WO2012056860A1 - 内視鏡 - Google Patents
内視鏡 Download PDFInfo
- Publication number
- WO2012056860A1 WO2012056860A1 PCT/JP2011/073069 JP2011073069W WO2012056860A1 WO 2012056860 A1 WO2012056860 A1 WO 2012056860A1 JP 2011073069 W JP2011073069 W JP 2011073069W WO 2012056860 A1 WO2012056860 A1 WO 2012056860A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- light source
- source unit
- illumination
- band
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/06—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
- A61B1/0638—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00163—Optical arrangements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/04—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
- A61B1/05—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/06—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
- A61B1/0655—Control therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/06—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
- A61B1/0661—Endoscope light sources
- A61B1/0676—Endoscope light sources at distal tip of an endoscope
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/06—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
- A61B1/0661—Endoscope light sources
- A61B1/0684—Endoscope light sources using light emitting diodes [LED]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/06—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
- A61B1/07—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
Definitions
- the present invention relates to an endoscope that uses broadband light and narrowband light as illumination light.
- a first light emitting element is provided at the distal end portion of the insertion portion, and the emitted light emitted from the first light emitting element is the first.
- the light is emitted into the living body through one light distribution lens.
- a second light emitting element is provided in the operation unit, and the emitted light emitted from the second light emitting element is guided by the light guide, and the living body is guided from the front end surface of the light guide through the second light distribution lens.
- emits inside is disclosed. With such a configuration, a sufficient amount of emitted light can be secured by the amount of light emitted from the light emitting element disposed at the tip and the amount of light emitted from the second light emitting element disposed in the operation unit.
- the endoscope of the second conventional example of Japanese Patent Laid-Open No. 2003-164417 has a prism, and this prism switches between white light from the white light source device and ultraviolet light from the excitation light source. For example, light is guided to the rear end of the light guide provided over almost the entire length inside the endoscope, and the light guided through the light distribution lens is emitted from the front end surface of the light guide.
- the first conventional example is intended for observation in the visible wavelength band, and it is intended to obtain a normal observation image using broadband illumination light and a special observation image using narrow-band illumination light.
- white light and ultraviolet light can be switched by a prism.
- the ultraviolet light is transmitted by a light guide as a light guiding means inserted over almost the entire length inside the endoscope.
- the light guide loss is large and is attenuated more than in the case of white light. Accordingly, the amount of ultraviolet light emitted from the tip surface of the light guide is greatly reduced as compared with the case of white light, so that the image quality of the obtained fluorescence observation image is deteriorated.
- a large excitation light source that compensates for the attenuation by the light guide inserted almost over the entire length inside the endoscope is required, which increases costs.
- an endoscope that can reduce the decrease in the amount of light until the narrow-band light generated by the light source of the narrow-band light is emitted as illumination light without increasing costs, and can perform observation with broadband light without any trouble.
- the present invention has been made in view of the above points, and is an endoscope that can reduce a decrease in the amount of narrowband light generated by a narrowband light source and can perform illumination for observation with broadband light without any problem.
- the purpose is to provide.
- the present invention can reduce the decrease in the light amount of the narrow band light on the short wavelength side in the visible wavelength band generated by the narrow band light source with a simple configuration, and near the surface layer of the biological mucous membrane by the illumination of the narrow band light. It is another object of the present invention to provide an endoscope suitable for performing observation and normal observation with illumination of broadband light covering a visible wavelength band.
- An endoscope includes an insertion portion that is inserted into a subject, an operation portion that is provided at a proximal end of the insertion portion and that is provided with an operation unit, and is provided in the operation portion.
- a first light source unit that generates first light as a broadband light having a broadband wavelength characteristic that covers the wavelength band of the first and second light sources, and is arranged so as to extend from the operation unit to the vicinity of the distal end of the insertion unit.
- a light guide unit that guides the first light emitted from the light source unit, and a second light as a narrowband light that is provided in the vicinity of the distal end of the insertion unit and has a narrowband wavelength characteristic.
- FIG. 1 is a diagram showing an overall configuration of an endoscope apparatus provided with a first embodiment of the present invention.
- FIG. 2 is an enlarged view showing a configuration of a tip portion in FIG.
- FIG. 3 is a diagram illustrating a wavelength band of broadband light and a wavelength band of narrow band light generated by the first light source unit and the second light source unit, respectively.
- FIG. 4 is a flowchart for explaining the operation of the first embodiment.
- FIG. 5 is a cross-sectional view showing a configuration of a second light source unit in a first modification of the first embodiment.
- FIG. 6A is a front view of an exterior block constituting the second light source unit.
- FIG. 6B is a side view of the exterior block constituting the second light source unit.
- FIG. 6C is a rear view of the exterior block constituting the second light source unit.
- FIG. 7A is a cross-sectional view showing a structure around a first light source unit in a second modification of the first embodiment.
- FIG. 7B is an enlarged view showing the vicinity of the end face of the light guide in FIG. 7A.
- FIG. 8 is a view showing a procedure in the case of processing so that the end face of the light guide protrudes as shown in FIG. 7B.
- FIG. 9A is an enlarged view showing the vicinity of the end face of the light guide in the modification of FIG. 7B.
- FIG. 9B is a view showing the vicinity of the end face of the light guide when a condenser lens is provided immediately before the end face of the light guide.
- FIG. 10 is a diagram illustrating a configuration of a distal end portion of an insertion portion in a third modification of the first embodiment.
- FIG. 11 is a diagram illustrating a configuration of a distal end portion of an insertion portion in a fourth modification of the first embodiment.
- FIG. 12 is a diagram illustrating a configuration of a distal end portion of an insertion portion in a fifth modification of the first embodiment.
- FIG. 13A is a front view of the tip in FIG.
- FIG. 13B is a diagram showing a configuration of a signal processing circuit according to a sixth modification of the first embodiment.
- FIG. 13C is an operation explanatory diagram of the sixth modified example.
- FIG. 14A is a diagram showing an overall configuration of an endoscope apparatus provided with a second embodiment of the present invention.
- FIG. 14A is a diagram showing an overall configuration of an endoscope apparatus provided with a second embodiment of the present invention.
- FIG. 14B is a diagram illustrating an overall configuration of an endoscope apparatus including a first modification of the second embodiment.
- FIG. 15 is a diagram illustrating characteristics of green narrowband light and the like generated by the third light source unit.
- FIG. 16 is an explanatory diagram of light amount adjustment by the light amount adjustment unit.
- FIG. 17 is a flowchart for explaining the operation of the second embodiment of the present invention.
- FIG. 18 is a diagram illustrating a partial configuration of an endoscope according to a second modification example of the second embodiment.
- FIG. 19A is a timing chart showing operation control by the control circuit corresponding to switching of the observation mode in the third modification of the second embodiment.
- FIG. 19B is a timing chart showing operation control by the control circuit in the third modification of FIG. 19A.
- FIG. 19C is a timing chart showing operation control by the control circuit in another modification of FIG. 19A.
- FIG. 19D is a diagram showing a wavelength band of broadband light or the like generated by a yellow LED or the like in the case of FIG. 19C.
- FIG. 20 is an operation explanatory diagram illustrating a driving operation of the light emitting unit and the image sensor in the NBI observation mode.
- FIG. 21A is a schematic diagram of an NBI observation image obtained in a state where a blue LED emits light.
- FIG. 21B is a schematic diagram of an NBI observation image obtained in a state where a green LED emits light.
- FIG. 21C is a schematic diagram of an NBI observation image obtained when the blue LED and the green LED emit light.
- FIG. 22A is a diagram showing a configuration example in which a second light source unit is detachably provided at the distal end of the insertion unit. 22B is a diagram showing a configuration example of a modification of FIG. 22A.
- an endoscope apparatus 1 including the first embodiment of the present invention includes an endoscope 2 according to the first embodiment and signal processing in which the endoscope 2 is detachably connected.
- the endoscope 2 includes an elongated insertion portion 6 to be inserted into a body cavity, and an operation portion 7 provided at a rear end of the insertion portion 6 and provided with a bending operation knob 10 as an operation means for bending.
- a cable 8 extending from the operation unit 7, and a connector 9 at the end of the cable 8 is detachably connected to the video processor 3.
- the insertion portion 6 includes a distal end portion 11 provided at the distal end thereof, a bending portion 12 provided at the rear end of the distal end portion 11, and flexibility extending from the rear end of the bending portion 12 to the front end of the operation portion 7. And a flexible portion 13 having The surgeon grasps the grip portion on the front end side of the operation portion 7 and performs an operation of rotating the bending operation knob 10 as a bending operation means, thereby pulling a bending wire (not shown) and pulling the bending portion 12.
- the bending portion 12 is configured by rotatably connecting a plurality of bending pieces (not shown).
- the distal end portion 11 of the insertion portion 6 is provided with an illumination window and an observation window adjacent to each other, and an illumination lens 15 that emits illumination light to the subject side is attached to the illumination window. Is attached with an objective lens 16 that forms an optical image of the illuminated subject.
- the blue narrow-band light on the short wavelength side in the visible wavelength band has a large light amount loss when guided by a light guide as a light guide means (light transmission means) as follows ( In other words, the light guide has a low light guide or transmission efficiency for blue narrow-band light), and thus the second light source unit 22 that generates the blue narrow-band light is arranged in the distal end portion 11. Further, since the blue narrow-band light has a small (narrow) wavelength band, the influence of the light amount loss is larger than that in the case of broadband light. On the other hand, white light is generated as broadband light covering the visible wavelength band, which is less affected (lower) by light loss when light is guided by the light guide than in the case of the blue narrow band light.
- the first light source unit 21 is arranged in the operation unit 7 and guided to the distal end portion 11 side by the light guide 27.
- the endoscope 2 in the present embodiment is the first light source unit 21 that generates white light as broadband light covering the visible wavelength band in the operation unit 7 and the short wavelength side in the visible wavelength band.
- a second light source unit 22 that generates blue narrow-band light.
- the first light source unit 21 includes a white light emitting diode (abbreviated as LED) 23 that generates white light as broadband light, and an LED substrate 24 on which the white LED 23 is mounted.
- the second light source unit 22 includes a blue LED 25 that generates blue light as narrowband light, and an LED substrate 26 on which the blue LED 25 is mounted.
- a light guide fiber (simply abbreviated as “light guide”) 27 constituting the light guide unit is disposed so that a rear end surface (base end surface) of the light guide unit abuts on an emission surface of the white LED 23 that emits white light.
- the incident white light is guided (transmitted) and emitted from the front end surface (emission surface) of the light guide 27.
- the light guide 27 has a distal end surface on the prism 28 in which a surface facing the illumination lens 15 attached to the opening of the illumination window in the distal end portion 11 is disposed as an exit surface. Is fixed in the distal end portion 11 so as to be in contact with a surface (referred to as a first incident surface) facing the surface.
- the prism 28 is fixed in the distal end portion 11 so that the emission surface of the blue LED 25 is in contact with a second incidence surface orthogonal to the first incidence surface.
- the LED boards 24 and 26 are connected to a power supply circuit 33 inside the video processor 3 to which the connector 9 is connected via power supply lines 31 and 32 respectively inserted through the endoscope 2.
- the white LED 23 and the blue LED 25 can be driven to emit light by supplying a driving voltage from the power supply circuit 33 to the LED substrates 24 and 26.
- the power supply circuit 33 operates under the control of the control circuit 34.
- the control circuit 34 is provided in the processor 3, but may be provided in the endoscope 2.
- a control circuit 34 may be provided in the connector 9 as indicated by a two-dot chain line.
- the white LED 23 and the blue LED 25 for example, as shown in FIG. 3, white broadband light (indicated by W1 in FIG. 3) covering the visible wavelength band and the visible wavelength.
- Blue narrow-band light (indicated by B1 in FIG. 3) on the short wavelength side in the band is generated.
- the prism 28 selectively reflects, for example, blue narrow band light (light having the same wavelength band) shown in FIG. 3 and selectively transmits white broadband light other than the blue narrow band light. It is comprised by the dichroic prism set to (2).
- the joint surfaces of the inclined surfaces of the two triangular prisms constituting the prism 28 are set so as to have a characteristic Pb that selectively reflects blue narrow-band light indicated by a dotted line in FIG.
- a dielectric film 28a is formed. Therefore, the white broadband light generated by the white LED 23 is guided by the light guide 27, and the white broadband light other than the blue narrow-band light is transmitted through the prism 28, and the illumination lens 15 attached to the illumination window 15 is attached. And illuminates the subject side such as an affected part.
- the blue narrow-band light generated by the blue LED 25 arranged in the distal end portion 11 is reflected by the prism 28 and emitted through the illumination lens 15 attached to the illumination window, and the affected part or the like. Illuminate the subject side.
- an end cover 29 having elasticity is provided on the end surface side of the end section 11.
- an imaging surface of, for example, a charge coupled device (abbreviated as CCD) 17 as an imaging device is disposed at the imaging position of the objective lens 16.
- the CCD 17 photoelectrically converts an optical image formed on the imaging surface.
- a color separation filter 18 that optically separates red (R), green (G), and blue (B), for example, in units of pixels is disposed on the imaging surface of the CCD 17.
- the CCD 17 is connected to a drive circuit 35 and a signal processing circuit 36 inside the video processor 3 to which the connector 9 is connected, via signal lines 19 and 20 inserted through the endoscope 2.
- the drive circuit 35 applies a drive signal to the CCD 17, and the CCD 17 outputs an imaging signal (image signal) photoelectrically converted by the application of the drive signal to the signal processing circuit 36.
- the signal processing circuit 36 generates a standard video signal for the input image signal and outputs it to the monitor 4.
- An endoscopic image corresponding to a standard video signal is displayed on the display surface of the monitor 4.
- the operation unit 7 of the endoscope 2 is provided with an observation mode switching switch (or observation mode selection switch) 37 as an observation mode selection unit that performs an instruction operation to switch (or select) an observation mode.
- the surgeon operates the observation mode changeover switch 37 to perform a normal observation mode or broadband light observation mode (WLI observation mode) by illumination of broadband light from the first light source unit 21 and a narrow band by the second light source unit 22.
- An instruction signal for switching the narrow-band light observation mode (NBI observation mode) by light illumination is output to the control circuit 34.
- the control circuit 34 controls the operations of the power supply circuit 33 and the signal processing circuit 36 in accordance with the instruction signal.
- the control circuit 34 may also control the operation of the drive circuit 35.
- the signal processing circuit 36 generates R, G, B signals corresponding to R, G, B color separation by the color separation filter 18 of the CCD 17 under the illumination of white broadband light, respectively, and outputs a color video signal. Is output to the monitor 4.
- the monitor 4 displays a color endoscope image as a normal image or a broadband image (WLI image).
- WLI image a broadband image
- a B signal corresponding to the B color separation component by the color separation filter 18 is generated, and a monochrome video signal consisting only of the B signal is output to the monitor 4.
- the monitor 4 displays a monochrome endoscope image as a narrow band image (NBI image) captured under the illumination of blue narrow band light.
- the B signal may also be input to the R and G channels to display a monochrome endoscope image (NBI image).
- the endoscope 2 includes an insertion portion 6 to be inserted into a subject, an operation portion 7 provided at a proximal end of the insertion portion 6 and provided with an operation means, A first light source unit 21 that is provided in the operation unit 7 and generates first light as broadband light having a broadband wavelength characteristic covering a visible wavelength band, and the distal end of the insertion unit 6 from the operation unit 7 And a light guide 27 as a light guide for guiding the first light emitted from the first light source unit 21 and provided near the tip 11 of the insertion unit 6.
- the first light source unit 21 generates white light that covers the visible wavelength band as the first light
- the second light source unit 22 is a narrow wavelength side that is on the short wavelength side in the visible wavelength band as the second light. Generates light in the band.
- the control circuit 34 sets the WLI observation mode as a predetermined observation mode that is initially set as shown in step S1.
- the control circuit 34 as a control unit controls the power supply circuit 33 so that the driving power is supplied to the white LED 23 of the first light source unit 21 and the blue LED 25 of the second light source unit 22, and the signal processing circuit 36. Is controlled so as to be a signal processing mode corresponding to the WLI observation mode of broadband light (white light).
- the white light from the white LED 23 becomes illumination light from which the blue narrow-band light portion is missing by the prism 28 formed by the dichroic prism, so the control circuit 34 controls the operation of the power supply circuit 33 and performs WLI observation.
- the white LED 23 and the blue LED 25 are caused to emit light simultaneously.
- white illumination light in which almost no blue narrow-band light portion is lost is emitted to the subject side.
- a WLI image is displayed on the monitor 4.
- step S2 the control circuit 34 determines whether or not an instruction for switching the observation mode has been issued. If the observation mode switching instruction has not been given, the process returns to step S1.
- the control circuit 34 sets the NBI observation mode as shown in step S3.
- the control circuit 34 controls the power supply circuit 33 so that the driving power is supplied to the second light source unit 22, and the operation mode of the signal processing circuit 36 is set to a signal processing mode corresponding to narrowband light.
- an NBI image is displayed on the monitor 4. Since the blue narrow-band light has a large attenuation inside the biological mucosa, only the reflected light component from the vicinity of the surface layer of the biological mucosa is substantially incident on the CCD 17 that receives the reflected light.
- the NBI image captured by the CCD 17 under the illumination of the blue narrow band light and generated by the signal processing circuit 36 becomes an image that clearly represents the running state of the capillaries in the vicinity of the surface layer. Can be observed in a state where it is easy to recognize the running state of capillaries.
- the control circuit 34 determines whether or not an instruction for switching the observation mode has been issued. If the observation mode switching instruction has not been given, the process returns to step S3. On the other hand, when a switching instruction is given, the process proceeds to the processing for setting the WLI observation mode in step S1.
- the second light source unit 22 that generates blue narrow-band light on the short wavelength side in the visible wavelength band is disposed in the distal end portion 11 of the insertion unit 6.
- the blue narrow-band light generated by the second light source unit 22 can be emitted from the illumination window with almost no loss during light guiding. Therefore, according to the present embodiment, it is possible to reduce a decrease in the light amount of the narrow band light generated by the light source of the narrow band light, and illumination for observation with the broadband light can be performed without any trouble.
- With a simple configuration normal observation under the illumination of white light as broadband light, and the state of blood vessels near the surface layer in the living mucous membrane such as the affected area by illumination of narrow band light can be easily recognized You can choose between observation.
- the present embodiment even when a dichroic prism is used as the prism 28, when the WLI observation mode is selected, white illumination light is hardly emitted to the subject side with almost no blue narrow-band light portion being lost. Since the light is emitted, it is possible to generate a color image with good color reproducibility that is close to that when an object such as an affected part is actually observed under white light illumination.
