WO2018198999A1 - ハニカム構造体及び排ガス浄化装置 - Google Patents
ハニカム構造体及び排ガス浄化装置 Download PDFInfo
- Publication number
- WO2018198999A1 WO2018198999A1 PCT/JP2018/016402 JP2018016402W WO2018198999A1 WO 2018198999 A1 WO2018198999 A1 WO 2018198999A1 JP 2018016402 W JP2018016402 W JP 2018016402W WO 2018198999 A1 WO2018198999 A1 WO 2018198999A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- honeycomb structure
- mol
- zeolite
- oxide
- raw material
- Prior art date
Links
- 238000000746 purification Methods 0.000 title claims abstract description 32
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 105
- 239000010457 zeolite Substances 0.000 claims abstract description 103
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 102
- 239000002994 raw material Substances 0.000 claims abstract description 77
- 239000000203 mixture Substances 0.000 claims abstract description 59
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 37
- 210000004027 cell Anatomy 0.000 claims abstract description 32
- 210000002421 cell wall Anatomy 0.000 claims abstract description 32
- 239000010936 titanium Substances 0.000 claims abstract description 30
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 28
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910052700 potassium Inorganic materials 0.000 claims abstract description 26
- 239000011591 potassium Substances 0.000 claims abstract description 26
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims abstract description 25
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 19
- 239000010703 silicon Substances 0.000 claims abstract description 19
- 229910052742 iron Inorganic materials 0.000 claims abstract description 16
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 12
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims abstract description 11
- 150000001342 alkaline earth metals Chemical class 0.000 claims abstract description 9
- 239000003054 catalyst Substances 0.000 claims description 73
- 239000007789 gas Substances 0.000 claims description 41
- 239000000919 ceramic Substances 0.000 claims description 17
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 9
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 7
- 229910000505 Al2TiO5 Inorganic materials 0.000 claims description 6
- AABBHSMFGKYLKE-SNAWJCMRSA-N propan-2-yl (e)-but-2-enoate Chemical compound C\C=C\C(=O)OC(C)C AABBHSMFGKYLKE-SNAWJCMRSA-N 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 229910052878 cordierite Inorganic materials 0.000 claims description 3
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 claims description 3
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 claims description 3
- 239000012013 faujasite Substances 0.000 claims description 3
- 229910052680 mordenite Inorganic materials 0.000 claims description 3
- 229910052863 mullite Inorganic materials 0.000 claims description 3
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 3
- 239000002245 particle Substances 0.000 description 73
- 239000013618 particulate matter Substances 0.000 description 41
- 238000010304 firing Methods 0.000 description 26
- 239000010410 layer Substances 0.000 description 26
- 239000000835 fiber Substances 0.000 description 25
- 230000001186 cumulative effect Effects 0.000 description 20
- 238000002485 combustion reaction Methods 0.000 description 19
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 15
- 239000002734 clay mineral Substances 0.000 description 15
- 239000012784 inorganic fiber Substances 0.000 description 15
- 150000001875 compounds Chemical class 0.000 description 14
- 230000003647 oxidation Effects 0.000 description 14
- 238000007254 oxidation reaction Methods 0.000 description 14
- 239000011148 porous material Substances 0.000 description 14
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 12
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 12
- 238000009826 distribution Methods 0.000 description 12
- 239000011777 magnesium Substances 0.000 description 12
- 239000011575 calcium Substances 0.000 description 11
- 239000003638 chemical reducing agent Substances 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 11
- 230000009467 reduction Effects 0.000 description 11
- 238000006722 reduction reaction Methods 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- -1 organic acid salts Chemical class 0.000 description 10
- 239000011734 sodium Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 239000013078 crystal Substances 0.000 description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 8
- 229910000314 transition metal oxide Inorganic materials 0.000 description 8
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 229910021529 ammonia Inorganic materials 0.000 description 6
- 239000002131 composite material Substances 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229910052783 alkali metal Inorganic materials 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 150000002500 ions Chemical group 0.000 description 5
- 238000007561 laser diffraction method Methods 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 5
- 230000008929 regeneration Effects 0.000 description 5
- 238000011069 regeneration method Methods 0.000 description 5
- 238000000790 scattering method Methods 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 5
- 238000011144 upstream manufacturing Methods 0.000 description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 229910020068 MgAl Inorganic materials 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 4
- 230000002708 enhancing effect Effects 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052901 montmorillonite Inorganic materials 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 229910000027 potassium carbonate Inorganic materials 0.000 description 4
- 235000011181 potassium carbonates Nutrition 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000000440 bentonite Substances 0.000 description 3
- 229910000278 bentonite Inorganic materials 0.000 description 3
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 3
- 239000004202 carbamide Substances 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 3
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 235000010755 mineral Nutrition 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical group O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- 229910052703 rhodium Inorganic materials 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- 150000003624 transition metals Chemical class 0.000 description 3
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 2
- 229910004762 CaSiO Inorganic materials 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 229910017639 MgSi Inorganic materials 0.000 description 2
- 239000004113 Sepiolite Substances 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 239000001099 ammonium carbonate Substances 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- 239000010953 base metal Substances 0.000 description 2
- 229910052790 beryllium Inorganic materials 0.000 description 2
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 238000010531 catalytic reduction reaction Methods 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- PPQREHKVAOVYBT-UHFFFAOYSA-H dialuminum;tricarbonate Chemical compound [Al+3].[Al+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O PPQREHKVAOVYBT-UHFFFAOYSA-H 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 2
- 239000000347 magnesium hydroxide Substances 0.000 description 2
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- 229910052618 mica group Inorganic materials 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- CHWRSCGUEQEHOH-UHFFFAOYSA-N potassium oxide Chemical group [O-2].[K+].[K+] CHWRSCGUEQEHOH-UHFFFAOYSA-N 0.000 description 2
- 229910001950 potassium oxide Inorganic materials 0.000 description 2
- 229910052705 radium Inorganic materials 0.000 description 2
- HCWPIIXVSYCSAN-UHFFFAOYSA-N radium atom Chemical compound [Ra] HCWPIIXVSYCSAN-UHFFFAOYSA-N 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 229910000275 saponite Inorganic materials 0.000 description 2
- 229910052624 sepiolite Inorganic materials 0.000 description 2
- 235000019355 sepiolite Nutrition 0.000 description 2
- 229910052604 silicate mineral Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000010944 silver (metal) Substances 0.000 description 2
- 229910021647 smectite Inorganic materials 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910000789 Aluminium-silicon alloy Inorganic materials 0.000 description 1
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 1
- 229910021532 Calcite Inorganic materials 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910017625 MgSiO Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910018557 Si O Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 229910008484 TiSi Inorganic materials 0.000 description 1
- 229910006249 ZrSi Inorganic materials 0.000 description 1
- JAWMENYCRQKKJY-UHFFFAOYSA-N [3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-ylmethyl)-1-oxa-2,8-diazaspiro[4.5]dec-2-en-8-yl]-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]methanone Chemical group N1N=NC=2CN(CCC=21)CC1=NOC2(C1)CCN(CC2)C(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F JAWMENYCRQKKJY-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 229910001583 allophane Inorganic materials 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 229940118662 aluminum carbonate Drugs 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 229960000892 attapulgite Drugs 0.000 description 1
- AYJRCSIUFZENHW-DEQYMQKBSA-L barium(2+);oxomethanediolate Chemical compound [Ba+2].[O-][14C]([O-])=O AYJRCSIUFZENHW-DEQYMQKBSA-L 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- UNYSKUBLZGJSLV-UHFFFAOYSA-L calcium;1,3,5,2,4,6$l^{2}-trioxadisilaluminane 2,4-dioxide;dihydroxide;hexahydrate Chemical compound O.O.O.O.O.O.[OH-].[OH-].[Ca+2].O=[Si]1O[Al]O[Si](=O)O1.O=[Si]1O[Al]O[Si](=O)O1 UNYSKUBLZGJSLV-UHFFFAOYSA-L 0.000 description 1
- VNSBYDPZHCQWNB-UHFFFAOYSA-N calcium;aluminum;dioxido(oxo)silane;sodium;hydrate Chemical compound O.[Na].[Al].[Ca+2].[O-][Si]([O-])=O VNSBYDPZHCQWNB-UHFFFAOYSA-N 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229910052676 chabazite Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 description 1
- 229960004643 cupric oxide Drugs 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 235000010944 ethyl methyl cellulose Nutrition 0.000 description 1
- 239000010433 feldspar Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910000271 hectorite Inorganic materials 0.000 description 1
- KWLMIXQRALPRBC-UHFFFAOYSA-L hectorite Chemical compound [Li+].[OH-].[OH-].[Na+].[Mg+2].O1[Si]2([O-])O[Si]1([O-])O[Si]([O-])(O1)O[Si]1([O-])O2 KWLMIXQRALPRBC-UHFFFAOYSA-L 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- BDAGIHXWWSANSR-NJFSPNSNSA-N hydroxyformaldehyde Chemical compound O[14CH]=O BDAGIHXWWSANSR-NJFSPNSNSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 229920003087 methylethyl cellulose Polymers 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 229910000273 nontronite Inorganic materials 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 229910052625 palygorskite Inorganic materials 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052615 phyllosilicate Inorganic materials 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 235000011118 potassium hydroxide Nutrition 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- 239000004323 potassium nitrate Substances 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- GROMGGTZECPEKN-UHFFFAOYSA-N sodium metatitanate Chemical compound [Na+].[Na+].[O-][Ti](=O)O[Ti](=O)O[Ti]([O-])=O GROMGGTZECPEKN-UHFFFAOYSA-N 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910000018 strontium carbonate Inorganic materials 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- NFMWFGXCDDYTEG-UHFFFAOYSA-N trimagnesium;diborate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]B([O-])[O-].[O-]B([O-])[O-] NFMWFGXCDDYTEG-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
- B01J29/42—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
- B01J29/46—Iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/56—Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/16—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
- C04B35/18—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/08—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/022—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
Definitions
- the present invention relates to a honeycomb structure and an exhaust gas purification apparatus including the honeycomb structure.
- Exhaust gas discharged from internal combustion engines such as diesel engines contains harmful substances such as particulate matter (PM), nitrogen oxides (NO x ), hydrocarbons, and carbon monoxide.
- PM particulate matter
- NO x nitrogen oxides
- hydrocarbons hydrocarbons
- carbon monoxide carbon monoxide
- PM is collected in a honeycomb structure having a filtration function arranged in a flow path of exhaust gas, and when a predetermined amount of PM is deposited, the honeycomb structure is heated to remove PM by combustion decomposition. be able to.
- the combustion temperature of PM is as high as 550 ° C. to 650 ° C.
- a honeycomb structure carrying a catalyst is used. Platinum is known as such a catalyst.
- platinum has a very low production volume, and there is a risk that the supply and demand balance and price will fluctuate greatly.
- NO X can be removed by disposing the honeycomb structure carrying the NO X reduction catalyst in the exhaust gas flow path.
- selective catalytic reduction SCR: selective SCR
- a reducing agent obtained from an ammonia precursor such as urea or ammonia itself into the honeycomb structure.
- honeycomb structure cell walls formed of zeolite has been studied.
- the cell wall of the honeycomb structure needs to use a large amount of an inorganic binder in addition to zeolite in order to ensure moldability and mechanical strength that can withstand practical use.
- the honeycomb structure in which the cell wall is made of zeolite cannot increase the amount of zeolite contained in the cell wall so much, and the NO x purification of the honeycomb structure is performed by the upper limit of the amount of zeolite contained in the cell wall. rate is substantially defined, there is a problem that it is difficult to obtain more of the NO X purification rate.
- Patent Document 1 the honeycomb structure in which the cell wall is composed of zeolite is impregnated with a solution containing zeolite, and the ratio of zeolite on the surface of the cell wall is higher than the center of the cell wall.
- a featured honeycomb structure is proposed.
- the honeycomb structure of Patent Document 1 has a problem that the moldability and mechanical strength are not sufficient. If the sintering temperature of the honeycomb structure is increased or a large amount of a sintered material is added to increase the mechanical strength, there is a problem that the function of the zeolite is impaired. Further, when the honeycomb structure is sintered with an inorganic binder such as alumina sol, silica sol, titania sol, water glass, sepiolite, etc., there is a problem that the thermal expansion coefficient increases and the honeycomb structure is damaged when used at a high temperature. Further, when the pores in the wall surface of the honeycomb structure are blocked by the formed catalyst layer, the connected pores are independently reduced in the exhaust gas flow path, and as a result, the NO x removal efficiency may be reduced. Concerned.
- the catalyst ratio may be coated on the honeycomb structure is reduced, that the purification performance of the PM and NO X decreases Is concerned.
- the pores on the wall surface of the honeycomb structure are closed by the formed catalyst layer, the connected pores independently reduce the exhaust gas flow path, resulting in an increase in pressure loss due to PM deposition, NO X removal efficiency is a concern that or decreased.
- the technique of Patent Document 2 is applied to the honeycomb structure of Patent Document 1.
- the present invention is, or is impregnated with a solution containing zeolite after manufacturing of the honeycomb structure without solution was or coating containing zeolite, a high NO X purification performance, a high mechanical strength and a low coefficient of thermal expansion It is an object of the present invention to provide a honeycomb structure and an exhaust gas purification apparatus including the honeycomb structure.
- the present invention provides the following honeycomb structure and an exhaust gas purification apparatus including the honeycomb structure.
- Item 1 A honeycomb structure having a shape in which a plurality of cells extending from one end face to the other end face are partitioned by a cell wall along a longitudinal direction, and zeolite and potassium are converted into an oxide in an amount of 10 mol. % To 40 mol%, at least one element selected from alkaline earth metals is 2.5 mol% to 20 mol% in terms of oxide, aluminum is 10 mol% to 40 mol% in terms of oxide, titanium And a raw material mixture in which M element which is at least one of iron and iron is mixed so as to contain 2.5 mol% to 20 mol% in terms of oxide and silicon in a proportion of 1 mol% to 75 mol% in terms of oxide
- a honeycomb structure comprising:
- Item 2 The honeycomb structure according to Item 1, wherein a molar ratio (A element: potassium) in terms of oxide between the A element and the potassium is within a range of 9:91 to 60:40.
- Item 3 The honeycomb structure according to Item 1 or Item 2, wherein a molar ratio (M element: aluminum) in terms of oxide between the M element and the aluminum is in a range of 9:91 to 60:40.
- the zeolite is one or more selected from mordenite type zeolite, faujasite type zeolite, A type zeolite, L type zeolite, chabasite type zeolite, ⁇ zeolite, and ZSM-5 type zeolite.
- Item 4 The honeycomb structure according to any one of Items 1 to 3.
- Item 5 The honeycomb structure according to any one of Items 1 to 4, wherein a content of the sintered body is 1 part by mass to 50 parts by mass with respect to 100 parts by mass of the zeolite.
- Item 6 The honeycomb structure according to any one of Items 1 to 5, further comprising a ceramic raw material.
- Item 7 The honeycomb structure according to Item 6, wherein the ceramic raw material is at least one selected from silicon carbide, cordierite, mullite, alumina, and aluminum titanate.
- Item 8 The ratio of the concentration of the zeolite contained in the surface portion of the cell wall to the concentration of the zeolite contained in the central portion of the cell wall (surface portion / central portion) is in the range of 0.8 to 1.2.
- Item 8 The honeycomb structure according to any one of Items 1 to 7, wherein
- Item 9 The honeycomb structure according to any one of Items 1 to 8, wherein the zeolite is a catalyst for reducing nitrogen oxides to nitrogen.
- Item 10 An exhaust gas purification apparatus comprising the honeycomb structure according to any one of Items 1 to 9.
- a solution containing zeolite after manufacturing of the honeycomb structure without solution was or coating containing zeolite, a high NO X purification performance, a high mechanical strength, low coefficient of thermal expansion And a flue gas purification apparatus provided with the honeycomb structure.
- FIG. 1 is a schematic perspective view showing a honeycomb structure according to an embodiment of the present invention.
- FIG. 2 is a schematic view showing an end face of a modification of the honeycomb structure of FIG.
- FIG. 3 is a schematic front view for explaining a method for measuring the bending strength.
- the honeycomb structure of the present invention is a honeycomb structure having a shape in which a plurality of cells extending from one end face to the other end face are partitioned by cell walls along the longitudinal direction.
- the honeycomb structure includes zeolite, potassium in an amount of 10 to 40 mol% in terms of oxide, and at least one element A selected from alkaline earth metals in an amount of 2.5 to 20 mol% in terms of oxide.
- aluminum is 10 mol% to 40 mol% in terms of oxide
- M element is at least one of titanium and iron, 2.5 mol% to 20 mol% in terms of oxide
- silicon is 1 mol in terms of oxide.
- the honeycomb structure may further contain a ceramic raw material, a clay mineral, an inorganic fiber, and the like as necessary.
- Zeolite is a crystalline aluminosilicate, which is a porous body having a crystal structure in which four oxygen elements are regularly and three-dimensionally bonded around silicon and aluminum elements.
- Examples of the crystal structure of the zeolite used in the present invention include mordenite type zeolite, faujasite type zeolite, A type zeolite, L type zeolite, chabazite type zeolite, ⁇ zeolite, and ZSM-5 type zeolite.
- the silica / alumina ratio of the zeolite used in the present invention is preferably 15 or more, and more preferably 20 or more.
- the upper limit of the silica / alumina ratio is preferably 100, and more preferably 50.
- Zeolite used in the present invention includes naturally-occurring and synthetic zeolites, and any zeolite having the above configuration can be used without any particular limitation.
- synthetic zeolite is preferred because it has a more uniform silica / alumina ratio, crystal size, crystal morphology, and fewer impurities.
- the average particle size of the zeolite is preferably 0.5 ⁇ m to 40 ⁇ m, and more preferably 1 ⁇ m to 20 ⁇ m. What is necessary is just to measure an average particle diameter using the particulate matter before mixing raw material particles.
- the average particle diameter is a 50% volume-based cumulative particle diameter (volume-based cumulative 50% particle diameter) in a particle size distribution determined by a laser diffraction / scattering method, that is, D 50 (median diameter). .
- This volume-based cumulative 50% particle diameter (D 50 ) is obtained by calculating the particle size distribution on a volume basis, and counting the number of particles from the smallest particle size in the cumulative curve with the total volume being 100%. It is the particle size at a point where it becomes 50%.
- the zeolite used in the present invention preferably contains ion exchanged zeolite obtained by ion exchange of the above zeolite.
- a honeycomb structure may be formed by using a previously ion-exchanged zeolite, or the zeolite may be ion-exchanged after the honeycomb structure is formed.
- a zeolite ion exchanged with a transition metal is preferably used.
- the transition metal include Cu, Fe, Pt, Ag, Ti, Mn, Ni, Co, Pd, Rh, V, and Cr, and Cu and Fe are preferable.
- the total amount of transition metals is preferably 1% by mass to 15% by mass, and more preferably 1% by mass to 8% by mass with respect to the total mass of the zeolite.
- potassium is 10 mol% to 40 mol% in terms of oxide
- at least one element A selected from alkaline earth metals is 2.5 mol% to 20 mol in terms of oxide.
- It is a powder of a sintered body of a raw material mixture mixed so as to be contained at a ratio of 1 mol% to 75 mol%.
- the raw material mixture may be referred to as a first raw material mixture for the purpose of distinguishing from the second raw material mixture described later.
- alkaline earth metals examples include beryllium, magnesium, calcium, strontium, barium and radium, with magnesium and calcium being preferred.
- potassium is converted to an oxide as K 2 O.
- element A is beryllium, it is converted to oxide as BeO, when Mg is MgO, when calcium is CaO, when strontium is SrO, when barium is BaO, and when radium is RaO, it is converted to oxide.
- Aluminum is converted to an oxide as Al 2 O 3 .
- the M element is titanium, it is converted into an oxide as TiO 2 and when it is iron as Fe 2 O 3 .
- Silicon is converted into an oxide as SiO 2 .
- the content of potassium in the raw material mixture is 10 mol% to 40 mol%, preferably 10 mol% to 30 mol%, more preferably 15 mol% to 25 mol% in terms of oxide.
- the content of at least one element A selected from alkaline earth metals in the raw material mixture is 2.5 mol% to 20 mol%, preferably 3 mol% to 18 mol%, in terms of oxide. More preferably, it is 4 mol% to 15 mol%.
- the aluminum content in the raw material mixture is 10 mol% to 40 mol%, preferably 10 mol% to 25 mol%, more preferably 10 mol% to 20 mol% in terms of oxide.
- the content of M element which is at least one of titanium and iron in the raw material mixture is 2.5 mol% to 20 mol%, preferably 2.5 mol% to 18 mol%, in terms of oxide. More preferably, it is 2.5 mol% to 16 mol%.
- the silicon content in the raw material mixture is 1 mol% to 75 mol%, preferably 30 mol% to 75 mol%, more preferably 40 mol% to 50 mol% in terms of oxide.
- the content ratio of the element A and potassium in the raw material mixture is preferably 9:91 to 60:40, more preferably 15:85 to 50:50, in terms of a molar ratio in terms of oxide.
- the content ratio of element M and aluminum is preferably 9:91 to 60:40, more preferably 20:80 to 55:45, in terms of a molar ratio in terms of oxide.
- the raw material mixture does not substantially contain sodium.
- “substantially” means 0.1 mol% or less in terms of oxide (Na 2 O).
- composition of the sintered body of the raw material mixture is the same as the composition of the raw material mixture.
- the sintered body of the above raw material mixture has a potassium content of 10 mol% to 40 mol% in terms of oxide and an element A which is at least one selected from alkaline earth metals in an amount of 2.5 mol% in terms of oxide.
- 20 mol% aluminum is 10 mol% to 40 mol% in terms of oxide, at least one of titanium and iron, element M is 2.5 mol% to 20 mol% in terms of oxide, and silicon is oxide In a proportion of 1 mol% to 75 mol%.
- a element is present at the potassium site, potassium is present at the A element site, M element is present at the aluminum site, and aluminum is present at the M element site. , Each may be included.
- the method for producing the sintered body of the raw material mixture is not particularly limited.
- the potassium source from the potassium source, the A element source, the aluminum source, the M element source, and the silicon source, depending on the composition of the intended sintered body. It can be manufactured by appropriately selecting raw materials, mixing these raw materials at a target composition ratio, and firing.
- the firing temperature is preferably in the range of 1000 ° C. to 1600 ° C., more preferably in the range of 1000 ° C. to 1400 ° C.
- the firing time can be appropriately selected depending on the composition of the intended sintered body, but is preferably 4 hours to 24 hours, and more preferably 4 hours to 10 hours.
- the potassium source is potassium oxide or a compound that generates an oxide of potassium by firing.
- the compound that forms an oxide of potassium by firing is not particularly limited as long as it is a raw material that contains potassium and does not inhibit the production of potassium oxide by firing.
- a potassium source may be used independently and may be used in combination of 2 or more type. Of these, potassium carbonate is preferred.
- the A element source is an oxide of the A element or a compound that generates an oxide of the A element by firing.
- the compound that forms an oxide of element A by firing may be any raw material that contains element A and does not inhibit the formation of oxide of element A by firing.
- carbonate of element A, water of element A Oxides, nitrates of element A, sulfates of element A, and the like can be used.
- a element source may be used independently and may be used in combination of 2 or more type. Among these, when the A element is calcium, calcium carbonate is preferable, and when the A element is magnesium, magnesium hydroxide is preferable.
- the aluminum source is aluminum oxide or a compound that generates aluminum oxide by firing.
- the compound that forms an oxide of aluminum by firing is not particularly limited as long as it is a raw material that contains aluminum and does not inhibit the formation of aluminum oxide by firing.
- An aluminum source may be used independently and may be used in combination of 2 or more type. Of these, aluminum hydroxide is preferred.
- the M element source is an M element oxide or a compound that generates an M element oxide by firing.
- the compound that generates an oxide of M element by firing may be a raw material that contains M element and does not inhibit the formation of oxide of M element by firing.
- carbonate of M element, water of M element Oxides, nitrates of M elements, sulfates of M elements, sulfides, chlorides and the like can be used.
- M element source may be used independently and may be used in combination of 2 or more type. Among these, when M element is titanium, titanium dioxide is preferable, and when M element is iron, iron (III) oxide is preferable.
- the silicon source is silicon oxide or a compound that generates silicon oxide by firing.
- the compound that forms an oxide of silicon by firing may be any raw material that contains silicon and does not inhibit the formation of silicon oxide by firing, and includes, for example, silicon.
- a silicon source may be used independently and may be used in combination of 2 or more type. Among these, the silicon source is preferably silicon oxide.
- the sintered body of the first raw material mixture has KAlSiO 4 , KAlSi 2 O 6 , KFeSiO 4 , KAl 3 Si 3 O 11 , K 2 MgSi 3 O 8 , and KMg 2 AlSi 4 O so as to have the above composition.
- the mechanical strength of the honeycomb structure can be increased without impairing the function of the zeolite,
- the thermal expansion coefficient can be lowered.
- the reactivity with zeolite is further reduced by making some of the potassium alkaline earth metal.
- a part of the aluminum is to improve titanium, sinterability by substituting iron, the reason is not clear, either high nO X purification performance, high mechanical strength, the three functions of low thermal expansion coefficient It is considered possible to satisfy
- the average particle size of the sintered body of the first raw material mixture is preferably 0.5 ⁇ m to 100 ⁇ m, more preferably 0.8 ⁇ m to 50 ⁇ m, and even more preferably 1 ⁇ m to 20 ⁇ m.
- the average particle diameter is within the above range, the moldability and strength can be further enhanced. What is necessary is just to measure an average particle diameter using the particulate matter before mixing raw material particles.
- the average particle diameter is a 50% volume-based cumulative particle diameter (volume-based cumulative 50% particle diameter) in a particle size distribution determined by a laser diffraction / scattering method, that is, D 50 (median diameter). .
- This volume-based cumulative 50% particle diameter (D 50 ) is obtained by calculating the particle size distribution on a volume basis, and counting the number of particles from the smallest particle size in the cumulative curve with the total volume being 100%. It is the particle size at a point where it becomes 50%.
- Ceramic raw material examples of the ceramic raw material that can be used in the present invention include at least one selected from silicon carbide, cordierite, mullite, alumina, and aluminum titanate, and two or more of these may be used in combination.
- the ceramic raw material is preferably aluminum titanate from the viewpoint of further improving heat resistance and stability.
- the average particle size of the ceramic raw material is preferably 0.5 ⁇ m to 100 ⁇ m, more preferably 0.8 ⁇ m to 50 ⁇ m, and even more preferably 1 ⁇ m to 30 ⁇ m. What is necessary is just to measure an average particle diameter using the particulate matter before mixing raw material particles.
- the average particle diameter is a 50% volume-based cumulative particle diameter (volume-based cumulative 50% particle diameter) in a particle size distribution determined by a laser diffraction / scattering method, that is, D 50 (median diameter). .
- This volume-based cumulative 50% particle diameter (D 50 ) is obtained by calculating the particle size distribution on a volume basis, and counting the number of particles from the smallest particle size in the cumulative curve with the total volume being 100%. It is the particle size at a point where it becomes 50%.
- the clay mineral that can be used in the present invention is a main component mineral constituting clay.
- Layered silicate mineral (phyllosilicate mineral), talc, calcite, dolomite, feldspar, quartz, zeolite (zeolite), and others with chain structure (attapulgite, Sepiolite, etc.) and those that do not have a clear crystal structure (allophane) are called clay minerals.
- layered silicate minerals are sometimes called layered clay minerals.
- the clay mineral that can be used in the present invention is preferably a layered clay mineral.
- the layered clay mineral has a crystal structure in which two-dimensional layers of positive and negative ions are stacked in parallel to form a crystal structure, and this layer structure has two structural units, one of which surrounds Si 4+.
- tetrahedron layer O at the four vertices of the tetrahedron and Si located at the center form an Si—O tetrahedron, which is connected to each other at the three vertices to spread two-dimensionally, and Si 4 O A layer lattice having a composition of 10 is formed. Si 4+ is often replaced by Al 3+ .
- the octahedron layer In the octahedron layer, the octahedron formed by (OH) or O at the six apexes of the octahedron and Al, Mg, Fe, etc. located at the center thereof is connected at each apex and is two-dimensionally. A layer lattice having a composition of Al 2 (OH) 6 or Mg 3 (OH) 6 is formed.
- a divalent cation (Mg 2+, etc.) enters the lattice point of the cation surrounded by 6 anions, and occupies all of the lattice points.
- a 2-octahedron type in which trivalent cations (such as Al 3+ ) enter the lattice points and occupy 2/3, and the remaining 1/3 is empty.
- tetrahedral layers and octahedral layers There are two types of combinations of tetrahedral layers and octahedral layers, one is a 1: 1 type structure with the unit of one tetrahedral layer and one octahedral layer as the unit, and the other is a single tetrahedron.
- a 1: 1 type structure in which a unit is a unit of an octahedral layer sandwiched between layers.
- one Si 4+ is usually surrounded by four O atoms and has a stable coordination, but sometimes Al 3+ having a slightly larger ion radius than this Si 4+ replaces Si 4+ .
- existing in the tetrahedral layer Since there is no change in the number of coordinated O atoms, a unit of negative charge is generated in the tetrahedral layer every time one Al 3+ replaces Si 4+ .
- negative charges are generated with the replacement of Al 3+ and Fe 3+ by Mg 2+ and Fe 2+ .
- This negatively charged layer is a positive layer such as Li + , K + , Na + , NH 4 + , H 3 O + , Ca 2+ , Mg 2+ , Sr 2+ , Ba 2+ , Co 2+ , Fe 2+ , Al 3+.
- the ions are electrically neutral due to the presence of ions, resulting in a laminated structure in which these exchangeable cations exist between layers.
- Examples of the layered clay mineral include at least one selected from smectite, stevensite, vermiculite, mica group, brittle mica group natural product or synthetic product. These can be used in combination.
- smectite examples include montmorillonite, beidellite, nontronite, saponite, iron saponite, hectorite, and soconite.
- Montmorillonite is preferable from the viewpoint of further enhancing NO X removal efficiency and mechanical strength.
- bentonite mainly composed of montmorillonite can be used, and the content of montmorillonite in the bentonite is preferably 40% or more, and more preferably 70% or more.
- the average particle size of the clay mineral is preferably 0.5 ⁇ m to 100 ⁇ m, more preferably 0.8 ⁇ m to 30 ⁇ m, and even more preferably 1 ⁇ m to 20 ⁇ m. What is necessary is just to measure an average particle diameter using the particulate matter before mixing raw material particles.
- the average particle diameter is a 50% volume-based cumulative particle diameter (volume-based cumulative 50% particle diameter) in a particle size distribution determined by a laser diffraction / scattering method, that is, D 50 (median diameter). .
- This volume-based cumulative 50% particle diameter (D 50 ) is obtained by calculating the particle size distribution on a volume basis, and counting the number of particles from the smallest particle size in the cumulative curve with the total volume being 100%. It is the particle size at a point where it becomes 50%.
- the inorganic fiber that can be used in the present invention is a powder composed of fibrous particles, and the average fiber length is preferably 1 ⁇ m to 300 ⁇ m, more preferably 1 ⁇ m to 200 ⁇ m.
- the average aspect ratio is preferably 3 to 200, more preferably 5 to 50.
- the inorganic fiber preferably has a Mohs hardness of 5 or less, more preferably 1 to 5, from the viewpoint of wear of the extruder.
- the inorganic fiber include at least one selected from alkali metal titanate, wollastonite, magnesium borate, zonotlite, and basic magnesium sulfate. From the viewpoint of further enhancing the NO X reduction efficiency and mechanical strength, it is preferred inorganic fibers are alkaline metal titanate.
- the Mohs hardness is an index representing the hardness of a substance, and a substance having a lower hardness is obtained when the minerals are rubbed against each other and damaged.
- alkali metal titanate examples include sodium titanate such as Na 2 TiO 3 , Na 2 Ti 2 O 5 , Na 2 Ti 4 O 9 , Na 2 Ti 6 O 13 , Na 2 Ti 8 O 17 ; K 2 TiO 3 , K 2 Ti 2 O 5 , K 2 Ti 4 O 9 , K 2 Ti 6 O 13 , K 2 Ti 8 O 17 and other potassium titanates; Cs 2 TiO 3 , Cs 2 Ti 2 O 5 , Cs 2 Ti 4 Examples thereof include cesium titanates such as O 9 , Cs 2 Ti 6 O 13 , and Cs 2 Ti 8 O 17 .
- the size of the alkali metal titanate is not particularly limited as long as it is within the above-mentioned range of the inorganic fiber, but usually the average fiber diameter is preferably 0.01 ⁇ m to 1 ⁇ m, more preferably 0.1 ⁇ m to 0.6 ⁇ m.
- the average fiber length is preferably 1 ⁇ m to 50 ⁇ m, more preferably 3 ⁇ m to 30 ⁇ m, and the average aspect ratio is preferably 10 or more, more preferably 15 to 40.
- Commercially available products can also be used in the present invention. For example, “Tismo D” (average fiber length 15 ⁇ m, average fiber diameter 0.5 ⁇ m) manufactured by Otsuka Chemical Co., Ltd. or “Tismo N” (average fiber length 15 ⁇ m, average fiber diameter 0. 5 ⁇ m) or the like can be used.
- the above average fiber length and average fiber diameter can be measured by observation with a scanning electron microscope, and the average aspect ratio (average fiber length / average fiber diameter) can be calculated from the average fiber length and average fiber diameter. .
- the average fiber diameter can be obtained by integrating all of the average fiber length and fiber diameter and dividing by the number. What is necessary is just to measure an average fiber length and an average fiber diameter using the particulate matter before mixing raw material particles.
- the term “fibrous particles” refers to the longest side of the rectangular parallelepiped having the smallest volume (the circumscribed rectangular parallelepiped) having the longest diameter L, the next longest side having the shortest diameter B, and the shortest side having the thickness T.
- L / B and L / T are particles having a particle size of 5 or more.
- the major axis L corresponds to the fiber length
- the minor axis B corresponds to the fiber diameter.
- FIG. 1 is a schematic perspective view showing a honeycomb structure according to an embodiment of the present invention.
- the honeycomb structure 11 of the present embodiment includes a first end surface 11a and a second end surface 11b facing each other, and a side surface 11c that connects the first end surface 11a and the second end surface 11b. And have.
- a plurality of cells 12 extending from the first end surface 11 a toward the second end surface 11 b along the longitudinal direction X shown in FIG.
- the side surface 11c (surface parallel to the longitudinal direction X) of the honeycomb structure 11 is provided with a coating layer in order to reinforce the side surface 11c and maintain strength, and to prevent the exhaust gas passing through the cells from leaking from the side surface 11c. It may be covered with. It does not specifically limit as a material which comprises the said coating layer, For example, what consists of an inorganic binder, an organic binder, an inorganic fiber, and / or an inorganic particle etc. can be mentioned.
- the honeycomb structure 11 may be used as it is, or a plurality of honeycomb structures 11 may be joined with an adhesive or the like.
- a joined body in which a plurality of honeycomb structures 11 are joined it is desirable that the longitudinal directions X be arranged in parallel.
- the single honeycomb structure 11 or the joined body of the plurality of honeycomb structures 11 may be processed by cutting the side surface 11c side along a predetermined shape.
- the shape of the cross section perpendicular to the longitudinal direction X of the honeycomb structure 11 is not particularly limited, and may be, for example, round, square (square, rectangular), hexagonal, or sector. Further, in the case of a cross-sectional shape such as a square having sharp corners, the sharp corners are chamfered from the viewpoint of relieving stress during regeneration of the honeycomb structure 11 and further suppressing the generation of cracks. It is preferable that In the present invention, the chamfered shape means a shape in which an inclined surface made of a flat surface or a curved surface is attached to the angle of intersection between the surfaces, and a shape having an inclined surface made of a curved surface from the viewpoint of stress relaxation. More preferably, for example, an R chamfered shape made of an arc is particularly preferable as shown in a modified example in FIG.
- the cross-sectional shape perpendicular to the longitudinal direction X in the cells 12 of the honeycomb structure 11 is not particularly limited, and may be square (square, rectangular) as in the embodiment. It may be a polygon.
- the corner portions 15 of the outermost peripheral cells 12a of the honeycomb structure 11 are used.
- the corner 15 provided with the filler is a corner 15 in contact with the outer edge wall 14 of the honeycomb structure 11 among the corners of the cell 12a whose outermost cross section of the honeycomb structure 11 is square.
- the length of one side of the right triangle filler is preferably 5% to 40% of the length of one side of the rectangular cell 12a.
- the thickness of the cell wall 13 of the honeycomb structure 11 is not particularly limited, but the preferable lower limit is 100 ⁇ m from the viewpoint of further increasing the strength, and the preferable upper limit is 400 ⁇ m from the viewpoint of further improving the purification performance.
- the thickness of the cell wall 13a constituting the outer edge wall 14 of the honeycomb structure 11 may be the same as or thicker than the other cell walls 13b, but is 1.3 times that of the cell wall 13b not constituting the outer edge wall 14. By setting the ratio to ⁇ 3.0 times, it is possible to ensure strength while maintaining a high aperture ratio.
- the aperture ratio of the cells 12 of the honeycomb structure 11 is preferably 60% or more from the viewpoint of pressure loss.
- the aperture ratio of the cells 12 refers to the ratio of the cells 12 in a cross section perpendicular to the longitudinal direction X of the honeycomb structure 11.
- the vertical cross section is a cross section that is not plugged with a plugging material.
- the upper limit of the aperture ratio of the cells 12 of the honeycomb structure 11 is not particularly limited, but can be, for example, 70%.
- the number of cells 12 in the honeycomb structure 11 is not particularly limited, but is preferably 200 cells / square inch to 400 cells / square inch.
- the wall surface of the cell 12 is not particularly limited as long as it is porous, but preferably has pores having a major axis of 2 ⁇ m to 18 ⁇ m and a porosity of 45% to 65%.
- the one end surface is opened and the other end face eye It is a wall flow type honeycomb filter formed from a honeycomb structure in which sealed cells and the remaining cells whose one end face is plugged and the other end face are opened are alternately arranged. Is preferred.
- the second raw material mixture further containing ceramic raw materials, clay minerals, inorganic fibers and the like as main components, if necessary, in the above-mentioned zeolite and the sintered body of the raw material mixture (first raw material mixture).
- the second raw material mixture is formed by extrusion molding or the like.
- a pore former, an organic binder, a dispersant, water and the like may be added to the second raw material mixture.
- the pore former include graphite, graphite, wood powder, and polyethylene.
- Examples of the organic binder include methyl cellulose, ethyl cellulose, and polyvinyl alcohol.
- the dispersant include fatty acid soap and ethylene glycol. The amount of the pore former, the organic binder, the dispersant, and water can be appropriately adjusted in consideration of the porosity of the cell wall surface, moldability, and the like.
- the second raw material mixture is not particularly limited, but is preferably mixed and kneaded.
- the second raw material mixture may be mixed using a mixer or the like, or may be sufficiently kneaded using a kneader or the like.
- a method for forming the second raw material mixture is not particularly limited, but it is preferable to form the second raw material mixture into a shape having a predetermined cell density and aperture ratio by, for example, extrusion molding.
- the obtained molded body is preferably dried after plugging on one side so that the opening of the cell has a checkered pattern, if necessary.
- the dryer used for drying is not specifically limited, A microwave dryer, a hot air dryer, a vacuum dryer, etc. are mentioned.
- the degreasing conditions are not particularly limited and are appropriately selected depending on the type of organic matter contained in the molded body, but are preferably approximately 400 ° C. and 2 hours.
- the obtained molded body is preferably fired.
- the firing temperature is not particularly limited, but can be, for example, 600 ° C. to 1200 ° C., and the firing time can be, for example, 2 hours to 15 hours.
- the firing temperature exceeds 1200 ° C, the zeolite crystals may collapse or the sintering may proceed too much to have an appropriate porosity. If the firing temperature is less than 600 ° C, the sintering does not proceed. The strength as a structure may not increase.
- the firing conditions when the ceramic raw material is used in combination are appropriately selected depending on the ceramic raw material. When aluminum titanate is used as the ceramic raw material, the firing temperature can be set to 900 ° C. to 1100 ° C., for example, as the firing time. For example, it can be 2 to 15 hours.
- the zeolite content in the second raw material mixture is preferably 10% by mass to 80% by mass and more preferably 30% by mass to 70% by mass with respect to 100% by mass of the second raw material mixture. .
- the content of the sintered body of the first raw material mixture in the second raw material mixture is preferably 1 part by mass to 50 parts by mass with respect to 100 parts by mass of zeolite, and 3 parts by mass to 30 parts by mass. Is more preferably 3 parts by mass to 20 parts by mass.
- the content of the ceramic raw material in the second raw material mixture is preferably 1 part by mass to 50 parts by mass, more preferably 5 parts by mass to 30 parts by mass with respect to 100 parts by mass of zeolite. More preferably, it is ⁇ 20 parts by mass.
- the clay mineral content in the second raw material mixture is preferably 1 part by mass to 50 parts by mass, more preferably 3 parts by mass to 30 parts by mass with respect to 100 parts by mass of zeolite. More preferably, the amount is from 20 to 20 parts by mass.
- the content of inorganic fibers in the second raw material mixture is preferably 1 part by mass to 50 parts by mass, more preferably 3 parts by mass to 30 parts by mass with respect to 100 parts by mass of zeolite. More preferably, it is ⁇ 20 parts by mass.
- the term “uniform” means that the ratio of the concentration of zeolite contained in the surface portion of the cell wall to the concentration of zeolite contained in the central portion of the cell wall of the honeycomb structure (surface portion / center portion) is 0.8 to It means being in the range of 1.2.
- the ratio (surface portion / center portion) is within the above range.
- examples of the exhaust gas to be treated include exhaust gas discharged from an internal combustion engine such as a diesel engine and a gasoline engine, and exhaust gas from various combustion facilities.
- the honeycomb structure of the present invention is used in contact with exhaust gas by being disposed in the exhaust gas flow path.
- the removal of NO x in these exhaust gases is performed in the presence of a reducing agent, for example, an ammonia precursor such as urea, ammonium carbonate, hydrazine, ammonium hydrogen carbonate, or ammonia itself.
- a reducing agent for example, an ammonia precursor such as urea, ammonium carbonate, hydrazine, ammonium hydrogen carbonate, or ammonia itself.
- the reducing agent may be disposed upstream of the honeycomb structure of the present invention in the exhaust gas flow path, and a necessary amount may be appropriately supplied.
- a catalyst for burning PM can be included in the mixture, whereby the honeycomb structure of the present invention can burn PM, which is a harmful substance in exhaust gas, at a low temperature with one filter, NO X can also be reduced and removed. Because of its excellent function, it can be suitably used for diesel engine filters (DPF), gasoline engine filters, etc., and can meet the demands of downsizing in the market.
- An exhaust gas purification apparatus of the present invention includes the honeycomb structure of the present invention.
- a means for supplying a reducing agent or the like (a reducing agent obtained from an ammonia precursor such as ammonia or urea) to the honeycomb structure is further provided.
- the honeycomb structure of the present invention includes a catalyst for burning PM
- the honeycomb structure further includes means for heating the honeycomb structure to decompose the deposited PM.
- a known means can be adopted as long as the reducing agent or the like can be supplied to the honeycomb structure of the present invention.
- a means for disposing a reducing agent or the like on the honeycomb structure may be used, which is arranged on the more upstream side (internal combustion engine side). Moreover, you may arrange
- the honeycomb structure of the present invention can be heated.
- the fuel of the internal combustion engine is sprayed from the internal combustion engine onto the honeycomb structure, and the combustion heat thereof.
- a means using electric heating is provided.
- Exhaust gas purifying apparatus of the present invention further, in order from the upstream side of the exhaust gas flow channel (internal combustion engine side), the oxidation catalyst, NO X storage catalyst, the first catalyst, such as PM combustion catalyst, the honeycomb structure of the present invention, SCR A second catalyst such as a catalyst or a slip oxidation catalyst may be disposed.
- the first catalyst and the honeycomb structure of the present invention may be disposed in order from the upstream side (internal combustion engine side) on the exhaust gas flow path.
- the honeycomb structure of the present invention and the second catalyst may be arranged in order from the upstream side (internal combustion engine side) on the exhaust gas flow path. You may select 1 type, or 2 or more types for a 1st catalyst and a 2nd catalyst, respectively.
- the oxidation catalyst means a catalyst that oxidizes HC, CO, NO X to H 2 O, CO 2 , NO 2 .
- the NO X storage catalyst to trap NO X under lean conditions, when it becomes stoichiometric or rich conditions, released as NO 2, or catalytic means to N 2.
- the PM combustion catalyst means a catalyst that burns PM at a temperature lower than the self-combustion temperature under rich conditions.
- the SCR catalyst means a catalyst capable of turning NO X into N 2 even under lean conditions.
- the slip oxidation catalyst means a catalyst that captures excess NH 3 used as a reducing agent and NO X that could not be purified, and purifies it to N 2 .
- the oxidation catalyst examples include metals such as Pt, Pd, Rh, Ag, and Cu, oxides containing the metals, high heat resistant high specific surface area inorganic substances (alumina, zirconia, etc.), and acidic oxides (silica, etc.).
- Catalyst comprising at least one of basic oxide (titania, zirconia, alumina containing rare earth, etc.), oxygen storage / release material (ceria, ceria-zirconia composite oxide, sulfate containing rare earth, etc.), zeolite, etc. Is mentioned. These are used by being carried on a filter.
- Examples of the NO X storage catalyst include substances described in the above oxidation catalyst, compounds containing a basic alkali metal element (sodium carbonate, potassium carbonate, potassium titanate, etc.), and alkaline earth metal elements.
- Examples thereof include at least one type of catalyst such as a compound (strontium carbonate, barium carbonate, MgAl 2 O 4 and the like) and a compound containing a rare earth element (ceria, ceria-zirconia composite oxide and the like). These are used by being carried on a filter.
- PM combustion catalysts examples include PGM (Platinum Group Metal) catalysts (Pt, Pd, Rh, etc.), Ce-based oxides (ceria, ceria-zirconia composite oxide, etc.) having oxygen absorption / release capability, and alkali composite oxidation. objects (Na 2 ZrSi 3 O 9, KAlSiO 4, LiAlSiO 4, K 2 TiSiO 5, K 2 Ti 4 O 9 , etc.). These are used by being carried on a filter.
- PGM Platinum Group Metal
- Pd Platinum Group Metal
- Rh Ce-based oxides
- Ce-based oxides ceria, ceria-zirconia composite oxide, etc.
- objects Na 2 ZrSi 3 O 9, KAlSiO 4, LiAlSiO 4, K 2 TiSiO 5, K 2 Ti 4 O 9 , etc.
- SCR catalyst examples include a catalyst composed of at least one kind such as zeolite and base metal composite TiO 2 (base metals include V 2 O 5 , WO 3 , MoO 3 and the like). These are used by being carried on a filter.
- base metals include V 2 O 5 , WO 3 , MoO 3 and the like.
- slip oxidation catalyst examples include a catalyst composed of at least one of the substances described in the above oxidation catalyst, the substances described in the NO X storage catalyst, and the substances described in the SCR catalyst. These are used by being carried on a filter.
- the SCR catalyst size of the second catalyst can be reduced by using the honeycomb structure of the present invention that can efficiently purify NO x , or the second catalyst Since the SCR catalyst can be eliminated, the apparatus can be made compact.
- the size of the slip oxidation catalyst of the second catalyst can be reduced, or the slip oxidation of the second catalyst. Since the catalyst can be eliminated, the apparatus can be made compact.
- the size of the first catalyst can be reduced or the first catalyst can be eliminated. Can be.
- the first catalyst supported on the honeycomb structure of the present invention is preferably a transition metal oxide such as V 2 O 5 , Fe 2 O 3 , MnO 2 , CuO, or CuFe composite oxide.
- a transition metal oxide such as V 2 O 5 , Fe 2 O 3 , MnO 2 , CuO, or CuFe composite oxide.
- the supported amount of transition metal oxide per apparent volume in the honeycomb structure of the present invention is preferably 1 g / L as the lower limit, more preferably 5 g / L, and even more preferably 8 g / L. preferable.
- the upper limit of the amount of transition metal oxide supported per apparent volume in the honeycomb structure of the present invention is preferably 90 g / L, more preferably 85 g / L, and 82 g / L. Is more preferable.
- the average particle diameter of the transition metal oxide is preferably larger than the pore diameter of the honeycomb structure of the present invention.
- the average particle diameter of the transition metal oxide is the volume-based cumulative 50% (volume-based cumulative 50% particle diameter) in the particle size distribution determined by the laser diffraction / scattering method, that is, the particle diameter of D 50 (median diameter). It is.
- This volume-based cumulative 50% particle diameter (D 50 ) is obtained by calculating the particle size distribution on a volume basis, and counting the number of particles from the smallest particle size in the cumulative curve with the total volume being 100%. It is the particle size at a point where it becomes 50%.
- the exhaust gas purifying apparatus of the present invention can be made compact by the above method, the exhaust gas purifying apparatus can be arranged at a more appropriate position than before.
- the purification efficiency can be further improved by bringing the exhaust gas purification catalyst close to the internal combustion engine and promoting the activation of the exhaust gas purification catalyst by temperature.
- it is possible to expect effects such as improvement in fuel consumption due to weight reduction and securing of a space for installing a new device.
- the honeycomb structure of the present invention is made of a material containing zeolite, and since the specific gravity of zeolite is small, the honeycomb structure can be further lightened. Also. Even if the pore diameter is as small as about 2 ⁇ m, it is considered that the above effect becomes more remarkable by the function that the pressure loss can be lowered and the amount of zeolite to be loaded can be increased. The pressure loss can be reduced even when the pore diameter of the honeycomb structure of the present invention is smaller than the pore diameter (10 ⁇ m to 20 ⁇ m) of a general DPF or SCRF (DFF with SCR catalyst). This is considered to be due to the low gas flow resistance. The reason why the amount of zeolite loaded can be increased is that the strength of the honeycomb structure can be maintained even if the zeolite forms a skeleton.
- a light honeycomb structure is considered to contribute to weight reduction.
- Low pressure loss is thought to contribute to a reduction in exhaust gas resistance.
- the fact that the pore diameter can be reduced in a state where the pressure loss is reduced contributes to efficiently capturing a substance smaller than PM2.5.
- Rich zeolites amount improves NO X purification catalyst efficiency is believed to contribute to increasing the reducing agent storage amount.
- the abundant amount of zeolite is also considered to contribute as a catalyst carrier and a catalyst when the first catalyst and the second catalyst are integrated.
- the particle shape was confirmed by a field emission scanning electron microscope (manufactured by Hitachi High-Technologies Corporation, product number “S-4800”).
- the average particle size was measured with a laser diffraction particle size distribution analyzer (manufactured by Shimadzu Corporation, product number “SALD-2100”).
- SALD-2100 laser diffraction particle size distribution analyzer
- Zeolite ZSM-5 type zeolite (average particle size 10 ⁇ m, trade name: HSZ-840NHA, manufactured by Tosoh Corporation)
- Clay mineral Bentonite (average particle size 2 ⁇ m, trade name: Kunipia F, manufactured by Kunimine Kogyo Co., Ltd.)
- Inorganic fiber K 2 Ti 6 O 13 (average fiber length 15 ⁇ m, average fiber diameter 0.5 ⁇ m, trade name: TISMON, manufactured by Otsuka Chemical Co., Ltd.)
- Ceramic raw material Aluminum titanate (average particle size 13 ⁇ m, manufactured by Marusu Glaze)
- Example 1 8 parts by mass of ceramic raw material, 7 parts by mass of sintered body of the first raw material mixture of Synthesis Example 1, 6 parts by mass of inorganic fiber, 10 parts by mass of clay mineral, 3 parts by mass of graphite, and 10 parts by mass of methyl cellulose with respect to 65 parts by mass of zeolite And 0.5 parts by mass of fatty acid soap were added, and an appropriate amount of water was added and kneaded to obtain a kneaded clay.
- the obtained kneaded material was extruded and molded to form a honeycomb structure with an extrusion molding machine to obtain a molded body.
- the cell density of the mold was 300 cells / square inch (46.5 cells / cm 2 ), and the partition wall thickness was 300 ⁇ m.
- the aperture ratio was 63%.
- a slurry was prepared in which the solid content was substantially the above zeolite, ceramic raw material, sintered body of the first raw material mixture, inorganic fiber, clay mineral, and additives such as viscosity modifiers were added.
- the ratio of the solid content in a slurry is the same as the above.
- the slurry was injected into the cells of the molded body that became the honeycomb structure so that the opened cells and the sealed cells had a checkered pattern alternately, and plugged.
- the molded body that has been sealed is held at 600 ° C. for 10 hours, then heated to 1000 ° C. at 25 ° C./hour, and further held at 1000 ° C. for 5 hours and fired to obtain a pore size of 2 ⁇ m and porosity. A 56% honeycomb structure was obtained.
- honeycomb structure was impregnated with a 5% by mass aqueous copper acetate solution at 60 ° C. for 3 hours. Thereafter, the honeycomb structure of the present invention was manufactured by thoroughly washing with ion-exchanged water and heating at 700 ° C. for 10 hours.
- Examples 2 to 32, Comparative Examples 1 to 15 The type of sintered body of the first raw material mixture was changed as shown in Table 2 and Table 3, and the addition amount of the sintered body of the first raw material mixture was changed as shown in Table 2 and Table 3. Except for this, a honeycomb structure was manufactured in the same manner as in Example 1.
- Example 33 The honeycomb structure obtained in Example 6 was impregnated with a slurry of cupric oxide powder (average particle size 4 ⁇ m) so that the supported amount of CuO per volume in the honeycomb structure was 10 g / L, and 700 ° C.
- the honeycomb structure was manufactured by supporting CuO by heating for 10 hours.
- Example 34 to Example 36 A honeycomb structure was manufactured in the same manner as in Example 33 except that the supported amount of CuO was changed to the amount shown in Table 4.
- JIS R1601 is formed by pressing the central part of the honeycomb structure 2 with the pressing rod 20 in a state where the 3 ⁇ 3 cell honeycomb structure 2 is supported by the support points 21 and 22.
- the bending strength was measured based on the above, and the results are shown in Tables 2 and 3.
- the confirmation method was as follows. Using tweezers or the like, the surface of the cell wall is scraped, and the surface portion components are recovered in a powder state. Similarly, a powdery sample is collected from the central portion of the cell wall thickness. From the X-ray diffraction analysis of these powdery samples, the concentration of zeolite containing zeolite was measured on the surface and central portion of the cell wall. For the X-ray diffraction analysis, a RINT 2500PC apparatus (manufactured by Rigaku Corporation) was used.
- Example 6 and Examples 33 to 36 For the obtained honeycomb structures, the initial weight of the honeycomb structures was measured in advance. Next, an exhaust gas purification filter including an oxidation catalyst (DOC) and a honeycomb structure was sequentially installed in the exhaust line of the diesel engine. After installation, the diesel engine is started, PM is deposited in a predetermined amount (about 8 g / L) under the operating conditions where the exhaust temperature is low, the honeycomb structure is once removed, and the weight of the deposited PM (PM deposition weight) was measured.
- DOC oxidation catalyst
- the simulated exhaust gas was raised to 480 ° C. and a regeneration test was started.
- the temperature of 480 ° C. ⁇ 10 ° C. was maintained for 30 minutes from the time when the temperature reached 480 ° C., and after 30 minutes, the entire amount of the simulated exhaust gas was switched to nitrogen gas.
- Regeneration rate (%) 100 ⁇ [(PM deposition weight (g) ⁇ PM combustion weight (g)) / PM deposition weight (g)] ⁇ 100
- Example 1 to Example 32 From a comparison between Example 1 to Example 32 and Comparative Example 1 to Comparative Example 15, a sintered body of the first raw material mixture in which potassium, A element, aluminum, M element and silicon have a predetermined content rate by using, while reduction of the NO X purification performance of the honeycomb structure, it can be seen that the improved mechanical strength and thermal expansion coefficient.
- potassium is 10 mol% to 40 mol% in terms of oxide
- at least one element A selected from alkaline earth metals is 2.5 mol% to 20 mol in terms of oxide.
- Aluminum is 10 mol% to 40 mol% in terms of oxide
- at least one of titanium and iron is 2.5 mol% to 20 mol% in terms of oxide
- silicon is 1 mol in terms of oxide % by using the powder of the sintered body of the first raw material mixture comprising at ⁇ 75 mol%, high NO X purification performance, high mechanical strength (high flexural strength), any of the three functions of low coefficient of thermal expansion It becomes possible to satisfy.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Combustion & Propulsion (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Manufacturing & Machinery (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Catalysts (AREA)
Abstract
ハニカム構造体の作製後にゼオライトを含む溶液に含浸させたり、ゼオライトを含む溶液を塗布したりせずとも、高いNOX浄化性能と、高い機械的強度と、低い熱膨張係数とを有する、ハニカム構造体を提供する。 長手方向Xに沿って、一方の端面11aから他方の端面11bに延伸している複数のセル12がセル壁13によって区画された形状のハニカム構造体11であって、ゼオライトと、カリウムを酸化物換算で10モル%~40モル%、アルカリ土類金属から選ばれる少なくとも1種であるA元素を酸化物換算で2.5モル%~20モル%、アルミニウムを酸化物換算で10モル%~40モル%、チタン及び鉄のうち少なくとも一方であるM元素を酸化物換算で2.5モル%~20モル%、及びケイ素を酸化物換算で1モル%~75モル%の割合で含むように混合された原料混合物の焼結体とを含む、ハニカム構造体11。
Description
本発明は、ハニカム構造体及び該ハニカム構造体を備える排ガス浄化装置に関する。
ディーゼルエンジンなどの内燃機関から排出される排ガスには、粒子状物質(PM:particulate matter)、窒素酸化物(NOX)、炭化水素、一酸化炭素等の有害成分が含まれており、これらの有害物質を除去するために様々な手法が検討されている。特にトラック、バス等のディーゼル車から排出されるPMやNOXが都市部の大気汚染の一因となっていることから、益々これらの有害物質に対する規制が強化されている。
PMについては、排ガスの流路中に配置した濾過機能を有するハニカム構造体にPMを捕集し、PMが所定量堆積したところで、ハニカム構造体を加熱してPMを燃焼分解することにより除去することができる。しかし、PMの燃焼温度は550℃~650℃と高いことから、装置が大がかりになり、また加熱するためのエネルギーコストが高くなる問題がある。より低温でPMを燃焼するために、触媒を担持したハニカム構造体が用いられている。このような触媒としては、白金が知られている。しかし、白金は、生産量が極めて少なく、需給バランスや価格が大きく変動するリスクがある。
NOXについては、NOX還元触媒を担持したハニカム構造体を排ガスの流路中に配置することで除去することができる。例えば、ハニカム構造体にゼオライト系触媒を担持し、そこへ尿素等のアンモニア前駆物質から得られる還元剤又はアンモニア自体を注入することにより、NOXを窒素へ還元する選択的接触還元(SCR:selective catalytic reduction)が挙げられる。
NOXを効率的に浄化するためには、NOX浄化に寄与するゼオライトの使用量を増やすことが重要であることから、セル壁がゼオライトで構成されたハニカム構造体が検討されている。しかし、ハニカム構造体のセル壁は、成形性や実用に耐えられる機械的強度を確保するため、ゼオライトの他に多量の無機バインダ等を併用する必要がある。このため、セル壁がゼオライトで構成されたハニカム構造体は、セル壁に含まれるゼオライト量を、それほど増やすことはできず、セル壁に含まれるゼオライト量の上限により、ハニカム構造体のNOX浄化率が実質的に規定され、それ以上のNOX浄化率を得ることは難しいという問題がある。そこで、特許文献1では、セル壁がゼオライトで構成されたハニカム構造体を、ゼオライトを含む溶液に含浸させることで製造した、セル壁の中心部よりセル壁の表面におけるゼオライトの割合が高いことを特徴とするハニカム構造体を提案している。
PMとNOXの両方を除去するためには、PMがNOX還元触媒に付着するとNOX還元効率が低下することから、PMを除去する装置の下流にNOXを除去する装置を配置する必要がある。また、市場のダウンサイジングの要請から、PMを除去する装置とNOXを除去する装置を一体化させた装置が望まれている。そこで、特許文献2では、ウォールフロー型のハニカム構造体の壁面を、NOX還元触媒からなるNOX還元触媒層により被覆し、さらに酸化触媒からなる酸化触媒層により被覆することが提案されている。
しかし、特許文献1のハニカム構造体は、成形性や機械的強度が十分でないという問題がある。機械的強度を上げるためにハニカム構造体の焼結温度を上げたり、焼結材を多く添加したりするとゼオライトの機能が損なわれる問題がある。また、アルミナゾル、シリカゾル、チタニアゾル、水ガラス、セピオライトなどの無機バインダでハニカム構造体を焼結させると、熱膨張係数が上昇し、高温での使用時にハニカム構造体が破損するという問題が生じる。さらに、形成された触媒層によりハニカム構造体の壁面における細孔が閉塞すると、連結していた細孔同士が独立して排ガス流路が減少し、結果としてNOXの除去効率が低下することが懸念される。
特許文献2の方法のように、PMを除去する装置とNOXを除去する装置を一体化させると、ハニカム構造体に被覆できる触媒割合が低下し、PMとNOXの浄化性能が低下することが懸念される。また、形成された触媒層によりハニカム構造体壁面の細孔が閉塞すると、連結していた細孔同士が独立して排ガス流路が減少し、結果としてPM堆積による圧力損失が上昇したり、PMとNOXの除去効率が低下したりすることが懸念される。また、特許文献1のハニカム構造体に、特許文献2の技術を応用した場合も同様である。
本発明は、ハニカム構造体の作製後にゼオライトを含む溶液に含浸させたり、ゼオライトを含む溶液を塗布したりせずとも、高いNOX浄化性能と、高い機械的強度と、低い熱膨張係数とを有する、ハニカム構造体、及び該ハニカム構造体を備えた排ガス浄化装置を提供することを目的とする。
本発明は、以下のハニカム構造体、及び該ハニカム構造体を備えた排ガス浄化装置を提供する。
項1 長手方向に沿って、一方の端面から他方の端面に延伸している複数のセルがセル壁によって区画された形状のハニカム構造体であって、ゼオライトと、カリウムを酸化物換算で10モル%~40モル%、アルカリ土類金属から選ばれる少なくとも1種であるA元素を酸化物換算で2.5モル%~20モル%、アルミニウムを酸化物換算で10モル%~40モル%、チタン及び鉄のうち少なくとも一方であるM元素を酸化物換算で2.5モル%~20モル%、及びケイ素を酸化物換算で1モル%~75モル%の割合で含むように混合された原料混合物の焼結体とを含む、ハニカム構造体。
項2 前記A元素と前記カリウムとの酸化物換算におけるモル比(A元素:カリウム)が、9:91~60:40の範囲内にある、項1に記載のハニカム構造体。
項3 前記M元素と前記アルミニウムとの酸化物換算におけるモル比(M元素:アルミニウム)が、9:91~60:40の範囲内にある、項1または項2に記載のハニカム構造体。
項4 前記ゼオライトが、モルデナイト型ゼオライト、フォージャサイト型ゼオライト、A型ゼオライト、L型ゼオライト、チャバサイト型ゼオライト、βゼオライト、及びZSM-5型ゼオライトから選ばれる1種または2種以上である、項1~項3のいずれか一項に記載のハニカム構造体。
項5 前記焼結体の含有量が、前記ゼオライト100質量部に対し、1質量部~50質量部である、項1~項4のいずれか一項に記載のハニカム構造体。
項6 セラミック原料をさらに含む、項1~項5のいずれか一項に記載のハニカム構造体。
項7 前記セラミック原料が、シリコンカーバイド、コージェライト、ムライト、アルミナ、チタン酸アルミニウムから選ばれる少なくとも1種である、項6に記載のハニカム構造体。
項8 前記セル壁の中心部分に含まれる前記ゼオライトの濃度に対する、前記セル壁の表面部分に含まれる前記ゼオライトの濃度の比(表面部分/中心部分)が、0.8~1.2の範囲内である、項1~項7のいずれか一項に記載のハニカム構造体。
項9 前記ゼオライトが、窒素酸化物を窒素に還元する触媒である、項1~項8のいずれか一項に記載のハニカム構造体。
項10 項1~項9のいずれか一項に記載のハニカム構造体を備えることを特徴とする、排ガス浄化装置。
本発明によれば、ハニカム構造体の作製後にゼオライトを含む溶液に含浸させたり、ゼオライトを含む溶液を塗布したりせずとも、高いNOX浄化性能と、高い機械的強度と、低い熱膨張係数とを有する、ハニカム構造体、及び該ハニカム構造体を備えた排ガス浄化装置を提供することができる。
以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は単なる例示である。本発明は、下記の実施形態に何ら限定されない。
本発明のハニカム構造体は、長手方向に沿って、一方の端面から他方の端面に延伸している複数のセルがセル壁によって区画された形状のハニカム構造体である。ハニカム構造体は、ゼオライトと、カリウムを酸化物換算で10モル%~40モル%、アルカリ土類金属から選ばれる少なくとも1種であるA元素を酸化物換算で2.5モル%~20モル%、アルミニウムを酸化物換算で10モル%~40モル%、チタン及び鉄のうち少なくとも一方であるM元素を酸化物換算で2.5モル%~20モル%、及びケイ素を酸化物換算で1モル%~75モル%の割合で含むように混合された原料混合物の焼結体とを含む。また、ハニカム構造体の機械的強度をより一層向上させる観点から、必要に応じて、ハニカム構造体が、セラミック原料、粘土鉱物、無機繊維等をさらに含んでいてもよい。
以下、本発明のハニカム構造体の各構成成分について説明する。
(ゼオライト)
ゼオライトとは、結晶性アルミノケイ酸塩で、ケイ素元素とアルミニウム元素のまわりに4つの酸素元素が規則正しく三次元的に結合した結晶構造を持つ多孔質体である。本発明で用いるゼオライトの結晶構造としては、例えば、モルデナイト型ゼオライト、フォージャサイト型ゼオライト、A型ゼオライト、L型ゼオライト、チャバサイト型ゼオライト、βゼオライト、ZSM-5型ゼオライト等がある。
ゼオライトとは、結晶性アルミノケイ酸塩で、ケイ素元素とアルミニウム元素のまわりに4つの酸素元素が規則正しく三次元的に結合した結晶構造を持つ多孔質体である。本発明で用いるゼオライトの結晶構造としては、例えば、モルデナイト型ゼオライト、フォージャサイト型ゼオライト、A型ゼオライト、L型ゼオライト、チャバサイト型ゼオライト、βゼオライト、ZSM-5型ゼオライト等がある。
本発明で使用するゼオライトのシリカ/アルミナ比は、15以上であることが好ましく、20以上であることがより好ましい。シリカ/アルミナ比の上限値は、100であることが好ましく、50であることがより好ましい。この構成にすることにより他の添加剤より溶出するアルカリ金属イオンの影響をより一層抑制することができ、NOXをより一層効果的に還元除去できるものと考えられる。
本発明で使用するゼオライトは、天然産及び合成ゼオライトがあるが、上記構成のものであれば特に制限なく使用できる。好ましくは、より均一なシリカ/アルミナ比、結晶サイズ、結晶形態を有し、不純物が少ないことから、合成ゼオライトがよい。
ゼオライトの平均粒子径は、0.5μm~40μmであることが好ましく、1μm~20μmであることがより好ましい。平均粒子径は、原料粒子を混合する前の粒子状物を用いて測定すればよい。また、本発明において、平均粒子径とは、レーザー回折・散乱法によって求めた粒度分布における体積基準累積50%の粒子径(体積基準累積50%粒子径)、すなわちD50(メジアン径)である。この体積基準累積50%粒子径(D50)は、体積基準で粒度分布を求め、全体積を100%とした累積曲線において、粒子サイズの小さいものから粒子数をカウントしていき、累積値が50%となる点の粒子径である。
本発明で使用するゼオライトは、上記ゼオライトをイオン交換した、イオン交換ゼオライトを含んでいることが好ましい。イオン交換ゼオライトは、あらかじめイオン交換されたゼオライトを使用してハニカム構造体を形成してもよく、ハニカム構造体を形成した後にゼオライトをイオン交換してもよい。
イオン交換ゼオライトとしては、遷移金属でイオン交換されたゼオライトが好ましく用いられる。遷移金属としては、例えば、Cu、Fe、Pt、Ag、Ti、Mn、Ni、Co、Pd、Rh、V、Cr等が挙げられ、Cu、Feが好ましい。遷移金属の合計量は、ゼオライトの総質量に対して1質量%~15質量%とすることが好ましく、1質量%~8質量%とすることがより好ましい。
(焼結体)
本発明で使用する焼結体は、カリウムを酸化物換算で10モル%~40モル%、アルカリ土類金属から選ばれる少なくとも1種であるA元素を酸化物換算で2.5モル%~20モル%、アルミニウムを酸化物換算で10モル%~40モル%、チタン及び鉄のうち少なくとも一方であるM元素を酸化物換算で2.5モル%~20モル%、及びケイ素を酸化物換算で1モル%~75モル%の割合で含むように混合された原料混合物の焼結体の粉末であることを特徴とする。
本発明で使用する焼結体は、カリウムを酸化物換算で10モル%~40モル%、アルカリ土類金属から選ばれる少なくとも1種であるA元素を酸化物換算で2.5モル%~20モル%、アルミニウムを酸化物換算で10モル%~40モル%、チタン及び鉄のうち少なくとも一方であるM元素を酸化物換算で2.5モル%~20モル%、及びケイ素を酸化物換算で1モル%~75モル%の割合で含むように混合された原料混合物の焼結体の粉末であることを特徴とする。
以下、上記原料混合物を、後述の第2の原料混合物と区別する目的で第1の原料混合物と称する場合があるものとする。
アルカリ土類金属としては、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウムが挙げられ、マグネシウム、カルシウムが好ましい。
本発明において、カリウムはK2Oとして酸化物に換算される。A元素がベリリウムの場合はBeO、マグネシウムの場合はMgO、カルシウムの場合はCaO、ストロンチウムの場合はSrO、バリウムの場合はBaO、ラジウムの場合はRaOとして、それぞれ酸化物に換算される。アルミニウムはAl2O3として酸化物に換算される。M元素がチタンの場合はTiO2、鉄の場合はFe2O3として、それぞれ酸化物に換算される。また、ケイ素はSiO2として酸化物に換算される。
上記原料混合物におけるカリウムの含有率は、酸化物換算で10モル%~40モル%であり、好ましくは10モル%~30モル%であり、より好ましくは15モル%~25モル%である。
上記原料混合物におけるアルカリ土類金属から選ばれる少なくとも1種のA元素の含有率は、酸化物換算で2.5モル%~20モル%であり、好ましくは3モル%~18モル%であり、より好ましくは4モル%~15モル%である。
上記原料混合物におけるアルミニウムの含有率は、酸化物換算で、10モル%~40モル%であり、好ましくは10モル%~25モル%であり、より好ましくは10モル%~20モル%である。
上記原料混合物におけるチタン及び鉄のうち少なくとも一方であるM元素の含有率は、酸化物換算で2.5モル%~20モル%であり、好ましくは2.5モル%~18モル%であり、より好ましくは2.5モル%~16モル%である。
上記原料混合物におけるケイ素の含有率は、酸化物換算で1モル%~75モル%であり、好ましくは30モル%~75モル%であり、より好ましくは40モル%~50モル%である。
また、上記原料混合物における、A元素とカリウムとの含有比は、酸化物換算のモル比で9:91~60:40であることが好ましく、15:85~50:50であることがより好ましい。M元素とアルミニウムとの含有比は、酸化物換算のモル比で9:91~60:40であることが好ましく、20:80~55:45であることがより好ましい。
上記原料混合物は、ナトリウムを実質的には含有しないことが好ましい。本発明において「実質的には」とは、酸化物(Na2O)換算で0.1モル%以下であることを意味する。
なお、上記原料混合物の焼結体の組成は、上記原料混合物の組成と同じとなる。
従って、上記原料混合物の焼結体は、カリウムを酸化物換算で10モル%~40モル%、アルカリ土類金属から選ばれる少なくとも1種であるA元素を酸化物換算で2.5モル%~20モル%、アルミニウムを酸化物換算で10モル%~40モル%、チタン及び鉄のうち少なくとも一方であるM元素を酸化物換算で2.5モル%~20モル%、及びケイ素を酸化物換算で1モル%~75モル%の割合で含む。
上記原料混合物の焼結体においては、本発明の優れた性能を阻害しない範囲において、カリウムのサイトにA元素、A元素のサイトにカリウム、アルミニウムのサイトにM元素、M元素のサイトにアルミニウムが、それぞれ、含まれていてもよい。
上記原料混合物の焼結体の製造方法は、特に限定されるものではないが、例えば、カリウム源、A元素源、アルミニウム源、M元素源、ケイ素源から、目的とする焼結体の組成により適宜選択して原料とし、これらの原料を目的とする組成比になるように混合し焼成することで製造することができる。焼成温度は、1000℃~1600℃の範囲であることが好ましく、より好ましくは1000℃~1400℃の範囲である。焼成時間は、目的とする焼結体の組成により適宜選択することができるが、4時間~24時間であることが好ましく、4時間~10時間であることがより好ましい。
カリウム源としては、酸化カリウム又は焼成によりカリウムの酸化物を生成する化合物である。焼成によりカリウムの酸化物を生成する化合物としては、カリウムを含有して焼成により酸化カリウムの生成を阻害しない原材料であれば特に限定されないが、例えば、カリウムの炭酸塩、カリウムの炭酸水素塩、カリウムの水酸化物、カリウムの酢酸塩等の有機酸塩、カリウムの硫酸塩、カリウムの硝酸塩等が挙げられる。カリウム源は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらのなかでも炭酸カリウムが好ましい。
A元素源としては、A元素の酸化物又は焼成によりA元素の酸化物を生成する化合物である。焼成によりA元素の酸化物を生成する化合物としては、A元素を含有して焼成によりA元素の酸化物の生成を阻害しない原材料であればよく、例えば、A元素の炭酸塩、A元素の水酸化物、A元素の硝酸塩、A元素の硫酸塩等を使用することができる。A元素源は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらのなかでも、A元素がカルシウムの場合は炭酸カルシウムが好ましく、A元素がマグネシウムの場合は水酸化マグネシウムが好ましい。
アルミニウム源としては、酸化アルミニウム又は焼成によりアルミニウムの酸化物を生成する化合物である。焼成によりアルミニウムの酸化物を生成する化合物としては、アルミニウムを含有して焼成により酸化アルミニウムの生成を阻害しない原材料であれば特に限定されないが、例えば、アルミニウムの炭酸塩、アルミニウムの水酸化物、アルミニウムの硫酸塩等が挙げられる。アルミニウム源は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらのなかでも水酸化アルミニウムが好ましい。
M元素源としては、M元素の酸化物又は焼成によりM元素の酸化物を生成する化合物である。焼成によりM元素の酸化物を生成する化合物としては、M元素を含有して焼成によりM元素の酸化物の生成を阻害しない原材料であればよく、例えば、M元素の炭酸塩、M元素の水酸化物、M元素の硝酸塩、M元素の硫酸塩、硫化物、塩化物等を使用することができる。M元素源は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらのなかでも、M元素がチタンの場合は二酸化チタンが好ましく、M元素が鉄の場合は酸化鉄(III)が好ましい。
ケイ素源としては、酸化ケイ素又は焼成によりケイ素の酸化物を生成する化合物である。焼成によりケイ素の酸化物を生成する化合物としては、ケイ素を含有して焼成により酸化ケイ素の生成を阻害しない原材料であればよく、例えば、ケイ素が挙げられる。ケイ素源は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中でも、ケイ素源は酸化ケイ素が好ましい。
また、第1の原料混合物の焼結体は、上記組成となるように、KAlSiO4、KAlSi2O6、KFeSiO4、KAl3Si3O11、K2MgSi3O8、KMg2AlSi4O12、K2Ti8O17、K2TiSi3O9、KFeSi2O6、K2Al2O4、K2CaSiO4、CaAl2O4、CaFeO2、CaAl2SiO6、CaAl2Si2O8、CaSiO3、CaTiSiO5、CaFeSi2O6、CaTiO3、CaMgSiO4、CaMgSi2O6、CaAl2Fe4O10、Ca2TiSiO6、Ca2Al2O5、Ca2Al2SiO7、Ca2FeAlO5、Ca2MgSi2O7、MgAl2Si3O10、MgAl2Ti3O10、MgFeAlO4、MgFeSiO4、MgSiO3、MgAl8Ti6O25、Mg2Al4Si5O18、Mg3Al4Ti3O15、Fe2Al4Si5O18等の群から選ばれる2種以上の化合物を混合し、焼成することで製造することもできる。
上記組成の焼結体からなる粉末を用いてゼオライトの焼結体であるハニカム構造体を製造することで、ゼオライトの機能を損なうことなく、ハニカム構造体の機械的強度を高くすることができ、熱膨張係数を低くすることができる。具体的には、ケイ素とアルミニウムを含み、さらにゼオライトとの反応性が低いカリウムとを含む焼結体において、カリウムの一部をアルカリ土類金属にすることでゼオライトとの反応性を更に軽減させ、アルミニウムの一部をチタン、鉄に置換することにより焼結性を向上させることで、理由は定かではないが、高NOX浄化性能、高機械的強度、低熱膨張係数という3つの機能のいずれをも満たすことが可能となると考えられる。
第1の原料混合物の焼結体の平均粒子径は、0.5μm~100μmであることが好ましく、0.8μm~50μmであることがより好ましく、1μm~20μmであることが更に好ましい。平均粒子径が上記範囲内にある場合、成形性及び強度をより一層高めることができる。平均粒子径は、原料粒子を混合する前の粒子状物を用いて測定すればよい。また、本発明において、平均粒子径とは、レーザー回折・散乱法によって求めた粒度分布における体積基準累積50%の粒子径(体積基準累積50%粒子径)、すなわちD50(メジアン径)である。この体積基準累積50%粒子径(D50)は、体積基準で粒度分布を求め、全体積を100%とした累積曲線において、粒子サイズの小さいものから粒子数をカウントしていき、累積値が50%となる点の粒子径である。
(セラミック原料)
本発明で用いることができるセラミック原料としては、シリコンカーバイド、コージェライト、ムライト、アルミナ、チタン酸アルミニウムから選ばれる少なくとも1種が例示され、これらを2種以上組み合わせて用いることもできる。セラミック原料は、耐熱性、安定性をより一層高める観点から、チタン酸アルミニウムが好ましい。
本発明で用いることができるセラミック原料としては、シリコンカーバイド、コージェライト、ムライト、アルミナ、チタン酸アルミニウムから選ばれる少なくとも1種が例示され、これらを2種以上組み合わせて用いることもできる。セラミック原料は、耐熱性、安定性をより一層高める観点から、チタン酸アルミニウムが好ましい。
セラミック原料の平均粒子径は、0.5μm~100μmであることが好ましく、0.8μm~50μmであることがより好ましく、1μm~30μmであることが更に好ましい。平均粒子径は、原料粒子を混合する前の粒子状物を用いて測定すればよい。また、本発明において、平均粒子径とは、レーザー回折・散乱法によって求めた粒度分布における体積基準累積50%の粒子径(体積基準累積50%粒子径)、すなわちD50(メジアン径)である。この体積基準累積50%粒子径(D50)は、体積基準で粒度分布を求め、全体積を100%とした累積曲線において、粒子サイズの小さいものから粒子数をカウントしていき、累積値が50%となる点の粒子径である。
(粘土鉱物)
本発明で用いることができる粘土鉱物とは、粘土を構成する主成分鉱物である。層状珪酸塩鉱物(フィロ珪酸塩鉱物)、滑石(タルク)、方解石(カルサイト)、苦灰石(ドロマイト)、長石類、石英、沸石(ゼオライト)類、その他鎖状構造を持つもの(アタパルジャイト、セピオライトなど)、はっきりとした結晶構造を持たないもの(アロフェン)等が粘土鉱物と呼ばれているが、一般的にはそのなかの層状珪酸塩鉱物のことを層状粘土鉱物と呼ぶこともある。本発明で用いることができる粘土鉱物としては、層状粘土鉱物が好ましい。
本発明で用いることができる粘土鉱物とは、粘土を構成する主成分鉱物である。層状珪酸塩鉱物(フィロ珪酸塩鉱物)、滑石(タルク)、方解石(カルサイト)、苦灰石(ドロマイト)、長石類、石英、沸石(ゼオライト)類、その他鎖状構造を持つもの(アタパルジャイト、セピオライトなど)、はっきりとした結晶構造を持たないもの(アロフェン)等が粘土鉱物と呼ばれているが、一般的にはそのなかの層状珪酸塩鉱物のことを層状粘土鉱物と呼ぶこともある。本発明で用いることができる粘土鉱物としては、層状粘土鉱物が好ましい。
層状粘土鉱物は、正負のイオンの二次元的な層が平行に積み重なって結合し結晶構造を作っており、この層構造のなかには2つの構造単位を有し、1つはSi4+とこれを囲んだO2-とからなる四面体層、他はSi3+(あるいはMg2+、Fe2+など)とこれを囲んだ(OH)-とからなる八面体層で構成されている。
四面体層中では、四面体の4つの頂点にあるOと中心に位置するSiによりSi-Oの四面体が形成され、これが3つの頂点で互いに連結して二次元的に広がり、Si4O10の組成を有する層格子を形成している。Si4+はしばしばAl3+で置換される。
八面体層中では、八面体の6つの頂点にある(OH)またはOと、その中心に位置するAl、Mg、Feなどにより形成された八面体が、各頂点で連結して二次元的に広がり、Al2(OH)6あるいはMg3(OH)6の組成を有する層格子を形成している。
八面体層には、6個の陰イオンで囲まれた陽イオンの格子点に2価の陽イオン(Mg2+など)が入り格子点の全てを占めている3-八面体型、陽イオンの格子点に3価の陽イオン(Al3+など)が入り2/3を占め、残りの1/3は空所となっている2-八面体型がある。
四面体層と八面体層の組合せには2種類あり、1つは1枚の四面体層と1枚の八面体層の結合を単位とする1:1型構造、他は1枚の四面体層とその間に挟まれた1枚の八面体層の結合を単位とする1:1型構造がある。
四面体層では通常は1個のSi4+が4個のO原子で囲まれて安定な配位をとっているが、ときにこのSi4+よりわずかにイオン半径の大きいAl3+がSi4+の代わりに四面体層に存在する。配位するO原子の数には変化が無いので、1つのAl3+がSi4+を置換するごとに四面体層には一単位の負電荷を生じる。同様に八面体層でもMg2+、Fe2+によるAl3+、Fe3+の置換に伴い負電荷を生じる。
この負電荷を生じた層は、Li+、K+、Na+、NH4
+、H3O+、Ca2+、Mg2+、Sr2+、Ba2+、Co2+、Fe2+、Al3+などの陽イオンが介在することで電気的中性になり、層間にこれら交換性陽イオンが存在した積層構造となる。
層状粘土鉱物としては、スメクタイト、スチーブンサイト、バーミキュライト、雲母族、脆雲母族の天然品又は合成品から選ばれる少なくとも1種が例示される。これらを組み合わせ用いることができる。
上記スメクタイトとしては、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、鉄サポナイト、ヘクトライト、ソーコナイト等が挙げられる。NOX除去効率、機械的強度をより一層高める観点から、モンモリロナイトが好ましい。例えば、モンモリロナイトを主成分とするベントナイトを用いることができ、ベントナイト中のモンモリロナイトの含有量は40%以上であることが好ましく、70%以上であることがより好ましい。
粘土鉱物の平均粒子径は、0.5μm~100μmであることが好ましく、0.8μm~30μmであることがより好ましく、1μm~20μmであることが更に好ましい。平均粒子径は、原料粒子を混合する前の粒子状物を用いて測定すればよい。また、本発明において、平均粒子径とは、レーザー回折・散乱法によって求めた粒度分布における体積基準累積50%の粒子径(体積基準累積50%粒子径)、すなわちD50(メジアン径)である。この体積基準累積50%粒子径(D50)は、体積基準で粒度分布を求め、全体積を100%とした累積曲線において、粒子サイズの小さいものから粒子数をカウントしていき、累積値が50%となる点の粒子径である。
(無機繊維)
本発明で用いることができる無機繊維は、繊維状粒子から構成される粉末であり、平均繊維長は、好ましくは1μm~300μmであり、より好ましくは1μm~200μmである。また、平均アスペクト比は、好ましくは3~200であり、より好ましくは5~50である。
本発明で用いることができる無機繊維は、繊維状粒子から構成される粉末であり、平均繊維長は、好ましくは1μm~300μmであり、より好ましくは1μm~200μmである。また、平均アスペクト比は、好ましくは3~200であり、より好ましくは5~50である。
無機繊維は、押出成形機の摩耗の観点から、モース硬度が5以下であることが好ましく、1~5であることがより好ましい。無機繊維としては、例えば、チタン酸アルカリ金属塩、ワラストナイト、ホウ酸マグネシウム、ゾノトライト、塩基性硫酸マグネシウムから選ばれる少なくとも1種が挙げられる。また、NOX還元効率及び機械的強度をより一層高める観点から、無機繊維はチタン酸アルカリ金属塩であることが好ましい。モース硬度とは、物質の硬さを表す指標であり、鉱物同士を擦り付けて傷ついたほうが硬度の小さい物質となる。
チタン酸アルカリ金属塩としては、Na2TiO3、Na2Ti2O5、Na2Ti4O9、Na2Ti6O13、Na2Ti8O17等のチタン酸ナトリウム;K2TiO3、K2Ti2O5、K2Ti4O9、K2Ti6O13、K2Ti8O17等のチタン酸カリウム;Cs2TiO3、Cs2Ti2O5、Cs2Ti4O9、Cs2Ti6O13、Cs2Ti8O17等のチタン酸セシウム;等を例示することができる。
チタン酸アルカリ金属塩の寸法は、上述の無機繊維の寸法の範囲であれば特に制限はないが、通常、平均繊維径が好ましくは0.01μm~1μm、より好ましくは0.1μm~0.6μmであり、平均繊維長が好ましくは1μm~50μm、より好ましくは3μm~30μmであり、平均アスペクト比が好ましくは10以上、より好ましくは15~40である。本発明では市販品も使用でき、例えば、大塚化学社製の「ティスモD」(平均繊維長15μm、平均繊維径0.5μm)や、「ティスモN」(平均繊維長15μm、平均繊維径0.5μm)等を使用することができる。
上述の平均繊維長及び平均繊維径は、走査型電子顕微鏡の観察により測定することができ、平均アスペクト比(平均繊維長/平均繊維径)は、平均繊維長及び平均繊維径より算出することできる。例えば、走査型電子顕微鏡により、複数の無機繊維を撮影し、その観察像から無機繊維を任意に300個選択し、それらの繊維長及び繊維径を測定し、繊維径の全てを積算して個数で除したものを平均繊維長、繊維径の全てを積算し個数で除したものを平均繊維径とすることができる。平均繊維長及び平均繊維径は、原料粒子を混合する前の粒子状物を用いて測定すればよい。
本発明において繊維状粒子とは、粒子に外接する直方体のうち最小の体積をもつ直方体(外接直方体)の最も長い辺を長径L、次に長い辺を短径B、最も短い辺を厚さTと定義(B>Tとする)したときに、L/BおよびL/Tがいずれも5以上の粒子のことをいい、長径Lが繊維長、短径Bが繊維径に相当する。
(ハニカム構造体)
図1は、本発明の一実施形態に係るハニカム構造体を示す模式的斜視図である。
図1は、本発明の一実施形態に係るハニカム構造体を示す模式的斜視図である。
図1に示すように、本実施形態のハニカム構造体11は、互いに対向している第1の端面11a及び第2の端面11bと、第1の端面11a及び第2の端面11bを結ぶ側面11cとを有する。ハニカム構造体11においては、図1に示す長手方向Xに沿って、第1の端面11aから第2の端面11bに向かって延伸している複数のセル12がセル壁13によって区画されている。なお、ハニカム構造体11の側面11c(長手方向Xと平行な面)は、側面11cを補強し強度を保つため、また側面11cからセルを通過する排ガスが漏れ出すことを防止するため、コーティング層で覆われていてもよい。上記コーティング層を構成する材料としては、特に限定されず、例えば、無機バインダと有機バインダと無機繊維及び/又は無機粒子とからなるものと等を挙げることができる。
ハニカム構造体11はそのまま用いてもよいし、複数のハニカム構造体11を接着剤などにより接合して用いてもよい。複数のハニカム構造体11を接合した接合体として用いる場合は、長手方向Xが平行に配列されるように形成することが望ましい。また、単一のハニカム構造体11又は複数のハニカム構造体11の接合体は、側面11c側を所定の形状に沿って切削加工してもよい。
ハニカム構造体11の長手方向Xに対して垂直な断面の形状は、特に限定されるものではなく、例えば丸形、方形(正方形、長方形)、六角形、扇形であってもよい。また、尖った形状の角部を有する方形等の断面形状の場合、ハニカム構造体11の再生時の応力を緩和しクラックの発生をより一層抑制する観点から、尖った形状の角部を面取り形状とすることが好ましい。本発明において面取り形状とは、面と面との交わりの角に平面又は曲面からなる斜めの面を付けた形状のことをいい、応力緩和性の観点から曲面からなる斜めの面を付けた形状が更に好ましく、例えば図2に変形例で示すように円弧からなるR面取り形状が特に好ましい。
ハニカム構造体11のセル12における長手方向Xに対して垂直な断面形状は、特に限定されず、実施形態のように方形(正方形、長方形)であってもよく、方形以外にも、例えば三角形、多角形としてもよい。また、上記断面形状が方形の場合、ハニカム構造体11の強度向上、熱と応力分散の観点から、例えば図2に変形例で示すようにハニカム構造体11の最外周のセル12aの角部15には、断面形状が直角三角形状の充填体が設けられていることが好ましい。充填体が設けられている角部15は、ハニカム構造体11の最外周の断面が方形のセル12aの角部のうち、ハニカム構造体11の外縁壁14と接する角部15である。上記直角三角形の充填体の一辺の長さは、方形セル12aの一辺の長さの5%~40%であることが好ましい。
ハニカム構造体11のセル壁13の厚みは、特に限定されないが、強度をより一層高める観点から好ましい下限値は100μmであり、浄化性能をより一層高める観点から好ましい上限は400μmである。ハニカム構造体11の外縁壁14を構成するセル壁13aの厚さは、それ以外のセル壁13bの厚さと同じでも厚くてもよいが、外縁壁14を構成しないセル壁13bの1.3倍~3.0倍とすることで、高い開口率を維持しつつ、強度を確保することが可能となる。
ハニカム構造体11のセル12の開口率は、圧力損失の観点から60%以上であることが好ましい。本発明において、セル12の開口率とは、ハニカム構造体11の長手方向Xに対して垂直な断面において、セル12の割合のことをいう。なお、上記垂直な断面は、目封止材により目封止されていない断面とする。ハニカム構造体11のセル12の開口率の上限は、特に限定されないが、例えば、70%とすることができる。
ハニカム構造体11のセル12の数は、特に限定されないが、200セル/平方インチ~400セル/平方インチであることが好ましい。また、セル12の壁面は多孔質であれば特に制限されないが、長径が2μm~18μmの細孔を有していることが好ましく、気孔率は45%~65%であることが好ましい。
また、本発明においては、NOX除去効率をより一層高める観点、又はNOX除去機能とPM浄化機能を一体化させ双方をより一層高める観点で、一方の端面が開口され且つ他方の端面が目封止されたセルと、一方の端面が目封止され且つ他方の端面が開口された残余のセルとが交互に配置されたハニカム構造体から形成された、ウォールフロー型のハニカムフィルタであることが好ましい。
(製造方法)
上述した本発明のハニカム構造体の製造方法の一例について説明する。まず、上述したゼオライトと上述の原料混合物(第1の原料混合物)の焼結体とに、必要に応じて、さらにセラミック原料と粘土鉱物と無機繊維等を主成分として含有する第2の原料混合物を作製する。この第2の原料混合物を押出成形等することにより成形体とする。第2の原料混合物には、これらの他に造孔材、有機バインダ、分散剤、及び水等を加えてもよい。造孔材としては、黒鉛、グラファイト、木粉、ポリエチレンが挙げられる。また、有機バインダとしては、メチルセルロース、エチルセルロース、ポリビニルアルコールが挙げられる。分散剤としては、脂肪酸石鹸、エチレングリコールが挙げられる。造孔材、有機バインダ、分散剤、及び水の量は、セル壁面の気孔率、成形性等を考慮して適宜調整することができる。
上述した本発明のハニカム構造体の製造方法の一例について説明する。まず、上述したゼオライトと上述の原料混合物(第1の原料混合物)の焼結体とに、必要に応じて、さらにセラミック原料と粘土鉱物と無機繊維等を主成分として含有する第2の原料混合物を作製する。この第2の原料混合物を押出成形等することにより成形体とする。第2の原料混合物には、これらの他に造孔材、有機バインダ、分散剤、及び水等を加えてもよい。造孔材としては、黒鉛、グラファイト、木粉、ポリエチレンが挙げられる。また、有機バインダとしては、メチルセルロース、エチルセルロース、ポリビニルアルコールが挙げられる。分散剤としては、脂肪酸石鹸、エチレングリコールが挙げられる。造孔材、有機バインダ、分散剤、及び水の量は、セル壁面の気孔率、成形性等を考慮して適宜調整することができる。
第2の原料混合物は、特に限定されるものではないが、混合・混練することが好ましく、例えば、ミキサー等を用いて混合してもよく、ニーダー等で十分に混練してもよい。第2の原料混合物を成形する方法は、特に限定されるものではないが、例えば、押出成形などによって所定のセル密度、開口率を有する形状に成形することが好ましい。
次に、得られた成形体は、必要に応じて、セルの開口が市松模様となるように片側の目封止を行った後に乾燥することが好ましい。乾燥に用いる乾燥機は、特に限定されるものではないが、マイクロ波乾燥機、熱風乾燥機、真空乾燥機などが挙げられる。また、得られた成形体は、脱脂することが好ましい。脱脂する条件は、特に限定されず、成形体に含まれる有機物の種類によって適宜選択されるが、おおよそ400℃、2時間が好ましい。さらに得られた成形体は、焼成することが好ましい。焼成温度としては、特に限定されるものではないが、例えば600℃~1200℃とすることができ、焼成時間としては例えば2時間~15時間とすることができる。焼成温度が1200℃を超えると、ゼオライト結晶が崩壊したり、焼結が進行しすぎて適度な気孔率を有することができないことがあり、焼成温度が600℃未満では焼結が進行せずハニカム構造体としての強度が上がらないことがある。セラミック原料を併用した場合の焼成条件は、セラミック原料により適宜選択されるが、セラミック原料としてチタン酸アルミニウムを用いる場合、焼成温度としては例えば900℃~1100℃とすることができ、焼成時間としては例えば2時間~15時間とすることができる。
第2の原料混合物におけるゼオライトの含有量は、第2の原料混合物100質量%に対して、10質量%~80質量%であることが好ましく、30質量%~70質量%であることがより好ましい。
第2の原料混合物における第1の原料混合物の焼結体の含有量は、ゼオライト100質量部に対して1質量部~50質量部であることが好ましく、3質量部~30質量部であることがより好ましく、3質量部~20質量部であることがさらに好ましい。
第2の原料混合物におけるセラミック原料の含有量は、ゼオライト100質量部に対して1質量部~50質量部であることが好ましく、5質量部~30質量部であることがより好ましく、5質量部~20質量部であることがさらに好ましい。
第2の原料混合物におけるにおける粘土鉱物の含有量は、ゼオライト100質量部に対して1質量部~50質量部であることが好ましく、3質量部~30質量部であることがより好ましく、3質量部~20質量部であることがさらに好ましい。
第2の原料混合物における無機繊維の含有量は、ゼオライト100質量部に対して1質量部~50質量部であることが好ましく、3質量部~30質量部であることがより好ましく、3質量部~20質量部であることがさらに好ましい。
上記方法で製造することで、ゼオライトをセル壁中に均一に分布させることができ、効率よくNOX浄化することが可能となる。本発明において均一とは、ハニカム構造体のセル壁の中心部分に含まれるゼオライトの濃度に対する、セル壁の表面部分に含まれるゼオライトの濃度の比(表面部分/中心部分)が、0.8~1.2の範囲にあることをいう。本発明の製造方法では、ハニカム構造体の作製後にゼオライトを含む溶液に含浸させたり、ゼオライトを含む溶液を塗布したりしていないので、比(表面部分/中心部分)が上記範囲内となる。
本発明において、処理の対象となる排ガスは、ディーゼルエンジン、ガソリンエンジン等の内燃機関等から排出される排ガス、各種燃焼設備等の排ガスを挙げることができる。
本発明のハニカム構造体は、排ガス流路中に配置することで排ガスに接触させて用いられる。これらの排ガス中のNOXの除去は、還元剤、例えば尿素、炭酸アンモニウム、ヒドラジン、炭酸水素アンモニウム等のアンモニア前駆物質、又はアンモニア自体の存在下で行われる。還元剤は、排ガス流路中において、本発明のハニカム構造体の上流に配置し、適宜必要量を供給してもよい。
ハニカム構造体の製造において、混合物にPMを燃焼させる触媒を含ませることもでき、これにより本発明のハニカム構造体は、1つのフィルタで、排ガス中の有害物質であるPMを低温において燃焼でき、NOXを還元除去することもできる。その優れた機能から、ディーゼルエンジン用フィルタ(DPF)、ガソリンエンジン用フィルタ等に好適に使用することができ、市場のダウンサイジングの要請に応えることもできる。
(排ガス浄化装置)
本発明の排ガス浄化装置は、上記本発明のハニカム構造体を備えている。上記本発明のハニカム構造体の他にも、例えば、ハニカム構造体に還元剤等(アンモニア、尿素等のアンモニア前駆物質から得られる還元剤)を供給する手段をさらに備えている。又は、上記本発明のハニカム構造体にPMを燃焼させる触媒が含まれている場合は、堆積したPMを分解するためハニカム構造体を加熱する手段等をさらに備えている。
本発明の排ガス浄化装置は、上記本発明のハニカム構造体を備えている。上記本発明のハニカム構造体の他にも、例えば、ハニカム構造体に還元剤等(アンモニア、尿素等のアンモニア前駆物質から得られる還元剤)を供給する手段をさらに備えている。又は、上記本発明のハニカム構造体にPMを燃焼させる触媒が含まれている場合は、堆積したPMを分解するためハニカム構造体を加熱する手段等をさらに備えている。
ハニカム構造体に還元剤等を供給する手段としては、本発明のハニカム構造体に還元剤等を供給できれば公知の手段を採用することができ、例えば、排ガス流路上において、本発明のハニカム構造体より上流側(内燃機関側)に配置し、ハニカム構造体に還元剤等を噴霧する手段が挙げられる。また、適宜、還元剤等を均一供給するミキサーを配置してもよい。
堆積したPMを分解するためのハニカム構造体を加熱する手段としては、本発明のハニカム構造体を加熱できればよく、例えば、内燃機関の燃料を、内燃機関からハニカム構造体に噴霧し、その燃焼熱を利用する手段や、電気加熱を利用する手段が挙げられる。
本発明の排ガス浄化装置は、更に、排ガス流路上の上流側(内燃機関側)から順に、酸化触媒、NOX貯蔵触媒、PM燃焼触媒等の第1の触媒、本発明のハニカム構造体、SCR触媒、スリップ酸化触媒等の第2の触媒が配置されていてもよい。排ガス流路上の上流側(内燃機関側)から順に、上記第1の触媒、本発明のハニカム構造体が配置されていてもよい。また、排ガス流路上の上流側(内燃機関側)から順に、本発明のハニカム構造体、上記第2の触媒が配置されていてもよい。第1の触媒および第2の触媒は、それぞれ1種又は2種以上を選択してもよい。
本発明において酸化触媒とは、HC、CO、NOXを、H2O、CO2、NO2に酸化する触媒を意味する。NOX貯蔵触媒とは、リーン条件下でNOXをトラップし、ストイキやリッチ条件になった際に、NO2として放出、又はN2にする触媒を意味する。PM燃焼触媒とは、リッチ条件下において自燃温度より低温でPMを燃焼させる触媒を意味する。SCR触媒とは、リーン条件下においても、NOXをN2にできる触媒を意味する。また、スリップ酸化触媒とは、還元剤として使用した余剰のNH3や、浄化できなかったNOXを、捕捉しN2に浄化する触媒を意味する。酸化触媒としては、例えば、Pt、Pd、Rh、Ag、Cu等の金属、該金属を含む酸化物、耐熱性が高い高比表面積無機物質(アルミナ、ジルコニア等)、酸性酸化物(シリカ等)、塩基性酸化物(チタニア、ジルコニア、希土類を含有するアルミナ等)、酸素吸放出物質(セリア、セリア-ジルコニア複合酸化物、希土類を含有する硫酸塩等)、ゼオライト等の少なくとも一種類からなる触媒が挙げられる。これらは、フィルタに担持して使用される。
NOX貯蔵触媒としては、例えば、上記酸化触媒に記載の物質や、塩基性の強いアルカリ金属元素を含有する化合物(炭酸ナトリウム、炭酸カリウム、チタン酸カリウム等)、アルカリ土類金属元素を含有する化合物(炭酸ストロンチウム、炭酸バリウム、MgAl2O4等)、希土類元素を含有する化合物(セリア、セリア-ジルコニア複合酸化物等)等の少なくとも一種類からなる触媒が挙げられる。これらは、フィルタに担持して使用される。
PM燃焼触媒としては、例えば、PGM(Platinum Group Metal)触媒(Pt、Pd、Rh等)、酸素吸放出能を有するCe系の酸化物(セリア、セリア-ジルコニア複合酸化物等)、アルカリ複合酸化物(Na2ZrSi3O9、KAlSiO4、LiAlSiO4、K2TiSiO5、K2Ti4O9等)が挙げられる。これらは、フィルタに担持して使用される。
SCR触媒としては、例えば、ゼオライトや、卑金属複合TiO2(卑金属としては、V2O5、WO3、MoO3等)等の少なくとも一種類からなる触媒が挙げられる。これらは、フィルタに担持して使用される。
スリップ酸化触媒としては、例えば、上記酸化触媒に記載の物質、NOX貯蔵触媒に記載の物質、SCR触媒に記載の物質等のうち少なくとも一種類からなる触媒が挙げられる。これらは、フィルタに担持して使用される。
本発明の排ガス浄化装置において、NOXの浄化を効率的に行える本発明のハニカム構造体を用いることで、第2の触媒のSCR触媒サイズを小さくすることができ、又は、第2の触媒のSCR触媒を無くすことができるために、装置をコンパクトにすることができる。また、本発明のハニカム構造体の排ガス出口側の一部に、スリップ酸化触媒を担持すれば、第2の触媒のスリップ酸化触媒サイズを小さくすることができ、又は、第2の触媒のスリップ酸化触媒を無くすことができるために、装置をコンパクトにすることができる。
本発明のハニカム構造体の排ガス入口側の一部に、第1の触媒を担持すれば、第1の触媒のサイズを小さく、又は、第1の触媒を無くすことができるために、装置をコンパクトにすることができる。
上述の本発明のハニカム構造体に担持する第1の触媒としては、V2O5、Fe2O3、MnO2、CuO、CuFe複合酸化物等の遷移金属酸化物が好ましい。遷移金属酸化物を担持することで、NOX還元効率だけでなく、PM除去効率をより一層向上することができる。また、遷移金属酸化物は非アルカリ系触媒であることからアルカリに起因するゼオライトの機能低下のおそれがない。
本発明のハニカム構造体における見かけ体積当たりの遷移金属酸化物の担持量は、下限値が1g/Lであることが好ましく、5g/Lであることがより好ましく、8g/Lであることが更に好ましい。また、本発明のハニカム構造体における見かけ体積当たりの遷移金属酸化物の担持量は、上限値が90g/Lであることが好ましく、85g/Lであることがより好ましく、82g/Lであることが更に好ましい。遷移金属酸化物の担持量を上記範囲とすることで、NOX還元効率を損ない難く、しかもPM除去効率をより一層向上することができる。
上記遷移金属酸化物の平均粒子径としては、本発明のハニカム構造体の細孔径よりも大きいことが好ましい。本発明において、遷移金属酸化物の平均粒子径とはレーザー回折・散乱法によって求めた粒度分布における体積基準累積50%(体積基準累積50%粒子径)、すなわちD50(メジアン径)の粒子径である。この体積基準累積50%粒子径(D50)は、体積基準で粒度分布を求め、全体積を100%とした累積曲線において、粒子サイズの小さいものから粒子数をカウントしていき、累積値が50%となる点の粒子径である。
上記方法で、本発明の排ガス浄化装置をコンパクト化できれば、従来よりも排ガス浄化装置を適切な位置に配置することができる。例えば、内燃機関に近接させ、温度による排ガス浄化触媒の活性化を促進することで、浄化効率をさらに一層向上することができる。また、軽量化による燃費改善や、新たな装置を搭載するスペースが確保できる等の効果が期待できる。
本発明のハニカム構造体は、ゼオライトを含む材料で構成されており、ゼオライトの比重が小さいことから、ハニカム構造体をより一層軽くすることができる。また。細孔径が2μm程度と小さくとも圧力損失を低くでき、搭載されるゼオライト量を多くできる等の機能により、上記の効果がより一層顕著になると考えられる。本発明のハニカム構造体の細孔径が、一般的なDPFや、SCRF(SCR触媒付きDPF)の細孔径(10μm~20μm)より小さくても圧力損失を低くできるのは、細孔径分布が揃っており、ガス流通抵抗が少ないことによるものと考えられる。ゼオライト搭載量を多くできるのは、ゼオライトが骨格を形成していてもハニカム構造体の強度を保てるためである。
軽いハニカム構造体は軽量化に貢献すると考えられる。低い圧力損失は、排気ガス抵抗の低減に貢献すると考えられる。また、圧力損失を低くした状態で細孔径を小さくできることは、PM2.5よりも小さい物質を効率的に捕捉することに貢献すると考えられる。豊富なゼオライト量は、NOX浄化触媒効率を向上し、還元剤貯蔵量を増すことに貢献すると考えられる。また、豊富なゼオライト量は、第1触媒、第2触媒を一体化する際の、触媒担体や、触媒としても貢献すると考えられる。
以下、本発明について、実施例に基づいて、さらに詳細に説明する。本発明は、以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。また、粒子形状は電界放出型走査電子顕微鏡(日立ハイテクノロジーズ社製、品番「S-4800」)により確認した。平均粒子径はレーザー回折式粒度分布測定装置(島津製作所社製、品番「SALD-2100」)により測定した。なお、略号の意味は下記の通りの材料を用いたことを示している。
ゼオライト:ZSM-5型ゼオライト(平均粒子径10μm、商品名:HSZ-840NHA、東ソー社製)
粘土鉱物:ベントナイト(平均粒子径2μm、商品名:クニピアF、クニミネ工業社製)
無機繊維:K2Ti6O13(平均繊維長15μm、平均繊維径0.5μm、商品名:TISMO N、大塚化学社製)
セラミック原料:チタン酸アルミニウム(平均粒子径13μm、丸ス釉薬社製)
ガラスフリット:ガラスフリット(平均粒子径10μm、商品名:6305(酸化物換算[モル%]:K/Na/Ca/Al/Si=3/5/25/2/65)、関谷理化社製)
粘土鉱物:ベントナイト(平均粒子径2μm、商品名:クニピアF、クニミネ工業社製)
無機繊維:K2Ti6O13(平均繊維長15μm、平均繊維径0.5μm、商品名:TISMO N、大塚化学社製)
セラミック原料:チタン酸アルミニウム(平均粒子径13μm、丸ス釉薬社製)
ガラスフリット:ガラスフリット(平均粒子径10μm、商品名:6305(酸化物換算[モル%]:K/Na/Ca/Al/Si=3/5/25/2/65)、関谷理化社製)
<第1の原料混合物の焼結体の合成>
(合成例1~合成例27)
第1の原料混合物の配合組成が表1に示した組成になるように、炭酸カリウム、炭酸カルシウム、水酸化アルミニウム、二酸化チタン、シリカ、水酸化マグネシウム、酸化鉄、炭酸ナトリウムをそれぞれ配合し、1300℃で4時間焼成した。得られた粒子状固体(第1の原料混合物の焼結体)の平均粒子径を篩により10μmに調整し、ハニカム構造体製造の原料とした。
(合成例1~合成例27)
第1の原料混合物の配合組成が表1に示した組成になるように、炭酸カリウム、炭酸カルシウム、水酸化アルミニウム、二酸化チタン、シリカ、水酸化マグネシウム、酸化鉄、炭酸ナトリウムをそれぞれ配合し、1300℃で4時間焼成した。得られた粒子状固体(第1の原料混合物の焼結体)の平均粒子径を篩により10μmに調整し、ハニカム構造体製造の原料とした。
<ハニカム構造体の製造>
(実施例1)
ゼオライト65質量部に対し、セラミック原料8質量部、合成例1の第1の原料混合物の焼結体7質量部、無機繊維6質量部、粘土鉱物10質量部、黒鉛3質量部、メチルセルロース10質量部、及び脂肪酸石鹸0.5質量部を配合し、さらに水を適当量添加して混練し、押出成形可能な坏土を得た。
(実施例1)
ゼオライト65質量部に対し、セラミック原料8質量部、合成例1の第1の原料混合物の焼結体7質量部、無機繊維6質量部、粘土鉱物10質量部、黒鉛3質量部、メチルセルロース10質量部、及び脂肪酸石鹸0.5質量部を配合し、さらに水を適当量添加して混練し、押出成形可能な坏土を得た。
得られた坏土を押出成形機にてハニカム構造体となるように押し出して成形し、成形体を得た。金型のセル密度は、300セル/平方インチ(46.5セル/cm2)とし、隔壁厚みは300μmとした。開口率は63%とした。
固形分がほぼ上記のゼオライト、セラミック原料、第1の原料混合物の焼結体、無機繊維、粘土鉱物からなり、粘度調整材等の添加物を加えたスラリーを調製した。なお、スラリー中における固形分の比率は上記と同様である。ハニカム構造体となる成形体において、開口したセルと封止したセルが交互に市松模様となるように、ハニカム構造体となる成形体のセルに、このスラリーを注入し、目封じを行った。
目封じを行った成形体を、600℃で10時間保持し、その後25℃/時間で1000℃まで昇温し、さらに1000℃で5時間保持して焼成することで、細孔径2μm、気孔率56%のハニカム構造体を得た。
得られたハニカム構造体を5質量%酢酸銅水溶液に60℃で3時間含浸した。その後イオン交換水で充分洗浄し、700℃で10時間加熱することで、本発明のハニカム構造体を製造した。
(実施例2~実施例32、比較例1~比較例15)
第1の原料混合物の焼結体の種類を表2及び表3に示すように変更したこと、及び第1の原料混合物の焼結体の添加量を表2及び表3に示すように変更したこと以外は、実施例1と同様の方法でハニカム構造体を製造した。
第1の原料混合物の焼結体の種類を表2及び表3に示すように変更したこと、及び第1の原料混合物の焼結体の添加量を表2及び表3に示すように変更したこと以外は、実施例1と同様の方法でハニカム構造体を製造した。
(実施例33)
ハニカム構造体における体積当たりのCuOの担持量が10g/Lとなるように、実施例6で得られたハニカム構造体を酸化第二銅粉末(平均粒子径4μm)のスラリーに含浸し、700℃で10時間加熱することでCuOを坦持させハニカム構造体を製造した。
ハニカム構造体における体積当たりのCuOの担持量が10g/Lとなるように、実施例6で得られたハニカム構造体を酸化第二銅粉末(平均粒子径4μm)のスラリーに含浸し、700℃で10時間加熱することでCuOを坦持させハニカム構造体を製造した。
(実施例34~実施例36)
CuOの担持量を表4に示す量とした以外は、実施例33と同様の方法でハニカム構造体を製造した。
CuOの担持量を表4に示す量とした以外は、実施例33と同様の方法でハニカム構造体を製造した。
<ハニカム構造体の評価>
(NOXガス性能の評価)
予めハニカム構造体を100℃にて乾燥させ、ハニカム構造体を模擬排ガス排気ラインに設置した。その後、模擬排ガス(O2:10%、N2:85%、NO:500ppm、NH3:500ppm、H2O:5%、SV=50000/h)を250℃まで上昇させ、NOX濃度を測定した。得られた結果からNOX浄化率を算出した。結果を表2及び表3に示した。
(NOXガス性能の評価)
予めハニカム構造体を100℃にて乾燥させ、ハニカム構造体を模擬排ガス排気ラインに設置した。その後、模擬排ガス(O2:10%、N2:85%、NO:500ppm、NH3:500ppm、H2O:5%、SV=50000/h)を250℃まで上昇させ、NOX濃度を測定した。得られた結果からNOX浄化率を算出した。結果を表2及び表3に示した。
(曲げ強度)
図3に示すように、3×3セルのハニカム構造体2を、支持点21及び支持点22により支持した状態で、ハニカム構造体2の中心部を押圧棒20で押圧することにより、JIS R1601に準拠して、曲げ強度を測定し、結果を表2及び表3に示した。
図3に示すように、3×3セルのハニカム構造体2を、支持点21及び支持点22により支持した状態で、ハニカム構造体2の中心部を押圧棒20で押圧することにより、JIS R1601に準拠して、曲げ強度を測定し、結果を表2及び表3に示した。
(熱膨張係数)
3×3セルのハニカム構造体をTMA装置にセットし、JIS R1618に準拠して、熱膨張係数を測定し、結果を表2及び表3に示した。
3×3セルのハニカム構造体をTMA装置にセットし、JIS R1618に準拠して、熱膨張係数を測定し、結果を表2及び表3に示した。
(ゼオライト濃度)
実施例1~実施例32、比較例1~比較例15で得られたハニカム構造体について、セル壁の中心部分に含まれるゼオライトの濃度に対する、セル壁の表面部分のゼオライトの濃度の比(表面部分/中心部分)が、0.8~1.2の範囲であることを確認した。
実施例1~実施例32、比較例1~比較例15で得られたハニカム構造体について、セル壁の中心部分に含まれるゼオライトの濃度に対する、セル壁の表面部分のゼオライトの濃度の比(表面部分/中心部分)が、0.8~1.2の範囲であることを確認した。
確認方法は次のように行った。ピンセット等を用いて、セル壁の表面を削り、表面部分の成分を粉末状態で回収する。同様に、セル壁の厚さの中心部分から、粉末状サンプルを回収する。これらの粉末状サンプルのX線回折分析から、セル壁の表面および中心部分に、ゼオライトが含まれているゼオライト濃度を測定した。X線回折分析には、RINT2500PC装置(リガク社製)を使用した。
(再生率)
実施例6、実施例33~実施例36得られたハニカム構造体について、ハニカム構造体の初期重量を予め測定した。次に、ディーゼルエンジンの排気ラインに、酸化触媒(DOC)とハニカム構造体を備える排ガス浄化フィルタを順に設置した。設置後、ディーゼルエンジンを始動させ、排気温度が低温となる運転条件でPMを所定量(約8g/L)堆積させた後、一度ハニカム構造体を取り外し、堆積したPMの重量(PM堆積重量)を測定した。
実施例6、実施例33~実施例36得られたハニカム構造体について、ハニカム構造体の初期重量を予め測定した。次に、ディーゼルエンジンの排気ラインに、酸化触媒(DOC)とハニカム構造体を備える排ガス浄化フィルタを順に設置した。設置後、ディーゼルエンジンを始動させ、排気温度が低温となる運転条件でPMを所定量(約8g/L)堆積させた後、一度ハニカム構造体を取り外し、堆積したPMの重量(PM堆積重量)を測定した。
次いで、PMを堆積させたハニカム構造体を模擬排ガスの排気ラインに設置した後、模擬排ガスを480℃まで上昇させ再生試験を開始した。480℃に到達した時点から30分間480℃±10℃の温度を保持し、30分経過後、模擬排ガスの全量を窒素ガスに切り替えた。
温度が室温まで低下後、再度、ハニカム構造体を取り出し、重量減少分(=PM燃焼重量)を測定し、以下の計算式により再生率を算出した。結果を表4に示した。
再生率(%)=100-[(PM堆積重量(g)-PM燃焼重量(g))/PM堆積重量(g)]×100
再生率(%)=100-[(PM堆積重量(g)-PM燃焼重量(g))/PM堆積重量(g)]×100
実施例1~実施例32と、比較例1~比較例15との比較から、カリウム、A元素、アルミニウム、M元素とケイ素とが、所定の含有率である第1の原料混合物の焼結体を使用することで、ハニカム構造体のNOX浄化性能の低下を抑えつつ、機械的強度及び熱膨張係数が向上することが分かる。
実施例1~実施例32と、比較例5~比較例10との比較から、アルカリ金属の中でもカリウムが、ハニカム構造体のNOX浄化性能の低下を抑えられることが分かる。
比較例14と比較例15との比較から、ガラスフリットを使用すると、NOX浄化性能が著しく低下することが分かる。
従って、本発明のハニカム構造体では、カリウムを酸化物換算で10モル%~40モル%、アルカリ土類金属から選ばれる少なくとも1種のA元素を酸化物換算で2.5モル%~20モル%、アルミニウムを酸化物換算で10モル%~40モル%、チタン及び鉄のうち少なくとも一方であるM元素を酸化物換算で2.5モル%~20モル%及びケイ素を酸化物換算で1モル%~75モル%で含む第1の原料混合物の焼結体の粉末を用いることにより、高NOX浄化性能、高機械的強度(高曲げ強度)、低熱膨張係数という3つの機能のいずれをも満たすことが可能となる。
また、表4に示す結果から明らかなように、本発明に従う実施例33~実施例36のハニカム構造体を用いた場合、NOX還元効率(NOx浄化率)を低下することなく、PM除去効率(再生率)が向上していることが分かる。なお、実施例33~実施例36のハニカム構造体について、CuOを担持させた場合においても、実施例6と同等の曲げ強度及び熱膨張係数を有することが確認されている。
2,11…ハニカム構造体
11a,11b…第1,第2の端面
11c…側面
12…セル
12a…最外周のセル
13…セル壁
13a…外縁壁を構成するセル壁
13b…外縁壁を構成しないセル壁
14…外縁壁
15…角部
20…押圧棒
21,22…支持点
11a,11b…第1,第2の端面
11c…側面
12…セル
12a…最外周のセル
13…セル壁
13a…外縁壁を構成するセル壁
13b…外縁壁を構成しないセル壁
14…外縁壁
15…角部
20…押圧棒
21,22…支持点
Claims (10)
- 長手方向に沿って、一方の端面から他方の端面に延伸している複数のセルがセル壁によって区画された形状のハニカム構造体であって、
ゼオライトと、
カリウムを酸化物換算で10モル%~40モル%、アルカリ土類金属から選ばれる少なくとも1種であるA元素を酸化物換算で2.5モル%~20モル%、アルミニウムを酸化物換算で10モル%~40モル%、チタン及び鉄のうち少なくとも一方であるM元素を酸化物換算で2.5モル%~20モル%、及びケイ素を酸化物換算で1モル%~75モル%の割合で含むように混合された原料混合物の焼結体とを含む、ハニカム構造体。 - 前記A元素と前記カリウムとの酸化物換算におけるモル比(A元素:カリウム)が、9:91~60:40の範囲内にある、請求項1に記載のハニカム構造体。
- 前記M元素と前記アルミニウムとの酸化物換算におけるモル比(M元素:アルミニウム)が、9:91~60:40の範囲内にある、請求項1または請求項2に記載のハニカム構造体。
- 前記ゼオライトが、モルデナイト型ゼオライト、フォージャサイト型ゼオライト、A型ゼオライト、L型ゼオライト、チャバサイト型ゼオライト、βゼオライト、及びZSM-5型ゼオライトから選ばれる1種または2種以上である、請求項1~請求項3のいずれか一項に記載のハニカム構造体。
- 前記焼結体の含有量が、前記ゼオライト100質量部に対し、1質量部~50質量部である、請求項1~請求項4のいずれか一項に記載のハニカム構造体。
- セラミック原料をさらに含む、請求項1~請求項5のいずれか一項に記載のハニカム構造体。
- 前記セラミック原料が、シリコンカーバイド、コージェライト、ムライト、アルミナ、チタン酸アルミニウムから選ばれる少なくとも1種である、請求項6に記載のハニカム構造体。
- 前記セル壁の中心部分に含まれる前記ゼオライトの濃度に対する、前記セル壁の表面部分に含まれる前記ゼオライトの濃度の比(表面部分/中心部分)が、0.8~1.2の範囲内である、請求項1~請求項7のいずれか一項に記載のハニカム構造体。
- 前記ゼオライトが、窒素酸化物を窒素に還元する触媒である、請求項1~請求項8のいずれか一項に記載のハニカム構造体。
- 請求項1~請求項9のいずれか一項に記載のハニカム構造体を備える、排ガス浄化装置。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-087103 | 2017-04-26 | ||
JP2017087103 | 2017-04-26 | ||
JP2017-196768 | 2017-10-10 | ||
JP2017196768 | 2017-10-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018198999A1 true WO2018198999A1 (ja) | 2018-11-01 |
Family
ID=63918980
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/016402 WO2018198999A1 (ja) | 2017-04-26 | 2018-04-23 | ハニカム構造体及び排ガス浄化装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018198999A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112096495A (zh) * | 2019-06-18 | 2020-12-18 | 日本碍子株式会社 | 蜂窝结构体、电加热式蜂窝结构体、电加热式载体以及废气净化装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005046667A (ja) * | 2003-07-29 | 2005-02-24 | Ohcera Co Ltd | 排ガス浄化触媒用ハニカム担体及びその製造方法 |
WO2012046577A1 (ja) * | 2010-10-04 | 2012-04-12 | 大塚化学株式会社 | 排ガス浄化フィルタ及びその製造方法 |
WO2014104179A1 (ja) * | 2012-12-27 | 2014-07-03 | 住友化学株式会社 | ハニカムフィルタ及びその製造方法、並びに、チタン酸アルミニウム系セラミックス及びその製造方法 |
WO2015029853A1 (ja) * | 2013-08-30 | 2015-03-05 | 大塚化学株式会社 | 排ガス浄化フィルタ及び排ガス浄化装置 |
-
2018
- 2018-04-23 WO PCT/JP2018/016402 patent/WO2018198999A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005046667A (ja) * | 2003-07-29 | 2005-02-24 | Ohcera Co Ltd | 排ガス浄化触媒用ハニカム担体及びその製造方法 |
WO2012046577A1 (ja) * | 2010-10-04 | 2012-04-12 | 大塚化学株式会社 | 排ガス浄化フィルタ及びその製造方法 |
WO2014104179A1 (ja) * | 2012-12-27 | 2014-07-03 | 住友化学株式会社 | ハニカムフィルタ及びその製造方法、並びに、チタン酸アルミニウム系セラミックス及びその製造方法 |
WO2015029853A1 (ja) * | 2013-08-30 | 2015-03-05 | 大塚化学株式会社 | 排ガス浄化フィルタ及び排ガス浄化装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112096495A (zh) * | 2019-06-18 | 2020-12-18 | 日本碍子株式会社 | 蜂窝结构体、电加热式蜂窝结构体、电加热式载体以及废气净化装置 |
CN112096495B (zh) * | 2019-06-18 | 2022-08-19 | 日本碍子株式会社 | 蜂窝结构体、电加热式蜂窝结构体、电加热式载体以及废气净化装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102428707B1 (ko) | 배기가스를 처리하기 위한 분자체 촉매 | |
CN101678349B (zh) | 蜂窝结构体 | |
JP6041902B2 (ja) | ハニカムフィルタ及びその製造方法 | |
JP6121542B2 (ja) | 排ガス浄化フィルタ及び排ガス浄化装置 | |
US8629074B2 (en) | Zeolite honeycomb structure | |
WO2009141880A1 (ja) | ハニカム構造体 | |
US20100203284A1 (en) | Sealing material for honeycomb structure, honeycomb structure, and method for manufacturing honeycomb structure | |
US20140357476A1 (en) | Formed ceramic substrate composition for catalyst integration | |
CA2533387A1 (en) | Honeycomb carrier for exhaust gas-cleaning catalyst and process for its production | |
JP7289813B2 (ja) | セラミックス多孔体及びその製造方法、並びに集塵用フィルタ | |
WO2018198999A1 (ja) | ハニカム構造体及び排ガス浄化装置 | |
WO2012070386A1 (ja) | ハニカムフィルタ | |
JP2010215414A (ja) | ハニカム構造体 | |
WO2018181100A1 (ja) | ハニカム構造体及び排ガス浄化装置 | |
WO2014014059A1 (ja) | ハニカムフィルタ | |
JP6199532B2 (ja) | 排ガス浄化フィルタの製造方法、排ガス浄化フィルタ及び排ガス浄化装置 | |
WO2018116884A1 (ja) | ハニカム構造体及び排ガス浄化装置 | |
US9999879B2 (en) | Formed ceramic substrate composition for catalyst integration | |
WO2015194451A1 (ja) | 排ガス浄化触媒、排ガス浄化装置及びフィルタ、並びに該触媒の製造方法 | |
US20140357474A1 (en) | Formed ceramic substrate composition for catalyst integration | |
JP2016107259A (ja) | 排ガス浄化フィルタ及びその製造方法、並びに排ガス浄化装置 | |
JP2011062575A (ja) | ハニカム構造体 | |
JP5762138B2 (ja) | ハニカム構造体およびこれを用いたガス処理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18792147 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18792147 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |