas since water vapor is not filled in the apparatus main body, the occurrence of leakage current (dielectric breakdown) of the far-infrared planar heater is suppressed.
  • nitrogen gas since nitrogen gas only needs to be applied to the oxygen-excess site and it is not necessary to fill the entire surface uniformly, high airtightness is not required, so that even a large substrate can be subjected to vapor oxidation annealing.
  • the substrate is a thin film transistor
  • the oxygen-excess site is a site other than the target seam generated by the AC sputtering process.
  • the far-infrared planar heater includes a mica heater and an infrared radiation flat plate.
  • mica can be easily molded in a size that can accommodate a large substrate, and has a quick response.
  • the oxygen supplement gas containing water vapor and oxygen is locally injected to the oxygen deficient portion of the substrate.
  • the large substrate is efficiently heated by the far-infrared planar heater in the apparatus main body.
  • the oxygen supplement gas containing water vapor and oxygen is injected only from the nozzle injection port to the oxygen deficient part of the substrate, the water vapor is not filled more than necessary, and the leakage current (dielectric breakdown) of the far-infrared planar heater is generated. Is suppressed.
  • oxygen gas containing water vapor is blown and heated, the oxidation efficiency is improved, and it is not necessary to keep the inside of the apparatus body at a high temperature of about 450 ° C., and the apparatus body can be made of metal.
  • the substrate While the substrate is filled with nitrogen gas, the substrate is heated with a far-infrared planar heater, the oxygen supplement gas containing water vapor and oxygen is locally injected to the oxygen deficient portion of the substrate.
  • the large substrate is efficiently heated by the far-infrared planar heater in the apparatus main body.
  • oxygen supplementary gas containing water vapor and oxygen is injected only from the nozzle injection port to the oxygen deficient part of the substrate to promote oxidation, it is filled with nitrogen in the main body of the apparatus.
  • water vapor is not filled more than necessary, and the occurrence of leakage current (dielectric breakdown) of the far-infrared planar heater is suppressed.
  • oxygen gas containing water vapor is blown and heated, the oxidation efficiency is improved, and it is not necessary to keep the inside of the apparatus body at a high temperature of about 450 ° C., and the apparatus body can be made of metal.
  • the oxygen deficient site is a target seam generated in the AC sputtering process.
  • Nitrogen gas is locally injected to the oxygen-excess site in the substrate.
  • the large substrate is efficiently heated by the far-infrared planar heater in the apparatus main body.
  • nitrogen gas that suppresses oxidation only from the nozzle injection port to the oxygen excess portion of the substrate can be injected to achieve uniform oxidation throughout the substrate.
  • water vapor is not filled in the apparatus main body, and the occurrence of leakage current (dielectric breakdown) of the far-infrared planar heater is suppressed.
  • nitrogen gas since nitrogen gas only needs to be applied to the oxygen-excess site and it is not necessary to fill the entire surface uniformly, high airtightness is not required, so that even a large substrate can be subjected to vapor oxidation annealing.
  • the eleventh aspect Before the annealing treatment, among a plurality of pairs of targets installed in parallel, AC sputtering treatment of applying an alternating voltage by changing the polarity for each pair of targets, The oxygen excess portion is a portion other than the joint of the target generated by the AC sputtering process.
  • the oxygen supplement gas containing water vapor and oxygen is locally injected only to the oxygen deficient portion of the substrate while heating the substrate with the far-infrared planar heater.
  • the oxidation annealing process can be performed with high throughput and low cost while preventing generation of leakage current.
  • the substrate is heated by a far-infrared planar heater and nitrogen gas is locally injected only to the oxygen excess portion of the substrate.
  • the oxidation annealing process can be performed at a high throughput and at a low cost while preventing the occurrence of leakage current.
  • FIG. 2 equivalent view concerning the modification 1 of embodiment.
  • FIG. 9 is a view corresponding to FIG. 2 according to a second modification of the embodiment.
  • FIG. 1 and 2 show an oxidation annealing treatment apparatus 1 according to an embodiment of the present invention
  • this oxidation annealing treatment apparatus 1 includes an apparatus main body 3 covered with a heat insulating material 2 in a sealed container shape.
  • the apparatus main body 3 has a rectangular parallelepiped shape, for example, and is divided into four chambers 5 in the vertical direction, for example.
  • the far-infrared planar heater 6 is arranged in a total of five stages above and below the upper and lower surfaces of the apparatus main body 3 and three partition positions, and is also arranged on the front, rear, left and right side walls of the apparatus main body 3. That is, each chamber 5 is surrounded by a far-infrared planar heater 6.
  • the number of chambers 5 provided in the apparatus main body 3 is not particularly limited, and may be 1 to 3 or 5 or more.
  • the apparatus main body 3 is connected with an oxygen supplement gas supply pipe 8 for supplying an oxygen supplement gas containing water vapor and oxygen, and the tip of the oxygen supplement gas supply pipe 8 branches and extends to each chamber 5.
  • substrate support pins 10 are arranged so as to be able to support the substrate 50 to be annealed at a distance from the far-infrared surface heater 6.
  • the far-infrared planar heater 6 includes a mica heater and an infrared radiation flat plate sandwiching the mica heater from both sides.
  • Mica (mica) has the advantage that it can be easily molded in a size that can accommodate a large substrate and has a quick response.
  • the apparatus main body 3 is also connected to a gas exhaust pipe 11 for exhausting the gas in the apparatus main body 3, and each gas exhaust pipe 11 communicates with each chamber 5 and is configured to exhaust the gas in each chamber 5. Has been.
  • the oxygen supplement gas supply pipe 8 extending to each chamber 5 is connected to a bubbler system 12.
  • This bubbler system 12 has a hot water tank 14 incorporating a heater 13 heated to about 90 ° C., and oxygen gas is supplied from an oxygen cylinder (not shown) or the like to an oxygen gas supply pipe 15 extending inside the hot water tank 14. It has come to be. Then, the oxygen supplied into the heated hot water 14a is filled above the hot water tank 14 together with water vapor, and wet oxygen gas containing water vapor is supplied to the oxygen supplement gas supply pipe 8.
  • a nozzle injection port 16 is provided in the oxygen supplement gas supply pipe 8 extending to each chamber 5.
  • the nozzle injection port 16 has an oxygen supplement gas containing water vapor and oxygen with respect to an oxygen deficient portion of the substrate 50 supported by the substrate support pins 10, that is, a target seam 51 (see FIG. 5). It is comprised so that it may aim and target locally.
  • scanning wiring is formed on the active matrix substrate 50 in step S01.
  • a titanium layer is deposited on the first layer
  • an aluminum layer is deposited on the second layer
  • a titanium layer is deposited on the three-layer surface, and then patterned by photolithography, wet etching, and resist stripping cleaning, thereby forming a three-layer film.
  • the scanning wiring to be formed is formed.
  • an insulating film is formed.
  • an SiO 2 layer is formed as an insulating film and an In—Ga—Zn—O (IGZO) layer is formed as a channel layer by a CVD method.
  • IGZO In—Ga—Zn—O
  • step S03 an oxide semiconductor layer is formed.
  • the oxide semiconductor layer is patterned by photolithography, wet etching, and resist peeling cleaning.
  • step S04 signal wirings and drain electrodes are formed.
  • patterning is performed by photolithography, dry etching, and resist peeling cleaning, thereby forming signal wirings and drain electrodes made of an aluminum / titanium film.
  • the AC sputtering apparatus 60 will be briefly described. As shown in FIG. 5, in the AC sputtering process, among the targets 61 arranged in parallel, the AC voltage 62 is applied with the polarity changed for each pair of targets 61, and the atoms of the jumped target 61 are opposed to each other. A metal film is formed on the substrate 50 placed on the substrate.
  • the target 61 must be divided along with the increase in the size of the substrate 50, and the target seam 51 is formed on the substrate 50 as shown by hatching in FIG.
  • the film quality is different between the film formation on the target seam 51 and the other target 61, and the characteristic difference causes the deterioration of the quality so that a large difference occurs in the function of the drain current Id and the gate voltage Vg shown in FIG. Invite.
  • a protective film is formed.
  • a SiO 2 film is deposited on the substrate 50 by the CVD method.
  • step S06 the annealing process according to the present invention is performed. Specifically, the inside of the apparatus main body 3 is kept at 350 ° C., and a certain amount of wet oxygen gas from the bubbler system 12 is supplied into each chamber 5 through the oxygen replenishing gas supply pipe 8 by, for example, a fixed amount of 250 liters per minute.
  • the wet oxygen gas supplied into each chamber 5 is injected from the nozzle injection port 16 toward the target joint 51 of the substrate 50.
  • the heating time is, for example, 1 hour.
  • the target seam 51 formed by the AC sputtering film has variations in characteristics and lacks oxygen. However, since it is heated in a state in which wet oxygen gas is injected, the oxidation is promoted and there is no variation in characteristics. And uniform.
  • the pressure in the chamber 5 is not so high as compared to the atmospheric pressure. Further, since oxidation can be performed at about 350 ° C., it is not necessary to use quartz which has high heat resistance but is difficult to process a large member, and the apparatus main body 3 can be made of metal. Moreover, since the wet oxygen gas is not filled in the chamber 5 more than necessary, no leak current is generated in the far-infrared planar heater 6.
  • step S07 an interlayer insulating film is formed.
  • the protective film and the insulating film are patterned by dry etching.
  • a pixel electrode is formed.
  • an ITO film is deposited by sputtering, and then patterned by photolithography, wet etching, and resist stripping cleaning to form a pixel electrode made of the ITO film.
  • a color filter substrate manufactured in a separate process is bonded to form a panel.
  • polyimide is formed as an alignment film on the active matrix substrate 50 and the counter substrate manufactured by each process by a printing method. Subsequently, these substrates are bonded together after sealing agent printing and liquid crystal dropping. Finally, the bonded substrates are divided by dicing.
  • annealing treatment is performed under the following conditions.
  • the wet oxygen gas is supplied from the nozzle injection port 16 at 350 ° C. while supplying 250 liters per minute and heated for 1 hour.
  • FIG. 7 shows the results of comparison between the regions A to C shown in FIG. 7 to what extent the threshold voltage Vth differs between the target seam 51 and the seam other than the seam between the two substrates 50 after the annealing treatment. 8 and FIG.
  • FIG. 8 shows the threshold voltage distribution in each region of the example and the comparative example.
  • FIG. 9 the average value of the threshold voltage of the target joint 51 in each region and the average value of the threshold voltages other than the joint are shown, and the average value of each region is also shown.
  • the variation in the threshold voltage is smaller in the embodiment than in the comparative example, and the difference in the threshold voltage between the target seam 51 and the seam other than the seam is small. It was found that the characteristic difference was reduced.
  • the oxidation annealing process can be performed with high throughput and low cost while preventing the occurrence of leakage current.
  • FIG. 10 shows an oxidation annealing treatment apparatus 101 of Modification 1 of the embodiment of the present invention, which differs from the above embodiment in that the inside of the apparatus main body 3 is filled with nitrogen gas.
  • the same portions as those in FIGS. 1 to 9 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • a nitrogen gas supply pipe 108 for filling the internal space of the apparatus main body 3 with nitrogen gas is added to the first embodiment.
  • a nitrogen gas supply source such as a nitrogen gas cylinder is connected to the nitrogen gas supply pipe 108. Any gas other than nitrogen gas that suppresses oxidation can be used.
  • the oxygen replenishing gas containing water vapor and oxygen is locally injected in the state in which the chamber 5 is filled with nitrogen gas, as in the above embodiment.
  • the apparatus main body 3 is filled with nitrogen. Therefore, oxidation is suppressed at a site where oxygen is not necessary, and water vapor is not filled more than necessary, and the occurrence of leakage current (dielectric breakdown) of the far-infrared planar heater 6 is suppressed.
  • the oxidation annealing process can be performed with high throughput and low cost while preventing the occurrence of leakage current.
  • FIG. 11 shows an oxidation annealing apparatus 201 according to the second modification of the embodiment of the present invention, which differs from the above embodiment in that nitrogen is injected into the target seam 51.
  • the oxygen supplement gas supply pipe 8 of the above embodiment is replaced with a nitrogen gas supply pipe 208 that supplies nitrogen gas into the apparatus main body 3.
  • the nitrogen gas supply pipe 208 is connected not to the bubbler system 12 but to a nitrogen gas supply source such as a nitrogen gas cylinder.
  • a nitrogen gas supply source such as a nitrogen gas cylinder.
  • a reducing gas such as hydrogen gas or carbon monoxide gas can be used instead.
  • the method of suppressing oxidation by heating the inside of the apparatus body 3 in a vacuum is complicated and the apparatus cannot be used.
  • the nitrogen gas supply pipe is connected to a nozzle injection port 16 for injecting nitrogen gas to an oxygen excess portion of the substrate 50 (that is, a portion other than the target joint 51).
  • a nozzle injection port 16 for injecting nitrogen gas to an oxygen excess portion of the substrate 50 (that is, a portion other than the target joint 51).
  • the arrangement position or the injection direction of the nozzle injection port 16 is different from the above embodiment.
  • the nozzle injection port 16 is directed to a portion other than the target seam 51.
  • the substrate 50 is heated by the far-infrared planar heater 6 in the apparatus body 3 in the annealing process, and nitrogen gas is locally applied to portions other than the target seam 51 in the substrate 50. Inject.
  • the oxidation annealing process can be performed with high throughput and low cost while preventing the occurrence of leakage current.
  • the present invention may be configured as follows with respect to the above embodiment.
  • the annealing process is performed after the formation of the protective film in step S05, but it may be performed after the formation of the oxide semiconductor layer in step S03.
  • the present invention is useful for an oxidation annealing treatment apparatus for heating and oxidizing a substrate and a method for manufacturing a thin film transistor using the oxidation annealing treatment.
  • Oxidation annealing equipment 3 Equipment body 6 Far-infrared planar heater (mica heater, infrared radiation flat plate) 8 Oxygen replenishing gas supply pipe 11 Gas exhaust pipe 16 Nozzle injection port 50 Substrate 51 Target joint 60 AC sputtering apparatus 61 Target 101 Oxidation annealing treatment apparatus 108 Nitrogen gas supply pipe 201 Oxidation annealing treatment apparatus 208 Nitrogen gas supply pipe

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Thin Film Transistor (AREA)

Abstract

 酸化アニール処理装置1の密閉容器状の装置本体3の内部に遠赤外線面状ヒータ6を配置し、装置本体3内に水蒸気及び酸素を含んだ酸素補充ガスを供給する酸素補充ガス給気管8と装置本体3内のガスを排出するガス排気管11とを接続し、酸素補充ガス給気管8に基板50の酸素欠損部位に対し、水蒸気及び酸素を含んだ酸素補充ガスを噴射するノズル噴射口16を連通させる。これにより、大型の基板であっても、リーク電流の発生を防ぎながら高いスループット及び低コストで酸化アニール処理を行えるようにする。

Description

酸化アニール処理装置及び酸化アニール処理を用いた薄膜トランジスタの製造方法
 本発明は、酸化アニール処理装置及び酸化アニール処理を用いた薄膜トランジスタの製造方法に関するものである。
 アクティブマトリクス基板では、画像の最小単位である各画素毎に、スイッチング素子として、例えば、薄膜トランジスタ(Thin Film Transistor、以下、「TFT」とも称する)が設けられている。
 一般的なボトムゲート型のTFTは、例えば、絶縁基板上に設けられたゲート電極と、ゲート電極を覆うように設けられたゲート絶縁膜と、ゲート絶縁膜上にゲート電極に重なるように島状に設けられた半導体層と、半導体層上に互いに対峙するように設けられたソース電極及びドレイン電極とを備えている。
 また、近年、アクティブマトリクス基板では、画像の最小単位である各画素のスイッチング素子として、アモルファスシリコンの半導体層を用いた従来の薄膜トランジスタに代わり、高い移動度を有するIGZO(In-Ga-Zn-O)系の酸化物半導体膜により形成された酸化物半導体の半導体層(以下、「酸化物半導体層」とも称する)を用いたTFTが提案されている。
 酸化物半導体を用いた薄膜トランジスタにおいて、安定して高い薄膜トランジスタ特性を得ることは困難であり、酸化アニール処理による酸素欠損量の制御及び欠陥準位の低減を行う必要がある。
 そこで、従来より、例えば、特許文献1のように、拡散炉内において、基板投入から熱処理工程(昇温、安定、降温)を雰囲気ガス(窒素、酸素、水蒸気)中で熱酸化アニール処理を行うものが知られている。
 また、特許文献2のように、断熱材からなる炉体の内周に空隙を存して面状ヒータを挾んだ赤外線放射板を立設し赤外線放射板の一方にガス供給孔を、他方に排気孔を設け、かつ左右の両赤外線放射板間に同じく面状ヒータを挾んだ数枚の赤外線放射板を所要間隔おきに水平に段設し、各水平赤外線放射板間の空間に支持バーによりガラス基板を受支した多段型ガラス基板焼成炉が知られている。
特開2009-128837号公報 実用新案登録第3066387号公報
 しかし、特許文献1のようなバッチ式横型拡散炉では、基板の大型化に伴って装置本体容量が大きくなり、昇温及び降温に時間がかかる。また、オーバーシュートするので、安定化に時間がかかる。また、炉内が高温となるため金属部材で対応できず、石英部材で炉を構成しなければない。大型の石英部材の加工は非常に困難であるため、大型の基板については対応できないという問題がある。また、基板枚数についても、バッチ処理であるため、単位時間当たりの処理能力であるスループットが上がらない。
 また、特許文献2の多段型ガラス基板焼成炉では、気密性が確保できず、面内分布が発生して炉内に水蒸気を分散させることが困難である。また、赤外線ヒータの光性部材であるマイカヒータが大量の水分と接触すると、リーク電流が発生するという問題がある。
 また、IGZOでは、ACスパッタ成膜におけるターゲット継ぎ目でTFT特性バラツキが生じるため、基板全体ではなく、局所的に特性を改善する必要がある。
 本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、大型の基板であっても、リーク電流の発生を防ぎながら高いスループット及び低コストで酸化アニール処理を行えるようにすることにある。
 上記の目的を達成するために、この発明では、水蒸気及び酸素を含んだ酸素補充ガスを酸素欠乏部位にのみ供給するようにした。
 また、逆に酸素欠乏部位以外の場所、言い換えれば酸素過剰部位に酸化を抑制する窒素ガスを吹き付けるようにした。
 具体的には、第1の発明では、
 密閉容器状の装置本体と、
 上記装置本体の内部に配置された遠赤外線面状ヒータと、
 上記装置本体内に水蒸気及び酸素を含んだ酸素補充ガスを供給する酸素補充ガス給気管と、
 上記装置本体内のガスを排出するガス排気管と、
 上記酸素補充ガス給気管に連通されて基板の酸素欠損部位に対し、上記水蒸気及び酸素を含んだ酸素補充ガスを噴射するノズル噴射口とを備えている。
 上記の構成によると、装置本体内で遠赤外線面状ヒータによって大型基板が効率よく加熱される。また、ノズル噴射口から基板の酸素欠損部位にだけ水蒸気及び酸素を含んだ酸素補充ガスを噴射するので、水蒸気が必要以上に充満されず、遠赤外線面状ヒータのリーク電流(絶縁破壊)の発生が抑制される。また、水蒸気を含む酸素ガスを吹き付けて加熱するので酸化効率が向上し、装置本体内を450℃程度の高温に保つ必要が無くなり、装置本体を金属で構成できる。さらに、酸素欠損部位にだけ酸素補充ガスを当てればよく全体に均一に充満させる必要がないことから高い気密性を必要としないので、大型の基板でも蒸気酸化アニール処理を行える。
 また、第2の発明では、第1の発明において、
 上記装置本体の内部空間に窒素ガスを充満させる窒素ガス給気管をさらに備え、
 上記窒素ガスを上記装置本体に充満させた状態で上記ノズル噴射口から上記酸素補充ガスを噴射するように構成されている。
 上記の構成によると、ノズル噴射口から基板の酸素欠損部位にだけ水蒸気及び酸素を含んだ酸素補充ガスを噴射して酸化を促進させるものの、装置本体内で窒素が充満されているので、酸素が不要な部位には酸化が抑制されると共に、水蒸気が必要以上に充満されず、遠赤外線面状ヒータのリーク電流(絶縁破壊)の発生が抑制される。
 第3の発明では、第1又は第2の発明において、
 上記基板は、薄膜トランジスタであり、
 上記酸素欠損部位は、ACスパッタ処理で発生するターゲットの継ぎ目である。
 上記の構成によると、ACスパッタ成膜におけるターゲット継ぎ目でTFT特性バラツキが生じても、その部分に水蒸気及び酸素を含んだ酸素補充ガスを噴射するので、局所的に特性が改善される。
 第4の発明では、第3の発明において、
 上記ノズル噴射口は、上記ターゲットの継ぎ目の数に応じて配置されている。
 上記の構成によると、酸化が必要なターゲット継ぎ目に合わせてノズル噴射口を配置すればよいので、装置が簡略化される。
 また、第5の発明では、
 密閉容器状の装置本体と、
 上記装置本体の内部に配置された遠赤外線面状ヒータと、
 上記装置本体内に窒素ガスを供給する窒素ガス給気管と、
 上記装置本体内のガスを排出するガス排気管と、
 上記窒素ガス給気管に連通されて基板の酸素過剰部位に対し窒素ガスを噴射するノズル噴射口とを備えている。
 上記の構成によると、装置本体内で遠赤外線面状ヒータによって大型基板が効率よく加熱される。この発明では、逆にノズル噴射口から基板の酸素過剰部位にだけ酸化を抑制させる窒素ガスを噴射して基板全体として酸化の均一化を図ることができる。この方法では、水蒸気が装置本体内で充満されないので、遠赤外線面状ヒータのリーク電流(絶縁破壊)の発生が抑制される。また、酸素過剰部位にだけ窒素ガスを当てればよく全体に均一に充満させる必要がないことから高い気密性を必要としないので、大型の基板でも蒸気酸化アニール処理を行える。
 第6の発明では、第5の発明において、
 上記基板は、薄膜トランジスタであり、
 上記酸素過剰部位は、ACスパッタ処理で発生するターゲットの継ぎ目以外の部位である。
 上記の構成によると、ACスパッタ成膜におけるターゲット継ぎ目でTFT特性バラツキが生じても、それ以外の部分に窒素ガスを噴射して酸化を抑制するため、全体として特性のバラツキが改善される。
 第7の発明では、第1乃至第6のいずれか1つの発明において、
 上記遠赤外線面状ヒータは、マイカヒータと、赤外線放射平板とを含む構成とする。
 上記の構成によると、マイカ(雲母)であれば、大型基板に対応できる大きさでも容易に成形でき、レスポンスが早い。
 第8の発明では、
 装置本体内の基板を遠赤外線面状ヒータで加熱しながら、
 上記基板の酸素欠損部位に対し、水蒸気及び酸素を含んだ酸素補充ガスを局所的に噴射する構成とする。
 上記の構成によると、装置本体内で遠赤外線面状ヒータによって大型基板が効率よく加熱される。また、ノズル噴射口から基板の酸素欠損部位にだけ水蒸気及び酸素を含んだ酸素補充ガスを噴射するので、水蒸気が必要以上に充満されず、遠赤外線面状ヒータのリーク電流(絶縁破壊)の発生が抑制される。また、水蒸気を含む酸素ガスを吹き付けて加熱するので酸化効率が向上し、装置本体内を450℃程度の高温に保つ必要が無くなり、装置本体を金属で構成できる。さらに、酸素欠損部位にだけ酸素補充ガスを当てればよく全体に均一に充満させる必要がないことから高い気密性を必要としないので、大型の基板でも蒸気酸化アニール処理を行える。
 第9の発明では、
 装置本体内を窒素ガスで満たした状態で、基板を遠赤外線面状ヒータで加熱しながら、
 上記基板の酸素欠損部位に対し、水蒸気及び酸素を含んだ酸素補充ガスを局所的に噴射する構成とする。
 上記の構成によると、装置本体内で遠赤外線面状ヒータによって大型基板が効率よく加熱される。また、ノズル噴射口から基板の酸素欠損部位にだけ水蒸気及び酸素を含んだ酸素補充ガスを噴射して酸化を促進させるものの、装置本体内で窒素が充満されているので、酸素が不要な部位には酸化が抑制されると共に、水蒸気が必要以上に充満されず、遠赤外線面状ヒータのリーク電流(絶縁破壊)の発生が抑制される。また、水蒸気を含む酸素ガスを吹き付けて加熱するので酸化効率が向上し、装置本体内を450℃程度の高温に保つ必要が無くなり、装置本体を金属で構成できる。さらに、酸素欠損部位にだけ酸素補充ガスを当てればよく全体に均一に充満させる必要がないことから高い気密性を必要としないので、大型の基板でも蒸気酸化アニール処理を行える。
 第10の発明では、第8又は第9の発明において、
 上記アニール処理の前に、並列に設置された複数対のターゲットのうち、対をなすターゲット毎に極性を変えて交流電圧を印加するACスパッタ処理を含み、
 上記酸素欠損部位は、上記ACスパッタ処理で発生するターゲットの継ぎ目である。
 上記の構成によると、アニール処理の前工程において、ACスパッタ成膜におけるターゲット継ぎ目でTFT特性バラツキが生じても、その部分に水蒸気及び酸素を含んだ酸素補充ガスを噴射するので、局所的に特性が改善される。
 また、第11の発明では、
 装置本体内で基板を遠赤外線面状ヒータで加熱しながら、
 上記基板における酸素過剰部位に対し、窒素ガスを局所的に噴射する。
 上記の構成によると、装置本体内で遠赤外線面状ヒータによって大型基板が効率よく加熱される。この発明では、逆にノズル噴射口から基板の酸素過剰部位にだけ酸化を抑制する窒素ガスを噴射して基板全体として酸化の均一化を図ることができる。この方法では、水蒸気が装置本体内で充満されず、遠赤外線面状ヒータのリーク電流(絶縁破壊)の発生が抑制される。また、酸素過剰部位にだけ窒素ガスを当てればよく全体に均一に充満させる必要がないことから高い気密性を必要としないので、大型の基板でも蒸気酸化アニール処理を行える。
 第12の発明では、第11の発明において、
  上記アニール処理の前に、並列に設置された複数対のターゲットのうち、対をなすターゲット毎に極性を変えて交流電圧を印加するACスパッタ処理を含み、
 上記酸素過剰部位は、上記ACスパッタ処理で発生するターゲットの継ぎ目以外の部分である。
 上記の構成によると、ACスパッタ成膜におけるターゲット継ぎ目でTFT特性バラツキが生じても、それ以外の部分に窒素ガスを噴射して酸化を抑制させるので全体として特性が改善される。
 以上説明したように、本発明によれば、基板を遠赤外線面状ヒータで加熱しながら基板の酸素欠損部位に対してのみ水蒸気及び酸素を含んだ酸素補充ガスを局所的に噴射するようにしたことにより、大型の基板であっても、リーク電流の発生を防ぎながら高いスループット及び低コストで酸化アニール処理を行える。
 同様に、本発明によれば、基板を遠赤外線面状ヒータで加熱しながら基板の酸素過剰部位に対してのみ窒素ガスを局所的に噴射するようにしたことにより、大型の基板であっても、リーク電流の発生を防ぎながら高いスループット及び低コストで酸化アニール処理を行える。
実施形態にかかる酸化アニール処理装置を正面から見た断面図である。 実施形態にかかる酸化アニール処理装置を上方から見た断面図である。 バブラーシステムの概要を示す正面図である。 酸化アニール処理を用いた薄膜トランジスタの製造方法を示すフローチャートである。 ACスパッタ装置の概略を示し、(a)が平面図で、(b)がVb-Vb線断面図である。 ACスパッタ処理後の特性を示すグラフである。 基板上の各領域の配置を示す平面図である。 各領域におけるしきい値電圧の分布を示すグラフである。 各領域におけるターゲット継ぎ目と継ぎ目以外のしきい値電圧の平均値及び各領域の平均値を比較する表である。 実施形態の変形例1にかかる図2相当図である。 実施形態の変形例2にかかる図2相当図である。
 以下、本発明の実施形態を図面に基づいて説明する。
 図1及び図2は本発明の実施形態の酸化アニール処理装置1を示し、この酸化アニール処理装置1は、密閉容器状の断熱材2で覆われた装置本体3を備えている。この装置本体3は、例えば直方体状のもので、例えば上下に4つのチャンバー5に区切られている。遠赤外線面状ヒータ6は、装置本体3の上面、下面及び仕切位置3箇所の上下に合計5段配置され、装置本体3の前後左右の側壁にも配置されている。つまり、各チャンバー5は、それぞれ遠赤外線面状ヒータ6で囲まれている。なお、装置本体3内でチャンバー5をいくつ設けるかは特に限定されず、1~3つでも、5つ以上でもよい。
 装置本体3には、水蒸気及び酸素を含んだ酸素補充ガスを供給する酸素補充ガス給気管8が接続され、この酸素補充ガス給気管8の先端は分岐して各チャンバー5まで延びている。各チャンバー5内には、基板支持ピン10が配置され、遠赤外線面状ヒータ6から間隔をあけてアニール処理される基板50を支持可能に構成されている。詳しくは図示しないが、遠赤外線面状ヒータ6は、マイカヒータと、これを両側から挟む赤外線放射平板とを含む。マイカ(雲母)であれば、大型基板に対応できる大きさでも容易に成形でき、レスポンスが早いというメリットがある。
 また、装置本体3には、装置本体3内のガスを排出するガス排気管11も接続され、各ガス排気管11は各チャンバー5に連通し、各チャンバー5内のガスを排出するように構成されている。
 図3に示すように、各チャンバー5に延びる酸素補充ガス給気管8は、バブラーシステム12に接続されている。このバブラーシステム12は、90℃程度に加熱されるヒータ13を内蔵する温水タンク14を有し、この温水タンク14内部に延びる酸素ガス供給パイプ15には、図示しない酸素ボンベなどから酸素ガスが供給されるようになっている。そして、加熱された温水14a内に供給された酸素が水蒸気と共に温水タンク14上方に充満し、水蒸気を含む湿潤酸素ガスが酸素補充ガス給気管8に供給されるようになっている。
 一方、図1に示すように、各チャンバー5まで延びた酸素補充ガス給気管8にはノズル噴射口16が設けられている。このノズル噴射口16は、図2に示すように、基板支持ピン10に支持された基板50の酸素欠損部位、すなわちターゲット継ぎ目51(図5参照)に対し、水蒸気及び酸素を含んだ酸素補充ガスを的を絞って局所的に噴射するように構成されている。
  -基板の製造工程-
 次に、図4を用いて本実施形態にかかる酸化アニール処理を用いた薄膜トランジスタの製造方法を含む液晶パネルの製造工程について説明する。
 まず、ステップS01において、アクティブマトリクス基板50上に走査配線を形成する。例えば、一層目にチタン層を、二層目にアルミニウム層を、三層面にチタン層をそれぞれ堆積した後、これをフォトリソグラフィ、ウェットエッチング及びレジスト剥離洗浄によりパターニングすることで、三層の膜からなる走査配線を形成する。
 次いで、ステップS02において、絶縁膜を形成する。例えば、CVD法により、絶縁膜として SiO層、チャネル層としてIn-Ga-Zn-O(IGZO)層を形成する。
 次いで、ステップS03において、酸化物半導体層を形成する。例えば、フォトリソグラフィ、ウェットエッチング及びレジスト剥離洗浄により酸化物半導体層をパターニングする。
 次いで、ステップS04において、信号配線及びドレイン電極を形成する。例えば、ACスパッタ法により下層チタン膜及び上層アルミニウム膜を堆積した後、これをフォトリソグラフィ、ドライエッチング及びレジスト剥離洗浄によりパターニングすることでアルミニウム/チタン膜からなる信号配線及びドレイン電極を形成する。ここで、ACスパッタ装置60について簡単に説明する。図5に示すように、ACスパッタ処理においては、並列に配置されたターゲット61のうち、対をなすターゲット61毎に極性を変えて交流電圧62を印加し、飛び出したターゲット61の原子を対向して置いた基板50上に降り積もらせて金属の成膜を形成する。基板50の大型化に伴ってターゲット61を分割せざるを得ず、図5(a)にハッチングで示すように、基板50上にターゲット継ぎ目51が形成される。ターゲット継ぎ目51上と、その他のターゲット61の真上の成膜では膜質が異なり、図6に示すドレイン電流Idとゲート電圧Vgとの関数で大きな差が生じるように、特性差が品質の悪化を招く。
 次いで、ステップS05において、保護膜を形成する。例えば、CVD法により、基板50上に SiO膜を堆積する。
 次いで、ステップS06において、本発明にかかるアニール処理を行う。具体的には、装置本体3内を350℃に保ち、バブラーシステム12から湿潤酸素ガスを例えば毎分250リットルの一定量だけ酸素補充ガス給気管8を介して各チャンバー5内に供給する。各チャンバー5内に供給された湿潤酸素ガスは、ノズル噴射口16から基板50のターゲット継ぎ目51に向けて噴射される。加熱時間は例えば1時間とする。ACスパッタ成膜で形成されたターゲット継ぎ目51では特性にバラツキが生じて酸素が欠乏しているが、湿潤酸素ガスが噴射された状態で加熱されるので、酸化が促進され、特性のバラツキが無くなって均一化される。各チャンバー5内のガスは、ガス排気管11から排気されるので、チャンバー5内の圧力は大気圧に比べてそれほど高くならない。また、350℃程度で酸化が行えるので、耐熱性が高いものの大型部材の加工が困難な石英を使用する必要がなく、装置本体3を金属で構成できる。また、必要以上にチャンバー5内に湿潤酸素ガスを満たさないので、遠赤外線面状ヒータ6においてリーク電流が発生しない。
 次いで、ステップS07において、層間絶縁膜を形成する。例えば、感光性層間絶縁膜材料をフォトリソグラフィによりパターニングした後、ドライエッチングにより保護膜と絶縁膜をパターニングする。
 次いで、ステップS08において、画素電極を形成する。例えば、スパッタ法によりITO膜を堆積した後、これをフォトリソグラフィ、ウェットエッチング、レジスト剥離洗浄によりパターニングすることでITO膜からなる画素電極を形成する。
 最後に、ステップS09において、別工程で製造したカラーフィルタ基板と貼り合せてパネル化する。例えば、各工程により作製したアクティブマトリクス基板50及び対向基板に、配向膜としてポリイミドを印刷法により形成する。次いで、これらの基板をシール剤印刷及び液晶滴下した後、貼り合せる。最後に貼り合せた基板をダイシングにより分断する。
  -湿潤酸素ガスによるアニール処理と大気ガスによるアニール処理との比較-
 次いで、湿潤酸素ガスによるアニール処理と大気ガスによるアニール処理との比較結果について簡単に説明する。
 まず、ステップS04でACスパッタ処理した基板50を2枚用意し、以下の条件でアニール処理を行う。
 (実施例)酸化アニール処理装置1において、350℃で湿潤酸素ガスを毎分250リットル供給しながらノズル噴射口16から噴出させ、1時間加熱する。
 (比較例)酸化アニール処理装置1と同様の装置で350℃の乾燥した大気をチャンバー5内に供給して1時間加熱する。
 上記アニール処理後の2枚の基板50でしきい値電圧Vthがターゲット継ぎ目51と継ぎ目以外とで、どの程度差があるかを、図7に示すA~Cの各領域で比較した結果を図8及び図9に示す。
 具体的には、図8には、実施例及び比較例の各領域でのしきい値電圧の分布を示す。図9には、各領域におけるターゲット継ぎ目51のしきい値電圧の平均値と、継ぎ目以外のしきい値電圧の平均値を示し、各領域の平均値も示している。
 この実験データを見てもわかるように、実施例では、比較例と比べ、しきい値電圧のバラツキが小さくなり、しかも、ターゲット継ぎ目51と継ぎ目以外とでのしきい値電圧の差が小さくなり、特性差が軽減されることがわかった。
 したがって、本実施形態において、大型の基板50であっても、リーク電流の発生を防ぎながら高いスループット及び低コストで酸化アニール処理を行える。
  -実施形態の変形例1-
 図10は本発明の実施形態の変形例1の酸化アニール処理装置101を示し、装置本体3内が窒素ガスで満たされている点で上記実施形態と異なる。なお、以下の各変形例では、図1~図9と同じ部分については同じ符号を付してその詳細な説明は省略する。
 具体的には、本変形例では、装置本体3の内部空間に窒素ガスを充満させる窒素ガス給気管108が実施形態1に対して追加されている。この窒素ガス給気管108には、窒素ガスボンベなどの窒素ガス供給源が接続されている。窒素ガス以外に酸化を抑制させる気体であれば、使用することもできる。
 本変形例では、チャンバー5内を窒素ガスで満たした状態で、上記実施形態と同様に水蒸気及び酸素を含んだ酸素補充ガスを局所的に噴射する。
 こうすることで、ノズル噴射口16から基板50の酸素欠損部位(ターゲット継ぎ目51)にだけ水蒸気及び酸素を含んだ酸素補充ガスを噴射して酸化を促進させるものの、装置本体3内で窒素が充満されているので、酸素が不要な部位には酸化が抑制されると共に、水蒸気が必要以上に充満されず、遠赤外線面状ヒータ6のリーク電流(絶縁破壊)の発生が抑制される。
 したがって、本変形例においても、大型の基板50であっても、リーク電流の発生を防ぎながら高いスループット及び低コストで酸化アニール処理を行える。
  -実施形態の変形例2-
 図11は本発明の実施形態の変形例2の酸化アニール処理装置201を示し、ターゲット継ぎ目51に窒素を噴射する点で上記実施形態と異なる。
 具体的には、本変形例では、上記実施形態の酸素補充ガス給気管8が、装置本体3内に窒素ガスを供給する窒素ガス給気管208に置き換えられている。この窒素ガス給気管208には、バブラーシステム12ではなく、窒素ガスボンベなどの窒素ガス供給源が接続されている。窒素ガス以外に酸化を抑制させる気体であれば、水素ガスや一酸化炭素ガスのように還元性ガスをかわりに使用することもできる。装置本体3内を真空にして加熱することにより酸化を抑制させる方法は、装置が複雑となり利用できない。
 窒素ガス給気管には、基板50の酸素過剰部位(すなわち、ターゲット継ぎ目51以外の部分)に対し窒素ガスを噴射するノズル噴射口16が接続されている。但し、上記実施形態とはノズル噴射口16の配置位置又は噴射方向が異なる。例えば、図11に示すように、ターゲット継ぎ目51以外の部分にノズル噴射口16が向けられている。
 このアニール装置を用いて、上記実施形態と同様にアニール処理において、装置本体3内で基板50を遠赤外線面状ヒータ6で加熱しながら、基板50におけるターゲット継ぎ目51以外の部分に窒素ガスを局所的に噴射する。
 上記実施形態とは逆にノズル噴射口16から基板50の酸素過剰部位にだけ酸化を抑制させる窒素ガスを噴射して基板50全体として酸化の均一化を図ることができる。この方法では、水蒸気が装置本体3内で充満されず、遠赤外線面状ヒータ6のリーク電流(絶縁破壊)の発生が抑制される。また、酸素過剰部位にだけ窒素ガスを当てればよく全体に均一に充満させる必要がないことから高い気密性を必要としないので、大型の基板50でも蒸気酸化アニール処理を行える。
 したがって、本変形例においても、大型の基板50であっても、リーク電流の発生を防ぎながら高いスループット及び低コストで酸化アニール処理を行える。
 (その他の実施形態)
 本発明は、上記実施形態について、以下のような構成としてもよい。
 すなわち、上記実施形態では、アニール処理をステップS05の保護膜形成後に行っているが、ステップS03の酸化物半導体層形成後に行ってもよい。
 なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物や用途の範囲を制限することを意図するものではない。
 以上説明したように、本発明は、基板を加熱して酸化させる酸化アニール処理装置及び酸化アニール処理を用いた薄膜トランジスタの製造方法について有用である。
  1   酸化アニール処理装置
  3   装置本体
  6   遠赤外線面状ヒータ(マイカヒータ、赤外線放射平板)
  8   酸素補充ガス給気管
 11   ガス排気管
 16   ノズル噴射口
 50   基板
 51   ターゲット継ぎ目
 60   ACスパッタ装置
 61   ターゲット
101   酸化アニール処理装置
108   窒素ガス給気管
201   酸化アニール処理装置
208   窒素ガス給気管

Claims (12)

  1.  密閉容器状の装置本体と、
     上記装置本体の内部に配置された遠赤外線面状ヒータと、
     上記装置本体内に水蒸気及び酸素を含んだ酸素補充ガスを供給する酸素補充ガス給気管と、
     上記装置本体内のガスを排出するガス排気管と、
     上記酸素補充ガス給気管に連通されて基板の酸素欠損部位に対し、上記水蒸気及び酸素を含んだ酸素補充ガスを噴射するノズル噴射口とを備えている
    ことを特徴とする酸化アニール処理装置。
  2.  請求項1に記載の酸化アニール処理装置において、
     上記装置本体の内部空間に窒素ガスを充満させる窒素ガス給気管をさらに備え、
     上記窒素ガスを上記装置本体に充満させた状態で上記ノズル噴射口から上記酸素補充ガスを噴射するように構成されている
    ことを特徴とする酸化アニール処理装置。
  3.  請求項1又は2に記載の酸化アニール処理装置において、
     上記基板は、薄膜トランジスタであり、
     上記酸素欠損部位は、ACスパッタ処理で発生するターゲットの継ぎ目である
    ことを特徴とする酸化アニール処理装置。
  4.  請求項3に記載の酸化アニール処理装置において、
     上記ノズル噴射口は、上記ターゲットの継ぎ目の数に応じて配置されている
    ことを特徴とする酸化アニール処理装置。
  5.  密閉容器状の装置本体と、
     上記装置本体の内部に配置された遠赤外線面状ヒータと、
     上記装置本体内に窒素ガスを供給する窒素ガス給気管と、
     上記装置本体内のガスを排出するガス排気管と、
     上記窒素ガス給気管に連通されて基板の酸素過剰部位に対し窒素ガスを噴射するノズル噴射口とを備えている
    ことを特徴とする酸化アニール処理装置。
  6.  請求項5に記載の酸化アニール処理装置において、
     上記基板は、薄膜トランジスタであり、
     上記酸素過剰部位は、ACスパッタ処理で発生するターゲットの継ぎ目以外の部位である
    ことを特徴とする酸化アニール処理装置。
  7.  請求項1乃至6のいずれか1つに記載の酸化アニール処理装置において、
     上記遠赤外線面状ヒータは、マイカヒータと、赤外線放射平板とを含む
    ことを特徴とする酸化アニール処理装置。
  8.  装置本体内の基板を遠赤外線面状ヒータで加熱しながら、
     上記基板の酸素欠損部位に対し、水蒸気及び酸素を含んだ酸素補充ガスを局所的に噴射する
    ことを特徴とする酸化アニール処理を用いた薄膜トランジスタの製造方法。
  9.  装置本体内を窒素ガスで満たした状態で、基板を遠赤外線面状ヒータで加熱しながら、
     上記基板の酸素欠損部位に対し、水蒸気及び酸素を含んだ酸素補充ガスを局所的に噴射する
    ことを特徴とする酸化アニール処理を用いた薄膜トランジスタの製造方法。
  10.  請求項8又は9に記載の酸化アニール処理を用いた薄膜トランジスタの製造方法において、
     上記アニール処理の前に、並列に設置された複数対のターゲットのうち、対をなすターゲット毎に極性を変えて交流電圧を印加するACスパッタ処理を含み、
     上記酸素欠損部位は、上記ACスパッタ処理で発生するターゲットの継ぎ目である
    ことを特徴とする酸化アニール処理を用いた薄膜トランジスタの製造方法。
  11.  装置本体内で基板を遠赤外線面状ヒータで加熱しながら、
     上記基板における酸素過剰部位に対し、窒素ガスを局所的に噴射する
    ことを特徴とする酸化アニール処理を用いた薄膜トランジスタの製造方法。
  12.  請求項11に記載の酸化アニール処理を用いた薄膜トランジスタの製造方法において、
     上記アニール処理の前に、並列に設置された複数対のターゲットのうち、対をなすターゲット毎に極性を変えて交流電圧を印加するACスパッタ処理を含み、
     上記酸素過剰部位は、上記ACスパッタ処理で発生するターゲットの継ぎ目以外の部分である
    ことを特徴とする酸化アニール処理を用いた薄膜トランジスタの製造方法。
PCT/JP2011/006065 2010-11-05 2011-10-28 酸化アニール処理装置及び酸化アニール処理を用いた薄膜トランジスタの製造方法 WO2012060079A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11837733.2A EP2637201A4 (en) 2010-11-05 2011-10-28 OXIDATION / GLOW TREATMENT DEVICE AND METHOD FOR PRODUCING A THIN-LAYER TRANSISTOR WITH OXIDATION / GLOW TREATMENT
US13/883,027 US9076742B2 (en) 2010-11-05 2011-10-28 Oxidation annealing device and method for fabricating thin film transistor using oxidation annealing
JP2012541737A JP5372264B2 (ja) 2010-11-05 2011-10-28 酸化アニール処理装置及び酸化アニール処理を用いた薄膜トランジスタの製造方法
KR1020137013719A KR101609429B1 (ko) 2010-11-05 2011-10-28 어닐링 처리 장치 및 어닐링 처리를 사용한 박막 트랜지스터의 제조 방법
CN201180053396.0A CN103201828B (zh) 2010-11-05 2011-10-28 氧化退火处理装置和使用氧化退火处理的薄膜晶体管的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-248647 2010-11-05
JP2010248647 2010-11-05

Publications (1)

Publication Number Publication Date
WO2012060079A1 true WO2012060079A1 (ja) 2012-05-10

Family

ID=46024207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006065 WO2012060079A1 (ja) 2010-11-05 2011-10-28 酸化アニール処理装置及び酸化アニール処理を用いた薄膜トランジスタの製造方法

Country Status (6)

Country Link
US (1) US9076742B2 (ja)
EP (1) EP2637201A4 (ja)
JP (1) JP5372264B2 (ja)
KR (1) KR101609429B1 (ja)
CN (1) CN103201828B (ja)
WO (1) WO2012060079A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103855054A (zh) * 2012-11-30 2014-06-11 盛美半导体设备(上海)有限公司 工艺腔室

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112014008177A2 (pt) * 2012-02-16 2017-04-11 Saint Gobain caixa de processo, arranjos, e métodos para processar substratos revestidos
CN103632983B (zh) * 2013-11-22 2017-11-21 上海申和热磁电子有限公司 用于铜片预氧化的陶瓷支架
JP5990338B2 (ja) * 2014-06-06 2016-09-14 日鉄住金テックスエンジ株式会社 熱間プレス用鋼板の遠赤外線式多段型加熱炉
TW201639063A (zh) * 2015-01-22 2016-11-01 應用材料股份有限公司 批量加熱和冷卻腔室或負載鎖定裝置
CN108022863B (zh) * 2017-11-30 2020-07-28 上海大学 一种水蒸气氧化退火系统
CN108611483A (zh) * 2018-04-24 2018-10-02 广州才是科技有限公司 一种远红外线能量源设备及制作抗菌抑菌不锈钢材料的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06267840A (ja) * 1993-03-11 1994-09-22 Dainippon Screen Mfg Co Ltd 熱処理装置
JPH06302486A (ja) * 1993-02-16 1994-10-28 Nippondenso Co Ltd 2つの材料の直接接合方法及び材料直接接合装置
JP3066387B2 (ja) 1996-06-28 2000-07-17 富士ゼロックス株式会社 ウレア及びウレタン・イソシアネート誘導樹脂を用いた相変化インク・キャリア組成物
JP2001035799A (ja) * 1999-07-22 2001-02-09 Tokyo Electron Ltd 枚葉式熱処理装置
JP2002353226A (ja) * 2001-03-16 2002-12-06 Semiconductor Energy Lab Co Ltd 熱処理装置及び熱処理方法
JP2008098375A (ja) * 2006-10-11 2008-04-24 Seiko Epson Corp 半導体装置の製造方法、電子機器の製造方法および半導体製造装置
JP2009128837A (ja) 2007-11-28 2009-06-11 Kyoshin Engineering:Kk 高圧アニール水蒸気処理装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3066387U (ja) 1999-08-05 2000-02-18 昭和鉄工株式会社 多段型ガラス基板焼成炉
KR100676979B1 (ko) * 2001-02-09 2007-02-01 동경 엘렉트론 주식회사 성막 장치
JP2004153037A (ja) * 2002-10-31 2004-05-27 Renesas Technology Corp 半導体装置の製造方法
JP3929939B2 (ja) * 2003-06-25 2007-06-13 株式会社東芝 処理装置、製造装置、処理方法及び電子装置の製造方法
JP5053537B2 (ja) * 2004-11-10 2012-10-17 キヤノン株式会社 非晶質酸化物を利用した半導体デバイス
JP4453021B2 (ja) 2005-04-01 2010-04-21 セイコーエプソン株式会社 半導体装置の製造方法及び半導体製造装置
US20070065593A1 (en) * 2005-09-21 2007-03-22 Cory Wajda Multi-source method and system for forming an oxide layer
JP4362834B2 (ja) * 2006-10-11 2009-11-11 セイコーエプソン株式会社 半導体装置の製造方法、電子機器の製造方法および半導体製造装置
JP5084236B2 (ja) * 2006-11-30 2012-11-28 東京エレクトロン株式会社 デバイス製造装置およびデバイス製造方法
KR20100017554A (ko) 2007-05-25 2010-02-16 고쿠리츠 다이가쿠 호진 도호쿠 다이가쿠 화합물계 박막 및 그 형성 방법, 그리고 그 박막을 이용한 전자 장치
JP2009038230A (ja) * 2007-08-02 2009-02-19 Ushio Inc 光照射式加熱処理装置
JP2010238770A (ja) * 2009-03-30 2010-10-21 Nippon Mining & Metals Co Ltd 酸化物薄膜及びその製造方法
KR101810699B1 (ko) * 2009-06-30 2018-01-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 제작 방법
WO2011036981A1 (en) * 2009-09-24 2011-03-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5525380B2 (ja) * 2010-08-25 2014-06-18 富士フイルム株式会社 酸化物半導体薄膜の製造方法および薄膜トランジスタの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06302486A (ja) * 1993-02-16 1994-10-28 Nippondenso Co Ltd 2つの材料の直接接合方法及び材料直接接合装置
JPH06267840A (ja) * 1993-03-11 1994-09-22 Dainippon Screen Mfg Co Ltd 熱処理装置
JP3066387B2 (ja) 1996-06-28 2000-07-17 富士ゼロックス株式会社 ウレア及びウレタン・イソシアネート誘導樹脂を用いた相変化インク・キャリア組成物
JP2001035799A (ja) * 1999-07-22 2001-02-09 Tokyo Electron Ltd 枚葉式熱処理装置
JP2002353226A (ja) * 2001-03-16 2002-12-06 Semiconductor Energy Lab Co Ltd 熱処理装置及び熱処理方法
JP2008098375A (ja) * 2006-10-11 2008-04-24 Seiko Epson Corp 半導体装置の製造方法、電子機器の製造方法および半導体製造装置
JP2009128837A (ja) 2007-11-28 2009-06-11 Kyoshin Engineering:Kk 高圧アニール水蒸気処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2637201A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103855054A (zh) * 2012-11-30 2014-06-11 盛美半导体设备(上海)有限公司 工艺腔室

Also Published As

Publication number Publication date
EP2637201A4 (en) 2014-03-26
KR20130100178A (ko) 2013-09-09
CN103201828B (zh) 2016-06-29
EP2637201A1 (en) 2013-09-11
CN103201828A (zh) 2013-07-10
JP5372264B2 (ja) 2013-12-18
US20130280925A1 (en) 2013-10-24
KR101609429B1 (ko) 2016-04-05
JPWO2012060079A1 (ja) 2014-05-12
US9076742B2 (en) 2015-07-07

Similar Documents

Publication Publication Date Title
WO2012060079A1 (ja) 酸化アニール処理装置及び酸化アニール処理を用いた薄膜トランジスタの製造方法
JP5399274B2 (ja) 薄膜トランジスタ及びその製造方法、並びに薄膜トランジスタを備える平板表示装置
US6743476B2 (en) Method for producing indium tin oxide film
TWI446530B (zh) 顯示裝置及製造其之方法
WO2011045911A1 (ja) 表示パネル装置及びその製造方法
US20120103253A1 (en) Organic layer deposition apparatus
CN105070724A (zh) Tft基板的制作方法及制得的tft基板
KR20120042031A (ko) 박막 트랜지스터 및 이를 구비한 표시 장치
KR20100114717A (ko) 기판 가공 장치
CN106847837A (zh) 一种互补型薄膜晶体管及其制作方法和阵列基板
US11894396B2 (en) High-K dielectric materials comprising zirconium oxide utilized in display devices
KR101094279B1 (ko) 가열 수단 및 이를 포함하는 기판 가공 장치
US20100075506A1 (en) Apparatus and method for manufacturing semiconductor element and semiconductor element manufactured by the method
US10002914B2 (en) Method of manufacturing a display apparatus having pixels areas with different thicknesses
JP6531422B2 (ja) プラズマ処理装置、基板処理システム、薄膜トランジスターの製造方法及び記憶媒体
US20080315188A1 (en) Apparatus and method for depositing thin film
TW201508837A (zh) 薄膜電晶體製造方法
KR20170136740A (ko) 박막 트랜지스터의 제조 방법, 이를 수행하기 위한 탈수소 장치 및 이를 통해 제조된 박막 트랜지스터를 포함하는 유기 발광 표시 장치
JP2005133216A (ja) 蒸着工程装置用サセプタ及びその製造方法
KR20120009229A (ko) 박막 트랜지스터 및 이의 제조방법
JP6703186B2 (ja) 薄膜トランジスタ及びその製造方法
TWI840259B (zh) 薄膜電晶體結構、用以形成用於顯示裝置之複合膜層之方法、及用於顯示裝置中的裝置結構
CN100456440C (zh) 高压水气退火的多晶硅薄膜晶体管组件的制作方法
KR20140122037A (ko) 증발 장치 및 이를 구비하는 박막 증착 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11837733

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012541737

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011837733

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011837733

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137013719

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13883027

Country of ref document: US