- a common imaging device can be used in the WLI observation mode and the NBI observation mode, and in the case of the NBI observation mode, the B signal component in the case of the WLI observation mode is extracted.
- an NBI image can be easily generated.
- FIG. 5 is a longitudinal sectional view of the second light source unit 41 in the endoscope of the first modification example of the first embodiment.
- the second light source unit 41 is formed by integrating the second light source unit 22 with the tip of the light guide 27 and the prism 28 in the first embodiment.
- FIGS. 6A to 6C show a front view, a side view, and a rear view of the LED exterior block 42, respectively.
- a prism 28 is disposed in a recess provided in the vicinity of the center on the front side of the LED exterior block 42, and the emission surface is in close contact with the bottom surface (second incident surface) of the prism 28.
- the blue LED 25 and the LED board 26 on which the blue LED 25 is mounted are fixed.
- the front end side of the light guide 27 is inserted into the concave portion on the back surface side of the LED exterior block 42, and the front end surface of the light guide 27 is disposed on the rear surface (first incident surface) of the prism 28 disposed inside the concave portion. Are fixed in contact with each other.
- FIG. 7A shows a structure around the first light source unit 21 in a second modification of the first embodiment.
- a light source fixing part is formed that maintains and fixes the end face that emits white light of the first light source part 21 and the end face on the incident side of the light guide 27 as the light guide part. ing.
- An end face on the incident side of the light guide 27 is fixed by a light guide base (abbreviated as LG base) 43, and the light guide 27 on the rear side of the LG base 43 is covered with an LG outer tube 44.
- the end surface on the incident side of the light guide 27 is processed so as to slightly protrude from the end surface of the LG base 43.
- An enlarged view of this part is shown in FIG. 7B.
- a stepped portion is provided on the rear end side of the LG base 43, and a radiator 45 having an inner diameter that fits the outer diameter of the stepped portion is provided on the rear end side of the stepped portion.
- the radiator 45 is provided in a substantially cylindrical shape surrounding the white LED 23 and the LG base 43, and its end surface can be fixed to the LED substrate 24 with screws.
- a spring 46 as an urging means is disposed on the outer peripheral surface of the step portion, and one end of the spring 46 is in contact with the step surface of the LG base 43 and the other end is a radiator that faces the step surface. 45 is in contact with the inner surface.
- the spring 46 is disposed in a compressed state on the outer peripheral surface of the step portion, and the LED substrate 24 and the radiator 45 are fixed with screws. For this reason, the spring 46 forms a light source fixing portion that fixes the light guide 27 in an elastically biased state so that the end face of the white LED 23 is in contact with the end face on the incident side of the light guide 27.
- a light emitting portion (emission portion) that actually emits white light (or emits white light) in the white LED 23 is denoted by reference numeral 23a. And it fixes in the state urged
- the radiator 45 is provided with a plurality of adjustment screws 47 (only one is shown in FIG. 7A), and the adjustment screws 47 make the end surface of the light guide 27 abut on the end surface of the white LED 23. The positioning can be adjusted (by pressing the LG base 43).
- the end face of the white LED 23 and the end face of the light guide 27 are positioned and maintained in contact with each other for a long period of time. For this reason, the light quantity loss due to the positional deviation between the both end faces of the white light from the white LED 23 can be eliminated. Therefore, according to this modification, the operation of stably guiding the white light generated by the white LED 23 by the light guide 27 as the light guide means can be maintained for a long period of time.
- a procedure for processing the end surface of the light guide 27 so as to slightly protrude from the end surface of the LG base 43 as shown in FIG. 7B will be described with reference to FIG. As shown in FIG.
- the second LG base 43b having the same dimensions as the LG base 43 is fixed to the end side of the LG base 43 (for fixing the end side of the light guide 27).
- the second LG base 43 b has an annular shape whose overall length is shorter than that of the LG base 43.
- the end side of the light guide 27 is inserted into the LG base 43 and the second LG base 43b fixed as shown in FIG. Fix the end side with the filled adhesive.
- the end surface of the light guide 27 is brought into contact with a polishing surface of a polishing apparatus or the like, and is polished by, for example, reciprocation as indicated by an arrow so as to become a smooth plane.
- the second LG cap 43 is removed as shown in FIG. In this way, the end surface of the light guide 27 can be processed so as to slightly protrude from the end surface of the LG base 43 as shown in FIG. 7B.
- the end face of the light guide 27 is formed on the surrounding LG base 43 as shown in FIG. 9A. You may make it protrude from the formed taper surface 43a.
- a condenser lens 49 may be provided on the end surface of the light guide 27 as shown in FIG. 9B.
- the flat surface which is the front surface of the condenser lens 49 fixed to the LG base 43 is set so that the end face of the white LED 23 abuts.
- FIG. 10 shows a configuration of the distal end portion 11 of the insertion portion 6 in the third modification of the first embodiment.
- a plate-shaped polarizer 50 is arranged between the emission surface of the blue LED 25 and the second incident surface of the prism 28 in the configuration of FIG.
- the polarizer 50 passes only light polarized in a predetermined direction in the blue narrow band light generated by the blue LED 25. Further, a plate-shaped polarizer 40 is disposed between the objective lens 16 and the CCD 17. Other configurations are the same as those of the first embodiment.
- the polarization direction of the polarizer 50 is set to coincide with or orthogonal to the polarization direction of the polarizer 40.
- this modification it is possible to perform NBI observation using a reflected light component when a subject such as an affected area is illuminated with blue narrow-band light polarized in a predetermined direction.
- the other effects are the same as those of the first embodiment.
- the configuration in which broadband light or narrowband light is emitted from the emission surface side of the prism 28 using the common prism 28 has been described, but the third modification described below is used. A configuration like the example may be used.
- the tip of the light guide 27 is fixed to the first illumination window in the first embodiment shown in FIG.
- one end surface of the light guide 51 serving as a light guide means bent in an L shape is brought into close contact with the emission surface of the blue LED 25 in the second light source unit disposed inside the distal end portion 11, and the other end surface is connected to the second end surface. It is fixed to the lighting window.
- this modification emits light from the first light source unit 21, guides it through the light guide 27, and emits broadband light from the first illumination window.
- Emits light from the second light source unit 22 guides it through the light guide 51 having a short length, and emits narrowband light from the second illumination window.
- the first illumination window and the second illumination window are formed adjacent to the tip surface.
- the light guide 51 as the light guide means is used also in the case of the second light source unit 22, but since the length thereof is sufficiently short, the light guide loss due to the light guide 51 is sufficiently small. .
- the first illumination lens 53 is attached to the first illumination window shown in FIG. 11, and the broadband light emitted from the distal end surface of the light guide 27 is opposed to the distal end surface.
- the illumination lens 53 emits the light.
- FIG. 13A shows a front view of the tip 11 in FIG. In this modification, it is the structure which radiate
- a mechanical movable part is not required when switching between the WLI observation mode and the NBI observation mode, and illumination (light emission) and signal processing corresponding to both observation modes are performed at high speed. You can switch to
- the illumination period (abbreviated as WLI period) corresponding to the above-described WLI observation mode and the illumination period (abbreviated as NBI period) corresponding to the NBI observation mode are switched alternately, for example, every frame period (1 frame). It is also possible to set the observation mode in which the WLI image and the NBI image (having a time lag) can be displayed simultaneously. Then, the WLI / NBI observation mode as the observation mode can be set and the WLI image and the NBI image can be simultaneously displayed on the monitor 4.
- FIG. 13B shows a configuration of the signal processing circuit 36 in the sixth modification that realizes the WLI / NBI observation mode.
- FIG. 13C shows a timing chart for explaining the operation.
- the image signal picked up by the CCD 17 is extracted by a correlated double sampling circuit (not shown), and then converted into a digital image signal by the A / D conversion circuit 36a and input to the color separation circuit 36b.
- the color separation circuit 36b separates the input image signal into R, G, and B signal components according to the arrangement of the color separation filter 18, and passes through a changeover switch 36c formed of an analog switch or the like to pass through the R memory 38a and G memory. 38b, B memory 38c, and B memory 38d.
- the R memory 38a, the G memory 38b, and the B memory 38c are memories that store broadband R, G, and B signals, and the B memory 38d is a memory that stores narrow band B signals.
- the changeover switch 36c is switched every frame period by the control circuit 34 to which an instruction signal in the WLI / NBI observation mode is input.
- the ON or selection state of the changeover switch 36c indicated by the solid line in FIG. 13B indicates a state when an image signal captured in the WLI period is input, and broadband R, G, and B signals are R memory 38a and G memory. 38b and B memory 38c.
- the selection state of the changeover switch 36c indicated by a dotted line indicates a state when an image signal captured in the NBI period is input.
- a narrowband B signal is stored in the memory 38d. Note that signal processing by the signal processing circuit 36 for the image signals captured in the WLI period and the NBI period is immediately after the WLI period and the NBI period, respectively.
- the WLI / NBI observation mode may be selected by, for example, a switch provided in the observation mode changeover switch 37, or a dedicated switch for selecting the WLI / NBI observation mode may be provided in the endoscope. good.
- the image signals stored in the R memory 38a, G memory 38b, B memory 38c, and B memory 38d are read out in each frame period by the memory control circuit 36e and input to the D / A conversion circuit 36d.
- the B signal read from the B memory 38d is delayed by about 1/2 of one horizontal period as compared with the R, G, B signals read simultaneously from the R memory 38a, G memory 38b, and B memory 38c.
- the control circuit 34 controls the operation of the memory control circuit 36e so as to be read.
- the signal processing circuit 36 performs processing for generating an image signal of a composite image in which two images are arranged adjacent to each other in the horizontal direction.
- the D / A conversion circuit 36 d converts the input digital image signal into an analog video signal (image signal), and then outputs it to the R, G, and B channels of the monitor 4.
- the monitor 4 simultaneously displays a WLI image (abbreviated as WLI) 4a and an NBI image (abbreviated as NBI) 4b adjacent to each other in the horizontal direction.
- the B signal from the B memory 38d is added to the B signal from the B memory 38c and input to the B channel of the monitor 4, and the NBI image 4b is displayed in blue.
- FIG. 13C shows an operation explanatory diagram of this modification when the WLI / NBI observation mode is selected.
- the WLI period of the first frame period T1 the third frame period T3,...,
- the white LED 23 and the blue LED 25 emit light simultaneously, and in the NBI period of the second frame period T2, the fourth frame period T4,. It is controlled to emit light.
- a drive signal is applied to the CCD 17 at the end timing of the first frame period T1, and R, G, B signals (in FIG. 13C, R (T1), G (T1), B (T1) are captured in the first frame period T1. )) Is stored in the R, G, B memories 38a-38c, respectively.
- These image signals are held in the memory until a signal captured in the next WLI period (third frame period T3) is input (overwritten).
- the drive signal is applied to the CCD 17 at the end timing of the second frame period T2, and the B signal (B (T2) in FIG. 13C) captured in the second frame period T2 is stored in the B memory 38d.
- This B signal is held in the memory until the image signal captured in the next NBI period (third frame period T3) is input (overwritten).
- the image signals stored in the R, G, B memories 38a to 38c and the B memory 38d are read, and the WLI image 4a and the NBI image 4b are simultaneously displayed on the display surface of the monitor 4. .
- the WLI image 4a and the NBI image 4b can be displayed at the same time.
- the portion observed in the NBI image 4b can be confirmed from the WBI image 4a, and diagnosis can be easily performed. Become. In addition, during the period when the WLI image 4a is not acquired, the white LED 23 is not allowed to emit light, so that power can be saved.
- the emission intensity may be increased in the NBI period than in the WLI period.
- the operation unit 7 in the endoscope is not limited to switching alternately in one frame period so that a user such as an operator can change and set the WLI period and the NBI period.
- a period setting unit 39a (see FIG. 13B) may be provided.
- the WLI period may be lengthened and the NBI period may be shortened.
- the NBI period is lengthened and the WLI period is shortened.
- the WLI period and the NBI period can be changed and set in this way, the operability when the surgeon uses can be improved.
- the operation period setting unit 39b may be provided so that the operation period of the WLI / NBI observation mode can be set. For example, from the use state of the WLI observation mode or the NBI observation mode, only the operation period set by the operation period setting unit 39b is temporarily set to the WLI / NBI observation mode, and after the operation period has elapsed, the WLI observation mode is set. Alternatively, the NBI observation mode may be used again. Also in this case, the operability when the surgeon uses can be improved.
- FIG. 14A shows a configuration of an endoscope apparatus 1B provided with the second embodiment of the present invention.
- the endoscope 2B in the present embodiment has a configuration in which the first light source unit 21 in the operation unit 7 in the endoscope 2 shown in FIG. 1 is modified.
- a prism 61 is disposed between the exit surface of the white LED 23 of the first light source unit 21 and the end surface (to which light is incident) of the light guide 27, and further in the green wavelength band.
- a third light source unit 62 that generates narrowband light, that is, green narrowband light, is provided.
- the first light source unit 21 may be defined to include the third light source unit 62. Further, as will be described later with reference to FIG. 18, the first light source unit 21 may be configured to selectively generate green narrowband light from white light.
- the third light source unit 62 includes a green LED 63 that generates green narrow band light, and an LED substrate 64 on which the green LED 63 is mounted.
- the LED substrate 64 is connected to the power supply circuit 33 via the power supply line 65, and the control circuit 34 controls the light emission operation of the third light source unit 62.
- the exit surface of the white LED 23 is in close contact with the first entrance surface of the prism 61 formed of a dichroic prism, and the exit surface facing the first entrance surface is in contact with the end surface of the light guide 27 so as to be in contact therewith. Yes.
- a third light source unit 62 is provided so that the emission surface of the green LED 63 is in close contact with the second incident surface of the prism 61.
- FIG. 15 shows the characteristics of the green narrow-band light (G1 in FIG. 15) generated by the green LED 63 of the third light source unit 62.
- the prism 61 selectively reflects, for example, the green narrow band light shown in FIG. 15, and selectively transmits white (or a visible wavelength band) broadband light other than the green narrow band light. It is composed of dichroic prisms set to characteristics. Specifically, the joint surfaces of the inclined surfaces of the two triangular prisms constituting the prism 61 are set so as to have a characteristic Pg for selectively reflecting the green narrow-band light indicated by the dotted line in FIG. A dielectric film 61a is formed. The light emission characteristics of the white LED 23 of the first light source unit 21 and the blue LED 25 of the second light source unit 22 are the same as those in the first embodiment. The green narrow band light has a longer wavelength side than the blue narrow band light.
- the second light source unit 22 and the third light source unit 62 emit light, and an NBI image using both narrow band lights can be obtained. I have to.
- the signal processing circuit 36 generates a B signal and a G signal corresponding to the B and G color separation components by the color separation filter 18 under the illumination of blue and green narrowband light, and the B signal and The video signal composed of the G signal is output to the B and G channels of the monitor 4.
- the monitor 4 displays an endoscopic image corresponding to the B signal and the G signal imaged by the narrow band light.
- the blue narrow-band light emitted by the blue LED 25 and the green narrow-band light emitted by the green LED 63 emitted from the illumination window via the prism 28 have predetermined spectral characteristics (more specifically, Specifically, it has a function of adjusting or controlling so that the light quantity ratio between the two illumination lights maintains a predetermined value or a constant value.
- the operation unit 7 is provided with an adjustment switch 37 b for adjusting the light amount ratio, and an instruction signal from the adjustment switch 37 b is input to the control circuit 34.
- the adjustment switch 37b includes, for example, a first switch that performs an instruction operation to increase and decrease the light emission amount of the blue LED 25, or a second switch that performs an instruction operation to increase and decrease the light emission amount of the green LED 63.
- the adjustment switch 37b may have the functions of both switches.
- the operator turns ON / OFF the first switch or the second switch, and thereby the light quantity of the blue narrow band light emitted from the illumination window or the blue narrow band light emitted from the illumination window or the green LED 63 via the control circuit 34.
- the drive power supply supplied from the power supply circuit 33 to the light source units 22 and 62 so that the two narrow-band lights maintain a predetermined light quantity ratio by increasing / decreasing at least one light quantity in both narrow-band lights. Adjust the power.
- a sensor (not shown) that detects the amount of light is disposed opposite to the illumination window, and an output signal of this sensor is input to the control circuit 34.
- the control circuit 34 outputs an output from the sensor according to an instruction signal from the adjustment switch 37b.
- the signal may be monitored to adjust or control the power of the drive power supplied from the power supply circuit 33 to the light source units 22 and 62 so that both narrowband lights maintain a predetermined light quantity ratio.
- the control circuit 34 has a function of the light amount adjustment unit 34a that adjusts the blue narrow band light and the green narrow band light so that the predetermined light amount ratio is obtained (in other words, the light amount ratio is constant).
- the control circuit 34 controls the timing so as to simultaneously turn on (or emit light) for a predetermined period when switching (selecting) the observation mode, as will be described later with reference to FIG. 19A and the like. With the function of.
- FIG. 14A shows a configuration in which the control circuit 34 is provided in the processor 3, but as shown in FIG. 14B, the endoscope 2B ′ is provided in the endoscope 2B ′ as in the endoscope 2B ′ of the first modification.
- the configuration of the endoscope apparatus 1B ′ provided with the control circuit 34 may be adopted.
- a control circuit 24 is provided in, for example, the connector 9 in the endoscope 2B ′, and the processor 3B includes a power supply circuit 33 controlled by the control circuit 24, a drive circuit 35, and a signal processing circuit 36. It is a configuration.
- the other components in FIG. 4B are the same as those in FIG.
- FIG. 16 is an explanatory diagram of light amount adjustment by the light amount adjustment unit 34a.
- the upper diagram in FIG. 16 shows the characteristics of the intensity (initial intensity) of the blue narrow band light by the blue LED 25 and the intensity (initial intensity) of the green narrow band light by the green LED 63 in the initial state.
- the oblique lines indicate the areas of the intensity of the blue narrowband light and the intensity of the green narrowband light. If both the former and the latter areas are Sbi and Sgi, the area ratio is Sbi: Sgi. Then, when the intensity decreases (due to the blue LED 25 and the green LED 63) as shown on the lower side of FIG.
- the light amount adjustment unit 34a adjusts the driving power for driving the blue LED 25 to emit light (by the power supply circuit 33) and the driving power for the green LED 63 so that the light amount ratio is obtained.
- the both power ratios are adjusted by adjusting the driving power. Is adjusted to be constant, specifically, the same area ratio Sbi: Sgi as in the initial state.
