WO2012046577A1 - 排ガス浄化フィルタ及びその製造方法 - Google Patents

排ガス浄化フィルタ及びその製造方法 Download PDF

Info

Publication number
WO2012046577A1
WO2012046577A1 PCT/JP2011/071588 JP2011071588W WO2012046577A1 WO 2012046577 A1 WO2012046577 A1 WO 2012046577A1 JP 2011071588 W JP2011071588 W JP 2011071588W WO 2012046577 A1 WO2012046577 A1 WO 2012046577A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
gas purification
purification filter
catalyst
aluminum titanate
Prior art date
Application number
PCT/JP2011/071588
Other languages
English (en)
French (fr)
Inventor
宏仁 森
隆寛 三島
福田 匡晃
佐千緒 福岡
Original Assignee
大塚化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大塚化学株式会社 filed Critical 大塚化学株式会社
Priority to US13/822,243 priority Critical patent/US9238197B2/en
Priority to JP2012537635A priority patent/JP5587420B2/ja
Priority to CN201180048195.1A priority patent/CN103153465B/zh
Priority to EP11830510.1A priority patent/EP2626132B1/en
Priority to ES11830510.1T priority patent/ES2593231T3/es
Publication of WO2012046577A1 publication Critical patent/WO2012046577A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24494Thermal expansion coefficient, heat capacity or thermal conductivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/2429Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the honeycomb walls or cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2455Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the whole honeycomb or segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2476Monolithic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2484Cell density, area or aspect ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/14Silica and magnesia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/202Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/30Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/915Catalyst supported on particulate filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/12Particle morphology extending in one dimension, e.g. needle-like with a cylindrical shape
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5296Constituents or additives characterised by their shapes with a defined aspect ratio, e.g. indicating sphericity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/787Oriented grains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/14Sintered material

Definitions

  • the present invention relates to an exhaust gas purification filter using aluminum titanate and a method for producing the same.
  • a diesel particulate filter (DPF) or the like is used to purify particulate matter (PM) contained in exhaust gas discharged from an internal combustion engine, particularly a diesel engine. Since the combustion temperature of PM is as high as 550 ° C to 650 ° C, and high temperature is required for PM combustion, the porous material used for DPF etc. is low heat so as not to cause fatigue due to thermal shock in the operating temperature range. There is a need for materials that are expandable and have excellent thermal shock resistance. Since such performance is satisfied and the melting point is high, aluminum titanate is expected as a porous material used for DPF and the like, and various developments have been made.
  • PM particulate matter
  • Patent Document 1 an aluminum titanate sintered body having high strength and less mechanical strength deterioration with respect to repeated thermal history is obtained without impairing the high melting point and low thermal expansion property of aluminum titanate. Therefore, it has been proposed to sinter aluminum titanate added with magnesium oxide and silicon oxide.
  • Patent Document 2 discloses that an exhaust gas filter is manufactured using columnar aluminum titanate, and when the longitudinal direction of the columnar particles has a negative thermal expansion coefficient, the direction perpendicular to the longitudinal direction is positive thermal expansion. It has been proposed to manufacture an exhaust gas filter that has a coefficient or a negative thermal expansion coefficient in the direction perpendicular to the longitudinal direction when the longitudinal direction of the columnar particles has a positive thermal expansion coefficient.
  • a specific method for producing columnar aluminum titanate is not disclosed. Further, a specific shape such as an aspect ratio in the columnar shape is not disclosed.
  • Patent Document 3 in order to solve the problem that the combustion efficiency of PM is reduced by forming a catalyst layer on the DPF wall surface and pores in the DPF wall, a spherical pore forming agent and columnar pore forming agent are provided in the catalyst.
  • a method is proposed in which a carrier is immersed in a slurry in which a predetermined amount of an agent and an inorganic binder are added and mixed.
  • the thermal expansion coefficient is increased by the catalyst entering the microcracks.
  • the production efficiency of the catalyst-carrying DPF is not good.
  • the object of the present invention is to carry a catalyst by a simple method without impregnation or applying a solution containing catalyst particles to a solution containing catalyst particles after the production of an exhaust gas purification filter, high PM combustion efficiency, and a high thermal expansion coefficient.
  • An object of the present invention is to provide an exhaust gas purification filter that is low and excellent in heat resistance, and a method for producing the same.
  • the inventors have supported the catalyst on the surface of aluminum titanate by sintering a molded body made of a mixture of columnar aluminum titanate particles and catalyst raw materials.
  • the present inventors have found that an exhaust gas purification filter having high PM combustion efficiency, a low thermal expansion coefficient, and excellent heat resistance has been provided, and the present invention has been completed. More specifically, the present invention provides the following.
  • the exhaust gas purification filter formed by the above method is characterized in that a catalyst formed from a catalyst raw material by a heat treatment at the time of sintering is supported on the surface of aluminum titanate.
  • the average aspect ratio of the columnar aluminum titanate particles used in the present invention is more preferably 1.5 or more, and the upper limit of the average aspect ratio is not particularly limited, but is generally 5 or less.
  • the number average minor axis diameter of the columnar aluminum titanate particles is preferably 10 ⁇ m or less.
  • the number average minor axis diameter is more preferably in the range of 5 to 10 ⁇ m.
  • the number average major axis diameter is preferably in the range of 7 to 17 ⁇ m.
  • the number average major axis diameter and the number average minor axis diameter of the columnar aluminum titanate particles can be measured by, for example, a flow type particle image analyzer.
  • the catalyst supported on the surface of aluminum titanate includes a composite oxide containing at least one of alkali metals and alkaline earth metals and at least one of Al, Si, Ti, and Zr. It is preferable. Examples of such a catalyst include those shown in Table 1 below.
  • the catalyst can be formed by heat-treating the catalyst raw material by heat-treating the catalyst raw material on the surface of the columnar aluminum titanate particles and sintering the columnar aluminum titanate particles. Therefore, by sintering the exhaust gas purification filter molded body of the present invention, the catalyst can be synthesized at the same time, and the catalyst can be simply supported on the exhaust gas purification filter.
  • the catalyst in the present invention is preferably one that can be synthesized by heat treatment of the catalyst raw material at a temperature lower than the heat treatment temperature for sintering the columnar aluminum titanate particles. Since the sintering temperature of the columnar aluminum titanate particles is generally in the range of 1300 ° C. to 1600 ° C., the temperature is generally in the range of 1300 ° C. to 1600 ° C. and lower than the heat treatment for sintering. It is preferable to select a catalyst and a catalyst raw material that can be synthesized.
  • the porosity of the exhaust gas purification filter of the present invention is preferably 40% to 60%.
  • a porosity of less than 40% is not preferable because it tends to cause pore clogging by PM secondary particles, leading to an increase in pressure loss.
  • the contact of PM with the catalyst deteriorates due to the clogging of the pores, which is not preferable for PM combustion. More preferably, it is 45% to 55%.
  • the coefficient of thermal expansion between 30 and 800 ° C. in the extrusion direction of the filter molded body is 1.0 ⁇ 10 ⁇ 6 / ° C. or less, and the crystal orientation ratio of the C axis with respect to the extrusion direction is 0.7
  • the above is preferable.
  • the thermal expansion coefficient is 1.0 ⁇ 10 ⁇ 6 / ° C. or less, it is possible to obtain characteristics excellent in thermal shock resistance.
  • the thermal expansion coefficient is more preferably 0.0 ⁇ 10 ⁇ 6 / ° C. or less, and the lower limit value of the thermal expansion coefficient is not particularly limited, but is generally ⁇ 2.0 ⁇ 10 ⁇ 6 / ° C. or more. It is.
  • the thermal expansion coefficient in the extrusion direction can be reduced.
  • the crystal orientation ratio of the C axis with respect to the direction of extrusion of the filter molded body in the present invention can be obtained from the following equation.
  • C-axis crystal orientation ratio in the direction of filter molding extrusion A / (A + B)
  • A: C-axis orientation degree in the extrusion direction of the filter molded body I 002 / (I 002 + I 230 )
  • B: C-axis orientation in the vertical direction of the filter molded body I 002 / (I 002 + I 230 )
  • I 002 and I 230 are the extrusion surface for extrusion direction, the peak intensity of the (002) plane when the X-ray diffraction vertical plane in the vertical direction (I 002) and (230) plane peak intensity (I 230 ).
  • the C axis extends along the longitudinal direction of the columnar body. For this reason, when the filter molded body is extruded, the C-axis is aligned in the extrusion direction, so that the thermal expansion coefficient in the extrusion direction can be lowered.
  • the method for producing the columnar aluminum titanate particles of the present invention includes a step of mixing a raw material containing a titanium source, an aluminum source, and a magnesium source while pulverizing them into mechanochemicals, and a step of firing the pulverized mixture. Is mentioned.
  • Columnar titanic acid having an average aspect ratio of 1.3 or more is obtained by firing a pulverized mixture obtained by mixing raw materials including a titanium source, an aluminum source, and a magnesium source while being pulverized into mechanochemicals. Aluminum particles can be produced.
  • the temperature for firing the pulverized mixture is preferably a temperature in the range of 1300 to 1600 ° C. By firing within such a temperature range, the columnar aluminum titanate particles of the present invention can be more efficiently produced.
  • Calcination time is not particularly limited, but it is preferably performed within a range of 0.5 hours to 20 hours.
  • Mechanochemical crushing includes a method of crushing while giving a physical impact. Specifically, pulverization by a vibration mill can be mentioned. By pulverizing with a vibration mill, the disruption of atomic arrangement and the decrease in interatomic distance occur simultaneously due to the shear stress caused by the grinding of the mixed powder, resulting in atomic movement of the contact part of different particles, resulting in a metastable phase. Can be obtained. Thereby, a pulverized mixture with high reaction activity is obtained, and the columnar aluminum titanate particles of the present invention can be produced by firing the pulverized mixture with high reaction activity.
  • Mechanochemical pulverization is generally performed as a dry process without using water or a solvent.
  • the mixing treatment time by mechanochemical pulverization is not particularly limited, but generally it is preferably within the range of 0.1 to 6 hours.
  • the raw material for the columnar aluminum titanate particles used in the present invention preferably contains a titanium source, an aluminum source, and a magnesium source.
  • a titanium source a compound containing titanium oxide can be used. Specific examples include titanium oxide, rutile ore, titanium hydroxide wet cake, and hydrous titania.
  • the aluminum source a compound that generates aluminum oxide by heating can be used.
  • Specific examples include aluminum oxide, aluminum hydroxide, and aluminum sulfate. Among these, aluminum oxide is particularly preferably used.
  • magnesium source a compound that generates magnesium oxide by heating can be used, and specific examples include magnesium hydroxide, magnesium oxide, and magnesium carbonate. Among these, magnesium hydroxide and magnesium oxide are particularly preferably used.
  • the magnesium source is preferably contained in the raw material so as to be within the range of 0.5 to 2.0% by weight in terms of the respective oxides with respect to the total of the titanium source and the aluminum source. If it is less than 0.5% by weight, a sintered body having a low coefficient of thermal expansion and high mechanical strength may not be obtained. On the other hand, if it exceeds 2.0% by weight, columnar aluminum titanate particles having an average aspect ratio of 1.3 or more may not be obtained.
  • the raw material may further contain a silicon source.
  • Examples of the silicon source include silicon oxide and silicon. Among these, silicon oxide is particularly preferably used.
  • the content of the silicon source in the raw material is preferably in the range of 0.5 to 10% by weight in terms of the respective oxides with respect to the total of the titanium source and the aluminum source. By setting it within such a range, the columnar aluminum titanate particles can be more stably produced.
  • the mixture containing the columnar aluminum titanate particles and the catalyst raw material can be prepared by adding, for example, a pore-forming agent, a binder, a dispersant, and water.
  • This mixture is molded into a honeycomb structure using, for example, an extrusion molding machine, plugged on one side so that the cell openings have a checkered pattern, and then dried to obtain a molded body.
  • an exhaust gas purification filter can be produced.
  • Examples of the firing temperature include 1300 to 1600 ° C.
  • examples of the firing time include 1 to 5 hours.
  • the catalyst raw material examples include a mixture containing at least one compound selected from an alkali metal salt and an alkaline earth metal salt and at least one selected from an aluminum source, a silicon source, a titanium source, and a zirconium source.
  • Alkali metals include lithium, sodium, potassium, rubidium, cesium, and francium
  • alkaline earth metals include magnesium, calcium, strontium, barium, and radium.
  • Alkali metal salts include alkali metal carbonates, hydrogen carbonates, organic acid salts such as hydroxides and acetates, sulfates, nitrates, and the like, with carbonates being preferred.
  • Alkaline earth metal salts include alkaline earth metal carbonates, bicarbonates, hydroxides, acetates and other organic acid salts, sulfates, nitrates, and the like, with carbonates being preferred.
  • the aluminum source a compound that generates aluminum oxide by heating can be used.
  • Specific examples include aluminum oxide, aluminum hydroxide, and aluminum sulfate.
  • aluminum hydroxide is particularly preferably used.
  • Examples of the silicon source include silicon oxide and silicon. Among these, silicon oxide is particularly preferably used.
  • titanium source a compound containing titanium oxide can be used, and specific examples include titanium oxide, rutile ore, titanium hydroxide wet cake, and hydrous titania.
  • Zirconium sources include zirconium oxide, zirconium carbonate hydrate, zirconium sulfate hydrate, and the like, with zirconium oxide being preferred.
  • the catalyst raw material is preferably blended so that 5 to 100 parts by weight of the catalyst is produced with respect to 100 parts by weight of the columnar aluminum titanate particles. More preferably, the catalyst raw material is blended so as to produce 5 to 50 parts by weight of the catalyst.
  • the amount of the catalyst is 100 parts by weight or more, the PM combustion efficiency may be reduced due to the clogging of the pores, and when the amount is 5 parts by weight or less, the effect of using the catalyst may not be obtained.
  • Examples of pore-forming agents include graphite, graphite, wood powder, and polyethylene.
  • Examples of the binder include methyl cellulose, ethyl cellulose, and polyvinyl alcohol.
  • Examples of the dispersant include fatty acid soap and ethylene glycol. The amount of pore-forming agent, binder, dispersant, and water can be adjusted as appropriate.
  • the thermal expansion coefficient of the exhaust gas purification filter can be further lowered, and the strength of the exhaust gas purification filter can be increased. Moreover, since many exhaust gas filter wall surfaces and pores connected to the inside of the wall can be formed, PM combustion efficiency can be improved as a result.
  • the catalyst can be supported on the surface of the aluminum titanate by sintering the exhaust gas purification filter molded body formed from the columnar aluminum titanate particles and the catalyst raw material.
  • the catalyst supported on the surface of the aluminum titanate according to the present invention is strongly joined to the aluminum titanate and can reduce the peeling of the catalyst. Moreover, since the pores of the exhaust gas purification filter formed by the columnar aluminum titanate particles are not blocked, the PM combustion efficiency can be improved as a result. Further, by synthesizing the catalyst simultaneously with the sintering of the molded body, the catalyst can be supported without entering the microcracks of the sintered body, and a low thermal expansion coefficient can be maintained.
  • the catalyst and the carrier aluminum titanate are both excellent in heat resistance, catalyst deterioration due to high temperature during abnormal combustion can be suppressed, and PM can be burned from low temperature. Fuel consumption can be improved.
  • FIG. 1 is an SEM photograph showing columnar aluminum titanate particles obtained in Production Example 1 according to the present invention.
  • FIG. 2 is an SEM photograph showing granular aluminum titanate particles obtained in Comparative Production Example 3.
  • FIG. 3 is an SEM photograph showing the honeycomb sintered body obtained in Example 3 according to the present invention.
  • 4 is an SEM photograph showing the honeycomb sintered body obtained in Comparative Example 2.
  • FIG. 5 is a perspective view showing a honeycomb sintered body.
  • FIG. 6 is a perspective view showing a sample for measuring the porosity of the honeycomb sintered body.
  • FIG. 7 is a schematic diagram showing a method for measuring the bending strength of a honeycomb sintered body.
  • FIG. 8 is a perspective view showing a measurement sample of the thermal expansion coefficient of the honeycomb sintered body.
  • FIG. 9 is a perspective view showing the production of a measurement sample for measuring the X-ray diffraction of the extruded surface of the honeycomb sintered body.
  • FIG. 10 is a perspective view showing a measurement sample for measuring the X-ray diffraction of the extruded surface of the honeycomb sintered body.
  • FIG. 11 is a perspective view showing the production of a sample for measuring the X-ray diffraction of the vertical surface of the honeycomb sintered body.
  • FIG. 12 is a perspective view showing a sample for measuring the X-ray diffraction of the vertical surface of the honeycomb sintered body.
  • FIG. 13 is a diagram showing an X-ray diffraction chart of columnar aluminum titanate particles obtained by Production Example 1 according to the present invention.
  • Fig. 14 is a diagram showing an X-ray diffraction chart of the honeycomb sintered body obtained in Example 1 according to the present invention.
  • Fig. 15 is a diagram showing an X-ray diffraction chart of the honeycomb sintered body obtained in Example 2 according to the present invention.
  • Fig. 16 is a diagram showing an X-ray diffraction chart of the honeycomb sintered body obtained in Example 3 according to the present invention.
  • FIG. 17 is a view showing an X-ray diffraction chart of the honeycomb sintered body obtained in Example 4 according to the present invention.
  • FIG. 18 is a diagram showing an X-ray diffraction chart of the honeycomb sintered body obtained in Example 5 according to the present invention.
  • Table 2 shows the composition, shape, number average major axis diameter, number average minor axis diameter, and aspect ratio.
  • FIG. 1 is an SEM photograph showing columnar aluminum titanate particles obtained in this production example.
  • FIG. 13 is a view showing an X-ray diffraction chart of the columnar aluminum titanate particles obtained in this production example.
  • Table 2 shows the composition, shape, number average major axis diameter, number average minor axis diameter, and aspect ratio.
  • Table 2 shows the composition, shape, number average major axis diameter, number average minor axis diameter, and aspect ratio.
  • FIG. 2 is an SEM photograph showing granular aluminum titanate particles obtained in this production example.
  • Table 2 shows the composition, shape, major axis diameter (number average major axis diameter), minor axis diameter (number average minor axis diameter), and aspect ratio of the aluminum titanates obtained in Production Examples 1 to 3.
  • the aluminum titanate obtained in Production Examples 1 and 2 is columnar aluminum titanate particles having an aspect ratio of 1.3 or more. Moreover, the aluminum titanate obtained by Production Example 3 is granular aluminum titanate particles having an aspect ratio of less than 1.3.
  • honeycomb sintered body Using the aluminum titanate obtained in Production Examples 1 to 3, honeycomb sintered bodies were produced as follows.
  • Example 1 Catalyst raw material (3.3 parts by weight of sodium carbonate, 4.85 parts by weight of aluminum hydroxide, 14.9 parts by weight of titanium oxide), 20 parts by weight of graphite with respect to 80 parts by weight of the columnar aluminum titanate particles obtained in Production Example 1. Parts, 10 parts by weight of methylcellulose and 0.5 parts by weight of fatty acid soap were added, and an appropriate amount of water was added and kneaded to obtain an extrudable clay.
  • the obtained kneaded material was extruded and formed into a honeycomb structure with an extrusion molding machine to obtain a filter formed body.
  • the cell density of the mold was 300 cells / square inch (46.5 cells / cm 2 ), and the partition wall thickness was 500 ⁇ m.
  • a slurry was prepared in which the solid content was substantially composed of the above-described columnar aluminum titanate particles and a catalyst raw material, and an additive such as a viscosity modifier was added.
  • slurry was injected into the cells of the honeycomb structure and sealed so that the opened cells and the sealed cells had a checkered pattern alternately.
  • the obtained molded body was fired at 1450 ° C. for 1 hour to obtain a honeycomb sintered body.
  • the crystal phase of the obtained honeycomb sintered body was identified by X-ray diffraction, it had an Al 2 TiO 5 crystal phase and an Na 2 Al 2 Ti 6 O 16 crystal phase.
  • FIG. 14 is a diagram showing an X-ray diffraction chart of the honeycomb sintered body obtained in this example.
  • Example 2 A honeycomb sintered body was obtained in the same manner as in Example 1 except that the catalyst raw material was changed to 12.0 parts by weight of cesium carbonate, 5.74 parts by weight of aluminum hydroxide, and 5.88 parts by weight of titanium oxide.
  • the crystal phase of the obtained honeycomb sintered body was identified by X-ray diffraction, it had an Al 2 TiO 5 crystal phase and a CsAlTiO 4 crystal phase.
  • FIG. 15 is a view showing an X-ray diffraction chart of the honeycomb sintered body obtained in this example.
  • Example 3 A honeycomb sintered body was obtained in the same manner as in Example 1 except that the catalyst raw material was changed to 7.46 parts by weight of sodium carbonate, 10.98 parts by weight of aluminum hydroxide, and 8.46 parts by weight of silicon oxide.
  • the crystal phase of the obtained honeycomb sintered body was identified by X-ray diffraction, it had an Al 2 TiO 5 crystal phase and an NaAlSiO 4 crystal phase.
  • FIG. 16 is a diagram showing an X-ray diffraction chart of the honeycomb sintered body obtained in this example.
  • FIG. 3 is an SEM photograph showing the honeycomb sintered body obtained in this example.
  • Example 4 A honeycomb sintered body was obtained in the same manner as in Example 1 except that the catalyst raw material was changed to 9.06 parts by weight of strontium carbonate, 9.58 parts by weight of aluminum hydroxide, and 7.38 parts by weight of silicon oxide.
  • the crystal phase of the obtained honeycomb sintered body was identified by X-ray diffraction, it had an Al 2 TiO 5 crystal phase and an SrAl 2 Si 2 O 8 crystal phase.
  • FIG. 17 is a view showing an X-ray diffraction chart of the honeycomb sintered body obtained in this example.
  • Example 5 A honeycomb sintered body was obtained in the same manner as in Example 1 except that the catalyst raw material was changed to 8.74 parts by weight of potassium carbonate, 9.86 parts by weight of aluminum hydroxide, and 7.60 parts by weight of silicon oxide.
  • the crystal phase of the obtained honeycomb sintered body was identified by X-ray diffraction, it had an Al 2 TiO 5 crystal phase and a KAlSiO 4 crystal phase.
  • FIG. 18 is a view showing an X-ray diffraction chart of the honeycomb sintered body obtained in this example.
  • Example 6 The honeycomb firing was carried out in the same manner as in Example 1 except that the catalyst raw material was changed to 3.53 parts by weight of sodium carbonate, 4.60 parts by weight of potassium carbonate, 10.39 parts by weight of aluminum hydroxide, and 8.01 parts by weight of silicon oxide. A ligature was obtained. When the crystal phase of the obtained honeycomb sintered body was identified by X-ray diffraction, it had an Al 2 TiO 5 crystal phase and a Na 0.5 K 0.5 AlSiO 4 crystal phase.
  • Example 7 The honeycomb firing was carried out in the same manner as in Example 1 except that the catalyst raw material was changed to 1.37 parts by weight of sodium carbonate, 7.14 parts by weight of potassium carbonate, 10.07 parts by weight of aluminum hydroxide, and 7.76 parts by weight of silicon oxide. A ligature was obtained. When the crystal phase of the obtained honeycomb sintered body was identified by X-ray diffraction, it had an Al 2 TiO 5 crystal phase and an Na 0.2 K 0.8 AlSiO 4 crystal phase.
  • Example 8 The honeycomb firing was carried out in the same manner as in Example 1 except that the catalyst raw material was changed to 5.84 parts by weight of sodium carbonate, 1.90 parts by weight of potassium carbonate, 10.74 parts by weight of aluminum hydroxide, and 8.27 parts by weight of silicon oxide. A ligature was obtained. When the crystal phase of the obtained honeycomb sintered body was identified by X-ray diffraction, it had an Al 2 TiO 5 crystal phase and an Na 0.8 K 0.2 AlSiO 4 crystal phase.
  • Example 9 Except for changing the columnar aluminum titanate particles obtained in Production Example 1 to 90 parts by weight, the catalyst raw material to 1.65 parts by weight sodium carbonate, 2.43 parts by weight aluminum hydroxide, and 7.45 parts by weight titanium oxide, A honeycomb sintered body was obtained in the same manner as in Example 1. When the crystal phase of the obtained honeycomb sintered body was identified by X-ray diffraction, it had an Al 2 TiO 5 crystal phase and an Na 2 Al 2 Ti 6 O 16 crystal phase.
  • Example 10 Except for changing the columnar aluminum titanate particles obtained in Production Example 1 to 60 parts by weight, the catalyst raw material to 6.6 parts by weight of sodium carbonate, 9.7 parts by weight of aluminum hydroxide, and 29.8 parts by weight of titanium oxide, A honeycomb sintered body was obtained in the same manner as in Example 1. When the crystal phase of the obtained honeycomb sintered body was identified by X-ray diffraction, it had an Al 2 TiO 5 crystal phase and an Na 2 Al 2 Ti 6 O 16 crystal phase.
  • Example 11 A honeycomb sintered body was obtained in the same manner as in Example 1 except that the firing temperature of the formed body was changed to 1350 ° C.
  • the crystal phase of the obtained honeycomb sintered body was identified by X-ray diffraction, it had an Al 2 TiO 5 crystal phase and an Na 2 Al 2 Ti 6 O 16 crystal phase.
  • Example 12 Catalyst raw material (3.3 parts by weight of sodium carbonate, 4.85 parts by weight of aluminum hydroxide, 14.9 parts by weight of titanium oxide), 20 parts by weight of graphite with respect to 80 parts by weight of the columnar aluminum titanate particles obtained in Production Example 2. Parts, 10 parts by weight of methylcellulose and 0.5 parts by weight of fatty acid soap were added, and an appropriate amount of water was added and kneaded to obtain an extrudable clay.
  • the obtained kneaded material was extruded and formed into a honeycomb structure with an extrusion molding machine to obtain a filter formed body.
  • the cell density of the mold was 300 cells / square inch (46.5 cells / cm 2 ), and the partition wall thickness was 500 ⁇ m.
  • a slurry was prepared in which the solid content was substantially composed of the above-described columnar aluminum titanate particles and a catalyst raw material, and an additive such as a viscosity modifier was added.
  • a viscosity modifier such as a viscosity modifier
  • the obtained molded body was fired at 1450 ° C. for 1 hour to obtain a honeycomb sintered body.
  • the crystal phase of the obtained honeycomb sintered body was identified by X-ray diffraction, it had an Al 2 TiO 5 crystal phase and an Na 2 Al 2 Ti 6 O 16 crystal phase.
  • Example 13 A honeycomb sintered body was obtained in the same manner as in Example 12, except that the catalyst raw material was changed to 12.0 parts by weight of cesium carbonate, 5.74 parts by weight of aluminum hydroxide, and 5.88 parts by weight of titanium oxide.
  • the crystal phase of the obtained honeycomb sintered body was identified by X-ray diffraction, it had an Al 2 TiO 5 crystal phase and a CsAlTiO 4 crystal phase.
  • Example 14 A honeycomb sintered body was obtained in the same manner as in Example 12 except that the catalyst raw material was changed to 7.46 parts by weight of sodium carbonate, 10.98 parts by weight of aluminum hydroxide, and 8.46 parts by weight of silicon oxide.
  • the crystal phase of the obtained honeycomb sintered body was identified by X-ray diffraction, it had an Al 2 TiO 5 crystal phase and an NaAlSiO 4 crystal phase.
  • Example 15 A honeycomb sintered body was obtained in the same manner as in Example 12, except that the catalyst raw material was changed to 9.06 parts by weight of strontium carbonate, 9.58 parts by weight of aluminum hydroxide, and 7.38 parts by weight of silicon oxide.
  • the crystal phase of the obtained honeycomb sintered body was identified by X-ray diffraction, it had an Al 2 TiO 5 crystal phase and an SrAl 2 Si 2 O 8 crystal phase.
  • Example 16 to 19 In order to evaluate the heat resistance of the honeycomb sintered bodies obtained in Examples 1 to 4, the honeycomb sintered bodies obtained in Examples 1 to 4 were fired (aged) at 1000 ° C. for 4 hours. To 19.
  • Catalyst raw material (3.3 parts by weight of sodium carbonate, 4.85 parts by weight of aluminum hydroxide, 14.9 parts by weight of titanium oxide), 20 parts by weight of graphite with respect to 80 parts by weight of the granular aluminum titanate particles obtained in Production Example 3. Parts, 10 parts by weight of methylcellulose and 0.5 parts by weight of fatty acid soap were added, and an appropriate amount of water was added and kneaded to obtain an extrudable clay.
  • the obtained kneaded material was extruded and formed into a honeycomb structure with an extrusion molding machine to obtain a filter formed body.
  • the cell density of the mold was 300 cells / square inch (46.5 cells / cm 2 ), and the partition wall thickness was 500 ⁇ m.
  • a slurry having a solid content substantially composed of the above-described granular aluminum titanate particles and a catalyst raw material and added with additives such as a viscosity modifier was prepared.
  • a slurry was injected into the cells of the honeycomb structure and sealed so that the opened cells and the sealed cells had a checkered pattern alternately.
  • the obtained molded body was fired at 1450 ° C. for 1 hour to obtain a honeycomb sintered body.
  • the crystal phase of the obtained honeycomb sintered body was identified by X-ray diffraction, it had an Al 2 TiO 5 crystal phase and an Na 2 Al 2 Ti 6 O 16 crystal phase.
  • the obtained kneaded material was extruded and formed into a honeycomb structure with an extrusion molding machine to obtain a formed body.
  • the cell density of the mold was 300 cells / square inch (46.5 cells / cm 2 ), and the partition wall thickness was 500 ⁇ m.
  • a slurry was prepared in which the solid content was substantially composed of the above-described columnar aluminum titanate particles and an additive such as a viscosity modifier was added.
  • a viscosity modifier such as a viscosity modifier
  • the obtained molded body was fired at 1450 ° C. for 1 hour to obtain a honeycomb sintered body.
  • FIG. 4 is an SEM photograph showing the honeycomb sintered body obtained in this comparative example.
  • the obtained platinum-supported alumina powder was mixed with water and a binder to form a slurry, and the slurry was sucked into the honeycomb sintered body obtained in Comparative Example 2 and was washed by removing excess slurry by air blowing, followed by drying. Then, heat treatment was performed in an electric furnace at 500 ° C. for 1 hour in an air atmosphere.
  • FIG. 5 is a perspective view showing a honeycomb sintered body. As shown in FIG. 5, the honeycomb sintered body 1 has 8 ⁇ 8 cells, and the end face 1a has a size of 1.8 cm in length and 1.8 cm in width. An arrow A indicates the extrusion direction, and an arrow B indicates a direction perpendicular to the extrusion direction A.
  • the porosity was measured by cutting a portion corresponding to 2 ⁇ 2 cells from the center portion 2 of the above 8 ⁇ 8 cell honeycomb sintered body 1 so that the length along the extrusion direction A was about 2 cm. It was.
  • FIG. 6 is a perspective view showing the measurement sample 3. Using the measurement sample 3 shown in FIG. 6, the porosity was measured according to JIS R1634, and the results are shown in Table 3.
  • the length along the extrusion direction A from the center portion 2 of the honeycomb sintered body 1 of 8 ⁇ 8 cells is about 2 cm. It cut out so that it might become, and it was set as the measurement sample 3.
  • the thermal expansion coefficient in the extrusion direction A of the measurement sample 3 was measured in accordance with JIS R1618, and the results are shown in Table 3.
  • Crystal orientation ratio The C-axis crystal orientation ratio of the obtained honeycomb sintered body was measured as the crystal orientation ratio.
  • the crystal orientation ratio was calculated from the crystal orientation degree in the extrusion direction and the crystal orientation degree in the direction perpendicular to the extrusion direction (vertical crystal orientation degree) as shown in the following formula.
  • Crystal orientation ratio Crystal orientation in extrusion direction / (Crystal orientation in extrusion direction + Crystal orientation in vertical direction)
  • the degree of crystal orientation was determined by X-ray diffraction.
  • the crystal orientation degree in the vertical direction was calculated by measuring X-ray diffraction of the vertical surface of the honeycomb sintered body and obtaining I (002) and I (230) in the same manner as described above.
  • 9 and 10 are perspective views showing the production of a measurement sample for measuring the X-ray diffraction of the extruded surface.
  • the region 4 including the end face 1a of the honeycomb sintered body 1 was cut out to produce a measurement sample shown in FIG.
  • the measurement sample 5 shown in FIG. 10 the X-ray diffraction of the extruded surface 5a of the measurement sample 5 was measured.
  • FIGS. 11 and 12 are perspective views showing the production of a sample for measuring X-ray diffraction on a vertical plane, that is, a plane perpendicular to the extrusion plane.
  • a region 6 corresponding to 8 ⁇ 2 cells of the honeycomb sintered body 1 was cut out along the extrusion direction A to obtain a measurement sample 7 shown in FIG.
  • the measurement of the X-ray diffraction of the surface (extruded surface) 7a along the extrusion direction A of the measurement sample 7 was performed.
  • the (002) plane is a plane perpendicular to the C axis, and the high strength of the (002) plane means that the C axis is oriented.
  • the honeycomb sintered body was pulverized with a mortar, 10% by weight of carbon black (Tokai Carbon Toka Black 7100F) was added as pseudo PM, and the mixture was mixed with the mortar.
  • carbon black Tokai Carbon Toka Black 7100F
  • the obtained mixture was subjected to a temperature analysis using a thermal analyzer (thermal analyzer manufactured by Seiko Instruments Inc .; EXSTAR6000 TG / DTA6300); 10 ° C./min, atmosphere; dry air 200 ml / min, sample amount: 5 mg TG / DTA measurement was performed, and the TG decrease start temperature due to combustion of carbon black was measured.
  • a thermal analyzer thermo analyzer manufactured by Seiko Instruments Inc .; EXSTAR6000 TG / DTA6300
  • 10 ° C./min atmosphere
  • dry air 200 ml / min dry air 200 ml / min
  • sample amount 5 mg TG / DTA measurement was performed
  • the TG decrease start temperature due to combustion of carbon black was measured.
  • the initial weight of the honeycomb sintered body (DPF) is measured in advance, and the oxidation catalyst (DOC) and the honeycomb sintered body are sequentially installed in the exhaust line of the diesel engine.
  • the diesel engine is started, the exhaust flow rate is stabilized at 500 Nm 3 / h, the pressure in the exhaust pipe body near the gas inlet and the outlet of the honeycomb sintered body is measured, and the initial value of each honeycomb sintered body is measured. Find the pressure loss.
  • a predetermined amount about 8 g / L
  • the honeycomb sintered body is once removed and the weight of the deposited PM is measured.
  • the accelerator opening of the diesel engine was adjusted, and the internal temperature of the honeycomb sintered body was raised to 520 ° C.
  • the temperature of 530 ° C. ⁇ 10 ° C. was maintained for 30 minutes from the time when the temperature reached 520 ° C., and then the state shifted to the idling state in 2 minutes.
  • Regeneration rate (%) 100 ⁇ [(PM deposition weight (g) ⁇ PM combustion weight (g)) / PM deposition weight (g)] ⁇ 100
  • the results of the initial pressure loss and the DPF regeneration rate are shown in Table 3.
  • the honeycomb sintered bodies (exhaust gas purification filters) of Examples 1 to 19 according to the present invention have a low thermal expansion coefficient, a high porosity, a low PM combustion start temperature, and an excellent DPF regeneration rate. ing. This is because the catalyst is supported on the surface of columnar aluminum titanate particles having an aspect ratio of 1.3 or more. Since there is no need to coat the catalyst on the honeycomb sintered body, the catalyst does not enter into the microcracks and the thermal expansion coefficient is not increased. Also, since the porosity is high and the PM combustion start temperature is low, it is possible to obtain an exhaust gas purification filter that can suppress the pressure loss of exhaust gas even when depositing PM, has high PM combustion efficiency, and excellent DPF regeneration rate. Can do.
  • the thermal expansion coefficient, the porosity, and the PM combustion start temperature are changed as compared with those before the aging treatment of the honeycomb sintered bodies (Examples 1 to 4). This indicates that the exhaust gas purification filter of the present invention is excellent in heat resistance. As is clear from Comparative Example 1, when granular aluminum titanate particles having an aspect ratio of less than 1.3 are used, a low thermal expansion coefficient cannot be obtained.
  • Comparative Example 6 not only the porosity of the honeycomb sintered body before the aging treatment (Comparative Example 3) is low, the thermal expansion coefficient is high, but also the PM combustion start temperature is high. I understand. This is due to the low heat resistance of the coated catalyst.
  • an exhaust gas purification filter that supports a catalyst by a simple method, has a high PM combustion efficiency, a low thermal expansion coefficient, and is excellent in heat resistance and DPF regeneration rate.
  • honeycomb sintered body honeycomb structure
  • DESCRIPTION OF SYMBOLS 1a End face of honeycomb structure 2 ... Center part of honeycomb structure 3 ... Measurement sample cut out from honeycomb structure 4 ... Area in the vicinity of end face of honeycomb structure 5 ...
  • Sample 5a Extruded surface 6 ... 8 ⁇ 2 cell region of honeycomb structure 7 ...
  • Sample 7a vertical surface for X-ray diffraction measurement of vertical surface of honeycomb structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Geometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Catalysts (AREA)
  • Filtering Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

 粒子状物質(PM)の燃焼効率が高く、熱膨張係数が低く及び耐熱性に優れた排ガス浄化フィルタ並びにその製造方法を提供する。 表面に触媒原料を付着させた平均アスペクト比(=個数平均長軸径/個数平均短軸径)が1.3以上である柱状チタン酸アルミニウム粒子を焼結することにより形成した排ガス浄化フィルタであって、チタン酸アルミニウムの表面に、焼結の際の熱処理により触媒原料から形成された触媒が担持されていることを特徴とする。

Description

排ガス浄化フィルタ及びその製造方法
 本発明は、チタン酸アルミニウムを用いた排ガス浄化フィルタ及びその製造方法に関するものである。
 従来、内燃機関、特にディーゼルエンジンから排出される排ガス中に含まれる粒子状物質(PM:particlulate matter)の浄化には、ディーゼル微粒子除去装置(DPF:disel particulate filter)等が用いられている。PMの燃焼温度は550℃~650℃と高く、PMの燃焼には高温を要することから、DPF等に用いられる多孔質材料としては、使用温度範囲での熱衝撃による疲労を起こさないように低熱膨張性で耐熱衝撃性に優れている材料が求められている。このような性能を満たし、かつ融点が高いことから、チタン酸アルミニウムがDPF等に用いられる多孔質材料として期待され、種々の開発が行われている。
 一方、PMの燃焼には高温を要すため、DPFに触媒を担持し、低温で定常的にPMを燃焼させる方法が注目されている。触媒担持は、DPFを作製した後、触媒粒子を含む溶液に含浸または触媒粒子を含む溶液を塗布することにより行われ、DPF壁面及びDPF壁内の細孔に触媒層を形成する。しかしながら、触媒層により閉塞した細孔が生じることで、連結していた細孔同士が独立して排ガスの流路が減少し、結果としてPMの燃焼効率が低下するという問題がある。
 特許文献1においては、チタン酸アルミニウムが有する高融点、低熱膨張性を損なうことなく、高強度を有し、繰り返しの熱履歴に対して機械的強度の劣化が少ないチタン酸アルミニウム焼結体を得るため、チタン酸アルミニウムに、酸化マグネシウム及び酸化ケイ素を添加したものを焼結することが提案されている。
 特許文献2においては、柱状チタン酸アルミニウムを用いて排ガスフィルタを製造することが開示されており、柱状粒子の長手方向が負の熱膨張係数であるとき長手方向と垂直な方向が正の熱膨張係数であるか、あるいは柱状粒子の長手方向が正の熱膨張係数であるとき長手方向と垂直な方向が負の熱膨張係数である排ガスフィルタを製造することが提案されている。しかしながら、柱状チタン酸アルミニウムの具体的な製造方法については開示されていない。また、柱状形状におけるアスペクト比などの具体的な形状についても開示されていない。
 特許文献3においては、DPF壁面及びDPF壁内の細孔に触媒層を形成することでPMの燃焼効率が低下するという問題を解決するために、触媒に球状の造孔剤、柱状の造孔剤及び無機バインダーを所定量添加して混合したスラリーに、担体を浸漬する方法を提案している。しかしながら、マイクロクラックに触媒が入ることにより、熱膨張係数の増大を起こす問題がある。また、触媒担持DPFの生産効率が良くないという問題がある。
特開平1-249657号公報 特開平9-29023号公報 特開2009-663号公報
 本発明の目的は、排ガス浄化フィルタの作製後に触媒粒子を含む溶液に含浸または触媒粒子を含む溶液を塗布することなく簡便な方法で触媒を担持し、PMの燃焼効率が高く、熱膨張係数が低く及び耐熱性に優れた排ガス浄化フィルタ並びにその製造方法を提供することにある。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、柱状チタン酸アルミニウム粒子と触媒原料の混合物からなる成形体を焼結することで、チタン酸アルミニウムの表面に触媒が担持され、PMの燃焼効率が高く、熱膨張係数が低く及び耐熱性に優れた排ガス浄化フィルタを提供することを見出し、本発明を完成するに至った。より具体的には、本発明は以下のようなものを提供する。
 本発明の排ガス浄化フィルタは、表面に触媒原料を付着させた平均アスペクト比(=個数平均長軸径/個数平均短軸径)が1.3以上である柱状チタン酸アルミニウム粒子を焼結することにより形成した排ガス浄化フィルタであって、チタン酸アルミニウムの表面に、焼結の際の熱処理により触媒原料から形成された触媒が担持されていることを特徴としている。
 本発明の排ガス浄化フィルタの製造方法は、上記本発明の排ガス浄化フィルタを製造することができる方法であり、平均アスペクト比(=個数平均長軸径/個数平均短軸径)が1.3以上である柱状チタン酸アルミニウム粒子を作製する工程と、柱状チタン酸アルミニウム粒子と触媒原料とを含む混合物を押出成形してフィルタ成形体を作製する工程と、フィルタ成形体を熱処理して、柱状チタン酸アルミニウム粒子を焼結するとともに、触媒原料を熱処理して触媒を形成することにより、チタン酸アルミニウムの表面に触媒が担持された排ガス浄化フィルタを作製する工程とを備えることを特徴とする。
 本発明において用いる柱状チタン酸アルミニウム粒子の平均アスペクト比は、さらに好ましくは1.5以上であり、平均アスペクト比の上限値は、特に限定されないが、一般には5以下である。
 本発明において、柱状チタン酸アルミニウム粒子の個数平均短軸径は、10μm以下であることが好ましい。個数平均短軸径は、5~10μmの範囲内であることがさらに好ましい。また、個数平均長軸径は、7~17μmの範囲内であることが好ましい。
 柱状チタン酸アルミニウム粒子の個数平均長軸径及び個数平均短軸径は、例えば、フロー式粒子像分析装置により測定することができる。
 本発明において、チタン酸アルミニウムの表面に担持する触媒は、アルカリ金属及びアルカリ土類金属のうち少なくとも1種と、Al、Si、Ti及びZrのうち少なくとも1種とを含む複合酸化物を含むものであることが好ましい。このような触媒として、例えば、以下の表1に示すものが挙げられる。
Figure JPOXMLDOC01-appb-T000001
 本発明において、柱状チタン酸アルミニウム粒子の表面に触媒原料を付着させ、柱状チタン酸アルミニウム粒子を焼結する際の熱処理により、この触媒原料を熱処理することによって上記触媒を形成することができる。従って、本発明の排ガス浄化フィルタ成形体を焼結することで、触媒の合成も同時に行うことでき、排ガス浄化フィルタに簡便に触媒を担持することできる。
 従って、本発明における触媒は、柱状チタン酸アルミニウム粒子を焼結する際の熱処理温度よりも低い温度で、触媒原料の熱処理で合成できるものであることが好ましい。柱状チタン酸アルミニウム粒子の焼結温度は、一般に1300℃~1600℃の範囲であるので、一般には、1300℃~1600℃の範囲内の温度で、かつ焼結のための熱処理よりも低い温度で合成することができる触媒及び触媒原料を選ぶことが好ましい。
 本発明の排ガス浄化フィルタの気孔率は、40%~60%であることが好ましい。気孔率が40%未満である場合には、PM2次粒子による細孔の閉塞を招き易くなり、圧損の上昇を招くため好ましくない。また、細孔の閉塞により、PMと触媒接触が悪化し、PM燃焼に関しても好ましくない。より好ましくは、45%~55%である。
 本発明においては、フィルタ成形体の押出方向における30~800℃の間の熱膨張係数が1.0×10-6/℃以下であり、上記押出方向に対するC軸の結晶配向比が0.7以上であることが好ましい。熱膨張係数が1.0×10-6/℃以下であることにより、耐熱衝撃性に優れた特性を得ることができる。熱膨張係数は、さらに好ましくは0.0×10-6/℃以下であり、熱膨張係数の下限値は、特に限定されるものではないが、一般に-2.0×10-6/℃以上である。
 上記押出方向に対するC軸の結晶配向比が0.7以上であることにより、上記押出方向における熱膨張係数を小さくすることができる。
 本発明におけるフィルタ成形体押出方向に対するC軸の結晶配向比は、以下の式から求めることができる。
 フィルタ成形体押出方向のC軸の結晶配向比=A/(A+B)
 A:フィルタ成形体押出方向のC軸配向度=I002/(I002+I230
 B:フィルタ成形体垂直方向のC軸配向度=I002/(I002+I230
 I002及びI230は、押出方向については押出面を、垂直方向については垂直面をX線回折したときの(002)面のピーク強度(I002)及び(230)面のピーク強度(I230)である。
 本発明の柱状チタン酸アルミニウム粒子は、柱状体の長手方向に沿ってC軸が延びている。このため、フィルタ成形体を押出成形した際、押出方向にC軸が整列するため、押出方向の熱膨張係数を低くすることができる。
 本発明の柱状チタン酸アルミニウム粒子を製造する方法としては、チタン源、アルミニウム源、及びマグネシウム源を含む原料をメカノケミカルに粉砕しながら混合する工程と、粉砕した混合物を焼成する工程とを備える方法が挙げられる。
 チタン源、アルミニウム源、及びマグネシウム源を含む原料を、メカノケミカルに粉砕しながら混合した粉砕混合物を用い、この粉砕混合物を焼成することにより、平均アスペクト比が1.3以上である柱状のチタン酸アルミニウム粒子を製造することができる。
 粉砕混合物を焼成する温度としては、1300~1600℃の範囲内の温度であることが好ましい。このような温度範囲内で焼成することにより、本発明の柱状チタン酸アルミニウム粒子をより効率的に製造することができる。
 焼成時間は、特に限定されるものではないが、0.5時間~20時間の範囲内で行うことが好ましい。
 メカノケミカルな粉砕としては、物理的な衝撃を与えながら粉砕する方法が挙げられる。具体的には、振動ミルによる粉砕が挙げられる。振動ミルによる粉砕処理を行うことにより、混合粉体の摩砕による剪断応力によって、原子配列の乱れと原子間距離の減少が同時に起こり、異種粒子の接点部分の原子移動が起こる結果、準安定相が得られると考えられる。これにより、反応活性の高い粉砕混合物が得られ、この反応活性の高い粉砕混合物を焼成することにより、上記本発明の柱状チタン酸アルミニウム粒子を製造することができる。
 メカノケミカルな粉砕は、一般に、水や溶剤を用いない乾式処理として行われる。
 メカノケミカルな粉砕による混合処理の時間は特に限定されるものではないが、一般には0.1時間~6時間の範囲内であることが好ましい。
 本発明において用いる柱状チタン酸アルミニウム粒子の原料には、チタン源、アルミニウム源、及びマグネシウム源が含まれることが好ましい。チタン源としては、酸化チタンを含有する化合物を用いることができ、具体的には、酸化チタン、ルチル鉱石、水酸化チタンウェットケーキ、含水チタニアなどが挙げられる。
 アルミニウム源としては、加熱により酸化アルミニウムを生じる化合物を用いることができ、具体的には、酸化アルミニウム、水酸化アルミニウム、硫酸アルミニウムなどが挙げられる。これらの中でも、特に酸化アルミニウムが好ましく用いられる。
 チタン源とアルミニウム源の混合割合としては、Ti:Al=1:2(モル比)の割合を基本とするが、それぞれ±10%程度であれば変化させても支障はない。
 マグネシウム源としては、加熱により酸化マグネシウムを生じる化合物を用いることができ、具体的には、水酸化マグネシウム、酸化マグネシウム、炭酸マグネシウムなどが挙げられる。これらの中でも、特に水酸化マグネシウム及び酸化マグネシウムが好ましく用いられる。
 マグネシウム源は、チタン源及びアルミニウム源の合計に対してそれぞれの酸化物換算で0.5~2.0重量%の範囲内となるように原料中に含まれていることが好ましい。0.5重量%未満であると、低い熱膨張係数及び高い機械的強度を有する焼結体が得られない場合がある。また、2.0重量%より多くなると、平均アスペクト比が1.3以上である柱状チタン酸アルミニウム粒子が得られない場合がある。
 また、本発明のチタン酸アルミニウム粒子の製造方法においては、原料中にケイ素源がさらに含まれていても良い。
 ケイ素源を含有させることにより、チタン酸アルミニウムの分解を抑制することができ、高温安定性に優れた柱状チタン酸アルミニウム粒子を製造することができる。
 ケイ素源としては、酸化ケイ素、ケイ素などが挙げられる。これらの中でも、特に酸化ケイ素が好ましく用いられる。ケイ素源の原料中における含有量は、チタン源及びアルミニウム源の合計に対してそれぞれの酸化物換算で、0.5~10重量%の範囲内であることが好ましい。このような範囲内とすることにより、柱状チタン酸アルミニウム粒子をより安定して製造することができる。
 柱状チタン酸アルミニウム粒子及び触媒原料を含む混合物は、例えば、造孔剤、バインダー、分散剤、及び水を添加して調製することができる。この混合物を、例えば押出成形機を用いてハニカム構造体となるように成形し、セルの開口が市松模様となるように片側の目封止を行った後、乾燥して得られた成形体を焼成し、排ガス浄化フィルタを作製することができる。焼成温度としては、例えば、1300~1600℃が挙げられる。また、焼成時間としては、例えば、1~5時間が挙げられる。
 触媒原料としては、アルカリ金属塩及びアルカリ土類金属塩のうち少なくとも1種の化合物と、アルミニウム源、ケイ素源、チタン源及びジルコニウム源のうち少なくとも1種を含む混合物が挙げられる。
 アルカリ金属としてはリチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウムがあり、アルカリ土類金属としては、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウムがある。
 アルカリ金属塩としては、アルカリ金属の炭酸塩、炭酸水素塩、水酸化物、酢酸塩等の有機酸塩、硫酸塩、硝酸塩などがあるが、炭酸塩が好ましい。
 アルカリ土類金属塩としては、アルカリ土類金属の炭酸塩、炭酸水素塩、水酸化物、酢酸塩等の有機酸塩、硫酸塩、硝酸塩などがあるが、炭酸塩が好ましい。
 アルミニウム源としては、加熱により酸化アルミニウムを生じる化合物を用いることができ、具体的には、酸化アルミニウム、水酸化アルミニウム、硫酸アルミニウムなどが挙げられる。これらの中でも、特に水酸化アルミニウムが好ましく用いられる。
 ケイ素源としては、酸化ケイ素、ケイ素などが挙げられる。これらの中でも、特に酸化ケイ素が好ましく用いられる。
 チタン源としては、酸化チタンを含有する化合物を用いることができ、具体的には、酸化チタン、ルチル鉱石、水酸化チタンウェットケーキ、含水チタニアなどが挙げられる。ジルコニウム源としては、酸化ジルコニウム、炭酸ジルコニウム水和物、硫酸ジルコニウム水和物などがあるが、酸化ジルコニウムが好ましい。
 触媒原料は、柱状チタン酸アルミニウム粒子100重量部に対し、触媒が5~100重量部生成するように触媒原料を配合するのが好ましい。より好ましくは、触媒が5~50重量部生成するように触媒原料を配合するのが好ましい。触媒が100重量部以上になると細孔が閉塞することによりPM燃焼効率が低下する場合があり、5重量部以下になると触媒を使用する効果が得られない場合がある。
 造孔剤としては、黒鉛、グラファイト、木粉、ポリエチレンが挙げられる。また、バインダーとしては、メチルセルロース、エチルセルロース、ポリビニルアルコールが挙げられる。分散剤としては、脂肪酸石鹸、エチレングリコールが挙げられる。造孔剤、バインダー、分散剤、及び水の量は適宜調整することができる。
 本発明によれば、柱状のチタン酸アルミニウム粒子を用いることにより、排ガス浄化フィルタの熱膨張係数をより低くすることができるとともに、排ガス浄化フィルタの強度を高めることができる。また、排ガスフィルタ壁面及び壁内に連結した細孔を多く形成することができるため、結果としてPMの燃焼効率を向上させることができる。
 柱状チタン酸アルミニウム粒子と触媒原料から形成される排ガス浄化フィルタ成形体を焼結することで、チタン酸アルミニウムの表面に触媒を担持することができる。
 本発明に従いチタン酸アルミニウムの表面上に担持される触媒は、チタン酸アルミニウムと強く接合されており触媒の剥離を少なくすることができる。また、柱状チタン酸アルミニウム粒子により形成された排ガス浄化フィルタの細孔を塞ぐことがないので、結果としてPMの燃焼効率を向上させることができる。また、成形体の焼結と同時に触媒を合成することにより、焼結体のマイクロクラックに触媒が入ることなく触媒を担持することができ、低い熱膨張係数を維持することができる。
 本発明の排ガス浄化フィルタは、触媒および担体であるチタン酸アルミニウムがともに耐熱性に優れていることから、異常燃焼時の高温による触媒劣化を抑制することができ、かつPMを低温から燃焼できるため燃費を向上することができる。
図1は、本発明に従う製造例1で得られた柱状チタン酸アルミニウム粒子を示すSEM写真である。 図2は、比較の製造例3で得られた粒状チタン酸アルミニウム粒子を示すSEM写真である。 図3は、本発明に従う実施例3で得られたハニカム焼結体を示すSEM写真である。 図4は、比較例2で得られたハニカム焼結体を示すSEM写真である。 図5は、ハニカム焼結体を示す斜視図である。 図6は、ハニカム焼結体の気孔率を測定するサンプルを示す斜視図である。 図7は、ハニカム焼結体の曲げ強度の測定方法を示す模式図である。 図8は、ハニカム焼結体の熱膨張係数の測定サンプルを示す斜視図である。 図9は、ハニカム焼結体の押出面のX線回折を測定するための測定サンプルの作製を示す斜視図である。 図10は、ハニカム焼結体の押出面のX線回折を測定するための測定サンプルを示す斜視図である。 図11は、ハニカム焼結体の垂直面のX線回折を測定するためのサンプルの作製を示す斜視図である。 図12は、ハニカム焼結体の垂直面のX線回折を測定するためのサンプルを示す斜視図である。 図13は、本発明に従う製造例1により得られた柱状チタン酸アルミニウム粒子のX線回折チャートを示す図である。 図14は、本発明に従う実施例1において得られたハニカム焼結体のX線回折チャートを示す図である。 図15は、本発明に従う実施例2において得られたハニカム焼結体のX線回折チャートを示す図である。 図16は、本発明に従う実施例3において得られたハニカム焼結体のX線回折チャートを示す図である。 図17は、本発明に従う実施例4において得られたハニカム焼結体のX線回折チャートを示す図である。 図18は、本発明に従う実施例5において得られたハニカム焼結体のX線回折チャートを示す図である。
 以下、本発明を具体的な実施例により説明するが、本発明は以下の実施例に限定されるものではない。
 〔柱状チタン酸アルミニウム粒子の製造方法〕
 (製造例1)
 酸化チタン360.0g、酸化アルミニウム411.1g、水酸化マグネシウム9.7g、及び酸化ケイ素19.0gを振動ミルにて粉砕しながら、2.0時間混合した。
 以上のようにして得られた粉砕混合粉500gをルツボに充填し、電気炉にて1500℃で4時間焼成した。得られた生成物について、X線回折にて結晶相を同定したところ、AlTiOであった。
 また、得られた生成物について走査型電子顕微鏡(SEM)にて形状を確認し、フロー式粒子像分析にてアスペクト比(=個数平均長軸径/個数平均短軸径)を測定した。表2に組成、形状、個数平均長軸径、個数平均短軸径、及びアスペクト比を示す。
 図1は、本製造例で得られた柱状チタン酸アルミニウム粒子を示すSEM写真である。
 図13は、本製造例において得られた柱状チタン酸アルミニウム粒子のX線回折チャートを示す図である。
 (製造例2)
 酸化チタン354.7g、酸化アルミニウム405.0g、水酸化マグネシウム21.3g、及び酸化ケイ素19.0gを振動ミルにて粉砕しながら、2.0時間混合した。
 以上のようにして得られた粉砕混合粉500gをルツボに充填し、電気炉にて1500℃で4時間焼成した。得られた生成物は、X線回折にて結晶相を同定したところ、AlTiOであった。
 また、得られた生成物について走査型電子顕微鏡(SEM)にて形状を確認し、フロー式粒子像分析にてアスペクト比(=個数平均長軸径/個数平均短軸径)を測定した。表2に組成、形状、個数平均長軸径、個数平均短軸径、及びアスペクト比を示す。
 〔粒状チタン酸アルミニウム粒子の製造〕
 (製造例3)
 酸化チタン340.1g、酸化アルミニウム388.3g、水酸化マグネシウム52.6g、及び酸化ケイ素19.0gを振動ミルにて粉砕しながら、2.0時間混合した。
 以上のようにして得られた粉砕混合粉500gをルツボに充填し、電気炉にて1500℃で4時間焼成した。得られた生成物は、X線回折にて結晶相を同定したところ、AlTiOであった。
 また、得られた生成物について走査型電子顕微鏡(SEM)にて形状を確認し、フロー式粒子像分析にてアスペクト比(=個数平均長軸径/個数平均短軸径)を測定した。表2に組成、形状、個数平均長軸径、個数平均短軸径、及びアスペクト比を示す。
 図2は、本製造例で得られた粒状チタン酸アルミニウム粒子を示すSEM写真である。
 製造例1~3で得られたチタン酸アルミニウムの組成、形状、長軸径(個数平均長軸径)、短軸径(個数平均短軸径)、アスペクト比を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、製造例1及び2で得られたチタン酸アルミニウムは、アスペクト比が1.3以上の柱状チタン酸アルミニウム粒子である。また、製造例3により得られたチタン酸アルミニウムは、アスペクト比が1.3未満の粒状チタン酸アルミニウム粒子である。
 〔ハニカム焼結体の製造〕
 上記製造例1~3で得られたチタン酸アルミニウムを用いて、以下のようにしてハニカム焼結体を製造した。
 (実施例1)
 製造例1で得られた柱状チタン酸アルミニウム粒子80重量部に対し、触媒原料(炭酸ナトリウム3.3重量部、水酸化アルミニウム4.85重量部、酸化チタン14.9重量部)、黒鉛20重量部、メチルセルロース10重量部、脂肪酸石鹸0.5重量部を配合し、さらに水を適当量添加して混練し、押出成形可能な坏土を得た。
 得られた坏土を押出成形機にてハニカム構造体となるよう押し出して成形し、フィルタ成形体を得た。金型のセル密度は、いずれも300セル/平方インチ(46.5セル/cm)とし、隔壁厚みは500μmとした。
 固形分がほぼ上記の柱状チタン酸アルミニウム粒子と触媒原料からなり、粘度調整材等の添加物を加えたスラリーを調整した。ハニカム構造体であるフィルタ成形体において、開口したセルと封止したセルが交互に市松模様となるように、ハニカム構造体のセルにスラリーを注入し、目封じを行った。
 次に熱風乾燥機でこれを乾燥した後、得られた成形体を1450℃で1時間焼成し、ハニカム焼結体を得た。得られたハニカム焼結体について、X線回折にて結晶相を同定したところ、AlTiOの結晶相及びNaAlTi16の結晶相を有していた。
 図14は、本実施例において得られたハニカム焼結体のX線回折チャートを示す図である。
 (実施例2)
 触媒原料を炭酸セシウム12.0重量部、水酸化アルミニウム5.74重量部、酸化チタン5.88重量部に変更した以外は、実施例1と同様にしてハニカム焼結体を得た。得られたハニカム焼結体について、X線回折にて結晶相を同定したところ、AlTiOの結晶相及びCsAlTiOの結晶相を有していた。
 図15は、本実施例において得られたハニカム焼結体のX線回折チャートを示す図である。
 (実施例3)
 触媒原料を炭酸ナトリウム7.46重量部、水酸化アルミニウム10.98重量部、酸化ケイ素8.46重量部に変更した以外は、実施例1と同様にしてハニカム焼結体を得た。得られたハニカム焼結体について、X線回折にて結晶相を同定したところ、AlTiOの結晶相及びNaAlSiOの結晶相を有していた。
 図16は、本実施例において得られたハニカム焼結体のX線回折チャートを示す図である。
 図3は、本実施例で得られたハニカム焼結体を示すSEM写真である。
 (実施例4)
 触媒原料を炭酸ストロンチウム9.06重量部、水酸化アルミニウム9.58重量部、酸化ケイ素7.38重量部に変更した以外は、実施例1と同様にしてハニカム焼結体を得た。得られたハニカム焼結体について、X線回折にて結晶相を同定したところ、AlTiOの結晶相及びSrAlSiの結晶相を有していた。
 図17は、本実施例において得られたハニカム焼結体のX線回折チャートを示す図である。
 (実施例5)
 触媒原料を炭酸カリウム8.74重量部、水酸化アルミニウム9.86重量部、酸化ケイ素7.60重量部に変更した以外は、実施例1と同様にしてハニカム焼結体を得た。得られたハニカム焼結体について、X線回折にて結晶相を同定したところ、AlTiOの結晶相及びKAlSiOの結晶相を有していた。
 図18は、本実施例において得られたハニカム焼結体のX線回折チャートを示す図である。
 (実施例6)
 触媒原料を炭酸ナトリウム3.53重量部、炭酸カリウム4.60重量部、水酸化アルミニウム10.39重量部、酸化ケイ素8.01重量部に変更した以外は、実施例1と同様にしてハニカム焼結体を得た。得られたハニカム焼結体について、X線回折にて結晶相を同定したところ、AlTiOの結晶相及びNa0.50.5AlSiOの結晶相を有していた。
 (実施例7)
 触媒原料を炭酸ナトリウム1.37重量部、炭酸カリウム7.14重量部、水酸化アルミニウム10.07重量部、酸化ケイ素7.76重量部に変更した以外は、実施例1と同様にしてハニカム焼結体を得た。得られたハニカム焼結体について、X線回折にて結晶相を同定したところ、AlTiOの結晶相及びNa0.20.8AlSiOの結晶相を有していた。
 (実施例8)
 触媒原料を炭酸ナトリウム5.84重量部、炭酸カリウム1.90重量部、水酸化アルミニウム10.74重量部、酸化ケイ素8.27重量部に変更した以外は、実施例1と同様にしてハニカム焼結体を得た。得られたハニカム焼結体について、X線回折にて結晶相を同定したところ、AlTiOの結晶相及びNa0.80.2AlSiOの結晶相を有していた。
 (実施例9)
 製造例1で得られた柱状チタン酸アルミニウム粒子を90重量部、触媒原料を炭酸ナトリウム1.65重量部、水酸化アルミニウム2.43重量部、酸化チタン7.45重量部に変更した以外は、実施例1と同様にしてハニカム焼結体を得た。得られたハニカム焼結体について、X線回折にて結晶相を同定したところ、AlTiOの結晶相及びNaAlTi16の結晶相を有していた。
 (実施例10)
 製造例1で得られた柱状チタン酸アルミニウム粒子を60重量部、触媒原料を炭酸ナトリウム6.6重量部、水酸化アルミニウム9.7重量部、酸化チタン29.8重量部に変更した以外は、実施例1と同様にしてハニカム焼結体を得た。
得られたハニカム焼結体について、X線回折にて結晶相を同定したところ、AlTiOの結晶相及びNaAlTi16の結晶相を有していた。
 (実施例11)
 成形体の焼成温度を1350℃に変更した以外は、実施例1と同様にしてハニカム焼結体を得た。得られたハニカム焼結体について、X線回折にて結晶相を同定したところ、AlTiOの結晶相及びNaAlTi16の結晶相を有していた。
 (実施例12)
 製造例2で得られた柱状チタン酸アルミニウム粒子80重量部に対し、触媒原料(炭酸ナトリウム3.3重量部、水酸化アルミニウム4.85重量部、酸化チタン14.9重量部)、黒鉛20重量部、メチルセルロース10重量部、脂肪酸石鹸0.5重量部を配合し、さらに水を適当量添加して混練し、押出成形可能な坏土を得た。
 得られた坏土を押出成形機にてハニカム構造体となるよう押し出して成形し、フィルタ成形体を得た。金型のセル密度は、いずれも300セル/平方インチ(46.5セル/cm)とし、隔壁厚みは500μmとした。
 固形分がほぼ上記の柱状チタン酸アルミニウム粒子と触媒原料からなり、粘度調整材等の添加物を加えたスラリーを調整した。ハニカム構造体である成形体において、開口したセルと封止したセルが交互に市松模様となるように、ハニカム構造体のセルにスラリーを注入し、目封じを行った。
 次に熱風乾燥機でこれを乾燥した後、得られた成形体を1450℃で1時間焼成し、ハニカム焼結体を得た。得られたハニカム焼結体について、X線回折にて結晶相を同定したところ、AlTiOの結晶相及びNaAlTi16の結晶相を有していた。
 (実施例13)
 触媒原料を炭酸セシウム12.0重量部、水酸化アルミニウム5.74重量部、酸化チタン5.88重量部に変更した以外は、実施例12と同様にしてハニカム焼結体を得た。得られたハニカム焼結体について、X線回折にて結晶相を同定したところ、AlTiOの結晶相及びCsAlTiOの結晶相を有していた。
 (実施例14)
 触媒原料を炭酸ナトリウム7.46重量部、水酸化アルミニウム10.98重量部、酸化ケイ素8.46重量部に変更した以外は、実施例12と同様にしてハニカム焼結体を得た。得られたハニカム焼結体について、X線回折にて結晶相を同定したところ、AlTiOの結晶相及びNaAlSiOの結晶相を有していた。
 (実施例15)
 触媒原料を炭酸ストロンチウム9.06重量部、水酸化アルミニウム9.58重量部、酸化ケイ素7.38重量部に変更した以外は、実施例12と同様にしてハニカム焼結体を得た。得られたハニカム焼結体について、X線回折にて結晶相を同定したところ、AlTiOの結晶相及びSrAlSiの結晶相を有していた。
 (実施例16~19)
 実施例1~4で得られたハニカム焼結体の耐熱性を評価するため、実施例1~4で得られたハニカム焼結体を1000℃で4時間焼成(エージング処理)し、実施例16~19とした。
 (比較例1)
 製造例3で得られた粒状チタン酸アルミニウム粒子80重量部に対し、触媒原料(炭酸ナトリウム3.3重量部、水酸化アルミニウム4.85重量部、酸化チタン14.9重量部)、黒鉛20重量部、メチルセルロース10重量部、脂肪酸石鹸0.5重量部を配合し、さらに水を適当量添加して混練し、押出成形可能な坏土を得た。
 得られた坏土を押出成形機にてハニカム構造体となるよう押し出して成形し、フィルタ成形体を得た。金型のセル密度は、いずれも300セル/平方インチ(46.5セル/cm)とし、隔壁厚みは500μmとした。
 固形分がほぼ上記の粒状チタン酸アルミニウム粒子と触媒原料からなり、粘度調整材等の添加物を加えたスラリーを調整した。ハニカム構造体である成形体において、開口したセルと封止したセルが交互に市松模様となるように、ハニカム構造体のセルにスラリーを注入し、目封じを行った。
 次に熱風乾燥機でこれを乾燥した後、得られた成形体を1450℃で1時間焼成し、ハニカム焼結体を得た。得られたハニカム焼結体について、X線回折にて結晶相を同定したところ、AlTiOの結晶相及びNaAlTi16の結晶相を有していた。
 (比較例2)
 製造例1で得られた柱状チタン酸アルミニウム粒子100重量部に対し、黒鉛20重量部、メチルセルロース10重量部、脂肪酸石鹸0.5重量部を配合し、さらに水を適当量添加して混練し、押出成形可能な坏土を得た。
 得られた坏土を押出成形機にてハニカム構造体となるよう押し出して成形し、成形体を得た。金型のセル密度は、いずれも300セル/平方インチ(46.5セル/cm)とし、隔壁厚みは500μmとした。
 固形分がほぼ上記の柱状チタン酸アルミニウム粒子からなり、粘度調整材等の添加物を加えたスラリーを調整した。ハニカム構造体である成形体において、開口したセルと封止したセルが交互に市松模様となるように、ハニカム構造体のセルにスラリーを注入し、目封じを行った。
 次に熱風乾燥機でこれを乾燥した後、得られた成形体を1450℃で1時間焼成し、ハニカム焼結体を得た。
 図4は、本比較例で得られたハニカム焼結体を示すSEM写真である。
 (比較例3)
 γアルミナ(和光純薬工業株式会社製)30gを5wt%濃度のジニトロジアンミン白金(II)硝酸溶液6.0gを加えて混合し、蒸発乾固させ、白金をγアルミナに担持させた。
 これを乳鉢で粉砕し、電気炉にて大気雰囲気下で500℃、1時間熱処理し、白金担持アルミナ粉末を得た。
 得られた白金担持アルミナ粉末を水およびバインダーと混合してスラリーとし、比較例2で得られたハニカム焼結体にスラリーを吸引するとともにエアブローにより余分なスラリーを除去することによりウォッシュコートし、乾燥させた後、電気炉にて大気雰囲気下で500℃、1時間熱処理した。
 (比較例4~6)
 比較例1~3で得られたハニカム焼結体の耐熱性を評価するため、比較例1~3で得られたハニカム焼結体を1000℃、4時間焼成(エージング処理)し、比較例4~6とした。
 〔ハニカム焼結体の評価〕
 得られた各ハニカム焼結体について気孔率、曲げ強度、熱膨張係数、結晶配向度、初期圧力損失、PM燃焼開始温度、及びDPF再生率を以下のようにして測定した。
 (気孔率)
 図5は、ハニカム焼結体を示す斜視図である。図5に示すように、ハニカム焼結体1は、8×8セルを有し、端面1aは、縦1.8cm、横1.8cmの大きさを有している。矢印Aは、押出方向を示しており、矢印Bは押出方向Aに対し垂直な方向を示している。
 気孔率は、上記の8×8セルのハニカム焼結体1の中心部2から、2×2セルに相当する部分を、押出方向Aに沿う長さが2cm程度となるように切り出し、測定サンプルとした。
 図6は、測定サンプル3を示す斜視図である。図6に示す測定サンプル3を用い、JIS R1634に準拠して気孔率を測定し、結果を表3に示した。
 (曲げ強度)
 図7に示すように、上記の8×8セルのハニカム焼結体1を、支持点11及び12に支持した状態で、焼結体1の中心部を押圧棒10で押圧することにより、JIS R1601に準拠して、曲げ強度を測定し、結果を表3に示した。
 (熱膨張係数)
 図5及び図6を参照して説明した、気孔率の測定サンプル3と同様にして、8×8セルのハニカム焼結体1の中心部2から、押出方向Aに沿う長さが2cm程度となるように切り出し、測定サンプル3とした。図8に示すように、測定サンプル3の押出方向Aにおける熱膨張係数を、JIS R1618に準拠して測定し、結果を表3に示した。
 (結晶配向比)
 得られたハニカム焼結体についてのC軸結晶配向比を、結晶配向比として測定した。
 結晶配向比は、以下の式に示すように、押出方向の結晶配向度と、押出方向と垂直な方向の結晶配向度(垂直方向の結晶配向度)から算出した。
 結晶配向比=押出方向の結晶配向度/(押出方向の結晶配向度+垂直方向の結晶配向度)
 結晶配向度は、X線回折により求めた。押出方向の結晶配向度は、ハニカム焼結体の押出面のX線回折を測定し、(002)面の回折強度(=I(002))及び(230)面の回折強度(=I(230))より、以下の式により算出した。
 結晶配向度=I(002)/{I(002)+I(230)}
 垂直方向の結晶配向度は、ハニカム焼結体の垂直面のX線回折を測定し、上記と同様にして、I(002)及びI(230)を求めることにより算出した。
 なお、(002)面の回折強度は、2θ=50.8°付近に現れるピークであり、(230)面の回折ピークは、2θ=33.7°付近に現れるピークである。
 図9及び図10は、押出面のX線回折を測定するための測定サンプルの作製を示す斜視図である。
 図9に示すように、ハニカム焼結体1の端面1aを含む領域4を切り取り、図10に示す測定サンプルを作製した。図10に示す測定サンプル5を用い、この測定サンプル5の押出面5aのX線回折を測定した。
 図11及び図12は、垂直面、すなわち、押出面に垂直な方向の面のX線回折を測定するためのサンプルの作製を示す斜視図である。
 図11に示すように、ハニカム焼結体1の8×2セルに相当する領域6を、押出方向Aに沿って切り出し、図12に示す測定サンプル7を得た。この測定サンプル7の押出方向Aに沿う面(押出面)7aのX線回折の測定を行った。
 以上のようにして、ハニカム焼結体についての結晶配向比を算出し、結果を表3に示した。
 なお、(002)面はC軸に垂直な面であり、(002)面の強度が高いということは、C軸が配向していることを意味する。
 (PM燃焼開始温度)
 ハニカム焼結体を乳鉢で粉砕し、疑似PMとしてカーボンブラック(東海カーボン製トーカブラック7100F)を10重量%添加し乳鉢混合した。
 得られた混合物を熱分析装置(セイコーインスツルメント社製熱分析装置;EXSTAR6000 TG/DTA6300)を用い、昇温条件;10℃/min、雰囲気;ドライエアー200ml/min、サンプル量;5mgの条件でTG/DTA測定し、カーボンブラックの燃焼によるTG減少開始温度を測定した。結果を表3に示した。
 (初期圧力損失及びDPF再生率)
 また、上記実施例及び比較例のハニカム焼結体についてディーゼルエンジンを用いて、DPF再生性能試験を行った。
 DPF再生性能試験による再生率測定手順は、予めハニカム焼結体(DPF)の初期重量を測定しておき、ディーゼルエンジンの排気ラインに、酸化触媒(DOC)とハニカム焼結体を順に設置する。次いで、ディーゼルエンジンを始動させ、排気流量を500Nm/hに安定させ、ハニカム焼結体のガス流入口付近と流出口付近のそれぞれ排気管体内の圧力を計測し、各ハニカム焼結体の初期圧力損失を求める。そして、排気温度が低温となる運転条件でPMを所定量(約8g/L)堆積させた後、一度ハニカム焼結体を取り外し、堆積したPMの重量を測定する。
 次いで、ハニカム焼結体を元通りに設置した後、ディーゼルエンジンのアクセル開度を調整し、ハニカム焼結体の内部温度を520℃まで上昇させた。520℃に到達した時点から30分間530℃±10℃の温度を保持し、その後2分間でアイドリング状態まで移行した。
 再度、ハニカム焼結体を取り出し、重量減少分(=PM燃焼重量)を測定した。
 以下の計算式により再生率を算出した。
 再生率(%)=100-[(PM堆積重量(g)-PM燃焼重量(g))/PM堆積重量(g)]×100
 初期圧力損失とDPF再生率の結果を表3に示した。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、本発明に従う実施例1~19のハニカム焼結体(排ガス浄化フィルタ)は、熱膨張係数が低く、気孔率が高く、PM燃焼開始温度が低く、DPF再生率において優れている。これは、アスペクト比が1.3以上である柱状のチタン酸アルミニウム粒子の表面に触媒を担持したことによるものである。触媒をハニカム焼結体にコーティングする必要が無いため、微小亀裂(マイクロクラック)内に触媒が入り込んで、熱膨張係数を高くすることがない。また、気孔率が高く、PM燃焼開始温度が低いことから、PMを堆積させる際にも排ガスの圧力損失を抑えられ、PM燃焼効率の高い、かつDPF再生率に優れた排ガス浄化フィルタを得ることができる。
 本発明に従う実施例16~19に示すハニカム焼結体は、ハニカム焼結体のエージング処理前(実施例1~4)と比較して熱膨張係数、気孔率、PM燃焼開始温度が変化していないことを示しており、本発明の排ガス浄化フィルタが耐熱性に優れていることがわかる。比較例1から明らかなように、アスペクト比が1.3未満である粒状チタン酸アルミニウム粒子を用いた場合には、低い熱膨張係数が得られない。
 比較例3から明らかなように、触媒を焼結体にコーティングすると、高い気孔率と低い線膨張係数が得られない。これは、触媒が焼結体の細孔やマイクロクラックに入り込んだことによるものである。
 比較例6から明らかなように、ハニカム焼結体のエージング処理前(比較例3)と比較して気孔率が低く、熱膨張係数が高いだけでなく、PM燃焼開始温度が高くなっていることが分かる。これは、コーティングした触媒の耐熱性が低いことによるものである。
 従って、本発明によれば、簡便な方法で触媒を担持し、PMの燃焼効率が高く、熱膨張係数が低く、耐熱性及びDPF再生率に優れた排ガス浄化フィルタを提供することができる。
 1…ハニカム焼結体(ハニカム構造体)
 1a…ハニカム構造体の端面
 2…ハニカム構造体の中心部
 3…ハニカム構造体から切り出した測定サンプル
 4…ハニカム構造体の端面近傍の領域
 5…ハニカム構造体の押出面をX線回折測定するためのサンプル
 5a…押出面
 6…ハニカム構造体の8×2セルの領域
 7…ハニカム構造体の垂直面をX線回折測定するためのサンプル
 7a…垂直面

Claims (7)

  1.  表面に触媒原料を付着させた平均アスペクト比(=個数平均長軸径/個数平均短軸径)が1.3以上である柱状チタン酸アルミニウム粒子を焼結することにより形成した排ガス浄化フィルタであって、
     チタン酸アルミニウムの表面に、前記焼結の際の熱処理により前記触媒原料から形成された触媒が担持されていることを特徴とする排ガス浄化フィルタ。
  2.  前記触媒が、アルカリ金属及びアルカリ土類金属のうちの少なくとも一種と、Al、Si、Ti及びZrのうちの少なくとも一種とを含む複合酸化物を含んでいることを特徴とする請求項1に記載の排ガス浄化フィルタ。
  3.  前記排ガス浄化フィルタが押出成形により成形されたフィルタ成形体を焼結したものであり、前記排ガス浄化フィルタの押出方向における30~800℃の間の熱膨張係数が1.0×10-6/℃以下であることを特徴とする請求項1または2に記載の排ガス浄化フィルタ。
  4.  前記排ガス浄化フィルタが押出成形により成形されたフィルタ成形体を焼結したものであり、前記排ガス浄化フィルタの押出方向に対するC軸の結晶配向比が0.7以上であることを特徴とする請求項1~3のいずれか1項に記載の排ガス浄化フィルタ。
  5.  気孔率が40%~60%であることを特徴とする請求項1~4のいずれか1項に記載の排ガス浄化フィルタ。
  6.  請求項1~5のいずれか1項に記載の排ガス浄化フィルタを製造する方法であって、
     平均アスペクト比(=個数平均長軸径/個数平均短軸径)が1.3以上である柱状チタン酸アルミニウム粒子を作製する工程と、
     前記柱状チタン酸アルミニウム粒子と前記触媒原料とを含む混合物を押出成形してフィルタ成形体を作製する工程と、
     前記フィルタ成形体を熱処理して、前記柱状チタン酸アルミニウム粒子を焼結するとともに、前記触媒原料を熱処理して触媒を形成することにより、チタン酸アルミニウムの表面に前記触媒が担持された排ガス浄化フィルタを作製する工程とを備えることを特徴とする排ガス浄化フィルタの製造方法。
  7.  前記触媒原料が、アルカリ金属塩及びアルカリ土類金属塩のうちの少なくとも一種の化合物と、アルミニウム源、ケイ素源、チタン源及びジルコニウム源のうちの少なくとも一種を含むことを特徴とする請求項6に記載の排ガス浄化フィルタの製造方法。
PCT/JP2011/071588 2010-10-04 2011-09-22 排ガス浄化フィルタ及びその製造方法 WO2012046577A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/822,243 US9238197B2 (en) 2010-10-04 2011-09-22 Exhaust gas purification filter, and method for producing same
JP2012537635A JP5587420B2 (ja) 2010-10-04 2011-09-22 排ガス浄化フィルタ及びその製造方法
CN201180048195.1A CN103153465B (zh) 2010-10-04 2011-09-22 排气净化过滤器及其制造方法
EP11830510.1A EP2626132B1 (en) 2010-10-04 2011-09-22 Exhaust gas purification filter, and method for producing same
ES11830510.1T ES2593231T3 (es) 2010-10-04 2011-09-22 Filtro de purificación de gas de escape, y método para producirlo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-224532 2010-10-04
JP2010224532 2010-10-04

Publications (1)

Publication Number Publication Date
WO2012046577A1 true WO2012046577A1 (ja) 2012-04-12

Family

ID=45927572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071588 WO2012046577A1 (ja) 2010-10-04 2011-09-22 排ガス浄化フィルタ及びその製造方法

Country Status (8)

Country Link
US (1) US9238197B2 (ja)
EP (1) EP2626132B1 (ja)
JP (1) JP5587420B2 (ja)
CN (1) CN103153465B (ja)
ES (1) ES2593231T3 (ja)
HU (1) HUE030045T2 (ja)
PL (1) PL2626132T3 (ja)
WO (1) WO2012046577A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029853A1 (ja) * 2013-08-30 2015-03-05 大塚化学株式会社 排ガス浄化フィルタ及び排ガス浄化装置
WO2015080255A1 (ja) * 2013-11-29 2015-06-04 京セラ株式会社 ハニカム構造体およびこれを備えるガス処理装置
WO2015080254A1 (ja) * 2013-11-28 2015-06-04 京セラ株式会社 ハニカム構造体およびこれを備えるガス処理装置
WO2015182773A1 (ja) * 2014-05-30 2015-12-03 住友化学株式会社 ハニカムフィルタ中間体、ハニカムフィルタ、及び、これらの製造方法
WO2018198999A1 (ja) * 2017-04-26 2018-11-01 大塚化学株式会社 ハニカム構造体及び排ガス浄化装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3159058A4 (en) * 2014-06-19 2018-02-14 Otsuka Chemical Holdings Co., Ltd. Exhaust gas purifying catalyst, exhaust gas purification device and filter, and method for producing said catalyst
US10112181B2 (en) * 2015-02-27 2018-10-30 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyst for purification of exhaust gas, method for producing the same, and method for purification of exhaust gas using the same
JP6219871B2 (ja) 2015-03-27 2017-10-25 トヨタ自動車株式会社 排ガス浄化用触媒

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01249657A (ja) 1988-03-31 1989-10-04 Toshiba Corp セラミックス焼結体
JPH08290963A (ja) * 1995-04-21 1996-11-05 Matsushita Electric Ind Co Ltd 低熱膨張材料及びそれを用いた排ガスフィルター
JPH0929023A (ja) 1995-07-21 1997-02-04 Matsushita Electric Ind Co Ltd 排ガスフィルタ及びその製造方法
JP2009000663A (ja) 2007-06-25 2009-01-08 Honda Motor Co Ltd 排ガス浄化フィルタ及びその製造方法
WO2009119748A1 (ja) * 2008-03-26 2009-10-01 京セラ株式会社 多孔質セラミック部材およびその製法ならびにフィルタ
JP2010116290A (ja) * 2008-11-12 2010-05-27 Otsuka Chem Co Ltd 柱状チタン酸アルミニウム及びその製造方法
WO2010143493A1 (ja) * 2009-06-09 2010-12-16 大塚化学株式会社 柱状チタン酸アルミニウム及びその製造方法並びにハニカム構造体
WO2010143494A1 (ja) * 2009-06-09 2010-12-16 大塚化学株式会社 柱状チタン酸アルミニウム及びその製造方法並びにハニカム構造体
WO2010146954A1 (ja) * 2009-06-19 2010-12-23 大塚化学株式会社 触媒担持用セラミックフィルタ及びその製造方法
JP2011005417A (ja) * 2009-06-25 2011-01-13 Otsuka Chem Co Ltd ハニカムフィルタ及びその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5846276A (en) * 1995-07-05 1998-12-08 Matsushita Electric Industrial Co., Ltd. Exhaust gas filter
US6620751B1 (en) * 2002-03-14 2003-09-16 Corning Incorporated Strontium feldspar aluminum titanate for high temperature applications
WO2006044268A1 (en) * 2004-10-13 2006-04-27 Dow Global Technologies Inc. Catalysed diesel soot filter and process for its use
WO2006130759A2 (en) * 2005-05-31 2006-12-07 Corning Incorporated Aluminum titanate ceramic forming batch mixtures and green bodies including pore former combinations and methods of manufacturing and firing same
CN1954137B (zh) * 2005-07-21 2011-12-21 揖斐电株式会社 蜂窝结构体以及废气净化装置
US7959704B2 (en) 2005-11-16 2011-06-14 Geo2 Technologies, Inc. Fibrous aluminum titanate substrates and methods of forming the same
US8114354B2 (en) * 2007-12-18 2012-02-14 Basf Corporation Catalyzed soot filter manufacture and systems
EP2202211A4 (en) 2008-03-31 2011-09-28 Ibiden Co Ltd HONEYCOMB STRUCTURE
WO2009122532A1 (ja) * 2008-03-31 2009-10-08 イビデン株式会社 ハニカム構造体
JP2010146954A (ja) 2008-12-22 2010-07-01 Shin Etsu Polymer Co Ltd 圧接型コネクタの接続構造
JP5212082B2 (ja) 2008-12-22 2013-06-19 トヨタ自動車株式会社 電動パワーステアリング装置
US8859447B2 (en) * 2010-03-26 2014-10-14 Otsuka Chemical Co., Ltd. Columnar aluminum titanate and method for producing same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01249657A (ja) 1988-03-31 1989-10-04 Toshiba Corp セラミックス焼結体
JPH08290963A (ja) * 1995-04-21 1996-11-05 Matsushita Electric Ind Co Ltd 低熱膨張材料及びそれを用いた排ガスフィルター
JPH0929023A (ja) 1995-07-21 1997-02-04 Matsushita Electric Ind Co Ltd 排ガスフィルタ及びその製造方法
JP2009000663A (ja) 2007-06-25 2009-01-08 Honda Motor Co Ltd 排ガス浄化フィルタ及びその製造方法
WO2009119748A1 (ja) * 2008-03-26 2009-10-01 京セラ株式会社 多孔質セラミック部材およびその製法ならびにフィルタ
JP2010116290A (ja) * 2008-11-12 2010-05-27 Otsuka Chem Co Ltd 柱状チタン酸アルミニウム及びその製造方法
WO2010143493A1 (ja) * 2009-06-09 2010-12-16 大塚化学株式会社 柱状チタン酸アルミニウム及びその製造方法並びにハニカム構造体
WO2010143494A1 (ja) * 2009-06-09 2010-12-16 大塚化学株式会社 柱状チタン酸アルミニウム及びその製造方法並びにハニカム構造体
WO2010146954A1 (ja) * 2009-06-19 2010-12-23 大塚化学株式会社 触媒担持用セラミックフィルタ及びその製造方法
JP2011005417A (ja) * 2009-06-25 2011-01-13 Otsuka Chem Co Ltd ハニカムフィルタ及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2626132A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029853A1 (ja) * 2013-08-30 2015-03-05 大塚化学株式会社 排ガス浄化フィルタ及び排ガス浄化装置
JPWO2015029853A1 (ja) * 2013-08-30 2017-03-02 大塚化学株式会社 排ガス浄化フィルタ及び排ガス浄化装置
WO2015080254A1 (ja) * 2013-11-28 2015-06-04 京セラ株式会社 ハニカム構造体およびこれを備えるガス処理装置
WO2015080255A1 (ja) * 2013-11-29 2015-06-04 京セラ株式会社 ハニカム構造体およびこれを備えるガス処理装置
WO2015182773A1 (ja) * 2014-05-30 2015-12-03 住友化学株式会社 ハニカムフィルタ中間体、ハニカムフィルタ、及び、これらの製造方法
WO2018198999A1 (ja) * 2017-04-26 2018-11-01 大塚化学株式会社 ハニカム構造体及び排ガス浄化装置

Also Published As

Publication number Publication date
PL2626132T3 (pl) 2016-12-30
CN103153465B (zh) 2015-11-25
JP5587420B2 (ja) 2014-09-10
CN103153465A (zh) 2013-06-12
HUE030045T2 (en) 2017-04-28
ES2593231T3 (es) 2016-12-07
US9238197B2 (en) 2016-01-19
EP2626132A1 (en) 2013-08-14
EP2626132B1 (en) 2016-06-22
JPWO2012046577A1 (ja) 2014-02-24
US20130171036A1 (en) 2013-07-04
EP2626132A4 (en) 2014-12-10

Similar Documents

Publication Publication Date Title
JP5587420B2 (ja) 排ガス浄化フィルタ及びその製造方法
KR101093468B1 (ko) 배기가스 정화 허니컴 필터 및 그 제조방법
CN101091925B (zh) 废气净化催化剂用蜂窝状载体及其制造方法
JP5564677B2 (ja) 多孔質チタン酸アルミニウム及びその焼結体並びにその製造方法
JP5746986B2 (ja) 排ガス浄化フィルタの製造方法
US20130316129A1 (en) Silicon carbide material, honeycomb structure, and electric heating type catalyst carrier
JP2011005417A (ja) ハニカムフィルタ及びその製造方法
JP5365794B2 (ja) 触媒担持用セラミックフィルタ及びその製造方法
JP5856793B2 (ja) チタン酸アルミニウム質ハニカム構造体
WO2012070386A1 (ja) ハニカムフィルタ
JP4609831B2 (ja) 排ガス浄化触媒用ハニカム担体及びその製造方法
JP2012110849A (ja) ハニカムフィルタ
WO2011118025A1 (ja) 柱状チタン酸アルミニウム及びその製造方法
JP5380706B2 (ja) 柱状チタン酸アルミニウム及びその製造方法並びにハニカム構造体
JP5274209B2 (ja) 柱状チタン酸アルミニウム及びその製造方法
JP5445997B2 (ja) ハニカムフィルタ
JP6463972B2 (ja) 排ガス浄化触媒、排ガス浄化装置及びフィルタ、並びに該触媒の製造方法
JP5695127B2 (ja) 柱状チタン酸アルミニウム粉体の製造方法
JP5380707B2 (ja) 柱状チタン酸アルミニウム及びその製造方法並びにハニカム構造体
JP2016036782A (ja) 粒子状物質燃焼触媒及び排ガス浄化フィルタ
JP2017213527A (ja) 排ガス浄化触媒の製造方法並びに排ガス浄化触媒及び排ガス浄化装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180048195.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11830510

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012537635

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13822243

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011830510

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE