WO2012046544A1 - 四輪駆動車 - Google Patents

四輪駆動車 Download PDF

Info

Publication number
WO2012046544A1
WO2012046544A1 PCT/JP2011/070786 JP2011070786W WO2012046544A1 WO 2012046544 A1 WO2012046544 A1 WO 2012046544A1 JP 2011070786 W JP2011070786 W JP 2011070786W WO 2012046544 A1 WO2012046544 A1 WO 2012046544A1
Authority
WO
WIPO (PCT)
Prior art keywords
differential
gear
torque
driving force
clutch
Prior art date
Application number
PCT/JP2011/070786
Other languages
English (en)
French (fr)
Inventor
雅博 洞口
大野 明浩
宅野 博
細川 隆司
Original Assignee
株式会社ジェイテクト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイテクト filed Critical 株式会社ジェイテクト
Priority to US13/878,047 priority Critical patent/US9057430B2/en
Priority to CN201180048563.2A priority patent/CN103153674B/zh
Priority to EP11830477.3A priority patent/EP2626229B1/en
Publication of WO2012046544A1 publication Critical patent/WO2012046544A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/05Multiple interconnected differential sets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/348Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed
    • B60K17/35Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed including arrangements for suppressing or influencing the power transfer, e.g. viscous clutches
    • B60K17/3515Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed including arrangements for suppressing or influencing the power transfer, e.g. viscous clutches with a clutch adjacent to traction wheel, e.g. automatic wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • B60K23/0808Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19023Plural power paths to and/or from gearing
    • Y10T74/19074Single drive plural driven

Definitions

  • the present invention relates to a four-wheel drive vehicle equipped with a drive force transmission system that distributes the drive force of a drive source to front wheels and rear wheels.
  • the four-wheel drive vehicle described in Patent Document 1 distributes the torque transmitted through the propeller shaft in the left-right direction by the rear-wheel-side gear mechanism, and the rear via the clutch provided on the output side of the gear mechanism. Distribute to the wheel.
  • the clutch is pressed in the axial direction by the thrust of a cam mechanism having first and second cam members that can rotate relative to each other, and friction between a plurality of inner plates and a plurality of outer plates arranged alternately on the same axis. Torque is transmitted to the rear wheel side by the engagement force.
  • the cam mechanism is disposed between an outer rotating member connected to the output shaft of the gear mechanism and an inner rotating member connected to the rear wheel, and the first cam member is engaged by the amount of current of the electromagnetic coil.
  • the second cam member is connected to the inner rotating member so as not to rotate relative to the torque of the outer rotating member via an electromagnetic clutch capable of adjusting the resultant force.
  • an electromagnetic clutch capable of adjusting the resultant force.
  • one of the objects of the present invention is to provide a four-wheel drive vehicle capable of reducing the impact of the driving force transmission system when the vehicle turns.
  • the present invention provides a four-wheel drive vehicle having the following modes.
  • a driving source that generates torque as a driving force of the vehicle, a driving force transmission system that transmits the torque of the driving source to a pair of front wheels and a pair of rear wheels via a plurality of gear mechanisms, and the driving force
  • a clutch provided in the transmission system and capable of controlling the amount of torque transmitted to the rear wheel side, and a pressing mechanism that converts part of the torque transmitted to the rear wheel side into an axial thrust to press the clutch
  • the drive force transmission system includes a drive shaft connected to the input side of the clutch and a drive shaft connected to the output side even when the rudder angle of the front wheels changes to a maximum value during forward travel.
  • a four-wheel drive vehicle in which gear ratios of the plurality of gear mechanisms are set so that the differential rotation direction of the plurality of gear mechanisms is not reversed.
  • the driving force transmission system includes a first differential device that distributes torque to the pair of front wheels, a second differential device that distributes torque to the pair of rear wheels, and the first and second differential devices.
  • a propeller shaft provided between the differential devices, a first gear mechanism for connecting the first differential device and the propeller shaft, and a second gear for connecting the second differential device and the propeller shaft.
  • a gear mechanism, and the clutch is disposed between the second differential device and one of the pair of rear wheels, and the rotational speed of the differential case of the second differential device with respect to the rotational speed of the propeller shaft. Is the first differential device differential with respect to the rotational speed of the propeller shaft. As is smaller than the case the rotational speed of four-wheel drive vehicle according to the the gear ratio of the first and second gear mechanism is set [1].
  • FIG. 1 is a schematic diagram showing a configuration example of a four-wheel drive vehicle according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a configuration example of the driving force transmission device and its peripheral portion according to the embodiment of the present invention.
  • 3 (a) -3 (c) are schematic views showing the rotational directions of the components of the driving force transmission system when the four-wheel drive vehicle is traveling forward, and FIG. 3 (a) is a straight drive in two-wheel drive.
  • FIG. 3B shows a state in which the four-wheel drive goes straight
  • FIG. 3C shows a state in which the four-wheel drive makes a right turn at the maximum steering angle.
  • FIG. 4 (a) -4 (d) are schematic views schematically showing the operation of the cam mechanism of the driving force transmission device and its peripheral part.
  • FIG. 4 (a) is a two-wheel drive state
  • FIG. ) Shows a four-wheel drive state
  • FIG. 4C shows an initial reverse state when the differential rotation is reversed
  • FIG. 4D shows an inverted state where the differential rotation is reversed.
  • FIG. 5 is a graph showing a differential rotation state of the driving force transmission device when the four-wheel drive vehicle according to the present embodiment goes straight and turns left and right in the two-wheel drive state and the four-wheel drive state.
  • FIG. 1 is a schematic diagram showing a configuration example of a four-wheel drive vehicle.
  • a four-wheel drive vehicle 101 includes an engine 102 as a drive source that generates torque that is a driving force of the four-wheel drive vehicle 101, a transmission 103 that changes the output of the engine 102, and main drive wheels.
  • the front wheels 104L and 104R are steering wheels whose rolling direction is inclined with respect to the vehicle body within a predetermined angle range by a steering operation by the driver.
  • the wheel diameters of the front wheels 104L and 104R and the rear wheels 105L and 105R are all the same.
  • the driving force transmission system 106 includes a front differential 120, a meshing clutch 130, a propeller shaft 140, and a rear differential 150.
  • the output torque of the front differential 120 is transferred to the front wheels 104L and 114L via the left and right drive shafts 114L and 114R.
  • 104R is configured to transmit the output torque of the rear differential 150 to the rear wheels 105L and 105R via the left and right drive shafts 115L and 115R, respectively.
  • the driving force transmission system 106 is provided with a driving force transmission device 160 between the rear differential 150 and the left drive shaft 115L.
  • the front differential 120 includes a differential case 20 that is rotated by torque output from the transmission 103, a pinion shaft 21 that is held by the differential case 20, a pair of pinion gears 22 and 22 that are rotatably supported by the pinion shaft 21, and a pinion gear 22. , 22 and a pair of side gears 23L, 23R meshing with a gear axis orthogonal to each other.
  • the left side gear 23L is connected to the left drive shaft 114L and rotates at the same speed as the left drive shaft 114L and the left front wheel 104L.
  • the right side gear 23R is connected to the right drive shaft 114R and rotates at the same speed as the right drive shaft 114R and the right front wheel 104R.
  • the front differential 120 distributes the torque input to the differential case 20 to the front wheels 104L and 104R while allowing the differential between the left and right wheels.
  • the mesh clutch 130 includes a first tooth portion 31 fixed to the outer peripheral portion of the differential case 20 of the front differential 120 so as not to rotate relative to the differential case 20, and a second tooth portion fixed to non-rotatable relative to a ring gear 41a described later. 32 and a cylindrical sleeve 33 that can move forward and backward along the rotational axis direction of the differential case 20. Spline grooves extending in the axial direction are formed on the outer peripheral surfaces of the first tooth portion 31 and the second tooth portion 32, and spline teeth that mesh with the spline grooves are formed on the inner peripheral surface of the sleeve 33. ing.
  • the meshing clutch 130 connects the differential case 20 and the ring gear 41a so that torque can be transmitted when the sleeve 33 meshes with the first tooth portion 31 and the second tooth portion 32, and the sleeve 33 is connected to the first tooth portion.
  • the torque transmission between the differential case 20 and the ring gear 41a is cut off.
  • the first gear mechanism 41 is provided on the front wheel side of the propeller shaft 140, and the second gear mechanism 42 is provided on the rear wheel side.
  • One end of the propeller shaft 140 is engaged by the first gear mechanism 41 with the second tooth portion 32 that is the output side of the clutch 130, and the other end is connected to the differential case 50 of the rear differential 150 by the second gear mechanism 42 ( (Described later).
  • the first gear mechanism 41 has a ring gear 41 a having a bevel gear that rotates integrally with the second tooth portion 32 of the meshing clutch 130, and a bevel gear that meshes with the ring gear 41 a and is fixed to one end of the propeller shaft 140. And a pinion gear 41b.
  • the second gear mechanism 42 includes a ring gear 42a having a bevel gear fixed to the differential case 50 of the rear differential 150, and a pinion gear 42b having a bevel gear meshed with the ring gear 42a and fixed to the other end of the propeller shaft 140. It is prepared for.
  • the rear differential 150 includes a differential case 50 that is rotated by torque transmitted through the propeller shaft 140, a pinion shaft 51 that is held by the differential case 50, and a pair of pinion gears 52 and 52 that are rotatably supported by the pinion shaft 51. And a pair of side gears 53L and 53R which mesh with the pinion gears 52 and 52 with their gear axes orthogonal to each other.
  • the left side gear 53L is connected to an intermediate shaft 54 disposed between the driving force transmission device 160 and the left side gear 53L so as not to be relatively rotatable.
  • the right side gear 53R is connected to the right drive shaft 115R so as not to rotate relative to the right drive shaft 115R, and rotates at the same speed as the right drive shaft 115R and the right rear wheel 105R.
  • the driving force transmission device 160 includes a multi-plate clutch 7 and a pressing mechanism 8 that presses the multi-plate clutch 7 in the axial direction. Torque corresponding to the pressing force of the multi-plate clutch 7 is transmitted from the intermediate shaft 54 to the left side. It is configured to transmit to the drive shaft 115L side.
  • the intermediate shaft 54 and the left drive shaft 115L are examples of drive shafts connected to the input side and the output side of the multi-plate clutch 7. The configuration of the driving force transmission device 160 will be described later.
  • the driving force transmission system 106 transmits torque from the side gears 23L and 23R of the front differential 120 to the front wheels 104L and 104R via the left and right drive shafts 114L and 114R.
  • a driving force transmission device 160 is provided to the left rear wheel 105L from the differential case 20 of the front differential 120 through the mesh clutch 130, the first gear mechanism 41, the propeller shaft 140, the second gear mechanism 42, and the rear differential 150. Torque is transmitted to the right rear wheel 105R via the right drive shaft 115R via the left drive shaft 115L.
  • FIG. 2 is a cross-sectional view showing a configuration example of the driving force transmission device 160 and its peripheral part.
  • the driving force transmission device 160 is housed in a differential carrier 151 together with the rear differential 150 and has a bottomed cylindrical outer housing 60 connected to the intermediate shaft 54 so as not to rotate relative to the intermediate shaft 54.
  • a clutch 7 and a pressing mechanism 8 are provided.
  • the outer housing 60 is connected to a flange 54a of the intermediate shaft 54 at the outer peripheral surface of the bottom so as to rotate integrally with the intermediate shaft 54.
  • a spline portion 60 a having a plurality of spline teeth extending in the axial direction is formed on the inner peripheral surface of the cylindrical portion of the outer housing 60, and an opening end portion thereof is closed by an annular rear housing 61.
  • the rear housing 61 includes a first element 61a made of a magnetic material fixed in a relatively non-rotatable manner to the opening of the outer housing 60 by fixing means such as screwing or welding, and a nonmagnetic material fixed inside the first element 61a. It has the ring-shaped 2nd element 61b which consists of material, and the 3rd element 61c which consists of a magnetic material fixed inside the 2nd element 61b.
  • a cylindrical inner shaft 64 that is coaxially supported with the outer housing 60 and supported so as to be relatively rotatable is disposed on the inner peripheral portion of the outer housing 60.
  • a spline portion 64 a having a plurality of spline teeth extending in the axial direction is formed on the outer peripheral surface of the inner shaft 64 in a region facing the spline portion 60 a of the outer housing 60.
  • the inner shaft 64 has a shaft-like member 56 having an outer ring 56a of a constant velocity joint to which one end of a left drive shaft 115L (shown in FIG. 1) is slidably connected to an inner peripheral surface thereof. Spline fitting is impossible.
  • the multi-plate clutch 7 is configured by alternately arranging a plurality of annular outer clutch plates 71 and a plurality of annular inner clutch plates 72 in the axial direction.
  • a plurality of protrusions that engage with the spline portion 60 a of the outer housing 60 are formed on the outer peripheral edge of the outer clutch plate 71.
  • a plurality of protrusions that engage with the spline portion 64 a of the inner shaft 64 are formed on the inner peripheral edge of the inner clutch plate 72.
  • the pressing mechanism 8 is juxtaposed in the axial direction with the multi-plate clutch 7, and includes an electromagnetic coil 80, a yoke 81 made of a magnetic material that supports the electromagnetic coil 80, an annular first cam member 82, and a first cam member 82.
  • An annular second cam member 84 disposed opposite to the first cam member 82 and a spherical cam follower 83 interposed between the first cam member 82 and the second cam member 84 are configured.
  • the electromagnetic coil 80 is disposed with the rear housing 61 interposed between the electromagnetic coil 80 and the first cam member 82, and is configured to draw the first cam member 82 toward the rear housing 61 by a magnetic force generated by energization.
  • the second cam member 84 is disposed such that one side surface in the axial direction is opposed to the inner clutch plate 72 disposed closest to the pressing mechanism 8 among the plurality of inner clutch plates 72 of the multi-plate clutch 7 and has an inner circumference. A part of the surface has a plurality of protrusions engaged with the spline part 64a of the inner shaft 64. Therefore, the second cam member 84 is restricted in relative rotation with respect to the inner shaft 64 and can move in the axial direction.
  • the opposing surfaces of the first cam member 82 and the second cam member 84 are formed with cam surfaces that are inclined with respect to the circumferential direction so that the plurality of cam followers 83 roll along the both cam surfaces. Has been placed. Further, the first cam member 82 is biased so as to approach each other by a disc spring 85 and the second cam member 84 is biased by a disc spring 86.
  • the first cam member 82 When the energization of the electromagnetic coil 80 is interrupted, the first cam member 82 is separated from the rear housing 61 by the spring force of the disc spring 85, and the first cam member 82 is rotated relative to the second cam member 84. The thrust in the axial direction disappears and the second cam member 84 moves away from the multi-plate clutch 7 by the spring force of the disc spring 86.
  • the torque transmitted to the left side gear 53L of the rear differential 150 is transmitted to the left rear wheel 105L via the shaft-like member 56 and the left drive shaft 115L so as to be intermittently connected by the driving force transmission device 160.
  • the right rear wheel 105 ⁇ / b> R is provided with torque transmitted to the right side gear 53 ⁇ / b> R of the rear differential 150, and a shaft-like member 55 that is connected to the side gear 53 ⁇ / b> R so as not to be relatively rotatable, and one end of the shaft-like member 55. It is transmitted via the right drive shaft 115R that is swingably connected to the outer ring 55a of the constant velocity joint.
  • the electromagnetic coil 80 is energized to transmit torque by the driving force transmission device 160, and the sleeve 33 of the mesh clutch 130 is connected to the first tooth portion 31 and the first tooth portion 31.
  • the differential case 20 of the front differential 120 and the propeller shaft 140 are connected together. Thereby, the torque of the engine 102 is transmitted to the pair of front wheels 104L and 104R and the pair of rear wheels 105L and 105R.
  • FIGS. 3A to 3C are schematic diagrams showing the rotation directions of the differential case 50, the drive shafts 115R and 115L, and the intermediate shaft 54 of the rear differential 150 when the four-wheel drive vehicle 101 travels forward.
  • Fig. 3 (a) shows a state when the vehicle is traveling straight by two-wheel drive
  • Fig. 3 (b) is a diagram when traveling straight by four-wheel drive
  • Fig. 3 (c) shows a state when turning right by four-wheel drive at the maximum steering angle. Yes.
  • the rotation direction of the differential case 50 is indicated by the arrow D0
  • the rotation direction of the right drive shaft 115R is indicated by the arrow D1
  • the rotation direction of the intermediate shaft 54 is indicated by the arrow D2
  • the left side The direction of rotation of the drive shaft 115L is indicated by an arrow D3, and the rotation speed is represented by the size of each arrow.
  • the vehicle speed is the same in any state.
  • the intermediate shaft 54 rotates in the direction indicated by the arrow D2 (hereinafter, this direction is referred to as “reverse direction”).
  • the intermediate shaft 54 connected to the input side of the driving force transmission device 160 and the left drive shaft 115L connected to the output side rotate in opposite directions, so that the outer housing of the driving force transmission device 160 A large differential rotation occurs between 60 and the inner shaft 64.
  • the driving force transmission system is set such that the intermediate shaft 54 rotates slower than the left drive shaft 115L by setting the gear ratio of the first gear mechanism 41 and the second gear mechanism 42.
  • 106 is configured. That is, the first gear mechanism 41 and the first gear mechanism 41 so that the rotational speed of the differential case 50 of the rear differential 150 relative to the rotational speed of the propeller shaft 140 is smaller than the rotational speed of the differential case 20 of the front differential 120 relative to the rotational speed of the propeller shaft 140.
  • the gear ratio of the second gear mechanism 42 is set.
  • the driving force transmission system 106 is configured such that the differential case 50 is decelerated from the differential case 20 in the course of torque transmission from the differential case 20 of the front differential 120 to the differential case 50 of the rear differential 150.
  • a differential rotation smaller than that during straight traveling in the two-wheel drive occurs between the outer housing 60 and the inner shaft 64 of the driving force transmission device 160.
  • the differential case 50 rotates at a speed between the rotational speed of the intermediate shaft 54 and the rotational speed of the right drive shaft 115R.
  • FIG. 3 (c) when turning in the right direction of the four-wheel drive (the direction opposite to the side where the driving force transmission device 160 is provided with respect to the rear differential 150), as shown in FIG. 3 (b).
  • the left drive shaft 115L rotates in the forward direction faster and the right drive shaft 115R rotates in the forward direction at a slower speed than in the straight drive as compared to the four-wheel drive straight travel shown.
  • the gear ratio of the first gear mechanism 41 and the second gear mechanism 42 is set so that the intermediate shaft 54 rotates slower than the left drive shaft 115L. That is, even when the steering angle of the front wheels 104L and 104R changes to the maximum value, differential rotation between the intermediate shaft 54 connected to the input side of the multi-plate clutch 7 and the left drive shaft 115L connected to the output side.
  • the gear ratio of the first gear mechanism 41 and the second gear mechanism 42 is set so as not to reverse the direction.
  • the gear ratio r1 of the first gear mechanism 41 (the number of teeth of the ring gear 41a / the number of teeth of the pinion gear 41b) is set to 3
  • the gear ratio r2 of the second gear mechanism 42 (the teeth of the ring gear 42a).
  • Number / number of teeth of the pinion gear 42b) is set to 3.7 (gear ratio r1 ⁇ gear ratio r2).
  • FIG. 4 (a) -4 (d) are explanatory views schematically showing the operation of the cam mechanism of the driving force transmission device 160 and its peripheral part.
  • FIG. 4 (a) is a two-wheel drive state
  • FIG. 4B shows a four-wheel drive state
  • FIG. 4C shows a reverse initial state when the differential rotation is reversed
  • FIG. 4D shows a reverse state where the differential rotation is reversed.
  • the first cam member 82 comes into frictional contact with the rear housing 61 and the first cam member 82 receives the rotational force from the rear housing 61 as shown in FIG. As a result, the first cam member 82 and the second cam member 84 rotate relative to each other. For this reason, the cam follower 83 rolls in the cam groove 82a of the first cam member 82 and the cam groove 84a of the second cam member 84, and widens the distance between the first cam member 82 and the second cam member 84.
  • the cam follower 83 is formed on the inclined surface on the opposite side of the cam groove 82a of the first cam member 82 and the cam groove 84a of the second cam member 84.
  • the second cam member 84 presses the multi-plate clutch 7 again by the axial cam force acting on the second cam member 84.
  • the torque transmitted through the multi-plate clutch 7 fluctuates abruptly, so that an impact is generated and the passenger is uncomfortable.
  • the present embodiment during forward traveling in the four-wheel drive state, even if the rotational speed of the left rear wheel 105L with respect to the differential case 50 increases or decreases due to turning, the above-described differential rotation inversion state is maintained. Since the gear ratios of the first gear mechanism 41 and the second gear mechanism 42 are set so as not to occur, such a problem does not occur.
  • the intermediate shaft 54 rotates in the reverse direction and the left drive shaft 115L rotates in the positive direction, so ⁇ N is a positive value.
  • the absolute value is large.
  • ⁇ N is about 700 rpm.
  • the magnitude of ⁇ N also varies depending on the turn.
  • the intermediate shaft 54 and the left drive shaft 115L both rotate in the forward direction, so that the magnitude of ⁇ N is smaller than that during the two-wheel drive. Further, since the intermediate shaft 54 rotates slower than the left drive shaft 115L, ⁇ N is a positive value. The magnitude of ⁇ N varies depending on the turn, and ⁇ N is smaller when turning right than when traveling straight, and ⁇ N is smaller when turning left than when traveling straight.
  • ⁇ N does not become negative even if the four-wheel drive vehicle 101 turns right at the maximum steering angle. It is configured. Thereby, when turning in a four-wheel drive state, it is possible to reduce vibration and noise due to a sudden change in torque transmitted to the rear wheel side.
  • the magnitude of ⁇ N is 2 rpm or more in the above traveling condition, that is, 0.3% or more of the magnitude of ⁇ N when driving two wheels. Good.
  • ⁇ N when turning right at the maximum rudder angle takes into account the maximum tire slip rate that can be generated by acceleration, and ⁇ N is negative even if acceleration is performed during right turn at the maximum rudder angle.
  • the gear ratios of the first gear mechanism 41 and the second gear mechanism 42 may be set so that they do not occur.
  • the driving force transmission device 160 is provided on the left side of the rear differential 150 with respect to the vehicle traveling direction.
  • the driving force transmission device 160 is not limited to this and is provided on the right side of the rear differential 150 with respect to the vehicle traveling direction. May be.
  • one driving force transmission device 160 is provided corresponding to the left rear wheel 105L.
  • two driving force transmission devices corresponding to the left rear wheel 105L and the right rear wheel 105R, respectively. 160 may be provided.
  • a bevel gear type gear mechanism that does not have a differential function of transmitting torque transmitted through the propeller shaft 140 to each driving force transmission device 160 can be used.
  • the rear differential 150 is slower than the differential case 20 of the front differential 120 by making the gear ratio r1 of the first gear mechanism 41 smaller than the gear ratio r2 of the second gear mechanism 42.
  • the driving force transmission system 106 is configured such that the differential case 50 rotates.
  • the present invention is not limited to this, and by making the wheel diameters of the front wheels 104L and 104R smaller than the wheel diameters of the rear wheels 105L and 105R, the front differential 120 The differential case 50 of the rear differential 150 may be rotated later than the differential case 20.
  • the meshing clutch 130 is applied as an interrupting mechanism for interrupting torque transmission on the upstream side of the torque transmission of the propeller shaft 140.
  • the interrupting mechanism is not limited to the meshing clutch and is not limited to a multi-plate. A clutch may be applied. Further, it is not necessary to have an interrupting mechanism for interrupting torque transmission on the upstream side of torque transmission of the propeller shaft 140.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

 四輪駆動車は、駆動源のトルクを複数のギヤ機構を介して前輪及び後輪に伝達する駆動力伝達系と、駆動力伝達系に設けられ、後輪側へのトルク伝達量を制御可能なクラッチと、後輪側へ伝達されるトルクの一部を軸方向の推力に変換してクラッチを押圧する押圧機構とを備える。駆動力伝達系は、前進走行時において前輪の舵角が最大値まで変化した場合でも、クラッチの入力側に連結された駆動軸と出力側に連結された駆動軸との差動回転方向が反転しないように複数のギヤ機構のギヤ比が設定されている。

Description

四輪駆動車
 本発明は、駆動源の駆動力を前輪及び後輪に配分する駆動力伝達系を備えた四輪駆動車に関する。
 従来、駆動源の駆動力を前輪側には常時伝達し、後輪側には駆動力伝達装置を介して車両の走行状態に応じた必要な駆動力を伝達する四輪駆動車が知られている(例えば、特許文献1参照)。
 特許文献1に記載の四輪駆動車は、プロペラシャフトを介して伝達されたトルクを後輪側のギヤ機構によって左右方向に分配し、このギヤ機構の出力側に設けられたクラッチを介して後輪に配分する。このクラッチは、相対回転可能な第1及び第2のカム部材を有するカム機構の推力によって軸方向に押圧され、同軸上に交互に配置された複数のインナ・プレート及び複数のアウタ・プレートの摩擦係合力によって後輪側にトルクを伝達する。また、このカム機構は、ギヤ機構の出力軸に連結された外側回転部材と後輪側に連結された内側回転部材との間に配置され、第1のカム部材が電磁コイルの電流量により係合力を調整可能な電磁クラッチを介して外側回転部材のトルクを受け、第2のカム部材が内側回転部材と相対回転不能に連結されている。そして、電磁コイルに通電された状態で外側回転部材にトルクが伝達されると、そのトルクの一部をカム機構によって軸方向の推力に変換し、クラッチを押圧するように構成されている。
特開2009-264518号公報
 特許文献1に記載の四輪駆動車のカム機構は、外側回転部材と内側回転部材との相対回転によって推力を発生させるため、車両の旋回によって後輪の回転速度が増減し、外側回転部材と内側回転部材との相対回転の方向が反転すると、瞬間的に推力が消滅する。このため、後輪に伝達されるトルクが急激に変動して駆動力伝達系に衝撃が発生し、乗員に音や振動による不快感を与える場合があった。
 そこで本発明の目的のひとつは、車両の旋回時における駆動力伝達系の衝撃を低減することが可能な四輪駆動車を提供することである。
 本発明は、上記課題を解決するために、以下の態様の四輪駆動車を提供する。
[1]車両の駆動力となるトルクを発生する駆動源と、前記駆動源のトルクを複数のギヤ機構を介して一対の前輪及び一対の後輪に伝達する駆動力伝達系と、前記駆動力伝達系に設けられ、前記後輪側へのトルク伝達量を制御可能なクラッチと、前記後輪側へ伝達されるトルクの一部を軸方向の推力に変換して前記クラッチを押圧する押圧機構とを備え、前記駆動力伝達系は、前進走行時において前記前輪の舵角が最大値まで変化した場合でも、前記クラッチの入力側に連結された駆動軸と出力側に連結された駆動軸との差動回転方向が反転しないように前記複数のギヤ機構のギヤ比が設定されている四輪駆動車。
[2]前記駆動力伝達系は、前記一対の前輪にトルクを配分する第1のディファレンシャル装置と、前記一対の後輪にトルクを配分する第2のディファレンシャル装置と、前記第1及び第2のディファレンシャル装置の間に設けられたプロペラシャフトと、前記第1のディファレンシャル装置と前記プロペラシャフトとを連結する第1のギヤ機構と、前記第2のディファレンシャル装置と前記プロペラシャフトとを連結する第2のギヤ機構とを備え、前記クラッチは、第2のディファレンシャル装置と前記一対の後輪のうちの何れかとの間に配置され、前記プロペラシャフトの回転速度に対する前記第2のディファレンシャル装置のデフケースの回転速度が、前記プロペラシャフトの回転速度に対する前記第1のディファレンシャル装置のデフケースの回転速度よりも小さくなるように、前記第1及び第2のギヤ機構のギヤ比が設定された前記[1]に記載の四輪駆動車。
 本発明の一態様によれば、車両の旋回時における駆動力伝達系の衝撃を低減することが可能となる。
図1は、本発明の実施の形態に係る四輪駆動車の構成例を示す概略図である。 図2は、本発明の実施の形態に係る駆動力伝達装置及びその周辺部の構成例を示す断面図である。 図3(a)-3(c)は、四輪駆動車の前進走行時における駆動力伝達系の構成部材の回転方向を示した模式図であり、図3(a)は2輪駆動の直進時、図3(b)は4輪駆動の直進時、図3(c)は最大舵角での4輪駆動の右旋回時の状態を示す。 図4(a)-4(d)は、駆動力伝達装置のカム機構及びその周辺部の動作を模式的に示す模式図であり、図4(a)は2輪駆動状態、図4(b)は4輪駆動状態、図4(c)は差動回転が反転する場合の反転初期状態、図4(d)は差動回転が反転した反転状態をそれぞれ示す。 図5は、本実施の形態に係る四輪駆動車が2輪駆動状態と4輪駆動状態で直進及び左右旋回した場合における駆動力伝達装置の差動回転状態を示すグラフである。
[実施の形態]
 図1は四輪駆動車の構成例を示す概略図である。図1に示すように、四輪駆動車101は、四輪駆動車101の駆動力となるトルクを発生する駆動源としてのエンジン102と、エンジン102の出力を変速するトランスミッション103と、主駆動輪としての一対の前輪104L,104Rと、補助駆動輪としての一対の後輪105L,105Rと、エンジン102のトルクを前輪104L,104R及び後輪105L,105Rに伝達する駆動力伝達系106とを有している。
 前輪104L,104Rは、運転者によるステアリング操作によって所定の角度範囲で転動方向が車体に対して傾く操舵輪である。また、本実施の形態では、前輪104L,104R及び後輪105L,105Rの車輪径は全て同じであるものとする。
 駆動力伝達系106は、フロントディファレンシャル120と、噛み合いクラッチ130と、プロペラシャフト140と、リヤディファレンシャル150とを有し、フロントディファレンシャル120の出力トルクを左右のドライブシャフト114L,114Rを介して前輪104L,104Rに、リヤディファレンシャル150の出力トルクを左右のドライブシャフト115L,115Rを介して後輪105L,105Rに、それぞれ伝達するように構成されている。また、駆動力伝達系106には、リヤディファレンシャル150と左側のドライブシャフト115Lとの間に、駆動力伝達装置160が設けられている。
 フロントディファレンシャル120は、トランスミッション103から出力されるトルクによって回転するデフケース20と、デフケース20に保持されたピニオンシャフト21と、ピニオンシャフト21に回転可能に支持された一対のピニオンギヤ22,22と、ピニオンギヤ22,22にギヤ軸を直交させて噛み合う一対のサイドギヤ23L,23Rとを有している。左側のサイドギヤ23Lは、左側のドライブシャフト114Lに連結され、左側のドライブシャフト114L及び左前輪104Lと等速で回転する。また、右側のサイドギヤ23Rは、右側のドライブシャフト114Rに連結され、右側のドライブシャフト114R及び右前輪104Rと等速で回転する。この構成により、フロントディファレンシャル120は、デフケース20に入力されたトルクを左右の車輪間の差動を許容して前輪104L,104Rに配分する。
 噛み合いクラッチ130は、フロントディファレンシャル120のデフケース20の外周部にデフケース20と相対回転不能に固定された第1の歯部31と、後述するリングギヤ41aと相対回転不能に固定された第2の歯部32と、デフケース20の回転軸方向に沿って進退移動可能な筒状のスリーブ33とを有している。第1の歯部31及び第2の歯部32の外周面には、軸方向に延びるスプライン溝が形成されており、スリーブ33の内周面には、このスプライン溝と噛み合うスプライン歯が形成されている。そして、噛み合いクラッチ130は、スリーブ33が第1の歯部31及び第2の歯部32に共に噛み合う場合にデフケース20とリングギヤ41aとをトルク伝達可能に連結し、スリーブ33が第1の歯部31及び第2の歯部32の何れか一方のみと噛み合う場合にはデフケース20とリングギヤ41aとのトルク伝達を遮断するように構成されている。
 プロペラシャフト140の前輪側には第1のギヤ機構41が設けられ、後輪側には第2のギヤ機構42が設けられている。プロペラシャフト140は、その一端が第1のギヤ機構41によって噛み合いクラッチ130の出力側である第2の歯部32に連結され、他端が第2のギヤ機構42によってリヤディファレンシャル150のデフケース50(後述)に連結されている。
 第1のギヤ機構41は、噛み合いクラッチ130の第2の歯部32と一体に回転する傘歯車を有するリングギヤ41aと、このリングギヤ41aに噛み合い、プロペラシャフト140の一端に固定された傘歯車を有するピニオンギヤ41bとを備えて構成される。
 第2のギヤ機構42は、リヤディファレンシャル150のデフケース50に固定された傘歯車を有するリングギヤ42aと、このリングギヤ42aに噛み合い、プロペラシャフト140の他端に固定された傘歯車を有するピニオンギヤ42bとを備えて構成される。
 リヤディファレンシャル150は、プロペラシャフト140を介して伝達されるトルクによって回転するデフケース50と、デフケース50に保持されたピニオンシャフト51と、ピニオンシャフト51に回転可能に支持された一対のピニオンギヤ52,52と、ピニオンギヤ52,52にギヤ軸を直交させて噛み合う一対のサイドギヤ53L,53Rとを有している。左側のサイドギヤ53Lは、駆動力伝達装置160と左側のサイドギヤ53Lとの間に配置された中間シャフト54に相対回転不能に連結されている。また、右側のサイドギヤ53Rは、右側のドライブシャフト115Rに相対回転不能に連結され、右側のドライブシャフト115R及び右後輪105Rと等速で回転する。
 駆動力伝達装置160は、多板クラッチ7と、この多板クラッチ7を軸方向に押圧する押圧機構8とを有し、多板クラッチ7の押圧力に応じたトルクを中間シャフト54から左側のドライブシャフト115L側に伝達するように構成されている。中間シャフト54及び左側のドライブシャフト115Lは、多板クラッチ7の入力側及び出力側に連結された駆動軸の一例である。この駆動力伝達装置160の構成については後述する。
 以上の構成により、駆動力伝達系106は、フロントディファレンシャル120のサイドギヤ23L,23Rから左右のドライブシャフト114L,114Rを介して前輪104L,104Rにトルクを伝達する。また、フロントディファレンシャル120のデフケース20から噛み合いクラッチ130、第1のギヤ機構41、プロペラシャフト140、第2のギヤ機構42、リヤディファレンシャル150を介して、左後輪105Lには駆動力伝達装置160を介在させて左側のドライブシャフト115Lにより、右後輪105Rには右側のドライブシャフト115Rにより、それぞれトルクを伝達する。
 図2は、駆動力伝達装置160及びその周辺部の構成例を示す断面図である。駆動力伝達装置160は、リヤディファレンシャル150と共にデフキャリア151に収容され、中間シャフト54に相対回転不能に連結された有底円筒状のアウタハウジング60を有し、このアウタハウジング60の内部に多板クラッチ7及び押圧機構8を備えている。
 アウタハウジング60は、中間シャフト54と一体に回転するように、その底部の外周面が中間シャフト54のフランジ54aに連結されている。また、アウタハウジング60の円筒部の内周面には軸方向に延びる複数のスプライン歯を有するスプライン部60aが形成され、その開口端部は環状のリヤハウジング61によって閉塞されている。
 リヤハウジング61は、螺着や溶接等の固定手段によってアウタハウジング60の開口部に相対回転不能に固定された磁性材料からなる第1エレメント61aと、第1エレメント61aの内側に固定された非磁性材料からなるリング状の第2エレメント61bと、第2エレメント61bの内側に固定された磁性材料からなる第3エレメント61cとを有している。
 アウタハウジング60の内周部には、アウタハウジング60と同軸上で相対回転可能に支持された円筒状のインナシャフト64が配置されている。インナシャフト64の外周面には、アウタハウジング60のスプライン部60aと対向する領域に、軸方向に延びる複数のスプライン歯を有するスプライン部64aが形成されている。また、インナシャフト64には、その内周面に、左側のドライブシャフト115L(図1に示す)の一端が揺動可能に連結される等速ジョイントの外輪56aを有する軸状部材56が相対回転不能にスプライン嵌合されている。
 多板クラッチ7は、環状の複数のアウタクラッチプレート71と、同じく環状の複数のインナクラッチプレート72とを軸方向に交互に配置して構成されている。アウタクラッチプレート71の外周縁には、アウタハウジング60のスプライン部60aに係合する複数の突起が形成されている。また、インナクラッチプレート72の内周縁には、インナシャフト64のスプライン部64aに係合する複数の突起が形成されている。この構成により、アウタクラッチプレート71はアウタハウジング60に対して、またインナクラッチプレート72はインナシャフト64に対して、それぞれ相対回転が規制され、かつ軸方向移動可能である。
 押圧機構8は、多板クラッチ7と軸方向に並置され、電磁コイル80と、電磁コイル80を支持する磁性材料からなるヨーク81と、環状の第1カム部材82と、第1カム部材82に対向して配置された環状の第2カム部材84と、第1カム部材82及び第2カム部材84の間に介在する球状のカムフォロア83とを有して構成されている。
 電磁コイル80は、第1カム部材82との間にリヤハウジング61を挟んで配置され、通電により発生する磁力によって第1カム部材82をリヤハウジング61側に引き寄せるように構成されている。
 第2カム部材84は、軸方向の一側面が多板クラッチ7の複数のインナクラッチプレート72のうち、最も押圧機構8に近く配置されたインナクラッチプレート72に対向して配置され、かつ内周面の一部にインナシャフト64のスプライン部64aに係合する複数の突起を有している。従って、第2カム部材84は、インナシャフト64に対して相対回転が規制され、かつ軸方向移動可能である。
 第1カム部材82及び第2カム部材84のそれぞれの対向面には、周方向に対して傾斜を有するカム面が形成され、複数のカムフォロア83がこの両カム面に沿って転動するように配置されている。また、第1カム部材82は皿ばね85により、また第2カム部材84は皿ばね86により、相互に接近するように付勢されている。
 上記構成により、第1カム部材82が電磁コイル80の磁力によってリヤハウジング61と摩擦摺動すると、中間シャフト54から左後輪105L側へ伝達されるトルクの一部が第1カム部材82に回転力として伝達され、この回転力によって第1カム部材82と第2カム部材84とが相対回転する。この相対回転によってカムフォロア83が第1カム部材82及び第2カム部材84のカム面を転動することで軸方向の推力が発生し、この推力を受けた第2カム部材84が多板クラッチ7を押圧する。すなわち、押圧機構8は、左後輪105L側へ伝達されるトルクの一部を軸方向の推力に変換して多板クラッチ7を押圧する。第1カム部材82がリヤハウジング61から受ける回転力は電磁コイル80の磁力の強さに応じて変化するので、電磁コイル80に供給する電流を制御することによって多板クラッチ7の押圧力を調整可能である。
 また、電磁コイル80への通電を遮断すると、皿ばね85のばね力によって第1カム部材82がリヤハウジング61から離間し、第1カム部材82が第2カム部材84と相対回転する回転力を受けなくなるので、軸方向の推力が消滅し、皿ばね86のばね力によって第2カム部材84が多板クラッチ7から離れる方向に移動する。
 以上の構成により、左後輪105Lには、リヤディファレンシャル150の左側のサイドギヤ53Lに伝達されたトルクが駆動力伝達装置160によって断続可能に軸状部材56及び左側のドライブシャフト115Lを介して伝達される。また、右後輪105Rには、リヤディファレンシャル150の右側のサイドギヤ53Rに伝達されたトルクが、このサイドギヤ53Rに相対回転不能に連結された軸状部材55、及び軸状部材55の一端に設けられた等速ジョイントの外輪55aに揺動可能に連結された右側のドライブシャフト115Rを介して伝達される。
 また、四輪駆動車101は、4輪駆動の走行時には、電磁コイル80に通電して駆動力伝達装置160によるトルク伝達を行うと共に、噛み合いクラッチ130のスリーブ33を第1の歯部31及び第2の歯部32に共に噛み合わせ、フロントディファレンシャル120のデフケース20とプロペラシャフト140とを連結する。これにより、エンジン102のトルクが一対の前輪104L,104R及び一対の後輪105L,105Rに伝達される。
 一方、2輪駆動の走行時には、電磁コイル80への通電を停止して駆動力伝達装置160によるトルク伝達を遮断すると共に、噛み合いクラッチ130によるデフケース20とプロペラシャフト140との連結を解除する。このように、2輪駆動の走行時には、駆動力伝達系106によるトルク伝達がプロペラシャフト140の上流側(エンジン102側)及び下流側(後輪105L,105R側)で遮断されるので、プロペラシャフト140及びこれに連結されたリヤディファレンシャル150のデフケース50の車体に対する回転が停止する。これにより、プロペラシャフト140の回転抵抗やリングギヤ41a,42aによる潤滑油の攪拌抵抗による車両の走行抵抗が減少する。
 また、2輪駆動状態から4輪駆動状態に移行する際は、まず電磁コイル80への電流供給量を徐々に大きくして駆動力伝達装置160により後輪105L,105Rのトルクをプロペラシャフト140に伝達し、プロペラシャフト140を回転させることによって噛み合いクラッチ130の第1の歯部31と第2の歯部32とを同期させた後に噛み合いクラッチ130を連結する。これとは逆に4輪駆動状態から2輪駆動状態に移行する際は、電磁コイル80への電流供給量を徐々に小さくして後輪側に伝達されるトルクによるプロペラシャフト140の捩れを解消し、その後に噛み合いクラッチ130による連結を解除する。このように2輪駆動状態と4輪駆動状態とを切り替えることにより、駆動状態の切り替え時の衝撃を抑制する。
 図3(a)-3(c)は、四輪駆動車101の前進走行時におけるリヤディファレンシャル150のデフケース50、ドライブシャフト115R,115L、及び中間シャフト54の回転方向を示した模式図であり、図3(a)は2輪駆動の直進時、図3(b)は4輪駆動の直進時、図3(c)は最大舵角での4輪駆動の右旋回時における状態を示している。また、図3(a)-3(c)では、デフケース50の回転方向を矢印D0で、右側のドライブシャフト115Rの回転方向を矢印D1で、中間シャフト54の回転方向を矢印D2で、左側のドライブシャフト115Lの回転方向を矢印D3でそれぞれ示し、各矢印の大きさによって回転速度を表している。ただし、何れの状態でも車速は同じであるものとする。
 図3(a)に示すように、2輪駆動の直進時には、前述のようにプロペラシャフト140及びデフケース50が回転しないが、後輪105L,105Rは四輪駆動車101の走行に伴う路面との摩擦力によって回転するので、左右のドライブシャフト115R,115Lが矢印D1及びD3に示される方向(以下、この方向を「正方向」という)に回転する。
 また、デフケース50が非回転の状態で右側のドライブシャフト115Rと共に右側のサイドギヤ53Rが回転するので、これに噛み合う一対のピニオンギヤ52,52が回転し、左側のサイドギヤ53Lが右側のサイドギヤ53Rと反対方向に回転する。これにより、中間シャフト54が矢印D2に示される方向(以下、この方向を「逆方向」という)に回転する。
 このように、駆動力伝達装置160の入力側に連結された中間シャフト54と、出力側に連結された左側のドライブシャフト115Lとが互いに反対方向に回転するので、駆動力伝達装置160のアウタハウジング60とインナシャフト64との間に大きな差動回転が発生する。
 また、図3(b)に示すように、4輪駆動の直進時には、プロペラシャフト140を介してリヤディファレンシャル150にトルクが伝達され、デフケース50、左右のドライブシャフト115R,115L、及び中間シャフト54が共に正方向に回転する。また、左右のドライブシャフト115R,115Lの回転速度は同じである。
 ここで、本実施の形態では、第1のギヤ機構41及び第2のギヤ機構42のギヤ比の設定により、中間シャフト54が左側のドライブシャフト115Lよりも遅く回転するように、駆動力伝達系106が構成されている。すなわち、プロペラシャフト140の回転速度に対するリヤディファレンシャル150のデフケース50の回転速度が、プロペラシャフト140の回転速度に対するフロントディファレンシャル120のデフケース20の回転速度よりも小さくなるように、第1のギヤ機構41及び第2のギヤ機構42のギヤ比が設定されている。換言すれば、フロントディファレンシャル120のデフケース20からリヤディファレンシャル150のデフケース50へのトルク伝達の過程で、デフケース50がデフケース20よりも減速されるように駆動力伝達系106が構成されている。これにより、駆動力伝達装置160のアウタハウジング60とインナシャフト64との間には、2輪駆動の直進時よりも小さな差動回転が発生する。また、デフケース50は、中間シャフト54の回転速度と右側のドライブシャフト115Rの回転速度との間の速度で回転する。
 また、図3(c)に示すように、4輪駆動の右方向(リヤディファレンシャル150に対して駆動力伝達装置160が設けられた側の反対方向)への旋回時には、図3(b)に示す4輪駆動の直進時と比較して、左側のドライブシャフト115Lはより速く正方向に回転し、右側のドライブシャフト115Rは直進時よりも遅い速度で正方向に回転する。
 左側のドライブシャフト115Lの回転速度が直進時よりも速くなることにより、左側のドライブシャフト115Lと中間シャフト54との差回転(アウタハウジング60とインナシャフト64との差回転)が小さくなるが、第1のギヤ機構41及び第2のギヤ機構42のギヤ比は、この場合でも中間シャフト54が左側のドライブシャフト115Lよりも遅く回転するように設定されている。すなわち、前輪104L,104Rの舵角が最大値まで変化した場合でも、多板クラッチ7の入力側に連結された中間シャフト54と、出力側に連結された左側のドライブシャフト115Lとの差動回転方向が反転しないように、第1のギヤ機構41及び第2のギヤ機構42のギヤ比が設定されている。
 本実施の形態では、第1のギヤ機構41のギヤ比r1(リングギヤ41aの歯数/ピニオンギヤ41bの歯数)が3に設定され、第2のギヤ機構42のギヤ比r2(リングギヤ42aの歯数/ピニオンギヤ42bの歯数)が3.7に(ギヤ比r1<ギヤ比r2)、それぞれ設定されている。
(本実施の形態の作用及び効果)
 図4(a)-4(d)は、駆動力伝達装置160のカム機構及びその周辺部の動作を模式的に示す説明図であり、図4(a)は2輪駆動状態、図4(b)は4輪駆動状態、図4(c)は差動回転が反転する場合の反転初期状態、図4(d)は差動回転が反転した反転状態をそれぞれ示す。
 図4(a)に示すように、2輪駆動状態では、第1カム部材82に磁力が作用しないので、皿ばね85のばね力によって第1カム部材82がリヤハウジング61から離間する。このため、第1カム部材82に第2カム部材84との相対回転を発生させる回転力が伝達されず、第2カム部材84が多板クラッチ7を押圧する推力となるカム力が発生しない。従って、多板クラッチ7によるトルク伝達が行われない。この状態では、カムフォロア83が第1カム部材82のカム溝82a及び第2カム部材84のカム溝84aの最も深い位置(中立位置)に位置している。
 前進走行時において電磁コイル80に通電されると、図4(b)に示すように、第1カム部材82がリヤハウジング61に摩擦接触し、第1カム部材82がリヤハウジング61から受ける回転力によって、第1カム部材82と第2カム部材84とが相対回転する。このため、カムフォロア83が第1カム部材82のカム溝82a及び第2カム部材84のカム溝84aを転動し、第1カム部材82と第2カム部材84との間隔を押し広げる。これにより、第2カム部材84に軸方向のカム力が作用し、第2カム部材84が多板クラッチ7を押圧してアウタクラッチプレート71とインナクラッチプレート72とを摩擦圧接させる。これにより、アウタハウジング60とインナシャフト64、すなわち中間シャフト54と左側のドライブシャフト115Lとのトルク伝達が行われる。
 仮に、左側のドライブシャフト115Lの回転速度が中間シャフト54よりも遅くなり、差動回転が反転すると、図4(c)に示すように、第1カム部材82と第2カム部材84との相対回転角度が小さくなり、カムフォロア83が中立位置に戻るように変位する。このため、カム力が小さくなって多板クラッチ7の押圧力が減少する。
 さらに差動回転の反転状態が継続すると、図4(d)に示すように、カムフォロア83が第1カム部材82のカム溝82a及び第2カム部材84のカム溝84aの反対側の傾斜面に移動し、再度第2カム部材84に軸方向のカム力が作用し、第2カム部材84が多板クラッチ7を押圧する。
 この過程で多板クラッチ7を介して伝達されるトルクが急激に変動するので、衝撃が発生し、乗員に不快感を与えてしまう。しかし、本実施の形態によれば、4輪駆動状態での前進走行時において、旋回によって左後輪105Lのデフケース50に対する回転速度が増減しても、上記のような差動回転の反転状態が発生しないように第1のギヤ機構41及び第2のギヤ機構42のギヤ比が設定されているので、このような問題が生じない。
 図5は、本実施の形態に係る四輪駆動車101が2輪駆動状態と4輪駆動状態とで直進及び左右旋回した場合の中間シャフト54と左側のドライブシャフト115Lとの差動回転数ΔN(=左側のドライブシャフト115Lの正方向への回転数-中間シャフト54の正方向への回転数)を示すグラフである。
 2輪駆動時には、前述のように、中間シャフト54が逆方向に回転し、左側のドライブシャフト115Lが正方向に回転するので、ΔNは正の値となる。また、その絶対値は大きく、例えば後輪105L,105Rの車輪径が60cmで四輪駆動車101が時速40kmで直進走行した場合、ΔNは約700rpmとなる。また、ΔNの大きさは旋回によっても変動し、右旋回の際には直進時よりもΔN(絶対値)が小さくなり、左旋回の際にも直進時よりもΔN(絶対値)が小さくなる。
 一方、4輪駆動時には、中間シャフト54と左側のドライブシャフト115Lとが共に正方向に回転するので、2輪駆動時よりもΔNの大きさは小さくなる。また、中間シャフト54が左側のドライブシャフト115Lよりも遅く回転するので、ΔNは正の値となる。ΔNの大きさは旋回によって変動し、右旋回の際には直進時よりもΔNが小さくなり、左旋回の際にも直進時よりもΔNが小さくなる。
 本実施の形態では、上記の第1のギヤ機構41及び第2のギヤ機構42のギヤ比の設定により、四輪駆動車101が最大舵角で右旋回しても、ΔNが負にならないように構成されている。これにより、4輪駆動状態で旋回した際に、後輪側に伝達されるトルクが急変することによる振動や騒音を低減することができる。また、四輪駆動車101が最大舵角で右旋回した際のΔNの大きさは、上記の走行条件において2rpm以上、すなわち2輪駆動時におけるΔNの大きさの0.3%以上とするとよい。
 また、最大舵角で右旋回した際のΔNは、加速によって発生し得る最大のタイヤのスリップ率を考慮して、最大舵角での右旋回中に加速を行ってもΔNが負にならないように第1のギヤ機構41及び第2のギヤ機構42のギヤ比を設定するとよい。
[他の実施の形態]
 以上、本発明の実施の形態に係る四輪駆動車を上記のとおり説明したが、本発明は上記の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の態様において実施することが可能であり、例えば次に示すような変形も可能である。
(1)上記実施の形態では、駆動力伝達装置160をリヤディファレンシャル150の車両進行方向に対する左側に設けたが、これに限らず駆動力伝達装置160をリヤディファレンシャル150の車両進行方向に対する右側に設けてもよい。
(2)また、上記実施の形態では、左後輪105Lに対応して1つの駆動力伝達装置160を設けたが、左後輪105L及び右後輪105Rにそれぞれ対応した2つの駆動力伝達装置160を設けてもよい。この場合、リヤディファレンシャル150に換えて、プロペラシャフト140を介して伝達されるトルクをそれぞれの駆動力伝達装置160に伝達する差動機能を有しないベベルギヤ式の歯車機構を用いることができる。
(3)また、上記実施の形態では、第1のギヤ機構41のギヤ比r1を第2のギヤ機構42のギヤ比r2よりも小さくすることによりフロントディファレンシャル120のデフケース20よりも遅くリヤディファレンシャル150のデフケース50が回転するように駆動力伝達系106を構成したが、これに限らず、前輪104L,104Rの車輪径を後輪105L,105Rの車輪径よりも小さくすることにより、フロントディファレンシャル120のデフケース20よりも遅くリヤディファレンシャル150のデフケース50が回転するようにしてもよい。
(4)また、上記実施の形態では、プロペラシャフト140のトルク伝達上流側でトルクの伝達を遮断する断続機構として噛み合いクラッチ130を適用したが、この断続機構としては、噛み合いクラッチに限らず多板クラッチを適用してもよい。また、プロペラシャフト140のトルク伝達上流側でトルクの伝達を遮断する断続機構を有しなくともよい。
7…多板クラッチ、8…押圧機構、20…デフケース、21,51…ピニオンシャフト、22,52…ピニオンギヤ、23L,23R,53L,53R…サイドギヤ、31…第1の歯部、32…第2の歯部、33…スリーブ、41…第1のギヤ機構、42…第2のギヤ機構、41a,42a…リングギヤ、41b,42b…ピニオンギヤ、50…デフケース、54…中間シャフト、54a…フランジ、55,56…軸状部材、55a,56a…外輪、60…アウタハウジング、60a…スプライン部、61…リヤハウジング、61a…第1エレメント、61b…第2エレメント、61c…第3エレメント、64…インナシャフト、64a…スプライン部、71…アウタクラッチプレート、72…インナクラッチプレート、80…電磁コイル、81…ヨーク、82…第1カム部材、82a,84a…カム溝、83…カムフォロア、84…第2カム部材、101…四輪駆動車、102…エンジン、103…トランスミッション、140…プロペラシャフト、104L…左前輪、104R…右前輪、105L…左後輪、105R…右後輪、106…駆動力伝達系、114L,114R,115L,115R…ドライブシャフト、120…フロントディファレンシャル、130…噛み合いクラッチ、140…プロペラシャフト、150…リヤディファレンシャル、151…デフキャリア、160…駆動力伝達装置

Claims (2)

  1.  車両の駆動力となるトルクを発生する駆動源と、
     前記駆動源のトルクを複数のギヤ機構を介して一対の前輪及び一対の後輪に伝達する駆動力伝達系と、
     前記駆動力伝達系に設けられ、前記後輪側へのトルク伝達量を制御可能なクラッチと、
     前記後輪側へ伝達されるトルクの一部を軸方向の推力に変換して前記クラッチを押圧する押圧機構とを備え、
     前記駆動力伝達系は、前進走行時において前記前輪の舵角が最大値まで変化した場合でも、前記クラッチの入力側に連結された駆動軸と出力側に連結された駆動軸との差動回転方向が反転しないように前記複数のギヤ機構のギヤ比が設定されている四輪駆動車。
  2.  前記駆動力伝達系は、
     前記一対の前輪にトルクを配分する第1のディファレンシャル装置と、
     前記一対の後輪にトルクを配分する第2のディファレンシャル装置と、
     前記第1及び第2のディファレンシャル装置の間に設けられたプロペラシャフトと、
     前記第1のディファレンシャル装置と前記プロペラシャフトとを連結する第1のギヤ機構と、
     前記第2のディファレンシャル装置と前記プロペラシャフトとを連結する第2のギヤ機構とを備え、
     前記クラッチは、第2のディファレンシャル装置と前記一対の後輪のうちの何れかとの間に配置され、
     前記プロペラシャフトの回転速度に対する前記第2のディファレンシャル装置のデフケースの回転速度が、前記プロペラシャフトの回転速度に対する前記第1のディファレンシャル装置のデフケースの回転速度よりも小さくなるように、前記第1及び第2のギヤ機構のギヤ比が設定された請求項1に記載の四輪駆動車。
PCT/JP2011/070786 2010-10-05 2011-09-13 四輪駆動車 WO2012046544A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/878,047 US9057430B2 (en) 2010-10-05 2011-09-13 Four-wheel drive vehicle
CN201180048563.2A CN103153674B (zh) 2010-10-05 2011-09-13 四轮驱动车辆
EP11830477.3A EP2626229B1 (en) 2010-10-05 2011-09-13 Four-wheel-drive vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-225904 2010-10-05
JP2010225904A JP5720165B2 (ja) 2010-10-05 2010-10-05 四輪駆動車

Publications (1)

Publication Number Publication Date
WO2012046544A1 true WO2012046544A1 (ja) 2012-04-12

Family

ID=45927541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070786 WO2012046544A1 (ja) 2010-10-05 2011-09-13 四輪駆動車

Country Status (5)

Country Link
US (1) US9057430B2 (ja)
EP (1) EP2626229B1 (ja)
JP (1) JP5720165B2 (ja)
CN (1) CN103153674B (ja)
WO (1) WO2012046544A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014011230A1 (en) * 2012-07-09 2014-01-16 Eaton Corporation Clutch system
JP6318622B2 (ja) * 2014-01-06 2018-05-09 株式会社ジェイテクト 車両用駆動力配分装置
WO2015129695A1 (ja) 2014-02-27 2015-09-03 日産自動車株式会社 4輪駆動車のクラッチ制御装置
EP3112726B1 (en) 2014-02-27 2018-08-22 Nissan Motor Co., Ltd Clutch control device for four-wheel drive vehicle
JP6070630B2 (ja) * 2014-05-16 2017-02-01 トヨタ自動車株式会社 四輪駆動車両の制御装置
KR102345864B1 (ko) * 2014-08-06 2022-01-03 주식회사 대동 농용 작업차의 선회구동장치
US20170101000A1 (en) * 2015-10-07 2017-04-13 GM Global Technology Operations LLC Auxiliary electric drive with wheel hub disconnect
JP6651838B2 (ja) * 2015-12-22 2020-02-19 株式会社ジェイテクト 駆動力配分装置
DE102016221819A1 (de) * 2016-11-08 2018-05-09 Zf Friedrichshafen Ag Getriebeanordnung für ein Fahrzeug und Fahrzeug mit der Getriebeanordnung
JP6565947B2 (ja) * 2017-02-02 2019-08-28 マツダ株式会社 四輪駆動車
CN108162751A (zh) * 2018-01-30 2018-06-15 山东五征集团有限公司 四轮驱动拖拉机主动扭矩力分配系统
CN108518473B (zh) * 2018-04-26 2023-06-02 江苏徐工工程机械研究院有限公司 一种车辆主传动器及其控制方法
JP7213038B2 (ja) * 2018-08-28 2023-01-26 ジーケーエヌ オートモーティブ リミテッド 全輪駆動車における制御システム
US10968793B1 (en) * 2019-10-24 2021-04-06 Dana Automotive Systems Group, Llc Axle assembly
US11590977B2 (en) * 2019-12-31 2023-02-28 Rivian Ip Holdings, Llc Systems and methods for providing a vehicle with a torque vectored K-turn mode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11125279A (ja) * 1990-11-30 1999-05-11 Tochigi Fuji Ind Co Ltd クラッチ装置
JP2002370557A (ja) * 2001-06-15 2002-12-24 Tochigi Fuji Ind Co Ltd 4輪駆動システム
JP2006242364A (ja) * 2005-03-07 2006-09-14 Toyota Motor Corp 車両用継手、4輪駆動車の前後駆動力分配機構および前後左右駆動力分配機構、ならびに2輪駆動車の左右駆動力分配機構
JP2009264518A (ja) 2008-04-25 2009-11-12 Gkn ドライブライン トルクテクノロジー株式会社 駆動力分配伝達装置
JP2010100280A (ja) * 2008-10-13 2010-05-06 Magna Powertrain Ag & Co Kg 自動車用パワートレイン

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2721639A (en) * 1951-02-02 1955-10-25 Self Changing Gear Company Ltd Torque and centrifugal engaged clutch
JPS61232925A (ja) 1985-04-09 1986-10-17 Nissan Motor Co Ltd 4輪駆動装置
DE3643831A1 (de) * 1986-12-20 1988-07-07 Deere & Co Antriebssystem fuer die raeder zweier radpaare
DE4122126C2 (de) * 1991-07-04 1994-09-01 Viscodrive Gmbh Antriebsanordnung für ein vierradgetriebenes Kraftfahrzeug
JP2747165B2 (ja) * 1992-05-06 1998-05-06 栃木富士産業株式会社 デファレンシャル装置
DE19716386C2 (de) * 1996-04-19 2002-10-31 Tochigi Fuji Sangyo Kk Ausgleichsgetriebe
JP3406169B2 (ja) 1997-01-14 2003-05-12 本田技研工業株式会社 四輪駆動車両における駆動力制御装置
JP3505975B2 (ja) * 1997-09-19 2004-03-15 日産自動車株式会社 4輪駆動車の駆動力伝達装置
JP3656502B2 (ja) * 2000-02-28 2005-06-08 豊田工機株式会社 4輪駆動車のトルク配分装置
JP4367131B2 (ja) * 2002-04-26 2009-11-18 株式会社ジェイテクト 駆動力伝達装置
JP4265891B2 (ja) * 2002-08-06 2009-05-20 富士重工業株式会社 車両の駆動力伝達制御装置
JP4263448B2 (ja) * 2002-09-24 2009-05-13 富士重工業株式会社 車両の差動制限制御装置
US6808037B1 (en) * 2003-04-08 2004-10-26 New Venture Gear, Inc. On-demand transfer case
JP4625632B2 (ja) * 2003-12-25 2011-02-02 日立オートモティブシステムズ株式会社 車両駆動装置
JP4554252B2 (ja) * 2004-03-31 2010-09-29 本田技研工業株式会社 4輪駆動車両の制御方法
US7258187B2 (en) * 2004-05-14 2007-08-21 Magna Powertrain Usa, Inc. Torque vectoring axle
JP4821208B2 (ja) 2005-08-08 2011-11-24 日産自動車株式会社 車両の駆動力配分装置
US7600598B2 (en) * 2006-05-05 2009-10-13 Ford Global Technologies, Llc Biasing drive torque to a secondary axle in a motor vehicle powertrain
JP4229193B2 (ja) 2007-04-06 2009-02-25 三菱自動車工業株式会社 車両用差動制限装置
JP5038837B2 (ja) * 2007-10-01 2012-10-03 富士重工業株式会社 車両のタックイン防止制御装置
JP5260080B2 (ja) * 2008-02-25 2013-08-14 株式会社ユニバンス 四輪駆動車用駆動力伝達装置
JP5073537B2 (ja) * 2008-03-06 2012-11-14 富士重工業株式会社 動力伝達装置
JP5506533B2 (ja) * 2010-05-17 2014-05-28 アイシン・エーアイ株式会社 車両の駆動状態制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11125279A (ja) * 1990-11-30 1999-05-11 Tochigi Fuji Ind Co Ltd クラッチ装置
JP2002370557A (ja) * 2001-06-15 2002-12-24 Tochigi Fuji Ind Co Ltd 4輪駆動システム
JP2006242364A (ja) * 2005-03-07 2006-09-14 Toyota Motor Corp 車両用継手、4輪駆動車の前後駆動力分配機構および前後左右駆動力分配機構、ならびに2輪駆動車の左右駆動力分配機構
JP2009264518A (ja) 2008-04-25 2009-11-12 Gkn ドライブライン トルクテクノロジー株式会社 駆動力分配伝達装置
JP2010100280A (ja) * 2008-10-13 2010-05-06 Magna Powertrain Ag & Co Kg 自動車用パワートレイン

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2626229A4

Also Published As

Publication number Publication date
EP2626229A1 (en) 2013-08-14
CN103153674B (zh) 2016-08-03
CN103153674A (zh) 2013-06-12
JP2012076695A (ja) 2012-04-19
EP2626229A4 (en) 2014-03-19
EP2626229B1 (en) 2015-11-18
US9057430B2 (en) 2015-06-16
US20130274055A1 (en) 2013-10-17
JP5720165B2 (ja) 2015-05-20

Similar Documents

Publication Publication Date Title
JP5720165B2 (ja) 四輪駆動車
JP5728861B2 (ja) 四輪駆動車及びその制御装置
US8641575B2 (en) Driving force transmission apparatus and vehicle
JP6083202B2 (ja) 四輪駆動車
JP6051833B2 (ja) 四輪駆動車の制御装置
CN103625281A (zh) 四轮驱动车的控制装置
CN110360295B (zh) 具有连结装置的车辆
US20130054104A1 (en) Drive system for four-wheel drive vehicle, four-wheel drive vehicle, and control method for four-wheel drive vehicle
CN109249802B (zh) 用于车辆的动力分配装置和动力分配装置的控制方法
JP2005516161A (ja) トルクバイアス能力が向上した伝達ケース
JP2011143790A (ja) 駆動力伝達装置及びその制御方法
JP5353350B2 (ja) 車両用差動装置
CA2354219C (en) Lubricating structure for electromagnetic clutch
JP2010048331A (ja) 駆動力断続装置、駆動力断続装置の制御方法、四輪駆動車両及び四輪駆動車両の制御方法
JP6303822B2 (ja) 4輪駆動車のクラッチ制御装置
JP2013132960A (ja) 車両の駆動装置
JP2021115884A (ja) 四輪駆動車
CN113167378B (zh) 用于具有反向驱动装置的机动车辆的传动单元以及包括所述传动单元的机动车辆
JP2010047107A (ja) ディファレンシャル装置、ディファレンシャル装置の制御方法、四輪駆動車両及び四輪駆動車両の制御方法
JP5458901B2 (ja) 4輪駆動車の駆動力配分制御装置
JP4360789B2 (ja) 車両のディファレンシャル装置
JP2013108613A (ja) クラッチ及び四輪駆動車
JP2021126960A (ja) 4輪駆動車の制御装置
JP2005054829A (ja) 動力伝達装置及びセンターディファレンシャル装置
JPH09104255A (ja) 動力伝達装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180048563.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11830477

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011830477

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13878047

Country of ref document: US