- the peak value may be adjusted to be constant. For example, when the peak values of the intensity of blue narrow band light and green narrow band light in the upper diagram of FIG. 16 are Pbi and Pgi, the intensity as shown in the lower side of FIG. 16 for long-term use. May be adjusted so that the ratio of the peak values of both intensities is Pbi: Pgi.
- the signal processing circuit 36 When adjusting the light amount ratio as described above, it is preferable to detect that the tail portions of the blue narrow-band light and the green narrow-band light do not overlap and adjust the light amount ratio within the range where they do not overlap.
- the signal processing circuit 36 since narrowband light is used, when the center wavelengths of the blue narrowband light and the green narrowband light are not close, it is often possible to avoid overlapping. However, when the center wavelengths are close to each other, it is preferable to detect the presence or absence of overlap as described above and adjust the light amount ratio within a range where they do not overlap. 14A, the signal processing circuit 36 generates average luminances Bav and Gav from the B signal and the G signal, and a power supply circuit using the ratio Bav / Gav of both average luminances as an adjustment signal.
- the driving power for emitting light from the blue LED 25 and the green LED 63 may be adjusted so as to maintain the preset light quantity ratio. In this case, dimming may be performed so that an image with appropriate brightness can be obtained. Even when the light guide 27 is broken, the light amount ratio may be adjusted to be constant as described above. Moreover, you may use what the light guide 27 matched with the light emission wavelength of white LED21 and green LED63. Further, the light guide 27 may be formed by randomly bundling light guide fibers having different transmittances.
- FIG. 17 shows an operation explanatory diagram of the endoscope apparatus 1B of the present embodiment.
- the operation of the endoscope apparatus 1B ′ provided with the first modification is also an operation explanatory diagram shown in FIG. 17B.
- the operation of this embodiment is similar to FIG.
- the control circuit 34 sets, for example, the WLI observation mode as a predetermined observation mode that is initially set.
- control circuit 34 controls the power supply circuit 33 so that driving power is supplied to the white LED 23 of the first light source unit 21, the blue LED 25 of the second light source unit 22, and the green LED 63 of the third light source unit 62.
- the operation mode of the signal processing circuit 36 is controlled to be a signal processing mode corresponding to broadband light.
- the control circuit 34 determines whether or not an instruction for switching the observation mode has been issued. If the observation mode switching instruction has not been given, the process returns to step S11. On the other hand, when a switching instruction is given, the control circuit 34 sets the NBI observation mode as shown in step S13. In this case, the control circuit 34 controls the power supply circuit 33 so that the drive power is supplied to the blue LED 25 of the second light source unit 22 and the green LED 63 of the third light source unit 62, and the operation mode of the signal processing circuit 36. Are controlled so as to be in a signal processing mode corresponding to narrowband light. In this NBI observation mode, the surgeon can observe the capillaries on the surface layer of the affected area and the running state of the blood vessels slightly deeper than the capillaries in a state where it can be clearly recognized.
- step S14 the control circuit 34 determines whether or not an instruction for switching the observation mode has been issued. If the observation mode switching instruction has not been given, the process returns to step S13. On the other hand, when a switching instruction is given, the control circuit 34 proceeds to a process of setting the WLI observation mode in step S11.
- the second light source unit 22 that generates blue narrow-band light is disposed in the distal end portion 11 of the insertion unit 6 as in the first embodiment.
- the blue narrow-band light generated by the two light source units 22 can be emitted from the illumination window with almost no loss when guided. Therefore, according to the present embodiment, as in the first embodiment, the decrease in the amount of narrowband light generated by the narrowband light source can be reduced, and illumination for observation with broadband light can be performed without any problem. Can do.
- the observation is performed only with the blue narrow-band light.
- both the blue narrow-band light and the green narrow-band light are used. Can be observed.
- in addition to the running state of fine blood vessels such as capillaries near the surface layer of the biological mucosa due to the blue narrow band light it is closer to the deeper side than the surface layer near the surface layer due to the green narrow band light. It is possible to observe the running state of a thick blood vessel in a state where it can be easily identified.
- the NBI observation mode is maintained over a long period of time. Even in the case of using, since the light quantity ratio does not change, characteristics such as the color tone of the obtained NBI image can be prevented from changing.
- the B signal and the G signal obtained under the blue narrow band light and the green narrow band light are converted by the color conversion circuit provided in the signal processing circuit 36.
- the color conversion from the two color signals B and G to the three color signals may be performed and displayed on the monitor 4.
- observation using only blue narrow-band light and observation using only green narrow-band light may be selected.
- FIG. 18 shows a configuration in the vicinity of the second light source unit in an endoscope 2B ′′ of the second modification of the second embodiment.
- An air gap is formed between the rear end face and a green narrow band filter 71 that selectively transmits only the green narrow band light is detachably disposed in the air gap.
- the green narrow band filter 71 is driven by, for example, a geared motor 72, and is disposed in the gap (position indicated by a solid line in FIG. 18) and retracted from the gap as indicated by a two-dot chain line. Driven by.
- the operation of the geared motor 72 is controlled by a control signal from the control circuit 34 through a signal line 73.
- the control circuit 34 sets the green narrow band filter 71 in a retracted state (in FIG. 18, the green narrow band filter 71 is in a state indicated by a one-dot chain line).
- the broadband light as the white light of the white LED 23 is incident on the rear end surface of the light guide 27, and the broadband light guided from the front end surface is emitted.
- the control circuit 34 sets the green narrow band filter 71 in a state where it is disposed in the gap. In this case, broadband light as white light from the white LED 23 is incident on the green narrow band filter 71.
- FIG. 19A shows an operation when switching from the WLI observation mode to the NBI observation mode at time t1 and when switching from the NBI observation mode to the WLI observation mode at time t2. An explanatory diagram is shown.
- the white LED 23 is ON under the control of the control circuit 34.
- the control circuit 34 turns on the green LED 63, and from this time t1, the image processing switching time ti is reached. Later, the blue LED 23 is turned on and the white LED 23 is turned off.
- the white LED, the green LED, and the blue LED are abbreviated as WL, GL, and BL, respectively. Note that, during the image processing switching time ti, the image by lighting the white LED 23 and the image by lighting the green LED 63 are combined and displayed on the monitor 4. Therefore, even when the switching operation is performed at time t1, the image by lighting the white LED 23 and the image by lighting the green LED 63 are combined and displayed on the monitor 4, so that no blinding occurs.
- control circuit 34 turns on the white LED 23, turns off the blue LED 23, and turns off the green LED 63 from ON to OFF after a time ti required for switching image processing. Therefore, even when the switching operation is performed at time t2, blinding does not occur as in the case of time t1. According to this modification, an observation image can be obtained without occurrence of blinds even during switching, so that, for example, losing sight of an observation region of interest for a moment can be solved.
- control may be performed as shown in FIG. 19B.
- FIG. 19B when the switching operation is performed at the same timing as in FIG. 19A, the current is gradually decreased between the white LED 23 and the green LED 63 at the image processing switching time ti, and the current is gradually increased from ON to OFF or the current is gradually increased. Turn from OFF to ON.
- a yellow LED (abbreviated as YL in FIGS. 19C and 19D) generated in a yellow wavelength band may be employed as shown in FIG. 19D.
- the control circuit 34 may control as shown in FIG. 19C.
- FIG. 19C in the state where the yellow LED, the blue LED 25, and the green LED 63 emit light, the characteristics are close to white light. Therefore, when a yellow LED is used, ON and OFF are controlled as shown in FIG. 19C.
- control may be performed so that the corresponding LED is lit (emitted) only during the exposure period of the CCD 17 as the image sensor.
- FIG. 20 shows a configuration in which the green LED 63 and the blue LED 25 can emit light in the NBI observation mode, and the control circuit 34 performs an exposure period in which the CCD 17 actually captures an image in accordance with the operator's selection.
- the imaging period T period in which light is received and accumulated
- only one or both of the green LED 63 and the blue LED 25 are caused to emit light simultaneously.
- the surgeon selects the NBI observation mode with the blue LED 25.
- the surgeon selects the NBI observation mode with the green LED 63.
- the surgeon selects the surgery. This is a case where the NBI observation mode by the blue LED 25 and the green LED 63 is selected by the person.
- the NBI image becomes an image state in which it is easy to clearly recognize the running state of the capillaries in the vicinity of the surface layer as shown in FIG. 21A.
- the NBI image An NBI image in which the running state of a thick blood vessel can be easily recognized is as shown in FIG. 21B.
- the NBI image clearly shows the running state of the blood vessels near the surface layer and at a depth slightly closer to the surface layer as shown in FIG. 21C (as synthesized from FIGS. 21A and 21B). It will be easy to recognize.
- it can control like the period Tc and the display of FIG. 21A or FIG.
- the present invention can also be applied to the WLI observation mode. By performing the control as shown in FIG. 20, it is possible to prevent light emission during the period when the CCD 17 is not capturing an image. Moreover, the heat generation at the tip 11 can be reduced.
- the second light source unit may be detachably provided at the tip 11 as shown in FIG. 22A.
- a notch is formed in the tip portion 11, and a connector receiver 81 is provided on the end surface of the notch.
- a block 83 having the second light source unit 22 shown in FIG. 12 and having a connector 82 provided on the connector receiver 81 is detachably attached to the notch.
- the block 83 is set to an outer shape that fits into the notch.
- the power line 32 is connected to the second light source unit 22 via the connector receiver 81 and the connector 82.
- the block 83 shown in FIG. 22A includes a light source unit for NBI. However, a block including a light source unit for fluorescence observation may be prepared and used for replacement.
- a method called PDD Photo dynamic Diagnosis
- a tumor-affinity photosensitive substance is absorbed in advance in the tumor portion and irradiated with excitation light to make the tumor fluorescent and diagnose.
- a block including a light source unit that generates excitation light may be prepared.
- the surgeon can perform NBI observation, fluorescence observation, and the like by wearing a block that he / she wants to actually use from NBI observation, fluorescence observation, and the like.
- an NBI light source unit hereinafter abbreviated as a light source unit
- a light source unit 85 can be detachably attached to the distal end portion 11. good.
- the light source unit 85 has a ring shape with an inner diameter that fits to the outer peripheral surface of the distal end portion 11, and a B light source portion 86 and a G light source that respectively generate blue and green narrowband light. A portion 87 is provided.
- this endoscope transmits AC power from an AC power supply 88 through a transmission line and supplies the power to a power feeding unit 91 provided in the distal end portion 11.
- the light source unit 85 includes a power receiving portion 92 that is disposed at a position facing the power supplying portion 91 (no contact of the contact, that is, contactless) and receives AC power, and the power receiving portion 92 is provided therein.
- the rectifier circuit converts the power to DC power and supplies driving power to the B light source unit 86 and the G light source unit 87.
- This endoscope has an effect of performing NBI observation by mounting the light source unit 85.
- embodiments configured by partially combining the above-described embodiments and the like also belong to the present invention.
- a dichroic prism for example, white light, blue light, or green light is transmitted and reflected at a predetermined ratio and guided to the exit surface side.
- the thing using the half mirror which shines also belongs to this invention.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biophysics (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Radiology & Medical Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Endoscopes (AREA)
- Instruments For Viewing The Inside Of Hollow Bodies (AREA)
Abstract
内視鏡は、被検体内に挿入される挿入部と、挿入部の基端に設けられた操作部と、操作部内に設けられ、広帯域の波長特性を有する広帯域光としての第1の光を発生する第1光源部と、第1光源部から出射される第1の光を導光する導光部と、挿入部の先端部付近に設けられ、狭帯域の波長特性を有する狭帯域光としての第2の光を発生する第2光源部と、挿入部の先端部に設けられ、第1の光及び第2の光がそれぞれ入射される第1及び第2の入射面を有すると共に、第1及び第2の入射面から入射された光を所定方向に出射する出射面を有するプリズムと、を備える。
Description
本発明は広帯域の光と、狭帯域の光を照明光に用いる内視鏡に関する。
近年、内視鏡は、被検体内に挿入部を挿入して、内視鏡検査する場合に広く用いられるようになっている。
被検体内を可視の波長帯域をカバーする広帯域の照明光で照明することにより、肉眼観察する場合と同等に近い観察像を得ることができるようにしている。
一方、内視鏡による観察機能を向上するために、可視の波長帯域をカバーする広帯域の照明光の他に、特定の波長帯域のみをカバーする狭帯域の照明光を用いて観察対象部位を照明することにより、通常観察像の場合とは異なる狭帯域光による観察像(表層付近の血管の走行状態の観察像)を得る内視鏡も提案されている。
例えば、日本国特開2003-079571号公報の第1の従来例の内視鏡は、挿入部の先端部に第1の発光素子を設け、この第1の発光素子から出射した出射光を第1の配光レンズを介して生体内部に出射する。
被検体内を可視の波長帯域をカバーする広帯域の照明光で照明することにより、肉眼観察する場合と同等に近い観察像を得ることができるようにしている。
一方、内視鏡による観察機能を向上するために、可視の波長帯域をカバーする広帯域の照明光の他に、特定の波長帯域のみをカバーする狭帯域の照明光を用いて観察対象部位を照明することにより、通常観察像の場合とは異なる狭帯域光による観察像(表層付近の血管の走行状態の観察像)を得る内視鏡も提案されている。
例えば、日本国特開2003-079571号公報の第1の従来例の内視鏡は、挿入部の先端部に第1の発光素子を設け、この第1の発光素子から出射した出射光を第1の配光レンズを介して生体内部に出射する。
また、操作部内に、第2の発光素子を設け、この第2の発光素子から出射した出射光をライトガイドにより導光し、このライトガイドの先端面から第2の配光レンズを介して生体内部に出射する構成を開示している。このような構成にすることにより、先端部に配置した発光素子による光量と、操作部内に配置した第2の発光素子による光量とにより、十分な出射光量を確保できるようにしている。
また、日本国特開2003-164417号公報の第2の従来例の内視鏡は、プリズムを有し、このプリズムは、白色光源装置からの白色光と励起用光源からの紫外光とを切り替える等して内視鏡内部の殆ど全長に渡って設けられたライトガイドの後端に導光し、このライトガイドの先端面から配光レンズを介して導光した光を出射する。
また、日本国特開2003-164417号公報の第2の従来例の内視鏡は、プリズムを有し、このプリズムは、白色光源装置からの白色光と励起用光源からの紫外光とを切り替える等して内視鏡内部の殆ど全長に渡って設けられたライトガイドの後端に導光し、このライトガイドの先端面から配光レンズを介して導光した光を出射する。
上記第1の従来例は、可視の波長帯域の観察を目的としたものであり、広帯域の照明光による通常観察像と、狭帯域の照明光による特殊観察像とを得ることを目的とするものでない。
一方、上記第2の従来例は、白色光と紫外光とをプリズムにより切り替えることができるが、例えば紫外光は内視鏡内部の殆ど全長に渡って挿通された導光手段としてのライトガイドによる導光ロスが大きく、白色光の場合よりも大きく減衰される。
従って、ライトガイドの先端面から出射される紫外光の光量が、白色光の場合よりも大きく低下するため、得られる蛍光観察像の画質が低下する。画質の低下を防止するためには、内視鏡内部の殆ど全長に渡って挿通されたライトガイドによる減衰を補うような大型の励起用光源が必要になってしまい、コストが嵩む。
一方、上記第2の従来例は、白色光と紫外光とをプリズムにより切り替えることができるが、例えば紫外光は内視鏡内部の殆ど全長に渡って挿通された導光手段としてのライトガイドによる導光ロスが大きく、白色光の場合よりも大きく減衰される。
従って、ライトガイドの先端面から出射される紫外光の光量が、白色光の場合よりも大きく低下するため、得られる蛍光観察像の画質が低下する。画質の低下を防止するためには、内視鏡内部の殆ど全長に渡って挿通されたライトガイドによる減衰を補うような大型の励起用光源が必要になってしまい、コストが嵩む。
このため、コストが嵩むことなく、狭帯域光の光源で発生した狭帯域光を照明光として出射するまでの光量の低下を少なくでき、さらに広帯域光による観察も支障なく行うことができる内視鏡が望まれる。
本発明は上述した点に鑑みてなされたもので、狭帯域光源で発生した狭帯域光の光量の低下を少なくでき、かつ広帯域光による観察のための照明も支障なく行うことができる内視鏡を提供することを目的とする。さらに、本発明は、簡単な構成で、狭帯域光源で発生した可視の波長帯域における短波長側となる狭帯域光の光量の低下を少なくでき、狭帯域光の照明による生体粘膜の表層付近の観察と、可視の波長帯域をカバーする広帯域光の照明による通常観察とを行うのに適した内視鏡を提供することも目的とする。
本発明は上述した点に鑑みてなされたもので、狭帯域光源で発生した狭帯域光の光量の低下を少なくでき、かつ広帯域光による観察のための照明も支障なく行うことができる内視鏡を提供することを目的とする。さらに、本発明は、簡単な構成で、狭帯域光源で発生した可視の波長帯域における短波長側となる狭帯域光の光量の低下を少なくでき、狭帯域光の照明による生体粘膜の表層付近の観察と、可視の波長帯域をカバーする広帯域光の照明による通常観察とを行うのに適した内視鏡を提供することも目的とする。
本発明の一態様の内視鏡は、被検体内に挿入される挿入部と、前記挿入部の基端に設けられ、操作手段が設けられた操作部と、前記操作部内に設けられ、可視の波長帯域をカバーする広帯域の波長特性を有する広帯域光としての第1の光を発生する第1光源部と、前記操作部から前記挿入部の先端部付近に至るように配置され、前記第1光源部から出射される前記第1の光を導光する導光部と、前記挿入部の先端部付近に設けられ、狭帯域の波長特性を有する狭帯域光としての第2の光を発生する第2光源部と、前記挿入部の先端部に設けられ、前記導光部により導光された前記第1の光及び前記第2光源部からの前記第2の光がそれぞれ入射される第1及び第2の入射面を有すると共に、前記第1及び第2の入射面から入射された光を照明窓が開口する所定方向に出射する出射面を有するプリズムと、を備える。
以下、図面を参照して本発明の実施形態を説明する。
(第1の実施形態)
図1に示すように本発明の第1の実施形態を備えた内視鏡装置1は、第1の実施形態の内視鏡2と、この内視鏡2が着脱自在に接続される信号処理装置としてのビデオプロセッサ3と、このビデオプロセッサ3から出力される映像信号が入力されることにより、この映像信号に対応する内視鏡画像を表示する表示手段としてのモニタ4とから構成される。
内視鏡2は、体腔内に挿入される細長の挿入部6と、この挿入部6の後端に設けられ、湾曲するための操作手段としての湾曲操作ノブ10が設けられた操作部7と、この操作部7から延出されたケーブル8とを有し、このケーブル8の末端のコネクタ9はビデオプロセッサ3に着脱自在に接続される。
(第1の実施形態)
図1に示すように本発明の第1の実施形態を備えた内視鏡装置1は、第1の実施形態の内視鏡2と、この内視鏡2が着脱自在に接続される信号処理装置としてのビデオプロセッサ3と、このビデオプロセッサ3から出力される映像信号が入力されることにより、この映像信号に対応する内視鏡画像を表示する表示手段としてのモニタ4とから構成される。
内視鏡2は、体腔内に挿入される細長の挿入部6と、この挿入部6の後端に設けられ、湾曲するための操作手段としての湾曲操作ノブ10が設けられた操作部7と、この操作部7から延出されたケーブル8とを有し、このケーブル8の末端のコネクタ9はビデオプロセッサ3に着脱自在に接続される。
挿入部6は、その先端に設けられた先端部11と、この先端部11の後端に設けられた湾曲部12と、この湾曲部12の後端から操作部7の前端に至る可撓性を有する可撓部13とからなる。術者は、操作部7の前端側の把持部を把持して、湾曲の操作手段としての湾曲操作ノブ10を回動する操作を行うことにより、図示しない湾曲ワイヤを牽引して湾曲部12を湾曲することができる。なお、湾曲部12は、図示しない複数の湾曲駒を回動自在に連結して構成されている。
挿入部6の先端部11には、照明窓と観察窓とが隣接して設けられており、照明窓には、被写体側に照明光を出射する照明レンズ15が取り付けられており、観察窓には、照明された被写体の光学像を結像する対物レンズ16が取り付けられている。
挿入部6の先端部11には、照明窓と観察窓とが隣接して設けられており、照明窓には、被写体側に照明光を出射する照明レンズ15が取り付けられており、観察窓には、照明された被写体の光学像を結像する対物レンズ16が取り付けられている。
本実施形態においては、以下のように可視の波長帯域における短波長側となる青色の狭帯域光は導光手段(光伝送手段)としてのライトガイドでの導光の際の光量ロスが大きい(換言すると、ライトガイドは青色の狭帯域光に対する導光又は伝送の効率が低い)ため、この青色の狭帯域光を発生する第2光源部22を先端部11内に配置した構成にしている。また、この青色の狭帯域光は、波長帯域が小さい(狭い)ので、光量ロスの影響が広帯域光の場合よりも大きい。
これに対して、この青色の狭帯域光の場合程には、ライトガイドでの導光の際の光量ロスによる影響が小さい(低い)可視の波長帯域をカバーする広帯域光としての白色光を発生する第1光源部21を、操作部7に配置し、ライトガイド27により、先端部11側に導光する構成にしている。
これに対して、この青色の狭帯域光の場合程には、ライトガイドでの導光の際の光量ロスによる影響が小さい(低い)可視の波長帯域をカバーする広帯域光としての白色光を発生する第1光源部21を、操作部7に配置し、ライトガイド27により、先端部11側に導光する構成にしている。
つまり、本実施形態における内視鏡2は、操作部7内に可視の波長帯域をカバーする広帯域光としての白色光を発生する第1光源部21と、可視の波長帯域における短波長側となる青色の狭帯域光を発生する第2光源部22とを有する。
第1光源部21は、広帯域光としての白色光を発生する白色発光ダイオード(LEDと略記)23と、この白色LED23が実装されたLED基板24とからなる。
また、第2光源部22は、狭帯域光としての青光を発生する青色LED25と、この青色LED25が実装されたLED基板26とからなる。
白色LED23における白色光を出射する出射面には導光部を構成するライトガイドファイバ(単にライトガイドと略記)27の後端面(基端面)が当接するように配置され、このライトガイド27は、入射された白色光を導光(伝送)して、ライトガイド27の先端面(出射面)から出射する。
第1光源部21は、広帯域光としての白色光を発生する白色発光ダイオード(LEDと略記)23と、この白色LED23が実装されたLED基板24とからなる。
また、第2光源部22は、狭帯域光としての青光を発生する青色LED25と、この青色LED25が実装されたLED基板26とからなる。
白色LED23における白色光を出射する出射面には導光部を構成するライトガイドファイバ(単にライトガイドと略記)27の後端面(基端面)が当接するように配置され、このライトガイド27は、入射された白色光を導光(伝送)して、ライトガイド27の先端面(出射面)から出射する。
図1及び図2に示すようにライトガイド27の先端面は、先端部11内における照明窓の開口に取り付けられた照明レンズ15に対向する面が出射面として配置されたプリズム28におけるこの出射面に対向する面(第1入射面とする)に当接するように、先端部11内で固定されている。
また、このプリズム28における上記第1入射面と直交する第2入射面には、上記青色LED25の出射面が当接するように、先端部11内で固定されている。
また、上記LED基板24、26は、それぞれ内視鏡2内を挿通された電源線31,32を介して、コネクタ9が接続されるビデオプロセッサ3内部の電源回路33に接続される。
また、上記LED基板24、26は、それぞれ内視鏡2内を挿通された電源線31,32を介して、コネクタ9が接続されるビデオプロセッサ3内部の電源回路33に接続される。
そして、この電源回路33から駆動電圧をLED基板24、26に供給することにより、白色LED23及び青色LED25を発光させるように駆動することができる。この電源回路33は、制御回路34による制御下で動作する。なお、図1において、制御回路34は、プロセッサ3内に設けているが、内視鏡2内に設けるようにしても良い。例えば2点鎖線で示すようにコネクタ9内に制御回路34を設けるようにしても良い。
電源回路33から駆動電源が供給されると、白色LED23及び青色LED25は、例えば図3に示すように可視の波長帯域をカバーする白色の広帯域光(図3中ではW1で示す)と可視の波長帯域における短波長側となる青色の狭帯域光(図3中ではB1で示す)をそれぞれ発生する。
なお、プリズム28は、例えば図3に示す青色の狭帯域光(と同じ波長帯域の光)を選択的に反射し、この青色の狭帯域光以外の白色の広帯域光を選択的に透過する特性に設定されたダイクロイックプリズムにより構成されている。
電源回路33から駆動電源が供給されると、白色LED23及び青色LED25は、例えば図3に示すように可視の波長帯域をカバーする白色の広帯域光(図3中ではW1で示す)と可視の波長帯域における短波長側となる青色の狭帯域光(図3中ではB1で示す)をそれぞれ発生する。
なお、プリズム28は、例えば図3に示す青色の狭帯域光(と同じ波長帯域の光)を選択的に反射し、この青色の狭帯域光以外の白色の広帯域光を選択的に透過する特性に設定されたダイクロイックプリズムにより構成されている。
具体的には、プリズム28を構成する2つの3角プリズムにおける斜面の接合面には、図3の点線で示した青色の狭帯域光を選択的に反射する特性Pbを持つように設定された誘電体膜28aが形成されている。
従って、白色LED23により発生した白色の広帯域光は、ライトガイド27により導光され、さらに青色の狭帯域光以外の白色の広帯域光がプリズム28を透過して、照明窓に取り付けられた照明レンズ15を経て出射され、患部等の被写体側を照明する。 一方、先端部11内に配置された青色LED25により発生した青色の狭帯域光は、プリズム28により青色の狭帯域光が反射され、照明窓に取り付けられた照明レンズ15を経て出射され、患部等の被写体側を照明する。
なお、図2に示すように先端部11における先端面側には、弾性を有する先端カバー29が設けられている。
従って、白色LED23により発生した白色の広帯域光は、ライトガイド27により導光され、さらに青色の狭帯域光以外の白色の広帯域光がプリズム28を透過して、照明窓に取り付けられた照明レンズ15を経て出射され、患部等の被写体側を照明する。 一方、先端部11内に配置された青色LED25により発生した青色の狭帯域光は、プリズム28により青色の狭帯域光が反射され、照明窓に取り付けられた照明レンズ15を経て出射され、患部等の被写体側を照明する。
なお、図2に示すように先端部11における先端面側には、弾性を有する先端カバー29が設けられている。
また、対物レンズ16の結像位置には、撮像素子としての例えば電荷結合素子(CCDと略記)17の撮像面が配置されている。このCCD17は、撮像面に結像された光学像を光電変換する。このCCD17の撮像面には、例えば画素単位で光学的に赤(R),緑(G),青(B)に色分離する色分離フィルタ18が配置されている。
このCCD17は、内視鏡2内を挿通された信号線19、20を介して、コネクタ9が接続されるビデオプロセッサ3内部の駆動回路35と、信号処理回路36とにそれぞれ接続される。
駆動回路35は、CCD17に駆動信号を印加し、CCD17は駆動信号の印加により光電変換した撮像信号(画像信号)を信号処理回路36に出力する。
このCCD17は、内視鏡2内を挿通された信号線19、20を介して、コネクタ9が接続されるビデオプロセッサ3内部の駆動回路35と、信号処理回路36とにそれぞれ接続される。
駆動回路35は、CCD17に駆動信号を印加し、CCD17は駆動信号の印加により光電変換した撮像信号(画像信号)を信号処理回路36に出力する。
信号処理回路36は、入力された画像信号に対して、標準的な映像信号を生成し、モニタ4に出力する。モニタ4の表示面には、標準的な映像信号に対応する内視鏡画像を表示する。
また、内視鏡2の操作部7には、観察モードを切り替える(又は選択する)指示操作を行う観察モード選択部としての観察モード切替スイッチ(又は観察モード選択スイッチ)37が設けられている。術者は、この観察モード切替スイッチ37を操作することにより、第1光源部21による広帯域光の照明による通常観察モード又は広帯域光観察モード(WLI観察モード)と、第2光源部22による狭帯域光の照明による狭帯域光観察モード(NBI観察モード)を切り替える指示信号が制御回路34に出力される。
制御回路34は、この指示信号に応じて、電源回路33と信号処理回路36の動作を制御する。制御回路34が、駆動回路35の動作も制御するようにしても良い。
また、内視鏡2の操作部7には、観察モードを切り替える(又は選択する)指示操作を行う観察モード選択部としての観察モード切替スイッチ(又は観察モード選択スイッチ)37が設けられている。術者は、この観察モード切替スイッチ37を操作することにより、第1光源部21による広帯域光の照明による通常観察モード又は広帯域光観察モード(WLI観察モード)と、第2光源部22による狭帯域光の照明による狭帯域光観察モード(NBI観察モード)を切り替える指示信号が制御回路34に出力される。
制御回路34は、この指示信号に応じて、電源回路33と信号処理回路36の動作を制御する。制御回路34が、駆動回路35の動作も制御するようにしても良い。
信号処理回路36は、白色の広帯域光の照明のもとでは、CCD17の色分離フィルタ18によるR,G,Bの色分離に対応したR,G,B信号をそれぞれ生成し、カラーの映像信号をモニタ4に出力する。そして、モニタ4は通常画像又は広帯域画像(WLI画像)としてのカラーの内視鏡画像を表示する。
一方、青色の狭帯域光の照明のもとでは、色分離フィルタ18によるBの色分離成分に対応したB信号を生成し、B信号のみからなるモノクロの映像信号をモニタ4に出力する。そして、モニタ4は青色の狭帯域光の照明のもとで撮像した狭帯域画像(NBI画像)としてのモノクロの内視鏡画像を表示する。なお、B信号を、モニタ4のBチャンネルに入力する他に、R及びGチャンネルにも入力して白黒の内視鏡画像(NBI画像)を表示するようにしても良い。
一方、青色の狭帯域光の照明のもとでは、色分離フィルタ18によるBの色分離成分に対応したB信号を生成し、B信号のみからなるモノクロの映像信号をモニタ4に出力する。そして、モニタ4は青色の狭帯域光の照明のもとで撮像した狭帯域画像(NBI画像)としてのモノクロの内視鏡画像を表示する。なお、B信号を、モニタ4のBチャンネルに入力する他に、R及びGチャンネルにも入力して白黒の内視鏡画像(NBI画像)を表示するようにしても良い。
このような構成による本実施形態の内視鏡2は、被検体内に挿入される挿入部6と、前記挿入部6の基端に設けられ、操作手段が設けられた操作部7と、前記操作部7内に設けられ、可視の波長帯域をカバーする広帯域の波長特性を有する広帯域光としての第1の光を発生する第1光源部21と、前記操作部7から前記挿入部6の先端部付近に至るように配置され、前記第1光源部21から出射される前記第1の光を導光する導光部としてのライトガイド27と、前記挿入部6の先端部11付近に設けられ、狭帯域の波長特性を有する狭帯域光としての第2の光を発生する第2光源部22と、前記挿入部6の先端部11に設けられ、前記導光部により導光された前記第1の光及び前記第2光源部22からの前記第2の光がそれぞれ入射される第1及び第2の入射面を有すると共に、前記第1及び第2の入射面から入射された光を照明窓が開口する所定方向に出射する出射面を有するプリズム28と、を備えることを特徴とする。
なお、第1光源部21は、第1の光として可視の波長帯域をカバーする白色光を発生し、第2光源部22は、第2の光として可視の波長帯域における短波長側となる狭帯域の光を発生する。
このような構成による本実施形態の動作を図4を参照して説明する。電源が投入されると、制御回路34は、初期設定の所定の観察モードとして、ステップS1に示すようにWLI観察モードに設定する。
この場合、制御部としての制御回路34は、第1光源部21の白色LED23及び第2光源部22の青色LED25に駆動電源が供給されるように電源回路33を制御すると共に、信号処理回路36の動作モードを広帯域光(白色光)のWLI観察モードに対応した信号処理モードとなるように制御する。
なお、白色LED23による白色光は、ダイクロイックプリズムにより形成されたプリズム28によって、青の狭帯域光部分が欠落した照明光となるので、制御回路34は、電源回路33の動作を制御し、WLI観察モードの場合には白色LED23と青色LED25とを同時に発光させる。この場合には、青の狭帯域光部分が殆ど欠落しない白色の照明光が被写体側に出射される。そして、モニタ4にはWLI画像が表示される。
この場合、制御部としての制御回路34は、第1光源部21の白色LED23及び第2光源部22の青色LED25に駆動電源が供給されるように電源回路33を制御すると共に、信号処理回路36の動作モードを広帯域光(白色光)のWLI観察モードに対応した信号処理モードとなるように制御する。
なお、白色LED23による白色光は、ダイクロイックプリズムにより形成されたプリズム28によって、青の狭帯域光部分が欠落した照明光となるので、制御回路34は、電源回路33の動作を制御し、WLI観察モードの場合には白色LED23と青色LED25とを同時に発光させる。この場合には、青の狭帯域光部分が殆ど欠落しない白色の照明光が被写体側に出射される。そして、モニタ4にはWLI画像が表示される。
術者は、モニタ4に表示されるWLI画像を観察して患部等を診断する。次のステップS2において制御回路34は観察モードの切替指示がされたか否かを判定する。観察モードの切替指示がされていない場合には、ステップS1の処理に戻る。
一方、切替指示がされた場合には、ステップS3に示すように制御回路34は、NBI観察モードに設定する。この場合、制御回路34は、第2光源部22に駆動電源が供給されるように電源回路33を制御すると共に、信号処理回路36の動作モードを狭帯域光に対応した信号処理モードとなるように制御する。そして、モニタ4にはNBI画像が表示される。
青の狭帯域光は、生体粘膜の内部での減衰が大きいため、その反射光を受光するCCD17には生体粘膜の表層付近からの反射光成分のみが実質的に入射される。従って、青の狭帯域光の照明のもとでCCD17により撮像され、信号処理回路36により生成されるNBI画像は、表層付近の毛細血管の走行状態等を鮮明に表すような画像となり、術者は毛細血管の走行状態等を認識し易い状態で観察することができる。
次のステップS4において制御回路34は観察モードの切替指示がされたか否かを判定する。観察モードの切替指示がされていない場合には、ステップS3の処理に戻る。一方、切替指示がされた場合には、ステップS1のWLI観察モードに設定する処理に移る。
青の狭帯域光は、生体粘膜の内部での減衰が大きいため、その反射光を受光するCCD17には生体粘膜の表層付近からの反射光成分のみが実質的に入射される。従って、青の狭帯域光の照明のもとでCCD17により撮像され、信号処理回路36により生成されるNBI画像は、表層付近の毛細血管の走行状態等を鮮明に表すような画像となり、術者は毛細血管の走行状態等を認識し易い状態で観察することができる。
次のステップS4において制御回路34は観察モードの切替指示がされたか否かを判定する。観察モードの切替指示がされていない場合には、ステップS3の処理に戻る。一方、切替指示がされた場合には、ステップS1のWLI観察モードに設定する処理に移る。
このように動作する本実施形態においては、可視の波長帯域における短波長側となる青色の狭帯域光を発生する第2光源部22を挿入部6の先端部11内に配置しているため、第2光源部22により発生した青色の狭帯域光を導光の際に殆どロスすることなく、照明窓から出射することができる。
従って、本実施形態によれば、狭帯域光の光源で発生した狭帯域光の光量の低下を少なくでき、かつ広帯域光による観察のための照明も支障なく行うことができる。また、簡単な構成により、広帯域光としての白色光の照明のもとでの通常観察と、狭帯域光の照明による患部等の生体粘膜における表層付近の血管の走行状態を認識し易い状態での観察とを選択できる。
従って、本実施形態によれば、狭帯域光の光源で発生した狭帯域光の光量の低下を少なくでき、かつ広帯域光による観察のための照明も支障なく行うことができる。また、簡単な構成により、広帯域光としての白色光の照明のもとでの通常観察と、狭帯域光の照明による患部等の生体粘膜における表層付近の血管の走行状態を認識し易い状態での観察とを選択できる。
また、本実施形態によれば、プリズム28としてダイクロイックプリズムを使用した場合においても、WLI観察モードが選択された場合、青色の狭帯域光部分が殆ど欠落することなく白色の照明光を被写体側に出射するようにしているので、白色光の照明のもとで患部等の被写体を実際に観察した場合に近い色再現性の良いカラー画像を生成することができる。
また、本実施形態によれば、WLI観察モードとNBI観察モードとにおいて、共通の撮像素子を用いることができ、NBI観察モードの場合には、WLI観察モードの場合におけるB信号成分を抽出することで、簡単にNBI画像を生成できる。
図5は、第1の実施形態における第1変形例の内視鏡における第2光源ユニット41の縦断面図を示す。
本変形例は、第1の実施形態において第2光源部22をライトガイド27の先端部及びプリズム28に一体化した第2光源ユニット41を形成している。
本変形例は、第1の実施形態において第2光源部22をライトガイド27の先端部及びプリズム28に一体化した第2光源ユニット41を形成している。
なお、図6Aから図6CはLED外装ブロック42の正面図、側面図、背面図をそれぞれ示す。
第2光源ユニット41は、LED外装ブロック42における正面側の中央付近に設けた凹部内にはプリズム28が配置され、このプリズム28の底面(第2の入射面)に出射面が密着するように青色LED25及び青色LED25が搭載されたLED基板26が固定される。
また、LED外装ブロック42における背面側の凹部内には、ライトガイド27の先端側が挿入され、凹部の内部に配置されたプリズム28の背面(第1の入射面)に、ライトガイド27の先端面が密着して当接する状態で固定される。
第2光源ユニット41は、LED外装ブロック42における正面側の中央付近に設けた凹部内にはプリズム28が配置され、このプリズム28の底面(第2の入射面)に出射面が密着するように青色LED25及び青色LED25が搭載されたLED基板26が固定される。
また、LED外装ブロック42における背面側の凹部内には、ライトガイド27の先端側が挿入され、凹部の内部に配置されたプリズム28の背面(第1の入射面)に、ライトガイド27の先端面が密着して当接する状態で固定される。
また、LED基板26におけるは青色LED25と導通する接点には、電源線32の先端が半田付けで接続される。
なお、プリズム28の出射面の直前、又は出射面に当接するようにして照明レンズ15が配置される。
本変形例によれば、第2光源部22が設けられた第2光源ユニット41の動作を長期にわたり安定化することができる。
図7Aは第1の実施形態の第2変形例における第1光源部21周辺の構造を示す。本変形例においては、第1光源部21の白色光を出射する端面と、導光部としてのライトガイド27の入射側の端面とを当接する状態を維持して固定する光源固定部を形成している。
なお、プリズム28の出射面の直前、又は出射面に当接するようにして照明レンズ15が配置される。
本変形例によれば、第2光源部22が設けられた第2光源ユニット41の動作を長期にわたり安定化することができる。
図7Aは第1の実施形態の第2変形例における第1光源部21周辺の構造を示す。本変形例においては、第1光源部21の白色光を出射する端面と、導光部としてのライトガイド27の入射側の端面とを当接する状態を維持して固定する光源固定部を形成している。
ライトガイド27の入射側の端面は、ライトガイド口金(LG口金と略記)43により固定され、このLG口金43の後方側のライトガイド27は、LG外装チューブ44により被覆されている。なお、ライトガイド27の入射側の端面は、LG口金43の端面よりも僅かに突出するように加工される。この部分の拡大図を図7Bで示している。
また、LG口金43の後端側に段差部を設け、この段差部の後端側には、段差部の外径に嵌合する内径を有する放熱器45を設けている。この放熱器45は、白色LED23及びLG口金43を囲む略円筒形状に設けられ、その端面はLED基板24にねじで固定できるようにしている。
本変形例では、段差部の外周面には付勢手段としてのバネ46を配置し、このバネ46の一端はLG口金43の段差面に当接し、他端は該段差面に対向する放熱器45の内面に当接している。
また、LG口金43の後端側に段差部を設け、この段差部の後端側には、段差部の外径に嵌合する内径を有する放熱器45を設けている。この放熱器45は、白色LED23及びLG口金43を囲む略円筒形状に設けられ、その端面はLED基板24にねじで固定できるようにしている。
本変形例では、段差部の外周面には付勢手段としてのバネ46を配置し、このバネ46の一端はLG口金43の段差面に当接し、他端は該段差面に対向する放熱器45の内面に当接している。
段差部の外周面にバネ46を圧縮した状態で配置して、LED基板24と放熱器45とをねじで固定している。
このため、バネ46は、ライトガイド27の入射側の端面に、白色LED23の端面が当接するように弾性的に付勢した状態で固定する光源固定部を形成している。なお、図7Aにおいては、白色LED23における実際に白色光で発光(又は白色光を出射)する発光部(出射部)を符号23aで示している。そして、この発光部23aの端面にライトガイド27の端面が当接するように付勢された状態で固定されている。
なお、放熱器45には、複数の調整ねじ47(図7Aでは1つのみ示す)が設けられ、この調整ねじ47により、白色LED23の端面の位置に、ライトガイド27の端面が当接するように(LG口金43を押圧することにより)位置決めの調整を行うことができるようにしている。
このため、バネ46は、ライトガイド27の入射側の端面に、白色LED23の端面が当接するように弾性的に付勢した状態で固定する光源固定部を形成している。なお、図7Aにおいては、白色LED23における実際に白色光で発光(又は白色光を出射)する発光部(出射部)を符号23aで示している。そして、この発光部23aの端面にライトガイド27の端面が当接するように付勢された状態で固定されている。
なお、放熱器45には、複数の調整ねじ47(図7Aでは1つのみ示す)が設けられ、この調整ねじ47により、白色LED23の端面の位置に、ライトガイド27の端面が当接するように(LG口金43を押圧することにより)位置決めの調整を行うことができるようにしている。
本変形例の構成によれば、白色LED23の端面とライトガイド27の端面とが位置決めされ、かつ当接する状態を長期間にわたって維持できる。このため、白色LED23からの白色光を、両端面間の位置ずれによる光量ロスを解消できる。
従って、本変形例によれば、白色LED23で発生した白色光を導光手段としてのライトガイド27により安定して導光する動作を長期間にわたり維持できる。
次に図7Bに示すようにライトガイド27の端面が、LG口金43の端面から僅かに突出するように加工する手順を図8を参照して説明する。
図8(A)に示すように(ライトガイド27の端部側を固定するための)LG口金43の端部側に、このLG口金43と同じ寸法の第2のLG口金43bを固定する。なお、第2のLG口金43bは、LG口金43に比較すると、その全長が短い円環形状である。
従って、本変形例によれば、白色LED23で発生した白色光を導光手段としてのライトガイド27により安定して導光する動作を長期間にわたり維持できる。
次に図7Bに示すようにライトガイド27の端面が、LG口金43の端面から僅かに突出するように加工する手順を図8を参照して説明する。
図8(A)に示すように(ライトガイド27の端部側を固定するための)LG口金43の端部側に、このLG口金43と同じ寸法の第2のLG口金43bを固定する。なお、第2のLG口金43bは、LG口金43に比較すると、その全長が短い円環形状である。
次に図8(A)のように固定したLG口金43及び第2のLG口金43b内に、図8(B)に示すように、ライトガイド27の端部側を挿入し、ライトガイド27の端部側を充填した接着剤で固定する。次に研磨装置等の研磨面によりライトガイド27の端面を当接させて平滑な平面になるように例えば矢印で示すように往復移動等して研磨する。
研磨後に、図8(C)に示すように第2のLG口金43を取り除く。このようにして、図7Bに示すようにライトガイド27の端面が、LG口金43の端面から僅かに突出するように加工できる。
なお、図7Bのようにライトガイド27の端面が、LG口金43の端面から段差状に突出するように加工する代わりに、図9Aに示すようにライトガイド27の端面が周囲のLG口金43に形成したテーパ面43aから突出するようにしても良い。
研磨後に、図8(C)に示すように第2のLG口金43を取り除く。このようにして、図7Bに示すようにライトガイド27の端面が、LG口金43の端面から僅かに突出するように加工できる。
なお、図7Bのようにライトガイド27の端面が、LG口金43の端面から段差状に突出するように加工する代わりに、図9Aに示すようにライトガイド27の端面が周囲のLG口金43に形成したテーパ面43aから突出するようにしても良い。
この他に、図9Bに示すようにライトガイド27の端面に集光レンズ49を設けるようにしても良い。図9Bでは、LG口金43に固定された集光レンズ49の前面となる平面が白色LED23の端面の当接するように設定される。この場合にも、図7Bの構成の場合と同様の効果を有する。
図10は、第1の実施形態の第3変形例における挿入部6の先端部11の構成を示す。
本変形例は、図2の構成において、青色LED25の出射面とプリズム28の第2入射面との間に板形状の偏光子50を配置した構成にしている。偏光子50は、青色LED25で発生した青色の狭帯域光における所定方向に偏光した光のみを通過する。また、対物レンズ16とCCD17との間に、板形状の偏光子40を配置した構成にしている。その他の構成は、第1の実施形態と同様である。
図10は、第1の実施形態の第3変形例における挿入部6の先端部11の構成を示す。
本変形例は、図2の構成において、青色LED25の出射面とプリズム28の第2入射面との間に板形状の偏光子50を配置した構成にしている。偏光子50は、青色LED25で発生した青色の狭帯域光における所定方向に偏光した光のみを通過する。また、対物レンズ16とCCD17との間に、板形状の偏光子40を配置した構成にしている。その他の構成は、第1の実施形態と同様である。
なお、この場合、偏光子50の偏光方向は、偏光子40の偏光方向に一致、又は直交するように設定される。
本変形例によれば、所定方向に偏光した青色の狭帯域光により患部等の被写体を照明した場合の反射光成分によるNBI観察を行うことができる。その他は、第1の実施形態と同様の効果を有する。
なお、上述した実施形態又は変形例においては、共通のプリズム28を用いて、このプリズム28の出射面側から広帯域光又は狭帯域光を出射する構成を示したが、以下に説明する第3変形例のような構成にしても良い。
本変形例によれば、所定方向に偏光した青色の狭帯域光により患部等の被写体を照明した場合の反射光成分によるNBI観察を行うことができる。その他は、第1の実施形態と同様の効果を有する。
なお、上述した実施形態又は変形例においては、共通のプリズム28を用いて、このプリズム28の出射面側から広帯域光又は狭帯域光を出射する構成を示したが、以下に説明する第3変形例のような構成にしても良い。
図11に示す第4変形例は、図1に示す第1の実施形態において、ライトガイド27の先端を第1の照明窓に固定している。また、先端部11内部に配置した第2光源部における青色LED25の出射面にはL字状に屈曲した導光手段としてのライトガイド51の一方の端面を密着させ、他方の端面を第2の照明窓に固定している。
つまり、本変形例は、WLI観察モードの場合には、第1光源部21により発光し、ライトガイド27により導光して第1の照明窓から広帯域光を出射し、NBI観察モードの場合には、第2光源部22により発光し、長さが短いライトガイド51により導光して第2の照明窓から狭帯域光を出射する。なお、第1の照明窓と第2の照明窓は先端面に隣接して形成されている。
つまり、本変形例は、WLI観察モードの場合には、第1光源部21により発光し、ライトガイド27により導光して第1の照明窓から広帯域光を出射し、NBI観察モードの場合には、第2光源部22により発光し、長さが短いライトガイド51により導光して第2の照明窓から狭帯域光を出射する。なお、第1の照明窓と第2の照明窓は先端面に隣接して形成されている。
本変形例の場合には、第2光源部22の場合にも導光手段としてのライトガイド51を用いるが、その長さが十分に短いため、このライトガイド51による導光ロスは十分に小さい。
なお、ライトガイド27及びライトガイド51の先端面に、さらに照明レンズをそれぞれ設けるようにしても良い。
また、第3変形例のように第1の照明窓と第2の照明窓を設けた場合には、図12に示す第4変形例のような構成にしても良い。
図12に示す内視鏡2は、図11に示す第1の照明窓に第1の照明レンズ53を取り付け、ライトガイド27の先端面から出射される広帯域光をこの先端面に対向する第1の照明レンズ53を経て出射する構成にしている。
なお、ライトガイド27及びライトガイド51の先端面に、さらに照明レンズをそれぞれ設けるようにしても良い。
また、第3変形例のように第1の照明窓と第2の照明窓を設けた場合には、図12に示す第4変形例のような構成にしても良い。
図12に示す内視鏡2は、図11に示す第1の照明窓に第1の照明レンズ53を取り付け、ライトガイド27の先端面から出射される広帯域光をこの先端面に対向する第1の照明レンズ53を経て出射する構成にしている。
また、第2の照明窓に第2の照明レンズ54を取り付け、この第2の照明レンズ54に、青色LED25の出射面が対向するように、第2光源部22を構成する青色LED25を配置している。
図13Aは図12における先端部11の正面図を示す。
本変形例では、白色光による広帯域光と、狭帯域光とを異なる照明窓から出射する構成となっている。
本変形例においては、青色LED25で発光した光を導光手段を用いること無く、第2の照明レンズ54を経て出射することができる。
図13Aは図12における先端部11の正面図を示す。
本変形例では、白色光による広帯域光と、狭帯域光とを異なる照明窓から出射する構成となっている。
本変形例においては、青色LED25で発光した光を導光手段を用いること無く、第2の照明レンズ54を経て出射することができる。
上述した第1の実施形態においては、WLI観察モードとNBI観察モードとの切替の際に機械的な可動部を必要としないで、両観察モードに対応した照明(発光)と信号処理とを高速に切り替えることができる。
このため、上述したWLI観察モードに対応する照明期間(WLI期間と略記)とNBI観察モードに対応する照明期間(NBI期間と略記)とを例えば1フレーム期間毎に交互に切り替えて、(1フレーム期間のずれを有する)WLI画像とNBI画像とを同時に表示することが可能な観察モードに設定することも可能になる。そして、この観察モードとしてのWLI/NBI観察モードに設定して、モニタ4にWLI画像とNBI画像とを同時に表示することもできる。
図13BはWLI/NBI観察モードを実現する第6変形例における信号処理回路36の構成を示す。また、図13Cは、動作説明用のタイミング図を示す。
図13BはWLI/NBI観察モードを実現する第6変形例における信号処理回路36の構成を示す。また、図13Cは、動作説明用のタイミング図を示す。
CCD17により撮像された画像信号は、図示しない相関二重サンプリング回路により信号成分のみが抽出された後、A/D変換回路36aによりデジタルの画像信号に変換され、色分離回路36bに入力される。
色分離回路36bは、入力された画像信号を色分離フィルタ18の配列に応じてR,G,B信号成分に分離し、アナログスイッチなどで形成された切り替えスイッチ36cを経てRメモリ38a,Gメモリ38b,Bメモリ38c,Bメモリ38dに出力する。
Rメモリ38a,Gメモリ38b,Bメモリ38cは、広帯域のR,G,B信号を格納するメモリであり、Bメモリ38dは、狭帯域のB信号を格納するメモリである。
Rメモリ38a,Gメモリ38b,Bメモリ38cは、広帯域のR,G,B信号を格納するメモリであり、Bメモリ38dは、狭帯域のB信号を格納するメモリである。
切り替えスイッチ36cは、WLI/NBI観察モードの指示信号が入力される制御回路34により1フレーム期間毎に切り替えられる。
図13Bの実線で示す切り替えスイッチ36cのON又は選択状態は、WLI期間において撮像された画像信号が入力された場合での状態を示し、広帯域のR,G,B信号がRメモリ38a,Gメモリ38b,Bメモリ38cに格納される。
一方、点線で示す切り替えスイッチ36cの選択状態は、NBI期間において撮像された画像信号が入力された場合での状態を示し、この場合には、狭帯域のB信号がメモリ38dに格納される。なお、WLI期間及びNBI期間において撮像した画像信号に対する信号処理回路36による信号処理は、それぞれWLI期間及びNBI期間の直後となる。
WLI/NBI観察モードは、例えば観察モード切替スイッチ37に設けたスイッチにより選択できるようにしても良いし、WLI/NBI観察モードを選択するための専用のスイッチを内視鏡に設けるようにしても良い。
これらのRメモリ38a,Gメモリ38b,Bメモリ38c,Bメモリ38dに格納された画像信号は、メモリ制御回路36eにより、各フレーム期間において読み出され、D/A変換回路36dに入力される。
但し、Rメモリ38a,Gメモリ38b,Bメモリ38cから同時に読み出されるR,G,B信号に比較して、Bメモリ38dから読み出されるB信号は、1水平期間の1/2程度遅れたタイミングで読み出されるように制御回路34はメモリ制御回路36eの動作を制御する。
これらのRメモリ38a,Gメモリ38b,Bメモリ38c,Bメモリ38dに格納された画像信号は、メモリ制御回路36eにより、各フレーム期間において読み出され、D/A変換回路36dに入力される。
但し、Rメモリ38a,Gメモリ38b,Bメモリ38cから同時に読み出されるR,G,B信号に比較して、Bメモリ38dから読み出されるB信号は、1水平期間の1/2程度遅れたタイミングで読み出されるように制御回路34はメモリ制御回路36eの動作を制御する。
この制御により、信号処理回路36は、水平方向に2つの画像を隣接して配置した合成画像の画像信号を生成する処理を行うことになる。
D/A変換回路36dは入力されたデジタルの画像信号をアナログの映像信号(画像信号)に変換した後、モニタ4のR,G,Bチャンネンルに出力する。そして、モニタ4はWLI画像(WLIと略記)4aとNBI画像(NBIと略記)4bとを水平方向に隣接して同時に表示する。
D/A変換回路36dは入力されたデジタルの画像信号をアナログの映像信号(画像信号)に変換した後、モニタ4のR,G,Bチャンネンルに出力する。そして、モニタ4はWLI画像(WLIと略記)4aとNBI画像(NBIと略記)4bとを水平方向に隣接して同時に表示する。
図13Bの構成においては、Bメモリ38dによるB信号は、Bメモリ38cによるB信号と加算されてモニタ4のBチャンネルに入力され、NBI画像4bは青色で表示される。
図13Cは、WLI/NBI観察モードが選択された場合における本変形例の動作説明図を示す。第1フレーム期間T1,第3フレーム期間T3,…のWLI期間においては白色LED23と青色LED25とが同時に発光し、第2フレーム期間T2,第4フレーム期間T4,…のNBI期間においては青色LED25が発光するように制御される。
第1フレーム期間T1の終了タイミングにおいて駆動信号がCCD17に印加され、第1フレーム期間T1で撮像されたR,G,B信号(図13CにおいてはR(T1),G(T1),B(T1))は、R,G,Bメモリ38a-38cにそれぞれ格納される。これらの画像信号は、次のWLI期間(第3フレーム期間T3)で撮像された信号が入力される(上書きされる)までメモリ内に保持される。
第1フレーム期間T1の終了タイミングにおいて駆動信号がCCD17に印加され、第1フレーム期間T1で撮像されたR,G,B信号(図13CにおいてはR(T1),G(T1),B(T1))は、R,G,Bメモリ38a-38cにそれぞれ格納される。これらの画像信号は、次のWLI期間(第3フレーム期間T3)で撮像された信号が入力される(上書きされる)までメモリ内に保持される。
一方、第2フレーム期間T2の終了タイミングにおいて駆動信号がCCD17に印加され、第2フレーム期間T2で撮像されたB信号(図13CにおいてはB(T2))がBメモリ38dに格納される。このB信号は、次のNBI期間(第3フレーム期間T3)で撮像された画像信号が入力される(上書きされる)までメモリ内に保持される。
各フレーム期間において、R,G,Bメモリ38a-38cと、Bメモリ38dに格納された画像信号は読み出され、モニタ4の表示面にはWLI画像4aとNBI画像4bとが同時に表示される。
本変形例によれば、WLI画像4aとNBI画像4bとを同時に表示できるようにしているので、NBI画像4bで観察している部分をWBI画像4aから確認することができ、診断等を行い易くなる。また、WLI画像4aを取得しない期間においては、白色LED23を発光させないようにしているので、省電力化できる。
各フレーム期間において、R,G,Bメモリ38a-38cと、Bメモリ38dに格納された画像信号は読み出され、モニタ4の表示面にはWLI画像4aとNBI画像4bとが同時に表示される。
本変形例によれば、WLI画像4aとNBI画像4bとを同時に表示できるようにしているので、NBI画像4bで観察している部分をWBI画像4aから確認することができ、診断等を行い易くなる。また、WLI画像4aを取得しない期間においては、白色LED23を発光させないようにしているので、省電力化できる。
なお、図13Cにおける2点鎖線で示すように青色LED25を発光させる場合、WLI期間の場合よりもNBI期間の場合において、発光強度を増大させるようにしても良い。このように発光駆動すると、より鮮明なNBI画像4bを得ることができ、診断等を行い易くなる。
また、WLI/NBI観察モードに設定する場合、1フレーム期間で交互に切り替える場合に限らず、術者等のユーザがWLI期間とNBI期間とを変更設定できるように内視鏡内の操作部7等に期間設定部39a(図13B参照)を設けるようにしても良い。
また、WLI/NBI観察モードに設定する場合、1フレーム期間で交互に切り替える場合に限らず、術者等のユーザがWLI期間とNBI期間とを変更設定できるように内視鏡内の操作部7等に期間設定部39a(図13B参照)を設けるようにしても良い。
例えば、術者が主にWLI観察モードの使用状態において、NBI画像4bを参考のために表示させるよとする場合には、WLI期間を長くし、NBI期間を短くするようにしても良い。
また、術者が主にNBI観察モードの使用状態において、WLI画像4aにより観察部位を確認するためにWLI画像4aを表示させるような場合には、NBI期間を長くし、WLI期間を短くするようにしても良い。
このようにWLI期間とNBI期間とを変更設定できるようにすると、術者が使用する場合における操作性を向上できる。
このようにWLI期間とNBI期間とを変更設定できるようにすると、術者が使用する場合における操作性を向上できる。
また、WLI/NBI観察モードに設定する場合、WLI/NBI観察モードの動作期間を設定できるように動作期間設定部39bを設けるようにしても良い。例えば、WLI観察モード、又はNBI観察モードの使用状態から、動作期間設定部39bにより設定された動作期間のみ一時的にWLI/NBI観察モードに設定し、その動作期間の経過後には、WLI観察モード、又はNBI観察モードの使用状態に復帰するようにしても良い。この場合にも、術者が使用する場合における操作性を向上できる。
(第2の実施形態)
図14Aは本発明の第2の実施形態を備えた内視鏡装置1Bの構成を示す。本実施形態における内視鏡2Bは、図1に示した内視鏡2における操作部7内の第1光源部21を変形した構成にしている。
この内視鏡2Bにおいては、第1光源部21の白色LED23の出射面とライトガイド27の(光が入射される)端面との間に、プリズム61を配置すると共に、さらに緑色の波長帯域における狭帯域光、つまり緑色の狭帯域光を発生する第3光源部62を設けている。なお、第1光源部21が第3光源部62を含むように定義しても良い。また、後述する図18で説明するように、第1光源部21が白色光から緑色の狭帯域光を選択的に発生することを可能にする構成にすることもできる。
図14Aは本発明の第2の実施形態を備えた内視鏡装置1Bの構成を示す。本実施形態における内視鏡2Bは、図1に示した内視鏡2における操作部7内の第1光源部21を変形した構成にしている。
この内視鏡2Bにおいては、第1光源部21の白色LED23の出射面とライトガイド27の(光が入射される)端面との間に、プリズム61を配置すると共に、さらに緑色の波長帯域における狭帯域光、つまり緑色の狭帯域光を発生する第3光源部62を設けている。なお、第1光源部21が第3光源部62を含むように定義しても良い。また、後述する図18で説明するように、第1光源部21が白色光から緑色の狭帯域光を選択的に発生することを可能にする構成にすることもできる。
第3光源部62は、緑色の狭帯域光を発生する緑色LED63と、この緑色LED63が搭載されてLED基板64とからなる。このLED基板64は、電源線65を介して、電源回路33と接続され、制御回路34は第3光源部62の発光動作を制御する。
白色LED23の出射面は、ダイクロイックプリズムにより構成されたプリズム61の第1の入射面に密着し、この第1の入射面に対向する出射面はライトガイド27の端面が密着するように当接している。
また、プリズム61の第2の入射面には緑色LED63の出射面が密着するように第3光源部62を設けられている。図15は、第3光源部62の緑色LED63により発生される緑色の狭帯域光(図15中ではG1)の特性を示す。
白色LED23の出射面は、ダイクロイックプリズムにより構成されたプリズム61の第1の入射面に密着し、この第1の入射面に対向する出射面はライトガイド27の端面が密着するように当接している。
また、プリズム61の第2の入射面には緑色LED63の出射面が密着するように第3光源部62を設けられている。図15は、第3光源部62の緑色LED63により発生される緑色の狭帯域光(図15中ではG1)の特性を示す。
なお、プリズム61は、例えば図15に示す緑色の狭帯域光を選択的に反射し、この緑色の狭帯域光以外の白色の(又は可視の波長帯域に及ぶ)広帯域光を選択的に透過する特性に設定されたダイクロイックプリズムにより構成されている。
具体的には、プリズム61を構成する2つの3角プリズムにおける斜面の接合面には、図15の点線で示した緑色の狭帯域光を選択的に反射する特性Pgを持つように設定された誘電体膜61aが形成されている。第1光源部21の白色LED23及び第2光源部22の青色LED25による発光特性に関しては、第1の実施形態と同様である。なお、緑色の狭帯域光は、青色の狭帯域光に比較すると長波長側となるため、導光部としてのライトガイド27により導光した場合、(ライトガイド27として特殊なものを採用しないでも)青色の狭帯域光の場合程には光量ロスが大きくなくできる。
本実施形態においては、NBI観察モードに設定された場合には、第2光源部22と第3光源部62とを発光させて、両方の狭帯域光を用いたNBI画像を得ることができるようにしている。
具体的には、プリズム61を構成する2つの3角プリズムにおける斜面の接合面には、図15の点線で示した緑色の狭帯域光を選択的に反射する特性Pgを持つように設定された誘電体膜61aが形成されている。第1光源部21の白色LED23及び第2光源部22の青色LED25による発光特性に関しては、第1の実施形態と同様である。なお、緑色の狭帯域光は、青色の狭帯域光に比較すると長波長側となるため、導光部としてのライトガイド27により導光した場合、(ライトガイド27として特殊なものを採用しないでも)青色の狭帯域光の場合程には光量ロスが大きくなくできる。
本実施形態においては、NBI観察モードに設定された場合には、第2光源部22と第3光源部62とを発光させて、両方の狭帯域光を用いたNBI画像を得ることができるようにしている。
この場合、信号処理回路36は、青色及び緑色の狭帯域光の照明のもとで、色分離フィルタ18によるB及びGの色分離成分に対応したB信号及びG信号を生成し、B信号及びG信号からなる映像信号をモニタ4のB及びGチャンネルに出力する。モニタ4は、狭帯域光により撮像したB信号及びG信号に対応する内視鏡画像を表示する。
また、本実施形態においてはNBI観察モードの場合において、プリズム28を経て照明窓から出射される青色LED25による青色の狭帯域光と緑色LED63による緑色の狭帯域光とが所定の分光特性(より具体的には両照明光の光量比が所定の値又は一定値)を維持するように調整又は制御する機能を有する。
また、本実施形態においてはNBI観察モードの場合において、プリズム28を経て照明窓から出射される青色LED25による青色の狭帯域光と緑色LED63による緑色の狭帯域光とが所定の分光特性(より具体的には両照明光の光量比が所定の値又は一定値)を維持するように調整又は制御する機能を有する。
図14Aに示すように、例えば操作部7には光量比を調整するための調整スイッチ37bが設けられており、調整スイッチ37bによる指示信号は制御回路34に入力される。この調整スイッチ37bは、例えば青色LED25の発光量を増大及び減少する指示操作を行う第1スイッチ、又は緑色LED63の発光量を増大及び減少する指示操作を行う第2スイッチを有する。なお、調整スイッチ37bが、両方のスイッチの機能を備えるようにしても良い。
術者は第1スイッチ又は第2スイッチをON/OFFすることにより、制御回路34を介して、照明窓から出射される青色LED25による青色の狭帯域光又は緑色LED63による緑色の狭帯域光の光量を増減することができ、両狭帯域光における少なくとも一方の光量を増減することにより両狭帯域光が所定の光量比を維持するように電源回路33から両光源部22及び62に供給する駆動電源の電力を調整する。
術者は第1スイッチ又は第2スイッチをON/OFFすることにより、制御回路34を介して、照明窓から出射される青色LED25による青色の狭帯域光又は緑色LED63による緑色の狭帯域光の光量を増減することができ、両狭帯域光における少なくとも一方の光量を増減することにより両狭帯域光が所定の光量比を維持するように電源回路33から両光源部22及び62に供給する駆動電源の電力を調整する。
又は、照明窓に対向して、光量を検知する図示しないセンサを配置し、このセンサの出力信号を制御回路34に入力し、制御回路34は、調整スイッチ37bによる指示信号により、センサからの出力信号をモニタして、両狭帯域光が所定の光量比を維持するように電源回路33から両光源部22及び62に供給する駆動電源の電力を調整又は制御するようにしても良い。
このように、制御回路34は、青色の狭帯域光と緑色の狭帯域光とが所定の光量比にする(換言すると光量比を一定にする)ように調整する光量調整部34aの機能を持つ。
また、この制御回路34は、後述する図19A等において説明するように観察モードの切替(選択)の際に、所定の期間、同時に点灯(又は発光)するようにタイミング制御する点灯タイミング制御部34bの機能を持つ。
このように、制御回路34は、青色の狭帯域光と緑色の狭帯域光とが所定の光量比にする(換言すると光量比を一定にする)ように調整する光量調整部34aの機能を持つ。
また、この制御回路34は、後述する図19A等において説明するように観察モードの切替(選択)の際に、所定の期間、同時に点灯(又は発光)するようにタイミング制御する点灯タイミング制御部34bの機能を持つ。
なお、図14Aにおいては、プロセッサ3内に制御回路34を設けた構成を示しているが、図14Bに示すように第1変形例の内視鏡2B′のように内視鏡2B′内に制御回路34を設けた内視鏡装置1B′の構成にしても良い。図14Bにおいては、内視鏡2B′における例えばコネクタ9内に制御回路24が設けられ、プロセッサ3Bは制御回路24により制御される電源回路33と、駆動回路35と、信号処理回路36とを備えた構成である。図4Bにおけるその他の構成要素は、図4Aと同じであるため、同じ符号を付け、その説明を省略する。
図16は光量調整部34aによる光量調整の説明図を示す。
図16の上側の図は、初期の状態での青色LED25による青色の狭帯域光の強度(初期強度)及び緑色LED63による緑色の狭帯域光の強度(初期強度)の特性を示す。
また、斜線は、青色の狭帯域光の強度及び緑色の狭帯域光の強度の面積を示し、前者及び後者の両面積がSbi、Sgiであるとするとその面積比はSbi:Sgiとなる。
そして、長期の使用のために図16の下側に示すように(青色LED25と緑色LED63による)強度が低下した場合には、両狭帯域光の強度比が図16の上側に示す場合と同じ光量比となるように光量調整部34aは、青色LED25を発光駆動する(電源回路33による)駆動電力と緑色LED63の駆動電力を調整する。
図16の上側の図は、初期の状態での青色LED25による青色の狭帯域光の強度(初期強度)及び緑色LED63による緑色の狭帯域光の強度(初期強度)の特性を示す。
また、斜線は、青色の狭帯域光の強度及び緑色の狭帯域光の強度の面積を示し、前者及び後者の両面積がSbi、Sgiであるとするとその面積比はSbi:Sgiとなる。
そして、長期の使用のために図16の下側に示すように(青色LED25と緑色LED63による)強度が低下した場合には、両狭帯域光の強度比が図16の上側に示す場合と同じ光量比となるように光量調整部34aは、青色LED25を発光駆動する(電源回路33による)駆動電力と緑色LED63の駆動電力を調整する。
上記の例では、長期の使用により、強度が低下した場合(例えば両強度の面積が図16に示すようにSb,Sgとなった場合)においても、駆動電力を調整することにより、両強度比が一定、具体的には初期の状態と同じ一定の両面積比Sbi:Sgiとなるように調整する。
光量比が一定となるように調整する場合、面積比で調整する他に、ピーク値が一定となるように調整しても良い。例えば、図16の上の図における青色の狭帯域光及び緑色の狭帯域光の各強度のピーク値をPbi、Pgiとした場合、長期の使用のために図16の下側に示すように強度が低下した場合、両強度のピーク値の比がPbi:Pgiとなるように調整しても良い。
光量比が一定となるように調整する場合、面積比で調整する他に、ピーク値が一定となるように調整しても良い。例えば、図16の上の図における青色の狭帯域光及び緑色の狭帯域光の各強度のピーク値をPbi、Pgiとした場合、長期の使用のために図16の下側に示すように強度が低下した場合、両強度のピーク値の比がPbi:Pgiとなるように調整しても良い。
なお、上述したように光量比を調整する場合、青色の狭帯域光及び緑色の狭帯域光の裾の部分が重ならない事を検出し、重ならない範囲で光量比を調整すると良い。本実施形態においては、狭帯域光を用いているので、青色の狭帯域光及び緑色の狭帯域光の中心波長が接近していない場合には、重ならない様にできる場合が多い。しかし、中心波長間が接近している場合には、上記のように重なりの有無を検出して、重ならない範囲で光量比を調整すると良い。
また、図14Aにおけるプロセッサ3内の点線で示すように信号処理回路36においてB信号及びG信号からそれぞれの平均輝度Bav、Gavを生成し、両平均輝度の比Bav/Gavを調整信号として電源回路33に出力し、予め設定された光量比を維持するように青色LED25及び緑色LED63を発光する駆動電力を調整するようにしても良い。この場合、適切な明るさの画像が得られるように調光しても良い。
また、ライトガイド27が折れた場合に対しても、上記のように光量比が一定となるように調整するようにしても良い。また、ライトガイド27の透過率は、白色LED21,緑色LED63の発光波長に合わせたものを使用しても良い。また、透過率の異なるライトガイドファイバをランダムに束ねてライトガイド27を形成しても良い。
また、図14Aにおけるプロセッサ3内の点線で示すように信号処理回路36においてB信号及びG信号からそれぞれの平均輝度Bav、Gavを生成し、両平均輝度の比Bav/Gavを調整信号として電源回路33に出力し、予め設定された光量比を維持するように青色LED25及び緑色LED63を発光する駆動電力を調整するようにしても良い。この場合、適切な明るさの画像が得られるように調光しても良い。
また、ライトガイド27が折れた場合に対しても、上記のように光量比が一定となるように調整するようにしても良い。また、ライトガイド27の透過率は、白色LED21,緑色LED63の発光波長に合わせたものを使用しても良い。また、透過率の異なるライトガイドファイバをランダムに束ねてライトガイド27を形成しても良い。
このような構成の本実施形態は、術者は第1の実施形態における図4で説明したようにWLI観察モードとNBI観察モードにより被検体の内部の患部等を適切に観察することができる。
図17は本実施形態の内視鏡装置1Bによる動作説明図を示す。第1変形例を備えた内視鏡装置1B′の場合も図17Bに示す動作説明図となる。本実施形態の動作は、図4に類似している。
電源が投入されるとステップS11において図4のステップS1と同様に、制御回路34は初期設定の所定の観察モードとして例えばWLI観察モードに設定する。
本実施形態においては、制御回路34は、第1光源部21の白色LED23、第2光源部22の青色LED25及び第3光源部62の緑色LED63に駆動電源が供給されるように電源回路33を制御すると共に、信号処理回路36の動作モードを広帯域光に対応した信号処理モードとなるように制御する。
図17は本実施形態の内視鏡装置1Bによる動作説明図を示す。第1変形例を備えた内視鏡装置1B′の場合も図17Bに示す動作説明図となる。本実施形態の動作は、図4に類似している。
電源が投入されるとステップS11において図4のステップS1と同様に、制御回路34は初期設定の所定の観察モードとして例えばWLI観察モードに設定する。
本実施形態においては、制御回路34は、第1光源部21の白色LED23、第2光源部22の青色LED25及び第3光源部62の緑色LED63に駆動電源が供給されるように電源回路33を制御すると共に、信号処理回路36の動作モードを広帯域光に対応した信号処理モードとなるように制御する。
術者は、このWLI観察モードにより、患部等を観察又は、診断する。次のステップS12において制御回路34は観察モードの切替指示がされたか否かを判定する。観察モードの切替指示がされていない場合には、ステップS11の処理に戻る。
一方、切替指示がされた場合には、ステップS13に示すように制御回路34は、NBI観察モードに設定する。この場合、制御回路34は、第2光源部22の青色LED25と第3光源部62の緑色LED63とに駆動電源が供給されるように電源回路33を制御すると共に、信号処理回路36の動作モードを狭帯域光に対応した信号処理モードとなるように制御する。
術者は、このNBI観察モードにより、患部の表層における毛細血管及びこの毛細血管よりも若干深部側の血管の走行状態等を鮮明に認識し易い状態で観察することができる。
一方、切替指示がされた場合には、ステップS13に示すように制御回路34は、NBI観察モードに設定する。この場合、制御回路34は、第2光源部22の青色LED25と第3光源部62の緑色LED63とに駆動電源が供給されるように電源回路33を制御すると共に、信号処理回路36の動作モードを狭帯域光に対応した信号処理モードとなるように制御する。
術者は、このNBI観察モードにより、患部の表層における毛細血管及びこの毛細血管よりも若干深部側の血管の走行状態等を鮮明に認識し易い状態で観察することができる。
次のステップS14において制御回路34は観察モードの切替指示がされたか否かを判定する。観察モードの切替指示がされていない場合には、ステップS13の処理に戻る。一方、切替指示がされた場合には、制御回路34は、ステップS11のWLI観察モードに設定する処理に移る。
このように動作する本実施形態においては、第1の実施形態と同様に、青色の狭帯域光を発生する第2光源部22を挿入部6の先端部11内に配置しているため、第2光源部22により発生した青色の狭帯域光を導光の際に殆どロスすることなく、照明窓から出射することができる。
従って、本実施形態によれば、第1の実施形態と同様に狭帯域光の光源で発生した狭帯域光の光量の低下を少なくでき、かつ広帯域光による観察のための照明も支障なく行うことができる。
このように動作する本実施形態においては、第1の実施形態と同様に、青色の狭帯域光を発生する第2光源部22を挿入部6の先端部11内に配置しているため、第2光源部22により発生した青色の狭帯域光を導光の際に殆どロスすることなく、照明窓から出射することができる。
従って、本実施形態によれば、第1の実施形態と同様に狭帯域光の光源で発生した狭帯域光の光量の低下を少なくでき、かつ広帯域光による観察のための照明も支障なく行うことができる。
また、第1の実施形態においては、NBI観察モードの場合には、青色の狭帯域光のみによる観察であったが、本実施形態においては青色の狭帯域光及び緑色の狭帯域光との両方を用いた観察ができる。
そして、本実施形態によれば、青色の狭帯域光により生体粘膜の表層付近の毛細血管等の細かい血管の走行状態の他に、緑色の狭帯域光による表層付近ではあるがより深部側のより太い血管の走行状態を識別し易い状態で観察することができる。
また、本実施形態においては青色の狭帯域光と緑色LED63による緑色の狭帯域光とが所定の光量比(又は一定の光量比)を維持するように調整又は制御するので、長期にわたりNBI観察モードを使用する場合においても、光量比が変化しないため、得られるNBI画像の色調等の特性が変化しないようにできる。
そして、本実施形態によれば、青色の狭帯域光により生体粘膜の表層付近の毛細血管等の細かい血管の走行状態の他に、緑色の狭帯域光による表層付近ではあるがより深部側のより太い血管の走行状態を識別し易い状態で観察することができる。
また、本実施形態においては青色の狭帯域光と緑色LED63による緑色の狭帯域光とが所定の光量比(又は一定の光量比)を維持するように調整又は制御するので、長期にわたりNBI観察モードを使用する場合においても、光量比が変化しないため、得られるNBI画像の色調等の特性が変化しないようにできる。
なお、本実施の形態におけるNBI観察モードの場合において、青色の狭帯域光及び緑色の狭帯域光のもとで得られるB信号及びG信号を、信号処理回路36内に設けた色変換回路によりB,Gの2色の信号から3色の信号に色変換して、モニタ4で表示するようにしても良い。
なお、本実施の形態においては、NBI観察モードの場合に、青色の狭帯域光のみによる観察と、緑色の狭帯域光のみによる観察を選択できるようにしても良い。
図18は第2の実施形態の第2変形例の内視鏡2B″における第2光源部付近の構成を示す。図14Aに示した第2光源部21における青色LED23の出射面とライトガイド27の後端面との間に空隙部が形成され、この空隙部には緑色の狭帯域光のみを選択的に透過する緑色狭帯域フィルタ71が挿脱自在に配置される。
なお、本実施の形態においては、NBI観察モードの場合に、青色の狭帯域光のみによる観察と、緑色の狭帯域光のみによる観察を選択できるようにしても良い。
図18は第2の実施形態の第2変形例の内視鏡2B″における第2光源部付近の構成を示す。図14Aに示した第2光源部21における青色LED23の出射面とライトガイド27の後端面との間に空隙部が形成され、この空隙部には緑色の狭帯域光のみを選択的に透過する緑色狭帯域フィルタ71が挿脱自在に配置される。
この緑色狭帯域フィルタ71は、駆動手段として例えばギア付きモータ72により、上記空隙部に配置された状態(図18において実線で示す位置)と2点鎖線で示すように空隙部から退避した状態とに駆動される。このギア付きモータ72は、信号線73により制御回路34からの制御信号により、その動作が制御される。
WLI観察モードに設定する場合には、制御回路34は、緑色狭帯域フィルタ71を退避した状態に設定する(図18において、緑色狭帯域フィルタ71は一点鎖線で示す状態となる)。この場合には、白色LED23の白色光としての広帯域光がライトガイド27の後端面に入射し、その先端面から導光した広帯域光が出射される。
また、NBI観察モード設定する場合には、制御回路34は、緑色狭帯域フィルタ71を空隙部に配置した状態に設定する。この場合には、白色LED23の白色光としての広帯域光が緑色狭帯域フィルタ71に入射される。
WLI観察モードに設定する場合には、制御回路34は、緑色狭帯域フィルタ71を退避した状態に設定する(図18において、緑色狭帯域フィルタ71は一点鎖線で示す状態となる)。この場合には、白色LED23の白色光としての広帯域光がライトガイド27の後端面に入射し、その先端面から導光した広帯域光が出射される。
また、NBI観察モード設定する場合には、制御回路34は、緑色狭帯域フィルタ71を空隙部に配置した状態に設定する。この場合には、白色LED23の白色光としての広帯域光が緑色狭帯域フィルタ71に入射される。
そして、緑色狭帯域フィルタ71により緑色の狭帯域光のみが透過してライトガイド27の後端面に入射し、その先端面から導光した狭帯域光が出射される。
その他の構成は、第2の実施形態と同様の構成である。
本変形例は、上述した第2の実施形態における効果とほぼ同様の効果を有する。
なお、本変形例の場合には、図16において説明した青色の狭帯域光及び緑色の狭帯域光の光量比を一定になるように調整する場合には以下のような値に調整しても良い。例えば面積比で調整する場合には、上述した面積比Sbi:Sgiを4:1に、又ピーク比で調整する場合には、上述したピーク値の比Pbi:Pgiを6:1に調整しても良い。
その他の構成は、第2の実施形態と同様の構成である。
本変形例は、上述した第2の実施形態における効果とほぼ同様の効果を有する。
なお、本変形例の場合には、図16において説明した青色の狭帯域光及び緑色の狭帯域光の光量比を一定になるように調整する場合には以下のような値に調整しても良い。例えば面積比で調整する場合には、上述した面積比Sbi:Sgiを4:1に、又ピーク比で調整する場合には、上述したピーク値の比Pbi:Pgiを6:1に調整しても良い。
次に本発明の第2の実施形態の第3変形例を説明する。以下の説明では、簡単化のためにWLI観察モードの状態では白色LED23のみをON、NBI観察モードの状態では青色LED25及び緑色LED63を ONにする場合で説明する。
従来例においては観察モードを切り替えた場合に一瞬ブラインド(観察画像が得られない状態)になることがあったのに対して、本変形例は、ブラインドを発生しないで、観察できるようにするものである。このため、観察モードを切り替えた場合、所定の期間同時に点灯(発光)するようにタイミングを制御する構成にしている。以下に説明するタイミング制御は、例えば内視鏡2B′に設けた制御回路34が行うが、プロセッサ3に設けた制御回路34が行うこともできる。
図19Aは、WLI観察モードの状態から時間t1のタイミングでNBI観察モードに切り替える操作を行った場合と、NBI観察モードの状態から時間t2のタイミングでWLI観察モードに切り替える操作を行った場合の動作説明図を示す。
従来例においては観察モードを切り替えた場合に一瞬ブラインド(観察画像が得られない状態)になることがあったのに対して、本変形例は、ブラインドを発生しないで、観察できるようにするものである。このため、観察モードを切り替えた場合、所定の期間同時に点灯(発光)するようにタイミングを制御する構成にしている。以下に説明するタイミング制御は、例えば内視鏡2B′に設けた制御回路34が行うが、プロセッサ3に設けた制御回路34が行うこともできる。
図19Aは、WLI観察モードの状態から時間t1のタイミングでNBI観察モードに切り替える操作を行った場合と、NBI観察モードの状態から時間t2のタイミングでWLI観察モードに切り替える操作を行った場合の動作説明図を示す。
時間t1以前では、制御回路34による制御下で、白色LED23のみがONであり、時間t1の切替操作の時、制御回路34は、緑色LED63をONにし、この時間t1から画像処理切替の時間ti後に青色LED23をONにすると共に、白色LED23をOFFにする。図19A以降の図面中では、簡単化のため、白色LED、緑色LED、青色LEDをそれぞれW-L,G-L,B-Lと略記して示す。
なお、上記画像処理切替の時間tiでは、白色LED23の点灯による画像と、緑色LED63の点灯による画像とを合成してモニタ4に表示する。
従って、時間t1において切替操作を行った場合にも、白色LED23の点灯による画像と、緑色LED63の点灯による画像とが合成してモニタ4に表示されるので、ブラインドが発生しない。
なお、上記画像処理切替の時間tiでは、白色LED23の点灯による画像と、緑色LED63の点灯による画像とを合成してモニタ4に表示する。
従って、時間t1において切替操作を行った場合にも、白色LED23の点灯による画像と、緑色LED63の点灯による画像とが合成してモニタ4に表示されるので、ブラインドが発生しない。
また、時間t2のタイミングにおいては、制御回路34は、白色LED23をONにすると共に、青色LED23をOFFにし、さらに画像処理の切替に要する時間ti後に緑色LED63をONからOFFにする。
従って、時間t2において切替操作を行った場合にも、時間t1の場合と同様に、ブラインドが発生しない。
本変形例によれば、切替中においてもブラインドが発生することなく、観察像が得られるので、例えば注目する観察領域を一瞬、見失うようなことを解消できる。
図19Aに示す制御方法の変形例として、図19Bに示すように制御しても良い。
従って、時間t2において切替操作を行った場合にも、時間t1の場合と同様に、ブラインドが発生しない。
本変形例によれば、切替中においてもブラインドが発生することなく、観察像が得られるので、例えば注目する観察領域を一瞬、見失うようなことを解消できる。
図19Aに示す制御方法の変形例として、図19Bに示すように制御しても良い。
図19Bでは、図19Aと同じタイミングで切替操作がされた場合、白色LED23と緑色LED63とを画像処理切替の時間tiにおいて、電流を徐々に減少してONからOFFまたは電流を徐々に増大してOFFからONにする。
また、白色LED23の代わりに、図19Dに示すように黄色の波長帯域で発生する黄色LED(図19C,図19D中ではY-Lと略記)を採用しても良い。
そして、図19Aと同じタイミングで切替操作がされた場合、図19Cに示すよう制御回路34が制御するようにしても良い。
図19Cに示すように黄色LED、青色LED25,緑色LED63を発光させた状態の場合には白色光に近い特性となる。従って、黄色LEDを用いた場合には、図19CのようにON,OFFを制御する。
また、白色LED23の代わりに、図19Dに示すように黄色の波長帯域で発生する黄色LED(図19C,図19D中ではY-Lと略記)を採用しても良い。
そして、図19Aと同じタイミングで切替操作がされた場合、図19Cに示すよう制御回路34が制御するようにしても良い。
図19Cに示すように黄色LED、青色LED25,緑色LED63を発光させた状態の場合には白色光に近い特性となる。従って、黄色LEDを用いた場合には、図19CのようにON,OFFを制御する。
なお、NBI観察モードにおいては、図20に示すように撮像素子としてのCCD17の露光期間だけ、対応するLEDを点灯(発光)させるように制御しても良い。
図20は、NBI観察モードにおいては、緑色LED63と青色LED25とを発光させることができる構成の場合であり、制御回路34は術者の選択に対応してCCD17が実際に撮像を行う露光期間又は撮像期間T(受光して電荷蓄積を行う期間)、緑色LED63と青色LED25との一方のみ、又は両方を同時に発光させる。
図20における期間Taでは、術者により青色LED25によるNBI観察モードが選択された場合であり、期間Tbでは、術者により緑色LED63によるNBI観察モードが選択された場合であり、期間Tcでは、術者により青色LED25及び緑色LED63によるNBI観察モードが選択された場合である。
図20は、NBI観察モードにおいては、緑色LED63と青色LED25とを発光させることができる構成の場合であり、制御回路34は術者の選択に対応してCCD17が実際に撮像を行う露光期間又は撮像期間T(受光して電荷蓄積を行う期間)、緑色LED63と青色LED25との一方のみ、又は両方を同時に発光させる。
図20における期間Taでは、術者により青色LED25によるNBI観察モードが選択された場合であり、期間Tbでは、術者により緑色LED63によるNBI観察モードが選択された場合であり、期間Tcでは、術者により青色LED25及び緑色LED63によるNBI観察モードが選択された場合である。
期間Taの場合には、NBI画像は図21Aのように表層付近の毛細血管の走行状態を鮮明に認識し易い画像状態となり、期間Tbの場合には、表層より若干深層側となる部分での太い血管の走行状態を鮮明に認識し易いNBI画像は図21Bのようになる。さらに、期間Tcの場合には、NBI画像は(図21A及び図21Bを合成したような)図21Cのように表層付近及び表層より若干深層側となる深さ付近での血管の走行状態を鮮明に認識し易いものとなる。
なお、期間Tcのように制御し、モニタ4での表示モードの選択により図21A又は図21Bの表示を選択することもできるが、選択されない方の照明が無駄になる。
図20ではNBI観察モードの場合における制御方法を説明したが、WLI観察モードの場合にも適用することができる。
図20に示したように制御することによって、CCD17が撮像を行っていない期間、発光させないようにできるため、省電力化できる。また、先端部11の発熱を低減できる。
なお、期間Tcのように制御し、モニタ4での表示モードの選択により図21A又は図21Bの表示を選択することもできるが、選択されない方の照明が無駄になる。
図20ではNBI観察モードの場合における制御方法を説明したが、WLI観察モードの場合にも適用することができる。
図20に示したように制御することによって、CCD17が撮像を行っていない期間、発光させないようにできるため、省電力化できる。また、先端部11の発熱を低減できる。
なお、例えば図12のような構成の場合には、図22Aに示すように先端部11に第2光源部を着脱自在に設けるようにしても良い。図22Aは、例えば先端部11に切り欠き部を形成し、この切り欠き部の端面にコネクタ受け81を設けている。そして、図12に示した第2光源部22を内蔵し、コネクタ受け81に着脱自在のコネクタ82を設けたブロック83を、この切り欠き部に着脱自在に取り付けられるようにしている。なお、このブロック83は、切り欠き部に嵌合する外形状に設定されている。なお、電源線32は、コネクタ受け81及びコネクタ82を経て第2光源部22に接続される。
図22Aに示すブロック83はNBI用の光源部を備えたものであるが、蛍光観察用の光源部を備えたブロックを用意して、交換使用できるようにしても良い。
図22Aに示すブロック83はNBI用の光源部を備えたものであるが、蛍光観察用の光源部を備えたブロックを用意して、交換使用できるようにしても良い。
また、蛍光観察用として、PDD(Photo dynamic Diagnosis)と呼ばれ、腫瘍親和性のある光感受性物質を予め腫瘍部分に吸収させておき、励起光を照射して腫瘍を蛍光させて診断する方法があり、この場合の励起光を発生する光源部を備えたブロックを用意するようにしても良い。
図22Aの構成の場合には、術者は、NBI観察、蛍光観察などから実際に使用したいと望むブロックを装着して、NBI観察、蛍光観察等を行うことができる。
また、図22Bに示すように、第2光源部を有しない内視鏡において、先端部11にNBI用光源ユニット(以下、光源ユニットと略記)85を着脱自在に取り付けることができるようにしても良い。
図22Aの構成の場合には、術者は、NBI観察、蛍光観察などから実際に使用したいと望むブロックを装着して、NBI観察、蛍光観察等を行うことができる。
また、図22Bに示すように、第2光源部を有しない内視鏡において、先端部11にNBI用光源ユニット(以下、光源ユニットと略記)85を着脱自在に取り付けることができるようにしても良い。
図22Bに示す構成においては、光源ユニット85は、先端部11の外周面に嵌合する内径を備えたリング形状であり、青色と緑色の狭帯域光をそれぞれ発生するB光源部86とG光源部87を備えている。
また、この内視鏡は、交流電源88からの交流電力を伝送線により伝送し先端部11内に設けた給電部91に供給する。
また、光源ユニット85は、給電部91に対向する位置に配置された(接点の接触無し、つまり)接点レスで交流電力を受ける給電受け部92を有し、給電受け部92はその内部に設けた整流回路により、直流電源に変換して、B光源部86とG光源部87とに駆動電力を供給する。この内視鏡においては、光源ユニット85を装着することによりNBI観察ができる効果を有する。
なお、上述した実施形態等を部分的に組み合わせることにより構成される実施形態も本発明に属する。
なお、上述した実施形態又はその変形例において、プリズム28又は61をダイクロイックプリズムで形成する代わりに、例えば白色光と、青色光又は緑色光とを所定割合で透過及び反射して出射面側に導光するハーフミラーを用いたものも本発明に属する。
また、この内視鏡は、交流電源88からの交流電力を伝送線により伝送し先端部11内に設けた給電部91に供給する。
また、光源ユニット85は、給電部91に対向する位置に配置された(接点の接触無し、つまり)接点レスで交流電力を受ける給電受け部92を有し、給電受け部92はその内部に設けた整流回路により、直流電源に変換して、B光源部86とG光源部87とに駆動電力を供給する。この内視鏡においては、光源ユニット85を装着することによりNBI観察ができる効果を有する。
なお、上述した実施形態等を部分的に組み合わせることにより構成される実施形態も本発明に属する。
なお、上述した実施形態又はその変形例において、プリズム28又は61をダイクロイックプリズムで形成する代わりに、例えば白色光と、青色光又は緑色光とを所定割合で透過及び反射して出射面側に導光するハーフミラーを用いたものも本発明に属する。
本出願は、2010年10月26日に日本国に出願された特願2010-240017号を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲、図面に引用されたものとする。
Claims (16)
- 被検体内に挿入される挿入部と、
前記挿入部の基端に設けられ、操作手段が設けられた操作部と、
前記操作部内に設けられ、可視の波長帯域をカバーする広帯域の波長特性を有する広帯域光としての第1の光を発生する第1光源部と、
前記操作部から前記挿入部の先端部付近に至るように配置され、前記第1光源部から出射される第1の光を導光する導光部と、
前記挿入部の先端部付近に設けられ、狭帯域の波長特性を有する狭帯域光としての第2の光を発生する第2光源部と、
前記挿入部の先端部に設けられ、前記導光部により導光された前記第1の光及び前記第2光源部からの前記第2の光がそれぞれ入射される第1及び第2の入射面を有すると共に、前記第1及び第2の入射面から入射された光を照明窓が開口する所定方向に出射する出射面を有するプリズムと、
を備えることを特徴とする内視鏡。 - 前記第1光源部は、第1の光として前記可視の波長帯域をカバーする白色光を実質的に発生する白色発光ダイオードを用いて構成され、
前記第2光源部は、前記第2の光として、前記可視の波長帯域における短波長帯域の狭帯域光としての青色の狭帯域光を発生する発光ダイオードを用いて構成されることを特徴とする請求項1に記載の内視鏡。 - 前記第1の光源部は、さらに緑色の狭帯域光を発生する第3光源部を有し、前記プリズムを経て出射される前記青色の狭帯域光及び前記第3光源部による緑色の狭帯域光の光量比を調整する光量調整部を更に備えることを特徴とする請求項2に記載の内視鏡。
- 前記プリズムは、前記導光部から入射される前記広帯域光に対しては、前記第2光源部から入射される狭帯域光の波長帯域以外の光を選択的に透過して前記出射面から出射し、かつ前記第2光源部から入射される前記狭帯域光に対しては、前記狭帯域光の波長帯域の光を選択的に反射して前記出射面から出射するダイクロイックプリズムにより形成されることを特徴とする請求項2に記載の内視鏡。
- さらに、前記広帯域光の照明による広帯域光観察を行う広帯域光観察モードと、前記狭帯域光の照明による狭帯域光観察を行う狭帯域光観察モードとの一方の観察モードの選択を行う観察モード選択部と、前記観察モード選択部による選択に基づいて前記第1光源部と、前記第2光源部との発光動作を制御する制御部とを有することを特徴とする請求項4に記載の内視鏡。
- 前記制御部は、前記広帯域光観察モードの選択の場合には、前記第1光源部と、前記第2光源部とを同時に発光させるように制御し、前記狭帯域光観察モードの選択の場合には、前記第1光源部を発光させないで、前記第2光源部のみを選択的に発光させるように制御することを特徴とする請求項5に記載の内視鏡。
- さらに、前記広帯域光による第1の照明と前記狭帯域光による第2の照明とを交互に行い、前記第1の照明による広帯域光画像と前記第2の照明による狭帯域光画像との取得とを行うための広帯域光/狭帯域光観察モードを選択する広帯域光/狭帯域光観察モード選択部を有し、
前記広帯域光/狭帯域光観察モード選択部の選択に基づいて前記制御部は、前記第1光源部と、前記第2光源部との発光動作を制御することを特徴とする請求項6に記載の内視鏡。 - 前記制御部は、前記第1の照明を行う第1の照明期間においては、前記第1の光源部及び前記第2の光源部とを同時に発光させるように制御し、前記第2の照明を行う第2の照明期間においては、前記第1光源部を発光させないで、前記第2光源部のみを選択的に発光させるように制御することを特徴とする請求項7に記載の内視鏡。
- 前記制御部は、前記第2の照明期間においては、前記1の照明期間よりも発光量を増大させるように前記第2光源部を構成する発光ダイオードの発光動作を制御することを特徴とする請求項8に記載の内視鏡。
- さらに、前記挿入部の先端部に配置され、前記広帯域光及び前記狭帯域光の照明のもとで被写体を撮像する撮像素子を備え、
前記制御部は、前記内視鏡が接続される外部装置に設けられ、前記撮像素子に対する信号処理を行う信号処理回路に対して、
前記第1の照明の際に前記撮像素子で撮像された信号から前記広帯域光画像を生成するように制御し、さらに
前記第2の照明の際に前記撮像素子で撮像された信号から前記狭帯域光画像を生成するように制御することを特徴とする請求項8に記載の内視鏡。 - さらに、前記制御部は、前記信号処理回路に対して、前記広帯域光画像と前記狭帯域光画像とを隣接して同時に表示する合成画像を生成するように制御することを特徴とする請求項10に記載の内視鏡。
- さらに、前記第1の照明と、前記第2の照明とを交互に行う各期間の値を設定する期間設定部を有することを特徴とする請求項9に記載の内視鏡。
- 前記第1光源部は、前記白色発光ダイオードと、
緑色の狭帯域光を発生する緑色発光ダイオードと、
前記白色発光ダイオードの白色光及び前記緑色発光ダイオードの緑色の狭帯域光がそれぞれ入射される第1の入射面及び第2の入射面を有し、
前記第1の入射面から入射される前記白色光に対しては、前記緑色の狭帯域光の波長帯域以外の光を選択的に前記導光部の入射端面に入射させ、かつ
前記第2の入射面から入射される前記緑色の狭帯域光に対しては、前記緑色の狭帯域光の波長帯域の光を選択的に前記導光部の入射端面に入射させる出射面を有する第2のダイクロイックプリズムと、
を備えることを特徴とする請求項4に記載の内視鏡。 - さらに、前記第1光源部と前記導光部とを当接させて固定する光源固定部を備えることを特徴とする請求項2に記載の内視鏡。
- 前記第1光源部と前記第2光源部における各々の光の照射を切り替える際に、所定の期間、同時点灯するようにタイミング制御するタイミング制御部を更に備えることを特徴とする請求項2に記載の内視鏡。
- 前記第2光源部と前記プリズムの間に偏光子を配置したことを特徴とする請求項2に記載の内視鏡。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180009124.0A CN102753082B (zh) | 2010-10-26 | 2011-10-06 | 内窥镜 |
EP11836000.7A EP2514352B1 (en) | 2010-10-26 | 2011-10-06 | Endoscope |
JP2012520415A JP5028550B2 (ja) | 2010-10-26 | 2011-10-06 | 内視鏡 |
US13/456,359 US9179829B2 (en) | 2010-10-26 | 2012-04-26 | Endoscope |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-240017 | 2010-10-26 | ||
JP2010240017 | 2010-10-26 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/456,359 Continuation US9179829B2 (en) | 2010-10-26 | 2012-04-26 | Endoscope |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012056860A1 true WO2012056860A1 (ja) | 2012-05-03 |
Family
ID=45993589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/073069 WO2012056860A1 (ja) | 2010-10-26 | 2011-10-06 | 内視鏡 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9179829B2 (ja) |
EP (1) | EP2514352B1 (ja) |
JP (1) | JP5028550B2 (ja) |
CN (1) | CN102753082B (ja) |
WO (1) | WO2012056860A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014161639A (ja) * | 2013-02-27 | 2014-09-08 | Fujifilm Corp | 光源装置、及びこれを用いた内視鏡システム |
JP2015066130A (ja) * | 2013-09-27 | 2015-04-13 | 富士フイルム株式会社 | 内視鏡システム及び光源装置 |
JP2016144694A (ja) * | 2016-04-27 | 2016-08-12 | 富士フイルム株式会社 | 内視鏡システム |
WO2016189892A1 (ja) * | 2015-05-28 | 2016-12-01 | オリンパス株式会社 | 光源装置 |
JP2017113458A (ja) * | 2015-12-25 | 2017-06-29 | 富士フイルム株式会社 | 内視鏡用光源装置及びその作動方法、並びに内視鏡システム |
WO2018043293A1 (ja) * | 2016-09-01 | 2018-03-08 | Hoya株式会社 | 電子スコープ及び電子内視鏡システム |
JP2020114408A (ja) * | 2020-03-23 | 2020-07-30 | 富士フイルム株式会社 | 内視鏡用光源装置及び内視鏡システム |
WO2023276497A1 (ja) * | 2021-06-30 | 2023-01-05 | Hoya株式会社 | 内視鏡用プロセッサ、内視鏡システム |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5881658B2 (ja) * | 2013-09-27 | 2016-03-09 | 富士フイルム株式会社 | 内視鏡システム及び光源装置 |
KR102425786B1 (ko) * | 2014-03-17 | 2022-07-28 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 조직 접촉 검출과 자동-노출 및 조명 제어를 위한 시스템 및 방법 |
US10728424B2 (en) * | 2015-01-13 | 2020-07-28 | Canon Kabushiki Kaisha | Color measuring apparatus and image forming apparatus |
DE112015005595T5 (de) * | 2015-01-20 | 2017-09-28 | Olympus Corporation | Bildverabeitungsvorrichtung, Verfahren zum Bedienen der Bildverarbeitungsvorrichtung, Programm zum Bedienen der Bildverarbeitungsvorrichtung und Endoskopvorrichtung |
CN107407782A (zh) * | 2015-03-20 | 2017-11-28 | 奥林巴斯株式会社 | 光传送模块、内窥镜以及所述光传送模块的制造方法 |
WO2017109815A1 (ja) * | 2015-12-21 | 2017-06-29 | オリンパス株式会社 | 光走査型観察装置、及び、パルス状レーザ光の照射パラメータ調整方法 |
WO2017141417A1 (ja) * | 2016-02-19 | 2017-08-24 | Hoya株式会社 | 内視鏡用光源装置 |
WO2017216883A1 (ja) * | 2016-06-14 | 2017-12-21 | オリンパス株式会社 | 内視鏡装置 |
JP6924837B2 (ja) * | 2017-09-22 | 2021-08-25 | 富士フイルム株式会社 | 医療画像処理システム、内視鏡システム、診断支援装置、並びに医療業務支援装置 |
US11617492B2 (en) * | 2017-11-27 | 2023-04-04 | Optecks, Llc | Medical three-dimensional (3D) scanning and mapping system |
WO2019171615A1 (ja) * | 2018-03-05 | 2019-09-12 | オリンパス株式会社 | 内視鏡システム |
CN112367899B (zh) * | 2018-07-09 | 2024-03-19 | 奥林巴斯株式会社 | 内窥镜用光源装置、内窥镜和内窥镜系统 |
EP3975825A2 (en) * | 2019-05-31 | 2022-04-06 | Koninklijke Philips N.V. | Intravascular optical device |
CN115736791B (zh) * | 2022-11-28 | 2024-05-07 | 北京大学 | 内窥镜成像装置及方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6076714A (ja) * | 1983-10-03 | 1985-05-01 | Olympus Optical Co Ltd | 偏光フイルタを用いた内視鏡 |
JP2002219102A (ja) * | 2001-01-29 | 2002-08-06 | Asahi Optical Co Ltd | 内視鏡装置用光源システム |
JP2003079571A (ja) | 2001-09-17 | 2003-03-18 | Pentax Corp | 内視鏡装置 |
JP2003164417A (ja) | 2001-12-04 | 2003-06-10 | Pentax Corp | 電子内視鏡 |
JP2003190091A (ja) * | 2001-12-26 | 2003-07-08 | Pentax Corp | 蛍光観察用照明プローブ、電子内視鏡システム及び電子内視鏡 |
JP2004065728A (ja) * | 2002-08-08 | 2004-03-04 | Fuji Photo Optical Co Ltd | 内視鏡装置 |
JP2006136453A (ja) * | 2004-11-11 | 2006-06-01 | Fujinon Corp | 内視鏡装置 |
JP2006346358A (ja) * | 2005-06-20 | 2006-12-28 | Olympus Medical Systems Corp | 内視鏡 |
JP2007229262A (ja) * | 2006-03-01 | 2007-09-13 | Fujinon Corp | 内視鏡装置 |
JP2009297290A (ja) * | 2008-06-13 | 2009-12-24 | Fujifilm Corp | 内視鏡装置およびその画像処理方法 |
JP2010240017A (ja) | 2009-04-01 | 2010-10-28 | Universal Entertainment Corp | 遊技機 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002051969A (ja) * | 2000-08-08 | 2002-02-19 | Asahi Optical Co Ltd | 電子内視鏡装置 |
US7710669B2 (en) * | 2000-08-24 | 2010-05-04 | Wavien, Inc. | Etendue efficient combination of multiple light sources |
US7319529B2 (en) * | 2004-06-17 | 2008-01-15 | Cadent Ltd | Method and apparatus for colour imaging a three-dimensional structure |
JP5080987B2 (ja) * | 2005-02-09 | 2012-11-21 | ウェイヴィーン・インコーポレイテッド | 多数の光源のエテンデュー効率のよい合波 |
US8998802B2 (en) * | 2006-05-24 | 2015-04-07 | Olympus Medical Systems Corp. | Endoscope, endoscopic apparatus, and examination method using endoscope |
EP2241244A1 (en) * | 2008-06-04 | 2010-10-20 | Fujifilm Corporation | Illumination device for use in endoscope |
-
2011
- 2011-10-06 WO PCT/JP2011/073069 patent/WO2012056860A1/ja active Application Filing
- 2011-10-06 CN CN201180009124.0A patent/CN102753082B/zh active Active
- 2011-10-06 JP JP2012520415A patent/JP5028550B2/ja active Active
- 2011-10-06 EP EP11836000.7A patent/EP2514352B1/en active Active
-
2012
- 2012-04-26 US US13/456,359 patent/US9179829B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6076714A (ja) * | 1983-10-03 | 1985-05-01 | Olympus Optical Co Ltd | 偏光フイルタを用いた内視鏡 |
JP2002219102A (ja) * | 2001-01-29 | 2002-08-06 | Asahi Optical Co Ltd | 内視鏡装置用光源システム |
JP2003079571A (ja) | 2001-09-17 | 2003-03-18 | Pentax Corp | 内視鏡装置 |
JP2003164417A (ja) | 2001-12-04 | 2003-06-10 | Pentax Corp | 電子内視鏡 |
JP2003190091A (ja) * | 2001-12-26 | 2003-07-08 | Pentax Corp | 蛍光観察用照明プローブ、電子内視鏡システム及び電子内視鏡 |
JP2004065728A (ja) * | 2002-08-08 | 2004-03-04 | Fuji Photo Optical Co Ltd | 内視鏡装置 |
JP2006136453A (ja) * | 2004-11-11 | 2006-06-01 | Fujinon Corp | 内視鏡装置 |
JP2006346358A (ja) * | 2005-06-20 | 2006-12-28 | Olympus Medical Systems Corp | 内視鏡 |
JP2007229262A (ja) * | 2006-03-01 | 2007-09-13 | Fujinon Corp | 内視鏡装置 |
JP2009297290A (ja) * | 2008-06-13 | 2009-12-24 | Fujifilm Corp | 内視鏡装置およびその画像処理方法 |
JP2010240017A (ja) | 2009-04-01 | 2010-10-28 | Universal Entertainment Corp | 遊技機 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2514352A4 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014161639A (ja) * | 2013-02-27 | 2014-09-08 | Fujifilm Corp | 光源装置、及びこれを用いた内視鏡システム |
JP2015066130A (ja) * | 2013-09-27 | 2015-04-13 | 富士フイルム株式会社 | 内視鏡システム及び光源装置 |
WO2016189892A1 (ja) * | 2015-05-28 | 2016-12-01 | オリンパス株式会社 | 光源装置 |
JP6104490B1 (ja) * | 2015-05-28 | 2017-03-29 | オリンパス株式会社 | 光源装置 |
US10314468B2 (en) | 2015-05-28 | 2019-06-11 | Olympus Corporation | Light source apparatus |
JP2017113458A (ja) * | 2015-12-25 | 2017-06-29 | 富士フイルム株式会社 | 内視鏡用光源装置及びその作動方法、並びに内視鏡システム |
JP2016144694A (ja) * | 2016-04-27 | 2016-08-12 | 富士フイルム株式会社 | 内視鏡システム |
WO2018043293A1 (ja) * | 2016-09-01 | 2018-03-08 | Hoya株式会社 | 電子スコープ及び電子内視鏡システム |
JPWO2018043293A1 (ja) * | 2016-09-01 | 2019-02-14 | Hoya株式会社 | 電子スコープ及び電子内視鏡システム |
JP2020114408A (ja) * | 2020-03-23 | 2020-07-30 | 富士フイルム株式会社 | 内視鏡用光源装置及び内視鏡システム |
JP7054401B2 (ja) | 2020-03-23 | 2022-04-13 | 富士フイルム株式会社 | 内視鏡用光源装置 |
WO2023276497A1 (ja) * | 2021-06-30 | 2023-01-05 | Hoya株式会社 | 内視鏡用プロセッサ、内視鏡システム |
Also Published As
Publication number | Publication date |
---|---|
US20120271103A1 (en) | 2012-10-25 |
EP2514352B1 (en) | 2018-03-28 |
JP5028550B2 (ja) | 2012-09-19 |
JPWO2012056860A1 (ja) | 2014-03-20 |
EP2514352A4 (en) | 2014-04-09 |
CN102753082B (zh) | 2016-10-12 |
CN102753082A (zh) | 2012-10-24 |
EP2514352A1 (en) | 2012-10-24 |
US9179829B2 (en) | 2015-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5028550B2 (ja) | 内視鏡 | |
US8216126B2 (en) | Living body observing apparatus | |
US8500632B2 (en) | Endoscope and endoscope apparatus | |
JP5355799B2 (ja) | 内視鏡装置および内視鏡装置の作動方法 | |
US7907169B2 (en) | Electronic endoscope system for fluorescence observation | |
US8970685B2 (en) | Endoscope apparatus | |
US8303493B2 (en) | Light source device and endoscope apparatus using the same | |
US20110034770A1 (en) | Endoscopic device | |
US20100204544A1 (en) | Endoscope apparatus and method of setting the same | |
JP2012010981A (ja) | 内視鏡装置 | |
US20180000330A1 (en) | Endoscope system | |
JP4744279B2 (ja) | 電子内視鏡装置 | |
JP2002102142A (ja) | 蛍光内視鏡装置および蛍光内視鏡システム | |
JP6389912B2 (ja) | 内視鏡装置 | |
JP2014014716A (ja) | 内視鏡装置 | |
WO2016059906A1 (ja) | 内視鏡装置 | |
JP4409227B2 (ja) | プローブ型観察装置及び内視鏡装置 | |
JP6138386B1 (ja) | 内視鏡装置及び内視鏡システム | |
JP2002330919A (ja) | 蛍光観察用内視鏡システム | |
JP6209642B2 (ja) | 内視鏡装置 | |
JP2015061618A (ja) | 内視鏡装置 | |
JP2015037609A (ja) | 内視鏡装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180009124.0 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012520415 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11836000 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011836000 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |