WO2012056741A1 - センサ装置 - Google Patents

センサ装置 Download PDF

Info

Publication number
WO2012056741A1
WO2012056741A1 PCT/JP2011/056246 JP2011056246W WO2012056741A1 WO 2012056741 A1 WO2012056741 A1 WO 2012056741A1 JP 2011056246 W JP2011056246 W JP 2011056246W WO 2012056741 A1 WO2012056741 A1 WO 2012056741A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
power supply
sensor
power
sensor unit
Prior art date
Application number
PCT/JP2011/056246
Other languages
English (en)
French (fr)
Inventor
紘 今井
康大 川端
鮫島 裕
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to CN201180040247.0A priority Critical patent/CN103080702B/zh
Priority to US13/816,863 priority patent/US9331479B2/en
Priority to KR1020137003625A priority patent/KR101423442B1/ko
Priority to EP11835885.2A priority patent/EP2634540B1/en
Publication of WO2012056741A1 publication Critical patent/WO2012056741A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/10Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for switching-in of additional or auxiliary indicators or recorders
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/04Constant-current supply systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter

Definitions

  • the present invention relates to a sensor device that measures various measurement objects such as temperature and humidity.
  • a variety of sensors are installed in our surrounding environment, and measurement data from the sensors are transmitted to the server device (or main device) and analyzed by the server device. And based on this analysis result, controlling the equipment installed in the surrounding environment is performed.
  • the power consumption naturally increases.
  • the sensor is operated by a battery, if the measurement and data transmission increase, the battery life is shortened, and the battery needs to be frequently replaced.
  • Patent Document 1 includes a battery and direct-current voltage conversion means for generating a direct-current voltage lower than the battery voltage, and in a main drive state where power consumption is large (the main drive / standby state signal indicates the main drive state).
  • the DC voltage generated by the DC voltage conversion means and the battery voltage when the power consumption is low (when the main drive / standby state signal indicates the standby state).
  • Patent Document 2 describes that power supply voltage conversion is performed in accordance with a mode signal indicating an operation mode of a semiconductor device.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 11-41825 (published on February 12, 1999)” Japanese Patent Publication “Japanese Patent Laid-Open No. 11-353040 (published December 24, 1999)”
  • Patent Literature 1 and Patent Literature 2 use a main drive / standby state signal and a mode signal for setting a mode, and cannot simply be applied to a sensor device. That is, the sensor device cannot set the operation mode from the outside according to the installation environment and the measurement target. For example, in the case of a sensor device that measures under a certain predetermined environment, the operation mode is changed when the surrounding environment becomes the predetermined environment, and is not changed by an external input signal.
  • the present invention has been made in view of the above problems, and provides a sensor device capable of reducing power consumption even in a sensor device whose operation state can be changed according to an installation environment or the like. It is aimed.
  • the present invention is a sensor device having a sensor unit and a control unit, and has a plurality of power supply paths from a power source to the sensor unit and the control unit. It is characterized in that it can be switched according to the operating state of the sensor unit.
  • the power supply path (power supply switching) according to the operation mode of the sensor device, it is possible to select an optimal power supply path and reduce power consumption.
  • the power supply switching is not performed by using a main drive / standby state signal or mode signal for setting the operation mode, but the operation state of the device itself (output signal of the sensor unit or wireless communication device). Can be done by. That is, power consumption can be reduced even in a sensor device whose operation state can change according to the installation environment or the like.
  • a sensor device having a sensor unit and a control unit has a plurality of power supply paths from the power source to the sensor unit and the control unit, and these power supply paths are switched according to the operating state of the sensor unit. Is possible.
  • the power supply path power supply switching
  • the power switching is performed according to the operation state of the device itself (the output signal of the sensor unit), so that power consumption can be reduced even in a sensor device whose operation state can change according to the installation environment. it can.
  • FIG. 1 is a block diagram illustrating a schematic configuration of a sensor device according to Embodiment 1.
  • FIG. 3 is a flowchart showing a power supply switching algorithm in the first embodiment.
  • 10 is a flowchart showing a power supply switching algorithm in the second embodiment.
  • FIG. 6 is a block diagram illustrating a schematic configuration of a sensor device according to a third embodiment.
  • 10 is a flowchart illustrating a power supply switching algorithm in the third embodiment.
  • FIG. 6 is a block diagram illustrating a schematic configuration of a sensor device according to a fourth embodiment.
  • 10 is a flowchart showing a power supply switching algorithm in the fourth embodiment.
  • 10 is a flowchart showing a power supply switching algorithm in the fifth embodiment.
  • FIG. 10 is a block diagram illustrating a schematic configuration of a sensor device according to a sixth embodiment. 18 is a flowchart illustrating a power supply switching algorithm in the sixth embodiment.
  • FIG. 10 is a block diagram illustrating a schematic configuration of a sensor device according to a seventh embodiment. 18 is a flowchart showing a power supply switching algorithm in the seventh embodiment. 20 is a flowchart illustrating a sensor measurement start condition determination algorithm according to Embodiment 8.
  • FIGS. 1 to 13 Embodiments of the present invention will be described with reference to FIGS. 1 to 13 as follows.
  • FIG. 1 is a block diagram showing a schematic configuration of the sensor device according to the present embodiment.
  • the sensor device 100 of this embodiment includes a sensor unit 101, a wireless communication device 102, a DC power source 103, a DC converter 104, a control IC (control unit) 105, and switches SW1 and SW2.
  • a sensor unit 101 As shown in FIG. 1, the sensor device 100 of this embodiment includes a sensor unit 101, a wireless communication device 102, a DC power source 103, a DC converter 104, a control IC (control unit) 105, and switches SW1 and SW2.
  • a control IC control unit
  • the sensor device 100 measures a measurement target such as temperature and humidity by the sensor unit 101 and transmits measurement data obtained by the measurement to the server device or the like by the wireless communication device 102. In addition, the sensor device 100 executes the measurement process and the transmission process at a set timing.
  • the DC power supply 103 is a finite power supply source such as a battery, but the present invention is not limited to this.
  • the DC power source 103 is a battery, it greatly contributes to the purpose of extending the life of the battery. However, even if the DC power source 103 is not a finite power supply source, an effect of reducing power consumption can be obtained in the present invention.
  • the power supplied from the DC power source 103 to the sensor unit 101, the wireless communication device 102, and the control IC 105 is supplied through one of the two power supply paths. That is, one is a path for supplying power from the DC power supply 103 via the DC converter 104, and the other is a path for supplying power directly from the DC power supply 103. These power supply paths are switched by turning on / off the switches SW1 and SW2. In the present embodiment, it is assumed that the DC converter 104 is a step-down DC converter.
  • the control IC 105 controls the sensor device 100, and performs operation control of the sensor unit 101 and the wireless communication unit 102, and on / off switching control of the switches SW1 and SW2.
  • ⁇ s1 is a signal between the sensor and the control IC
  • ⁇ s2 is a signal between the wireless communication device and the control IC
  • ⁇ s1 and ⁇ s2 are switch operation signals.
  • the sensor device 100 uses a finite power supply source for the DC power source 103, it is important to reduce power consumption and extend the life of the power source. In the sensor device 100, power consumption is reduced by switching the power supply path according to the operation mode.
  • the sensor device 100 includes, as its operation mode, a sensing mode in which measurement is performed by the sensor unit 101, a transmission mode in which measurement data is transmitted by the wireless communication device 102, and a sleep mode in which neither measurement nor transmission is performed.
  • the sensor device 100 supplies power via the DC converter 104 in the sensing mode and the transmission mode, and supplies power directly from the DC power source 103 in the sleep mode. The reason for this is as follows.
  • the DC converter 104 When power is supplied via the DC converter 104, the current conversion efficiency increases in a region where the output voltage is large, but the current conversion efficiency decreases in a region where the output voltage is small. In the sensing mode or the transmission mode, since a relatively large current is required for the operation of the sensor unit 101 or the wireless communication device 102, the DC converter 104 can be driven with a large current conversion efficiency. In addition, if power is directly supplied to the sensor unit 101 from the DC power source 103 such as a battery, the accuracy of the sensor is reduced when the battery voltage is reduced. Therefore, if the accuracy of the sensor is maintained, the battery capacity cannot be used up. There's a problem.
  • the DC converter 104 By supplying power via the DC converter 104, stable power supply without voltage fluctuation can be performed to the sensor unit 101, and the battery capacity can be used up efficiently while maintaining the detection accuracy of the sensor. Further, if the DC converter 104 is a step-down converter, the operating voltage of the control IC 105 can be set to a voltage close to the lower limit of the standard use voltage, and the power consumption by the control IC 105 can be reduced.
  • the output current is reduced, and the DC converter 104 is stopped, so that the operating power in the DC converter 104 can be reduced.
  • the sensor device 100 reduces the power consumption by switching the power supply path according to the operation mode, and in particular, the power supply path switching algorithm (power supply switching algorithm). It has the characteristic in. Hereinafter, an example of this algorithm will be described with reference to FIG.
  • the transition to the sleep mode is first performed. That is, the control IC 105 turns off the switch SW1 and turns on the switch SW2 (S1). As a result, the DC converter 104 is stopped, and power is directly supplied from the DC power source 103 to the sensor unit 101, the wireless communication device 102, and the control IC 105 (battery direct connection). As a result, the sensor device 100 enters the sleep mode (S2). Since the power supply to the DC converter 104 itself is stopped by turning off the switch SW1, the DC converter 104 is stopped in the sleep mode.
  • the control IC 105 monitors the sensor status signal and the communication device status signal in order to shift to the sensing mode and the transmission mode at an appropriate timing.
  • the control IC 105 determines that the transition to the sensing mode is possible, and turns on the switch SW1 and turns on the switch SW2. Turn off (S4).
  • the DC converter 104 operates, and power is supplied to the sensor unit 101, the wireless communication device 102, and the control IC 105 via the DC converter 104.
  • the sensor unit 101 when shifting to the sensing mode, the sensor unit 101 starts the measurement operation and acquires the measurement value (S5).
  • the acquired measurement data is held in the memory (S6).
  • the control IC 105 determines that the transition to the transmission mode is possible.
  • the wireless communication device 102 transmits the measurement data held in the memory (S8). If it is not possible to shift to the transmission mode due to deterioration of the communication state or the like (No in S7), the data transmission at that time is not performed and the sleep mode is returned (return to S1).
  • the sensor state signal being in the measurement standby state refers to a state in which the sensor can measure the value of the surrounding environment to be measured within a predetermined allowable error range.
  • the following states can be considered.
  • (1) The power supply voltage is within the specified range.
  • the power supply voltage is within the specified range within the measurement time.
  • the environment of the sensor detection unit must be the same as the ambient environment of the measurement target within the allowable error range.
  • the condition that the temperature of the detection unit is within an allowable error with respect to the surrounding environment is one requirement that satisfies the measurement standby state.
  • an acceleration sensor there is a case where it is desired to acquire a signal having a constant frequency (for example, when detecting a vibration associated with an operation with a fixed period, such as a specific frequency due to the rotation of a motor).
  • a sampling period that is at least twice the frequency to be measured. In order to determine this sampling period, sampling may be performed at a high speed in advance. .
  • the state in which the period of the main sampling is set in the sensor is one requirement that satisfies the measurement standby state.
  • Noise in the surrounding environment must be within the specified level within the measurement time. ⁇
  • noise that causes an error in measurement may be generated.
  • this noise level is measured by another sensor and the noise level falls below the allowable level, it becomes one factor that satisfies the measurement standby state.
  • the sensor measurement accuracy may be deteriorated by changing the power supply voltage of the sensor.
  • the electromagnetic wave level can be measured by another sensor / radio device, and the measurement standby state of the sensor can be determined.
  • the sensor status signal is generated by measuring in advance whether the above conditions (1) to (3) are satisfied. Alternatively, it can be generated by learning from previous measurement results. For example, when the temperature change is abrupt, it is conceivable to calculate the delay of the measurement timing due to the temperature change of the detection unit from the previous measurement result, and generate a signal for setting the sensor state signal to the measurement standby state.
  • satisfying the sensor measurement start condition means that the timing is necessary for sensing.
  • measurement at regular intervals is also included.
  • the next measurement timing can be generated from the tendency of the previous measurement result, or the measurement timing can be generated by a measurement signal from another sensor.
  • the communication device status signal is in the communication standby state, (1)
  • the state of the wireless communication device installed in the local node must be communicable, (2)
  • the state of the communication device on the receiving side (server / other node) is communicable, (3)
  • the wireless communication path can communicate, The three points are secured.
  • the following states can be considered.
  • the state of (1)
  • the power supply voltage supplied to the communication device is within the specified range.
  • the power supply voltage is within the specified range within the communication time.
  • the connection information with the receiving communication device is retained. For example, in the case of WiFi wireless, the IP address, port number, wireless communication channel, etc. of the receiving side communication device are required.
  • This condition is necessary when the power of the wireless communication device is turned off to reduce power consumption when the node is in a sleep state, etc., and connection information needs to be reacquired when the power is turned on.
  • As for the state of (2) it is necessary that the power supply voltage on the receiver side be within a predetermined range as described above. It is also necessary to hold connection information.
  • As the state of (3) • A wireless communication band can be secured. Communication may be impossible if the communication frequency band is filled with other nodes or other devices using wireless communication devices of the same frequency band. -Even if the communication environment has deteriorated due to obstacles, etc., it should be possible to ensure the strength of radio wave transmission and reception that can be communicated. It may change in the time axis direction due to environmental changes caused by movement of human bodies and obstacles.
  • the communication standby state signal is generated based on the previous transmission result, the test of the communication path before this transmission, the prediction from the previous transmission state, etc., whether or not the above three states are satisfied.
  • satisfying the data transmission condition means that it is time to transmit data. Similar to the sensor measurement start condition, this condition also includes transmission at regular intervals.For example, the next transmission timing is generated from the trend of the previous measurement result, or the transmission timing is determined by the measurement signal from another sensor. Can be generated. It is also possible to set data transmission conditions by receiving signals from other nodes and servers. Even when the data transmission condition is satisfied, a signal indicating that is transmitted from the wireless communication unit to the control IC 105.
  • FIG. 3 is a flowchart showing an algorithm when the power source is switched according to the measurement frequency.
  • the measurement frequency can be arbitrarily set, and the power source is switched according to the measurement frequency.
  • the measurement frequency may be set from the outside via the wireless communication device 102, for example.
  • the transition to the sleep mode is first performed.
  • the power supply in the sleep mode is varied depending on whether the measurement frequency is equal to or less than a threshold value (N / min).
  • the measurement frequency is equal to or less than the threshold value (N / min) (Yes in S11) (Yes in S11), the measurement frequency is small and the operation mode is not changed frequently. Therefore, the power consumption is stopped by stopping the DC converter 104 in the sleep mode. Can be effectively reduced. For this reason, when the measurement frequency is equal to or less than the threshold (N / min), the control IC 105 turns off the switch SW1 and turns on the switch SW2 (S12). As a result, the DC converter 104 stops and the sensor device 100 enters the sleep mode (S14).
  • the control IC 105 turns on the switch SW1, turns off the switch SW2 (S13), and shifts to the sleep mode (S14). That is, power is supplied through the DC converter 104 even in the sleep mode.
  • FIG. 4 is a block diagram showing a schematic configuration of the sensor device according to the present embodiment.
  • the sensor device 200 is configured to obtain a good power consumption reduction effect, particularly when the power supply is switched based on sensing accuracy.
  • the sensor device 200 in FIG. 4 has a configuration similar to that of the sensor device 100 in FIG. 1, but the switch SW3 and the second switch SW3 are connected between the DC power source 103, the sensor unit 101, the wireless communication device 102, and the control IC 105.
  • the 2DC converter 201 is connected in series.
  • the DC converter 104 is referred to as a first DC converter 104.
  • the second DC converter 201 is a step-up DC converter.
  • FIG. 5 is a flowchart showing an algorithm in the case of switching the power supply depending on the sensing accuracy.
  • the present embodiment for example, it is assumed that there is a request to perform highly accurate measurement when the measurement range is ⁇ to ⁇ .
  • power is supplied via the second DC converter 201 in the range of ⁇ to ⁇ . This is because the sensors generally perform analog operation, and the measurement error is reduced and the measurement can be performed with high accuracy when the operation voltage is set to a high voltage.
  • the transition to the sleep mode is performed first. That is, the control IC 105 turns off the switches SW1 and SW3 and turns on the switch SW2 (S21). As a result, the first and second DC converters 104 and 201 are stopped, and power is directly supplied from the DC power supply 103 to the sensor unit 101, the wireless communication device 102, and the control IC 105 (direct battery connection). As a result, the sensor device 200 enters the sleep mode (S22).
  • the control IC 105 monitors the sensor status signal and the communication device status signal in order to shift to the sensing mode and the transmission mode at an appropriate timing.
  • the control IC 105 determines that the transition to the sensing mode is possible, turns on the switch SW1, turns on the switch SW2, and SW3 is turned off (S24).
  • the first DC converter 104 operates, and power is supplied to the sensor unit 101, the wireless communication device 102, and the control IC 105 via the first DC converter 104 that is a step-down DC converter.
  • the sensor unit 101 When shifting to the sensing mode in this way, the sensor unit 101 starts a measurement operation and acquires a measurement value (S25). However, the measurement value obtained in S25 is obtained under power supply via the first DC converter 104, and this measurement data is not obtained by high-precision measurement. Therefore, it is determined whether or not ⁇ ⁇ ⁇ s1 ⁇ ⁇ is satisfied for the measured value ⁇ s1 obtained in S25 (S26).
  • the switches SW1 and SW2 are turned off and the switch SW3 is turned on in order to perform highly accurate measurement in this range (S27).
  • the second DC converter 201 operates, and power is supplied to the sensor unit 101, the wireless communication device 102, and the control IC 105 via the second DC converter 201 that is a step-up DC converter.
  • the sensor unit 101 starts the measurement operation again and acquires the measurement value (S28). Further, the switch SW1 is turned on, the switches SW2 and SW3 are turned off (S29), the first DC converter is operated, and the measurement data acquired in S28 is held in the memory (S30). If ⁇ ⁇ ⁇ s1 ⁇ ⁇ is not satisfied in S26, high-precision measurement is not necessary, and the measurement data acquired in S25 is held in the memory (S30).
  • FIG. 6 is a block diagram showing a schematic configuration of the sensor device according to the present embodiment.
  • This sensor device 300 is configured to obtain a good power consumption reduction effect, particularly when power supply switching is performed with sensing accuracy, but differs from the sensor device 200 of FIG. 4 in that it includes a plurality of sensor units. Yes.
  • the sensor device 300 in FIG. 6 has a configuration similar to that of the sensor device 200 in FIG. 4, but further includes a second sensor unit 301.
  • the sensor unit 101 is referred to as the first sensor unit 101.
  • the first sensor unit 101 and the second sensor unit 301 are different types of sensors such as a temperature sensor and a humidity sensor, for example.
  • FIG. 7 is a flowchart showing an algorithm in the case of switching the power supply depending on the sensing accuracy.
  • the first sensor unit 101 wants to perform high-accuracy measurement in a measurement range of ⁇ 1 to ⁇ 1
  • the second sensor unit 301 has a measurement range of ⁇ 2. and that there is demand for the want to accurate measurement in a range of beta 2.
  • the sensor device 300 of FIG. 6 when the measured value of the first sensor unit 101 is in the range of ⁇ 1 to ⁇ 1 or the measured value of the second sensor unit 101 is ⁇ 2 to ⁇ 2 .
  • power supply is performed via the second DC converter 201.
  • the transition to the sleep mode is first performed. That is, the control IC 105 turns off the switches SW1 and SW3 and turns on the switch SW2 (S41). As a result, the first and second DC converters 104 and 201 are stopped, and power is directly supplied from the DC power source 103 to the first sensor unit 101, the second sensor unit 301, the wireless communication device 102, and the control IC 105 (direct battery connection). ). As a result, the sensor device 300 enters the sleep mode (S42).
  • the control IC 105 monitors the sensor status signal and the communication device status signal in order to shift to the sensing mode and the transmission mode at an appropriate timing.
  • the control IC 105 determines that the transition to the sensing mode is possible, turns on the switch SW1, turns on the switch SW2, and SW3 is turned off (S44).
  • the first DC converter 104 operates, and power is supplied to the first sensor unit 101, the second sensor unit 301, the wireless communication device 102, and the control IC 105 via the first DC converter 104, which is a step-down DC converter. .
  • the 1st sensor part 101 and the 2nd sensor part 301 will start measurement operation, and will acquire a measured value (S45).
  • the measurement value obtained in S45 is obtained under the power supply through the first DC converter 104, and the measurement data is not obtained by high-precision measurement. Therefore, it is determined whether or not ⁇ 1 ⁇ ⁇ s1 ⁇ ⁇ 1 or ⁇ 2 ⁇ ⁇ s3 ⁇ ⁇ 2 is satisfied with respect to the measured values ⁇ s1 and ⁇ s3 obtained in S45 (S46). .
  • the first sensor unit 101 and the second sensor unit 301 start the measurement operation again and acquire the measurement value (S48). Further, the switch SW1 is turned on, the switches SW2 and SW3 are turned off (S49), the first DC converter is operated, and the measurement data acquired in S48 is held in the memory (S50). If the determination condition in S46 is not satisfied, high-precision measurement is not necessary, and the measurement data acquired in S45 is held in the memory (S50).
  • FIG. 8 is a flowchart showing another algorithm in the case of switching the power supply depending on the sensing accuracy.
  • the configuration of the sensor device here is the same as that of the sensor device 300 of FIG.
  • the measurement by the second sensor unit 301 is performed only when the measurement value of the first sensor unit 101 is in the range of ⁇ 1 to ⁇ 1 , and the measurement by the second sensor unit 301 is relatively high.
  • the transition to the sleep mode is first performed. That is, the control IC 105 turns off the switches SW1 and SW3 and turns on the switch SW2 (S61). As a result, the first and second DC converters 104 and 201 are stopped, and power is directly supplied from the DC power source 103 to the first sensor unit 101, the second sensor unit 301, the wireless communication device 102, and the control IC 105 (direct battery connection). ). As a result, the sensor device 300 enters the sleep mode (S62).
  • the control IC 105 monitors the sensor status signal and the communication device status signal in order to shift to the sensing mode and the transmission mode at an appropriate timing.
  • the control IC 105 determines that the transition to the sensing mode is possible, turns on the switch SW1, turns on the switch SW2, and SW3 is turned off (S64).
  • the first DC converter 104 operates, and power is supplied to the first sensor unit 101, the second sensor unit 301, the wireless communication device 102, and the control IC 105 via the first DC converter 104, which is a step-down DC converter. .
  • the first sensor unit 101 When shifting to the sensing mode in this way, first, the first sensor unit 101 starts a measurement operation and acquires a measurement value (S65). Further, it is determined whether or not ⁇ 1 ⁇ ⁇ s1 ⁇ ⁇ 1 is satisfied with respect to the measured value ⁇ s1 obtained in S65 (S66).
  • the second sensor unit 301 starts a measurement operation and acquires a measurement value (S68). Further, the switch SW1 is turned on, the switches SW2 and SW3 are turned off (S69), the first DC converter is operated, and the measurement data acquired in S65 and S68 is held in the memory (S70). If the determination condition in S66 is not satisfied, the measurement by the second sensor unit 301 is not necessary, so only the measurement data acquired in S65 is stored in the memory (S70).
  • FIG. 9 is a block diagram showing a schematic configuration of the sensor device according to the present embodiment.
  • the sensor device 400 is configured to obtain a good power consumption reduction effect, particularly when power is switched based on wireless communication quality.
  • the sensor device 400 in FIG. 9 has a configuration similar to the sensor device 200 in FIG. 4, but includes a wireless communication device 401 instead of the wireless communication device 102.
  • the wireless communication device 401 can change the wireless communication quality depending on the supply voltage, and the higher the supply voltage is within a predetermined operating voltage range, the higher the wireless communication quality is.
  • FIG. 10 is a flowchart showing an algorithm when the power source is switched according to the wireless communication quality.
  • power consumption can be reduced by switching the power supply so that the optimum wireless communication quality is selected according to the wireless communication state.
  • the flowchart shown in FIG. 10 shows only the power supply switching operation during transmission processing.
  • the power supply state Ps is initially set.
  • the switch SW1 is turned on and the switches SW2 and SW3 are turned off (S82).
  • the first DC converter 104 operates, and power is supplied to the wireless communication device 401 via the first DC converter 104 that is a step-down DC converter.
  • the switch SW2 is turned on and the switches SW1 and SW3 are turned off (S83). Thereby, the first DC converter 104 and the second DC converter 201 are stopped, and power is supplied to the wireless communication device 401 by direct battery connection.
  • the switch SW3 is turned on and the switches SW1 and SW2 are turned off (S84).
  • the second DC converter 201 operates, and power is supplied to the wireless communication device 401 via the second DC converter 201 that is a step-up DC converter.
  • the wireless communication device 401 has higher wireless communication quality as the supply voltage is higher, the communication quality at the state 1 is the lowest, and the communication quality at the state 3 is the highest. Further, for convenience of explanation, the initial setting steps S81 to S84 of the power supply state Ps are first entered in the flow of FIG. 10, but actually, the power supply state immediately before the start of the transmission process may be set as the initial power supply state as it is.
  • measurement data stored in the memory is wirelessly transmitted according to the set power state (S85). Furthermore, in order to maintain the optimum wireless communication quality without excess or deficiency, the communication state is monitored during the transmission mode. That is, in S86, it is monitored whether the ACK reception delay time or the packet transmission loss rate exceeds a threshold value, for example.
  • the wireless communication quality with respect to the wireless communication state at that time Is determined to be insufficient, and the power supply state is switched to improve wireless communication quality. That is, if the power state at that time is state 1, it is switched to state 2 (S87), and if it is state 2, it is switched to state 3 (S88). If the power state at that time is state 3, the wireless communication quality cannot be increased any more, so state 3 is maintained (S88).
  • the first DC converter 104 and the second DC converter 201 are stopped by turning on the switch SW2 and turning off the switches SW1 and SW3 (S91), and shift to the sleep mode (S92).
  • FIG. 11 is a block diagram showing a schematic configuration of the sensor device according to the present embodiment.
  • This sensor device 500 is configured to obtain a good power consumption reduction effect, particularly when power supply switching is performed with sensing accuracy.
  • a sensor device 500 in FIG. 11 has a configuration similar to that of the sensor device 200 in FIG. 4, but includes a wireless transceiver 501 instead of the wireless communication device 102. That is, in this embodiment, a sensor system is configured in which a plurality of sensor devices are arranged in a certain space, measurement results from the plurality of sensor devices are aggregated in a server device, and the state in the space is detected. Yes.
  • the sensor device 500 is one of the sensor devices that constitute the sensor system.
  • the wireless communication transceiver 501 transmits not only the measured value to the server device but also other sensor devices (other nodes). ) Is also possible.
  • the sensor device 500 can perform power management based on prediction by receiving and setting power supply state information of other neighboring nodes, instead of generating a power supply switching command based on sensing accuracy in its own node. It has become.
  • FIG. 12 is a flowchart showing an algorithm in the case of switching the power supply according to the sensing accuracy according to the present embodiment.
  • the flowchart shown in FIG. 12 shows the power supply switching operation during the measurement process.
  • a power state signal in another node is received (S101).
  • the power state signal may be received from all other nodes, or may be received from a predetermined specific node (for example, the nearest node or a node installed at a specific position). Also good.
  • the power state of the other node received is determined (S102), and the power state of the own node is set accordingly (S103, S104).
  • state1 is a power state for operating the first DC converter 104
  • state2 is a power state for operating the second DC converter 201.
  • the control IC 105 may set the power supply state of the own device according to a predetermined algorithm. For example, the power state of the own node may be set in accordance with the largest number of power states.
  • the sensor unit 101 starts a measurement operation under the power supply state set in S103 or S104, and acquires a measurement value (S105).
  • the switch SW1 is turned on, the switch SW2 and the switch SW3 are turned off, the first DC converter 104 is operated (S106), and the measurement data obtained in S105 is held in the memory (S107).
  • the switch SW1 and the switch SW3 are turned off and the switch SW2 is turned on to stop the DC converter to supply power by directly connecting the battery (S108), and shift to the sleep mode (S109).
  • the sensor device according to the present invention performs power source switching in accordance with the operation mode, and thereby reduces power consumption.
  • the mode is set.
  • the above switching is not performed using a main drive / standby state signal or a mode signal.
  • the sensor device according to the present invention determines the sensor measurement start condition from the operation state of the device itself, in other words, the output signal of the sensor unit or the wireless communication device, and switches the mode and switches the power source when the sensor measurement start condition is satisfied. It is characterized by performing. A specific example will be described below with reference to FIG.
  • sensor device 200 shown in FIG. 4 it is assumed that sensor device 200 shown in FIG. 4 is used. Further, it is assumed that the sensor unit 101 is a temperature sensor, and there is a demand to perform measurement with high accuracy in a temperature range from T 2 to T 3 . Further, it is assumed that there is a demand for increasing the measurement frequency in a range where measurement is to be performed with high accuracy.
  • An example of a sensor measurement start condition determination algorithm in the case where there is such a request is shown in FIG.
  • the measurement time t 0 until the next measurement is set according to the sensor measurement value ⁇ s1 at the last measurement. Then, when the measurement time t 0 has elapsed, the next measurement is performed assuming that the sensor measurement start condition is satisfied.
  • the sensor measurement value ⁇ s1 is first compared with a threshold value (S110).
  • the threshold values used here are four threshold values that satisfy the relationship of T 1 ⁇ T 2 ⁇ T 3 ⁇ T 4 .
  • the threshold value T 2 and T 3 indicates the measurement range to perform the measurement with high accuracy.
  • T 1 and T 4 are used to set an area for determining a state approaching the measurement range.
  • the measurement time t 0 until the next measurement is set to X 0 (S111, S117). If T 2 ⁇ ⁇ s1 ⁇ T 3 , it is recognized that it is within the measurement range where measurement is to be performed with high accuracy, and in this case, the measurement time t 0 until the next measurement is set to X 1 ( S114).
  • X 1 is set to be shorter than X 0 (X 1 ⁇ X 0 ).
  • T 1 ⁇ s1 ⁇ T 2 it is determined whether the amount of change in the measured value is approaching or moving away from T 2 . That is, if it is positive variation of the slope [Delta] [gamma] s1 / Delta] t is recognized as approaching the T 2, order to ensure accuracy of measurement in the range of T 3 from T 2, the measurement time t 0 [Delta] T ( ⁇ s1 / ⁇ t) is set (S112).
  • the measurement time t 0 is set to X 0 (S116). If the sensor measurement start condition is determined according to the above flow, measurement can be performed accurately and reliably in the range where high-precision measurement is desired, and measurement accuracy is reduced in the other ranges. By doing so, power consumption can be reduced.
  • the frequency of operation is increased in the sensor range to be measured to ensure accuracy in the time direction, while reducing power consumption by switching the power supply circuit. realizable.
  • the sensor device of the present invention is a sensor device having a sensor unit and a control unit, and has a plurality of power supply paths from the power source to the sensor unit and the control unit. It is characterized in that it can be switched according to the operation state of the part.
  • the sensor device includes a wireless communication device for transmitting the measurement result of the sensor unit, and the plurality of power supply paths also supply power from a power source to the wireless communication device.
  • the plurality of power supply paths can be switched depending on the operating state of the wireless communication device.
  • the power supply path (power supply switching) according to the operation mode of the sensor device, it is possible to select an optimal power supply path and reduce power consumption.
  • the power supply switching is not performed by using a main drive / standby state signal or mode signal for setting the operation mode, but the operation state of the device itself (output signal of the sensor unit or wireless communication device). Can be done by. That is, power consumption can be reduced even in a sensor device whose operation state can change according to the installation environment or the like.
  • the power supply path is a path for supplying power via a DC converter in an operation mode in which current consumption is relatively large, and a power source is connected to a load in an operation mode in which current consumption is relatively small.
  • the power supply path can be switched such that the power supply path is directly connected to supply power.
  • the DC converter in an operation mode (for example, sensing mode or transmission mode) in which current consumption is relatively large, the DC converter can be driven with a large current conversion efficiency. Further, in an operation mode (for example, sleep mode) in which current consumption is relatively small, the operating power in the DC converter can be reduced.
  • the power supply path is switched depending on the sensing accuracy of the sensor unit, and power is supplied via a step-up DC converter in a measurement range where the sensor unit performs high-precision measurement. It can be set as a path
  • the sensor device includes at least a first sensor unit and a second sensor unit, performs measurement in the first sensor unit in a state where power is supplied via a step-down DC converter, and performs the first sensor unit.
  • the measurement value at the sensor unit is within a predetermined range, the measurement at the second sensor unit can be performed in a state where power is supplied via the step-up DC converter.
  • the power supply path is switched when the measurement frequency at which the sensor unit performs measurement is equal to or less than the threshold value, and the power supply path is switched when the measurement frequency exceeds the threshold value. It can be set as the structure which does not perform.
  • the switching control is performed according to the measurement frequency. This can be done only when the switching control is effective in reducing power consumption.
  • the measurement result is received from another sensor device via the wireless communication device, and whether or not the received measurement value is within a measurement range in which the sensor unit performs high-precision measurement.
  • the power supply path can be switched.
  • the measurement results from other sensor devices are used to perform high-accuracy measurement in a desired measurement range, and a voltage more than necessary is not supplied in other ranges, leading to reduction in power consumption. .
  • the sensor device can be configured to monitor the communication state with the wireless communication device, switch the power supply path according to the communication state, and perform optimal power supply with respect to the communication state.
  • the supply voltage is increased, and when the wireless communication quality is excessive, the supply voltage is decreased. Therefore, it is possible to always supply power without excess or deficiency with respect to the communication state, and it is possible to suppress wasteful power consumption while maintaining wireless communication quality.
  • the present invention can be applied to a sensor system or the like that can achieve low power consumption (long battery life) in a sensor device that uses a finite power supply source such as a battery and wirelessly transmits a measurement result from the sensor to a server. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Primary Cells (AREA)
  • Dc-Dc Converters (AREA)

Abstract

 センサ装置(100)は、センサ部(101)、無線通信機(102)、および制御IC(105)への電力供給を、直流電源(103)からDCコンバータ(104)を介して行う経路と、直流電源(103)から直接行う経路とで切り替えることができる。これらの電力供給経路の切替は、センサ部(101)および無線通信機(102)の動作状態から、センサ計測スタート条件を判定することで行われる。

Description

センサ装置
 本発明は、温度や湿度など様々な計測対象を計測するセンサ装置に関する。
 我々の周辺環境には、多種多様なセンサが設置されており、センサによる計測データをサーバ装置(あるいは本体装置)に送信し、サーバ装置にて解析することが行われている。そして、この解析結果により、周辺環境に設置された機器類を制御することが行われている。
 センサでの計測及びデータ送信が多くなると、当然消費電力も多くなる。例えば、センサを電池で動作させる場合、計測及びデータ送信が多くなると、電池の寿命が短くなり、電池を頻繁に交換する必要がある。
 一方、汎用されている電子機器において消費電力を低減させる技術が知られている。例えば、特許文献1には、バッテリーと、バッテリー電圧より低い直流電圧を生成する直流電圧変換手段とを備え、消費電力が大きい主駆動状態時(主駆動/待機状態信号が主駆動状態を示しているとき)に直流電圧変換手段で生成した直流電圧とし、消費電力が小さい待機状態時(主駆動/待機状態信号が待機状態を示しているとき)にバッテリ電圧とすることが記載されている。これにより、消費電力が大きい主駆動状態時には、直流電圧変換手段によりバッテリー電圧よりも低い電圧を供給し電力損失を少なくすることができる。また、消費電力が小さい待機状態時には、直流電圧変換手段の動作を止めることにより、直流電圧変換手段での電力損失を零にすることができる。また、特許文献2には、半導体装置の動作モードを示すモード信号に応じて電源電圧の変換を行うことが記載されている。
日本国公開特許公報「特開平11-41825号公報(1999年2月12日公開)」 日本国公開特許公報「特開平11-353040号公報(1999年12月24日公開)」
 特許文献1や特許文献2の技術をセンサ装置に適用することが考えられる。しかしながら、特許文献1や特許文献2では、モードを設定するための主駆動/待機状態信号やモード信号を用いており、単純にセンサ装置に適用することができない。すなわち、センサ装置は、その設置環境や計測対象に応じて、外部から動作モードを設定できるわけではない。例えば、ある所定の環境下において計測するセンサ装置である場合、周囲の環境が当該所定の環境になったときが動作モードの変更時となり、外部入力信号によって変更されるものではない。
 本発明は、上記の課題に鑑みてなされたものであり、設置環境等に応じて動作状態が変化しうるセンサ装置であっても、消費電力を低減することができるセンサ装置を提供することを目的としている。
 上記の課題を解決するために、本発明は、センサ部、制御部を有するセンサ装置であって、電源からセンサ部および制御部への電力供給経路を複数有し、これらの電力供給経路を上記センサ部の動作状態によって切り替え可能であることを特徴としている。
 上記の構成によれば、センサ装置の動作モードに応じて電力供給経路の切替(電源切替)を行うことで、最適な電力供給経路を選択し、低消費電力化を図ることができる。また、上記電源切替は、動作モードを設定するための主駆動/待機状態信号やモード信号を用いて電源切替を行うものではなく、装置自体の動作状態(センサ部や無線通信機の出力信号)によって行うことができる。すなわち、設置環境等に応じて動作状態が変化しうるセンサ装置であっても、消費電力を低減することができる。
 本発明によれば、センサ部、制御部を有するセンサ装置であって、電源からセンサ部および制御部への電力供給経路を複数有し、これらの電力供給経路を上記センサ部の動作状態によって切り替え可能である。
 それゆえ、センサ装置の動作モードに応じて電力供給経路の切替(電源切替)を行うことで、最適な電力供給経路を選択し、低消費電力化を図ることができる。また、上記電源切替は、装置自体の動作状態(センサ部の出力信号)によって行うことで、設置環境等に応じて動作状態が変化しうるセンサ装置であっても、消費電力を低減することができる。
実施の形態1に係るセンサ装置の概略構成を示すブロック図である。 実施の形態1における電源切替アルゴリズムを示すフローチャートである。 実施の形態2における電源切替アルゴリズムを示すフローチャートである。 実施の形態3に係るセンサ装置の概略構成を示すブロック図である。 実施の形態3における電源切替アルゴリズムを示すフローチャートである。 実施の形態4に係るセンサ装置の概略構成を示すブロック図である。 実施の形態4における電源切替アルゴリズムを示すフローチャートである。 実施の形態5における電源切替アルゴリズムを示すフローチャートである。 実施の形態6に係るセンサ装置の概略構成を示すブロック図である。 実施の形態6における電源切替アルゴリズムを示すフローチャートである。 実施の形態7に係るセンサ装置の概略構成を示すブロック図である。 実施の形態7における電源切替アルゴリズムを示すフローチャートである。 実施の形態8におけるセンサ計測スタート条件の判定アルゴリズムを示すフローチャートである。
 本発明の実施形態について図1から図13に基づいて説明すると以下の通りである。
 〔実施の形態1〕
 図1は、本実施の形態に係るセンサ装置の概略構成を示すブロック図である。本実施形態のセンサ装置100は、図1に示すように、センサ部101、無線通信機102、直流電源103、DCコンバータ104、制御IC(制御部)105、およびスイッチSW1・SW2を備えて構成されている。
 センサ装置100は、温度や湿度などの計測対象をセンサ部101によって計測し、計測により得られた計測データを無線通信機102によってサーバ装置等に送信する。また、センサ装置100は、計測処理と送信処理とを設定されたタイミングで実行する。
 直流電源103は、例えば電池等の有限の電力供給源であるが、本発明はこれに限定されない。直流電源103が電池の場合は、電池の長寿命化といった目的に大きく寄与するが、直流電源103が有限の電力供給源でなくても本発明では消費電力の削減効果が得られる。直流電源103からセンサ部101、無線通信機102および制御IC105へ供給される電力は、2つの電力供給経路の一方にて供給される。すなわち、一方は直流電源103からDCコンバータ104を介して電力を供給する経路であり、他方は直流電源103から直接電力を供給する経路である。これらの電力供給経路はスイッチSW1およびSW2のオン/オフによって切り替えられる。尚、本実施の形態では、DCコンバータ104は降圧型のDCコンバータであるとする。
 制御IC105は、センサ装置100の制御を行うものであって、センサ部101および無線通信部102の動作制御、並びに、スイッチSW1およびSW2のオン/オフ切替制御を行う。図1において、γs1はセンサ-制御IC間信号、γs2は無線通信機-制御IC間信号、φs1・φs2はスイッチ動作信号である。
 センサ装置100は、直流電源103に有限の電力供給源を用いるため、消費電力を削減して電源の長寿命化を図ることが重要となる。センサ装置100では、動作モードに応じて電力供給経路を切り替えることにより、消費電力の削減を図るものとなっている。
 具体的には、センサ装置100は、その動作モードとして、センサ部101による計測を行うセンシングモード、計測データを無線通信機102によって送信する送信モード、および計測および送信の何れも行わないスリープモードを有している。センサ装置100は、センシングモードおよび送信モードではDCコンバータ104を介して電力供給を行い、スリープモードでは直流電源103から直接電力を供給する。このような理由は以下の通りである。
 DCコンバータ104を介して電力供給を行う場合、出力電圧の大きい領域では電流変換効率が大きくなるが、出力電圧の小さい領域では電流変換効率が小さくなる。センシングモードまたは送信モードでは、センサ部101または無線通信機102の動作に比較的大きな電流を要するため、電流変換効率が大きい状態でDCコンバータ104を駆動することができる。また、センサ部101に対して電池等の直流電源103から直接電力を供給すると、電池電圧が低下するとセンサの精度が低下するため、センサの精度を維持しようとすれば、電池容量を使い切れないといった問題がある。DCコンバータ104を介して電力供給を行うことでセンサ部101に対して電圧変動の無い安定した電力供給が行え、センサの検知精度を維持しつつ、電池容量を効率よく使い切ることができる。さらに、DCコンバータ104を降圧型コンバータとすれば、制御IC105の動作電圧を規格使用電圧の下限に近い電圧とすることができ、制御IC105による消費電力も削減できる。
 一方、スリープモードでは、センサ部101および無線通信機102を動作させる必要が無いため、出力電流は小さくなり、DCコンバータ104を停止させることで、DCコンバータ104における動作電力を削減できる。
 このように、本実施の形態に係るセンサ装置100は、動作モードに応じて電力供給経路を切り替えることで消費電力を削減するものであるが、特に、電力供給経路の切替アルゴリズム(電源切替アルゴリズム)において特徴を有する。以下に、このアルゴリズムの一例について図2を参照して説明する。
 図2に示すフローチャートでは、最初にスリープモードへの移行が行われている。すなわち、制御IC105は、スイッチSW1をオフにし、スイッチSW2をオンにしている(S1)。これにより、DCコンバータ104は停止し、センサ部101、無線通信機102および制御IC105へは直流電源103から直接電力が供給される(電池直結)。これにより、センサ装置100はスリープモードとなる(S2)。尚、スイッチSW1がオフにされることによって、DCコンバータ104自身への電力供給も停止されるため、スリープモードではDCコンバータ104が停止する。
 スリープモードでは、制御IC105は、適切なタイミングでセンシングモードおよび送信モードに移行するために、センサ状態信号および通信機状態信号を監視している。センサ状態信号が計測待機状態であり、かつ、センサ計測スタート条件が満たされると(S3でYes)、制御IC105はセンシングモードへの移行が可能であると判断し、スイッチSW1をオン、スイッチSW2をオフにする(S4)。これにより、DCコンバータ104が動作し、センサ部101、無線通信機102および制御IC105へはDCコンバータ104を介して電力が供給される。
 こうしてセンシングモードへ移行すると、センサ部101が測定動作を開始し、測定値を取得する(S5)。取得された測定データは、メモリに保持される(S6)。
 センシングモードが終了すると、続いて送信モードへの移行が可能であるかどうかが判断される。通信機状態信号が通信待機状態であり、かつ、データ送信条件が満たされると(S7でYes)、制御IC105は送信モードへの移行が可能であると判断する。送信モードでは、無線通信機102がメモリに保持されている測定データを送信する(S8)。尚、通信状態の悪化等により送信モードへの移行が可能でなければ(S7でNo)、その時点でのデータ送信は行わずにスリープモードへ戻る(S1へ戻る)。
 上記フローにおいては、センサ状態信号が計測待機状態であり、かつ、センサ計測スタート条件が満たされると、センシングモードへの移行が可能であると判断されている。
 ここで、センサ状態信号が計測待機状態にあるとは、センサが、測定すべき周囲環境の値を所定の許容誤差範囲内で測定できる状態を指す。具体的には、以下のような状態が考えられる。
(1) 電源電圧が所定の範囲内にあること。測定時間内に所定の範囲の電源電圧に収まっていること。
(2) センサの検出部の環境が測定対象の周囲環境と許容誤差範囲内で同一であること。
例:
・温度センサの場合、検出部が熱容量を持つため、周囲環境の温度が急激に変化した場合、検出部の温度は周囲環境に対して遅れて変化に追従する。検出部の温度が周囲環境に対して許容誤差以内にある状態が、計測待機状態を満たす一要件となる。湿度センサ、CO2センサ等も同様である。
・加速度センサを用いる場合、一定の周波数の信号を取得したい場合がある(例えば、モーターの回転による特定の振動数等、周期の決まった動作に伴う振動を検出する場合)。特定周期の信号を選択的に抽出するために、少なくとも測定対象の周波数の2倍のサンプリング周期で測定を行う必要があり、このサンプリング周期を決定するため、事前に高速にサンプリングを行うことがある。この事前サンプリングの結果を用いて、本サンプリングの周期がセンサにセットされた状態が、計測待機状態を満たす一要件となる。
(3) 周囲環境のノイズが測定時間内に所定のレベル以下に収まっていること。
・測定対象によっては、測定に誤差を生じるノイズを発生している場合がある。このノイズレベルを他のセンサで測定し、ノイズレベルが許容以下になった場合が計測待機状態を満たす一要因となる。たとえば、センサ近傍で強い電磁波ノイズが放射されている場合(携帯電話など)、センサの電源電圧を変動しセンサ測定精度を悪化させる場合がある。電磁波レベルを他のセンサ・無線機などで測定し、センサの計測待機状態を決定することができる。
 センサ状態信号は、上記(1)~(3)の状態を満たしているかどうかを予め測定して生成される。あるいは、以前の測定結果から学習により生成することも可能である。たとえば、温度変化が急激な場合、以前の測定結果から検出部の温度変化による測定タイミングの遅れを計算し、センサ状態信号を計測待機状態にする信号を生成することが考えられる。
 また、センサ計測スタート条件が満たされるとは、センシングが必要なタイミングになることを指す。この条件では、一定時間ごとの計測も含まれるが、例えば前回の測定結果の傾向から次回の測定タイミングを生成することや、他のセンサからの測定信号によって計測タイミングを生成することができる。また、他ノードやサーバからの信号を受信して計測スタート条件を設定することもできる。センサ計測スタート条件が満たされた場合も、そのことを示す信号がセンサ部101にて生成され、制御IC105へ送信される。
 また、通信機状態信号が通信待機状態であるとは、
(1) 自ノードに搭載している無線通信機の状態が通信可能な状態であること、
(2) 受信側(サーバ・他ノード)通信機の状態が通信可能な状態であること、
(3) 無線通信経路が通信可能なこと、
の3点が確保されている状態を指す。具体的には以下のような状態が考えられる。
(1)の状態としては、
・通信機へ供給する電源電圧が所定の範囲内にあること。通信時間内に所定の範囲の電源電圧に収まっていること。
・受信側通信機との接続情報を保持していること。例えば、WiFi無線であれば、受信側通信機のIPアドレス、ポート番号、無線通信チャネル等が必要になる。この条件は、ノードがスリープ状態にある場合などに無線通信機の電源をオフにして低消費電力化を図る場合があるため、電源オン時に接続情報を取得し直す必要がある場合等に必要になる。
(2)の状態としては、上記と同様に受信機側の電源電圧が所定の範囲に収まっていることが必要になる。また、接続情報を保持することも必要になる。
(3)の状態としては、
・無線通信帯域が確保できること。他のノードや同じ周波数帯の無線通信機を使用する他の機器によって通信周波数帯域が埋まっていると、通信が不可能な場合がある。
・障害物等による通信環境の悪化があった場合にも、通信可能な電波送受信強度を確保できること。人体や障害物の移動による環境変化によって時間軸方向で変化する場合もある。
 通信待機状態信号は、上記3つの状態を満たしているかどうかを前回の送信結果、あるいは本送信前の通信経路のテスト、以前の送信状態からの予測等から生成する。
 また、データ送信条件が満たされるとは、データ送信が必要なタイミングになることを指す。この条件もセンサ計測スタート条件と同様に、一定時間ごとの送信も含まれるが、例えば前回の測定結果の傾向から次回の送信タイミングを生成することや、他のセンサからの測定信号によって送信タイミングを生成することができる。また、他ノードやサーバからの信号を受信してデータ送信条件を設定することもできる。データ送信条件が満たされた場合も、そのことを示す信号が無線通信部から制御IC105へ送信される。
 〔実施の形態2:測定頻度による電源切替アルゴリズム〕
 図3は、測定頻度によって電源切替を行う場合のアルゴリズムを示すフローチャートである。このアルゴリズムでは測定頻度が任意に設定可能であり、その測定頻度によって電源切替を行っている。尚、測定頻度は、例えば無線通信機102を介して外部からの設定が可能であっても良い。
 図3に示すフローチャートでも、最初にスリープモードへの移行が行われている。本アルゴリズムでは、測定頻度が閾値(N/分)以下であるかどうかによって、スリープモードにおける電源供給を異ならせている。
 測定頻度が閾値(N/分)以下である場合(S11でYes)は、測定頻度が小さく、動作モードの変更はあまり頻繁に行わないため、スリープモードにおいてDCコンバータ104を停止することで消費電力を効果的に削減できる。このため、測定頻度が閾値(N/分)以下である場合は、制御IC105は、スイッチSW1をオフにし、スイッチSW2をオンにする(S12)。これにより、DCコンバータ104は停止して、センサ装置100はスリープモードとなる(S14)。
 一方、測定頻度が閾値(N/分)以下でない場合(S11でNo)は、測定頻度が大きく、動作モードの変更が頻繁に生じることとなる。このような場合、動作モードの変更に応じて電源供給経路を切り替えると、スイッチの切替における消費電力が大きくなり、全体としては消費電力削減効果が得られなくなる。このため、測定頻度が閾値(N/分)以下でない場合は、制御IC105は、スイッチSW1をオンにし、スイッチSW2をオフにし(S13)、スリープモードに移行する(S14)。すなわち、スリープモードにおいてもDCコンバータ104を介した電力供給を行う。
 図3のフローにおいて、S15~S20の処理は、図2におけるS3~S8の処理と同じであるため、詳細な説明は省略する。
 〔実施の形態3:センシング精度による電源切替アルゴリズム〕
 図4は、本実施の形態に係るセンサ装置の概略構成を示すブロック図である。このセンサ装置200は、特にセンシング精度による電源切替を行う場合に、良好な消費電力削減効果が得られる構成となっている。図4のセンサ装置200は、図1のセンサ装置100と類似した構成となっているが、直流電源103と、センサ部101、無線通信機102、および制御IC105との間に、スイッチSW3と第2DCコンバータ201とが直列に接続された構成となっている。尚、以下の説明では、DCコンバータ104を第1DCコンバータ104と称する。また、第2DCコンバータ201は昇圧型のDCコンバータである。
 図5は、センシング精度によって電源切替を行う場合のアルゴリズムを示すフローチャートである。本実施の形態では、例えば、測定範囲がαからβの範囲では高精度な測定を行いたいとの要求があるものとする。上記要求に応えるため、図4のセンサ装置200では、αからβの範囲では第2DCコンバータ201を介して電源供給を行うものとする。これは、センサ類は一般にアナログ動作を行うものであり、動作電圧を高圧とした方が測定誤差が小さくなり高精度の測定が行えるためである。
 図5に示すフローチャートでも、最初にスリープモードへの移行が行われている。すなわち、制御IC105は、スイッチSW1およびSW3をオフにし、スイッチSW2をオンにしている(S21)。これにより、第1および第2DCコンバータ104・201は停止し、センサ部101、無線通信機102および制御IC105へは直流電源103から直接電力が供給される(電池直結)。これにより、センサ装置200はスリープモードとなる(S22)。
 スリープモードでは、制御IC105は、適切なタイミングでセンシングモードおよび送信モードに移行するために、センサ状態信号および通信機状態信号を監視している。センサ状態信号が計測待機状態であり、かつ、センサ計測スタート条件が満たされると(S23でYes)、制御IC105はセンシングモードへの移行が可能であると判断し、スイッチSW1をオン、スイッチSW2およびSW3をオフにする(S24)。これにより、第1DCコンバータ104が動作し、センサ部101、無線通信機102および制御IC105へは降圧型DCコンバータである第1DCコンバータ104を介して電力が供給される。
 こうしてセンシングモードへ移行すると、センサ部101が測定動作を開始し、測定値を取得する(S25)。但し、S25で得られる測定値は、第1DCコンバータ104を介した電力供給の元で得られたものであり、この測定データは高精度な測定によって得られたものではない。このため、S25で得られた測定値γs1に対して、α≦γs1≦βが満たされているか否かの判定を行う(S26)。
 α≦γs1≦βであれば(S26でYes)、この範囲については高精度の測定を行うため、スイッチSW1およびSW2をオフ、スイッチSW3をオンにする(S27)。これにより、第2DCコンバータ201が動作し、センサ部101、無線通信機102および制御IC105へは昇圧型DCコンバータである第2DCコンバータ201を介して電力が供給される。
 この状態で、センサ部101は再び測定動作を開始し、測定値を取得する(S28)。さらに、スイッチSW1をオン、スイッチSW2およびSW3をオフにして(S29)、第1DCコンバータを動作させ、S28で取得した測定データをメモリに保持する(S30)。尚、S26でα≦γs1≦βでなければ、高精度の測定は必要でないため、S25で取得した測定データをメモリに保持する(S30)。
 こうしてセンシングモードが終了すると、続いて送信モードへの移行が可能であるかどうかが判断され、可能であれば、送信モードの処理を行う(S31~S32)。S31~S32の処理は、図2におけるS7~S8の処理と同じであるため、詳細な説明は省略する。
 〔実施の形態4:センシング精度による電源切替アルゴリズム(複数センサ)〕
 図6は、本実施の形態に係るセンサ装置の概略構成を示すブロック図である。このセンサ装置300は、特にセンシング精度による電源切替を行う場合に、良好な消費電力削減効果が得られる構成であるが、図4のセンサ装置200とはセンサ部を複数備えている点で異なっている。図6のセンサ装置300は、図4のセンサ装置200と類似した構成となっているが、さらに、第2センサ部301を備えている。尚、以下の説明では、センサ部101を第1センサ部101と称する。また、第1センサ部101と第2センサ部301とは、例えば、温度センサと湿度センサなど、それぞれ種類の異なるセンサであるとする。
 図7は、センシング精度によって電源切替を行う場合のアルゴリズムを示すフローチャートである。本実施の形態では、例えば、第1センサ部101は測定範囲がαからβの範囲で高精度な測定を行いたいとの要求があり、第2センサ部301は測定範囲がαからβの範囲で高精度な測定を行いたいとの要求があるものとする。上記要求に応えるため、図6のセンサ装置300では、第1センサ部101の測定値がαからβの範囲の場合、または、第2センサ部101の測定値がαからβの範囲の場合は第2DCコンバータ201を介して電源供給を行うものとする。
 図7に示すフローチャートでも、最初にスリープモードへの移行が行われている。すなわち、制御IC105は、スイッチSW1およびSW3をオフにし、スイッチSW2をオンにしている(S41)。これにより、第1および第2DCコンバータ104・201は停止し、第1センサ部101、第2センサ部301、無線通信機102および制御IC105へは直流電源103から直接電力が供給される(電池直結)。これにより、センサ装置300はスリープモードとなる(S42)。
 スリープモードでは、制御IC105は、適切なタイミングでセンシングモードおよび送信モードに移行するために、センサ状態信号および通信機状態信号を監視している。センサ状態信号が計測待機状態であり、かつ、センサ計測スタート条件が満たされると(S43でYes)、制御IC105はセンシングモードへの移行が可能であると判断し、スイッチSW1をオン、スイッチSW2およびSW3をオフにする(S44)。これにより、第1DCコンバータ104が動作し、第1センサ部101、第2センサ部301、無線通信機102および制御IC105へは降圧型DCコンバータである第1DCコンバータ104を介して電力が供給される。
 こうしてセンシングモードへ移行すると、第1センサ部101、第2センサ部301が測定動作を開始し、測定値を取得する(S45)。但し、S45で得られる測定値は、第1DCコンバータ104を介した電力供給の元で得られたものであり、この測定データは高精度な測定によって得られたものではない。このため、S45で得られた測定値γs1,γs3に対して、α≦γs1≦βまたはα≦γs3≦βが満たされているか否かの判定を行う(S46)。
 α≦γs1≦βまたはα≦γs3≦βが満たされていれば(S46でYes)、第1センサ部101および第2センサ部301の少なくとも一方では高精度な測定が必要なため、スイッチSW1およびSW2をオフ、スイッチSW3をオンにする(S47)。これにより、第2DCコンバータ201が動作し、第1センサ部101、第2センサ部301、無線通信機102および制御IC105へは昇圧型DCコンバータである第2DCコンバータ201を介して電力が供給される。
 この状態で、第1センサ部101および第2センサ部301は再び測定動作を開始し、測定値を取得する(S48)。さらに、スイッチSW1をオン、スイッチSW2およびSW3をオフにして(S49)、第1DCコンバータを動作させ、S48で取得した測定データをメモリに保持する(S50)。尚、S46での判定条件が満たされなければ、高精度の測定は必要でないため、S45で取得した測定データをメモリに保持する(S50)。
 こうしてセンシングモードが終了すると、続いて送信モードへの移行が可能であるかどうかが判断され、可能であれば、送信モードの処理を行う(S51~S52)。S51~S52の処理は、図2におけるS7~S8の処理と同じであるため、詳細な説明は省略する。
 〔実施の形態5:センシング精度による電源切替アルゴリズム(複数センサ)〕
 図8は、センシング精度によって電源切替を行う場合の他のアルゴリズムを示すフローチャートである。ここでのセンサ装置の構成は、図6のセンサ装置300と同じである。本実施の形態では、例えば、第1センサ部101の測定値がαからβの範囲である時にのみ第2センサ部301での測定を行い、第2センサ部301の測定では比較的高電圧を供給しての高精度な測定を行いたいとの要求があるものとする。
 図8に示すフローチャートでも、最初にスリープモードへの移行が行われている。すなわち、制御IC105は、スイッチSW1およびSW3をオフにし、スイッチSW2をオンにしている(S61)。これにより、第1および第2DCコンバータ104・201は停止し、第1センサ部101、第2センサ部301、無線通信機102および制御IC105へは直流電源103から直接電力が供給される(電池直結)。これにより、センサ装置300はスリープモードとなる(S62)。
 スリープモードでは、制御IC105は、適切なタイミングでセンシングモードおよび送信モードに移行するために、センサ状態信号および通信機状態信号を監視している。センサ状態信号が計測待機状態であり、かつ、センサ計測スタート条件が満たされると(S63でYes)、制御IC105はセンシングモードへの移行が可能であると判断し、スイッチSW1をオン、スイッチSW2およびSW3をオフにする(S64)。これにより、第1DCコンバータ104が動作し、第1センサ部101、第2センサ部301、無線通信機102および制御IC105へは降圧型DCコンバータである第1DCコンバータ104を介して電力が供給される。
 こうしてセンシングモードへ移行すると、先ずは第1センサ部101が測定動作を開始し、測定値を取得する(S65)。さらに、S65で得られた測定値γs1に対して、α≦γs1≦βが満たされているか否かの判定を行う(S66)。
 α≦γs1≦βが満たされていれば(S66でYes)、第2センサ部301での高精度な測定が必要なため、スイッチSW1およびSW2をオフ、スイッチSW3をオンにする(S67)。これにより、第2DCコンバータ201が動作し、第1センサ部101、第2センサ部301、無線通信機102および制御IC105へは昇圧型DCコンバータである第2DCコンバータ201を介して電力が供給される。
 この状態で、第2センサ部301は測定動作を開始し、測定値を取得する(S68)。さらに、スイッチSW1をオン、スイッチSW2およびSW3をオフにして(S69)、第1DCコンバータを動作させ、S65およびS68で取得した測定データをメモリに保持する(S70)。尚、S66での判定条件が満たされなければ、第2センサ部301での測定は必要でないため、S65で取得した測定データのみをメモリに保持する(S70)。
 こうしてセンシングモードが終了すると、続いて送信モードへの移行が可能であるかどうかが判断され、可能であれば、送信モードの処理を行う(S71~S72)。S71~S72の処理は、図2におけるS7~S8の処理と同じであるため、詳細な説明は省略する。
 〔実施の形態6:無線通信品質による電源切替アルゴリズム〕
 図9は、本実施の形態に係るセンサ装置の概略構成を示すブロック図である。このセンサ装置400は、特に無線通信品質による電源切替を行う場合に、良好な消費電力削減効果が得られる構成となっている。図9のセンサ装置400は、図4のセンサ装置200と類似した構成となっているが、無線通信機102に代えて無線通信機401を備えた構成となっている。無線通信機401は、供給電圧によって無線通信品質が変更できるものであり、定められた動作電圧範囲内で供給電圧が高いほど無線通信品質も高くなる。
 図10は、無線通信品質によって電源切替を行う場合のアルゴリズムを示すフローチャートである。本実施の形態では、無線通信状態に応じて最適な無線通信品質が選択されるように電源切替を行うことで、消費電力の削減を図ることができる。
 図10に示すフローチャートは、送信処理時の電源切替動作のみを示している。S81~S84では、最初に電源ステートPsの初期設定がなされる。センサ装置400では、3つの電源ステートPsの中から選択可能である(S81)。state1では、スイッチSW1をオン、スイッチSW2およびSW3をオフにする(S82)。これにより、第1DCコンバータ104が動作し、無線通信機401へは降圧型DCコンバータである第1DCコンバータ104を介して電力が供給される。state2では、スイッチSW2をオン、スイッチSW1およびSW3をオフにする(S83)。これにより、第1DCコンバータ104および第2DCコンバータ201が停止し、無線通信機401へは電池直結にて電力が供給される。state3では、スイッチSW3をオン、スイッチSW1およびSW2をオフにする(S84)。これにより、第2DCコンバータ201が動作し、無線通信機401へは昇圧型DCコンバータである第2DCコンバータ201を介して電力が供給される。
 上述したように、無線通信機401は供給電圧が高いほど無線通信品質も高くなるものであり、state1での通信品質が最も低く、state3での通信品質が最も高い。また、説明の便宜上、図10のフローでは、最初に電源ステートPsの初期設定工程S81~S84を入れたが、実際は、送信処理開始直前の電源ステートをそのまま初期の電源ステートとすれば良い。
 送信モードでは、設定されている電源ステートによってメモリに保持されている測定データの無線送信が行なわれる(S85)。さらに、過不足の無い最適な無線通信品質を維持するため、送信モードの間は通信状態が監視される。すなわち、S86では、例えばACK受信遅延時間やパケット送信ロス率が閾値を超えないかが監視されている。
 ACK受信遅延時間の閾値をt、パケット送信ロス率の閾値をpとし、ACK受信遅延時間≧tまたはパケット送信ロス率≧p%となった場合は、その時の無線通信状態に対して無線通信品質が不足していると判断され、無線通信品質を向上させるように電源ステートが切り替えられる。すなわち、その時の電源ステートがstate1であればstate2に切り替えられ(S87)、state2であればstate3に切り替えられる(S88)。また、その時の電源ステートがstate3であればそれ以上無線通信品質を上げることができないため、state3のままとされる(S88)。
 ACK受信遅延時間≧tおよびパケット送信ロス率≧p%の何れも満たされていない場合は、その時の無線通信状態に対して無線通信品質が過剰であると判断され、無線通信品質を低下させるように電源ステートが切り替えられる。すなわち、その時の電源ステートがstate2であればstate1に切り替えられ(S89)、state3であればstate2に切り替えられる(S90)。また、その時の電源ステートがstate1であればそれ以上無線通信品質を下げることができないため、state1のままとされる(S89)。
 送信モードの終了時には、スイッチSW2をオン、スイッチSW1およびSW3をオフにすることで、第1DCコンバータ104および第2DCコンバータ201が停止され(S91)、スリープモードへ移行する(S92)。
 〔実施の形態7:センシング精度による電源切替アルゴリズム〕
 図11は、本実施の形態に係るセンサ装置の概略構成を示すブロック図である。このセンサ装置500は、特にセンシング精度による電源切替を行う場合に、良好な消費電力削減効果が得られる構成となっている。図11のセンサ装置500は、図4のセンサ装置200と類似した構成となっているが、無線通信機102に代えて無線送受信機501を備えた構成となっている。すなわち、本実施の形態では、ある空間内に複数のセンサ装置を配置し、これら複数のセンサ装置からの測定結果をサーバ装置に集約し、当該空間内の状態を検知するセンサシステムを構成している。本実施の形態におけるセンサ装置500は、上記センサシステムを構成するセンサ装置の一つであり、無線通送受信機501によって、サーバ装置への測定値の送信のみならず、他のセンサ装置(他ノード)との通信も可能となっている。センサ装置500は、センシング精度による電源切替命令を自ノード内で生成するのではなく、近隣の他ノードの電源状態情報を受信して設定することで、予測に基づく電源管理を行うことができるようになっている。
 図12は、本実施の形態に係るセンシング精度によって電源切替を行う場合のアルゴリズムを示すフローチャートである。
 図12に示すフローチャートは、測定処理時の電源切替動作を示している。S101~S84では、最初に他ノードにおける電源ステート信号が受信される(S101)。ここでは、上記電源ステート信号は全ての他ノードから受信してもよいし、予め定められた特定のノード(例えば、最も近隣のノードや、特定の位置に設置されたノードなど)から受信してもよい。
 続いて、受信した他ノードの電源ステートを判定し(S102)、これに併せて自ノードの電源ステートを設定する(S103,S104)。ここでは、state1が第1DCコンバータ104を動作させる電源ステート、state2が第2DCコンバータ201を動作させる電源ステートであるとする。なお、S101において複数の他ノードから電源ステート信号を受信した場合、制御IC105は、所定のアルゴリズムに従って、自装置の電源ステートを設定すればよい。例えば、最も多数の電源ステートに併せて自ノードの電源ステートを設定すればよい。
 その後、S103またはS104で設定された電源ステートの下でセンサ部101が測定動作を開始し、測定値を取得する(S105)。測定が終了すると、スイッチSW1をオン、スイッチSW2およびスイッチSW3をオフして、第1DCコンバータ104を動作させてから(S106)、S105で得られた測定データをメモリに保持する(S107)。
 そして、スイッチSW1およびスイッチSW3をオフ、スイッチSW2をオンして、DCコンバータを停止させて電池直結による電力供給とし(S108)、スリープモードへ移行する(S109)。
 〔実施の形態8:センサ計測スタート条件の判定〕
 本発明に係るセンサ装置は、動作モードに応じて電源切替を行っており、これによって消費電力の削減を図るものであるが、特許文献1や特許文献2のように、モードを設定するための主駆動/待機状態信号やモード信号を用いて上記切替を行うものではない。本発明に係るセンサ装置は、装置自体の動作状態、言い換えれば、センサ部や無線通信機の出力信号からセンサ計測スタート条件を判定し、センサ計測スタート条件が満たされた場合にモード移行と電源切替とを行うことを特徴としている。以下に、図13を参照して具体例を説明する。
 本実施の形態では、図4に示すセンサ装置200が用いられるものとする。また、センサ部101は温度センサであると仮定し温度TからTの範囲で高精度に測定を行いたい要求があるとする。また、高精度に測定を行いたい範囲では、測定頻度も多くしたいといった要求があるとする。これらの要求がある場合のセンサ計測スタート条件の判定アルゴリズムの一例を図13に示す。
 センサ計測スタート条件の判定では、最後に測定を行った時のセンサ測定値γs1に応じて次回測定までの測定時間tを設定する。そして、測定時間tが経過すれば、センサ計測スタート条件が満たされたとして次回測定を行う。
 図13のフローでは、最初にセンサ測定値γs1を閾値と比較する(S110)。ここで用いられる閾値は、T<T<T<Tの関係を満たす4つの閾値である。上述したように、閾値TおよびTは高精度に測定を行いたい測定範囲を示している。また、TおよびTは上記測定範囲に近づいている状態を判定するための領域を設定するものである。
 センサ測定値γs1をこれらの閾値と比較した結果、γs1≦Tあるいはγs1≧Tである場合は、高精度に測定を行いたい測定範囲からは大きく外れていると認識し、この場合は、次回測定までの測定時間tをXに設定する(S111,S117)。また、T≦γs1≦Tである場合は、高精度に測定を行いたい測定範囲内にあると認識し、この場合は、次回測定までの測定時間tをXに設定する(S114)。ここで、高精度に測定を行いたい範囲では、測定頻度も多くしたいといった要求があるため、XはXよりも短い時間設定とされている(X<X)。
 また、T<γs1<Tである場合には、測定値の変化量がTに近づいているのか遠ざかっているのかが判定される。すなわち、変化量の傾きΔγs1/Δtが正であれば、Tに近づいていると認識し、TからTの範囲の測定を確実に精度良く行うため、測定時間tをΔT(Δγs1/Δt)に設定する(S112)。変化量の傾きΔγs1/Δtが負であれば、Tから遠ざかっていると認識し、測定時間tをXに設定する(S113)
 同様に、T<γs1<Tである場合には、測定値の変化量がTに近づいているのか遠ざかっているのかが判定される。すなわち、変化量の傾きΔγs1/Δtが負であれば、Tに近づいていると認識し、測定時間tをΔT(Δγs1/Δt)に設定する(S115)。変化量の傾きΔγs1/Δtが正であれば、Tから遠ざかっていると認識し、測定時間tをXに設定する(S116)
 上記フローに沿って、センサ計測スタート条件の判定を行えば、高精度の測定を行いたい範囲で確実に精度良く測定を行うことができ、それ以外の範囲では測定精度を測定頻度を落として測定することで低消費電力化ができる。
 測定精度の問題だけでなく、スリープ時の電源切替タイミングに同じ概念を用いることで測定したいセンサ範囲で動作頻度を増やして時間方向の精度を確保しつつ、電源回路の切替によって低消費電力化を実現できる。
 以上のように、本発明のセンサ装置は、センサ部、制御部を有するセンサ装置であって、電源からセンサ部および制御部への電力供給経路を複数有し、これらの電力供給経路を上記センサ部の動作状態によって切り替え可能であることを特徴としている。
 さらに、上記センサ装置は、上記センサ部の測定結果を送信するための無線通信機を有し、上記複数の電力供給経路は、電源から上記無線通信機への電力供給をも行うものであって、かつ、上記複数の電力供給経路は上記無線通信機の動作状態によっても切り替え可能である構成とすることができる。
 上記の構成によれば、センサ装置の動作モードに応じて電力供給経路の切替(電源切替)を行うことで、最適な電力供給経路を選択し、低消費電力化を図ることができる。また、上記電源切替は、動作モードを設定するための主駆動/待機状態信号やモード信号を用いて電源切替を行うものではなく、装置自体の動作状態(センサ部や無線通信機の出力信号)によって行うことができる。すなわち、設置環境等に応じて動作状態が変化しうるセンサ装置であっても、消費電力を低減することができる。
 また、上記センサ装置では、上記電力供給経路は、消費電流が比較的大きくなる動作モード時にはDCコンバータを介して電力供給を行う経路とされ、消費電流が比較的小さくなる動作モード時には電源が負荷に直結されて電力供給を行う経路とされるような電力供給経路の切り替えが可能である構成とすることができる。
 上記の構成によれば、消費電流が比較的大きくなる動作モード(例えば、センシングモードまたは送信モード)では、電流変換効率が大きい状態でDCコンバータを駆動することができる。また、消費電流が比較的小さくなる動作モード(例えば、スリープモード)では、DCコンバータにおける動作電力を削減できる。
 また、上記センサ装置では、上記電力供給経路は、上記センサ部のセンシング精度によって切り替えられるものであり、上記センサ部が高精度の測定を行う測定範囲では昇圧型DCコンバータを介して電力供給を行う経路とされ、それ以外の測定範囲では、降圧型DCコンバータを介して電力供給を行う経路とされる構成とすることができる。
 上記の構成によれば、高精度の測定を行う測定範囲で動作電圧を高圧することで測定誤差が小さくなり高精度の測定が行えるが、それ以外の範囲では必要以上の電圧が供給されないので消費電力の削減に繋がる。
 また、上記センサ装置では、少なくとも第1および第2のセンサ部を有しており、降圧型DCコンバータを介して電力供給を行う状態で上記第1のセンサ部での計測を行い、上記第1のセンサ部での計測値が所定の範囲内にある場合に、昇圧型DCコンバータを介して電力供給を行う状態で上記第2のセンサ部での計測を行う構成とすることができる。
 上記の構成によれば、所望の測定範囲で高精度の測定を行いつつ、それ以外の範囲では必要以上の電圧が供給されないので消費電力の削減に繋がる。
 また、上記センサ装置では、上記センサ部が測定を行う測定頻度が閾値以下の場合には電力供給経路の上記切り替えを行い、上記測定頻度が上記閾値を超える場合には電力供給経路の上記切り替えを行わない構成とすることができる。
 上記の構成によれば、測定頻度が上記閾値を超える場合には、電源供給経路を頻繁に切り替えると、スイッチの切替における消費電力が大きくなるため、測定頻度に応じて切替制御を行うことで上記切替制御が消費電力削減に有効な場合にのみ、それを行うことができる。
 また、上記センサ装置では、上記無線通信機を介して他のセンサ装置から計測結果を受信し、受信した上記計測値が、上記センサ部が高精度の測定を行う測定範囲にあるか否かで上記電力供給経路を切り替える構成とすることができる。
 上記構成によれば、他のセンサ装置から計測結果を利用して、所望の測定範囲で高精度の測定を行いつつ、それ以外の範囲では必要以上の電圧が供給されないので消費電力の削減に繋がる。
 また、上記センサ装置では、上記無線通信機により通信状態を監視し、上記通信状態に応じて上記電力供給経路を切り替え、上記通信状態に対して最適な電力供給を行う構成とすることができる。
 上記構成によれば、例えば、その時の無線通信状態に対して無線通信品質が不足している場合には供給電圧を増加させ、無線通信品質が過剰である場合には供給電圧を低下させることで、常に通信状態に対して過不足の無い電力供給を行え、無線通信品質を維持しつつ、無駄な電力消費を抑制できる。
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明は、電池等の有限の電力供給源を用いるセンサ装置において低消費電力化(電池の長寿命化)を図ることができ、センサによる測定結果を無線でサーバに送信するセンサシステム等に適用できる。
100,200,300,400,500  センサ装置
101,301  センサ部
102,401  無線通信機
103  直流電源
104,201  DCコンバータ
105  制御IC
501  無線送受信機

Claims (8)

  1.  センサ部、制御部を有するセンサ装置であって、
     電源からセンサ部および制御部への電力供給経路を複数有し、これらの電力供給経路を上記センサ部の動作状態によって切り替え可能であることを特徴とするセンサ装置。
  2.  さらに、上記センサ部の測定結果を送信するための無線通信機を有し、
     上記複数の電力供給経路は、電源から上記無線通信機への電力供給をも行うものであって、かつ、上記複数の電力供給経路は上記無線通信機の動作状態によっても切り替え可能であることを特徴とする請求項1に記載のセンサ装置。
  3.  上記電力供給経路は、消費電流が比較的大きくなる動作モード時にはDCコンバータを介して電力供給を行う経路とされ、消費電流が比較的小さくなる動作モード時には電源が負荷に直結されて電力供給を行う経路とされるような電力供給経路の切り替えが可能であることを特徴とする請求項1または2に記載のセンサ装置。
  4.  上記電力供給経路は、上記センサ部のセンシング精度によって切り替えられるものであり、上記センサ部が高精度の測定を行う測定範囲では昇圧型DCコンバータを介して電力供給を行う経路とされ、それ以外の測定範囲では、降圧型DCコンバータを介して電力供給を行う経路とされることを特徴とする請求項1または2に記載のセンサ装置。
  5.  少なくとも第1および第2のセンサ部を有しており、
     降圧型DCコンバータを介して電力供給を行う状態で上記第1のセンサ部での計測を行い、
     上記第1のセンサ部での計測値が所定の範囲内にある場合に、昇圧型DCコンバータを介して電力供給を行う状態で上記第2のセンサ部での計測を行うことを特徴とする請求項4に記載のセンサ装置。
  6.  上記センサ部が測定を行う測定頻度が閾値以下の場合には電力供給経路の上記切り替えを行い、上記測定頻度が上記閾値を超える場合には電力供給経路の上記切り替えを行わないことを特徴とする請求項3に記載のセンサ装置。
  7.  上記無線通信機を介して他のセンサ装置から計測結果を受信し、
     受信した上記計測値が、上記センサ部が高精度の測定を行う測定範囲にあるか否かで上記電力供給経路を切り替えることを特徴とする請求項4に記載のセンサ装置。
  8.  上記無線通信機により通信状態を監視し、
     上記通信状態に応じて上記電力供給経路を切り替え、上記通信状態に対して最適な電力供給を行うことを特徴とする請求項2に記載のセンサ装置。
PCT/JP2011/056246 2010-10-29 2011-03-16 センサ装置 WO2012056741A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180040247.0A CN103080702B (zh) 2010-10-29 2011-03-16 传感器装置
US13/816,863 US9331479B2 (en) 2010-10-29 2011-03-16 Sensor device
KR1020137003625A KR101423442B1 (ko) 2010-10-29 2011-03-16 센서 장치
EP11835885.2A EP2634540B1 (en) 2010-10-29 2011-03-16 Sensor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-244188 2010-10-29
JP2010244188A JP5353861B2 (ja) 2010-10-29 2010-10-29 センサ装置

Publications (1)

Publication Number Publication Date
WO2012056741A1 true WO2012056741A1 (ja) 2012-05-03

Family

ID=45993482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056246 WO2012056741A1 (ja) 2010-10-29 2011-03-16 センサ装置

Country Status (6)

Country Link
US (1) US9331479B2 (ja)
EP (1) EP2634540B1 (ja)
JP (1) JP5353861B2 (ja)
KR (1) KR101423442B1 (ja)
CN (1) CN103080702B (ja)
WO (1) WO2012056741A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2787469A1 (en) * 2013-04-02 2014-10-08 Samsung Electro-Mechanics Co., Ltd. Electronic shelf label (ESL) tag
JP6115262B2 (ja) * 2013-04-02 2017-04-19 オムロン株式会社 センサ装置およびモニタリングシステム
KR20140120265A (ko) * 2013-04-02 2014-10-13 삼성전기주식회사 Esl 태그
JP5954304B2 (ja) * 2013-12-16 2016-07-20 カシオ計算機株式会社 無線通信装置、無線通信システム、無線通信方法、プログラム、及びペリフェラル
US10082598B2 (en) * 2014-08-18 2018-09-25 Intel Corporation Sensor power management
JP6403010B2 (ja) * 2015-02-24 2018-10-10 セイコーエプソン株式会社 回路装置及び電子機器
US9826387B2 (en) * 2015-11-04 2017-11-21 Abb Technology Oy Indicating a drive status in communications
CN105337502B (zh) * 2015-12-02 2018-08-10 珠海格力电器股份有限公司 一种低功耗电路能量采集电路
DK3524454T3 (da) 2018-02-08 2022-04-25 Carrier Corp Strømfordeling til endepunktsfejldetektering og -retablering til et tranportkølesystem
US10935268B2 (en) 2018-04-03 2021-03-02 Carrier Corporation HVAC system controller and method for obtaining environmental data for HVAC system
CN110758400A (zh) * 2018-07-27 2020-02-07 郑州宇通客车股份有限公司 一种智能驾驶车辆的控制方法及装置
JP7218848B2 (ja) * 2018-08-11 2023-02-07 アルセンス株式会社 センサデバイス及び家畜管理システム
JP2020061070A (ja) * 2018-10-12 2020-04-16 アズビル株式会社 無線センサ
JP7223605B2 (ja) * 2019-03-12 2023-02-16 マクセル株式会社 電力供給装置、電力供給方法、プログラム
CN112018863B (zh) * 2020-08-31 2023-02-14 广州极飞科技股份有限公司 供电调整电路和供电装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1141825A (ja) 1997-07-14 1999-02-12 Victor Co Of Japan Ltd 電源切替装置
JPH11353040A (ja) 1998-04-10 1999-12-24 Matsushita Electric Ind Co Ltd 電源装置
JP2005339078A (ja) * 2004-05-26 2005-12-08 Hitachi Ltd 電子装置
JP2007243478A (ja) * 2006-03-07 2007-09-20 Hitachi Ltd センサネットシステム、基地局及びセンシングデータの中継方法
JP2007316770A (ja) * 2006-05-23 2007-12-06 Keyence Corp センサ装置、センサシステム及び異種物理量を検出可能なセンサ装置の接続方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07273715A (ja) * 1994-03-29 1995-10-20 Matsushita Electric Ind Co Ltd 電池接続切替回路
JP3622250B2 (ja) * 1995-02-02 2005-02-23 松下電器産業株式会社 ガス保安装置
US5499187A (en) * 1995-04-03 1996-03-12 Arinc Research Corporation Voltage sensing, autoselecting aircraft power supply interface
US6124692A (en) * 1996-08-22 2000-09-26 Csi Technology, Inc. Method and apparatus for reducing electrical power consumption in a machine monitor
EP0949739A3 (en) 1998-04-10 1999-10-20 Matsushita Electric Industrial Co., Ltd. Power supply apparatus
JP2000014043A (ja) * 1998-06-05 2000-01-14 Internatl Business Mach Corp <Ibm> 無停電電源装置
CN100477464C (zh) * 2000-10-02 2009-04-08 欧姆龙株式会社 电源装置
EP1459159B1 (en) * 2001-12-21 2005-07-06 Koninklijke Philips Electronics N.V. Communication bus system operable in a sleep mode and a normal mode
JP2005284596A (ja) * 2004-03-29 2005-10-13 Sony Corp 情報処理装置および方法、並びにプログラム
JP4797487B2 (ja) * 2005-07-26 2011-10-19 パナソニック株式会社 車両用電源装置
JP2007235394A (ja) * 2006-02-28 2007-09-13 Icom Inc 電子回路装置、および携帯用無線通信機
JP5038813B2 (ja) * 2007-08-07 2012-10-03 株式会社東芝 無線センサ装置及び無線センサ装置の起動制御方法
KR20100066888A (ko) * 2008-12-10 2010-06-18 삼성전자주식회사 스텝-다운 컨버터 및 전원 공급기
JP2011055186A (ja) * 2009-09-01 2011-03-17 Yamatake Corp 間欠動作無線装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1141825A (ja) 1997-07-14 1999-02-12 Victor Co Of Japan Ltd 電源切替装置
JPH11353040A (ja) 1998-04-10 1999-12-24 Matsushita Electric Ind Co Ltd 電源装置
JP2005339078A (ja) * 2004-05-26 2005-12-08 Hitachi Ltd 電子装置
JP2007243478A (ja) * 2006-03-07 2007-09-20 Hitachi Ltd センサネットシステム、基地局及びセンシングデータの中継方法
JP2007316770A (ja) * 2006-05-23 2007-12-06 Keyence Corp センサ装置、センサシステム及び異種物理量を検出可能なセンサ装置の接続方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2634540A4

Also Published As

Publication number Publication date
KR101423442B1 (ko) 2014-08-13
CN103080702B (zh) 2015-11-25
US9331479B2 (en) 2016-05-03
CN103080702A (zh) 2013-05-01
JP5353861B2 (ja) 2013-11-27
EP2634540B1 (en) 2017-11-08
EP2634540A4 (en) 2015-10-07
US20130140910A1 (en) 2013-06-06
KR20130038923A (ko) 2013-04-18
JP2012098809A (ja) 2012-05-24
EP2634540A1 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
JP5353861B2 (ja) センサ装置
US10075071B2 (en) Electronic device including a power management integrated circuit
JP6392550B2 (ja) ワイヤレス受電装置およびその制御回路、それを用いた電子機器、異常検出方法
KR101569299B1 (ko) 수신 신호 품질이 낮을 때 레귤레이터에 대한 펄스 주파수 변조(pfm) 모드 록아웃
KR101709886B1 (ko) 센서 장치 및 모니터링 시스템
EP2985851A1 (en) Wireless charging module and wireless charging system
US10838382B2 (en) Power supply control device
US20160226312A1 (en) Wireless power reception system, wireless power transmission system, control method, computer program, and recording medium
KR101681055B1 (ko) 복수의 공진기를 구비하는 공진 전력 수신 장치
JP6168803B2 (ja) 電池監視システム及び半導体装置
US11979035B2 (en) Wireless power transmission system for wirelessly transmitting power to prevent power shortage in load device of wireless power receiving apparatus
CN107064597B (zh) 自供电式的电流传感器
JP2006280028A (ja) 携帯電子機器、携帯電子機器の電源の制御回路及び制御方法
JP5233500B2 (ja) 携帯型電子機器の電源制御回路および電源制御方法
US20230268762A1 (en) System and method for controlling charging/discharging between batteries of dual battery
KR101336832B1 (ko) 전력측정용 멀티탭 및 그 구동방법
JP5217738B2 (ja) タイヤ空気圧送信機
US11081892B2 (en) Electric energy transmission circuit
JP6020127B2 (ja) 無線通信装置
KR20190097754A (ko) Rf 무선 전력 수신 방법 및 장치
JP2017121101A (ja) 電源システム
KR20080025946A (ko) 자동차용 전원 제어회로

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180040247.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11835885

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137003625

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13816863

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2011835885

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011835885

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE