WO2018181100A1 - ハニカム構造体及び排ガス浄化装置 - Google Patents

ハニカム構造体及び排ガス浄化装置 Download PDF

Info

Publication number
WO2018181100A1
WO2018181100A1 PCT/JP2018/011985 JP2018011985W WO2018181100A1 WO 2018181100 A1 WO2018181100 A1 WO 2018181100A1 JP 2018011985 W JP2018011985 W JP 2018011985W WO 2018181100 A1 WO2018181100 A1 WO 2018181100A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb structure
zeolite
catalyst
titanate compound
exhaust gas
Prior art date
Application number
PCT/JP2018/011985
Other languages
English (en)
French (fr)
Inventor
隆寛 三島
昌稔 上谷
Original Assignee
大塚化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大塚化学株式会社 filed Critical 大塚化学株式会社
Publication of WO2018181100A1 publication Critical patent/WO2018181100A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors

Definitions

  • the present invention relates to a honeycomb structure and an exhaust gas purification apparatus including the honeycomb structure.
  • Exhaust gas emitted from internal combustion engines such as diesel engines contains harmful substances such as particulate matter (PM), nitrogen oxides (NOx), hydrocarbons, and carbon monoxide.
  • PM particulate matter
  • NOx nitrogen oxides
  • hydrocarbons hydrocarbons
  • carbon monoxide Various approaches are being considered to remove material.
  • PM and NOx discharged from diesel vehicles such as trucks and buses contribute to air pollution in urban areas, and regulations for these harmful substances are increasingly tightened.
  • Patent Document 1 proposes an exhaust gas purifying catalyst characterized by composite oxide particles containing an alkali metal, Si, and Zr.
  • NOx can be removed by disposing a honeycomb structure carrying a NOx reduction catalyst in the exhaust gas flow path. For example, by supporting a zeolite catalyst on a honeycomb structure and injecting a reducing agent obtained from an ammonia precursor such as urea or ammonia itself into the honeycomb structure, NOx is converted into nitrogen as shown in the reaction formulas (1) to (3). And selective catalytic reduction (SCR).
  • SCR selective catalytic reduction
  • a device for removing PM and a device for removing NOx have been arranged in the exhaust gas flow path as independent devices.
  • an apparatus in which an apparatus for removing PM and an apparatus for removing NOx are integrated is desired.
  • platinum or palladium used as a catalyst for burning and removing PM is known to oxidize a reducing agent used in SCR and inhibit the SCR function. Therefore, in Patent Document 2, an oxide containing one or more elements selected from alkali metals and one or more elements selected from Zr, Si, Al, and Ti, and silica / alumina. It has been proposed to use a honeycomb structure comprising zeolite having a ratio of 15 or more.
  • Patent Document 3 proposes that the wall surface of the wall flow type honeycomb structure is covered with a NOx reduction catalyst layer made of a NOx reduction catalyst and further covered with an oxidation catalyst layer made of an oxidation catalyst.
  • Patent Document 4 As an oxide containing an element selected from alkali metals, a lipidocrosite-type titanate compound is known (Patent Document 4, Patent Document 5 and Patent Document 6).
  • Patent Document 2 has a problem that PM combustion performance and NOx removal efficiency are not sufficient.
  • Patent Document 3 only discloses a noble metal catalyst as an oxidation catalyst for burning and removing PM, and does not disclose any other oxidation catalyst.
  • PM combustion catalyst An alkali metal catalyst used as a catalyst for burning and removing PM in exhaust gas (hereinafter abbreviated as “PM combustion catalyst”) and a catalyst for selective catalytic reduction for reducing NOx in exhaust gas to nitrogen (hereinafter referred to as “PM combustion catalyst”) Coexistence with “SCR catalyst”), there is a problem that the alkali metal ions contained in the alkali metal catalyst react with the SCR catalyst and the function as the SCR catalyst is impaired.
  • Patent Documents 4 to 6 describe that there is a large amount of alkali elution of the lipidocrocite-type titanate compound. In Patent Documents 4 to 6, only a method of using it as a friction adjusting material is described.
  • the main object of the present invention is to provide a honeycomb structure excellent in PM combustion performance and NOx removal efficiency and an exhaust gas purification apparatus including the honeycomb structure.
  • the present invention provides the following honeycomb structure and an exhaust gas purification apparatus including the honeycomb structure.
  • Item 1 A honeycomb structure main body having a shape in which a plurality of cells extending from one end face to the other end face along a longitudinal direction are partitioned by a cell wall and containing zeolite, and the honeycomb structure main body And a titanate compound supported on the surface of the cell wall, wherein the titanate compound has a layered structure formed by a chain of TiO 6 octahedrons, and a part of the Ti seats One or two selected from an alkali metal that is substituted with one or more elements selected from Li, Mg, Zn, Ga, Ni, Cu, Fe, Al, and Mn, and that excludes Li between layers in the layered structure
  • Item 2 10 mol% to 40 mol% of the Ti site in the titanate compound is replaced with one or more elements selected from Li, Mg, Zn, Ga, Ni, Cu, Fe, Al, and Mn Item 2.
  • A is one or more alkali metals except Li
  • M is Li, Mg, Zn, Ga, One or more selected from Ni, Cu, Fe, Al and Mn
  • x is a number from 0.2 to 1.0
  • y is a number from 0.25 to 1.0
  • a 0.2 to 0.7 Li 0.27 Ti 1.73 O 3.7 to 3.95 [wherein A is one or more of alkali metals excluding Li], A 0.2 to 0.7 Mg 0.40 Ti 1 wherein, a is one or more alkali metals except Li] .6 O 3.7 ⁇ 3.95, a 0.5 ⁇ 0.7 Li (0.27-x) M y Ti ( 1.73-z) O 3.85 in - 3.95 [wherein, a is one or more alkali metals except Li, M is Mg, Zn, Ga, Ni, Cu, Fe 1 type or 2 types or more selected from Al and Mn (excluding combinations of ions
  • Item 4 The honeycomb structure according to any one of Items 1 to 3, wherein the amount of titanate compound per apparent volume in the honeycomb structure is 1 g / L or more.
  • the zeolite is one or more selected from MOR type zeolite, FAU type zeolite, A type zeolite, L type zeolite, BEA type zeolite, MFI type zeolite and CHA type zeolite, Item 5.
  • the honeycomb structure according to any one of Items 1 to 4.
  • Item 6 The honeycomb structure according to any one of Items 1 to 5, wherein the zeolite has a silica / alumina ratio of 4 or more.
  • the titanate compound is a catalyst used to burn particulate matter contained in exhaust gas
  • the zeolite is a catalyst used to reduce nitrogen oxides contained in exhaust gas to nitrogen
  • the honeycomb structure according to any one of Items 1 to 6, wherein:
  • Item 8 The honeycomb structure according to any one of Items 1 to 7, wherein the honeycomb structure is a honeycomb filter.
  • Item 9 An exhaust gas purifying apparatus comprising the honeycomb structure according to any one of Items 1 to 8.
  • a honeycomb structure excellent in PM combustion performance and NOx removal efficiency can be provided.
  • FIG. 1 is a schematic perspective view for explaining a first form of a honeycomb structure main body used in the honeycomb structure according to one embodiment of the present invention.
  • FIG. 2 is a schematic view showing an end face of a modified example of the honeycomb structure main body of FIG.
  • a honeycomb structure of the present invention has a shape in which a plurality of cells extending from one end face to the other end face along a longitudinal direction are partitioned by cell walls, and includes a honeycomb structure body including zeolite. And a titanate compound supported on the surface of the cell wall in the honeycomb structure main body. The titanate compound is supported on part or all of the surface of the cell wall.
  • ⁇ Honeycomb structure body> The existence form of zeolite in the honeycomb structure body is roughly divided into two forms.
  • zeolite forms the skeleton of the cell wall of the honeycomb structure body. That is, the cell wall of the honeycomb structure body is made of a material containing zeolite (usually a material mainly composed of zeolite).
  • zeolite is supported on part or all of the surface of the cell wall in the honeycomb structure body.
  • the first mode is preferable.
  • the above classification is for convenience, and may be, for example, a honeycomb structure body including both features as long as it has the excellent performance of the present invention. That is, it may be a honeycomb structure body in which the cell walls are made of a material containing zeolite and the zeolite is supported on part or all of the surface of the cell walls.
  • FIG. 1 is a schematic perspective view for explaining a first form of a honeycomb structure main body used in the honeycomb structure according to one embodiment of the present invention.
  • the honeycomb structure main body 11 has a first end surface 11a and a second end surface 11b facing each other, and a side surface 11c connecting the first end surface 11a and the second end surface 11b. .
  • a plurality of cells 12 extending from the first end surface 11a toward the second end surface 11b along the longitudinal direction X shown in FIG. .
  • the side surface 11c (surface parallel to the longitudinal direction X) of the honeycomb structure main body 11 is coated in order to reinforce the side surface 11c and maintain strength, and to prevent the exhaust gas passing through the cells from leaking from the side surface 11c. It may be covered with a layer.
  • the material constituting the coating layer is not particularly limited, and examples thereof include those composed of an inorganic binder, an organic binder, inorganic fibers and / or inorganic particles.
  • the honeycomb structure body 11 may be used as it is, or a plurality of honeycomb structure bodies 11 may be joined with an adhesive or the like. When used as a joined body in which a plurality of honeycomb structure bodies 11 are joined, it is desirable that the longitudinal direction X be formed in parallel. In addition, the single honeycomb structure body 11 or the joined body of the plurality of honeycomb structure bodies 11 may be processed by cutting the side surface 11c side along a predetermined shape.
  • the shape of the cross section perpendicular to the longitudinal direction X of the honeycomb structure body 11 is not particularly limited, and may be, for example, a round shape, a square shape (square, rectangular shape), a hexagonal shape, or a sector shape. Further, in the case of a cross-sectional shape such as a square having sharp corners, the sharp corners are chamfered from the viewpoint of relieving stress during regeneration of the honeycomb structure body 11 and further suppressing the generation of cracks. A shape is preferable.
  • the chamfered shape means a shape in which an inclined surface made of a flat surface or a curved surface is attached to the angle of intersection between the surfaces, and a shape having an inclined surface made of a curved surface from the viewpoint of stress relaxation. More preferably, for example, an R chamfered shape made of an arc is particularly preferable as shown in a modified example in FIG.
  • the cross-sectional shape perpendicular to the longitudinal direction X in the cells 12 of the honeycomb structure body 11 is not particularly limited, and may be square (square, rectangular) as in the present embodiment. It may be a triangle or a polygon.
  • the cross-sectional shape is square, from the viewpoint of improving the strength of the honeycomb structure body 11 and heat and stress distribution, for example, as shown in a modified example in FIG. 2, the corners of the outermost peripheral cells 12a of the honeycomb structure body 11 It is preferable that the section 15 is provided with a filler whose cross-sectional shape is a right triangle.
  • the corner 15 provided with the filler is a corner 15 in contact with the outer edge wall 14 of the honeycomb structure main body 11 among the corners of the cell 12a whose outermost cross section of the honeycomb structure main body 11 is square.
  • the length of one side of the right triangle filler is preferably 5% to 40% of the length of one side of the rectangular cell 12a.
  • the thickness of the cell wall 13 of the honeycomb structure body 11 is not particularly limited, but a preferable lower limit is 100 ⁇ m from the viewpoint of further increasing the strength. A preferable upper limit of the thickness of the cell wall 13 is 400 ⁇ m from the viewpoint of further improving the purification performance.
  • the thickness of the cell wall 13a constituting the outer edge wall 14 of the honeycomb structure body 11 may be the same as or thicker than that of the other cell wall 13b. However, the thickness of the cell wall 13b not constituting the outer edge wall 14 is 1.3. By setting the magnification to 3.0 to 3.0 times, it is possible to ensure strength while maintaining a high aperture ratio.
  • the aperture ratio of the cells 12 of the honeycomb structure body 11 is preferably 60% or more from the viewpoint of pressure loss.
  • the aperture ratio of the cells 12 refers to the ratio of the cells 12 in a cross section perpendicular to the longitudinal direction X of the honeycomb structure body 11.
  • the vertical cross section is a cross section that is not plugged with a plugging material.
  • the upper limit of the aperture ratio of the cells 12 of the honeycomb structure body 11 is not particularly limited, but can be, for example, 70%.
  • the number of cells 12 in the honeycomb structure body 11 is not particularly limited, but is preferably 200 cells / square inch to 400 cells / square inch.
  • the wall surface of the cell wall 13 may be porous. In this case, it is preferable to have pores having a major axis of about 2 ⁇ m to 18 ⁇ m.
  • the porosity of the wall surface of the cell wall 13 is preferably 45% to 65%.
  • the cell 12 having one end face opened and the other end face plugged, and the other end face plugged.
  • a raw material mixture containing, as necessary, inorganic fibers and ceramic raw materials as a main component in zeolite and an inorganic binder is prepared.
  • This raw material mixture is formed by extrusion molding or the like.
  • a pore former, an organic binder, a dispersant, water, or the like may be added to the raw material mixture.
  • the pore-forming agent include graphite, graphite, wood powder, and polyethylene.
  • the organic binder include methyl cellulose, ethyl cellulose, and polyvinyl alcohol.
  • the dispersant include fatty acid soap and ethylene glycol.
  • the amount of pore-forming agent, organic binder, dispersant, and water can be adjusted as appropriate in consideration of the porosity of the cell wall surface, moldability, and the like.
  • the raw material mixture is not particularly limited, but is preferably mixed and kneaded.
  • the raw material mixture may be mixed using, for example, a mixer or may be sufficiently kneaded with a kneader or the like.
  • a method for forming the raw material mixture is not particularly limited, but it is preferable to form the raw material mixture into a shape having a predetermined cell density and opening ratio by, for example, extrusion molding.
  • the obtained molded body is preferably dried after plugging on one side so that the opening of the cell has a checkered pattern, if necessary.
  • the dryer used for drying is not specifically limited, A microwave dryer, a hot air dryer, a vacuum dryer, etc. are mentioned.
  • the conditions for degreasing are not particularly limited and are appropriately selected depending on the type of organic matter contained in the molded body, but conditions of approximately 400 ° C. and 2 hours are preferable.
  • the obtained molded body is fired.
  • the firing temperature is not particularly limited, but can be, for example, 600 ° C. to 1200 ° C., and the firing time can be, for example, 2 hours to 15 hours.
  • the firing temperature exceeds 1200 ° C., the zeolite crystals may be collapsed, or the sintering may proceed too much to have an appropriate porosity.
  • the firing temperature is less than 600 ° C., the sintering does not proceed and the strength as the honeycomb structure may not be increased.
  • the firing conditions when the ceramic raw material is used in combination are appropriately selected depending on the ceramic raw material.
  • the firing temperature can be set to 900 ° C. to 1100 ° C., for example, as the firing time. For example, it can be 2 to 15 hours.
  • the content of zeolite in the raw material mixture is preferably 10% by mass to 80% by mass and more preferably 40% by mass to 70% by mass with respect to 100% by mass of the raw material mixture.
  • the content of the inorganic binder in the raw material mixture is preferably 1 part by mass to 50 parts by mass, more preferably 5 parts by mass to 30 parts by mass with respect to 100 parts by mass of zeolite. More preferably, it is part by mass.
  • the content of the inorganic fiber in the raw material mixture is preferably 1 part by mass to 50 parts by mass, more preferably 5 parts by mass to 30 parts by mass, with respect to 100 parts by mass of zeolite. More preferably, it is part by mass.
  • the content of the ceramic raw material in the raw material mixture is preferably 1 part by mass to 50 parts by mass, more preferably 5 parts by mass to 30 parts by mass, with respect to 100 parts by mass of zeolite. More preferably, it is part by mass.
  • Zeolite is a crystalline aluminosilicate, which is a porous body having a crystal structure in which four oxygen elements are regularly and three-dimensionally bonded around silicon and aluminum elements.
  • Examples of the crystal structure of the zeolite used in the present invention include MOR type zeolite, FAU type zeolite, A type zeolite, L type zeolite, BEA type zeolite, MFI type zeolite, CHA type zeolite and the like.
  • the crystal structure of the zeolite used in the present invention is preferably BEA zeolite, MFI zeolite, or CHA zeolite.
  • the silica / alumina ratio of the zeolite used in the present invention is preferably 4 or more, more preferably 15 or more, and still more preferably 20 or more. Further, the silica / alumina ratio of zeolite is preferably 100 or less, and more preferably 50 or less.
  • the zeolite used in the present invention includes naturally-occurring and synthetic zeolites, and any zeolite having the above configuration can be used without any particular limitation.
  • synthetic zeolite is preferred because it has a more uniform silica / alumina ratio, crystal size, crystal morphology, and fewer impurities.
  • the average particle size of zeolite is preferably 0.5 ⁇ m to 40 ⁇ m. What is necessary is just to measure an average particle diameter using the particulate matter before mixing raw material particles.
  • the average particle diameter is a 50% volume-based cumulative particle diameter (volume-based cumulative 50% particle diameter) in a particle size distribution determined by a laser diffraction / scattering method, that is, D 50 (median diameter). .
  • This volume-based cumulative 50% particle diameter (D 50 ) is obtained by calculating the particle size distribution on a volume basis, and counting the number of particles from the smallest particle size in the cumulative curve with the total volume being 100%. It is the particle size at a point where it becomes 50%.
  • the zeolite used in the present invention preferably contains ion exchanged zeolite obtained by ion exchange of the above zeolite.
  • the catalytic activity can be further promoted.
  • a zeolite structure body may be formed using previously ion-exchanged zeolite, or the zeolite may be ion-exchanged after forming the honeycomb structure body.
  • a zeolite ion exchanged with a transition metal is preferably used.
  • the transition metal include Cu, Fe, Pt, Ag, Ti, Mn, Ni, Co, Pd, Rh, V, and Cr. Of these, Cu and Fe are preferable as the transition metal.
  • the total amount of transition metals is preferably 1% by mass to 15% by mass and more preferably 1% by mass to 8% by mass with respect to the total mass of the zeolite.
  • inorganic binders As the inorganic binder used in the present invention, inorganic sols such as alumina sol, silica sol, titania sol, and water glass; clay minerals and the like can be used. From the viewpoint of further increasing the mechanical strength of the honeycomb structure, a clay-based mineral is preferable as the inorganic binder.
  • Clay-based minerals are the main component minerals that make up clay.
  • Layered silicate minerals (phyllosilicate minerals), talc, calcite, dolomite, feldspar, quartz, zeolite (zeolites), and others with chain structures (attapulgite, Sepiolite, etc.) and those that do not have a clear crystal structure (allophane) are called clay minerals.
  • the layered silicate mineral is sometimes called a layered clay mineral.
  • the clay mineral used in the present invention is preferably a layered clay mineral.
  • the layered clay mineral has a two-dimensional layer of positive and negative ions stacked in parallel to form a crystal structure, and this layer structure has two structural units. One is composed of a tetrahedral layer composed of Si 4+ and O 2 ⁇ surrounding it, and the other is composed of Si 3+ (or Mg 2+ , Fe 2+, etc.) and (OH) ⁇ surrounding it. It is composed of a face layer.
  • tetrahedron layer O at the four vertices of the tetrahedron and Si located at the center form an Si—O tetrahedron, which is connected to each other at the three vertices to spread two-dimensionally, and Si 4 O A layer lattice having a composition of 10 is formed. Si 4+ is often replaced by Al 3+ .
  • the octahedron layer In the octahedron layer, the octahedron formed by (OH) or O at the six apexes of the octahedron and Al, Mg, Fe, etc. located at the center thereof is connected at each apex and is two-dimensionally. A layer lattice having a composition of Al 2 (OH) 6 or Mg 3 (OH) 6 is formed.
  • divalent cations (Mg 2+, etc.) enter the lattice points of the cation surrounded by 6 anions, and the 3-octahedron type, where all lattice points are occupied, and the cation
  • trivalent cations such as Al 3+
  • tetrahedral layers and octahedral layers There are two types of combinations of tetrahedral layers and octahedral layers, one is a 1: 1 type structure with a unit of one tetrahedral layer and one octahedral layer, and the other is a single tetrahedral layer. And a 1: 1 type structure with the unit of one octahedral layer sandwiched between them as a unit.
  • one Si 4+ is usually surrounded by four O atoms and has a stable coordination, but sometimes Al 3+ having a slightly larger ion radius than this Si 4+ replaces Si 4+ .
  • existing in the tetrahedral layer Since there is no change in the number of coordinating O atoms, a unit of negative charge is generated in the tetrahedral layer each time one Al 3+ replaces Si 4+ .
  • negative charges are generated with the replacement of Al 3+ and Fe 3+ by Mg 2+ and Fe 2+ .
  • This negatively charged layer is a positive layer such as Li + , K + , Na + , NH 4 + , H 3 O + , Ca 2+ , Mg 2+ , Sr 2+ , Ba 2+ , Co 2+ , Fe 2+ , Al 3+.
  • the layer becomes electrically neutral and has a laminated structure in which these exchangeable cations exist between layers.
  • layered clay mineral examples include at least one selected from smectite, stevensite, vermiculite, mica group, brittle mica group natural product or synthetic product. These can also be used in combination.
  • smectite examples include montmorillonite, beidellite, nontronite, saponite, iron saponite, hectorite, and soconite.
  • Montmorillonite is preferable from the viewpoint of further improving NOx removal efficiency and mechanical strength.
  • bentonite mainly composed of montmorillonite can be used, and the content of montmorillonite in the bentonite is preferably 40% or more, and more preferably 70% or more.
  • the average particle size of the clay mineral is preferably 0.5 ⁇ m to 100 ⁇ m, and more preferably 1 ⁇ m to 20 ⁇ m. What is necessary is just to measure an average particle diameter using the particulate matter before mixing raw material particles.
  • the average particle diameter is a 50% volume cumulative particle diameter (volume based cumulative 50% particle diameter) in a particle size distribution determined by a laser diffraction / scattering method, that is, D 50 (median diameter). .
  • D 50 density based cumulative 50% particle diameter
  • This volume-based cumulative 50% particle diameter (D 50 ) is obtained by calculating the particle size distribution on a volume basis, and counting the number of particles from the smallest particle size in the cumulative curve with the total volume being 100%. It is the particle size at a point where it becomes 50%.
  • the inorganic fiber used in the present invention is a powder composed of fibrous particles, and the average fiber length is preferably 1 ⁇ m to 300 ⁇ m, more preferably 1 ⁇ m to 200 ⁇ m.
  • the average aspect ratio is preferably 3 to 200, more preferably 5 to 50.
  • the inorganic fiber preferably has a Mohs hardness of 5 or less, more preferably 1 to 5, from the viewpoint of wear of the extruder.
  • the inorganic fiber include at least one selected from alkali metal titanate, wollastonite, magnesium borate, zonotlite, and basic magnesium sulfate.
  • an inorganic fiber is an alkali metal titanate from a viewpoint of raising NOx reduction efficiency and mechanical strength further.
  • the Mohs hardness is an index representing the hardness of a substance, and a substance having a lower hardness is obtained when the minerals are rubbed against each other and damaged.
  • alkali metal titanate examples include sodium titanate such as Na 2 TiO 3 , Na 2 Ti 2 O 5 , Na 2 Ti 4 O 9 , Na 2 Ti 6 O 13 , Na 2 Ti 8 O 17 ; K 2 TiO 3 , K 2 Ti 2 O 5 , K 2 Ti 4 O 9 , K 2 Ti 6 O 13 , K 2 Ti 8 O 17 and other potassium titanates; Cs 2 TiO 3 , Cs 2 Ti 2 O 5 , Cs 2 Ti 4 Examples thereof include cesium titanate such as O 9 , Cs 2 Ti 6 O 13 , and Cs 2 Ti 8 O 17 .
  • the size of the alkali metal titanate is not particularly limited as long as it is within the above-mentioned range of the inorganic fibers, but the average fiber diameter is usually preferably 0.01 ⁇ m to 1 ⁇ m, more preferably 0.1 ⁇ m to 0.00. 6 ⁇ m.
  • the average fiber length of the alkali metal titanate is preferably 1 ⁇ m to 50 ⁇ m, more preferably 3 ⁇ m to 30 ⁇ m.
  • the average aspect ratio of the alkali metal titanate is preferably 10 or more, more preferably 15 to 40. In the present invention, commercially available products can also be used.
  • trade name “Tismo D” (average fiber length 15 ⁇ m, average fiber diameter 0.5 ⁇ m) manufactured by Otsuka Chemical Co., Ltd. or trade name “Tismo N” (average fiber length 15 ⁇ m, average A fiber diameter of 0.5 ⁇ m) or the like can be used.
  • the above-mentioned average fiber length and average fiber diameter can be measured by observation with a scanning electron microscope.
  • the average aspect ratio (average fiber length / average fiber diameter) can be calculated from the average fiber length and the average fiber diameter. For example, a plurality of inorganic fibers are photographed with a scanning electron microscope, 300 inorganic fibers are arbitrarily selected from the observed image, the fiber length and the fiber diameter are measured, and all the fiber diameters are integrated to obtain the number.
  • the average fiber diameter can be obtained by integrating all of the average fiber length and fiber diameter and dividing by the number. What is necessary is just to measure an average fiber length and an average fiber diameter using the particulate matter before mixing raw material particles.
  • the term “fibrous particles” refers to the longest side of the rectangular parallelepiped having the smallest volume (the circumscribed rectangular parallelepiped) having the longest diameter L, the next longest side having the shortest diameter B, and the shortest side having the thickness T.
  • L / B and L / T are particles having a particle size of 5 or more.
  • the major axis L corresponds to the fiber length
  • the minor axis B corresponds to the fiber diameter.
  • Ceramic raw materials examples include at least one selected from silicon carbide, cordierite, mullite, alumina, and aluminum titanate. These can also be used in combination of two or more.
  • aluminum titanate is preferable from the viewpoint of further improving heat resistance and stability.
  • the average particle size of the ceramic raw material is preferably 0.5 ⁇ m to 100 ⁇ m, and more preferably 1 ⁇ m to 20 ⁇ m. What is necessary is just to measure an average particle diameter using the particulate matter before mixing raw material particles.
  • the average particle diameter is a 50% volume-based cumulative particle diameter (volume-based cumulative 50% particle diameter) in a particle size distribution determined by a laser diffraction / scattering method, that is, D 50 (median diameter).
  • D 50 density-based cumulative 50% particle diameter
  • This volume-based cumulative 50% particle diameter (D 50 ) is obtained by calculating the particle size distribution on a volume basis, and counting the number of particles from the smallest particle size in the cumulative curve with the total volume being 100%. It is the particle size at a point where it becomes 50%.
  • zeolite is supported on a part or all of the surface of the cell wall in the honeycomb structure body as a carrier.
  • a carrier for supporting zeolite in the second embodiment for example, a carrier obtained by replacing all of the zeolite in the honeycomb structure main body of the first embodiment with a ceramic raw material can be used.
  • zeolite is supported on the surface of the cell wall” means that the zeolite is attached to the surface of the cell wall. Further, if the cell wall is porous, the surface of the pore is also included in the surface of the cell wall.
  • Examples of the zeolite loading method include a dipping method and a spraying method.
  • the support is dipped in a slurry containing zeolite prepared by adding additives (binder, dispersant, pore former, etc.) as necessary.
  • additives binder, dispersant, pore former, etc.
  • the soaked carrier is pulled up and dried, and then fired at 300 ° C. to 800 ° C., whereby zeolite can be supported on the cell walls of the honeycomb structure body as the carrier. Thereby, the honeycomb structured body of the second form can be obtained.
  • the preferred lower limit of the amount of zeolite per apparent volume in the honeycomb structure main body of the second embodiment is 50 g / L from the viewpoint of NOx purification action. Moreover, a preferable upper limit is 350 g / L from a viewpoint of pressure loss deterioration.
  • the honeycomb structure main body of the first embodiment may be used as the carrier supporting zeolite.
  • a honeycomb structure according to an embodiment of the present invention is a cell in the honeycomb structure body of the first or second form (hereinafter, these may be collectively referred to as a honeycomb structure body).
  • a titanate compound is supported on part or all of the wall surface. Note that the surface of the cell wall in the honeycomb structure main body of the second embodiment refers to the surface of zeolite supported on the surface of the cell wall. Therefore, in the second embodiment, the titanate compound is supported on a part or all of the surface of the zeolite supported on the surface of the cell wall.
  • the place where the titanate compound is supported is not particularly limited, but is preferably supported on the surface of the cell wall on the exhaust gas inlet channel side.
  • the loading of the titanate compound means a state in which the titanate compound is attached to the surface of the cell wall. If the cell wall is porous, the surface of the pore is included in the surface of the cell wall.
  • Examples of the method for supporting the titanate compound include an immersion method and a spray method.
  • the honeycomb structure body is immersed in a slurry containing a titanate compound.
  • the soaked honeycomb structure body is pulled up and dried, and then fired at 300 ° C. to 800 ° C. for 1 hour to 15 hours, thereby supporting the titanate compound on the surface of the cell wall in the honeycomb structure body.
  • Can do. Thereby, a honeycomb structure can be obtained.
  • the titanate compound may be supported after an organic compound such as resin or resin beads is supported on part or all of the surface of the cell wall in the honeycomb structure body.
  • the slurry containing the titanate compound can be mixed with one or more additives used in known exhaust gas purification catalysts in a range that does not impede its performance.
  • additives include zeolites, oxidation catalysts, alkaline earth metal salts and the like.
  • an inorganic compound containing no alkali such as titania, zirconia, alumina, boehmite, ceria can be mixed.
  • the amount of titanate compound per apparent volume in the honeycomb structure is preferably 1 g / L, more preferably 5 g / L, more preferably 10 g / L from the viewpoint of further improving PM combustion performance. More preferably. Further, the amount of titanate compound per apparent volume of the honeycomb structure is preferably 200 g / L, more preferably 100 g / L, more preferably 70 g from the viewpoint of further improving the pressure loss. / L is more preferable, and 50 g / L is particularly preferable.
  • the honeycomb structure of the present invention can further include an oxidation catalyst, a three-way catalyst, an oxygen storage catalyst, and the like as long as the excellent characteristics are not impaired.
  • examples of the exhaust gas to be treated include exhaust gas discharged from an internal combustion engine such as a diesel engine and a gasoline engine, and exhaust gas from various combustion facilities.
  • the honeycomb structure of the present invention is used in contact with exhaust gas by being disposed in the exhaust gas flow path. Removal of PM in the exhaust gas is performed by depositing PM on the honeycomb structure and heating the honeycomb structure with a predetermined volume of PM to the combustion temperature of PM in the presence of oxygen. Further, the removal of NOx in the exhaust gas is performed in the presence of a reducing agent, for example, an ammonia precursor such as urea, ammonium carbonate, hydrazine, ammonium hydrogen carbonate, or ammonia itself.
  • the reducing agent may be disposed upstream of the honeycomb structure of the present invention in the exhaust gas flow path, and a necessary amount may be appropriately supplied.
  • the honeycomb structure of the present invention can burn PM, which is a harmful substance in exhaust gas, at a low temperature with a single filter, and can reduce and remove NOx. Because of its excellent function, it can be suitably used for diesel engine filters (DPF), gasoline engine filters, etc., and can meet the demands of downsizing in the market.
  • PM which is a harmful substance in exhaust gas
  • DPF diesel engine filters
  • gasoline engine filters etc.
  • the titanate compound used in the present invention has a layered structure formed by a chain of TiO 6 octahedrons, and a part of the Ti seat is composed of Li, Mg, Zn, Ga, Ni, Cu, Fe, Al, and Mn. 1 or 2 or more elements selected (hereinafter collectively referred to as “M element”), and 1 or 2 or more elements selected from alkali metals excluding Li between layers in the layered structure It is a lipid dodecrosite titanate compound in which ions of elements (hereinafter collectively referred to as “element A”) are coordinated.
  • the M element that substitutes a part of the Ti seat has an ion radius comparable to that of Ti 4+, and thus the Ti seat can be substituted with the M element.
  • 10 mol% to 40 mol% of Ti sites are replaced with M element, and more preferably 10 mol% to 30 mol% of Ti sites are replaced with M element.
  • Examples of the A element include Na, K, Rb, Cs, and Fr, and Na and K are preferable.
  • Li is not included in the A element because Li has a smaller ionic radius and different properties compared to other alkali metals.
  • ions of elements other than the element A may be coordinated within a range that does not impede the performance, and the total amount of ions coordinated between the layers is electrically in the entire crystal. Any amount that can be sexed is acceptable.
  • the amount of ions of element A coordinated between the layers of the titanate compound is 100 mol% of the total amount of ions of elements coordinated between the layers. , Preferably in the range of 0.01 mol% to 99.99 mol%, more preferably in the range of 0.01 mol% to 75 mol%, and in the range of 0.01 mol% to 50 mol%. More preferably it is.
  • titanate compounds for example, A x M y Ti in (2-y) O 4 [wherein, A is one or more alkali metals except Li, M is Li, Mg, Zn, Ga , Ni, Cu, Fe, Al, and Mn, x is a number of 0.2 to 1.0, y is a number of 0.25 to 1.0], A 0.2 to 0.
  • K 0.8 Li 0.27 Ti 1.73 O 4 K 0.7 Li 0.27 Ti 1.73 O 3.95, K 0.5 Li 0.27 Ti 1.73 O 3.85, K 0.4 Li 0.27 Ti 1.73 O 3.8, Na 0.2 K 0.6 Li 0.27 Ti 1.73 O 4, K 0.8 Mg 0.40 Ti 1 .6 O 4 , K 0.7 Mg 0.40 Ti 1.6 O 3.95 , K 0.2 Mg 0.40 Ti 1.6 O 3.7 , Na 0.2 K 0.6 Mg 0.
  • the titanate compound used in the present invention is spherical, granular, plate-like, columnar, rod-like, cylindrical, block-like, porous, or a shape having a plurality of convex portions (amoeba-like, boomerang-like, cruciform-like, or flat sugar-like) Etc.) and non-fibrous particles are preferred, and plate-like particles are more preferred.
  • convex portions amoeba-like, boomerang-like, cruciform-like, or flat sugar-like) Etc.
  • non-fibrous particles are preferred
  • plate-like particles are more preferred.
  • These various particle shapes can be arbitrarily controlled by production conditions, particularly raw material composition, firing conditions and the like.
  • having a plurality of convex portions is a so-called indeterminate shape in which the projection shape onto a plane can take a shape having convex portions in two or more directions, unlike at least normal polygons, circles, ellipses, etc.
  • the convex portion refers to a portion corresponding to a portion protruding with respect to a polygon, circle, ellipse or the like (basic figure) applied to a photograph (projection drawing) obtained by a scanning electron microscope (SEM).
  • the particle shape of the titanate compound can be analyzed, for example, by observation with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the fibrous particle in the present invention is the longest side of the rectangular parallelepiped having a minimum volume (the circumscribed rectangular parallelepiped) among the rectangular solids circumscribing the particle, the next long side is the short diameter B, and the shortest side is the thickness.
  • L / B and L / T both refer to particles of 5 or more
  • the major axis L corresponds to the fiber length
  • the minor axis B corresponds to the fiber diameter.
  • Non-fibrous particles refer to particles having an L / B of less than 5
  • plate-like particles are particles having an L / B of less than 5 and an L / T of 5 or more.
  • the average particle size of the titanate compound is usually 1.0 ⁇ m to 50.0 ⁇ m, preferably 2.0 ⁇ m to 30.0 ⁇ m.
  • the average particle size of the titanate compound is preferably larger than the pore size of the honeycomb structure body before supporting the titanate compound.
  • This volume-based cumulative 50% particle diameter (D 50 ) is obtained by calculating the particle size distribution on a volume basis, and counting the number of particles from the smallest particle size in the cumulative curve with the total volume being 100%. It is the particle size at a point where it becomes 50%.
  • the average particle size and particle shape may be measured using a particulate material before being supported on the honeycomb structure body.
  • the titanate compound used in the present invention has a layered structure formed by a chain of TiO 6 octahedrons, and is a lipid crosite type crystal in which alkali metal ions other than Li are coordinated between the layers.
  • this titanate compound is supported on the surface of the cell wall in the honeycomb structure main body containing zeolite, excellent PM combustion performance can be provided without impairing the NOx purification performance of the obtained honeycomb structure.
  • the function as the SCR catalyst is not impaired in the honeycomb structure of the present invention.
  • the active species of PM combustion is alkali metal ions, so it does not oxidize ammonia and does not inhibit the NOx purification reaction, and the coexistence with zeolite, which is an SCR catalyst, due to the lipid structure This is considered to be due to the fact that the property is high and deterioration can be suppressed.
  • a lipidocrocite-type titanate compound is usually a plate-like particle in which a layer formed by a chain of TiO 6 octahedrons is grown, when a PM combustion catalyst is loaded, the TiO 6 octahedron is supported. It is considered that the layer portion of this layer is likely to come into contact with the zeolite, so that the coexistence with the zeolite can be further enhanced.
  • the exhaust gas purification apparatus of the present invention includes the honeycomb structure according to the embodiment of the present invention.
  • a honeycomb structure of the present invention for example, means for supplying a reducing agent or the like (reducing agent obtained from an ammonia precursor such as ammonia or urea) to the honeycomb structure, and a honeycomb for decomposing the deposited PM Means for heating the structure are further provided.
  • a reducing agent or the like reducing agent obtained from an ammonia precursor such as ammonia or urea
  • a known means can be adopted as long as the reducing agent or the like can be supplied to the honeycomb structure of the present invention.
  • a means for disposing a reducing agent or the like on the honeycomb structure may be used, which is arranged on the more upstream side (internal combustion engine side). Moreover, you may arrange
  • the honeycomb structure of the present invention can be heated.
  • the fuel of the internal combustion engine is sprayed from the internal combustion engine onto the honeycomb structure, and the combustion heat thereof.
  • a means using electric heating is provided.
  • the exhaust gas purifying apparatus of the present invention further includes a first catalyst such as an oxidation catalyst and a NOx storage catalyst, a honeycomb structure of the present invention, an SCR catalyst, and a slip oxidation catalyst sequentially from the upstream side (internal combustion engine side) on the exhaust gas flow path.
  • a second catalyst such as the above may be arranged.
  • the first catalyst and the honeycomb structure of the present invention may be disposed in order from the upstream side (internal combustion engine side) on the exhaust gas flow path.
  • the honeycomb structure of the present invention and the second catalyst may be arranged in order from the upstream side (internal combustion engine side) on the exhaust gas flow path. You may select 1 type, or 2 or more types for a 1st catalyst and a 2nd catalyst, respectively.
  • the oxidation catalyst means a catalyst that oxidizes HC, CO, NOx to H 2 O, CO 2 , NO 2 .
  • the NOx storage catalyst means a catalyst that traps NOx under lean conditions and releases it as NO 2 or makes it N 2 when stoichiometric or rich conditions are reached.
  • the SCR catalyst means a catalyst that can convert NOx to N 2 even under lean conditions.
  • the slip oxidation catalyst means a catalyst that captures excess NH 3 used as a reducing agent and NOx that could not be purified, and purifies it to N 2 .
  • the oxidation catalyst examples include metals such as Pt, Pd, Rh, Ag, and Cu, oxides containing the metals, high heat resistant high specific surface area inorganic substances (alumina, zirconia, etc.), and acidic oxides (silica, etc.).
  • Catalyst comprising at least one of basic oxide (titania, zirconia, alumina containing rare earth, etc.), oxygen storage / release material (ceria, ceria-zirconia composite oxide, sulfate containing rare earth, etc.), zeolite, etc. Is mentioned. These are used by being carried on a filter.
  • Examples of the NOx storage catalyst include compounds described in the above oxidation catalyst, compounds containing a basic alkali metal element (such as sodium carbonate, potassium carbonate, potassium titanate), and compounds containing an alkaline earth metal element. (Strontium carbonate, barium carbonate, MgAl 2 O 4 and the like), and a catalyst comprising at least one kind of compound containing a rare earth element (ceria, ceria-zirconia composite oxide, etc.). These are used by being carried on a filter.
  • SCR catalyst examples include a catalyst composed of at least one kind such as zeolite and base metal composite TiO 2 (base metals include V 2 O 5 , WO 3 , MoO 3 and the like). These are used by being carried on a filter.
  • base metals include V 2 O 5 , WO 3 , MoO 3 and the like.
  • slip oxidation catalyst examples include at least one type of catalyst such as the substance described in the above oxidation catalyst, the substance described in the NOx storage catalyst, and the substance described in the SCR catalyst. These are used by being carried on a filter.
  • the SCR catalyst size of the second catalyst can be reduced by using the honeycomb structure of the present invention that can efficiently perform NOx and PM treatment, or the second catalyst Since the SCR catalyst can be eliminated, the apparatus can be made compact.
  • the size of the slip oxidation catalyst of the second catalyst can be reduced, or the slip oxidation of the second catalyst. Since the catalyst can be eliminated, the apparatus can be made compact.
  • the size of the first catalyst can be reduced or the first catalyst can be eliminated. Can be.
  • the exhaust gas purifying apparatus of the present invention can be made compact by the above method, the exhaust gas purifying apparatus can be arranged at a more appropriate position than before.
  • the purification efficiency can be further improved by bringing the exhaust gas purification catalyst close to the internal combustion engine and promoting the activation of the exhaust gas purification catalyst by temperature.
  • it is possible to expect effects such as improvement in fuel consumption due to weight reduction and securing of a space for installing a new device.
  • the honeycomb structure main body of the first embodiment in which zeolite forms a skeleton is used for the honeycomb structure of the present invention
  • the honeycomb structure can be further lightened because the specific gravity of zeolite is small.
  • the pore diameter is as small as about 2 ⁇ m, it is considered that the above-described effect becomes even more remarkable due to the function of reducing the pressure loss and increasing the amount of zeolite to be mounted.
  • the pressure loss can be reduced even when the pore diameter of the honeycomb structure of the present invention is smaller than the pore diameter (10 ⁇ m to 20 ⁇ m) of a general DPF or SCRF (DFF with SCR catalyst). This is considered to be due to the low gas flow resistance.
  • the reason why the amount of zeolite loaded can be increased is that the strength of the honeycomb structure can be maintained even if the zeolite forms a skeleton.
  • a light honeycomb structure is thought to contribute to weight reduction.
  • Low pressure loss is thought to contribute to a reduction in exhaust gas resistance.
  • the fact that the pore diameter can be reduced in a state where the pressure loss is reduced contributes to efficiently capturing a substance smaller than PM2.5.
  • An abundant amount of zeolite is thought to contribute to improving the NOx purification catalyst efficiency and increasing the amount of reducing agent stored.
  • the abundant amount of zeolite is also considered to contribute as a catalyst carrier and a catalyst when the first catalyst and the second catalyst are integrated.
  • PM combustion catalyst 1 to PM combustion catalyst 11 used in Examples and Comparative Examples were produced as follows.
  • PM combustion catalyst 12 a commercially available product was used as it was.
  • Table 1 shows the composition formulas, crystal structures, particle shapes, and average particle diameters of the PM combustion catalysts 1 to 12.
  • the composition formula was confirmed with an ICP-AES analyzer (manufactured by SII Nano Technologies, product number “SPS5100”).
  • the crystal structure was confirmed by an X-ray diffractometer (manufactured by Rigaku Corporation, product number “RINT2000-Ultima +”).
  • the particle shape was confirmed by a field emission scanning electron microscope (manufactured by Hitachi High-Technologies Corporation, product number “S-4800”).
  • the average particle size was measured with a laser diffraction particle size distribution analyzer (manufactured by Shimadzu Corporation, product number “SALD-2100”).
  • PM combustion catalyst 1 26.8 parts by mass of potassium carbonate, 11.3 parts by mass of magnesium hydroxide, and 61.9 parts by mass of titanium oxide were mixed and baked at 1000 ° C. for 4 hours. After the fired product was pulverized, 20 g of the obtained pulverized product was made into a 20% by mass slurry with deionized water, stirred, filtered and dried. After drying, the powder of PM combustion catalyst 1 was obtained by firing at 500 ° C. for 1 hour.
  • Example 1 10 parts by mass of aluminum titanate (average particle diameter 13 ⁇ m, manufactured by Marusu Kayaku Co., Ltd.) with respect to 70 parts by mass of zeolite (average particle diameter 10 ⁇ m, crystal structure: MFI type, trade name “HSZ-840NHA”, manufactured by Tosoh Corporation) 10 parts by weight of potassium titanate fiber (composition formula K 2 Ti 6 O 13 , average fiber length 15 ⁇ m, average fiber diameter 0.5 ⁇ m, trade name “TISMON”, manufactured by Otsuka Chemical Co., Ltd.), bentonite (average particle diameter 10 ⁇ m, product) Name “Bengel VA” (manufactured by Kunimine Kogyo Co., Ltd.) 8 parts by weight, 3 parts by weight of graphite, 10 parts by weight of methylcellulose, and 0.5 parts by weight of fatty acid soap are added, kneaded after adding an appropriate amount of water, and extrusion molding. A possible clay (mixture) was obtained
  • the obtained clay (mixture) was extruded and molded so as to be a honeycomb structure main body with an extruder, and a molded body was obtained.
  • the cell density of the mold was 300 cells / square inch (46.5 cells / cm 2 ), and the partition wall thickness was 300 ⁇ m.
  • the aperture ratio was 63%.
  • a slurry was prepared in which the solid content was substantially composed of aluminum titanate, zeolite, potassium titanate fiber, bentonite, and additives such as viscosity modifiers were added.
  • the ratio of the solid content in a slurry is the same as the above.
  • this slurry is injected into the cells of the molded body that becomes the honeycomb structure main body so that the opened cells and the sealed cells alternately have a checkered pattern, and sealing is performed. It was.
  • the obtained molded body is held at 600 ° C. for 10 hours, then heated to 975 ° C. at a heating rate of 25 ° C./hour, and further held at 975 ° C. for 5 hours to fire, thereby obtaining a pore diameter of 2.
  • a honeycomb structure main body having a thickness of 0 ⁇ m and a porosity of 58% was obtained.
  • honeycomb structure body was impregnated with a 5% by mass aqueous copper acetate solution at 60 ° C. for 3 hours. Thereafter, it was thoroughly washed with ion exchange water and dried at 150 ° C. for 3 hours.
  • the obtained honeycomb structure body is impregnated with the slurry of PM combustion catalyst 1 so that the amount of PM combustion catalyst per apparent volume in the honeycomb structure becomes 10 g / L, and heated at 700 ° C. for 10 hours. A structure was obtained.
  • Examples 2 to 18, Comparative Examples 1 to 6 A honeycomb structure was obtained by performing the same method as in Example 1 except that the PM combustion catalyst was changed to that shown in Table 2 and the amount of PM catalyst supported was changed to that shown in Table 2. .
  • the obtained clay (mixture) was extruded and molded so as to be a honeycomb structure main body with an extruder, and a molded body was obtained.
  • the cell density of the mold was 300 cells / square inch (46.5 cells / cm 2 ), and the partition wall thickness was 300 ⁇ m.
  • the aperture ratio was 63%.
  • a slurry was prepared in which the solid content was substantially composed of aluminum titanate, zeolite, potassium titanate fiber, bentonite, and additives such as viscosity modifiers were added.
  • the ratio of the solid content in a slurry is the same as the above.
  • this slurry is injected into the cells of the molded body that becomes the honeycomb structure main body so that the opened cells and the sealed cells alternately have a checkered pattern, and sealing is performed. It was.
  • honeycomb structure body honeycomb structure having a thickness of 0.0 ⁇ m and a porosity of 58% was obtained.
  • honeycomb structure body was impregnated with a 5% by mass aqueous copper acetate solution at 60 ° C. for 3 hours. Thereafter, it was thoroughly washed with ion exchange water and dried at 150 ° C. for 3 hours. Thereafter, the honeycomb structure was obtained by heating at 700 ° C. for 10 hours.
  • the simulated exhaust gas was raised to 480 ° C. and a regeneration test was started.
  • the temperature of 480 ° C. ⁇ 10 ° C. was maintained for 30 minutes from the time when the temperature reached 480 ° C., and after 30 minutes, the entire amount of the simulated exhaust gas was switched to nitrogen gas.
  • Regeneration rate (%) 100 ⁇ [(PM deposition weight (g) ⁇ PM combustion weight (g)) / PM deposition weight (g)] ⁇ 100

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Catalysts (AREA)

Abstract

PMの燃焼性能及びNOxの除去効率に優れたハニカム構造体を提供する。 長手方向Xに沿って、一方の端面11aから他方の端面11bに延伸している複数のセル12がセル壁13によって区画された形状を有し、ゼオライトを含む、ハニカム構造体本体11と、ハニカム構造体本体11におけるセル壁13の表面に坦持されている、チタン酸塩化合物とを備え、チタン酸塩化合物が、TiO6八面体の連鎖により形成される層状構造を有し、Ti席の一部がLi、Mg、Zn、Ga、Ni、Cu、Fe、Al及びMnから選ばれる1種又は2種以上の元素で置換され、層状構造における層間にLiを除くアルカリ金属から選ばれる1種又は2種以上の元素のイオンが配位したレピドクロサイト型チタン酸塩化合物であることを特徴とする、ハニカム構造体。

Description

ハニカム構造体及び排ガス浄化装置
 本発明は、ハニカム構造体及び該ハニカム構造体を備える排ガス浄化装置に関する。
 ディーゼルエンジンなどの内燃機関から排出される排ガスには、粒子状物質(PM:particulate matter)、窒素酸化物(NOx)、炭化水素、一酸化炭素等の有害成分が含まれており、これらの有害物質を除去するために様々な手法が検討されている。特にトラック、バス等のディーゼル車から排出されるPMやNOxが都市部の大気汚染の一因となっていることから、ますますこれらの有害物質に対する規制が強化されている。
 PMについては、排ガスの流路中に配置した濾過機能を有するハニカム構造体にPMを捕集し、PMが所定量堆積したところで、ハニカム構造体を加熱してPMを燃焼分解することにより除去することができる。しかし、PMの燃焼温度は550℃~650℃と高いことから、装置が大がかりになり、また加熱するためのエネルギーコストが高くなる問題がある。より低温でPMを燃焼するために、触媒を担持したハニカム構造体が用いられている。このような触媒としては、白金が知られている。しかし、白金は、生産量が極めて少なく、需給バランスや価格が大きく変動するリスクがある。そこで、特許文献1では、アルカリ金属と、Siと、Zrとを含む複合酸化物粒子であることを特徴とする排ガス浄化触媒が提案されている。
 NOxについては、NOx還元触媒を担持したハニカム構造体を排ガスの流路中に配置することで除去することができる。例えば、ハニカム構造体にゼオライト系触媒を担持し、そこへ尿素等のアンモニア前駆物質から得られる還元剤又はアンモニア自体を注入することにより、NOxを反応式(1)~(3)のように窒素へ還元する選択的接触還元(SCR:selective catalytic reduction)が挙げられる。
    4NH+4NO+O→4N+6HO  (1)
    2NH+NO+NO→2N+3HO  (2)
    8NH+6NO→7N+12HO   (3)
 PMとNOxとの両方を除去するために、PMを除去する装置とNOxを除去する装置とが、それぞれ独立した装置として排ガスの流路中に配置されてきた。しかしながら、市場のダウンサイジングの要請から、PMを除去する装置とNOxを除去する装置とを一体化させた装置が望まれている。また、従来、PMを燃焼除去するための触媒として用いられる白金やパラジウムは、SCRに用いられる還元剤を酸化し、SCR機能を阻害することが知られている。そこで、特許文献2では、アルカリ金属から選ばれる1種または2種以上の元素とZr、Si、Al、及びTiから選ばれる1種または2種以上の元素とを含む酸化物と、シリカ/アルミナ比が15以上であるゼオライトとを備えるハニカム構造体を用いることが提案されている。
 PMを除去する装置とNOxを除去する装置とを一体化する市場要望の一方で、PMがNOx還元触媒に付着するとNOx還元率が低下する。そこで、特許文献3では、ウォールフロー型のハニカム構造体の壁面を、NOx還元触媒からなるNOx還元触媒層により被覆し、さらに酸化触媒からなる酸化触媒層により被覆することが提案されている。
 一方で、アルカリ金属から選ばれる元素を含有する酸化物として、レピドクロサイト型チタン酸塩化合物が知られている(特許文献4、特許文献5及び特許文献6)。
国際公開第2013/136991号パンフレット 国際公開第2015/029853号パンフレット 特開2000-282852号公報 国際公開第2002/010069号パンフレット 国際公開第2003/037797号パンフレット 特開2015-67508号公報
 しかし、特許文献2のハニカム構造体では、PMの燃焼性能と、NOxの除去効率が十分ではないという問題がある。また、特許文献3においては、PMを燃焼除去するための酸化触媒として貴金属系触媒が開示されているのみであり、その他の酸化触媒については何ら開示されていない。
 排ガス中のPMを燃焼除去するための触媒(以下「PM燃焼触媒」と略記する)に用いられるアルカリ金属系触媒と、排ガス中のNOxを窒素へ還元する選択的接触還元するための触媒(以下「SCR触媒」と略記する)とが共存すると、アルカリ金属系触媒に含まれるアルカリ金属イオンがSCR触媒と反応し、SCR触媒としての機能が損なわれるという問題がある。
 この点に関し、特許文献4~特許文献6では、レピドクロサイト型チタン酸塩化合物のアルカリの溶出が多いことが記載されている。また、特許文献4~特許文献6では、摩擦調整材としての使用方法しか記載されていない。
 本発明の目的は、PMの燃焼性能及びNOxの除去効率に優れたハニカム構造体及び該ハニカム構造体を備える排ガス浄化装置を提供することを主な目的とする。
 本発明は、以下のハニカム構造体及び該ハニカム構造体を備えた排ガス浄化装置を提供する。
 項1 長手方向に沿って、一方の端面から他方の端面に延伸している複数のセルがセル壁によって区画された形状を有し、ゼオライトを含む、ハニカム構造体本体と、前記ハニカム構造体本体における前記セル壁の表面に坦持されている、チタン酸塩化合物とを備え、前記チタン酸塩化合物が、TiO八面体の連鎖により形成される層状構造を有し、Ti席の一部がLi、Mg、Zn、Ga、Ni、Cu、Fe、Al及びMnから選ばれる1種又は2種以上の元素で置換され、前記層状構造における層間にLiを除くアルカリ金属から選ばれる1種又は2種以上の元素のイオンが配位したレピドクロサイト型チタン酸塩化合物であることを特徴とする、ハニカム構造体。
 項2 前記チタン酸塩化合物におけるTi席の10モル%~40モル%が、Li、Mg、Zn、Ga、Ni、Cu、Fe、Al及びMnから選ばれる1種又は2種以上の元素で置換されていることを特徴とする、項1に記載のハニカム構造体。
 項3 前記チタン酸塩化合物が、ATi(2-y)〔式中、AはLiを除くアルカリ金属の1種又は2種以上、MはLi、Mg、Zn、Ga、Ni、Cu、Fe、Al及びMnから選ばれる1種又は2種以上、xは0.2~1.0、yは0.25~1.0の数〕、A0.2~0.7Li0.27Ti1.733.7~3.95〔式中、AはLiを除くアルカリ金属の1種又は2種以上〕、A0.2~0.7Mg0.40Ti1.63.7~3.95〔式中、AはLiを除くアルカリ金属の1種又は2種以上〕、A0.5~0.7Li(0.27-x)Ti(1.73-z)3.85~3.95〔式中、AはLiを除くアルカリ金属の1種又は2種以上、MはMg、Zn、Ga、Ni、Cu、Fe、Al及びMnから選ばれる1種又は2種以上(但し、2種以上の場合は異なる価数のイオンの組み合わせは除く)、xとzは、Mが2価金属のとき、x=2y/3、z=y/3、yは0.004≦y≦0.4であり、Mが3価金属のとき、x=y/3、z=2y/3、yは0.004≦y≦0.4〕から選ばれる1種又は2種以上であることを特徴とする、項1又は項2に記載のハニカム構造体。
 項4 前記ハニカム構造体における見かけ体積当たりのチタン酸塩化合物量が1g/L以上であることを特徴とする、項1~項3のいずれか一項に記載のハニカム構造体。
 項5 前記ゼオライトが、MOR型ゼオライト、FAU型ゼオライト、A型ゼオライト、L型ゼオライト、BEA型ゼオライト、MFI型ゼオライト及びCHA型ゼオライトから選ばれる1種類又は2種類以上であることを特徴とする、項1~項4のいずれか一項に記載のハニカム構造体。
 項6 前記ゼオライトのシリカ/アルミナ比が4以上であることを特徴とする、項1~項5のいずれか一項に記載のハニカム構造体。
 項7 前記チタン酸塩化合物が排ガス中に含まれる粒子状物質を燃焼するために用いられる触媒であり、前記ゼオライトが排ガス中に含まれる窒素酸化物を窒素に還元するために用いられる触媒であることを特徴とする、項1~項6のいずれか一項に記載のハニカム構造体。
 項8 前記ハニカム構造体がハニカムフィルタであることを特徴とする、項1~項7のいずれか一項に記載のハニカム構造体。
 項9 項1~項8のいずれか一項に記載のハニカム構造体を備えることを特徴とする、排ガス浄化装置。
 本発明によれば、PMの燃焼性能及びNOxの除去効率に優れたハニカム構造体を提供することができる。
図1は、本発明の一実施形態に係るハニカム構造体に用いるハニカム構造体本体の第1の形態を説明するための模式的斜視図である。 図2は、図1のハニカム構造体本体の変形例の端面を示す模式図である。
 以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は単なる例示である。本発明は、下記の実施形態に何ら限定されない。
 本発明のハニカム構造体は、長手方向に沿って、一方の端面から他方の端面に延伸している複数のセルがセル壁によって区画された形状を有し、ゼオライトを含む、ハニカム構造体本体と、ハニカム構造体本体におけるセル壁の表面に坦持されている、チタン酸塩化合物とを備えることを特徴とする。チタン酸塩化合物は、セル壁の表面の一部又は全てに担持されている。
 <ハニカム構造体本体>
 ハニカム構造体本体におけるゼオライトの存在形態としては、大別して2種類の形態がある。
 第1の形態では、ゼオライトがハニカム構造体本体のセル壁の骨格部を形成する。すなわち、ハニカム構造体本体のセル壁は、ゼオライトを含む材料(通常、ゼオライトを主体とする材料)で構成される。
 第2の形態では、ゼオライトが、ハニカム構造体本体におけるセル壁の表面の一部又は全てに担持されている。もっとも、NOxの除去効率とPMによるハニカム構造体の圧力損失の観点から、第1の形態であることが好ましい。
 なお、上記分類は、便宜的なものであり、本発明の優れた性能を有していれば、例えば、両方の特徴を含むハニカム構造体本体でもよい。すなわち、セル壁がゼオライトを含む材料で構成され、さらにセル壁の表面の一部又は全てにゼオライトが担持されているハニカム構造体本体でもよい。
 (ハニカム構造体本体の第1の形態)
 図1は、本発明の一実施形態に係るハニカム構造体に用いるハニカム構造体本体の第1の形態を説明するための模式的斜視図である。
 図1に示すように、ハニカム構造体本体11は、互いに対向している第1の端面11a及び第2の端面11bと、第1の端面11a及び第2の端面11bを結ぶ側面11cとを有する。ハニカム構造体本体11においては、図1に示す長手方向Xに沿って、第1の端面11aから第2の端面11bに向かって延伸している複数のセル12がセル壁13によって区画されている。なお、ハニカム構造体本体11の側面11c(長手方向Xと平行な面)は、側面11cを補強し強度を保つため、また側面11cからセルを通過する排ガスが漏れ出すことを防止するため、コーティング層で覆われていてもよい。上記コーティング層を構成する材料としては、特に限定されず、例えば、無機バインダと有機バインダと無機繊維及び/又は無機粒子とからなるもの等を挙げることができる。
 ハニカム構造体本体11はそのまま用いてもよいし、複数のハニカム構造体本体11を接着剤などにより接合して用いてもよい。複数のハニカム構造体本体11を接合した接合体として用いる場合は、長手方向Xが平行に配列されるように形成することが望ましい。また、単一のハニカム構造体本体11又は複数のハニカム構造体本体11の接合体は、側面11c側を所定の形状に沿って切削加工してもよい。
 ハニカム構造体本体11の長手方向Xに対して垂直な断面の形状は、特に限定されるものではなく、例えば、丸形、方形(正方形、長方形)、六角形、扇形であってもよい。また、尖った形状の角部を有する方形等の断面形状の場合、ハニカム構造体本体11の再生時の応力を緩和しクラックの発生をより一層抑制する観点から、尖った形状の角部を面取り形状とすることが好ましい。本発明において面取り形状とは、面と面との交わりの角に平面又は曲面からなる斜めの面を付けた形状のことをいい、応力緩和性の観点から曲面からなる斜めの面を付けた形状が更に好ましく、例えば図2に変形例で示すように円弧からなるR面取り形状が特に好ましい。
 ハニカム構造体本体11のセル12における長手方向Xに対して垂直な断面形状は、特に限定されず、本実施形態のように方形(正方形、長方形)であってもよく、方形以外にも、例えば三角形、多角形であってもよい。また、上記断面形状が方形の場合、ハニカム構造体本体11の強度向上、熱と応力分散の観点から、例えば図2に変形例で示すようにハニカム構造体本体11の最外周のセル12aの角部15には、断面形状が直角三角形状の充填体が設けられていることが好ましい。充填体が設けられている角部15は、ハニカム構造体本体11の最外周の断面が方形のセル12aの角部のうち、ハニカム構造体本体11の外縁壁14と接する角部15である。上記直角三角形の充填体の一辺の長さは、方形セル12aの一辺の長さの5%~40%であることが好ましい。
 ハニカム構造体本体11のセル壁13の厚みは、特に限定されないが、強度をより一層高める観点から、好ましい下限値は100μmである。セル壁13の厚みは、浄化性能をより一層高める観点から、好ましい上限値は400μmである。ハニカム構造体本体11の外縁壁14を構成するセル壁13aの厚さは、それ以外のセル壁13bの厚さと同じでも厚くてもよいが、外縁壁14を構成しないセル壁13bの1.3倍~3.0倍とすることで、高い開口率を維持しつつ、強度を確保することが可能となる。
 ハニカム構造体本体11のセル12の開口率は、圧力損失の観点から60%以上であることが好ましい。本発明において、セル12の開口率とは、ハニカム構造体本体11の長手方向Xに対して垂直な断面におけるセル12の割合のことをいう。なお、上記垂直な断面は、目封止材により目封止されていない断面とする。ハニカム構造体本体11のセル12の開口率の上限は、特に限定されないが、例えば、70%とすることができる。
 ハニカム構造体本体11のセル12の数は、特に限定されないが、200セル/平方インチ~400セル/平方インチであることが好ましい。また、セル壁13の壁面は多孔質であってもよく、その場合、長径が2μm~18μm程度の細孔を有していることが好ましい。また、セル壁13の壁面の気孔率は45%~65%であることが好ましい。
 また、本発明においては、NOx除去機能とPM浄化機能とを、より一層高める観点で、一方の端面が開口され且つ他方の端面が目封止されたセル12と、一方の端面が目封止され且つ他方の端面が開口された残余のセル12とが交互に配置されたハニカム構造体本体11から形成された、ウォールフロー型のハニカムフィルタであることが好ましい。
 以下、第1の形態のハニカム構造体本体の製造方法の一例について説明する。
 まず、ゼオライトと無機バインダとに、必要に応じて、さらに無機繊維と、セラミック原料とを主成分として含有する原料混合物を作製する。この原料混合物を押出成形等することにより成形体とする。原料混合物には、これらの他に造孔剤、有機バインダ、分散剤、又は水等を加えてもよい。造孔剤としては、黒鉛、グラファイト、木粉、ポリエチレンが挙げられる。また、有機バインダとしては、メチルセルロース、エチルセルロース、ポリビニルアルコールが挙げられる。分散剤としては、脂肪酸石鹸、エチレングリコールが挙げられる。造孔剤、有機バインダ、分散剤、及び水の量は、セル壁面の気孔率、成形性等を考慮して適宜調整することができる。
 原料混合物は、特に限定されるものではないが、混合・混練することが好ましい。原料混合物は、例えば、ミキサー等を用いて混合してもよく、ニーダー等で十分に混練してもよい。原料混合物を成形する方法は、特に限定されるものではないが、例えば、押出成形などによって所定のセル密度、開口率を有する形状に成形することが好ましい。
 次に、得られた成形体は、必要に応じて、セルの開口が市松模様となるように片側の目封止を行った後に乾燥することが好ましい。乾燥に用いる乾燥機は、特に限定されるものではないが、マイクロ波乾燥機、熱風乾燥機、真空乾燥機などが挙げられる。また、得られた成形体は、脱脂することが好ましい。脱脂する条件は、特に限定されず、成形体に含まれる有機物の種類によって適宜選択されるが、おおよそ400℃、2時間の条件が好ましい。さらに、得られた成形体は、焼成することが好ましい。焼成温度としては、特に限定されるものではないが、例えば600℃~1200℃とすることができ、焼成時間としては例えば2時間~15時間とすることができる。焼成温度が1200℃を超えると、ゼオライト結晶が崩壊したり、焼結が進行しすぎて適度な気孔率を有することができなかったりすることがある。焼成温度が600℃未満では、焼結が進行せずハニカム構造体としての強度が上がらないことがある。セラミック原料を併用した場合の焼成条件は、セラミック原料により適宜選択されるが、セラミック原料としてチタン酸アルミニウムを用いる場合、焼成温度としては例えば900℃~1100℃とすることができ、焼成時間としては例えば2時間~15時間とすることができる。
 原料混合物におけるゼオライトの含有量は、原料混合物100質量%に対して、10質量%~80質量%であることが好ましく、40質量%~70質量%であることがより好ましい。
 原料混合物における無機バインダの含有量は、ゼオライト100質量部に対して、1質量部~50質量部であることが好ましく、5質量部~30質量部であることがより好ましく、10質量部~20質量部であることがさらに好ましい。
 原料混合物における無機繊維の含有量は、ゼオライト100質量部に対して、1質量部~50質量部であることが好ましく、5質量部~30質量部であることがより好ましく、10質量部~20質量部であることがさらに好ましい。
 原料混合物におけるセラミック原料の含有量は、ゼオライト100質量部に対して、1質量部~50質量部であることが好ましく、5質量部~30質量部であることがより好ましく、10質量部~20質量部であることがさらに好ましい。
 以下、第1の形態のハニカム構造体本体に用いる、各構成材料について説明する。
 ゼオライト;
 ゼオライトとは、結晶性アルミノケイ酸塩で、ケイ素元素とアルミニウム元素のまわりに4つの酸素元素が規則正しく三次元的に結合した結晶構造を持つ多孔質体である。本発明で用いるゼオライトの結晶構造としては、MOR型ゼオライト、FAU型ゼオライト、A型ゼオライト、L型ゼオライト、BEA型ゼオライト、MFI型ゼオライト、CHA型ゼオライト等がある。本発明で用いるゼオライトの結晶構造としては、好ましくは、BEA型ゼオライト、MFI型ゼオライト、CHA型ゼオライトである。
 本発明で使用するゼオライトのシリカ/アルミナ比は、4以上であることが好ましく、15以上であることがより好ましく、20以上であることが更に好ましい。また、ゼオライトのシリカ/アルミナ比は、100以下であることが好ましく、50以下であることがより好ましい。この構成にすることにより、還元剤によるNOxのSCR触媒として作用し、他の添加剤からのアルカリ金属イオンの影響をより一層受けることなく、NOxをより一層効果的に還元除去できるものと考えられる。
 本発明で用いるゼオライトは、天然産及び合成ゼオライトがあるが、上記構成のものであれば特に制限なく使用できる。好ましくは、より均一なシリカ/アルミナ比、結晶サイズ、結晶形態を有し、不純物が少ないことから、合成ゼオライトがよい。
 ゼオライトの平均粒子径は、0.5μm~40μmであることが好ましい。平均粒子径は、原料粒子を混合する前の粒子状物を用いて測定すればよい。また、本発明において、平均粒子径とは、レーザー回折・散乱法によって求めた粒度分布における体積基準累積50%の粒子径(体積基準累積50%粒子径)、すなわちD50(メジアン径)である。この体積基準累積50%粒子径(D50)は、体積基準で粒度分布を求め、全体積を100%とした累積曲線において、粒子サイズの小さいものから粒子数をカウントしていき、累積値が50%となる点の粒子径である。
 本発明で用いるゼオライトは、上記ゼオライトをイオン交換した、イオン交換ゼオライトを含んでいることが好ましい。イオン交換ゼオライトを含んでいることで、触媒活性をより一層促進することができる。イオン交換ゼオライトは、あらかじめイオン交換されたゼオライトを使用してハニカム構造体本体を形成してもよく、ハニカム構造体本体を形成した後にゼオライトをイオン交換してもよい。
 イオン交換ゼオライトとしては、遷移金属でイオン交換されたゼオライトが好ましく用いられる。遷移金属としては、例えば、Cu、Fe、Pt、Ag、Ti、Mn、Ni、Co、Pd、Rh、V、Cr等が挙げられる。なかでも、遷移金属としては、Cu、Feが好ましい。遷移金属の合計量は、ゼオライトの総質量に対して、1質量%~15質量%とすることが好ましく、1質量%~8質量%とすることがより好ましい。
 無機バインダ;
 本発明で用いる無機バインダとしては、アルミナゾル、シリカゾル、チタニアゾル、水ガラスなどの無機ゾル;粘土系鉱物等を用いることができる。ハニカム構造体の機械強度をより一層高める観点から、無機バインダとしては、粘土系鉱物が好ましい。
 粘土系鉱物とは、粘土を構成する主成分鉱物である。層状珪酸塩鉱物(フィロ珪酸塩鉱物)、滑石(タルク)、方解石(カルサイト)、苦灰石(ドロマイト)、長石類、石英、沸石(ゼオライト)類、その他鎖状構造を持つもの(アタパルジャイト、セピオライトなど)、はっきりとした結晶構造を持たないもの(アロフェン)等が粘土系鉱物と呼ばれている。なお、一般的にはそのなかの層状珪酸塩鉱物のことを層状粘土鉱物と呼ぶこともある。本発明で用いる粘土系鉱物としては、層状粘土鉱物が好ましい。
 層状粘土鉱物は、正負のイオンの二次元的な層が平行に積み重なって結合して結晶構造を作っており、この層構造のなかには2つの構造単位を有する。一方はSi4+とこれを囲んだO2-とからなる四面体層で構成されており、他方はSi3+(あるいはMg2+、Fe2+など)とこれを囲んだ(OH)とからなる八面体層で構成されている。
 四面体層中では、四面体の4つの頂点にあるOと中心に位置するSiによりSi-Oの四面体が形成され、これが3つの頂点で互いに連結して二次元的に広がり、Si10の組成を有する層格子を形成している。Si4+はしばしばAl3+で置換される。
 八面体層中では、八面体の6つの頂点にある(OH)またはOと、その中心に位置するAl、Mg、Feなどにより形成された八面体が、各頂点で連結して二次元的に広がり、Al(OH)あるいはMg(OH)の組成を有する層格子を形成している。
 八面体層には、6個の陰イオンで囲まれた陽イオンの格子点に2価の陽イオン(Mg2+など)が入り格子点の全てを占めている3-八面体型や、陽イオンの格子点に3価の陽イオン(Al3+など)が入り2/3を占め、残りの1/3は空所となっている2-八面体型がある。
 四面体層と八面体層の組合せには2種類あり、一方は1枚の四面体層と1枚の八面体層の結合を単位とする1:1型構造、他方は1枚の四面体層とその間に挟まれた1枚の八面体層の結合を単位とする1:1型構造がある。
 四面体層では通常は1個のSi4+が4個のO原子で囲まれて安定な配位をとっているが、ときにこのSi4+よりわずかにイオン半径の大きいAl3+がSi4+の代わりに四面体層に存在する。配位するO原子の数には変化がないので、1つのAl3+がSi4+を置換するごとに四面体層には1単位の負電荷を生じる。同様に八面体層でもMg2+、Fe2+によるAl3+、Fe3+の置換に伴い負電荷を生じる。
 この負電荷を生じた層は、Li、K、Na、NH 、H、Ca2+、Mg2+、Sr2+、Ba2+、Co2+、Fe2+、Al3+などの陽イオンが介在することで電気的に中性になり、層間にこれら交換性陽イオンが存在した積層構造となる。
 層状粘土鉱物としては、スメクタイト、スチーブンサイト、バーミキュライト、雲母族、脆雲母族の天然品又は合成品から選ばれる少なくとも1種が例示される。これらは組み合わせて用いることもできる。
 上記スメクタイトとしては、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、鉄サポナイト、ヘクトライト、ソーコナイト等が挙げられる。NOx除去効率や、機械的強度をより一層高める観点から、モンモリロナイトが好ましい。例えば、モンモリロナイトを主成分とするベントナイトを用いることができ、ベントナイト中のモンモリロナイトの含有量は40%以上であることが好ましく、70%以上であることがより好ましい。
 粘土系鉱物の平均粒子径は、0.5μm~100μmであることが好ましく、1μm~20μmであることがより好ましい。平均粒子径は、原料粒子を混合する前の粒子状物を用いて測定すればよい。また、本発明において、平均粒子径とは、レーザー回折・散乱法によって求めた粒度分布における体積累積基準50%の粒子径(体積基準累積50%粒子径)、すなわちD50(メジアン径)である。この体積基準累積50%粒子径(D50)は、体積基準で粒度分布を求め、全体積を100%とした累積曲線において、粒子サイズの小さいものから粒子数をカウントしていき、累積値が50%となる点の粒子径である。
 無機繊維;
 本発明で用いる無機繊維は、繊維状粒子から構成される粉末であり、平均繊維長が、好ましくは1μm~300μmであり、より好ましくは1μm~200μmである。また、平均アスペクト比は、好ましくは3~200であり、より好ましくは5~50である。
 無機繊維としては、押出成形機の摩耗の観点から、モース硬度が5以下であることが好ましく、1~5であることがより好ましい。無機繊維としては、例えば、チタン酸アルカリ金属塩、ワラストナイト、ホウ酸マグネシウム、ゾノトライト、塩基性硫酸マグネシウムから選ばれる少なくとも1種が挙げられる。また、NOx還元効率及び機械的強度をより一層高める観点から、無機繊維はチタン酸アルカリ金属塩であることが好ましい。モース硬度とは、物質の硬さを表す指標であり、鉱物同士を擦り付けて傷ついたほうが硬度の小さい物質となる。
 チタン酸アルカリ金属塩としては、NaTiO、NaTi、NaTi、NaTi13、NaTi17等のチタン酸ナトリウム;KTiO、KTi、KTi、KTi13、KTi17等のチタン酸カリウム;CsTiO、CsTi、CsTi、CsTi13、CsTi17等のチタン酸セシウム等を例示することができる。
 チタン酸アルカリ金属塩の寸法は、上述の無機繊維の寸法の範囲であれば特に制限はないが、通常、平均繊維径は、好ましくは0.01μm~1μm、より好ましくは0.1μm~0.6μmである。チタン酸アルカリ金属塩の平均繊維長は、好ましくは1μm~50μm、より好ましくは3μm~30μmである。また、チタン酸アルカリ金属塩の平均アスペクト比は、好ましくは10以上、より好ましくは15~40である。本発明では市販品も使用でき、例えば、大塚化学社製の商品名「ティスモD」(平均繊維長15μm、平均繊維径0.5μm)や、商品名「ティスモN」(平均繊維長15μm、平均繊維径0.5μm)等を使用することができる。
 上述の平均繊維長及び平均繊維径は、走査型電子顕微鏡の観察により測定することができる。また、平均アスペクト比(平均繊維長/平均繊維径)は、平均繊維長及び平均繊維径より算出することできる。例えば、走査型電子顕微鏡により、複数の無機繊維を撮影し、その観察像から無機繊維を任意に300個選択し、それらの繊維長及び繊維径を測定し、繊維径の全てを積算して個数で除したものを平均繊維長、繊維径の全てを積算し個数で除したものを平均繊維径とすることができる。平均繊維長及び平均繊維径は、原料粒子を混合する前の粒子状物を用いて測定すればよい。
 本発明において繊維状粒子とは、粒子に外接する直方体のうち最小の体積をもつ直方体(外接直方体)の最も長い辺を長径L、次に長い辺を短径B、最も短い辺を厚さTと定義(B>Tとする)したときに、L/BおよびL/Tがいずれも5以上の粒子のことをいい、長径Lが繊維長、短径Bが繊維径に相当する。
 セラミック原料;
 セラミック原料としては、シリコンカーバイド、コージェライト、ムライト、アルミナ、チタン酸アルミニウムから選ばれる少なくとも1種が例示される。これらは2種以上を組み合わせて用いることもできる。セラミック原料としては、耐熱性、安定性をより一層高める観点から、チタン酸アルミニウムが好ましい。
 セラミック原料の平均粒子径は、0.5μm~100μmであることが好ましく、1μm~20μmであることより好ましい。平均粒子径は、原料粒子を混合する前の粒子状物を用いて測定すればよい。また、本発明において、平均粒子径とはレーザー回折・散乱法によって求めた粒度分布における体積基準累積50%の粒子径(体積基準累積50%粒子径)、すなわちD50(メジアン径)である。この体積基準累積50%粒子径(D50)は、体積基準で粒度分布を求め、全体積を100%とした累積曲線において、粒子サイズの小さいものから粒子数をカウントしていき、累積値が50%となる点の粒子径である。
 (ハニカム構造体本体の第2の形態)
 本発明で用いるハニカム構造体本体の第2の形態では、担体としてのハニカム構造体本体におけるセル壁の表面の一部又は全部にゼオライトが担持されている。第2の形態においてゼオライトを担持する担体は、例えば、第1の形態のハニカム構造体本体におけるゼオライトの全てをセラミック原料に置き換えたものを用いることができる。ゼオライトの担持箇所は特に限定されない。なお、セル壁の表面にゼオライトが担持されているとは、セル壁の表面にゼオライトが付着している状態をいう。また、セル壁が多孔質であればその細孔表面もセル壁の表面に含まれる。
 ゼオライトの担持方法としては、浸漬法、噴霧法等が挙げられる。例えば浸漬法によれば、必要に応じて添加剤(バインダ、分散剤及び造孔剤等)を添加して調製したゼオライトを含むスラリーに担体を浸漬する。次に、浸漬した担体を引き上げて乾燥した後、300℃~800℃で焼成することにより、担体としてのハニカム構造体本体におけるセル壁にゼオライトを担持させることができる。それによって、第2の形態のハニカム構造体本体を得ることができる。
 第2の形態のハニカム構造体本体における見かけ体積当たりのゼオライト量は、NOx浄化作用の観点から好ましい下限値は50g/Lである。また、圧力損失悪化の観点から好ましい上限値は350g/Lである。
 第2の形態において、ゼオライトを担持する担体は、第1の形態のハニカム構造体本体を用いてもよい。
 <ハニカム構造体>
 本発明の一実施形態に係るハニカム構造体は、上記第1又は第2の形態のハニカム構造体本体(以下、これらを総称して、ハニカム構造体本体と称する場合があるものとする)におけるセル壁の表面の一部又は全てにチタン酸塩化合物が担持されている。なお、第2の形態のハニカム構造体本体におけるセル壁の表面とは、セル壁の表面に坦持されたゼオライトの表面のことをいう。従って、第2の形態では、セル壁の表面に坦持されたゼオライトの表面の一部又は全てにチタン酸塩化合物が担持されている。
 チタン酸塩化合物の担持箇所は特に限定されないが、排ガス入口流路側のセル壁の表面に担持されていることが好ましい。なお、本発明においてチタン酸塩化合物の担持とは、セル壁の表面にチタン酸塩化合物が付着している状態をいう。なお、セル壁が多孔質であれば細孔表面もセル壁の表面に含まれる。
 チタン酸塩化合物の担持方法としては、浸漬法、噴霧法等が挙げられる。例えば浸漬法によれば、チタン酸塩化合物を含むスラリーにハニカム構造体本体を浸漬する。次に、浸漬したハニカム構造体本体を引き上げて乾燥した後、300℃~800℃で1時間~15時間焼成することにより、ハニカム構造体本体におけるセル壁の表面にチタン酸塩化合物を担持させることができる。それによって、ハニカム構造体を得ることができる。なお、チタン酸塩化合物の担持は、ハニカム構造体本体におけるセル壁の表面の一部又は全てに、樹脂、樹脂ビーズ等の有機化合物を担持した後に、行ってもよい。
 上記チタン酸塩化合物を含むスラリーには、その性能を阻害しない範囲において公知の排ガス浄化触媒に使用される添加剤等を1種または2種以上を組み合わせて混合することができる。このような添加剤としては、ゼオライト、酸化触媒、アルカリ土類金属塩等を挙げることができる。また、ハニカム構造体本体との反応性をより一層抑える目的で、チタニア、ジルコニア、アルミナ、ベーマイト、セリア等のアルカリを含まない無機化合物を混合することもできる。
 ハニカム構造体における見かけ体積当たりのチタン酸塩化合物量は、PM燃焼性能をより一層高める観点から、下限値が1g/Lであることが好ましく、5g/Lであることがより好ましく、10g/Lであることがさらに好ましい。また、ハニカム構造体の見かけ体積当たりのチタン酸塩化合物量は、圧力損失をより一層改善する観点から、上限値が200g/Lであることが好ましく、100g/Lであることがより好ましく、70g/Lであることが更に好ましく、50g/Lであることが特に好ましい。
 本発明のハニカム構造体は、その優れた特性を損なわない範囲で、さらに酸化触媒、三元触媒、酸素吸蔵触媒等を備えることもできる。
 本発明において、処理の対象となる排ガスは、ディーゼルエンジン、ガソリンエンジン等の内燃機関等から排出される排ガス、各種燃焼設備等の排ガスを挙げることができる。
 本発明のハニカム構造体は、排ガス流路中に配置することで排ガスに接触させて用いられる。排ガス中のPMの除去は、PMをハニカム構造体に堆積させ、PMが所定量体積したハニカム構造体を、酸素の存在下、PMの燃焼温度まで加熱して行われる。また、これらの排ガス中のNOxの除去は、還元剤、例えば尿素、炭酸アンモニウム、ヒドラジン、炭酸水素アンモニウム等のアンモニア前駆物質、又はアンモニア自体の存在下で行われる。還元剤は、排ガス流路中において、本発明のハニカム構造体の上流に配置し、適宜必要量を供給してもよい。
 本発明のハニカム構造体は、1つのフィルタで、排ガス中の有害物質であるPMを低温において燃焼でき、NOxを還元除去することもできる。その優れた機能から、ディーゼルエンジン用フィルタ(DPF)、ガソリンエンジン用フィルタ等に好適に使用することができ、市場のダウンサイジングの要請に応えることもできる。
 以下、本発明で用いるチタン酸塩化合物について説明する。
 (チタン酸塩化合物)
 本発明で用いるチタン酸塩化合物は、TiO八面体の連鎖により形成される層状構造を有し、Ti席の一部がLi、Mg、Zn、Ga、Ni、Cu、Fe、Al及びMnから選ばれる1種又は2種以上の元素(以下、これらを総称して「M元素」と略記する)で置換され、層状構造における層間にLiを除くアルカリ金属から選ばれる1種又は2種以上の元素(以下、これらを総称して「A元素」と略記する)のイオンが配位したレピドクロサイト型チタン酸塩化合物であることを特徴とする。
 Ti席の一部を置換するM元素は、そのイオンがTi4+と同程度のイオン半径を有していることから、Ti席をM元素に置換することが可能となる。好ましくは、Ti席の10モル%~40モル%がM元素で置換されていることがよく、より好ましくはTi席の10モル%~30モル%がM元素で置換されていることがよい。詳細は明らかではないが、Ti席の一部を置換するM元素により、層間のA元素のイオンの動きを制御したり、PM燃焼を助長したり、ゼオライトとの反応性を抑制することができるものと考えられる。
 A元素としては、Na、K、Rb、Cs、Frが挙げられ、好ましくはNa、Kである。なお、Liは、他のアルカリ金属と比べ、イオン半径が小さく、異なる性質を有するため、A元素には含まれない。
 チタン酸塩化合物の層間には、その性能を阻害しない範囲において、さらにA元素以外の元素のイオンが配位していてもよく、層間に配位するイオンの総量は結晶全体を電気的に中性にできる量であればよい。A元素以外の元素のイオンが配位する場合、チタン酸塩化合物の層間に配位しているA元素のイオンの量は、層間に配位している元素のイオン全量100モル%に対して、0.01モル%~99.99モル%の範囲であることが好ましく、0.01モル%~75モル%の範囲であることがより好ましく、0.01モル%~50モル%の範囲であることがさらに好ましい。
 上記チタン酸塩化合物としては、例えば、ATi(2-y)〔式中、AはLiを除くアルカリ金属の1種又は2種以上、MはLi、Mg、Zn、Ga、Ni、Cu、Fe、Al及びMnから選ばれる1種又は2種以上、xは0.2~1.0、yは0.25~1.0の数〕、A0.2~0.7Li0.27Ti1.733.7~3.95〔式中、AはLiを除くアルカリ金属の1種又は2種以上〕、A0.2~0.7Mg0.40Ti1.63.7~3.95〔式中、AはLiを除くアルカリ金属の1種又は2種以上〕、A0.5~0.7Li(0.27-x)Ti(1.73-z)3.85~3.95〔式中、AはLiを除くアルカリ金属の1種又は2種以上、MはMg、Zn、Ga、Ni、Cu、Fe、Al、及びMnから選ばれる1種又は2種以上(但し、2種以上の場合は異なる価数のイオンの組み合わせを除く)、xとzは、Mが2価金属のとき、x=2y/3、z=y/3、yは0.004≦y≦0.4、Mが3価金属のとき、x=y/3、z=2y/3、yは0.004≦y≦0.4〕等を挙げることができる。これらは、単独で用いてもよく、複数を併用してもよい。
 具体例としては、K0.8Li0.27Ti1.73、K0.7Li0.27Ti1.733.95、K0.5Li0.27Ti1.733.85、K0.4Li0.27Ti1.733.8、Na0.20.6Li0.27Ti1.73、K0.8Mg0.40Ti1.6、K0.7Mg0.40Ti1.63.95、K0.2Mg0.40Ti1.63.7、Na0.20.6Mg0.4Ti1.6、K0.7Li0.14Mg0.2Ti1.673.95、K0.7Li0.14Cu0.2Ti1.673.95、K0.7Li0.14Fe0.4Ti1.473.95、K0.7Li0.24Mg0.04Ti1.723.95等を挙げることができる。
 本発明で用いるチタン酸塩化合物は、球状、粒状、板状、柱状、棒状、円柱状、ブロック状、多孔質状、複数の凸部を有する形状(アメーバ状、ブーメラン状、十字架状、金平糖状等)等の非繊維状粒子であることが好ましく、板状の粒子であることがより好ましい。これらの各種粒子形状は、製造条件、特に原料組成、焼成条件等により任意に制御することができる。ここで、複数の凸部を有するとは、平面への投影形状が少なくとも通常の多角形、円、楕円等とは異なり2方向以上に凸部を有する形状を取り得るもの、いわゆる不定形状であることを意味する。具体的にこの凸部とは、走査型電子顕微鏡(SEM)による写真(投影図)に多角形、円、楕円等(基本図形)をあてはめ、それに対して突き出した部分に対応する部分をいう。
 チタン酸塩化合物の粒子形状は、例えば走査型電子顕微鏡(SEM)観察から解析することができる。
 また、本発明における繊維状粒子とは、粒子に外接する直方体のうち最小の体積をもつ直方体(外接直方体)の最も長い辺を長径L、次に長い辺を短径B、最も短い辺を厚さTと定義(B>Tとする)したときに、L/B及びL/Tがいずれも5以上の粒子のことをいい、長径Lが繊維長、短径Bが繊維径に相当する。非繊維状粒子とはL/Bが5未満の粒子のことをいい、板状粒子とは、L/Bが5未満、L/Tが5以上の粒子である。
 チタン酸塩化合物の平均粒子径は、通常、1.0μm~50.0μmであり、好ましくは2.0μm~30.0μmである。また、チタン酸塩化合物の平均粒子径は、チタン酸塩化合物の担持前のハニカム構造体本体の細孔径よりも大きいことが好ましい。平均粒子径を上記範囲内にすることで、NOx除去効率をより一層高め、ハニカム構造体の圧力損失をより一層低く抑えることができる。平均粒子径は、レーザー回折法により計測される粒度分布における体積基準累積50%時の粒子径(体積基準累積50%粒子径)、すなわちD50(メジアン径)をいう。この体積基準累積50%粒子径(D50)は、体積基準で粒度分布を求め、全体積を100%とした累積曲線において、粒子サイズの小さいものから粒子数をカウントしていき、累積値が50%となる点の粒子径である。平均粒子径及び粒子形状は、ハニカム構造体本体に担持する前の粒子状物を用いて測定すればよい。
 本発明で用いるチタン酸塩化合物は、TiO八面体の連鎖により形成される層状構造を有し、その層間にLiを除くアルカリ金属イオンが配位するレピドクロサイト型の結晶である。ゼオライトを含むハニカム構造体本体におけるセル壁の表面にこのチタン酸塩化合物を担持した場合、得られたハニカム構造体のNOx浄化性能が損なわれることなく、優れたPM燃焼性能を与えることができる。
 ところで、アルカリ金属系触媒に含まれるアルカリ金属イオンがSCR触媒と反応し、SCR触媒としての機能が損なわれるという問題がある。また、チタン酸塩化合物はアルカリ溶出量が多く、熱硬化性樹脂中において溶出アルカリ金属イオンが熱硬化性樹脂の硬化を阻害することが知られている。
 しかしながら、このような予想に反し、本発明のハニカム構造体においてはSCR触媒としての機能が損なわれない。その理由は定かではないが、PM燃焼の活性種がアルカリ金属イオンであるためアンモニアを酸化せず、NOx浄化反応を阻害しないこと、レピドクロサイト型の結晶構造によりSCR触媒であるゼオライトとの共存性が高く、劣化を抑制できることによると考えられる。また、通常、レピドクロサイト型のチタン酸塩化合物は、TiO八面体の連鎖により形成される層が成長した板状粒子になることから、PM燃焼触媒を担持した際は、TiO八面体の層部分がゼオライトと接触し易いと考えられるため、よりゼオライトとの共存性を高められると考えられる。
 (排ガス浄化装置)
 本発明の排ガス浄化装置は、上記本発明の実施形態にかかるハニカム構造体を備えている。上記本発明のハニカム構造体の他にも、例えば、ハニカム構造体に還元剤等(アンモニア、尿素等のアンモニア前駆物質から得られる還元剤)を供給する手段と、堆積したPMを分解するためハニカム構造体を加熱する手段等をさらに備えている。
 ハニカム構造体に還元剤等を供給する手段としては、本発明のハニカム構造体に還元剤等を供給できれば公知の手段を採用することができ、例えば、排ガス流路上において、本発明のハニカム構造体より上流側(内燃機関側)に配置し、ハニカム構造体に還元剤等を噴霧する手段が挙げられる。また、適宜、還元剤等を均一供給するミキサーを配置してもよい。
 堆積したPMを分解するためのハニカム構造体を加熱する手段としては、本発明のハニカム構造体を加熱できればよく、例えば、内燃機関の燃料を、内燃機関からハニカム構造体に噴霧し、その燃焼熱を利用する手段や、電気加熱を利用する手段が挙げられる。
 本発明の排ガス浄化装置は、更に、排ガス流路上の上流側(内燃機関側)から順に、酸化触媒、NOx貯蔵触媒等の第1の触媒、本発明のハニカム構造体、SCR触媒、スリップ酸化触媒等の第2の触媒が配置されていてもよい。排ガス流路上の上流側(内燃機関側)から順に、上記第1の触媒、本発明のハニカム構造体が配置されていてもよい。また、排ガス流路上の上流側(内燃機関側)から順に、本発明のハニカム構造体、上記第2の触媒が配置されていてもよい。第1の触媒および第2の触媒は、それぞれ1種又は2種以上を選択してもよい。
 本発明において酸化触媒とは、HC、CO、NOxを、HO、CO、NOに酸化する触媒を意味する。NOx貯蔵触媒とは、リーン条件下でNOxをトラップし、ストイキやリッチ条件になった際に、NOとして放出、又はNにする触媒を意味する。SCR触媒とは、リーン条件下においても、NOxをNにできる触媒を意味する。また、スリップ酸化触媒とは、還元剤として使用した余剰のNHや、浄化できなかったNOxを、捕捉しNに浄化する触媒を意味する。
 酸化触媒としては、例えば、Pt、Pd、Rh、Ag、Cu等の金属、該金属を含む酸化物、耐熱性が高い高比表面積無機物質(アルミナ、ジルコニア等)、酸性酸化物(シリカ等)、塩基性酸化物(チタニア、ジルコニア、希土類を含有するアルミナ等)、酸素吸放出物質(セリア、セリア-ジルコニア複合酸化物、希土類を含有する硫酸塩等)、ゼオライト等の少なくとも一種類からなる触媒が挙げられる。これらは、フィルタに担持して使用される。
 NOx貯蔵触媒としては、例えば、上記酸化触媒に記載の物質や、塩基性の強いアルカリ金属元素を含有する化合物(炭酸ナトリウム、炭酸カリウム、チタン酸カリウム等)、アルカリ土類金属元素を含有する化合物(炭酸ストロンチウム、炭酸バリウム、MgAl等)、希土類元素を含有する化合物(セリア、セリア-ジルコニア複合酸化物等)等の少なくとも一種類からなる触媒が挙げられる。これらは、フィルタに担持して使用される。
 SCR触媒としては、例えば、ゼオライトや、卑金属複合TiO(卑金属としては、V、WO、MoO等)等の少なくとも一種類からなる触媒が挙げられる。これらは、フィルタに担持して使用される。
 スリップ酸化触媒としては、例えば、上記酸化触媒に記載の物質、NOx貯蔵触媒に記載の物質、SCR触媒に記載の物質等の少なくとも一種類からなる触媒が挙げられる。これらは、フィルタに担持して使用される。
 本発明の排ガス浄化装置において、NOxとPM処理を効率的に行える本発明のハニカム構造体を用いることで、第2の触媒のSCR触媒サイズを小さくすることができ、又は、第2の触媒のSCR触媒を無くすことができるために、装置をコンパクトにすることができる。また、本発明のハニカム構造体の排ガス出口側の一部に、スリップ酸化触媒を担持すれば、第2の触媒のスリップ酸化触媒サイズを小さくすることができ、又は、第2の触媒のスリップ酸化触媒を無くすことができるために、装置をコンパクトにすることができる。
 本発明のハニカム構造体の排ガス入口側の一部に、第1の触媒を担持すれば、第1の触媒のサイズを小さく、又は、第1の触媒を無くすことができるために、装置をコンパクトにすることができる。
 上記方法で、本発明の排ガス浄化装置をコンパクト化できれば、従来よりも排ガス浄化装置を適切な位置に配置することができる。例えば、内燃機関に近接させ、温度による排ガス浄化触媒の活性化を促進することで、浄化効率をさらに一層向上することができる。また、軽量化による燃費改善や、新たな装置を搭載するスペースが確保できる等の効果が期待できる。
 本発明のハニカム構造体に、ゼオライトが骨格を形成してなる第1の形態のハニカム構造体本体を用いた場合は、ゼオライトの比重が小さいことから、ハニカム構造体をより一層軽くすることができる。また、細孔径が2μm程度と小さくとも圧力損失を低くでき、搭載されるゼオライト量を多くできる等の機能により上記の効果がより一層顕著になると考えられる。本発明のハニカム構造体の細孔径が、一般的なDPFや、SCRF(SCR触媒付きDPF)の細孔径(10μm~20μm)より小さくても圧力損失を低くできるのは、細孔径分布が揃っており、ガス流通抵抗が少ないことによるものと考えられる。ゼオライト搭載量を多くできるのは、ゼオライトが骨格を形成していてもハニカム構造体の強度を保てるためである。
 軽いハニカム構造体は軽量化に貢献すると考えられる。低い圧力損失は、排気ガス抵抗の低減に貢献すると考えられる。また、圧力損失を低くした状態で細孔径を小さくできることは、PM2.5よりも小さい物質を効率的に捕捉することに貢献すると考えられる。豊富なゼオライト量は、NOx浄化触媒効率を向上し、還元剤貯蔵量を増すことに貢献すると考えられる。また、豊富なゼオライト量は、第1触媒、第2触媒を一体化する際の、触媒担体や、触媒としても貢献すると考えられる。
 以下、本発明について、実施例に基づいて、さらに詳細に説明する。本発明は、以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。
 <PM燃焼触媒の製造>
 実施例及び比較例で用いたPM燃焼触媒1~PM燃焼触媒11は以下の通り製造した。PM燃焼触媒12は、市販品をそのまま用いた。また、PM燃焼触媒1~PM燃焼触媒12の組成式、結晶構造、粒子形状及び平均粒子径を表1に示した。なお、組成式はICP-AES分析装置(エスアイアイ・ナノテクノロジーズ社製、品番「SPS5100」)により確認した。結晶構造はX線回折測定装置(リガク社製、品番「RINT2000-Ultima+」)により確認した。粒子形状は電界放出型走査電子顕微鏡(日立ハイテクノロジーズ社製、品番「S-4800」)により確認した。また、平均粒子径はレーザー回折式粒度分布測定装置(島津製作所社製、品番「SALD-2100」)により測定した。
Figure JPOXMLDOC01-appb-T000001
 (製造例1:PM燃焼触媒1)
 炭酸カリウム26.8質量部、水酸化マグネシウム11.3質量部、及び酸化チタン61.9質量部を混合し、1000℃で4時間焼成した。焼成物を粉砕後、得られた粉砕物20gを、脱イオン水にて20質量%スラリーとし、攪拌した後、濾別、乾燥した。乾燥後、500℃で1時間焼成することで、PM燃焼触媒1の粉末を得た。
 (製造例2:PM燃焼触媒2)
 炭酸カリウム26.8質量部、水酸化マグネシウム11.3質量部、及び酸化チタン61.9質量部を混合し、1000℃で4時間焼成した。焼成物を粉砕後、得られた粉砕物20gを、脱イオン水にて20質量%スラリーとし、98%硫酸を1.5g添加し、攪拌した後、濾別、乾燥した。乾燥後、500℃で1時間焼成することで、PM燃焼触媒2の粉末を得た。
 (製造例3:PM燃焼触媒3)
 98%硫酸の添加量を2.7gに変更した以外は、製造例2と同様の方法を行うことで、PM燃焼触媒3の粉末を得た。
 (製造例4:PM燃焼触媒4)
 炭酸カリウム27.2質量部、炭酸リチウム4.9質量部、及び酸化チタン67.9質量部を混合し、900℃で4時間焼成した。焼成物を粉砕後、得られた粉砕物20gを、脱イオン水にて20質量%スラリーとし、攪拌した後、濾別、乾燥した。乾燥後、500℃で1時間焼成することで、PM燃焼触媒4の粉末を得た。
 (製造例5:PM燃焼触媒5)
 炭酸カリウム27.2質量部、炭酸リチウム4.9質量部、及び酸化チタン67.9質量部を混合し、900℃で4時間焼成した。焼成物を粉砕後、得られた粉砕物20gを、脱イオン水にて20質量%スラリーとし、攪拌した後、98%硫酸を1.2g添加し、濾別、乾燥した。乾燥後、500℃で1時間焼成することで、PM燃焼触媒5の粉末を得た。
 (製造例6:PM燃焼触媒6)
 98%硫酸の添加量を2.9gに変更した以外は、製造例5と同様の方法を行うことで、PM燃焼触媒6の粉末を得た。
 (製造例7:PM燃焼触媒7)
 炭酸カリウム22.4質量部、及び酸化チタン77.6質量部を混合し、1000℃で4時間焼成した。焼成物を粉砕後、得られた粉砕物20gを、脱イオン水にて20質量%スラリーとし、攪拌した後、濾別、乾燥することで、PM燃焼触媒7の粉末を得た。
 (製造例8:PM燃焼触媒8)
 炭酸カリウム46.4質量部、及び酸化チタン53.6質量部を振動ミルで混合し、800℃で4時間焼成した。焼成物を粉砕後、得られた粉砕物20gを、脱イオン水にて20質量%スラリーとし、攪拌した後、濾別、乾燥した。乾燥後、500℃で1時間焼成することで、PM燃焼触媒8の粉末を得た。
 (製造例9:PM燃焼触媒9)
 炭酸カリウム38.4質量部、酸化アルミニウム28.3質量部、及び酸化ケイ素33.3質量部を混合し、1200℃で4時間焼成した。焼成物を粉砕後、得られた粉砕物20gを、脱イオン水にて20質量%スラリーとし、攪拌した後、濾別、乾燥することで、PM燃焼触媒9の粉末を得た。
 (製造例10:PM燃焼触媒10)
 炭酸ナトリウム33.2質量部、酸化ジルコニウム38.6質量部、及び酸化ケイ素28.2質量部を混合し、1200℃で4時間焼成した。焼成物を粉砕後、得られた粉砕物20gを、脱イオン水にて20質量%スラリーとし、攪拌した後、濾別、乾燥することで、PM燃焼触媒10の粉末を得た。
 (製造例11:PM燃焼触媒11)
 炭酸カリウム57.5質量部、及び酸化アルミニウム42.5質量部を混合し、1200℃で4時間焼成した。焼成物を粉砕することで、PM燃焼触媒11の粉末を得た。
 <ハニカム構造体の製造>
 (実施例1)
 ゼオライト(平均粒子径10μm、結晶構造:MFI型、商品名「HSZ-840NHA」、東ソー社製)70質量部に対し、チタン酸アルミニウム(平均粒子径13μm、丸ス釉薬社製)10質量部、チタン酸カリウム繊維(組成式KTi13、平均繊維長15μm、平均繊維径0.5μm、商品名「TISMO N」、大塚化学社製)10質量部、ベントナイト(平均粒子径10μm、商品名「ベンゲルVA」、クニミネ工業社製)8重量部、黒鉛3質量部、メチルセルロース10質量部、及び脂肪酸石鹸0.5質量部を配合し、さらに水を適当量添加して混練し、押出成形可能な坏土(混合物)を得た。
 得られた坏土(混合物)を押出成形機にてハニカム構造体本体となるように押し出して成形し、成形体を得た。なお、金型のセル密度は、300セル/平方インチ(46.5セル/cm)とし、隔壁厚みは300μmとした。開口率は63%とした。
 固形分がほぼチタン酸アルミニウム、ゼオライト、チタン酸カリウム繊維、ベントナイトからなり、粘度調整材等の添加物を加えたスラリーを調製した。なお、スラリー中における固形分の比率は上記と同様である。ハニカム構造体本体となる成形体において、開口したセルと封止したセルが交互に市松模様となるように、ハニカム構造体本体となる成形体のセルに、このスラリーを注入し、目封じを行った。
 得られた成形体を、600℃で10時間保持し、その後、昇温速度25℃/時間で975℃まで昇温し、さらに975℃で5時間保持して焼成することで、細孔径2.0μm、気孔率58%のハニカム構造体本体を得た。
 得られたハニカム構造体本体を5質量%酢酸銅水溶液に60℃で3時間含浸した。その後イオン交換水で充分洗浄し、150℃で3時間乾燥した。
 ハニカム構造体における見かけ体積当たりのPM燃焼触媒1量が10g/Lとなるように、得られたハニカム構造体本体をPM燃焼触媒1のスラリーに含浸し、700℃で10時間加熱することでハニカム構造体を得た。
 (実施例2~実施例18,比較例1~比較例6)
 PM燃焼触媒を表2に記載のものに変更し、PM触媒の担持量を表2に記載のものに変更した以外は、実施例1と同様の方法を行うことで、ハニカム構造体を得た。
 (比較例7)
 ゼオライト(平均粒子径10μm、結晶構造:MFI型、商品名「HSZ-840NHA」、東ソー社製)70質量部に対し、チタン酸アルミニウム(平均粒子径13μm、丸ス釉薬社製)10質量部、チタン酸カリウム繊維(組成式KTi13、平均繊維長15μm、平均繊維径0.5μm、商品名「TISMO N」、大塚化学社製)10質量部、ベントナイト(平均粒子径10μm、商品名「ベンゲルVA」、クニミネ工業社製)8重量部、黒鉛3質量部、メチルセルロース10質量部、及び脂肪酸石鹸0.5質量部を配合し、さらに水を適当量添加して混練し、押出成形可能な坏土(混合物)を得た。
 得られた坏土(混合物)を押出成形機にてハニカム構造体本体となるように押し出して成形し、成形体を得た。なお、金型のセル密度は、300セル/平方インチ(46.5セル/cm)とし、隔壁厚みは300μmとした。開口率は63%とした。
 固形分がほぼチタン酸アルミニウム、ゼオライト、チタン酸カリウム繊維、ベントナイトからなり、粘度調整材等の添加物を加えたスラリーを調製した。なお、スラリー中における固形分の比率は上記と同様である。ハニカム構造体本体となる成形体において、開口したセルと封止したセルが交互に市松模様となるように、ハニカム構造体本体となる成形体のセルに、このスラリーを注入し、目封じを行った。
 目封じを行った成形体を、600℃で10時間保持し、その後昇温速度25℃/時間で975℃まで昇温し、さらに975℃で5時間保持して焼成することで、細孔径2.0μm、気孔率58%のハニカム構造体本体(ハニカム構造体)を得た。
 得られたハニカム構造体本体を5質量%酢酸銅水溶液に60℃で3時間含浸した。その後イオン交換水で充分洗浄し、150℃で3時間乾燥した。その後に、700℃で10時間加熱することでハニカム構造体を得た。
 <ハニカム構造体の評価>
 (NOx浄化率)
 予め100℃にて乾燥させたハニカム構造体を備える排ガス浄化フィルタを模擬排ガス排気ラインに設置した。その後、模擬排ガス(O:10%、N:85%、NO:500ppm、NH:500ppm、HO:5%、SV=50000/h)を250℃まで上昇させ、NOx濃度を測定した。得られた結果からNOx浄化率を算出した。結果を表2に示した。
 (再生率)
 ハニカム構造体の初期重量を予め測定した。次に、ディーゼルエンジンの排気ラインに、酸化触媒(DOC)とハニカム構造体を備える排ガス浄化フィルタを順に設置した。設置後、ディーゼルエンジンを始動させ、排気温度が低温となる運転条件でPMを所定量(約8g/L)堆積させた後、一度ハニカム構造体を取り外し、堆積したPMの重量を測定した。
 次いで、PMを堆積させたハニカム構造体を模擬排ガスの排気ラインに設置した後、模擬排ガスを480℃まで上昇させ再生試験を開始した。480℃に到達した時点から30分間480℃±10℃の温度を保持し、30分経過後、模擬排ガスの全量を窒素ガスに切り替えた。
 温度が室温まで低下後、再度、ハニカム構造体を取り出し、重量減少分(=PM燃焼重量)を測定し、以下の計算式により再生率を算出した。結果を表2に示した。
 再生率(%)=100-[(PM堆積重量(g)-PM燃焼重量(g))/PM堆積重量(g)]×100
Figure JPOXMLDOC01-appb-T000002
 表2に示す結果から明らかなように、本発明に従う実施例1~実施例18のハニカム構造体を用いた場合、NOx浄化率と再生率が共に高い物性を示している。これに対し、比較例1~比較例7に示すように、レピドクロサイト型チタン酸塩化合物を使用しない場合、NOx浄化率又は再生率が低い値を示している。したがって、本発明のハニカム構造体では、レピドクロサイト型チタン酸塩化合物を用いることにより、ゼオライトの分解を抑制しつつ、高いPM燃焼機能を持たせることが可能になることがわかる。
11…ハニカム構造体本体
11a,11b…第1,第2の端面
11c…側面
12…セル
12a…最外周のセル
13…セル壁
13a…外縁壁を構成するセル壁
13b…外縁壁を構成しないセル壁
14…外縁壁
15…角部

Claims (9)

  1.  長手方向に沿って、一方の端面から他方の端面に延伸している複数のセルがセル壁によって区画された形状を有し、ゼオライトを含む、ハニカム構造体本体と、
     前記ハニカム構造体本体における前記セル壁の表面に坦持されている、チタン酸塩化合物とを備え、
     前記チタン酸塩化合物が、TiO八面体の連鎖により形成される層状構造を有し、Ti席の一部がLi、Mg、Zn、Ga、Ni、Cu、Fe、Al及びMnから選ばれる1種又は2種以上の元素で置換され、前記層状構造における層間にLiを除くアルカリ金属から選ばれる1種又は2種以上の元素のイオンが配位したレピドクロサイト型チタン酸塩化合物であることを特徴とする、ハニカム構造体。
  2.  前記チタン酸塩化合物におけるTi席の10モル%~40モル%が、Li、Mg、Zn、Ga、Ni、Cu、Fe、Al及びMnから選ばれる1種又は2種以上の元素で置換されていることを特徴とする、請求項1に記載のハニカム構造体。
  3.  前記チタン酸塩化合物が、ATi(2-y)〔式中、AはLiを除くアルカリ金属の1種又は2種以上、MはLi、Mg、Zn、Ga、Ni、Cu、Fe、Al及びMnから選ばれる1種又は2種以上、xは0.2~1.0、yは0.25~1.0の数〕、A0.2~0.7Li0.27Ti1.733.7~3.95〔式中、AはLiを除くアルカリ金属の1種又は2種以上〕、A0.2~0.7Mg0.40Ti1.63.7~3.95〔式中、AはLiを除くアルカリ金属の1種又は2種以上〕、A0.5~0.7Li(0.27-x)Ti(1.73-z)3.85~3.95〔式中、AはLiを除くアルカリ金属の1種又は2種以上、MはMg、Zn、Ga、Ni、Cu、Fe、Al及びMnから選ばれる1種又は2種以上(但し、2種以上の場合は異なる価数のイオンの組み合わせは除く)、xとzは、Mが2価金属のとき、x=2y/3、z=y/3、yは0.004≦y≦0.4であり、Mが3価金属のとき、x=y/3、z=2y/3、yは0.004≦y≦0.4〕から選ばれる1種又は2種以上であることを特徴とする、請求項1又は請求項2に記載のハニカム構造体。
  4.  前記ハニカム構造体における見かけ体積当たりのチタン酸塩化合物量が1g/L以上であることを特徴とする、請求項1~請求項3のいずれか一項に記載のハニカム構造体。
  5.  前記ゼオライトが、MOR型ゼオライト、FAU型ゼオライト、A型ゼオライト、L型ゼオライト、BEA型ゼオライト、MFI型ゼオライト及びCHA型ゼオライトから選ばれる1種類又は2種類以上であることを特徴とする、請求項1~請求項4のいずれか一項に記載のハニカム構造体。
  6.  前記ゼオライトのシリカ/アルミナ比が4以上であることを特徴とする、請求項1~請求項5のいずれか一項に記載のハニカム構造体。
  7.  前記チタン酸塩化合物が排ガス中に含まれる粒子状物質を燃焼するために用いられる触媒であり、前記ゼオライトが排ガス中に含まれる窒素酸化物を窒素に還元するために用いられる触媒であることを特徴とする、請求項1~請求項6のいずれか一項に記載のハニカム構造体。
  8.  前記ハニカム構造体がハニカムフィルタであることを特徴とする、請求項1~請求項7のいずれか一項に記載のハニカム構造体。
  9.  請求項1~請求項8のいずれか一項に記載のハニカム構造体を備えることを特徴とする、排ガス浄化装置。
PCT/JP2018/011985 2017-03-31 2018-03-26 ハニカム構造体及び排ガス浄化装置 WO2018181100A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-069878 2017-03-31
JP2017069878 2017-03-31
JP2017196767 2017-10-10
JP2017-196767 2017-10-10

Publications (1)

Publication Number Publication Date
WO2018181100A1 true WO2018181100A1 (ja) 2018-10-04

Family

ID=63677909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011985 WO2018181100A1 (ja) 2017-03-31 2018-03-26 ハニカム構造体及び排ガス浄化装置

Country Status (1)

Country Link
WO (1) WO2018181100A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023286587A1 (ja) * 2021-07-13 2023-01-19 大塚化学株式会社 チタン酸系固体電解質材料

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168311A (ja) * 1987-12-22 1989-07-03 Toyota Central Res & Dev Lab Inc 可燃性微粒子及び窒素酸化物除去用フィルター
JP2008162971A (ja) * 2006-12-28 2008-07-17 Fancl Corp 板状チタン酸塩からなる光輝性顔料及びそれを含有する化粧料
JP2008247712A (ja) * 2007-03-30 2008-10-16 Kao Corp チタン酸ナノシート分散液の製造方法
JP2009214095A (ja) * 2008-02-11 2009-09-24 Okayama Univ 未燃カーボンを用いてディーゼルエンジン排ガス中の窒素酸化物を浄化するための触媒と方法
WO2015029853A1 (ja) * 2013-08-30 2015-03-05 大塚化学株式会社 排ガス浄化フィルタ及び排ガス浄化装置
WO2015194451A1 (ja) * 2014-06-19 2015-12-23 大塚化学株式会社 排ガス浄化触媒、排ガス浄化装置及びフィルタ、並びに該触媒の製造方法
JP2016131918A (ja) * 2015-01-19 2016-07-25 大塚化学株式会社 排ガス浄化フィルタの製造方法、排ガス浄化フィルタ及び排ガス浄化装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168311A (ja) * 1987-12-22 1989-07-03 Toyota Central Res & Dev Lab Inc 可燃性微粒子及び窒素酸化物除去用フィルター
JP2008162971A (ja) * 2006-12-28 2008-07-17 Fancl Corp 板状チタン酸塩からなる光輝性顔料及びそれを含有する化粧料
JP2008247712A (ja) * 2007-03-30 2008-10-16 Kao Corp チタン酸ナノシート分散液の製造方法
JP2009214095A (ja) * 2008-02-11 2009-09-24 Okayama Univ 未燃カーボンを用いてディーゼルエンジン排ガス中の窒素酸化物を浄化するための触媒と方法
WO2015029853A1 (ja) * 2013-08-30 2015-03-05 大塚化学株式会社 排ガス浄化フィルタ及び排ガス浄化装置
WO2015194451A1 (ja) * 2014-06-19 2015-12-23 大塚化学株式会社 排ガス浄化触媒、排ガス浄化装置及びフィルタ、並びに該触媒の製造方法
JP2016131918A (ja) * 2015-01-19 2016-07-25 大塚化学株式会社 排ガス浄化フィルタの製造方法、排ガス浄化フィルタ及び排ガス浄化装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023286587A1 (ja) * 2021-07-13 2023-01-19 大塚化学株式会社 チタン酸系固体電解質材料

Similar Documents

Publication Publication Date Title
KR102428707B1 (ko) 배기가스를 처리하기 위한 분자체 촉매
CN102215960B (zh) 具有低二氧化硅与氧化铝比率的菱沸石催化剂
CN112074657B (zh) 经涂覆的壁流式过滤器
JP6121542B2 (ja) 排ガス浄化フィルタ及び排ガス浄化装置
US8629074B2 (en) Zeolite honeycomb structure
KR100978394B1 (ko) 탄화수소 흡착제, 배기가스 정화용 촉매 및 배기가스정화방법
US20100242424A1 (en) Honeycomb filter
WO2014054607A1 (ja) 船舶用排ガス処理装置
JP2020164408A (ja) セラミックス多孔体及びその製造方法、並びに集塵用フィルタ
US11731111B2 (en) Porous ceramic structure and method of producing porous ceramic structure
WO2018181100A1 (ja) ハニカム構造体及び排ガス浄化装置
WO2012050123A1 (ja) チタン酸アルミニウム質ハニカム構造体
US20240141812A1 (en) Filter for the aftertreatment of exhaust gases of internal combustion engines
WO2018198999A1 (ja) ハニカム構造体及び排ガス浄化装置
WO2014014059A1 (ja) ハニカムフィルタ
JP7358157B2 (ja) 複合酸化物触媒、多孔質複合体および複合酸化物触媒の製造方法
WO2018116884A1 (ja) ハニカム構造体及び排ガス浄化装置
JP6199532B2 (ja) 排ガス浄化フィルタの製造方法、排ガス浄化フィルタ及び排ガス浄化装置
JP2016131918A (ja) 排ガス浄化フィルタの製造方法、排ガス浄化フィルタ及び排ガス浄化装置
JP4817918B2 (ja) 排気ガス浄化用触媒、排気ガス浄化用一体構造型触媒、及び排気ガス浄化方法
WO2012131916A1 (ja) ハニカム構造体およびハニカム構造体の製造方法
JP2016107259A (ja) 排ガス浄化フィルタ及びその製造方法、並びに排ガス浄化装置
US11480081B2 (en) Porous ceramic structure
JP2012213753A (ja) ハニカム構造体およびハニカム構造体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18776936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP