WO2017141417A1 - 内視鏡用光源装置 - Google Patents

内視鏡用光源装置 Download PDF

Info

Publication number
WO2017141417A1
WO2017141417A1 PCT/JP2016/054812 JP2016054812W WO2017141417A1 WO 2017141417 A1 WO2017141417 A1 WO 2017141417A1 JP 2016054812 W JP2016054812 W JP 2016054812W WO 2017141417 A1 WO2017141417 A1 WO 2017141417A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
source unit
wavelength band
wavelength
Prior art date
Application number
PCT/JP2016/054812
Other languages
English (en)
French (fr)
Inventor
邦彦 尾登
雅明 福田
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to PCT/JP2016/054812 priority Critical patent/WO2017141417A1/ja
Priority to CN202011406712.5A priority patent/CN112515614A/zh
Priority to CN202011406749.8A priority patent/CN112515615B/zh
Priority to PCT/JP2017/006124 priority patent/WO2017142097A1/ja
Priority to CN201780011449.XA priority patent/CN108697316B/zh
Priority to DE112017000897.2T priority patent/DE112017000897T5/de
Priority to CN202011406766.1A priority patent/CN112515616A/zh
Priority to JP2018500244A priority patent/JP6685378B2/ja
Priority to US15/999,500 priority patent/US10610091B2/en
Priority to CN202011403261.XA priority patent/CN112545438A/zh
Publication of WO2017141417A1 publication Critical patent/WO2017141417A1/ja
Priority to US16/791,912 priority patent/US10932660B2/en
Priority to JP2020061716A priority patent/JP6878647B2/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/044Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for absorption imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0653Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements with wavelength conversion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0655Control therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0676Endoscope light sources at distal tip of an endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0684Endoscope light sources using light emitting diodes [LED]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end

Definitions

  • the present invention relates to an endoscope light source device for irradiating a subject with light.
  • Patent Document 1 An endoscope system that can change the spectral intensity characteristics of irradiated light and take a special image is known.
  • Patent Document 1 a pamphlet of International Publication No. 2012/108420 (hereinafter referred to as “Patent Document 1”) describes a specific configuration of a light source device used in this type of endoscope system.
  • the endoscope system described in Patent Document 1 includes a light source device on which two light emitting diodes (LEDs) are mounted and an optical filter.
  • One of the two LEDs is a purple LED that emits light in a purple wavelength band.
  • the other LED is a phosphor LED having a blue LED and a yellow phosphor, and emits pseudo white light by mixing blue LED light and yellow fluorescence.
  • the optical filter is a wavelength selection filter that allows only light in a specific wavelength range to pass through, and can be inserted into and removed from the optical path of irradiation light emitted from the phosphor LED.
  • the light source device described in Patent Document 1 when the optical filter is extracted from the optical path, the light emitted from the phosphor LED is irradiated to the subject as white light without limiting the wavelength band.
  • the optical filter when the optical filter is inserted on the optical path, the subject is irradiated with both the irradiation light emitted from the phosphor LED and the wavelength band limited and the irradiation light emitted from the purple LED.
  • the spectral intensity characteristic of the irradiation light and irradiating the subject with only light in a specific wavelength band, it is possible to obtain a captured image in which a specific tissue is emphasized among subjects in the living body.
  • the wavelength band of light emitted from the phosphor LED is limited by an optical filter, and an unnecessary wavelength band is obtained.
  • the light is cut. Since the cut light is not irradiated to the subject, there is a problem that the light use efficiency of the light source device is low. Further, since the optical filter substantially transmits only light in a specific wavelength band, there is a problem that the intensity of the light transmitted through the optical filter is low and a bright photographed image cannot be obtained.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is for an endoscope capable of irradiating irradiation light having high intensity only in a specific wavelength band with high light utilization efficiency.
  • a light source device is provided.
  • An endoscope light source device includes a first light source unit that emits light of a first wavelength band, and a second light source having a peak wavelength different from the peak wavelength of the first wavelength band.
  • a second light source unit that emits light in the wavelength band, and a first optical path synthesis unit that synthesizes an optical path of light emitted from the first light source unit and an optical path of light emitted from the second light source unit.
  • a light source control means for individually controlling the light emission of the first light source unit and the second light source unit according to each of a plurality of modes.
  • the light in the first wavelength band and the light in the second wavelength band are the first light.
  • the light in the first wavelength band and the light in the second wavelength band are compared with the first intensity ratio.
  • the light in the second wavelength band is emitted at a second intensity ratio that is relatively low, and is synthesized by the first optical path synthesizing means to become special light with high absorbance for a specific biological tissue. , Supplied to the endoscope.
  • the first light source unit and the second light source unit are individually driven to emit light, so that the irradiation light irradiated on the subject is converted into normal light having a wide wavelength band in the visible light region.
  • the intensity of light in a wavelength band having a high absorbance with respect to a specific biological tissue of a subject can be switched between special light that is higher than in other wavelength bands.
  • an optical filter such as a wavelength limiting filter when switching the spectral intensity characteristics of the irradiation light, it is possible to suppress light amount loss due to switching of the spectral intensity characteristics.
  • the endoscope light source device has, for example, a third wavelength band having a peak wavelength different from the peak wavelength of the first wavelength band and the peak wavelength of the second wavelength band.
  • a third light source unit that emits light, an optical path of the light synthesized by the first optical path synthesis unit, and a second optical path synthesis unit that synthesizes the optical path of the light emitted from the third light source unit; Is further provided.
  • the light source control means causes the third light source unit to emit light at a predetermined intensity ratio with respect to the first light source unit and the second light source unit in the first mode, and in the second mode, The light source unit 3 is not allowed to emit light.
  • the endoscope light source device has, for example, a peak wavelength different from the peak wavelength of the first wavelength band, the peak wavelength of the second wavelength band, and the peak wavelength of the third wavelength band.
  • a fourth light source unit that emits light of a fourth wavelength band having a wavelength, a light path of light synthesized by the second light path synthesis means, and a light path of light emitted from the fourth light source unit And third optical path combining means.
  • the light source control unit causes the fourth light source unit to emit light at a predetermined intensity ratio with respect to the first light source unit, the second light source unit, and the third light source unit.
  • the fourth light source unit does not emit light.
  • the first light source unit includes, for example, a first solid-state light emitting element and a first phosphor that emits fluorescence by being excited by light emitted from the first solid-state light emitting element. And having.
  • the second light source unit includes, for example, a second solid state light emitting element and a second phosphor that emits fluorescence when excited by light emitted from the second solid state light emitting element. And having.
  • the second phosphor includes, for example, two phosphors that are excited by light emitted from the second solid state light emitting device and emit light having different peak wavelengths.
  • the first solid-state light emitting element emits light in a violet wavelength band
  • the first phosphor is a phosphor that emits fluorescence in a blue wavelength band.
  • the intensity of the fluorescence in the blue wavelength band is weaker than the intensity of the light in the purple wavelength band.
  • an endoscope light source device capable of irradiating irradiation light having high intensity only in a specific wavelength band with high light use efficiency.
  • FIG. 1 is a block diagram illustrating a configuration of an electronic endoscope system according to a first embodiment of the present invention. It is a block diagram of the light source device for endoscopes concerning a 1st embodiment of the present invention. It is a block diagram of the light source device for endoscopes concerning a 1st embodiment of the present invention. It is a figure which shows the spectral intensity distribution of the irradiation light inject
  • FIG. 1 is a block diagram showing a configuration of an electronic endoscope system 1 including an endoscope light source device 201 according to the first embodiment of the present invention.
  • the electronic endoscope system 1 is a system specialized for medical use, and includes an electronic scope 100, a processor 200, and a monitor 300.
  • the processor 200 includes a system controller 21 and a timing controller 22.
  • the system controller 21 executes various programs stored in the memory 23 and controls the entire electronic endoscope system 1 in an integrated manner.
  • the system controller 21 is connected to the operation panel 24.
  • the system controller 21 changes each operation of the electronic endoscope system 1 and parameters for each operation in accordance with an instruction from the operator input to the operation panel 24.
  • the input instruction by the operator includes, for example, an instruction to switch the observation mode of the electronic endoscope system 1.
  • the observation mode includes a normal observation mode and a special observation mode. Details of each observation mode will be described later.
  • the timing controller 22 outputs a clock pulse for adjusting the operation timing of each unit to each circuit in the electronic endoscope system 1.
  • the processor 200 includes a light source device 201.
  • FIG. 2 is a block diagram of the light source device 201 according to the first embodiment of the present invention.
  • the light source device 201 includes a first light source unit 111, a second light source unit 112, and a third light source unit 113.
  • the first to third light source units 111 to 113 are individually controlled to emit light by the first to third light source drive circuits 141 to 143, respectively.
  • the first light source unit 111 is a purple light emitting diode (LED: Light Emitting Diode) that emits light in a purple wavelength band (for example, a wavelength of 395 to 435 nm).
  • the second light source unit 112 includes a blue LED 112a that emits light in a blue wavelength band (for example, a wavelength of 425 to 455 nm), and a green phosphor 112b.
  • the green phosphor 112b is excited by the blue LED light emitted from the blue LED 112a, and emits fluorescence in the green wavelength band (for example, the wavelength is 460 to 600 nm).
  • the third light source unit 113 is a red light emitting diode (LED) that emits light in a red wavelength band (for example, a wavelength of 630 to 670 nm).
  • Collimating lenses 121 to 123 are arranged in front of the light source units 111 to 113 in the light emission direction, respectively.
  • the purple LED light emitted from the first light source unit 111 is converted into parallel light by the collimator lens 121 and is incident on the dichroic mirror 131.
  • the light emitted from the second light source unit 112, that is, the blue LED light and the green fluorescence is converted into parallel light by the collimator lens 122 and is incident on the dichroic mirror 131.
  • the dichroic mirror 131 combines the optical path of the light emitted from the first light source unit 111 and the optical path of the light emitted from the second light source unit 112.
  • the dichroic mirror 131 has a cutoff wavelength in the vicinity of a wavelength of 430 nm, transmits light having a wavelength shorter than the cutoff wavelength, and reflects light having a wavelength longer than the cutoff wavelength. Yes. Therefore, the purple LED light emitted from the first light source unit 111 is transmitted through the dichroic mirror 131, and the green fluorescence emitted from the second light source unit 112 is reflected by the dichroic mirror 131. Thereby, the optical path of purple LED light and green fluorescence is synthesized. The light whose optical path is synthesized by the dichroic mirror 131 is incident on the dichroic mirror 132.
  • the red LED light emitted from the third light source unit 113 is converted into parallel light by the collimator lens 123 and is incident on the dichroic mirror 132.
  • the dichroic mirror 132 combines the optical path of the light incident from the dichroic mirror 131 and the optical path of the light emitted from the third light source unit 113.
  • the dichroic mirror 132 has a cutoff wavelength in the vicinity of a wavelength of 620 nm, and transmits light having a wavelength shorter than the cutoff wavelength, and reflects light having a wavelength longer than the cutoff wavelength. Yes.
  • the violet LED light and green fluorescence incident from the dichroic mirror 131 and the red LED light emitted from the third light source unit 113 are combined in the optical path by the dichroic mirror 132, and the irradiation light L is emitted from the light source device 201. As injected.
  • FIG. 3 is a block diagram conceptually showing only the light source units 111 to 113 and the dichroic mirrors 131 and 132 in the light source device 201. Since the green phosphor 112b of the second light source unit 112 is attached to the light emitting surface of the blue LED 112a and is configured integrally with the blue LED 112a, the green phosphor 112b and the blue LED 112a in FIG. Shown in block.
  • each of the dichroic mirrors 131 and 132 synthesize optical paths of light having different wavelengths. Therefore, in FIG. 3, each of the dichroic mirrors 131 and 132 is indicated by an addition symbol “+”. In FIG. 3, the collimating lenses 121 to 123 disposed in front of the light source units 111 to 113 are omitted.
  • each arrow indicates an optical path of light.
  • the optical path of the purple LED light emitted from the first light source unit 111 and the optical path of the blue LED light and green fluorescence emitted from the second light source unit 112 are combined by the dichroic mirror 131. Is done.
  • the optical path of the light whose optical path is combined by the dichroic mirror 131 and the optical path of the red LED light emitted from the third light source unit 113 are combined by the dichroic mirror 132.
  • the light whose optical path is synthesized by the dichroic mirror 132 is emitted as the irradiation light L from the light source device 201.
  • the irradiation light L emitted from the light source device 201 is condensed by the condenser lens 25 on the incident end face of the LCB (Light Carrying Bundle) 11 and is incident on the LCB 11.
  • LCB Light Carrying Bundle
  • the irradiation light L incident on the LCB 11 propagates in the LCB 11.
  • the irradiation light L propagating through the LCB 11 is emitted from the emission end surface of the LCB 11 disposed at the tip of the electronic scope 100 and is irradiated onto the subject via the light distribution lens 12.
  • the return light from the subject irradiated with the irradiation light L from the light distribution lens 12 forms an optical image on the light receiving surface of the solid-state imaging device 14 via the objective lens 13.
  • the solid-state imaging device 14 is a single-plate color CCD (Charge Coupled Device) image sensor having a Bayer pixel arrangement.
  • the solid-state imaging device 14 accumulates an optical image formed by each pixel on the light receiving surface as a charge corresponding to the amount of light, and generates R (Red), G (Green), and B (Blue) image signals. Output.
  • the solid-state imaging device 14 is not limited to a CCD image sensor, and may be replaced with a CMOS (Complementary Metal Oxide Semiconductor) image sensor or other types of imaging devices.
  • the solid-state image sensor 14 may also be one having a complementary color filter mounted thereon.
  • a driver signal processing circuit 15 is provided in the connection part of the electronic scope 100.
  • An image signal of a subject irradiated with light from the light distribution lens 12 is input to the driver signal processing circuit 15 from the solid-state imaging device 14 at a frame period.
  • the frame period is, for example, 1/30 seconds.
  • the driver signal processing circuit 15 performs a predetermined process on the image signal input from the solid-state imaging device 14 and outputs the processed image signal to the upstream signal processing circuit 26 of the processor 200.
  • the driver signal processing circuit 15 also accesses the memory 16 and reads the unique information of the electronic scope 100.
  • the unique information of the electronic scope 100 recorded in the memory 16 includes, for example, the number and sensitivity of the solid-state imaging device 14, an operable frame rate, a model number, and the like.
  • the driver signal processing circuit 15 outputs the unique information read from the memory 16 to the system controller 21.
  • the system controller 21 performs various calculations based on the unique information of the electronic scope 100 and generates a control signal.
  • the system controller 21 uses the generated control signal to control the operation and timing of various circuits in the processor 200 so that processing suitable for the electronic scope connected to the processor 200 is performed.
  • the timing controller 22 supplies clock pulses to the driver signal processing circuit 15 according to the timing control by the system controller 21.
  • the driver signal processing circuit 15 drives and controls the solid-state imaging device 14 at a timing synchronized with the frame rate of the video processed on the processor 200 side in accordance with the clock pulse supplied from the timing controller 22.
  • the pre-stage signal processing circuit 26 performs predetermined signal processing such as demosaic processing, matrix calculation, and Y / C separation on the image signal input from the driver signal processing circuit 15 in one frame period, and outputs it to the image memory 27. To do.
  • the image memory 27 buffers the image signal input from the upstream signal processing circuit 26 and outputs it to the downstream signal processing circuit 28 according to the timing control by the timing controller 22.
  • the post-stage signal processing circuit 28 processes the image signal input from the image memory 27 to generate screen data for monitor display, and converts the generated screen data for monitor display into a predetermined video format signal.
  • the converted video format signal is output to the monitor 300. Thereby, the image of the subject is displayed on the display screen of the monitor 300.
  • the electronic endoscope system 1 of the present embodiment has a plurality of observation modes including a normal observation mode and a special observation mode.
  • Each observation mode is switched manually or automatically depending on the subject to be observed. For example, when it is desired to observe the subject illuminated with normal light, the observation mode is switched to the normal observation mode.
  • the normal light is, for example, white light or pseudo white light.
  • White light has a flat spectral intensity distribution in the visible light band.
  • the pseudo-white light has a spectral intensity distribution that is not flat, and light in a plurality of wavelength bands is mixed.
  • special light is light with a high light absorbency with respect to a specific biological tissue, for example.
  • the biological tissue emphasized in the special observation mode is a surface blood vessel will be described.
  • ⁇ Blood containing hemoglobin flows in the surface blood vessels. It is known that hemoglobin has absorbance peaks near wavelengths of 415 nm and 550 nm. Therefore, by irradiating the subject with special light suitable for emphasizing the superficial blood vessels (specifically, light having a higher intensity near the wavelength of 415 nm where the absorbance of hemoglobin is peak than other wavelength bands). A captured image in which the superficial blood vessels are emphasized can be obtained. Further, by irradiating special light having a high intensity near the wavelength of 550 nm, which is another peak of the absorbance of hemoglobin, together with the light near the wavelength of 415 nm, the brightness of the photographed image is maintained while maintaining the state where the surface blood vessels are emphasized. Can be brightened.
  • FIG. 4 shows the spectral intensity distribution of the irradiation light L emitted from the light source device 201 in each observation mode.
  • 4A shows the spectral intensity distribution of the irradiation light L (normal light) in the normal observation mode
  • FIG. 4B shows the spectral intensity distribution of the irradiation light L (special light) in the special observation mode.
  • the horizontal axis of the spectral intensity distribution shown in FIG. 4 indicates the wavelength (nm), and the vertical axis indicates the intensity of the irradiation light L. Note that the vertical axis is standardized so that the maximum intensity value is 1.
  • the LED has a steep spectral intensity distribution having an intensity peak at a specific wavelength.
  • a wavelength having the highest intensity among the specific wavelengths is referred to as a peak wavelength.
  • the wavelength having the highest intensity is called the peak wavelength.
  • the spectral intensity distribution D111 of the light emitted from the first light source unit 111 has a steep intensity distribution having a peak wavelength of about 415 nm.
  • the spectral intensity distribution D113 of light emitted from the third light source unit 113 has a steep intensity distribution having a peak wavelength of about 650 nm.
  • the spectral intensity distribution D112 of the light emitted from the second light source unit 112 has peaks at a wavelength of about 450 nm and a wavelength of about 550 nm. These two peaks are the peak of the intensity distribution of the light emitted from the blue LED 112a and the peak of the spectral intensity distribution of the fluorescence emitted from the green phosphor 112b, respectively.
  • the spectral intensity distribution of the fluorescence greatly depends on the material used, but covers a wider wavelength band than the spectral intensity distribution of the LED.
  • the green phosphor 112b in the first embodiment has a spectral intensity distribution with a peak wavelength of about 550 nm. As shown in FIG. 4A, the peak wavelength of the second light source unit 112 is about 550 nm.
  • the spectral intensity distribution D112 shown in FIG. 4A has a larger ratio of green fluorescence intensity than that of blue LED light, but the present invention is not limited to this.
  • the ratio of the blue LED light emitted from the second light source unit 112 and the green fluorescence can be freely changed by changing the type and amount of the green phosphor 112b.
  • the second light source unit 112 includes the green phosphor 11b that emits green fluorescence, but the present embodiment is not limited to this.
  • the second light source unit 112 may include a yellow phosphor that emits yellow fluorescence having a peak wavelength near 600 nm, instead of the green phosphor.
  • the spectral intensity distributions D111 to D113 shown in FIG. 4A have the maximum intensity values set to 1, the present invention is not limited to this.
  • the intensity ratio of the light emitted from each of the light source units 111 to 113 can be arbitrarily set according to the subject to be observed, the photographing mode, and the operator's preference.
  • the cutoff wavelengths ⁇ 131 and ⁇ 132 of the dichroic mirrors 131 and 132 are indicated by dotted lines.
  • the dichroic mirror 131 has a cutoff wavelength ⁇ 131 of about 430 nm, transmits light in a wavelength band shorter than the cutoff wavelength ⁇ 131, and reflects light in a wavelength band greater than or equal to the cutoff wavelength ⁇ 131. Therefore, in the spectral intensity distribution D111 shown in FIG. 4A, light in the wavelength band indicated by the solid line passes through the dichroic mirror 131, and light in the wavelength band indicated by the broken line is reflected by the dichroic mirror 131. Also, in the spectral intensity distribution D112 shown in FIG.
  • the dichroic mirror 132 has a cutoff wavelength ⁇ 132 of about 620 nm, transmits light in a wavelength band shorter than the cutoff wavelength ⁇ 132, and reflects light in a wavelength band longer than the cutoff wavelength ⁇ 132. Therefore, in the spectral intensity distributions D111 and D112 shown in FIG. 4A, light in the wavelength band indicated by the solid line shorter than the cutoff wavelength ⁇ 131 passes through the dichroic mirror 132. Further, in the spectral intensity distribution D112 shown in FIG. 4A, light in a wavelength band indicated by a broken line having a cutoff wavelength ⁇ 132 or more is reflected by the dichroic mirror 132. Also, in the spectral intensity distribution D113 shown in FIG.
  • the light paths of the light emitted from the light source units 111 to 113 are synthesized by the dichroic mirror 131 and the dichroic mirror 132, so that the light source device 201 emits light from the ultraviolet region (part of near ultraviolet) to the red region.
  • Irradiation light L (normal light) having a wide wavelength band is emitted.
  • the spectral intensity distribution of the irradiation light L (normal light) is the sum of the areas indicated by the solid lines in the spectral intensity distributions D111 to D113 shown in FIG.
  • the first light source unit 111 and the second light source unit 112 are driven to emit light, and the third light source unit 113 is not driven to emit light. Further, the second light source unit 112 is driven to emit light so that the drive current is smaller and the intensity is lower than that in the normal observation mode. As a result, the intensity near the wavelength of 415 nm at which the absorbance of hemoglobin is absorbed becomes relatively higher than the intensity in other wavelength bands, and a captured image in which the surface blood vessels are emphasized can be obtained.
  • the light emitted from the second light source unit 112 includes light having a wavelength near 550 nm, which is another peak of the absorbance of hemoglobin. Therefore, by driving the second light source unit 112 to emit light together with the first light source unit 111, the brightness of the photographed image can be increased while maintaining the state where the surface blood vessels are emphasized.
  • the light source device 201 includes the plurality of light source units 111 to 113 that emit light of different wavelength bands.
  • the light source units 111 to 113 are individually controlled to emit light according to the shooting mode. Therefore, by selecting the light source unit to be driven to emit light and changing the drive current of the light source unit, the spectral intensity characteristic of the irradiation light L can be switched to that corresponding to the observation mode.
  • the light paths of the light emitted from the light source units 111 to 113 are combined by the dichroic mirrors 131 and 132. At this time, since the wavelength bands of the light emitted from the light source units 111 to 113 are different from each other, the loss of the light amount can be minimized when the optical paths in the dichroic mirrors 131 and 132 are combined.
  • the special observation mode when using an optical filter that substantially transmits only light in a specific wavelength band as in the prior art, it is necessary to waste light other than the specific wavelength band.
  • the light utilization efficiency of the device is low.
  • the first embodiment of the present invention as shown in FIG. 4, light that is not used as the irradiation light L by combining optical paths in the dichroic mirrors 131 and 132 (in a region indicated by a broken line in FIG. 4).
  • the light intensity of the light is small compared to the light used as the irradiation light L (the light in the area indicated by the solid line in FIG. 4). Therefore, in the light source device 201 of the present embodiment, it is not necessary to uselessly emit light in a wavelength band that is not irradiated on the subject, so that the light use efficiency can be increased as compared with the related art.
  • the distance from the distal end of the electronic scope 100 to the subject is long, so Strength is lowered.
  • the light source device 201 of the present embodiment does not use an optical filter in the special observation mode and has high light use efficiency, it is possible to increase the intensity of illumination light applied to the subject. Therefore, a bright captured image can be obtained even when observing a site such as the stomach.
  • a purple LED that emits light having a peak wavelength of about 415 nm is used as the first light source unit 111, but the present invention is not limited to this.
  • the light emitted from the first light source unit 111 only needs to include light having a wavelength of 415 nm, which is the absorption peak of hemoglobin.
  • the first light source unit 111 emits light having a peak wavelength at 405 nm. LED which performs.
  • the characteristics of each LED and phosphor included in the light source device 201 can be appropriately changed according to the object to be observed.
  • an endoscope light source device according to a second embodiment of the present invention will be described.
  • the light source device according to the second embodiment is also used in the electronic endoscope system 1 in the same manner as the light source device 201 according to the first embodiment.
  • FIG. 5 is a block diagram conceptually showing only the light source unit and the dichroic mirror in the light source device 202 according to the second embodiment.
  • the light source device 202 includes a first light source unit 211, a second light source unit 212, and a dichroic mirror 231.
  • the light source units 211 and 212 are individually controlled to emit light by a first light source drive circuit and a second light source drive circuit (not shown).
  • the first light source unit 211 is a purple LED that emits light in a purple wavelength band (for example, a wavelength of 395 to 435 nm).
  • the second light source unit 212 includes a blue LED that emits light in a blue wavelength band (for example, a wavelength of 430 to 490 nm), a green phosphor, and a red phosphor.
  • the green phosphor is excited by blue LED light emitted from the blue LED, and emits fluorescence in a green wavelength band (for example, a wavelength of 460 to 600 nm).
  • the red phosphor is excited by the blue LED light emitted from the blue LED and emits fluorescence in the red wavelength band (for example, the wavelength is 550 to 750 nm).
  • the green phosphor and the red phosphor may be arranged side by side along the emission direction of the blue LED light, or may be arranged side by side in a direction perpendicular to the emission direction.
  • the green phosphor and the red phosphor may be prepared as a single phosphor by mixing the materials.
  • a collimating lens (not shown) is arranged in front of the light source units 211 and 212 in the emission direction.
  • the purple LED light emitted from the first light source unit 211 is converted into parallel light by the collimator lens and is incident on the dichroic mirror 231.
  • the light emitted from the second light source unit 212 that is, the blue LED light and the green and red fluorescence are converted into parallel light by the collimator lens and are incident on the dichroic mirror 231.
  • the dichroic mirror 231 combines the optical path of the light emitted from the first light source unit 211 and the optical path of the light emitted from the second light source unit 212.
  • the light whose optical path is synthesized by the dichroic mirror 231 is emitted from the light source device 202 as irradiation light L.
  • FIG. 6 shows the spectral intensity distribution of the irradiation light L emitted from the light source device 202 in each observation mode.
  • 6A shows the spectral intensity distribution of the irradiation light L (normal light) in the normal observation mode
  • FIG. 6B shows the spectral intensity distribution of the irradiation light L (special light) in the special observation mode.
  • the horizontal axis of the spectral intensity distribution shown in FIG. 6 indicates the wavelength (nm), and the vertical axis indicates the intensity of the irradiation light L. Note that the vertical axis is standardized so that the maximum intensity value is 1.
  • both the light source unit 211 and the light source unit 212 are driven to emit light.
  • the spectral intensity distribution D211 of light emitted from the first light source unit 211 has a steep intensity distribution having a peak wavelength of about 415 nm.
  • the spectral intensity distribution D212 of light emitted from the second light source unit 212 has peaks at wavelengths of about 470 nm, about 550 nm, and about 630 nm. These three wavelengths are the peak wavelengths of blue LED light, green fluorescence, and red fluorescence, respectively.
  • the cutoff wavelength ⁇ 231 of the dichroic mirror 231 is indicated by a dotted line.
  • the dichroic mirror 231 has a cutoff wavelength ⁇ 231 of about 430 nm, transmits light in a wavelength band shorter than the cutoff wavelength ⁇ 231, and reflects light in a wavelength band longer than the cutoff wavelength ⁇ 231. Therefore, in the spectral intensity distribution D211 shown in FIG. 4A, light in the wavelength band indicated by the solid line passes through the dichroic mirror 231 and light in the wavelength band indicated by the broken line is reflected by the dichroic mirror 231. Also, in the spectral intensity distribution D212 shown in FIG. 4A, light in the wavelength band indicated by the solid line is reflected by the dichroic mirror 231 and light in the wavelength band indicated by the broken line passes through the dichroic mirror 231.
  • the light source device 202 has a wide wavelength from the ultraviolet region (part of the near ultraviolet) to the red region.
  • Irradiation light L (normal light) having a band is emitted.
  • the spectral intensity distribution of the irradiation light L (normal light) is the sum of the areas indicated by the solid lines in the spectral intensity distributions D211 and D212 shown in FIG.
  • both the first light source unit 211 and the second light source unit 212 are driven to emit light.
  • the second light source unit 212 is driven to emit light so that the drive current is smaller and the intensity is lower than in the normal observation mode.
  • the intensity around the wavelength of 415 nm at which the absorbance of hemoglobin is absorbed is relatively higher than the intensity in other wavelength bands, and a captured image in which the surface blood vessels are emphasized is obtained.
  • the light emitted from the light source unit 212 includes light having a wavelength near 550 nm, which is another peak of the absorbance of hemoglobin. Therefore, by driving the light source unit 212 to emit light together with the light source unit 211, the brightness of the photographed image can be increased while maintaining the state where the surface blood vessels are emphasized.
  • the light source device 202 includes the plurality of light source units 211 and 212 that respectively emit light having different wavelength bands. Further, the light source units 211 and 212 are individually controlled to emit light. Therefore, the irradiation light L having a desired spectral intensity distribution can be obtained by selecting a light source unit that emits light according to the observation mode and changing the drive current of the light source unit.
  • the configuration of the light source device 202 can be simplified.
  • the second light source unit 212 has two phosphors, green and red. Therefore, the spectral intensity distribution of the irradiation light L (normal light) when the electronic endoscope system 1 is in the normal observation mode is more visible than when the second light source unit 212 has one phosphor. It approaches flat in the area. Accordingly, the subject can be illuminated with the irradiation light L (normal light) close to natural white light.
  • the light source device according to the third embodiment is also used in the electronic endoscope system 1 in the same manner as the light source device 201 according to the first embodiment.
  • FIG. 7 is a block diagram conceptually showing only the light source unit and the dichroic mirror in the light source device 203 according to the third embodiment.
  • the light source device 203 includes first to fourth light source units 311 to 314 and first to third dichroic mirrors 331 to 333.
  • the light source units 311 to 314 are individually controlled to emit light by first to fourth light source driving circuits (not shown).
  • the first light source unit 311 is a purple LED that emits light in a purple wavelength band (for example, a wavelength of 395 to 435 nm).
  • the second light source unit 312 is a blue LED that emits light in a blue wavelength band (for example, a wavelength of 430 to 470 nm).
  • the third light source unit 313 is a green LED that emits light in a green wavelength band (for example, a wavelength of 530 to 570 nm).
  • the fourth light source unit 314 is a red LED that emits light in a red wavelength band (for example, a wavelength of 630 to 670 nm).
  • a collimating lens (not shown) is arranged in front of each of the light source units 311 to 314 in the emission direction.
  • the purple LED light emitted from the first light source unit 311 is converted into parallel light by the collimator lens and is incident on the dichroic mirror 331.
  • the blue LED light emitted from the second light source unit 312 is converted into parallel light by the collimator lens and is incident on the dichroic mirror 331.
  • the dichroic mirror 331 combines the optical path of the light emitted from the first light source unit 311 and the optical path of the light emitted from the second light source unit 312. The light whose optical path is synthesized by the dichroic mirror 331 enters the dichroic mirror 332.
  • the green LED light emitted from the third light source unit 313 is converted into parallel light by the collimating lens and is incident on the dichroic mirror 332.
  • the dichroic mirror 332 combines the optical path of the light incident from the dichroic mirror 331 and the optical path of the light emitted from the third light source unit 313.
  • the light whose optical path is synthesized by the dichroic mirror 332 is incident on the dichroic mirror 333.
  • the red LED light emitted from the fourth light source unit 314 is converted into parallel light by the collimating lens and is incident on the dichroic mirror 333.
  • the dichroic mirror 333 combines the optical path of the light incident from the dichroic mirror 332 and the optical path of the light emitted from the fourth light source unit 314.
  • the light whose optical path is synthesized by the dichroic mirror 333 is emitted from the light source device 203 as irradiation light L.
  • FIG. 8 shows the spectral intensity distribution of the irradiation light L emitted from the light source device 203 in each observation mode.
  • 8A shows the spectral intensity distribution of the irradiation light L (normal light) in the normal observation mode
  • FIG. 8B shows the spectral intensity distribution of the irradiation light L (special light) in the special observation mode.
  • the horizontal axis of the spectral intensity distribution shown in FIG. 8 indicates the wavelength (nm), and the vertical axis indicates the intensity of the irradiation light L. Note that the vertical axis is standardized so that the maximum intensity value is 1.
  • the spectral intensity distribution D311 of the first light source unit 311 has a steep intensity distribution having a peak wavelength of about 415 nm.
  • the spectral intensity distribution D312 of the second light source unit 312 has a steep intensity distribution having a peak wavelength of about 450 nm.
  • the spectral intensity distribution D313 of the third light source unit 313 has a steep intensity distribution having a peak wavelength of about 550 nm.
  • the spectral intensity distribution D314 of the fourth light source unit 314 has a steep intensity distribution having a peak wavelength of about 650 nm.
  • the cutoff wavelengths ⁇ 331 to 333 of the dichroic mirrors 331 to 333 are indicated by dotted lines. Cutoff wavelengths ⁇ 331 to 333 are 430 nm, 500 nm, and 600 nm, respectively. Any of the dichroic mirrors 331 to 333 transmits light having a wavelength band shorter than the cutoff wavelength, and reflects light having a wavelength band equal to or greater than the cutoff wavelength. By the dichroic mirrors 331 to 333, the optical paths of the light emitted from the light source units 311 to 314 are combined.
  • the light paths of the light emitted from the light source units 311 to 314 are synthesized by the dichroic mirrors 331 to 333, so that the light source device 203 can emit light from the ultraviolet region (part of near ultraviolet) to the red region.
  • Irradiation light L (normal light) having a wide wavelength band is emitted.
  • the spectral intensity distribution of the irradiation light L (normal light) is the sum of the areas indicated by the solid lines in the spectral intensity distributions D311 to D314 shown in FIG.
  • the first light source unit 311 and the third light source unit 313 are driven to emit light, and the second light source unit 312 and the fourth light source unit 314 are driven to emit light.
  • the third light source unit 313 is driven to emit light so that the drive current is smaller and the intensity is lower than that in the normal observation mode.
  • the intensity around the wavelength of 415 nm at which the absorbance of hemoglobin is absorbed is relatively higher than the intensity in other wavelength bands, and a captured image in which the surface blood vessels are emphasized is obtained. Obtainable.
  • the light emitted from the light source unit 313 includes light around 550 nm, which is another peak of the absorbance of hemoglobin. Therefore, by driving the light source unit 312 to emit light together with the light source unit 311, it is possible to increase the brightness of the captured image while maintaining the state where the surface blood vessels are emphasized.
  • the light source units 311 to 314 that emit light of different wavelength bands are provided. Also, the light source units 311 to 314 are individually controlled to emit light. Therefore, the irradiation light L having a desired spectral intensity distribution can be obtained by selecting a light source unit that emits light according to the observation mode and changing the drive current of the light source unit.
  • the light source device 203 of the third embodiment has four light source units 311 to 314 having different wavelength bands and capable of individually controlling light emission. Therefore, the spectral intensity distribution of the irradiation light L can be finely controlled by selecting a light source unit to be driven for light emission from the four light source units 311 to 314 and individually controlling the drive current during the light emission drive.
  • the second light source unit 312 when the electronic endoscope system 1 is in the special observation mode, the second light source unit 312 has a smaller driving current and lower strength than in the normal observation mode. May be driven to emit light. Hemoglobin has an absorbance peak in the vicinity of 415 nm, but also has a relatively high absorbance in the blue wavelength band in the vicinity thereof. Therefore, in the special observation mode, by driving the second light source unit 312 that emits light in the blue wavelength band, the enhancement effect of the surface blood vessels in the captured image can be improved and the brightness of the captured image can be increased. it can.
  • the light source unit (purple LED) that emits light in the violet wavelength band is separated from the light source unit that emits light in other wavelength bands, but the present invention is not limited to this. .
  • a purple LED may have a phosphor.
  • FIG. 9 is a block diagram conceptually showing only the light source unit and the dichroic mirror in the light source device 204 according to the fourth embodiment of the present invention. Similarly to the light source device 201 according to the first embodiment, the light source device 204 according to the fourth embodiment is used in the electronic endoscope system 1, for example.
  • the light source device 204 includes first to third light source units 411 to 413, and first and second dichroic mirrors 431 and 432.
  • the light source units 411 to 413 are individually controlled to emit light by first to third light source driving circuits (not shown).
  • the first light source unit 411 emits light in a purple wavelength band (for example, a wavelength of 395 to 435 nm) and is excited by the purple LED light to emit blue (for example, a wavelength of 430 to 490 nm) fluorescence. It has a blue phosphor that emits light.
  • the second light source unit 412 is excited by a blue LED that emits light in a blue wavelength band (for example, a wavelength of 430 to 470 nm) and a blue LED light emitted from the blue LED, and a yellow wavelength band (for example, It has a yellow phosphor that emits fluorescence having a wavelength of 500 to 720 nm.
  • the third light source unit 413 is a red LED that emits light in a red wavelength band (for example, a wavelength of 620 to 680 nm).
  • a collimator lens (not shown) is arranged in front of each of the light source units 411 to 413 in the emission direction. Purple LED light and blue fluorescence emitted from the first light source unit 411 are converted into parallel light by a collimating lens and are incident on a dichroic mirror 431. Further, the blue LED light and the yellow fluorescence emitted from the second light source unit 412 are converted into parallel light by the collimator lens and are incident on the dichroic mirror 431.
  • the dichroic mirror 431 combines the optical path of the light emitted from the first light source unit 411 and the optical path of the light emitted from the second light source unit 412. The light whose optical path is synthesized by the dichroic mirror 431 enters the dichroic mirror 432.
  • the red LED light emitted from the third light source unit 413 is converted into parallel light by the collimating lens and is incident on the dichroic mirror 432.
  • the dichroic mirror 432 combines the optical path of the light incident from the dichroic mirror 431 and the optical path of the light emitted from the third light source unit 413.
  • the light whose optical path is synthesized by the dichroic mirror 432 is emitted from the light source device 204 as irradiation light L.
  • FIG. 10 shows the spectral intensity distribution of the irradiation light L emitted from the light source device 204 in each observation mode.
  • 10A shows the spectral intensity distribution of the irradiation light L (normal light) in the normal observation mode
  • FIG. 10B shows the spectral intensity distribution of the irradiation light L (special light) in the special observation mode.
  • the horizontal axis of the spectral intensity distribution shown in FIG. 10 indicates the wavelength (nm), and the vertical axis indicates the intensity of the irradiation light L. Note that the vertical axis is standardized so that the maximum intensity value is 1.
  • the spectral intensity distribution D411 of the first light source unit 411 has peaks at wavelengths of about 415 nm and 470 nm. These two wavelengths are respectively the peak wavelengths of the intensity distribution of the purple LED light and the blue fluorescence.
  • the height of the peak at the wavelength of about 415 nm is set to be higher than the height of the peak at the wavelength of about 470 nm.
  • the spectral intensity distribution D412 of the second light source unit 412 has peaks at wavelengths of about 450 nm and 600 nm. These two wavelengths are the peak wavelengths of blue LED light and yellow fluorescence, respectively.
  • the spectral intensity distribution D413 of the third light source unit 413 has a steep intensity distribution having a peak wavelength of about 650 nm.
  • the cutoff wavelengths ⁇ 431 and ⁇ 432 of the dichroic mirrors 431 and 432 are indicated by dotted lines. Cutoff wavelengths ⁇ 431 and ⁇ 432 are 520 nm and 630 nm, respectively. Any of the dichroic mirrors 431 and 432 transmits light having a wavelength band shorter than the cutoff wavelength, and reflects light having a wavelength band equal to or greater than the cutoff wavelength. By the dichroic mirrors 431 and 432, the optical paths of the light emitted from the light source units 411 to 413 are combined.
  • the blue LED light having a peak at a wavelength of about 450 nm is shorter than the cutoff wavelength ⁇ 431, and thus is included in the light whose optical path is synthesized by the dichroic mirror 431. I can't.
  • the light paths emitted from the respective light source units 411 to 413 are synthesized by the dichroic mirrors 431 and 432, so that the light source device 204 can emit light from the ultraviolet region (part of near ultraviolet) to the red region.
  • Irradiation light L (normal light) having a wide wavelength band is emitted.
  • the spectral intensity distribution of the irradiation light L (normal light) is the sum of the areas indicated by the solid lines in the spectral intensity distributions D411 to D413 shown in FIG.
  • the first light source unit 411 and the second light source unit 412 are driven to emit light, and the third light source unit 413 is not driven to emit light. Further, the second light source unit 412 is driven to emit light so that the drive current is smaller and the intensity is lower than that in the normal observation mode.
  • the intensity around the wavelength of 415 nm at which the absorbance of hemoglobin is absorbed is relatively higher than the intensity in other wavelength bands, and a captured image in which the surface blood vessels are emphasized is obtained. Obtainable.
  • the light emitted from the second light source unit 412 includes light having a wavelength near 550 nm, which is another peak of the absorbance of hemoglobin. Therefore, by driving the second light source unit 412 to emit light together with the first light source unit 411, the brightness of the photographed image can be increased while maintaining the state where the surface blood vessels are emphasized.
  • the biological tissue in the body cavity imaged by the electronic endoscope system 1 is generally reddish due to blood.
  • red light when red light is irradiated onto the living tissue in the special observation mode, the entire captured image is reddish, and it is difficult to obtain an effect of enhancing the superficial blood vessels.
  • the red LED third light source unit 413 is not driven to emit light in the special observation mode, it is possible to prevent the enhancement effect of the superficial blood vessels from being reduced.
  • the subject in the special observation mode, is irradiated with light in the blue band emitted from the first light source unit 411.
  • the blue wavelength band does not include the wavelength at which the absorbance of hemoglobin becomes a peak, it is more easily absorbed by living tissue than red light. Therefore, even when blue light is irradiated on the living tissue in the special observation mode, the effect on the enhancement effect of the surface blood vessels is small.
  • the luminance of the captured image can be increased by irradiating the subject with blue light.
  • the blue LED light is not irradiated.
  • light in the blue wavelength band is emitted from the first light source unit 411 and is irradiated onto the subject. Therefore, it is possible to individually change the intensity of light in the blue wavelength band that has a relatively small influence on the enhancement effect of the surface blood vessels and the intensity of light in the yellow wavelength band that has a relatively large influence. This facilitates the adjustment of the balance between the superficial blood vessel enhancement effect and the brightness of the captured image in the special observation mode.
  • the second light source unit 412 has a yellow phosphor, but the present invention is not limited to this.
  • the second light source unit 412 may include a green phosphor having a peak wavelength near 550 nm, instead of the yellow phosphor.
  • an endoscope light source device according to a fifth embodiment of the present invention will be described.
  • the light source device according to the fifth embodiment is also used in the electronic endoscope system 1 in the same manner as the light source device 201 according to the first embodiment.
  • FIG. 11 is a block diagram conceptually showing only the light source unit and the dichroic mirror in the light source device 205 according to the fifth embodiment.
  • the light source device 205 includes a first light source unit 511, a second light source unit 512, and a dichroic mirror 531.
  • the light source units 511 and 512 are individually controlled to emit light by first and second light source driving circuits (not shown).
  • the light source device 205 according to the fifth embodiment has a configuration in which the red LED (third light source unit 413) and the dichroic mirror 432 are removed from the light source device 204 according to the fourth embodiment. is there.
  • the characteristics of the first light source unit 511, the second light source unit 512, and the dichroic mirror 531 are the same as the characteristics of the first light source unit 411, the second light source unit 412, and the dichroic mirror 431 of the fourth embodiment, respectively. The same.
  • FIG. 12 shows the spectral intensity distribution of the irradiation light L emitted from the light source device 205 in each observation mode.
  • 12A shows the spectral intensity distribution of the irradiation light L (normal light) in the normal observation mode
  • FIG. 12B shows the spectral intensity distribution of the irradiation light L (special light) in the special observation mode.
  • the horizontal axis of the spectral intensity distribution shown in FIG. 12 indicates the wavelength (nm), and the vertical axis indicates the intensity of the irradiation light L. Note that the vertical axis is standardized so that the maximum intensity value is 1.
  • the spectral intensity distribution of the irradiation light L in the fifth embodiment is obtained by removing the red LED light from the irradiation light L in the fourth embodiment.
  • the light source device 205 of the fifth embodiment does not have the dichroic mirror 432, the light emitted from the second light source unit 512 also emits light in the red wavelength band having a wavelength of 630 nm or more. Irradiated as L.
  • the light source device 205 of the fifth embodiment can be simplified in configuration because the red LED (light source unit 413) and the dichroic mirror 432 are not provided, as compared with the light source device 204 of the fourth embodiment.
  • the light source device 205 of the fifth embodiment light in the red wavelength band longer than the wavelength of 630 nm is used as the illumination light L among the light emitted from the second light source unit 512. In the mode, even if there is no red LED, pseudo-white irradiation light L (normal light) can be obtained.
  • the second light source unit 512 has a yellow phosphor, but the present invention is not limited to this.
  • the second light source unit 512 may have a green phosphor and a red phosphor in place of the yellow phosphor, similarly to the second light source unit 212 in the second implementation system and others. In this case, normal light having a wider wavelength band can be obtained in the normal observation mode than when the yellow phosphor is used.
  • FIG. 13 is a block diagram conceptually showing only the light source unit and the dichroic mirror in the light source device 206 according to the sixth embodiment.
  • the light source device 206 includes first to third light source units 611 to 613 and first and second dichroic mirrors 631 and 632.
  • the light source units 611 to 613 are individually controlled to emit light by first to third light source driving circuits (not shown).
  • the light source device 206 according to the sixth embodiment removes the blue LED (second light source unit 312) and the dichroic mirror 331 from the light source device 203 according to the third embodiment, and instead
  • the first light source unit 611 has a blue phosphor.
  • the characteristics of the first light source unit 611 are the same as the characteristics of the first light source unit 511 in the fifth embodiment.
  • the characteristics of the second light source unit 612, the third light source unit 613, the dichroic mirror 631, and the dichroic mirror 632 are the third light source unit 313, the fourth light source unit 314, and the dichroic mirror of the third embodiment, respectively. 332 and the characteristics of the dichroic mirror 333 are the same.
  • FIG. 14 shows the spectral intensity distribution of the irradiation light L emitted from the light source device 206 in each observation mode.
  • 14A shows the spectral intensity distribution of the irradiation light L (normal light) in the normal observation mode
  • FIG. 14B shows the spectral intensity distribution of the irradiation light L (special light) in the special observation mode.
  • the horizontal axis of the spectral intensity distribution shown in FIG. 14 indicates the wavelength (nm), and the vertical axis indicates the intensity of the irradiation light L. Note that the vertical axis is standardized so that the maximum intensity value is 1.
  • the spectral intensity distribution of the irradiation light L in the sixth embodiment removes the purple LED light and the blue LED light from the irradiation light L in the third embodiment, instead of the first light source.
  • a purple LED light emitted from the unit 611 and a blue fluorescent light (D611) are added.
  • the light source device 206 of the sixth embodiment does not include the dichroic mirror 331, the light emitted from the first light source unit 611 has a cutoff wavelength ⁇ 331 (wavelength 430 nm) or more and a cutoff wavelength. Light in a wavelength band shorter than ⁇ 631 (wavelength 500 nm) is also emitted as irradiation light L.
  • the light source device 206 of the sixth embodiment can be simplified in configuration because the blue LED (light source unit 212) and the dichroic mirror 331 are not provided, as compared with the light source device 203 of the third embodiment.
  • an endoscope light source device according to a seventh embodiment of the present invention will be described.
  • the light source device according to the seventh embodiment is also used in the electronic endoscope system 1 in the same manner as the light source device 201 according to the first embodiment.
  • FIG. 15 is a block diagram conceptually showing only the light source unit and the dichroic mirror in the light source device 207 according to the seventh embodiment.
  • the light source device 207 includes first to fourth light source units 711 to 714 and first to third dichroic mirrors 731 to 733.
  • the light source units 711 to 714 are individually controlled to emit light by first to fourth light source driving circuits (not shown).
  • the light source device 207 according to the seventh embodiment includes a green LED (third light source unit 313) of the light source device 203 according to the third embodiment, a blue LED, and a yellow phosphor. It is replaced with a phosphor LED.
  • the cut-off wavelengths ⁇ 731 to ⁇ 733 of the dichroic mirrors 731 to 733 of the seventh embodiment do not have to be the same as ⁇ 331 to ⁇ 333 of the dichroic mirrors 331 to 333 of the third embodiment.
  • the cut-off wavelengths ⁇ 731 to ⁇ 733 are set as appropriate so that the loss of light amount when the optical paths are combined by the dichroic mirrors 731 to 733 is reduced, or the spectral intensity distribution of the illumination light L becomes a desired distribution.
  • FIG. 16 shows the spectral intensity distribution of the irradiation light L emitted from the light source device 207 in each observation mode.
  • 16A shows the spectral intensity distribution of the irradiation light L (normal light) in the normal observation mode
  • FIG. 16B shows the spectral intensity distribution of the irradiation light L (special light) in the special observation mode.
  • the horizontal axis of the spectral intensity distribution shown in FIG. 16 indicates the wavelength (nm), and the vertical axis indicates the intensity of the irradiation light L. Note that the vertical axis is standardized so that the maximum intensity value is 1.
  • the spectral intensity distribution of the irradiation light L in the seventh embodiment is the irradiation light L in the third embodiment except for the spectral intensity distribution D713 of the light emitted from the third light source unit 713. Is the same as the spectral intensity distribution.
  • the cutoff wavelengths ⁇ 731 to ⁇ 733 of the dichroic mirrors 731 to 733 of the seventh embodiment are different from ⁇ 331 to ⁇ 333 of the dichroic mirrors 331 to 333 of the third embodiment. Therefore, the spectral intensity distribution of the light emitted as the irradiation light L (the area indicated by the solid line in the spectral intensity distribution shown in FIG. 16) is different from the spectral intensity distribution of the illumination light L in the third embodiment. .
  • the light source device 207 of the seventh embodiment is different from the light source device 203 of the third embodiment in that a phosphor LED (third light source unit 713) is used instead of the green LED (third light source unit 313). Since it is used, the spectral intensity distribution of the illumination light L (normal light) approaches flat in the visible region. Accordingly, the subject can be illuminated with the irradiation light L (normal light) close to natural white light.
  • the third light source unit 713 has a yellow phosphor, but the present invention is not limited to this.
  • the third light source unit 713 may include a green phosphor having a peak wavelength near 550 nm and a red phosphor having a peak wavelength near 650 nm, instead of the yellow phosphor.
  • the third light source unit 713 may include a yellow phosphor having an intensity in a wider wavelength band than shown in FIG.
  • Embodiments of the present invention are not limited to those described above, and various modifications are possible within the scope of the technical idea of the present invention.
  • the embodiment of the present invention also includes contents appropriately combined with embodiments or the like clearly shown in the specification or obvious embodiments.
  • an LED is assumed as the solid state light emitting device.
  • the present invention is not limited to this, and it is also possible to employ LD (Laser Diode) as a solid state light emitting device.

Abstract

内視鏡用光源装置を、第1の波長帯域の光を射出する第1の光源ユニットと、第2の波長帯域の光を射出する第2の光源ユニットと、第1及び第2の光源ユニットから射出される光の光路を合成する光路合成手段と、各光源ユニットを個別に発光制御する光源制御手段と、から構成する。各光源ユニットが第1のモードで発光駆動されると、各波長帯域の光が第1の強度比で射出され、合成されることにより、通常光となって内視鏡に供給される。また、各光源ユニットが第2のモードで発光駆動されると、各波長帯域の光が、第2の波長帯域の光が相対的に低くなる第2の強度比で射出され、合成されることにより、特定の生体組織に対して吸光度の高い特殊光となって内視鏡に供給される。

Description

内視鏡用光源装置
 本発明は、被写体に光を照射する内視鏡用光源装置に関する。
 照射光の分光強度特性を変化させ、特殊な画像を撮影することが可能な内視鏡システムが知られている。例えば国際公開第2012/108420号パンフレット(以下、「特許文献1」と記す。)に、この種の内視鏡システムに使用される光源装置の具体的構成が記載されている。
 特許文献1に記載の内視鏡システムは、2つの発光ダイオード(LED:Light Emitting Diode)と光学フィルタが搭載された光源装置を備えている。2つのLEDの内、一方は紫色の波長帯域の光を射出する紫色LEDである。また、他方のLEDは、青色LEDと黄色の蛍光体を有する蛍光体LEDであり、青色のLED光と黄色の蛍光を混色することにより、擬似的な白色光を射出する。光学フィルタは、特定の波長域の光のみを通過させる波長選択フィルタであり、蛍光体LEDから射出される照射光の光路上に挿抜可能である。
 特許文献1に記載の光源装置では、光学フィルタが光路上から抜出されているときは、蛍光体LEDから射出された光が、波長帯域が制限されることなく、白色光として被写体に照射される。一方、光学フィルタが光路上に挿入されているときは、蛍光体LEDから射出され波長帯域が制限された照射光と、紫色LEDから射出された照射光の両方が被写体に照射される。このように、照射光の分光強度特性を変化させ、特定の波長帯域の光のみを被写体に照射することにより、生体内の被写体のうち、特定の組織を強調した撮影画像を得ることができる。
 特許文献1に記載の光源装置では、特定の波長帯域にのみ高い強度を有する照射光を得るために、蛍光体LEDから射出された光の波長帯域を光学フィルタによって制限し、不要な波長帯域の光をカットしている。このカットされた光は被写体には照射されないため、光源装置の光利用効率が低いという問題がある。また、光学フィルタは、実質的に特定の波長帯域の光のみを透過させるため、光学フィルタを透過した光の強度は低く、明るい撮影画像が得られないという問題がある。
 本発明は上記の事情に鑑みてなされたものであり、その目的とするところは、特定の波長帯域にのみ高い強度を有する照射光を高い光利用効率で照射することが可能な内視鏡用光源装置を提供することである。
 本発明の一実施形態に係る内視鏡用光源装置は、第1の波長帯域の光を射出する第1の光源ユニットと、第1の波長帯域のピーク波長とは異なるピーク波長をもつ第2の波長帯域の光を射出する第2の光源ユニットと、第1の光源ユニットから射出される光の光路と第2の光源ユニットから射出される光の光路とを合成する第1の光路合成手段と、第1の光源ユニットと第2の光源ユニットを複数のモードのそれぞれに応じて個別に発光制御する光源制御手段と、を備える。この構成において、光源制御手段により第1の光源ユニット及び第2の光源ユニットが第1のモードで発光駆動されると、第1の波長帯域の光と第2の波長帯域の光が第1の強度比で射出され、第1の光路合成手段にて合成されることにより、可視光領域内に広い波長帯域を有する通常光となって、内視鏡に供給される、また、光源制御手段により第1の光源ユニット及び第2の光源ユニットが第2のモードで発光駆動されると、第1の波長帯域の光と第2の波長帯域の光が、第1の強度比と比べて、第2の波長帯域の光が相対的に低くなる第2の強度比で射出され、第1の光路合成手段にて合成されることにより、特定の生体組織に対して吸光度の高い特殊光となって、内視鏡に供給される。
 このような構成によれば、第1の光源ユニットと第2の光源ユニットを個別に発光駆動することにより、被写体に照射される照射光を、可視光領域内に広い波長帯域を有する通常光と、被写体の特定の生体組織に対する吸光度の高い波長帯域の光の強度が、他の波長帯域に比べて高い特殊光との間で切り替えることができる。また、照射光の分光強度特性の切り替えを行う際に、波長制限フィルタ等の光学フィルタを用いる必要が無いため、分光強度特性の切り替えに伴う光量損失を抑えることができる。
 また、本発明の一実施形態において、内視鏡用光源装置は、例えば、第1の波長帯域のピーク波長及び第2の波長帯域のピーク波長とは異なるピーク波長をもつ第3の波長帯域の光を射出する第3の光源ユニットと、第1の光路合成手段によって合成された光の光路と、第3の光源ユニットから射出された光の光路とを合成する第2の光路合成手段と、を更に備える。この場合、光源制御手段は、第1のモードでは、第3の光源ユニットを、第1の光源ユニット及び第2の光源ユニットに対して所定の強度比で発光させ、第2のモードでは、第3の光源ユニットを発光させない。
 また、本発明の一実施形態において、内視鏡用光源装置は、例えば、第1の波長帯域のピーク波長、第2の波長帯域のピーク波長、第3の波長帯域のピーク波長とは異なるピーク波長をもつ第4の波長帯域の光を射出する第4の光源ユニットと、第2の光路合成手段によって合成された光の光路と、第4の光源ユニットから射出された光の光路とを合成する第3の光路合成手段と、を更に備える。この場合、光源制御手段は、第1のモードでは、第4の光源ユニットを、第1の光源ユニット、第2の光源ユニット、第3の光源ユニットに対して所定の強度比で発光させ、第2のモードでは、第4の光源ユニットを発光させない。
 また、本発明の一実施形態において、第1の光源ユニットは、例えば、第1の固体発光素子と、第1の固体発光素子から射出された光によって励起され、蛍光を発する第1の蛍光体と、を有する。
 また、本発明の一実施形態において、第2の光源ユニットは、例えば、第2の固体発光素子と、第2の固体発光素子から射出された光によって励起され、蛍光を発する第2の蛍光体と、を有する。
 また、本発明の一実施形態において、第2の蛍光体は、例えば、第2の固体発光素子から射出された光によって励起され、互いに異なるピーク波長をもつ光を発する2つの蛍光体を含む。
 また、本発明の一実施形態において、例えば、第1の固体発光素子は、紫色の波長帯域の光を射出し、第1の蛍光体は、青色の波長帯域の蛍光を発する蛍光体である。この場合、第1の光源ユニットから射出される光のうち、青色の波長帯域の蛍光の強度は、紫色の波長帯域の光の強度よりも弱い。
 本発明の一実施形態によれば、特定の波長帯域にのみ高い強度を有する照射光を高い光利用効率で照射することが可能な内視鏡用光源装置が提供される。
本発明の第1の実施形態に係る電子内視鏡システムの構成を示すブロック図である。 本発明の第1の実施形態に係る内視鏡用光源装置のブロック図である。 本発明の第1の実施形態に係る内視鏡用光源装置のブロック図である。 本発明の第1の実施形態に係る内視鏡用光源装置から射出される照射光の分光強度分布を示す図である。 本発明の第2の実施形態に係る内視鏡用光源装置のブロック図である。 本発明の第2の実施形態に係る内視鏡用光源装置から射出される照射光の分光強度分布を示す図である。 本発明の第3の実施形態に係る内視鏡用光源装置のブロック図である。 本発明の第3の実施形態に係る内視鏡用光源装置から射出される照射光の分光強度分布を示す図である。 本発明の第4の実施形態に係る内視鏡用光源装置のブロック図である。 本発明の第4の実施形態に係る内視鏡用光源装置から射出される照射光の分光強度分布を示す図である。 本発明の第5の実施形態に係る内視鏡用光源装置のブロック図である。 本発明の第5の実施形態に係る内視鏡用光源装置から射出される照射光の分光強度分布を示す図である。 本発明の第6の実施形態に係る内視鏡用光源装置のブロック図である。 本発明の第6の実施形態に係る内視鏡用光源装置から射出される照射光の分光強度分布を示す図である。 本発明の第7の実施形態に係る内視鏡用光源装置のブロック図である。 本発明の第7の実施形態に係る内視鏡用光源装置から射出される照射光の分光強度分布を示す図である。
 以下、本発明の実施形態について図面を参照しながら説明する。なお、以下においては、本発明の一実施形態として内視鏡用光源装置を備える電子内視鏡システムを例に取り説明する。
(第1の実施形態)
 図1は、本発明の第1の実施形態に係る内視鏡用光源装置201を備えた電子内視鏡システム1の構成を示すブロック図である。図1に示されるように、電子内視鏡システム1は、医療用に特化されたシステムであり、電子スコープ100、プロセッサ200及びモニタ300を備えている。
 プロセッサ200は、システムコントローラ21及びタイミングコントローラ22を備えている。システムコントローラ21は、メモリ23に記憶された各種プログラムを実行し、電子内視鏡システム1全体を統合的に制御する。また、システムコントローラ21は、操作パネル24に接続されている。システムコントローラ21は、操作パネル24に入力される術者からの指示に応じて、電子内視鏡システム1の各動作及び各動作のためのパラメータを変更する。術者による入力指示には、例えば電子内視鏡システム1の観察モードの切替指示がある。観察モードには、通常観察モード、特殊観察モードがある。各観察モードについての詳細は後述する。タイミングコントローラ22は、各部の動作のタイミングを調整するクロックパルスを電子内視鏡システム1内の各回路に出力する。
 プロセッサ200は、光源装置201を備えている。図2に、本発明の第1の実施形態に係る光源装置201のブロック図を示す。光源装置201は、第1の光源ユニット111、第2の光源ユニット112、第3の光源ユニット113を備えている。第1~第3の光源ユニット111~113はそれぞれ、第1~第3光源駆動回路141~143によって個別に発光制御される。
 第1の光源ユニット111は、紫色の波長帯域(例えば、波長が395~435nm)の光を射出する紫色発光ダイオード(LED:Light Emitting Diode)である。第2の光源ユニット112は、青色の波長帯域(例えば、波長が425~455nm)の光を射出する青色LED112aと、緑色蛍光体112bとを有している。緑色蛍光体112bは、青色LED112aから射出された青色LED光によって励起され、緑色の波長帯域(例えば、波長が460~600nm)の蛍光を発する。第3の光源ユニット113は、赤色の波長帯域(例えば、波長が630~670nm)の光を射出する赤色発光ダイオード(LED:Light Emitting Diode)である。
 各光源ユニット111~113の光の射出方向の前方にはそれぞれ、コリメートレンズ121~123が配置されている。第1の光源ユニット111から射出された紫色LED光は、コリメートレンズ121によって平行光に変換され、ダイクロイックミラー131に入射される。また、第2の光源ユニット112から射出された光、すなわち、青色LED光及び緑色の蛍光は、コリメートレンズ122によって平行光に変換され、ダイクロイックミラー131に入射される。ダイクロイックミラー131は、第1の光源ユニット111から射出された光の光路と、第2の光源ユニット112から射出された光の光路とを合成する。詳しくは、ダイクロイックミラー131は、波長430nm付近にカットオフ波長を有しており、カットオフ波長よりも短い波長の光を透過させ、カットオフ波長以上の波長の光を反射する特性を有している。そのため、第1の光源ユニット111から射出された紫色LED光はダイクロイックミラー131を透過し、第2の光源ユニット112から射出された緑色の蛍光はダイクロイックミラー131で反射される。これにより、紫色LED光と緑色の蛍光の光路が合成される。ダイクロイックミラー131によって光路が合成された光は、ダイクロイックミラー132に入射される。
 また、第3の光源ユニット113から射出された赤色LED光は、コリメートレンズ123によって平行光に変換され、ダイクロイックミラー132に入射される。ダイクロイックミラー132は、ダイクロイックミラー131から入射された光の光路と、第3の光源ユニット113から射出された光の光路とを合成する。詳しくは、ダイクロイックミラー132は、波長620nm付近にカットオフ波長を有しており、カットオフ波長よりも短い波長の光を透過させ、カットオフ波長以上の波長の光を反射する特性を有している。そのため、ダイクロイックミラー131から入射された紫色LED光及び緑色の蛍光と、第3の光源ユニット113から射出された赤色LED光は、ダイクロイックミラー132によってその光路が合成され、光源装置201から照射光Lとして射出される。
 図3は、光源装置201のうち、各光源ユニット111~113及び各ダイクロイックミラー131、132のみを概念的に示したブロック図である。第2の光源ユニット112の緑色蛍光体112bは、青色LED112aの発光面に取り付けられており、青色LED112aと一体に構成されているため、図3において、緑色蛍光体112bと青色LED112aは、一つのブロックで示されている。
 また、各ダイクロイックミラー131、132は、波長の異なる光の光路を合成するものである。そのため、図3において、各ダイクロイックミラー131、132はいずれも、加算記号「+」で示されている。また、図3において、各光源ユニット111~113の前方に配置されたコリメートレンズ121~123は省略されている。
 図3において、各矢印は光の光路を示している。図3に示す例では、第1の光源ユニット111から射出された紫色LED光の光路と、第2の光源ユニット112から射出された青色LED光及び緑色の蛍光の光路が、ダイクロイックミラー131で合成される。ダイクロイックミラー131で光路が合成された光の光路と、第3の光源ユニット113から射出された赤色LED光の光路は、ダイクロイックミラー132で合成される。ダイクロイックミラー132で光路が合成された光は、光源装置201から、照射光Lとして射出される。
 光源装置201から射出された照射光Lは、集光レンズ25によりLCB(Light Carrying Bundle)11の入射端面に集光されてLCB11内に入射される。
 LCB11内に入射された照射光Lは、LCB11内を伝播する。LCB11内を伝播した照射光Lは、電子スコープ100の先端に配置されたLCB11の射出端面から射出され、配光レンズ12を介して被写体に照射される。配光レンズ12からの照射光Lによって照射された被写体からの戻り光は、対物レンズ13を介して固体撮像素子14の受光面上で光学像を結ぶ。
 固体撮像素子14は、ベイヤ型画素配置を有する単板式カラーCCD(Charge Coupled Device)イメージセンサである。固体撮像素子14は、受光面上の各画素で結像した光学像を光量に応じた電荷として蓄積して、R(Red)、G(Green)、B(Blue)の画像信号を生成して出力する。なお、固体撮像素子14は、CCDイメージセンサに限らず、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサやその他の種類の撮像装置に置き換えられてもよい。固体撮像素子14はまた、補色系フィルタを搭載したものであってもよい。
 電子スコープ100の接続部内には、ドライバ信号処理回路15が備えられている。ドライバ信号処理回路15には、配光レンズ12からの光によって照射された被写体の画像信号がフレーム周期で固体撮像素子14から入力される。フレーム周期は、例えば、1/30秒である。ドライバ信号処理回路15は、固体撮像素子14から入力される画像信号に対して所定の処理を施してプロセッサ200の前段信号処理回路26に出力する。
 ドライバ信号処理回路15はまた、メモリ16にアクセスして電子スコープ100の固有情報を読み出す。メモリ16に記録される電子スコープ100の固有情報には、例えば、固体撮像素子14の画素数や感度、動作可能なフレームレート、型番等が含まれる。ドライバ信号処理回路15は、メモリ16から読み出された固有情報をシステムコントローラ21に出力する。
 システムコントローラ21は、電子スコープ100の固有情報に基づいて各種演算を行い、制御信号を生成する。システムコントローラ21は、生成された制御信号を用いて、プロセッサ200に接続されている電子スコープに適した処理がなされるようにプロセッサ200内の各種回路の動作やタイミングを制御する。
 タイミングコントローラ22は、システムコントローラ21によるタイミング制御に従って、ドライバ信号処理回路15にクロックパルスを供給する。ドライバ信号処理回路15は、タイミングコントローラ22から供給されるクロックパルスに従って、固体撮像素子14をプロセッサ200側で処理される映像のフレームレートに同期したタイミングで駆動制御する。
 前段信号処理回路26は、ドライバ信号処理回路15から1フレーム周期で入力される画像信号に対してデモザイク処理、マトリックス演算、Y/C分離等の所定の信号処理を施して、画像メモリ27に出力する。
 画像メモリ27は、前段信号処理回路26から入力される画像信号をバッファし、タイミングコントローラ22によるタイミング制御に従い、後段信号処理回路28に出力する。
 後段信号処理回路28は、画像メモリ27から入力される画像信号を処理してモニタ表示用の画面データを生成し、生成されたモニタ表示用の画面データを所定のビデオフォーマット信号に変換する。変換されたビデオフォーマット信号は、モニタ300に出力される。これにより、被写体の画像がモニタ300の表示画面に表示される。
 本実施形態の電子内視鏡システム1は、通常観察モードと特殊観察モードを含む複数の観察モードを有している。各観察モードは、観察する被写体によって手動又は自動で切り替えられる。例えば、被写体を通常光で照明して観察したい場合は、観察モードが通常観察モードに切り替えられる。なお、通常光は、例えば、白色光や擬似白色光である。白色光は可視光帯域においてフラットな分光強度分布を有する。擬似白色光は、分光強度分布はフラットではなく、複数の波長帯域の光が混色されている。また、例えば、被写体を特殊光で照明することによって特定の生体組織が強調された撮影画像を得たい場合は、観察モードが特殊観察モードに切り替えられる。なお、特殊光は、例えば、特定の生体組織に対して吸光度の高い光である。以下では、特殊観察モードで強調される生体組織が、表層血管である場合について説明する。
 表層血管内にはヘモグロビンを含む血液が流れている。ヘモグロビンは、波長415nm付近と550nm付近に吸光度のピークを有することが知られている。そのため、被写体に対して表層血管を強調するのに適した特殊光(具体的には、他の波長帯域よりもヘモグロビンの吸光度のピークとなる波長415nm付近の強度が高い光)を照射することにより、表層血管が強調された撮影画像を得ることができる。また、波長415nm付近の光と共に、ヘモグロビンの吸光度のもう一つのピークとなる波長550nm付近の強度が高い特殊光を照射することにより、表層血管が強調された状態を維持しつつ、撮影画像の輝度を明るくすることができる。
 図4は、各観察モードにおいて、光源装置201から射出される照射光Lの分光強度分布を示している。図4(a)は、通常観察モードにおける照射光L(通常光)の分光強度分布を示し、図4(b)は、特殊観察モードにおける照射光L(特殊光)の分光強度分布を示している。図4に示される分光強度分布の横軸は波長(nm)を示し、縦軸は照射光Lの強度を示している。なお、縦軸は、強度の最大値が1となるように規格化されている。
 電子内視鏡システム1が通常観察モードである場合、全ての光源ユニット111~113が発光駆動される。LEDは、特定の波長に強度のピークを有する急峻な分光強度分布を有する。なお本願において、この特定の波長のうち最も強度が高い波長をピーク波長と称する。例えば、強度のピークが2つ以上あった場合には、そのうち最も高い強度を持つ波長をピーク波長という。第1の光源ユニット111から射出される光の分光強度分布D111は、約415nmをピーク波長とする急峻な強度分布を有している。また、第3の光源ユニット113から射出される光の分光強度分布D113は、約650nmをピーク波長とする急峻な強度分布を有している。
 一方、第2の光源ユニット112から射出される光の分光強度分布D112は、波長約450nmと波長約550nmにピークを有している。この2つのピークはそれぞれ、青色LED112aから射出される光の分強度分布のピークと、緑色蛍光体112bが発する蛍光の分光強度分布のピークである。蛍光の分光強度分布は、使用する材料に大きく依存するが、LEDの分光強度分布と比較して広い波長帯域に亘っている。第1の実施形態における緑色蛍光体112bは、約550nmをピーク波長とする分光強度分布を有している。なお図4(a)に示すように、第2の光源ユニット112のピーク波長は約550nmである。
 なお、図4(a)に示す分光強度分布D112は、青色LED光と比較して緑色の蛍光の強度の比率が大きいが、本発明はこれに限定されない。第2の光源ユニット112から射出される青色LED光と緑色の蛍光の比率は、緑色蛍光体112bの種類や使用量を変更することによって自由に変更することができる。また、第2の光源ユニット112は、緑色の蛍光を発する緑色蛍光体11bを有するが、本実施形態はこれに限定されない。例えば、第2の光源ユニット112は、緑色蛍光体の代わりに、600nm付近にピーク波長を有する黄色の蛍光を発する黄色蛍光体を有していてもよい。
 また、図4(a)に示す分光強度分布D111~D113はそれぞれ、強度の最大値が1に揃えられているが、本発明はこれに限定されない。各光源ユニット111~113から射出される光の強度比は、観察する被写体や撮影モード、術者の好みに応じて任意に設定することができる。
 また、図4(a)には、各ダイクロイックミラー131、132のカットオフ波長λ131、λ132が点線で示されている。ダイクロイックミラー131は、カットオフ波長λ131が約430nmであり、カットオフ波長λ131よりも短い波長帯域の光を透過させ、カットオフ波長λ131以上の波長帯域の光を反射する。そのため、図4(a)に示される分光強度分布D111のうち、実線で示される波長帯域の光がダイクロイックミラー131を透過し、破線で示される波長帯域の光がダイクロイックミラー131で反射される。また、図4(a)に示される分光強度分布D112のうち、実線で示されるカットオフ波長λ131以上の波長帯域の光がダイクロイックミラー131で反射され、破線で示されるカットオフ波長λ131よりも波長帯域の光がダイクロイックミラー131を透過する。
 また、ダイクロイックミラー132は、カットオフ波長λ132が約620nmであり、カットオフ波長λ132よりも短い波長帯域の光を透過させ、カットオフ波長λ132以上の波長帯域の光を反射する。そのため、図4(a)に示される分光強度分布D111及びD112のうち、カットオフ波長λ131よりも短い実線で示される波長帯域の光がダイクロイックミラー132を透過する。また、図4(a)に示される分光強度分布D112のうち、カットオフ波長λ132以上の破線で示される波長帯域の光がダイクロイックミラー132で反射される。また、図4に示される分光強度分布D113のうち、実線で示されるカットオフ波長λ132以上の波長帯域の光がダイクロイックミラー132で反射され、カットオフ波長λ132よりも短い破線で示される波長帯域の光がダイクロイックミラー132を透過する。
 このように、ダイクロイックミラー131及びダイクロイックミラー132によって各光源ユニット111~113から射出された光の光路が合成されることにより、光源装置201からは、紫外領域(近紫外の一部)から赤色領域にかけて広い波長帯域を有する照射光L(通常光)が射出される。この照射光L(通常光)の分光強度分布は、図4(a)に示す分光強度分布D111~D113のうち、実線で示される領域を足し合わせたものになる。照射光L(通常光)を被写体に照射することにより、通常のカラー撮影画像を得ることができる。
 また、電子内視鏡システム1が特殊観察モードである場合、第1の光源ユニット111及び第2の光源ユニット112が発光駆動され、第3の光源ユニット113は発光駆動されない。また、第2の光源ユニット112は、通常観察モード時よりも、駆動電流を小さくし、強度が低くなるように発光駆動される。これにより、ヘモグロビンの吸光度のピークとなる波長415nm付近の強度が、他の波長帯域の強度よりも相対的に高くなり、表層血管が強調された撮影画像を得ることができる。また、第2の光源ユニット112から射出される光は、ヘモグロビンの吸光度のもう一つのピークとなる波長550nm付近の光を含んでいる。そのため、第1の光源ユニット111と共に、第2の光源ユニット112を発光駆動することにより、表層血管が強調された状態を維持しつつ、撮影画像の輝度を上げることができる。
 このように、第1の実施形態によれば、光源装置201は、それぞれ異なる波長帯域の光を射出する複数の光源ユニット111~113を有している。また、複数の光源ユニット111~113は、撮影モードに応じて個別に発光制御される。そのため、発光駆動する光源ユニットを選択すると共に、光源ユニットの駆動電流を変更することにより、照射光Lの分光強度特性を観察モードに応じたものに切り替えることができる。
 また、各光源ユニット111~113から射出された光は、ダイクロイックミラー131、132によってその光路が合成される。このとき、各光源ユニット111~113から射出される光の波長帯域は互いに異なるため、ダイクロイックミラー131、132での光路の合成時において、光量の損失を最小限に抑えることができる。
 例えば、特殊観察モードにおいて、従来技術のように、実質的に特定の波長帯域の光のみを透過させる光学フィルタを使用する場合、特定の波長帯域以外の光を無駄に発光させる必要があり、光源装置の光利用効率が低い。これに対し、本発明の第1の実施形態では、図4に示されるように、ダイクロイックミラー131、132における光路の合成により照射光Lとして使用されない光(図4で破線で示された領域の光)は、照射光Lとして使用される光(図4で実線で示された領域の光)に比べて、その光量が小さい。そのため、本実施形態の光源装置201では、被写体に照射されない波長帯域の光を無駄に発光させる必要がないため、従来技術に比べて光利用効率を高くすることができる。
 また、比較的広い空間を持つ部位(例えば胃)を観察する場合、典型的には、電子スコープ100の先端部から被写体(例えば胃壁)までの距離が遠いため、被写体に照射される照明光の強度が低くなる。明るい撮影画像を得るためには、高い強度の照明光で被写体を照明する必要がある。本実施形態の光源装置201は、特殊観察モードにおいて光学フィルタを使用せず、高い光利用効率を有しているため、被写体に照射される照明光の強度を高くすることができる。そのため、胃などの部位を観察する場合にも、明るい撮影画像を得ることができる。
 また、第1の実施形態では、第1の光源ユニット111として、約415nmのピーク波長を有する光を射出する紫色LEDが使用されるが、本発明はこれに限定されない。第1の光源ユニット111から射出される光は、ヘモグロビンの吸収度のピークである波長415nmの光を含んでいればよく、例えば、第1の光源ユニット111は405nmにピーク波長を有する光を射出するLEDであってもよい。また、光源装置201が有する各LED及び蛍光体の特性は、観察する対象に合わせて適宜変更可能である。
(第2の実施形態)
 次に、本発明の第2の実施形態にかかる内視鏡用光源装置について説明する。第2の実施形態にかかる光源装置も、第1の実施形態にかかる光源装置201と同様に、電子内視鏡システム1において使用される。
 図5は、第2の実施形態に係る光源装置202のうち、光源ユニットおよびダイクロイックミラーのみを概念的に示したブロック図である。光源装置202は、第1の光源ユニット211、第2の光源ユニット212、ダイクロイックミラー231を備えている。各光源ユニット211、212はそれぞれ、図示省略された第1光源駆動回路、第2光源駆動回路によって個別に発光制御される。
 第1の光源ユニット211は、紫色の波長帯域(例えば、波長が395~435nm)の光を射出する紫色LEDである。第2の光源ユニット212は、青色の波長帯域(例えば、波長が430~490nm)の光を射出する青色LED、緑色蛍光体、赤色蛍光体を有している。緑色蛍光体は、青色LEDから射出された青色LED光によって励起され、緑色の波長帯域(例えば、波長が460~600nm)の蛍光を発する。赤色蛍光体は、青色LEDから射出された青色LED光によって励起され、赤色の波長帯域(例えば、波長が550~750nm)の蛍光を発する。なお、緑色蛍光体と赤色蛍光体は、青色LED光の射出方向に沿って並べて配置されていてもよく、射出方向と垂直な方向に並べて配置されていてもよい。また、緑色蛍光体と赤色蛍光体は、その材料が混ぜ合わせられ、一つの蛍光体として作成されたものであってもよい。
 各光源ユニット211、212の射出方向の前方にはそれぞれ、図示省略されたコリメートレンズが配置されている。第1の光源ユニット211から射出された紫色LED光は、コリメートレンズによって平行光に変換され、ダイクロイックミラー231に入射される。また、第2の光源ユニット212から射出された光、すなわち、青色LED光と、緑色及び赤色の蛍光は、コリメートレンズによって平行光に変換され、ダイクロイックミラー231に入射される。ダイクロイックミラー231は、第1の光源ユニット211から射出された光の光路と第2の光源ユニット212から射出された光の光路とを合成する。ダイクロイックミラー231で光路が合成された光は、照射光Lとして光源装置202から射出される。
 図6は、各観察モードにおいて、光源装置202から射出される照射光Lの分光強度分布を示している。図6(a)は、通常観察モードにおける照射光L(通常光)の分光強度分布を示し、図6(b)は、特殊観察モードにおける照射光L(特殊光)の分光強度分布を示している。図6に示される分光強度分布の横軸は波長(nm)を示し、縦軸は照射光Lの強度を示している。なお、縦軸は、強度の最大値が1となるように規格化されている。
 電子内視鏡システム1が通常観察モードである場合、光源ユニット211と光源ユニット212の両方が発光駆動される。第1の光源ユニット211から射出される光の分光強度分布D211は、約415nmをピーク波長とする急峻な強度分布を有している。第2の光源ユニット212から射出される光の分光強度分布D212は、波長約470nm、約550nm、約630nmにピークを有している。この3つの波長はそれぞれ、青色LED光、緑色の蛍光、赤色の蛍光のピーク波長である。
 また、図6(a)には、ダイクロイックミラー231のカットオフ波長λ231が点線で示されている。ダイクロイックミラー231は、カットオフ波長λ231が約430nmであり、カットオフ波長λ231よりも短い波長帯域の光を透過させ、カットオフ波長λ231以上の波長帯域の光を反射する。そのため、図4(a)に示される分光強度分布D211のうち、実線で示される波長帯域の光がダイクロイックミラー231を透過し、破線で示される波長帯域の光がダイクロイックミラー231で反射される。また、図4(a)に示される分光強度分布D212のうち、実線で示される波長帯域の光がダイクロイックミラー231で反射され、破線で示される波長帯域の光がダイクロイックミラー231を透過する。
 このように、ダイクロイックミラー231で、各光源ユニット211、212から射出された光の光路が合成されることにより、光源装置202からは、紫外領域(近紫外の一部)から赤色領域にかけて広い波長帯域を有する照射光L(通常光)が射出される。この照射光L(通常光)の分光強度分布は、図6(a)に示す分光強度分布D211、D212のうち、実線で示される領域を足し合わせたものになる。この照射光L(通常光)を被写体に照射することにより、通常のカラー撮影画像を得ることができる。
 また、電子内視鏡システム1が特殊観察モードである場合、第1の光源ユニット211と第2の光源ユニット212の両方が発光駆動される。また、第2の光源ユニット212は、通常観察モード時よりも、駆動電流を小さくし、強度が低くなるように発光駆動される。これにより、照射光L(特殊光)のうち、ヘモグロビンの吸光度のピークとなる波長415nm付近の強度が、他の波長帯域の強度よりも相対的に高くなり、表層血管が強調された撮影画像を得ることができる。また、光源ユニット212から射出される光は、ヘモグロビンの吸光度のもう一つのピークとなる波長550nm付近の光を含んでいる。そのため、光源ユニット211と共に、光源ユニット212を発光駆動することにより、表層血管が強調された状態を維持しつつ、撮影画像の輝度を上げることができる。
 このように、第2の実施形態によれば、光源装置202は、それぞれ異なる波長帯域の光を射出する複数の光源ユニット211、212を有している。また、複数の光源ユニット211、212は、個別に発光制御される。そのため、観察モードに応じて発光駆動する光源ユニットを選択すると共に、光源ユニットの駆動電流を変更することにより、所望の分光強度分布を有する照射光Lを得ることができる。
 また、第2の実施形態の光源装置202は、光源ユニットの数が2つのみであるため、光源装置202の構成を簡素にすることができる。また、第2の光源ユニット212は、緑色と赤色の2つの蛍光体を有している。そのため、電子内視鏡システム1が通常観察モードである場合の照射光L(通常光)の分光強度分布は、第2の光源ユニット212が1つの蛍光体を有している場合よりも、可視領域においてフラットに近づく。これにより、自然の白色光に近い照射光L(通常光)で被写体を照明することができる。
(第3の実施形態)
 次に、本発明の第3の実施形態にかかる内視鏡用光源装置について説明する。第3の実施形態にかかる光源装置も、第1の実施形態にかかる光源装置201と同様に、電子内視鏡システム1において使用される。
 図7は、第3の実施形態に係る光源装置203のうち、光源ユニットおよびダイクロイックミラーのみを概念的に示したブロック図である。光源装置203は、第1~第4の光源ユニット311~314、第1~第3のダイクロイックミラー331~333を備えている。各光源ユニット311~314はそれぞれ、図示省略された第1~第4光源駆動回路によって個別に発光制御される。
 第1の光源ユニット311は、紫色の波長帯域(例えば、波長が395~435nm)の光を射出する紫色LEDである。第2の光源ユニット312は、青色の波長帯域(例えば、波長が430~470nm)の光を射出する青色LEDである。第3の光源ユニット313は、緑色の波長帯域(例えば、波長が530~570nm)の光を射出する緑色LEDである。第4の光源ユニット314は、赤色の波長帯域(例えば、波長が630~670nm)の光を射出する赤色LEDである。
 各光源ユニット311~314の射出方向の前方にはそれぞれ、図示省略されたコリメートレンズが配置されている。第1の光源ユニット311から射出された紫色LED光は、コリメートレンズによって平行光に変換され、ダイクロイックミラー331に入射される。また、第2の光源ユニット312から射出された青色LED光は、コリメートレンズによって平行光に変換され、ダイクロイックミラー331に入射される。ダイクロイックミラー331は、第1の光源ユニット311から射出された光の光路と第2の光源ユニット312から射出された光の光路とを合成する。ダイクロイックミラー331で光路が合成された光は、ダイクロイックミラー332に入射される。
 また、第3の光源ユニット313から射出された緑色LED光は、コリメートレンズによって平行光に変換され、ダイクロイックミラー332に入射される。ダイクロイックミラー332は、ダイクロイックミラー331から入射された光の光路と第3の光源ユニット313から射出された光の光路とを合成する。ダイクロイックミラー332で光路が合成された光は、ダイクロイックミラー333に入射される。
 また、第4の光源ユニット314から射出された赤色LED光は、コリメートレンズによって平行光に変換され、ダイクロイックミラー333に入射される。ダイクロイックミラー333は、ダイクロイックミラー332から入射された光の光路と第4の光源ユニット314から射出された光の光路とを合成する。ダイクロイックミラー333で光路が合成された光は照射光Lとして光源装置203から射出される。
 図8は、各観察モードにおいて、光源装置203から射出される照射光Lの分光強度分布を示している。図8(a)は、通常観察モードにおける照射光L(通常光)の分光強度分布を示し、図8(b)は、特殊観察モードにおける照射光L(特殊光)の分光強度分布を示している。図8に示される分光強度分布の横軸は波長(nm)を示し、縦軸は照射光Lの強度を示している。なお、縦軸は、強度の最大値が1となるように規格化されている。
 電子内視鏡システム1が通常観察モードである場合、第1~第4の光源ユニット311~314が全て発光駆動される。第1の光源ユニット311の分光強度分布D311は、約415nmをピーク波長とする急峻な強度分布を有している。第2の光源ユニット312の分光強度分布D312は、約450nmをピーク波長とする急峻な強度分布を有している。第3の光源ユニット313の分光強度分布D313は、約550nmをピーク波長とする急峻な強度分布を有している。第4の光源ユニット314の分光強度分布D314は、約650nmをピーク波長とする急峻な強度分布を有している。
 また、図8(a)には、ダイクロイックミラー331~333のカットオフ波長λ331~333が点線で示されている。カットオフ波長λ331~333はそれぞれ、430nm、500nm、600nmである。何れのダイクロイックミラー331~333も、カットオフ波長よりも短い波長帯域の光を透過させ、カットオフ波長以上の波長帯域の光を反射する。このダイクロイックミラー331~333により、各光源ユニット311~314から射出された光の光路が合成される。
 このように、ダイクロイックミラー331~333で、各光源ユニット311~314から射出された光の光路が合成されることにより、光源装置203からは、紫外領域(近紫外の一部)から赤色領域にかけて広い波長帯域を有する照射光L(通常光)が射出される。この照射光L(通常光)の分光強度分布は、図8(a)に示す分光強度分布D311~D314のうち、実線で示される領域を足し合わせたものになる。この照射光L(通常光)を被写体に照射することにより、通常のカラー撮影画像を得ることができる。
 また、電子内視鏡システム1が特殊観察モードである場合、第1の光源ユニット311及び第3の光源ユニット313が発光駆動され、第2の光源ユニット312及び第4の光源ユニット314は発光駆動されない。また、第3の光源ユニット313は、通常観察モード時よりも、駆動電流を小さくし、強度が低くなるように発光駆動される。これにより、照射光L(特殊光)のうち、ヘモグロビンの吸光度のピークとなる波長415nm付近の強度が、他の波長帯域の強度よりも相対的に高くなり、表層血管が強調された撮影画像を得ることができる。また、光源ユニット313から射出される光は、ヘモグロビンの吸光度のもう一つのピークとなる550nm付近の光を含んでいる。そのため、光源ユニット311と共に、光源ユニット312を発光駆動することにより、表層血管が強調された状態を維持しつつ、撮影画像の輝度を上げることができる。
 このように、第3の実施形態によれば、それぞれ異なる波長帯域の光を射出する複数の光源ユニット311~314を有している。また、複数の光源ユニット311~314は、個別に発光制御される。そのため、観察モードに応じて発光駆動する光源ユニットを選択すると共に、光源ユニットの駆動電流を変更することにより、所望の分光強度分布を有する照射光Lを得ることができる。
 また、第3の実施形態の光源装置203は、波長帯域が異なり、それぞれ個別に発光制御可能な4つの光源ユニット311~314を有している。そのため、4つの光源ユニット311~314の中から発光駆動させる光源ユニットを選択し、発光駆動時の駆動電流を個別に制御することにより、照射光Lの分光強度分布を細かく制御することができる。
 なお、第3の実施形態では、電子内視鏡システム1が特殊観察モードである場合に、第2の光源ユニット312が、通常観察モード時よりも、駆動電流を小さくし、強度が低くなるように発光駆動されてもよい。ヘモグロビンは415nm付近に吸光度のピークを有しているが、その近傍の青色の波長帯域においても比較的高い吸光度を有している。そのため、特殊観察モード時に、青色の波長帯域の光を射出する第2の光源ユニット312を発光駆動させることにより、撮影画像における表層血管の強調効果を向上しつつ、撮影画像の輝度を上げることができる。
(第4の実施形態)
 第1~第3の実施形態では、紫色の波長帯域の光を射出する光源ユニット(紫色LED)とそれ以外の波長帯域を射出する光源ユニットとを分けていたが、本発明はこれに限定されない。例えば、紫色LEDが蛍光体を有してもよい。図9は、本発明の第4の実施形態に係る光源装置204のうち、光源ユニットおよびダイクロイックミラーのみを概念的に示したブロック図である。第4の実施形態にかかる光源装置204も、第1の実施形態に係る光源装置201と同様に、例えば、電子内視鏡システム1において使用される。
 図9に示すように、光源装置204は、第1~第3の光源ユニット411~413、第1、第2のダイクロイックミラー431、432を備えている。各光源ユニット411~413はそれぞれ、図示省略された第1~第3光源駆動回路によって個別に発光制御される。
 第1の光源ユニット411は、紫色の波長帯域(例えば、波長が395~435nm)の光を射出する紫色LEDと、紫色LED光によって励起され、青色(例えば、波長が430~490nm)の蛍光を発する青色蛍光体を有する。第2の光源ユニット412は、青色の波長帯域(例えば、波長が430~470nm)の光を射出する青色LEDと、青色LEDから射出された青色LED光によって励起され、黄色の波長帯域(例えば、波長が500~720nm)の蛍光を発する黄色蛍光体を有する。第3の光源ユニット413は、赤色の波長帯域(例えば、波長が620~680nm)の光を射出する赤色LEDである。
 各光源ユニット411~413の射出方向の前方にはそれぞれ、図示省略されたコリメートレンズが配置されている。第1の光源ユニット411から射出された紫色LED光及び青色の蛍光は、コリメートレンズによって平行光に変換され、ダイクロイックミラー431に入射される。また、第2の光源ユニット412から射出された青色LED光及び黄色の蛍光は、コリメートレンズによって平行光に変換され、ダイクロイックミラー431に入射される。ダイクロイックミラー431は、第1の光源ユニット411から射出された光の光路と第2の光源ユニット412から射出された光の光路とを合成する。ダイクロイックミラー431で光路が合成された光は、ダイクロイックミラー432に入射される。
 また、第3の光源ユニット413から射出された赤色LED光は、コリメートレンズによって平行光に変換され、ダイクロイックミラー432に入射される。ダイクロイックミラー432は、ダイクロイックミラー431から入射された光の光路と第3の光源ユニット413から射出された光の光路とを合成する。ダイクロイックミラー432で光路が合成された光は照射光Lとして光源装置204から射出される。
 図10は、各観察モードにおいて、光源装置204から射出される照射光Lの分光強度分布を示している。図10(a)は、通常観察モードにおける照射光L(通常光)の分光強度分布を示し、図10(b)は、特殊観察モードにおける照射光L(特殊光)の分光強度分布を示している。図10に示される分光強度分布の横軸は波長(nm)を示し、縦軸は照射光Lの強度を示している。なお、縦軸は、強度の最大値が1となるように規格化されている。
 電子内視鏡システム1が通常観察モードである場合、第1~第3の光源ユニット411~413が全て発光駆動される。第1の光源ユニット411の分光強度分布D411は、波長約415nm、470nmにピークを有している。この2つの波長はそれぞれ、紫色LED光と青色の蛍光の分強度分布のピーク波長である。ここで、分光強度分布D411のうち、波長約415nmのピークの高さは、波長約470nmのピークの高さよりも高くなるように設定されている。第2の光源ユニット412の分光強度分布D412は、波長約450nm、600nmにピークを有している。この2つの波長はそれぞれ、青色LED光と黄色の蛍光のピーク波長である。第3の光源ユニット413の分光強度分布D413は、約650nmをピーク波長とする急峻な強度分布を有している。
 また、図10(a)には、ダイクロイックミラー431、432のカットオフ波長λ431、λ432が点線で示されている。カットオフ波長λ431、λ432はそれぞれ、520nm、630nmである。何れのダイクロイックミラー431、432も、カットオフ波長よりも短い波長帯域の光を透過させ、カットオフ波長以上の波長帯域の光を反射する。このダイクロイックミラー431、432により、各光源ユニット411~413から射出された光の光路が合成される。なお、第2の光源ユニット412から射出される光のうち、波長約450nmにピークを有する青色LED光は、カットオフ波長λ431よりも短いため、ダイクロイックミラー431で光路が合成される光には含まれない。
 このように、ダイクロイックミラー431、432で、各光源ユニット411~413から射出された光の光路が合成されることにより、光源装置204からは、紫外領域(近紫外の一部)から赤色領域にかけて広い波長帯域を有する照射光L(通常光)が射出される。この照射光L(通常光)の分光強度分布は、図10(a)に示す分光強度分布D411~D413のうち、実線で示される領域を足し合わせたものになる。この照射光L(通常光)を被写体に照射することにより、通常のカラー撮影画像を得ることができる。
 また、電子内視鏡システム1が特殊観察モードである場合、第1の光源ユニット411及び第2の光源ユニット412が発光駆動され、第3の光源ユニット413は発光駆動されない。また、第2の光源ユニット412は、通常観察モード時よりも、駆動電流を小さくし、強度が低くなるように発光駆動される。これにより、照射光L(特殊光)のうち、ヘモグロビンの吸光度のピークとなる波長415nm付近の強度が、他の波長帯域の強度よりも相対的に高くなり、表層血管が強調された撮影画像を得ることができる。また、第2の光源ユニット412から射出される光は、ヘモグロビンの吸光度のもう一つのピークとなる波長550nm付近の光を含んでいる。そのため、第1の光源ユニット411と共に、第2の光源ユニット412を発光駆動することにより、表層血管が強調された状態を維持しつつ、撮影画像の輝度を上げることができる。
 なお、電子内視鏡システム1によって撮影される体腔内の生体組織は、通常、血液によって全体的に赤味を帯びている。そのため、特殊観察モード時に赤色の光を生体組織に照射すると、撮影画像全体が赤味を帯び、表層血管の強調効果が得られにくい。本実施形態では、特殊観察モード時に赤色LED(第3の光源ユニット413)は発光駆動されないため、表層血管の強調効果が低減することを防止することができる。
 また、本実施形態では、特殊観察モードにおいて、第1の光源ユニット411から射出された青色帯域の光が被写体に照射される。青色の波長帯域は、ヘモグロビンの吸光度のピークとなる波長を含んでいないものの、赤色の光に比べて生体組織で吸収されやすい。そのため、特観察モード時に青色の光が生体組織に照射されても、表層血管の強調効果への影響は少ない。また、青色の光を被写体に照射することにより、撮影画像の輝度を上げることができる。
 また、本実施形態では、第2の光源ユニット412から射出された光のうち、黄色の蛍光のみが被写体に照射され、青色LED光は照射されない。他方、青色の波長帯域の光は、第1の光源ユニット411から射出され、被写体に照射される。そのため、表層血管の強調効果への影響が比較的少ない青色の波長帯域の光の強度と、当該影響が比較的多い黄色の波長帯域の光の強度を個別に変更することができる。これにより、特殊観察モード時に、表層血管の強調効果と、撮影画像の明るさとのバランスの調整が行いやすくなる。
 また、第4の実施形態では、第2の光源ユニット412は、黄色蛍光体を有しているが、本発明はこれに限定されない。例えば、第2の光源ユニット412は、黄色蛍光体の代わりに、550nm付近にピーク波長を有する緑色蛍光体を有していてもよい。
(第5の実施形態)
 次に、本発明の第5の実施形態にかかる内視鏡用光源装置について説明する。第5の実施形態にかかる光源装置も、第1の実施形態にかかる光源装置201と同様に、電子内視鏡システム1において使用される。
 図11は、第5の実施形態に係る光源装置205のうち、光源ユニットおよびダイクロイックミラーのみを概念的に示したブロック図である。光源装置205は、第1の光源ユニット511、第2の光源ユニット512、ダイクロイックミラー531を備えている。各光源ユニット511、512はそれぞれ、図示省略された第1、第2光源駆動回路によって個別に発光制御される。図11に示すように、第5の実施形態に係る光源装置205は、第4の実施形態に係る光源装置204から、赤色LED(第3の光源ユニット413)及びダイクロイックミラー432を取り除いた構成である。また、第1の光源ユニット511、第2の光源ユニット512、ダイクロイックミラー531の特性はそれぞれ、第4の実施形態の第1の光源ユニット411、第2の光源ユニット412、ダイクロイックミラー431の特性と同じである。
 図12は、各観察モードにおいて、光源装置205から射出される照射光Lの分光強度分布を示している。図12(a)は、通常観察モードにおける照射光L(通常光)の分光強度分布を示し、図12(b)は、特殊観察モードにおける照射光L(特殊光)の分光強度分布を示している。図12に示される分光強度分布の横軸は波長(nm)を示し、縦軸は照射光Lの強度を示している。なお、縦軸は、強度の最大値が1となるように規格化されている。
 図12に示すように、第5の実施形態における照射光Lの分光強度分布は、第4の実施形態における照射光Lから、赤色LED光を取り除いたものになる。ただし、第5の実施形態の光源装置205は、ダイクロイックミラー432を有していないため、第2の光源ユニット512から射出された光の内、波長630nm以上の赤色の波長帯域の光も照射光Lとして照射される。
 第5の実施形態の光源装置205は、第4の実施形態の光源装置204と比較して、赤色LED(光源ユニット413)及びダイクロイックミラー432が無い分、構成を簡素にすることができる。また、第5の実施形態の光源装置205は、第2の光源ユニット512から射出される光の内、波長630nmよりも長い赤色の波長帯域の光が照明光Lとして使用されるため、通常観察モード時において、赤色LEDが無くても、擬似白色の照射光L(通常光)を得ることができる。
 また、第5の実施形態では、第2の光源ユニット512は、黄色蛍光体を有しているが、本発明はこれに限定されない。例えば、第2の光源ユニット512は、第2の実施系他における第2の光源ユニット212と同様に、黄色蛍光体の代わりに、緑色蛍光体と赤色蛍光体を有していてもよい。この場合、通常観察モード時に、黄色蛍光体を使用する場合に比べ、より広い波長帯域を有する通常光を得ることができる。
(第6の実施形態)
 次に、本発明の第6の実施形態にかかる内視鏡用光源装置について説明する。第6の実施形態にかかる光源装置も、第1の実施形態にかかる光源装置201と同様に、電子内視鏡システム1において使用される。
 図13は、第6の実施形態に係る光源装置206のうち、光源ユニットおよびダイクロイックミラーのみを概念的に示したブロック図である。光源装置206は、第1~第3の光源ユニット611~613、第1、第2のダイクロイックミラー631、632を備えている。各光源ユニット611~613はそれぞれ、図示省略された第1~第3光源駆動回路によって個別に発光制御される。図13に示すように、第6の実施形態に係る光源装置206は、第3の実施形態に係る光源装置203から、青色LED(第2の光源ユニット312)及びダイクロイックミラー331を取り除き、代わりに、第1の光源ユニット611に青色蛍光体を持たせた構成である。また、第1の光源ユニット611の特性は、第5の実施形態における第1の光源ユニット511の特性と同じである。また、第2の光源ユニット612、第3の光源ユニット613、ダイクロイックミラー631、ダイクロイックミラー632の特性はそれぞれ、第3の実施形態の第3の光源ユニット313、第4の光源ユニット314、ダイクロイックミラー332、ダイクロイックミラー333の特性と同じである。
 図14は、各観察モードにおいて、光源装置206から射出される照射光Lの分光強度分布を示している。図14(a)は、通常観察モードにおける照射光L(通常光)の分光強度分布を示し、図14(b)は、特殊観察モードにおける照射光L(特殊光)の分光強度分布を示している。図14に示される分光強度分布の横軸は波長(nm)を示し、縦軸は照射光Lの強度を示している。なお、縦軸は、強度の最大値が1となるように規格化されている。
 図14に示すように、第6の実施形態における照射光Lの分光強度分布は、第3の実施形態における照射光Lから、紫色LED光と青色LED光を取り除き、代わりに、第1の光源ユニット611から射出される紫色LED光と青色の蛍光(D611)を加えたものになる。ただし、第6の実施形態の光源装置206は、ダイクロイックミラー331を有していないため、第1の光源ユニット611から射出された光の内、カットオフ波長λ331(波長430nm)以上且つカットオフ波長λ631(波長500nm)よりも短い波長帯域の光も照射光Lとして射出される。
 第6の実施形態の光源装置206は、第3の実施形態の光源装置203と比較して、青色LED(光源ユニット212)及びダイクロイックミラー331が無い分、構成を簡素にすることができる。
(第7の実施形態)
 次に、本発明の第7の実施形態にかかる内視鏡用光源装置について説明する。第7の実施形態にかかる光源装置も、第1の実施形態にかかる光源装置201と同様に、電子内視鏡システム1において使用される。
 図15は、第7の実施形態に係る光源装置207のうち、光源ユニットおよびダイクロイックミラーのみを概念的に示したブロック図である。光源装置207は、第1~第4の光源ユニット711~714、第1~第3のダイクロイックミラー731~733を備えている。各光源ユニット711~714はそれぞれ、図示省略された第1~第4光源駆動回路によって個別に発光制御される。図15に示すように、第7の実施形態に係る光源装置207は、第3の実施形態に係る光源装置203の緑色LED(第3の光源ユニット313)を、青色LEDと黄色蛍光体を有する蛍光体LEDに置き換えたものである。ただし、第7の実施形態のダイクロイックミラー731~733のカットオフ波長λ731~λ733は、第3の実施形態のダイクロイックミラー331~333のλ331~λ333と同じである必要はない。詳しくは、カットオフ波長λ731~λ733は、ダイクロイックミラー731~733による光路の合成時の光量損失が少なくなるように、或いは、照明光Lの分光強度分布が所望の分布となるように適宜設定される。
 図16は、各観察モードにおいて、光源装置207から射出される照射光Lの分光強度分布を示している。図16(a)は、通常観察モードにおける照射光L(通常光)の分光強度分布を示し、図16(b)は、特殊観察モードにおける照射光L(特殊光)の分光強度分布を示している。図16に示される分光強度分布の横軸は波長(nm)を示し、縦軸は照射光Lの強度を示している。なお、縦軸は、強度の最大値が1となるように規格化されている。
 図16に示すように、第7の実施形態における照射光Lの分光強度分布は、第3の光源ユニット713から射出された光の分光強度分布D713以外は、第3の実施形態における照射光Lの分光強度分布と同じである。ただし、第7の実施形態のダイクロイックミラー731~733のカットオフ波長λ731~λ733は、第3の実施形態のダイクロイックミラー331~333のλ331~λ333と異なっている。そのため、照射光Lとして射出される光の分光強度分布(図16に示される分光強度分布のうち、実線で示される領域)は、第3の実施形態における照明光Lの分光強度分布とは異なる。
 第7の実施形態の光源装置207は、第3の実施形態の光源装置203と比較して、緑色LED(第3の光源ユニット313)の代わりに蛍光体LED(第3の光源ユニット713)を使用しているため、照明光L(通常光)の分光強度分布が可視領域においてフラットに近づく。これにより、自然の白色光に近い照射光L(通常光)で被写体を照明することができる。
 また、第3の光源ユニット713は、黄色蛍光体を有しているが、本発明はこれに限定されない。例えば、第3の光源ユニット713は、黄色蛍光体の代わりに、550nm付近にピーク波長を有する緑色蛍光体と650nm付近にピーク波長を有する赤色蛍光体を有していてもよい。或いは、第3の光源ユニット713は、図16に示すよりも、より広い波長帯域に強度を有する黄色蛍光体を有していてもよい。
 以上が本発明の例示的な実施形態の説明である。本発明の実施形態は、上記に説明したものに限定されず、本発明の技術的思想の範囲において様々な変形が可能である。例えば明細書中に例示的に明示される実施形態等又は自明な実施形態等を適宜組み合わせた内容も本発明の実施形態に含まれる。例えば、上記各実施形態では、固体発光素子としてLEDを想定している。本発明はこれに限定するものではなく、LD(Laser Diode)を固体発光素子として採用することも可能である。

Claims (7)

  1.  第1の波長帯域の光を射出する第1の光源ユニットと、
     前記第1の波長帯域のピーク波長とは異なるピーク波長をもつ第2の波長帯域の光を射出する第2の光源ユニットと、
     前記第1の光源ユニットから射出される光の光路と前記第2の光源ユニットから射出される光の光路とを合成する第1の光路合成手段と、
     前記第1の光源ユニットと前記第2の光源ユニットを複数のモードのそれぞれに応じて個別に発光制御する光源制御手段と、
    を備え、
     前記光源制御手段により前記第1の光源ユニット及び前記第2の光源ユニットが第1のモードで発光駆動されると、前記第1の波長帯域の光と前記第2の波長帯域の光が第1の強度比で射出され、前記第1の光路合成手段にて合成されることにより、可視光領域内に広い波長帯域を有する通常光となって、内視鏡に供給され、
     前記光源制御手段により前記第1の光源ユニット及び前記第2の光源ユニットが第2のモードで発光駆動されると、前記第1の波長帯域の光と前記第2の波長帯域の光が、前記第1の強度比と比べて、該第2の波長帯域の光が相対的に低くなる第2の強度比で射出され、前記第1の光路合成手段にて合成されることにより、特定の生体組織に対して吸光度の高い特殊光となって、前記内視鏡に供給される、
    内視鏡用光源装置。
  2.  前記第1の波長帯域のピーク波長及び前記第2の波長帯域のピーク波長とは異なるピーク波長をもつ第3の波長帯域の光を射出する第3の光源ユニットと、
     前記第1の光路合成手段によって合成された光の光路と、前記第3の光源ユニットから射出された光の光路とを合成する第2の光路合成手段と、
    を更に備え、
     前記光源制御手段は、
      前記第1のモードでは、前記第3の光源ユニットを、前記第1の光源ユニット及び前記第2の光源ユニットに対して所定の強度比で発光させ、
      前記第2のモードでは、前記第3の光源ユニットを発光させない、
    請求項1に記載の内視鏡用光源装置。
  3.  前記第1の波長帯域のピーク波長、前記第2の波長帯域のピーク波長、前記第3の波長帯域のピーク波長とは異なるピーク波長をもつ第4の波長帯域の光を射出する第4の光源ユニットと、
     前記第2の光路合成手段によって合成された光の光路と、前記第4の光源ユニットから射出された光の光路とを合成する第3の光路合成手段と、
    を更に備え、
     前記光源制御手段は、
      前記第1のモードでは、前記第4の光源ユニットを、前記第1の光源ユニット、前記第2の光源ユニット、前記第3の光源ユニットに対して所定の強度比で発光させ、
      前記第2のモードでは、前記第4の光源ユニットを発光させない、
    請求項2に記載の内視鏡用光源装置。
  4.  前記第1の光源ユニットは、
      第1の固体発光素子と、
      前記第1の固体発光素子から射出された光によって励起され、蛍光を発する第1の蛍光体と、
    を有する、
    請求項1から請求項3の何れか一項に記載の内視鏡用光源装置。
  5.  前記第2の光源ユニットは、
      第2の固体発光素子と、
      前記第2の固体発光素子から射出された光によって励起され、蛍光を発する第2の蛍光体と、
    を有する、
    請求項1から請求項4の何れか一項に記載の内視鏡用光源装置。
  6.  前記第2の蛍光体は、
      前記第2の固体発光素子から射出された光によって励起され、互いに異なるピーク波長をもつ光を発する2つの蛍光体を含む、
    請求項5に記載の内視鏡用光源装置。
  7.  前記第1の固体発光素子は、
      紫色の波長帯域の光を射出し、
     前記第1の蛍光体は、
      青色の波長帯域の蛍光を発する蛍光体であり、
     前記第1の光源ユニットから射出される光のうち、前記青色の波長帯域の蛍光の強度は、前記紫色の波長帯域の光の強度よりも弱い、
    請求項4を引用する、請求項5又は請求項6に記載の内視鏡用光源装置。
PCT/JP2016/054812 2016-02-19 2016-02-19 内視鏡用光源装置 WO2017141417A1 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
PCT/JP2016/054812 WO2017141417A1 (ja) 2016-02-19 2016-02-19 内視鏡用光源装置
DE112017000897.2T DE112017000897T5 (de) 2016-02-19 2017-02-20 Endoskoplichtquellenvorrichtung und Endoskopsystem
CN202011406749.8A CN112515615B (zh) 2016-02-19 2017-02-20 内窥镜用光源装置以及内窥镜系统
PCT/JP2017/006124 WO2017142097A1 (ja) 2016-02-19 2017-02-20 内視鏡用光源装置及び内視鏡システム
CN201780011449.XA CN108697316B (zh) 2016-02-19 2017-02-20 内窥镜用光源装置以及内窥镜系统
CN202011406712.5A CN112515614A (zh) 2016-02-19 2017-02-20 内窥镜用光源装置以及内窥镜系统
CN202011406766.1A CN112515616A (zh) 2016-02-19 2017-02-20 内窥镜用光源装置以及内窥镜系统
JP2018500244A JP6685378B2 (ja) 2016-02-19 2017-02-20 内視鏡用光源装置及び内視鏡システム
US15/999,500 US10610091B2 (en) 2016-02-19 2017-02-20 Endoscope light source device and endoscope system
CN202011403261.XA CN112545438A (zh) 2016-02-19 2017-02-20 内窥镜用光源装置以及内窥镜系统
US16/791,912 US10932660B2 (en) 2016-02-19 2020-02-14 Endoscope light source device and endoscope system
JP2020061716A JP6878647B2 (ja) 2016-02-19 2020-03-31 内視鏡用光源装置及び内視鏡システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/054812 WO2017141417A1 (ja) 2016-02-19 2016-02-19 内視鏡用光源装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/999,500 Continuation US10610091B2 (en) 2016-02-19 2017-02-20 Endoscope light source device and endoscope system
PCT/JP2017/006124 Continuation WO2017142097A1 (ja) 2016-02-19 2017-02-20 内視鏡用光源装置及び内視鏡システム

Publications (1)

Publication Number Publication Date
WO2017141417A1 true WO2017141417A1 (ja) 2017-08-24

Family

ID=59625216

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2016/054812 WO2017141417A1 (ja) 2016-02-19 2016-02-19 内視鏡用光源装置
PCT/JP2017/006124 WO2017142097A1 (ja) 2016-02-19 2017-02-20 内視鏡用光源装置及び内視鏡システム

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006124 WO2017142097A1 (ja) 2016-02-19 2017-02-20 内視鏡用光源装置及び内視鏡システム

Country Status (5)

Country Link
US (2) US10610091B2 (ja)
JP (2) JP6685378B2 (ja)
CN (5) CN112515616A (ja)
DE (1) DE112017000897T5 (ja)
WO (2) WO2017141417A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110799086A (zh) * 2017-08-28 2020-02-14 Hoya株式会社 内窥镜用光源装置及内窥镜系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7019039B2 (ja) * 2018-06-05 2022-02-14 オリンパス株式会社 内視鏡装置、内視鏡装置の作動方法及びプログラム
JP6867533B1 (ja) 2020-05-20 2021-04-28 株式会社アルス 光源装置
DE102021100572A1 (de) * 2021-01-13 2022-07-14 Happersberger Otopront Gmbh Beleuchtungsvorrichtung für ein Endoskopiesystem und Endoskopiesystem mit einer Beleuchtungsvorrichtung
CN112904549A (zh) * 2021-01-29 2021-06-04 武汉联影智融医疗科技有限公司 多色混光照明方法及系统
WO2023042274A1 (ja) * 2021-09-14 2023-03-23 オリンパス株式会社 光源装置及びそれを備えた内視鏡システム
WO2024037590A1 (zh) * 2022-08-17 2024-02-22 常州联影智融医疗科技有限公司 光源装置和内窥镜系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014171511A (ja) * 2013-03-06 2014-09-22 Olympus Corp 被検体観察システム及びその方法
JP2015027470A (ja) * 2014-08-25 2015-02-12 富士フイルム株式会社 内視鏡装置
JP2015070946A (ja) * 2013-10-03 2015-04-16 富士フイルム株式会社 内視鏡用光源装置、およびこれを用いた内視鏡システム

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887073U (ja) 1981-12-07 1983-06-13 株式会社ボッシュオートモーティブ システム 車輛空調用コンデンサ
US6527708B1 (en) * 1999-07-02 2003-03-04 Pentax Corporation Endoscope system
US6309070B1 (en) * 2000-09-06 2001-10-30 Medibell Medical Vision Technologies, Ltd. Integrated ophthalmic illumination method and system
JP2009153712A (ja) * 2007-12-26 2009-07-16 Olympus Corp 光源装置およびそれを備えた内視鏡装置
EP2386239A4 (en) * 2009-05-12 2012-08-15 Olympus Medical Systems Corp IN VIVO IMAGING SYSTEM OF THE SUBJECT AND IN VIVO INTRODUCTION DEVICE IN THE FIELD
DE102009025127A1 (de) * 2009-06-17 2010-12-23 Carl Zeiss Surgical Gmbh Beleuchtungseinrichtung für ein optisches Beobachtungsgerät
JP5767775B2 (ja) * 2009-07-06 2015-08-19 富士フイルム株式会社 内視鏡装置
CN102469913A (zh) * 2009-07-23 2012-05-23 奥林巴斯医疗株式会社 穿透率调整装置、观察装置及观察系统
JP2011091158A (ja) * 2009-10-21 2011-05-06 Olympus Corp 光源装置、電子画像取得装置、電子画像観察装置、内視鏡装置、カプセル内視鏡装置
JP2011161008A (ja) * 2010-02-10 2011-08-25 Hoya Corp 電子内視鏡システム
JP5606120B2 (ja) * 2010-03-29 2014-10-15 富士フイルム株式会社 内視鏡装置
WO2012056860A1 (ja) * 2010-10-26 2012-05-03 オリンパスメディカルシステムズ株式会社 内視鏡
JP5526000B2 (ja) * 2010-11-15 2014-06-18 富士フイルム株式会社 内視鏡及び内視鏡用光源装置
JP5623266B2 (ja) * 2010-12-17 2014-11-12 富士フイルム株式会社 内視鏡用光源装置及び内視鏡システム
JP5208223B2 (ja) * 2011-01-07 2013-06-12 富士フイルム株式会社 内視鏡システム
JP5550574B2 (ja) * 2011-01-27 2014-07-16 富士フイルム株式会社 電子内視鏡システム
WO2012101904A1 (ja) * 2011-01-28 2012-08-02 オリンパスメディカルシステムズ株式会社 照明装置および観察システム
CN103153164B (zh) 2011-02-09 2015-06-10 奥林巴斯医疗株式会社 光源装置
JP5560215B2 (ja) * 2011-02-17 2014-07-23 富士フイルム株式会社 内視鏡装置
JP5331904B2 (ja) * 2011-04-15 2013-10-30 富士フイルム株式会社 内視鏡システム及び内視鏡システムの作動方法
JP5303015B2 (ja) 2011-08-29 2013-10-02 富士フイルム株式会社 内視鏡診断装置
JP5858752B2 (ja) * 2011-11-28 2016-02-10 富士フイルム株式会社 内視鏡用光源装置
JP5815426B2 (ja) * 2012-01-25 2015-11-17 富士フイルム株式会社 内視鏡システム、内視鏡システムのプロセッサ装置、及び画像処理方法
JP5780653B2 (ja) * 2012-03-28 2015-09-16 富士フイルム株式会社 光源装置及び内視鏡システム
JP5380581B2 (ja) 2012-06-08 2014-01-08 株式会社フジクラ 照明構造及び内視鏡
JP6103959B2 (ja) 2013-01-29 2017-03-29 オリンパス株式会社 光源装置及び被検体観察装置並びに光源制御方法
JP6053079B2 (ja) 2013-07-31 2016-12-27 富士フイルム株式会社 内視鏡用光源装置、およびこれを用いた内視鏡システム
JP5869541B2 (ja) * 2013-09-13 2016-02-24 富士フイルム株式会社 内視鏡システム及びプロセッサ装置並びに内視鏡システムの作動方法
JP6141220B2 (ja) * 2014-03-11 2017-06-07 富士フイルム株式会社 内視鏡用光源装置及び内視鏡システム
JP6099586B2 (ja) * 2014-03-11 2017-03-22 富士フイルム株式会社 内視鏡用光源装置及び内視鏡システム
JP6201848B2 (ja) 2014-03-24 2017-09-27 三菱ケミカル株式会社 蛍光体、蛍光体含有組成物、発光装置、照明装置及び液晶表示装置
JP5968944B2 (ja) * 2014-03-31 2016-08-10 富士フイルム株式会社 内視鏡システム、プロセッサ装置、光源装置、内視鏡システムの作動方法、プロセッサ装置の作動方法、光源装置の作動方法
JP6203127B2 (ja) * 2014-06-11 2017-09-27 富士フイルム株式会社 内視鏡用光源装置及び内視鏡システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014171511A (ja) * 2013-03-06 2014-09-22 Olympus Corp 被検体観察システム及びその方法
JP2015070946A (ja) * 2013-10-03 2015-04-16 富士フイルム株式会社 内視鏡用光源装置、およびこれを用いた内視鏡システム
JP2015027470A (ja) * 2014-08-25 2015-02-12 富士フイルム株式会社 内視鏡装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110799086A (zh) * 2017-08-28 2020-02-14 Hoya株式会社 内窥镜用光源装置及内窥镜系统
CN110799086B (zh) * 2017-08-28 2023-05-12 Hoya株式会社 内窥镜用光源装置及内窥镜系统

Also Published As

Publication number Publication date
JP2020099781A (ja) 2020-07-02
CN112515615B (zh) 2023-06-20
DE112017000897T5 (de) 2018-10-25
JP6878647B2 (ja) 2021-05-26
CN112515615A (zh) 2021-03-19
JP6685378B2 (ja) 2020-04-22
CN112545438A (zh) 2021-03-26
US10932660B2 (en) 2021-03-02
WO2017142097A1 (ja) 2017-08-24
CN108697316B (zh) 2021-10-22
CN112515614A (zh) 2021-03-19
US20200196847A1 (en) 2020-06-25
US10610091B2 (en) 2020-04-07
JPWO2017142097A1 (ja) 2018-11-22
CN112515616A (zh) 2021-03-19
US20190110672A1 (en) 2019-04-18
CN108697316A (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
WO2017141417A1 (ja) 内視鏡用光源装置
JP4709606B2 (ja) 生体観測装置
US11559194B2 (en) Endoscope light source device and endoscope system
JP2016049370A (ja) 電子内視鏡システム
US11076106B2 (en) Observation system and light source control apparatus
KR101606828B1 (ko) 형광 영상 시스템
JP6732029B2 (ja) 電子スコープ及び電子内視鏡システム
WO2017141416A1 (ja) 内視鏡用光源装置
WO2017141415A1 (ja) 内視鏡用光源装置
JP2019041946A (ja) プロセッサ装置とその作動方法、および内視鏡システム
JP2015053979A (ja) 撮像システム
JP6203124B2 (ja) 内視鏡装置、内視鏡装置の作動方法
WO2016203983A1 (ja) 内視鏡装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890558

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16890558

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP