WO2012046438A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2012046438A1
WO2012046438A1 PCT/JP2011/005596 JP2011005596W WO2012046438A1 WO 2012046438 A1 WO2012046438 A1 WO 2012046438A1 JP 2011005596 W JP2011005596 W JP 2011005596W WO 2012046438 A1 WO2012046438 A1 WO 2012046438A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
wall
air passage
outlet
passage wall
Prior art date
Application number
PCT/JP2011/005596
Other languages
English (en)
French (fr)
Inventor
池田 尚史
幸治 山口
政知 八田
昌彦 高木
栗原 誠
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to ES11830372T priority Critical patent/ES2795376T3/es
Priority to EP11830372.6A priority patent/EP2626646B1/en
Priority to US13/820,852 priority patent/US9513020B2/en
Priority to CN201180048063.9A priority patent/CN103154629B/zh
Priority to AU2011311102A priority patent/AU2011311102B2/en
Publication of WO2012046438A1 publication Critical patent/WO2012046438A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/022Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing comprising a compressor cycle
    • F24F1/027Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing comprising a compressor cycle mounted in wall openings, e.g. in windows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • F24F1/0014Indoor units, e.g. fan coil units characterised by air outlets having two or more outlet openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0047Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in the ceiling or at the ceiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/14Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • F24F2013/0616Outlets that have intake openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F2013/221Means for preventing condensation or evacuating condensate to avoid the formation of condensate, e.g. dew

Definitions

  • This invention relates to an air conditioner, and more particularly to control of air flow at an outlet of an indoor unit.
  • the shape of the air outlet and the structure of the air passage wall surface in the vicinity of the outlet are devised, or a wind vane is provided in the outlet, so that the air conditioner in the vicinity of the outlet is provided.
  • a wind vane is provided in the outlet, so that the air conditioner in the vicinity of the outlet is provided.
  • Patent Document 1 As a conventional air conditioner, there is an air conditioner provided with a flow path wall surface material that is provided on a flow path wall surface at an air outlet and that can change an air blowing direction by warping deformation (for example, Patent Documents). 1).
  • Patent Document 1 in order to supply the blown air flow to a wider area in the plane direction by increasing the spread of the blown air flow in the span direction at the outlet, In a predetermined region where the facing distance between the upper and lower flow path wall materials gradually decreases from the upstream side to the downstream side of the blown air, the width dimension of the predetermined region gradually increases from the upstream side to the downstream side in the blowing direction.
  • the structure which warps and deforms the upper and lower flow path wall surface materials so as to increase is disclosed.
  • a wind guide portion for guiding the air blown out from the rectangular outlet to the ceiling surface is formed, and a step portion for blocking a part of the air is formed at the end of the wind guide portion.
  • the height is large at both ends in the width direction of the air outlet, and there is one formed so as to gradually become smaller at the center (see, for example, Patent Document 2).
  • JP 2004-353914 A (Column 0066, Column 0067, FIGS. 7 and 8) Japanese Patent No. 3957927 (column 0020, FIGS. 3 to 5)
  • This invention is made in order to solve the above problems, and the blowout blown out from the end portion of the blowout port by increasing the wind speed of the blown air blown out from the longitudinal end portion of the blowout port. It aims at suppressing the entrainment of room air by air.
  • An air conditioner according to the present invention includes a wall surface that forms a blowout port through which air exchanged by a heat exchanger is blown, and both end portions of the wall surface in the longitudinal direction of the blowout port A recess for enlarging the air passage is provided, and the recess has a smaller width in the longitudinal direction on the downstream side than on the upstream side of the air, and the blower outlet has an inner air passage wall in the longitudinal direction.
  • the short side direction is constituted by the blower outlet side wall by the outer wind passage wall, and the blower outlet expands from the upstream side to the downstream side of the air, and shrinks near the opening surface of the blower outlet. It is what you are doing.
  • the flow of the blown air blown out from both ends in the longitudinal direction of the blower outlet during the cooling operation is accelerated using the shape of the both ends, so that from the end of the blower outlet. It is possible to suppress the entrainment of room air by the blown-out air, and to suppress dew condensation in the vicinity of the air outlet.
  • FIG. 1 is an external perspective view of an air conditioner shown in Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view of the air conditioner of FIG. 1 along AA. The elements on larger scale of the blower outlet periphery of FIG.
  • FIG. 5 is a cross-sectional view taken along the line BB of the inner air passage wall in FIG. 4.
  • FIG. 4 is a perspective view of an outer air passage wall in FIG. 3.
  • FIG. 7 is a cross-sectional view taken along the line BB of the outer air passage wall in FIG. 6. Sectional drawing of the inner side air channel wall of Embodiment 2.
  • FIG. Sectional drawing of the outer side air channel wall of Embodiment 2.
  • FIG. The longitudinal cross-sectional view of the ceiling-embedded air conditioner which mounts the crossflow fan of Embodiment 3.
  • Embodiment 1 FIG. Hereinafter, the air conditioner in Embodiment 1 which concerns on this invention is demonstrated. 1 is an external perspective view of an air conditioner shown in Embodiment 1 of the present invention.
  • the air conditioner 100 is a ceiling-embedded air conditioner that is installed behind the ceiling 1 of a room. As shown in FIG. 1, the air conditioner 100 is substantially rectangular in plan view below the air conditioner 100. A decorative panel 2 is attached and faces the ceiling 1. The decorative panel 2 has a suction grill 4 that forms an air suction port 3 for the air conditioner 100 near the center, and a filter 5 that removes dust from the downstream side. The air outlets 6 are formed along the air outlets 6, and each air outlet 6 is provided with a wind vane 7 that can be driven to change the air direction of the blown air.
  • the suction air F1 sucked into the air conditioner 100 from the suction port 3 is dust-removed by the filter 5, passes through the inside of the air conditioner 100, and is blown out as the blown air F2 from the blowout port 6.
  • the wind direction vane 7 is disposed so as to close the air outlet 6 when the air conditioner 100 is stopped. During operation, the wind direction vane 7 is rotated by a driving device such as a motor (not shown). The tip is located at a position protruding from the opening surface of the outlet 6 and the blown air F2 exiting from the outlet 6 flows along the wind direction vane 7, so that the wind direction of the blown air F2 is controlled by controlling the movement of the wind direction vane 7. Is done.
  • FIG. 2 is a cross-sectional view of the air conditioner of FIG. 1 taken along the line AA.
  • the outer wall of the air conditioner 100 has a box shape in which a side plate 8b is attached around the top plate 8a. Similarly, a box-shaped heat insulating material 9 is inserted and fixed to the inside of the outer wall of the air conditioner 100. . Further, inside the air conditioner 100, there is a turbo fan as the fan 10, and a fan motor 11 that rotates the fan 10.
  • a substantially square heat exchanger 12 is erected so as to surround the outer peripheral side of the fan 10, Below the heat exchanger 12, a drain pan 14 that receives condensed water that has condensed and condensed air in the heat exchanger 12 during cooling operation or dehumidifying operation is installed.
  • a fan blowout air passage 13 from the fan 10 to the heat exchanger 12 includes an elbow type unit elbow air passage 15 formed by a drain pan 14 and a heat insulating material 9 formed along the main body top plate 8a and the side plate 8b.
  • the air outlet 6 has a substantially rectangular shape, and the long side is formed so as to be parallel to one side of the suction grille.
  • the air outlet 6 is formed from the inner air passage wall 16 that is the wall surface on the suction grille 4 side and the suction grille 4. It is comprised by the far outer wind path wall 17. As shown in the cross-sectional views of FIGS. 2 and 3, the inner air passage wall 16 and the outer air passage wall 17 are formed in a curved air passage shape so as to face the outside of the unit with respect to the suction grill 4.
  • the inner air passage wall 16 has a substantially concave curved surface
  • the outer air passage wall 17 has a substantially convex curved surface.
  • the inner air passage wall 16 and the outer air passage wall 17 are provided to face each other to form the air outlet 6.
  • the bell mouth 18 forms an air passage from the filter 5 to the fan 10, and the intake air F ⁇ b> 1 sucked from the suction port 3 and the suction grill 4 passes through the filter 5 and then passes through the bell mouth 18.
  • the air is blown to the blowing air passage 13.
  • the air blown to the fan blowing air passage 13 is heat-exchanged by the heat exchanger 12.
  • low-temperature refrigerant that has passed through an expansion valve of a refrigerant circuit (not shown) flows through the heat exchanger 12, and cools the air in the room where the air conditioner 100 is installed.
  • the air that has passed through the heat exchanger 12 is deprived of heat and becomes low-temperature air, and passes through the unit elbow air passage 15.
  • FIG. 3 is a partially enlarged view around the outlet 6 of FIG.
  • the inner air passage wall 16 has a shape in which the center rises from the end in the longitudinal direction of the air outlet 6. That is, the left and right end portions of the inner air passage wall 16 are the inner air passage wall end portions 16a, and the central portion of the inner air passage wall 16 is the inner air passage wall central portion 16b.
  • the outer air passage wall 17 has a shape in which the center rises from the end in the longitudinal direction of the air outlet 6, both ends of the outer air passage wall 17 are the outer air passage wall end portions 17 a, and the central portion is the outer side. This is the air channel wall central portion 17b.
  • outer side air channel wall edge part 17a and the outer side air channel wall center part 17b are arrange
  • An inner air passage wall downstream end portion 16c is provided at the lower end of the inner air passage wall 16 on the downstream side so as to protrude to the inside of the air outlet 6, and an inner air passage wall step portion 16d is provided on the downstream side. Is provided.
  • the inner air passage wall step portion 16d forms a step between the opening surface of the outlet 6 and the inner air passage wall downstream end portion 16c.
  • the blower outlet 6 is composed of the inner air passage wall 16 and the outer air passage wall 17 in the longitudinal direction and the blower outlet side wall 6a in the short direction.
  • the air outlet side wall 6 a is a plane parallel to the AA cross-sectional direction that connects the inner air passage wall 16 and the outer air passage wall 17.
  • a wind direction vane 7 is provided at the air outlet 6, and the air direction vane 7 is rotated by a drive motor (not shown), and the front end of the air conditioner 100 projects from the opening surface of the air outlet 6.
  • FIG. 4 is a perspective view of the inner air passage wall of FIG. 3, and FIG. 5 is a cross-sectional view of the inner air passage wall taken along the line BB in FIG.
  • the inner air channel wall downstream end portion 16 c of the inner air channel wall 16 is substantially linear, and the inner air channel wall ends 16 a in the longitudinal direction of the inner air channel wall 16 have inner gas channels.
  • An inner air passage wall recess 19 is formed such that the air passage of the air outlet 6 is partially enlarged in the air outlet short dimension N direction with respect to the wall central portion 16b.
  • the upstream longitudinal dimension L1 of the inner air passage wall recess start end 19a which is upstream of the blown air F2 of the inner air passage wall 16, and the inner air passage wall of the inner air passage wall recess end 19b.
  • the relationship of the dimension L2 in the longitudinal direction on the downstream side of the recess is dimension L1> dimension L2.
  • the lateral width of the inner air passage wall recess 16 is continuously reduced from the upstream side to the downstream side of the outlet, and the wall surface of the inner air passage wall end 16a is continuous from the inner air passage wall recess start end 19a to the inner air passage wall recess end 19b. It is a concave surface.
  • the dimension L1 is the dimension of one side of the upstream end parallel to the longitudinal direction of the outlet 6 of the inner air passage wall end 16a
  • the dimension L2 is the dimension of the outlet 6 of the inner air passage wall end 16a. It is the dimension of one side of the downstream end parallel to the longitudinal direction.
  • the inner air passage wall recess side wall 19c is provided so as to satisfy ⁇ 1 ⁇ 90).
  • the inner air channel wall recess start end 19a is provided in parallel to the longitudinal direction of the inner air channel wall 16, and the entire inner air channel wall end 16a is formed so as to expand the air channel. Yes.
  • the inner air passage wall end 16a is configured such that the air passage once expands from the upstream to the downstream of the blown air F2 and then contracts again.
  • the blowing angle ⁇ 1 which is the angle between the inner wind passage wall 16 at the inner air passage wall downstream end portion 16c and the horizontal direction, is smaller than the blow angle ⁇ 2 at the inner air passage wall center portion 16b.
  • the flow rate of the blown air F2 blown out from both ends in the longitudinal direction of the blower outlet 6 of the wind direction vane 2 having a low wind speed can be increased, and the surface wind speed of the wind direction vane 7 is also increased. Therefore, it is possible to prevent the surroundings of the air outlet 6 and the wind direction vane 7 from being exposed during cooling. Furthermore, condensation in the air conditioner 100, dirt on the ceiling surface of the installed room and generation of mold can be prevented, and the durable years of the air conditioner 100 and room members can be extended. As a result, an air conditioner with high quality, high reliability, and improved comfort can be obtained.
  • the inclination angle ⁇ 1 of the inner air passage wall recess side wall 19c of the inner air passage wall 16 is small, the flow is difficult to expand to the outside, and if the angle is too large, the inner air passage wall recess side wall 19c becomes a resistance and a step is formed. Therefore, the inclination angle ⁇ 1 is effectively in the range of 20 ° to 60 °.
  • the inner wind passage wall recess 19 has a curved surface continuously recessed from the inner wind passage wall recess start end 19a to the inner wind passage wall recess end 19b. Since the air path of the road wall recessed part 19 is expanded and the flow is collected to the inner air path wall recessed part side wall 19c, the wind speed of the blown air F2 blown out from both ends in the longitudinal direction of the air outlet 6 increases. It is possible to prevent the dew condensation by suppressing the entrainment of room air in the vicinity of.
  • FIGS. 6 is a perspective view of the outer air passage wall 17, and FIG. 7 is a cross-sectional view of the outer air passage wall 17 in FIG.
  • the outer air passage wall end portions 17a provided at the left and right ends in the longitudinal direction of the outer air passage wall 17 blow in the short dimension N direction of the outlet 6 with respect to the outer air passage wall center portion 17b.
  • An outer air passage wall recess 20 is formed so that a part of the air passage of the outlet 6 is enlarged.
  • the outer air passage wall recess 20 extends from the outer air passage wall recess start end 20a, which is the upstream end of the blown air F2, to the outer air passage wall recess end 20b, which is the downstream end, and the outer air passage wall central portion 17b. A step is formed.
  • the wall surface between the outer air passage wall end portion 17a and the outer air passage wall center portion 17b is the outer air passage wall recess side wall 20c.
  • the outer air channel wall recess side wall 20c has an inclination angle ⁇ 2 (0 ⁇ 0) with respect to a straight line perpendicular to the air outlet longitudinal direction connecting the outer air channel wall recess start end 20a and the outer air channel wall recess end 20b in the air outlet short N direction.
  • the dimension M1 is the dimension of one side of the upstream end parallel to the longitudinal direction of the outlet 6 of the outer air passage wall end 17a.
  • the dimension M2 is the dimension of the outlet 6 of the outer air passage wall end 17a. It is the dimension of one side of the downstream end parallel to the longitudinal direction.
  • the lateral width of the outer air passage wall recess 20 in the longitudinal direction of the air outlet 6 is continuously reduced, and the outer air passage wall recess end from the outer air passage wall recess start end 20 a.
  • the curve is continuously convex over 20b.
  • the dimension M4 of the downstream end of the outer air passage wall central portion 17b is M-2 ⁇ M2.
  • the outer air channel wall recess start end 20a is provided in parallel with the longitudinal direction of the outer air channel wall 17, and the entire outer air channel wall end 17a is formed so as to expand the air channel. Yes.
  • outer air passage wall end 17a is configured such that the air passage once expands and contracts again from the upstream side to the downstream side of the blown air F2.
  • the inclination angle ⁇ 2 of the outer air passage wall recess side wall 20c of the outer air passage wall 17 is difficult to expand outward when the angle is small, and when the angle is too large, the outer air passage wall recess side wall 20c becomes resistance, and a step is formed. Since a large amount of flow overcoming occurs and the blowout flow is disturbed, a range of 20 ° to 60 ° equivalent to the inner wind path wall inclination angle ⁇ 1 is effective.
  • the outer wind path wall recess 20 has a continuously convex curved surface from the outer wind path wall recess start end 20a to the outer wind path wall recess end 20b. Since the air path of the road wall recess 20 is expanded and air flows to the outer wind path wall end 17a, the wind speed of the blown air F2 blown from both ends in the longitudinal direction of the air outlet 6 increases. Condensation can be prevented by suppressing the entrainment of room air in the vicinity of the outlet 6.
  • the wind speed at the center and the end of the blown air F2 is made uniform. Since the vertical vortex is suppressed, the room air is less likely to be entrained, and condensation in the vicinity of the air outlet can be prevented. Furthermore, when the present invention is applied to a ceiling-embedded air conditioner, it prevents the indoor air from being trapped at the end of the air outlet, thus preventing smudging on the ceiling surface and preventing the ceiling surface from being soiled. It is possible to suppress the replacement of wallpaper and ceiling members.
  • FIG. 8 is a cross-sectional view of the inner air passage wall 21 in the second embodiment.
  • the inner air passage wall 21 has a shape in which the center portion is raised from the end portion in the longitudinal direction of the air outlet 6. That is, the left and right end portions of the inner air passage wall 21 are the inner air passage wall end 21a, and the central portion of the inner air passage wall 21 is the inner air passage wall central portion 21b.
  • the inner air channel wall downstream end 21c on the lower side on the downstream side of the inner air channel wall 21 is parallel to the longitudinal direction of the inner air channel wall 21 and is substantially linear, and the left and right inner sides of the inner air channel wall 21 in the longitudinal direction.
  • An inner air passage wall recess 22 is formed such that the air passage wall end 21a partially expands in the short direction of the air outlet 6 with respect to the inner air passage wall central portion 21b.
  • the inner air passage wall recess start end 22a which is the upstream side edge of the inner air passage wall recess 22, is inclined with respect to the longitudinal direction of the inner air passage wall 21 and goes toward the longitudinal end of the inner air passage wall 21.
  • the space between the inner air passage wall recess start end 22a and the inner air passage wall recess end 22b is narrow.
  • FIG. 9 is a cross-sectional view of the outer air passage wall 23 in the second embodiment.
  • the outer air passage wall 23 has a shape in which the center rises from the end in the longitudinal direction of the air outlet 6. That is, the left and right end portions of the outer air passage wall 23 are the outer air passage wall end portions 23a, and the central portion of the outer air passage wall 23 is the outer air passage wall central portion 23b.
  • the outer air channel wall downstream end 23c on the lower side downstream of the outer air channel wall 23 is substantially straight and parallel to the longitudinal direction of the outer air channel wall 23, and the left and right outer sides of the outer air channel wall 23 in the longitudinal direction.
  • An outer air passage wall recess 24 is formed so that the air passage wall end 23a partially expands in the short direction of the outlet 6 with respect to the outer air passage wall central portion 23b.
  • the outer air passage wall recess start end 24a which is the upstream side edge of the outer air passage wall recess 24, is inclined with respect to the longitudinal direction of the outer air passage wall 23, and goes toward the longitudinal end of the outer air passage wall 23.
  • the space between the outer air passage wall recess start end 24a and the outer air passage wall recess end 24b is widened.
  • the direction of the inner air channel wall central portion 16b is increased as the inner air channel wall recess start end 22a is moved to the longitudinal end of the outlet 6 as shown in FIG.
  • the outer air passage wall recess start end 24a is inclined in the direction of the outer air passage wall central portion 17b as shown in FIG. Continuously reduce the air path.
  • Embodiment 3 FIG.
  • the ceiling-embedded air conditioner in which a turbo fan is used as a fan as an example of an air conditioner and a heat exchanger is disposed on the downstream side of the turbo fan has been described.
  • the present invention is limited to this.
  • the present invention can also be applied to a ceiling-embedded air conditioner equipped with a cross flow fan disposed facing the ceiling surface described in the third embodiment.
  • FIG. 10 is a cross-sectional view of a ceiling-embedded air conditioner 200 equipped with the crossflow fan of the third embodiment.
  • a substantially rectangular decorative panel 32 is attached to the lower part of the air conditioner 200 in plan view so as to face the ceiling 31.
  • the decorative panel 32 is provided with a suction grill 34 that forms an air suction port 33 for the air conditioner 200.
  • the air outlet 36 formed along one side of the decorative panel 32 is provided, and each air outlet 36 is provided with a wind direction vane 37 that is drivable and changes the air direction of the blown air.
  • the air sucked into the air conditioner 200 from the suction port 33 is heat-exchanged by the heat exchanger 42, then blown by the cross flow fan 40 and blown from the blower outlet 36.
  • the heat exchanger 42 is provided in a V-shaped cross section, and the cross flow fan 40 is disposed inside thereof.
  • a drain pan 44 is provided below the tip of the heat exchanger 42 having a V-shaped cross section.
  • the wind direction vane 37 is disposed so as to close the air outlet 36 when the air conditioner 200 is stopped. During operation, the wind direction vane 37 is rotated by a driving device such as a motor (not shown). The front end is located at a position protruding from the opening surface of the air outlet 36, and the blown air F2 exiting from the air outlet 36 flows along the wind direction vane 37. Therefore, the wind direction vane 37 is controlled to move so that the wind direction of the blown air F2 is controlled. Is done.
  • the outlet 36 is formed by the inner air passage wall 46 and the outer air passage wall 47.
  • the inner air passage wall 46 and the outer air passage wall 47 have the same shape as the inner air passage wall 16 described in the first and second embodiments. , 21 and the outer wind passage walls 17, 23.
  • the air conditioner 200 includes the cross flow fan 40. Since the turbo fan has a higher static pressure characteristic than the cross flow fan, the variation in the fan blowing characteristics is small with respect to the change in the ventilation resistance due to the change in the shape of the outlet, but the cross flow fan is easily affected by the variation in the ventilation resistance. Therefore, when avoiding by installing a rectifying plate or the like to prevent condensation, in the case of a cross flow fan, even if the ventilation characteristics are not deteriorated in the turbo fan, the ventilation characteristics are deteriorated and the air volume is reduced.
  • or 3 demonstrated the ceiling embedded type air conditioner, this invention is applicable also to the type of air conditioner attached to an indoor side wall.
  • the present invention can be applied to an air conditioner capable of cooling operation.

Abstract

 吹出口の長手方向の端部から漏れ出る吹出し空気の風速が小さいために室内空気を巻き込み、冷房運転時に吹出口の風向ベーンなどが結露する問題があった。 熱交換器で熱交換された空気が吹出される吹出口6を形成する壁面を備え、該壁面の吹出口6の長手方向における端部には中央部より空気の風路を拡大する凹部19が設けられており、凹部19の吹出口6の長手方向に沿う幅は、上流側の幅L1よりも下流側の幅L2の方が小さい。

Description

空気調和機
 この発明は、空気調和機に係り、特に室内機の吹出口のおける空気流の制御に関するものである。
 従来、空気調和機では、空気の吹出口の形状やその吹出口近傍の風路壁面の構造を工夫したり、吹出口に風向ベーンを設けるなどして、吹出口近傍での空気調和機への露付きの防止、使用者への気流感の抑制、或いは天井埋め込み型の空気調和機の場合は天井へのスマッジングの抑制などを行っている。
 従来の空気調和機として、空気の吹出口における流路壁面に設けられ、反り変形することによって空気の吹出方向を変更可能にする流路壁面材を備えた空気調和機がある(例えば、特許文献1参照)。特許文献1に開示されている空気調和機では、吹出空気流の吹出口におけるスパン方向への広がりを大きくして平面方向のより広い領域に吹出空気流を供給することを目的として、上下の流路壁面材が吹出し空気の上流側から下流側に向けて上下の流路壁面材の対向間隔が漸減する所定領域において、この所定領域の幅寸法が吹出し方向の上流側から下流側に向けて次第に増大するように上下の流路壁面材を反り変形させる構成が開示されている。
 また別の例として、長方形の吹出口から吹き出した空気を天井面へ導く導風部が形成され、前記導風部の終端には空気の一部をせき止める段部が形成され、さらに段部の高さは吹出口の幅方向両端部で大きく、中央部ほど漸次小さくなるように形成したものがある(例えば特許文献2参照)。
特開2004-353914号公報(0066欄、0067欄、図7及び図8) 特許第3957927号公報(0020欄、図3~図5)
 しかしながら、特許文献1の空気調和機では、幅寸法が上流側から下流側に向けて次第に増大する所定領域が、吹出口を構成する流路壁面の端部から突出するように設けられた流路壁面材に設けられており、吹出口の長手方向における左右両端の吹出空気が流路壁を過ぎたところで流路壁面材の左右両端から空気調和機の外に漏れ出てしまう。ゆえに吹出空気の長手方向の左右両端の風速が落ちてしまうので、流路壁面材の左右両端で室内の空気を巻き込み吹出口近傍で結露が生じるという問題があった。
 また、特許文献2の空気調和機では、吹出口の長手方向両端で段部の高さを大きくしているので、吹出口の両端から吹出される吹出空気の風速が遅く、吹出口の両端で室内の空気を巻き込み吹出口近傍で結露が生じるという問題があった。
 この発明は、上記のような課題を解決するためになされたもので、吹出口の長手方向端部から吹き出される吹出空気の風速を大きくすることによって、吹出口の端部から吹出される吹出空気による室内空気の巻き込みを抑制することを目的とする。
 この発明に係る空気調和機は、熱交換器で熱交換された空気が吹出される吹出口を形成する壁面を備え、前記壁面の前記吹出口の長手方向における両端部は中央部より前記空気の風路を拡大する凹部が設けられており、前記凹部は前記空気の上流側よりも下流側の方が前記長手方向における幅が小さくされており、前記吹出口は長手方向が内側風路壁と外側風路壁により、短手方向が吹出口側壁により構成されており、前記吹出口は前記空気の上流側から下流側にかけて前記空気の風路が拡大し、前記吹出口の開口面近傍で縮小しているものである。
 この発明に係る空気調和機では、冷房運転時に吹出口の長手方向両端部から吹出される吹出空気の流れを、その両端部の形状を利用して増速することによって、吹出口の端部から吹出される吹出空気による室内空気の巻き込みを抑制し、吹出口近傍での露付きを抑制することができる。
本発明の実施の形態1に示す空気調和機の外観斜視図。 図1の空気調和機のA-A断面図。 図2の吹出口周辺の部分拡大図。 図3の内側風路壁の斜視図。 図4の内側風路壁のB-B断面図。 図3の外側風路壁の斜視図。 図6の外側風路壁のB-B断面図。 実施の形態2の内側風路壁の断面図。 実施の形態2の外側風路壁の断面図。 実施の形態3のクロスフローファンを搭載した天井埋込形空気調和機の縦断面図。
実施の形態1.
 以下、本発明に係る実施の形態1における空気調和機について説明する。図1はこの発明の実施の形態1に示す空気調和機の外観斜視図である。
 本実施の形態1における空気調和機100は部屋の天井1の天井裏に設置される天井埋込型空気調和機で、図1に示すように空気調和機100の下方に平面視で略四角形状の化粧パネル2が取付けられ天井1に面して設置されている。また化粧パネル2の中央付近には空気調和機100への空気の吸込口3を形成している吸込グリル4、その下流側には空気を除塵するフィルタ5を有し、化粧パネル2の各辺に沿って形成された吹出口6を有し、さらに各吹出口6には駆動可能で吹出される空気の風向を変化させるための風向ベーン7を備えている。吸入口3から空気調和機100に吸入される吸入空気F1はフィルタ5で除塵されてから空気調和機100の内部を通過して吹出口6から吹出空気F2として吹出される。風向ベーン7は空気調和機100の停止時は吹出口6を塞ぐように配置されるが、運転時は風向ベーン7は図示しないモータなどの駆動装置によって回動し、その際、風向ベーン7の先端は吹出口6の開口面から突出する位置にあり、吹出口6から出る吹出空気F2は風向ベーン7に沿って流れるので、風向ベーン7が可動制御されることによって吹出空気F2の風向が制御される。
 次に、図2を用いて空気調和機100の内部構造について説明する。図2は図1の空気調和機のA-A断面図である。空気調和機100の外壁は天板8aの周りに側板8bが取り付けられた箱状で、同様に箱状の断熱材9が空気調和機100の外壁の内側に合わせて挿入されて固定されている。
 さらに空気調和機100の内部には、ファン10としてターボファン、ファン10を回動するファンモータ11を有し、ファン10の外周側を囲むように略四角形の熱交換器12が立設し、熱交換器12の下方には冷房運転や除湿運転時に熱交換器12で空気が凝縮し結露した凝縮水を受けるドレンパン14が設置されている。ファン10から熱交換器12までのファン吹出風路13は、ドレンパン14と本体天板8a、側板8bに沿う様に形成された断熱材9とで形成されたエルボ型のユニットエルボ風路15を介して、化粧パネル2の吹出口6に連通している。
 また、吹出口6は略長方形形状で、長辺側が吸込グリルの一辺と平行となるように形成され、吹出口6は吸込グリル4側の壁面である内側風路壁16と、吸込グリル4から遠い方の外側風路壁17とにより構成されている。図2、3の断面図のように、内側風路壁16、外側風路壁17が吸込グリル4に対しユニット外側へ向くように湾曲した風路形状を形成している。内側風路壁16が略凹形状の曲面をしており、外側風路壁17が略凸形状の曲面をしている。これら内側風路壁16と外側風路壁17が対向して設けられて吹出口6が形成されている。
 また、ベルマウス18はフィルタ5からファン10への風路を形成し、吸込口3、吸込グリル4から吸入された吸入空気F1はフィルタ5を通過した後ベルマウス18を通ってファン10によってファン吹出風路13に送風される。ファン吹出風路13に送風された空気は熱交換器12で熱交換される。特に、本実施の形態1では熱交換器12には図示しない冷媒回路の膨張弁を通過した低温の冷媒が流れているものとし、空気調和機100が設置されている室内の空気を冷却するものとする。熱交換器12を通過した空気は熱が奪われて低温の空気となって、ユニットエルボ風路15を通過する。
 ここで、図3乃至図7を用いて吹出口6周辺の構造について説明する。図3は図2の吹出口6周辺の部分拡大図である。内側風路壁16は吹出口6の長手方向において、中央が端部よりも盛り上がった形状をしている。つまり、内側風路壁16の左右の両端部分が内側風路壁端部16a、内側風路壁16の中央部分が内側風路壁中央部16bである。同様に外側風路壁17も吹出口6の長手方向において中央が端部よりも盛り上がった形状をしており、外側風路壁17の両端部が外側風路壁端部17a、中央部分が外側風路壁中央部17bである。そして、外側風路壁端部17aと外側風路壁中央部17bはそれぞれ内側風路壁端部16aと内側風路壁中央部16bと対向する位置に配置して吹出口6を形成している。内側風路壁16の下流側の下端には内側風路壁下流側端部16cが吹出口6の内側に突出するように設けられており、その下流側には内側風路壁段差部16dが設けられている。内側風路壁段差部16dは吹出口6の開口面から内側風路壁下流側端部16cの間で段差を形成している。つまり、吹出口6は長手方向が内側風路壁16と外側風路壁17、短手方向が吹出口側壁6aとから構成されている。吹出口側壁6aは内側風路壁16と外側風路壁17を繋ぐA-A断面方向と平行な面である。さらに吹出口6には風向ベーン7が設けられており、図示しない駆動モータにより風向ベーン7は回動し、空気調和機100の運転時にはその先端は吹出口6の開口面から突出している。
 図4は図3の内側風路壁の斜視図であり、図5は図4の内側風路壁のB-B矢視断面図である。図4のように内側風路壁16の内側風路壁下流側端部16cは略直線状であり、内側風路壁16の長手方向の左右の内側風路壁端部16aには内側風路壁中央部16bに対して吹出口短手寸法N方向で吹出口6の風路が一部拡大するような内側風路壁凹部19が形成されている。内側風路壁凹部19において内側風路壁16の吹出空気F2の上流側である内側風路壁凹部開始端19aの上流側長手方向の寸法L1と内側風路壁凹部終端19bの内側風路壁凹部下流側長手方向の寸法L2の関係は寸法L1>寸法L2である。吹出口上流から下流へむけ内側風路壁凹部横幅が連続的に縮小しており、内側風路壁端部16aの壁面は内側風路壁凹部開始端19aから内側風路壁凹部終端19bにかけて連続的に凹んだ曲面となっている。なお、寸法L1は内側風路壁端部16aの吹出口6の長手方向と平行な上流側端部の一辺の寸法のことであり、寸法L2は内側風路壁端部16aの吹出口6の長手方向と平行な下流側端部の一辺の寸法のことである。
 なお、図4に示すように内側風路壁16の長手方向の長さを寸法Lとすると、内側風路壁中央部16bの上流側開始端の寸法L3はL3=L-2×L1となる。また、内側風路壁中央部16bの下流側終端の寸法L4はL4=L-2×L2となる。
 図4のように吹出口6の短手方向で内側風路壁凹部開始端19aと内側風路壁下流側端部16cを結ぶ吹出口6の長手方向に直交する直線に対し傾斜角θ1(0<θ1<90)となるように内側風路壁凹部側壁19cを有している。図4に示すように、内側風路壁凹部開始端19aは内側風路壁16の長手方向と平行に設けられており、内側風路壁端部16a全体が風路拡大するように形成されている。
 さらに、内側風路壁端部16aは吹出空気F2の上流から下流にかけて一度風路が拡大し再度縮小する構成となっている。内側風路壁下流側端部16cでの内側風路壁16と水平方向との角度である吹出角度α1が内側風路壁中央部16bでの吹出角度α2より小さい。このことにより、内側風路壁16に沿って流れる吹出し空気を風向ベーン7の表面へ流すことができる。
 以上のように、内側風路壁16を形成することで、熱交換された空気が吹出口6から吹出されるとき、内側風路壁下流側端部16cのうち、特に内側風路壁凹部終端19bからは吹出口6の長手方向に拡大するように斜め外側へ吹出される。
 よって、従来風速の低い風向ベーン2の吹出口6の長手方向の両端から吹出される吹出空気F2の流れを増速でき、かつ風向ベーン7の表面風速も増加するので吹出口6及び風向ベーン7の横方向からの高温、高湿な室内空気の巻き込みが無くなり、冷房時に吹出口6周辺及び風向ベーン7の露付きを防止することができる。さらに空気調和機100での結露や設置される部屋の天井面の汚れやカビの発生が防止でき、空気調和機100や部屋部材の耐久年数も延長できる。
 以上の結果、高品質で信頼性が高く、快適性が向上した空気調和機が得られる。
 また、内側風路壁16の内側風路壁凹部側壁19cの傾斜角θ1は角度が小さいと流れが外側に拡大し難く、角度が大きすぎると前記内側風路壁凹部側壁19cが抵抗となり、段差を乗り越える流れが大きく発生し吹出し流れが乱れてしまうため、傾斜角θ1は20°~60°の範囲が効果的である。
 また、図4、図5のように内側風路壁凹部19の内側風路壁凹部開始端19aから内側風路壁凹部終端19bにかけて連続的に凹んだ曲面とすることよって、部分的に内側風路壁凹部19の風路を拡大し、内側風路壁凹部側壁19cへ流れが集まるので、吹出口6の長手方向の両端から吹出される吹出空気F2の風速が増加することにより、吹出口6の近傍での室内空気の巻き込みを抑制して、結露を防止することができる。
 次に外側風路壁17の形状について図6、図7を用いて説明する。図6は外側風路壁17の斜視図、図7は図6の外側風路壁17のC-C矢視断面図である。図6のように、外側風路壁17の長手方向の左右両端に設けられた外側風路壁端部17aが外側風路壁中央部17bに対して吹出口6の短手寸法N方向で吹出口6の風路が一部拡大するような外側風路壁凹部20が形成されている。外側風路壁凹部20は吹出空気F2の上流側の端辺である外側風路壁凹部開始端20aから下流側の端辺である外側風路壁凹部終端20bにかけて外側風路壁中央部17bと段差が形成されている。外側風路壁端部17aと外側風路壁中央部17bの間の壁面が外側風路壁凹部側壁20cである。外側風路壁凹部側壁20cは吹出口短手N方向で外側風路壁凹部開始端20aと外側風路壁凹部終端20bを結ぶ吹出口長手方向に直行する直線に対して傾斜角度θ2(0<θ2<90)で傾斜している。外側風路壁凹部20において外側風路壁17の吹出空気F2の上流側である外側風路壁凹部開始端20aの長手方向の寸法M1>下流側である外側風路壁凹部終端20bの長手方向の寸法M2となる。吹出口上流から下流へ向け外側風路壁凹部終端20bにかけて連続的に凹んだ局面となっている。なお、寸法M1は外側風路壁端部17aの吹出口6の長手方向と平行な上流側端部の一辺の寸法のことであり、寸法M2は外側風路壁端部17aの吹出口6の長手方向と平行な下流側端部の一辺の寸法のことである。吹出口6の上流側から下流側へむけ外側風路壁凹部20の吹出口6の長手方向の横幅が連続的に縮小しており、外側風路壁凹部開始端20aから外側風路壁凹部終端20bに掛けて連続的に凸の曲面となっている。
外側風路壁17の長手方向の長さを寸法Mとすると、外側風路壁中央部17bの上流側開始端の寸法M3はM3=M-2×M1となる。また、外側風路壁中央部17bの下流側終端の寸法M4はM-2×M2となる。
 図6のように吹出口6の短手方向で外側風路壁凹部開始端20aと外側風路壁下流側端部17cを結ぶ吹出口6の長手方向に直交する直線に対して傾斜角θ2となるように外側風路壁凹部側壁20cを有している。図6に示すように、外側風路壁凹部開始端20aは外側風路壁17の長手方向と平行に設けられており、外側風路壁端部17a全体が風路拡大するように形成されている。
 さらに、外側風路壁端部17aは吹出空気F2の上流から下流にかけて一度風路が拡大し再度縮小する構成となっている。
 以上のように、外側風路壁17を形成することで、熱交換された空気が吹出口6から吹出されるとき、吹出口6の長手方向の両端部からはその長手方向に拡大するように斜め外側へ吹出される。さらに図6のように外側風路壁端部17aは風路が拡大しているので空気が流れやすくなるため、吹出口6の長手方向で吹出口6の両端部から吹出される空気の風速を増すことによって室内空気の巻き込みを抑制するので、吹出口6近傍での結露を抑制することができる。
 なお、外側風路壁17の外側風路壁凹部側壁20cの傾斜角θ2は角度が小さいと流れが外側に拡大し難く、角度が大きすぎると外側風路壁凹部側壁20cが抵抗となり、段差を乗り越える流れが大きく発生し吹出し流れが乱れてしまうため、内側風路壁傾斜角θ1と同等の20°~60°の範囲が効果的である。
 また、図6、図7のように外側風路壁凹部20の外側風路壁凹部開始端20aから外側風路壁凹部終端20bにかけて連続的に凸の曲面とすることよって、部分的に外側風路壁凹部20の風路を拡大し、外側風路壁端部17aへ空気の流れが集まるので、吹出口6の長手方向の両端から吹出される吹出空気F2の風速が増加することにより、吹出口6の近傍での室内空気の巻き込みを抑制して、結露を防止することができる。
 なお、M3>M2、M4>M1とすると、さらに吹出口6の両端から吹出される吹出空気F2の風速が増すので、より露付きを防止することができる。
 以上のように、本実施の形態1の空気調和機100では吹出空気F2の中央部と端部での風速が均一化されるので、従来長手方向での風速差により生じる吹出気流両端部での縦渦が抑制されるため部屋の空気が巻き込まれ難くなり、吹出口近傍での結露を防止することができる。さらに天井埋込型の空気調和機に本願発明を適用すると、吹出口の端部での室内空気の巻き込みを抑制するので天井面へのスマッジングも防止し、天井面の汚れが防止できるので、天井壁紙や天井部材の張替えが抑制できる。また、吹出口の中央から吹出される空気を端部から吹出し、さらに吹出空気が吹出口長手方向に拡大することによって吹出空気全体の平均風速は低下するので使用者が感じる気流感を抑制することができる。その結果、高品質な空気調和機が得られる。
実施の形態2.
 実施の形態1では、図5、図7で内側風路壁凹部開始端19aと外側風路壁凹部開始端20aがそれぞれ内側風路壁16と外側風路壁17の長手方向と平行に設けられている構成について説明したが、本実施の形態2では内側風路壁凹部開始端と外側風路壁凹部開始端に傾斜を設けた構成について説明する。尚、本実施の形態2において実施の形態1と同一構成部分には同一符号を付し説明は省略する。
 図8は本実施の形態2における内側風路壁21の断面図である。内側風路壁21は実施の形態1と同様に、吹出口6の長手方向において、中央部が端部よりも盛り上がった形状をしている。つまり、内側風路壁21の左右の両端部分が内側風路壁端部21a、内側風路壁21の中央部分が内側風路壁中央部21bである。内側風路壁21の下流側の下辺の内側風路壁下流側端部21cは内側風路壁21の長手方向と平行で略直線状であり、内側風路壁21の長手方向の左右の内側風路壁端部21aが内側風路壁中央部21bに対して吹出口6の短手方向に対して風路が一部拡大するような内側風路壁凹部22が形成されている。内側風路壁凹部22の上流側の端辺である内側風路壁凹部開始端22aは内側風路壁21の長手方向に対して傾斜し、内側風路壁21の長手方向の端に向かうにつれて、内側風路壁凹部開始端22aと内側風路壁凹部終端22bとの間隔が狭くなっている。内側風路壁端部21aと内側風路壁中央部21bの間には段差があり、内側風路壁凹部側壁22cがその段差部を形成している。
 図9は本実施の形態2における外側風路壁23の断面図である。外側風路壁23は実施の形態1と同様に、吹出口6の長手方向において、中央が端部よりも盛り上がった形状をしている。つまり、外側風路壁23の左右の両端部分が外側風路壁端部23a、外側風路壁23の中央部分が外側風路壁中央部23bである。外側風路壁23の下流側の下辺の外側風路壁下流側端部23cは外側風路壁23の長手方向と平行で略直線状であり、外側風路壁23の長手方向の左右の外側風路壁端部23aが外側風路壁中央部23bに対して吹出口6の短手方向に対して風路が一部拡大するような外側風路壁凹部24が形成されている。外側風路壁凹部24の上流側の端辺である外側風路壁凹部開始端24aは外側風路壁23の長手方向に対して傾斜し、外側風路壁23の長手方向の端に向かうにつれて、外側風路壁凹部開始端24aと外側風路壁凹部終端24bとの間隔が広がっている。外側風路壁端部23aと外側風路壁中央部23bの間には段差があり、外側風路壁凹部側壁24cがその段差部を形成している。
 以上のように、本実施の形態2の空気調和機では、図8のように内側風路壁凹部開始端22aを吹出口6の長手方向の端にむかうにつれて内側風路壁中央部16bの方向へ傾斜させる、また図9のように同様に外側風路壁凹部開始端24aを外側風路壁中央部17bの方向に傾斜させることにより、吹出口6の長手方向の両端に向かうにつれて吹出空気F2の風路を連続的に縮小させる。このような内側風路壁21と外側風路壁23の形状にすることにより吹出空気F2が内側風路壁凹部側壁22c、外側風路壁凹部側壁24cに集め、吹出口6の両端での吹出空気F2の風速を増すことができ、吹出口6近傍での結露をより防止することができる。
実施の形態3.
 実施の形態1、2では空気調和機の一例としてファンとしてターボファンを用いターボファン下流側に熱交換器を配設した天井埋込形空気調和機について述べたが、本願発明はこれに限定されるものではなく、本実施の形態3で説明する天井面に面して配設されるクロスフローファンを搭載した天井埋込形空気調和機に対しても適用することができる。
図10は本実施の形態3のクロスフローファンを搭載した天井埋込形空気調和機200の断面図である。図10に示すように空気調和機200の下部に平面視で略四角形状の化粧パネル32が取付けられ天井31に面して設置されている。また化粧パネル32には空気調和機200への空気の吸込口33を形成している吸込グリル34が設けられている。化粧パネル32の一辺に沿って形成された吹出口36を有し、さらに各吹出口36には駆動可能で吹出される空気の風向を変化させるための風向ベーン37を備えている。吸入口33から空気調和機200に吸入される空気は熱交換器42で熱交換された後、クロスフローファン40で送風されて吹出口36から吹出される。熱交換器42は断面V字状に設けられクロスフローファン40はその内側に配置されている。断面V字状の熱交換器42の先端の下方にはドレンパン44が設けられている。風向ベーン37は空気調和機200の停止時は吹出口36を塞ぐように配置されるが、運転時は風向ベーン37は図示しないモータなどの駆動装置によって回動し、その際、風向ベーン37の先端は吹出口36の開口面から突出する位置にあり、吹出口36から出る吹出空気F2は風向ベーン37に沿って流れるので、風向ベーン37が可動制御されることによって吹出空気F2の風向が制御される。内側風路壁46、外側風路壁47により吹出口36が形成されているが、内側風路壁46と外側風路壁47の形状は実施の形態1、2で説明した内側風路壁16、21と外側風路壁17、23と同様である。
 以上のように本実施の形態3の空気調和機200は、クロスフローファン40を備えている。ターボファンはクロスフローファンに対し高静圧な特性のため、吹出口の形状変更による通風抵抗変化に対しファン送風特性の変動は小さいが、クロスフローファンは通風抵抗の変動を受けやすい。そのため、結露防止のために整流板等を設置して回避する場合、ターボファンでは送風特性が悪化しなくてもクロスフローファンの場合、送風特性が悪化し風量低下してしまうため、本発明の形態3のように風路内に設置物がなく、風路壁面の形態のみで主流への通風抵抗増加を極力縮小し、副流である風路壁面近傍の流れで結露対策可能なため、特に有効である。
 尚、実施の形態1乃至3では天井埋込型の空気調和機について説明したが、室内の側壁に取り付けるタイプの空気調和機に対しても本願発明を適用することができる。
 本発明は、冷房運転可能な空気調和機に適用することができる。
1 天井、
2 化粧パネル、
3 吸込口、
4 吸込グリル、
5 フィルタ、
6 吹出口、
6a 吹出口側壁、
7 風向ベーン、
8a 天板、
8b 側板、
9 断熱材、
10 ファン、
11 ファンモータ、
12 熱交換器、
13 ファン吹出風路、
14 ドレンパン、
15 ユニットエルボ風路、
16 内側風路壁、
16a 内側風路壁端部、
16b 内側風路壁中央部、
16c 内側風路壁下流側端部、
16d 内側風路壁段差部、
17 外側風路壁、
17a 外側風路壁端部、
17b 外側風路壁中央部、
17c 外側風路壁下流側端部、
18 ベルマウス、
19 内側風路壁凹部、
19a 内側風路壁凹部開始端、
19b 内側風路壁凹部終端、
19c 内側風路壁凹部側壁、
20 外側風路壁凹部、
20a 外側風路壁凹部開始端、
20b 外側風路壁凹部終端、
20c 外側風路壁凹部側壁、
21 内側風路壁、
21a 内側風路壁端部、
21b 内側風路壁中央部、
21c 内側風路壁下流側端部、
22 内側風路壁凹部、
22a 内側風路壁凹部開始端、
22b 内側風路壁凹部終端、
22c 内側風路壁凹部側壁、
23 外側風路壁、
23a 外側風路壁端部、
23b 外側風路壁中央部、
23c 外側風路壁下流側端部、
24 外側風路壁凹部、
24a 外側風路壁凹部開始端、
24b 外側風路壁凹部終端、
24c 外側風路壁凹部側壁、
31 天井、
32 化粧パネル、
33 吸込口、
34 吸込グリル、
36 吹出口、
37 風向ベーン、
40 クロスフローファン、
42 熱交換器、
44 ドレンパン、
46 内側風路壁、
47 外側風路壁、
100、200 空気調和機。

Claims (5)

  1. 熱交換器で熱交換された空気が吹出される吹出口を形成する壁面を備え、
    前記壁面の前記吹出口の長手方向における両端部は中央部より前記空気の風路を拡大する凹部が設けられており、前記凹部は前記空気の上流側よりも下流側の方が前記長手方向における幅が小さくされており、
    前記吹出口は長手方向が内側風路壁と外側風路壁により、短手方向が吹出口側壁により構成されており、前記吹出口は前記空気の上流側から下流側にかけて前記空気の風路が拡大し、前記吹出口の開口面近傍で縮小している空気調和機。
  2. 前記壁面である前記内側風路壁又は前記外側風路壁の前記端部と前記中央部の間には段差を形成する側壁が設けられており、前記側壁は前記吹出口の長手方向と直交する方向に対し傾斜角θで交わり、前記空気の上流側から下流側にかけて前記壁面の端部の前記長手方向における幅が連続的に小さくなっている請求項1に記載の空気調和機。
  3. 前記壁面の前記端部の前記空気の上流側の端辺は、前記吹出口の長手方向の終端に向かうにつれて、前記凹部の深さを浅くする方向へ傾斜している請求項1又は2に記載の空気調和機。
  4. 前記傾斜角θは20°~60°である請求項2又は3に記載の空気調和機。
  5. 前記壁面は凹形状の曲面の内側風路壁と凸形状の曲面の外側風路壁とを有し、
    前記内側風路壁と前記外側風路壁はそれぞれ前記凹部を備え、前記内側風路壁の凹部と前記外側風路壁の凹部は対向して設けられている請求項1乃至4のいずれかに1項に記載の空気調和機。
PCT/JP2011/005596 2010-10-04 2011-10-04 空気調和機 WO2012046438A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES11830372T ES2795376T3 (es) 2010-10-04 2011-10-04 Acondicionador de aire
EP11830372.6A EP2626646B1 (en) 2010-10-04 2011-10-04 Air conditioner
US13/820,852 US9513020B2 (en) 2010-10-04 2011-10-04 Air-conditioning apparatus
CN201180048063.9A CN103154629B (zh) 2010-10-04 2011-10-04 空调机
AU2011311102A AU2011311102B2 (en) 2010-10-04 2011-10-04 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010224829A JP5247784B2 (ja) 2010-10-04 2010-10-04 空気調和機
JP2010-224829 2010-10-04

Publications (1)

Publication Number Publication Date
WO2012046438A1 true WO2012046438A1 (ja) 2012-04-12

Family

ID=45927444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005596 WO2012046438A1 (ja) 2010-10-04 2011-10-04 空気調和機

Country Status (7)

Country Link
US (1) US9513020B2 (ja)
EP (1) EP2626646B1 (ja)
JP (1) JP5247784B2 (ja)
CN (1) CN103154629B (ja)
AU (1) AU2011311102B2 (ja)
ES (1) ES2795376T3 (ja)
WO (1) WO2012046438A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107265262A (zh) * 2017-06-20 2017-10-20 菱电电梯有限公司 具有空气净化功能的载客电梯
WO2022019234A1 (ja) * 2020-07-22 2022-01-27 ダイキン工業株式会社 吹出ユニットおよび空気調和装置

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5805186B2 (ja) * 2011-06-09 2015-11-04 三菱電機株式会社 空気調和機の室内機
JP6128305B2 (ja) 2012-04-27 2017-05-17 株式会社富士通ゼネラル 空気調和機
JP5967358B2 (ja) * 2012-04-27 2016-08-10 株式会社富士通ゼネラル 空気調和機用の制御回路および制御プログラム
JP5678953B2 (ja) 2012-12-28 2015-03-04 株式会社富士通ゼネラル 空気調和機および制御回路
JP5678952B2 (ja) 2012-12-28 2015-03-04 株式会社富士通ゼネラル 空気調和機
JP5664644B2 (ja) 2012-12-28 2015-02-04 株式会社富士通ゼネラル 空気調和機および制御回路
KR102053223B1 (ko) * 2013-07-02 2020-01-07 엘지전자 주식회사 바람 가리개 및 이를 포함한 공기 조화기
WO2015155855A1 (ja) * 2014-04-09 2015-10-15 三菱電機株式会社 空気調和機
US10365007B2 (en) * 2014-09-30 2019-07-30 Fujitsu General Limited Ceiling-embedded air conditioner
US10240805B2 (en) 2014-09-30 2019-03-26 Daikin Industries, Ltd. Indoor unit for air conditioner
WO2016084216A1 (ja) * 2014-11-28 2016-06-02 日立アプライアンス株式会社 空気調和機の室内機
KR101707617B1 (ko) 2015-09-30 2017-02-21 삼성전자주식회사 공기 조화기 및 그 제어 방법
JP2017215086A (ja) * 2016-05-31 2017-12-07 三菱重工サーマルシステムズ株式会社 空気調和機
EP4160097A3 (en) 2016-12-21 2023-07-05 Samsung Electronics Co., Ltd. Air conditioner
WO2019146036A1 (ja) 2018-01-25 2019-08-01 三菱電機株式会社 空気調和機の室内機
JP7348714B2 (ja) 2018-03-30 2023-09-21 古河電気工業株式会社 カーボンナノチューブ線材、カーボンナノチューブ被覆電線、カーボンナノチューブ線材の製造方法及びカーボンナノチューブ被覆電線の加工方法
CN108489064B (zh) * 2018-05-07 2023-07-14 珠海格力电器股份有限公司 出风结构及具有其的空调器
CN110779101B (zh) * 2018-07-13 2022-04-29 大金工业株式会社 空调室内机
CN109611951A (zh) * 2019-01-24 2019-04-12 Tcl空调器(中山)有限公司 一种空调柜机
US20220082294A1 (en) * 2019-02-07 2022-03-17 Mitsubishi Electric Corporation Indoor unit of air-conditioning apparatus and air-conditioning apparatus
JP7232986B2 (ja) * 2019-03-27 2023-03-06 パナソニックIpマネジメント株式会社 天井埋め込み形空気調和機

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0564645U (ja) * 1992-02-04 1993-08-27 株式会社富士通ゼネラル 空気調和機の風向変更装置
JPH08313042A (ja) * 1995-05-16 1996-11-29 Daikin Ind Ltd 天井埋込型空気調和装置の風向調整構造
JPH09113024A (ja) * 1995-10-18 1997-05-02 Fujitsu General Ltd ルーバー
JPH09229403A (ja) * 1996-02-20 1997-09-05 Fujitsu General Ltd 空気調和機
JPH10160238A (ja) * 1996-11-29 1998-06-19 Mitsubishi Electric Corp 埋め込み形空気調和装置
JP2001254998A (ja) * 2001-02-27 2001-09-21 Mitsubishi Electric Corp 空気調和機の吹出口
JP2003329295A (ja) * 2002-05-10 2003-11-19 Mitsubishi Heavy Ind Ltd 空調装置のルーバー及び空調装置の気流制御構造、並びに空調装置
JP2004353914A (ja) * 2003-05-28 2004-12-16 Daikin Ind Ltd 空気吹出口構造及びこれを備えた空気調和機用室内ユニット
JP2007024345A (ja) * 2005-07-12 2007-02-01 Mitsubishi Electric Corp 空気調和機
JP2010038490A (ja) * 2008-08-07 2010-02-18 Mitsubishi Electric Corp 天井埋込形空気調和機

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792257B2 (ja) * 1988-08-09 1995-10-09 株式会社東芝 空気調和装置
JPH07217985A (ja) * 1993-12-10 1995-08-18 Fujitsu General Ltd 空気調和機
JP3240854B2 (ja) * 1994-09-26 2001-12-25 三菱電機株式会社 空気調和機の吹出口
US6250373B1 (en) * 1998-07-20 2001-06-26 Carrier Corporation Ceiling mounted apparatus for heating and cooling
JP3957927B2 (ja) * 1999-08-30 2007-08-15 三菱重工業株式会社 天井埋込型空気調和装置
ITVI20030021U1 (it) * 2003-04-22 2004-10-23 Xiang Srl Ora Xiang Spa Climatizzatore a soffitto
CN1553102A (zh) * 2003-05-30 2004-12-08 乐金电子(天津)电器有限公司 整体式空气调节器室内一侧的空气流动引导结构
JP4684085B2 (ja) * 2005-02-24 2011-05-18 三菱電機株式会社 天井埋込型空気調和機
JP5012249B2 (ja) * 2006-08-07 2012-08-29 株式会社デンソー 車両空調用吹出ダクトおよび車両用空調装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0564645U (ja) * 1992-02-04 1993-08-27 株式会社富士通ゼネラル 空気調和機の風向変更装置
JPH08313042A (ja) * 1995-05-16 1996-11-29 Daikin Ind Ltd 天井埋込型空気調和装置の風向調整構造
JPH09113024A (ja) * 1995-10-18 1997-05-02 Fujitsu General Ltd ルーバー
JPH09229403A (ja) * 1996-02-20 1997-09-05 Fujitsu General Ltd 空気調和機
JPH10160238A (ja) * 1996-11-29 1998-06-19 Mitsubishi Electric Corp 埋め込み形空気調和装置
JP2001254998A (ja) * 2001-02-27 2001-09-21 Mitsubishi Electric Corp 空気調和機の吹出口
JP2003329295A (ja) * 2002-05-10 2003-11-19 Mitsubishi Heavy Ind Ltd 空調装置のルーバー及び空調装置の気流制御構造、並びに空調装置
JP2004353914A (ja) * 2003-05-28 2004-12-16 Daikin Ind Ltd 空気吹出口構造及びこれを備えた空気調和機用室内ユニット
JP2007024345A (ja) * 2005-07-12 2007-02-01 Mitsubishi Electric Corp 空気調和機
JP2010038490A (ja) * 2008-08-07 2010-02-18 Mitsubishi Electric Corp 天井埋込形空気調和機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107265262A (zh) * 2017-06-20 2017-10-20 菱电电梯有限公司 具有空气净化功能的载客电梯
WO2022019234A1 (ja) * 2020-07-22 2022-01-27 ダイキン工業株式会社 吹出ユニットおよび空気調和装置

Also Published As

Publication number Publication date
CN103154629B (zh) 2016-05-18
CN103154629A (zh) 2013-06-12
ES2795376T3 (es) 2020-11-23
JP5247784B2 (ja) 2013-07-24
US9513020B2 (en) 2016-12-06
EP2626646B1 (en) 2020-05-13
AU2011311102B2 (en) 2014-07-31
US20130167578A1 (en) 2013-07-04
EP2626646A1 (en) 2013-08-14
JP2012078031A (ja) 2012-04-19
AU2011311102A1 (en) 2013-04-11
EP2626646A4 (en) 2018-03-28

Similar Documents

Publication Publication Date Title
JP5247784B2 (ja) 空気調和機
JP6022003B2 (ja) 空気調和機の室内機
JP4947227B1 (ja) 空気調和機
EP2463599B1 (en) Wall-hanging air conditioner
AU2014379851B2 (en) Air conditioner
WO2010119893A1 (ja) 空気調和装置
EP2933574B1 (en) Indoor unit of air conditioner
JP6639654B2 (ja) 空気調和機
JP7232986B2 (ja) 天井埋め込み形空気調和機
JP6139669B2 (ja) 空気調和機
WO2019229879A1 (ja) 空気調和機の室内機
WO2019171462A1 (ja) 室内機および空気調和機
JP2017116146A5 (ja)
CN208382343U (zh) 空调室内机和空调器
WO2015155855A1 (ja) 空気調和機
JP6233398B2 (ja) 空気調和装置の室内ユニット
JP4271101B2 (ja) 吹出グリル装置、吹出チャンバ装置及びこれを用いたビルトイン型空気調和機
JP6956794B2 (ja) 空気調和機の室内機
JP6739619B2 (ja) 空気調和機の室内機
JP5870251B2 (ja) 空気調和機
JP6738999B2 (ja) エアカーテン装置
JP6153141B2 (ja) 空気調和機
JP6948533B2 (ja) エアカーテン装置
JP2013015311A5 (ja)
JP2004218877A (ja) 送風装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180048063.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11830372

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13820852

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011311102

Country of ref document: AU

Date of ref document: 20111004

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011830372

Country of ref document: EP