WO2012045772A1 - Optoelektronisches halbleiterbauelement und verfahren zu seiner herstellung - Google Patents

Optoelektronisches halbleiterbauelement und verfahren zu seiner herstellung Download PDF

Info

Publication number
WO2012045772A1
WO2012045772A1 PCT/EP2011/067381 EP2011067381W WO2012045772A1 WO 2012045772 A1 WO2012045772 A1 WO 2012045772A1 EP 2011067381 W EP2011067381 W EP 2011067381W WO 2012045772 A1 WO2012045772 A1 WO 2012045772A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
substrate
phosphor
optoelectronic semiconductor
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2011/067381
Other languages
German (de)
English (en)
French (fr)
Inventor
Angela Eberhardt
Roland Hüttinger
Reinhold Schmidt
Stefan Kotter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Osram GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram GmbH filed Critical Osram GmbH
Priority to US13/878,249 priority Critical patent/US20130207151A1/en
Priority to JP2013532182A priority patent/JP2013539238A/ja
Priority to CN201180048562.8A priority patent/CN103155187B/zh
Priority to KR1020137011927A priority patent/KR101845840B1/ko
Priority to EP11766989.5A priority patent/EP2625724B1/de
Publication of WO2012045772A1 publication Critical patent/WO2012045772A1/de
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/858Means for heat extraction or cooling
    • H10H20/8581Means for heat extraction or cooling characterised by their material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/851Wavelength conversion means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/851Wavelength conversion means
    • H10H20/8514Wavelength conversion means characterised by their shape, e.g. plate or foil
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/851Wavelength conversion means
    • H10H20/8511Wavelength conversion means characterised by their material, e.g. binder
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/858Means for heat extraction or cooling
    • H10H20/8583Means for heat extraction or cooling not being in contact with the bodies

Definitions

  • the invention is based on an optoelectronic semiconductor component according to the preamble of claim 1, in particular a conversion LED. It also describes an associated manufacturing process.
  • WO 2006/122524 describes a luminescence conversion LED which uses a phosphor which is embedded in glass.
  • An object of the present invention is, in an optoelectronic semiconductor device according to the preamble of claim 1 an improved solution for the Problem of heat dissipation at the conversion element to ⁇ admit. Another object is to provide for a producible information model.
  • the present invention solves the following problem: improved efficiency and lifetime of the LED by increased heat dissipation of the conversion element by replacement of the organic material (plastic) by glass and ceramic or glass ceramic, which have better thermal conductivity and UV resistance.
  • a modified approach of a separate conversion element which is structured is used: use of a thin transparent or translucent ceramic or glass-ceramic foil as substrate or carrier material.
  • the thickness of the carrier film is in the range> 1 ⁇ to ⁇ 100 ⁇ , preferably ⁇ 3 ⁇ to ⁇ 50 ⁇ , in particular ⁇ 5 ⁇ to ⁇ 20 ⁇ .
  • This film can, for. B. produced by doctor Blade method and then thermally sintered. Subsequently, a thin compact and relatively low-bubble glass layer is laminated to the film. The importance of a low-bubble layer lies in its reduced scattering effect.
  • low-bubble means, in particular, that the proportion of bubbles in the glass layer is at most 10% by volume, preferably at most 5% by volume, particularly preferably at most 1% by volume. Due to the temperature control at the manu This parameter can be set specifically for the glass matrix. The higher the temperature, the less bubbles the glass layer becomes. The sinking of the phosphor is carried out by comparison, at significantly lower temperatures to damage the phosphor to avoid mög ⁇ lichst.
  • the thickness of the glass layer is ⁇ 200 ⁇ , preferably ⁇ 100 ⁇ , in particular ⁇ 50 microns, but at least as high as the largest phosphor particles.
  • This layer can, for. B. by screen printing of glass powder with subsequent glazing or by applying molten glass are applied directly to the film.
  • Al 2 O 3 , YAG, AlN, A10N, SiAlON or a glass ceramic is preferably suitable as the material for the substrate.
  • a material for the glass layer is preferably a low-melting glass, preferably lead-free or lead poor, with a He ⁇ softening temperature ⁇ 500 ° C, preferably 350 to 480 ° C, as described for example in DE 10 2010 009 456.0.
  • this system forms a laminate.
  • the laminate coated with phosphor is then heated to such an extent (in particular, the temperature is at most at the so-called hemisphere point of the glass, in particular special of the Gla ⁇ ses) that the glass only slightly softened at least the softening temperature of at least Tg of the glass, especially before ⁇ Trains t and the light ⁇ material sinks into the glass layer and surrounded it.
  • the advantage of sinking is that only low temperatures are required and thus the phosphor is not damaged. In the case of the glass from DE 10 2010 009 456.0 this is a temperature of at most 350 ° C.
  • Suitable luminescent materials are in principle all known phosphors suitable for LED conversion or mixtures of phosphors, in particular garnets, nitridosilicates, orthosilicates, sions, sialones, calsines, etc.
  • the substrate As a further alternative, it is possible to choose the substrate as a very thin film of ceramic or glass ceramic and then to infiltrate with glass. Compared to the two aforementioned examples, the substrate must be only lightly sintered into the sem ⁇ case, this is the Reduced sintering temperature compared to a "more compact" sintering or shortening the sintering time, ie only so high that the particles of the ceramic are fixed together and many pores remain, so a porous body is formed.
  • the porosity is in the range between 30-70% by volume
  • a thin glass layer thicker than at least 1 ⁇ m and at most 200 ⁇ m thick is applied directly and then heated to a temperature which corresponds at least to the pour point of the glass, preferably at most to the refining temperature of the glass that the glass is very thin liquid and is drawn by capillary action into the porous film which constitutes the substrate.
  • the glass is preferably a low-melting glass, before ⁇ preferably lead-free or bleiarm, with a Softening ⁇ temperature of at most 500 ° C as described for example in DE 10 2010 009 456.0
  • the temperatures for infiltration in this case are at least 400 ° C., preferably at least 500 ° C.
  • the then applied to the substrate phosphor is allowed at relatively low temperatures of at least 50 ° C, preferably at higher temperatures, ie at a temperature which corresponds at most to the hemisphere point of the glass in the substrate, more precisely in the glass contained in the pores, sink.
  • temperatures of at least 50 ° C, preferably at higher temperatures, ie at a temperature which corresponds at most to the hemisphere point of the glass in the substrate, more precisely in the glass contained in the pores, sink.
  • this is a temperature of at most 350 ° C.
  • a thin glass layer, in which the phosphor sinks remains on the surface of the film in a first exemplary embodiment. In this case, the adhesion is much more robust than with a laminate.
  • a glass ⁇ shot at the film surface is not given, the phosphor blend of the substrate is lowered into the surface structure of the glass-ceramic.
  • the conversion element can be attached to the chip either with an inorganic adhesive such as a low melting glass or an inorganic sol-gel as well as with organic adhesive such as silicone or also an organic sol-gel. It can also be used as a "remote phosphor", ie away from the chip.
  • an inorganic adhesive such as a low melting glass or an inorganic sol-gel as well as with organic adhesive such as silicone or also an organic sol-gel. It can also be used as a "remote phosphor", ie away from the chip.
  • the glass of the substrate used, in particular of the laminate, low ⁇ melting and simultaneously serves as an inorganic Kle ⁇ over between the conversion element and chip.
  • Such glass is, for example, in DE 10 2010 009 456.0 ⁇ be written and allows sinking of the phosphor and a bonding chip and conversion element at temperatures ⁇ 350 ° C.
  • the glass in this case faces the chip.
  • the film may be coated on both sides with glass and possibly with phosphor on one or both sides. The application of the glass ge ⁇ z. B. by immersion, so-called. Dipping, the film in the molten glass. Subsequently, the phosphor coating and the sinking of the phosphor into the glass at low temperatures, possibly in two steps.
  • the substrate, in particular laminate can also be a sand ⁇ more, that is, the glass layer with the sunken phosphor is located between two sheets, which consist of the same or of different materials, and one or both sides are coated with glass.
  • the glass material can be chosen differently.
  • the glass a high refractive index (preferably n> 1.8), in particular the refractive index of the glass is similar to the refractive index of the embedded phosphor ⁇ component or components and the phosphor chosen to be similar to the ceramic / glass-ceramic.
  • the ceramic or glass ceramic foil may be facing or facing away from the chip. In the latter case, the ceramic also has a light-scattering effect.
  • the latter depends inter alia on the particle size of the particles contained in the ceramic or glass ceramic and can sometimes be influenced by the temperature treatment ⁇ ment.
  • the particle size is typically ⁇ 60 ⁇ , preferably ⁇ 40 ⁇ , particularly preferably be ⁇ 30 ⁇ . They should be at least 1 nm, more preferably we ⁇ ssens 5 nm, more preferably be at least 10 nm, for many applications is a minimum value of 100 nm suffi ⁇ accordingly.
  • a set of conversion elements, and in particular laminate base produced as a larger part in ei ⁇ nem operation and then cut into smaller pieces, the actual conversion elements.
  • the thickness of the glass layer with the sunken Leucht ⁇ material should preferably be ⁇ 200 ⁇ , preferably ⁇ 100 ⁇ , in particular ⁇ 50 ⁇ .
  • the thickness of the glass layer is at least as high as the largest luminous material particles of the phosphor powder used, and in particular ⁇ sondere at least twice as thick.
  • Suitable glass matrix are, for example, phosphate glasses and borate glasses, in particular alkali phosphate glasses, aluminum phosphate glasses, zinc phosphate glasses, phosphotellurite glasses, bismuth borate glasses, zinc borate glasses and zinc bismuth borate glasses.
  • ZnO-Bi 2 03 B-2 03 also in conjunction with Si0 2 and / or alkali and / or alkaline earth oxide and / or Al 2 03 such as ZnO-Bi 2 0 3 -B 2 0 3 -Si0 2 or ZnO Bi 2 O 3 -B 2 O 3 -BaO-SrO-SiO 2 ; ZnO-B 2 0 3i also in conjunction with Si0 2 and / or alkali and / or alkaline earth metal oxide and / or A1 2 0 3 such as ZnO-B 2 0 3 - Si0 2 ;
  • Bi 2 03-B 2 03 also in conjunction with Si0 2 and / or Alkakl and / or alkaline earth oxide and / or Al 2 O 3 such as Bi 2 03-B 2 0 Si0 2 .
  • the carrier film may consist of a ceramic such as Al 2 O 3 , YAG, AlN, A10N, SiAlON, etc. or a glass ceramic.
  • the thickness of the carrier film is preferably in the range of ⁇ 100 ⁇ , preferably ⁇ 50 ⁇ , in particular ⁇ 20 ⁇ . But it should be at least 1 ⁇ , better 3 ⁇ , preferably min ⁇ least 5 ⁇ thick.
  • the crystals contained in the glass ceramic can be excited to fluorescence even by exciting the primary emission of the chip and thus contributing to the conversion.
  • a well-known example is YAG: Ce.
  • the ceramic film contains a phosphor such.
  • B. YAG: Ce or it consists partially or completely of this.
  • a thin, low-bubble glass layer is laminated to the ceramic film, whereupon a separate phosphor is applied. This sinks by a subsequent slight warming in the glass.
  • the applied separate phosphor can usually be another phosphor whose emission lies in a different spectral range than that of the yellow-emitting YAG: Ce.
  • the separate phosphor is a red emitting phosphor, which produces warm white light with a blue emitting chip and the yellow emitting ceramic. By selecting the proportion of white ⁇ further phosphor, the color of the LED can be controlled.
  • an identical or similar phosphor as the phosphor already introduced in the ceramic of the substrate additionally in the glass layer is brought to compensate, for example, a chip-based Farbort ⁇ fluctuation (drift).
  • a chip-based Farbort ⁇ fluctuation drift
  • oxidic particles such as, for example, Al 2 O 3 , TiO 2 , ZrC> 2 may also be added to the phosphor as a scattering agent.
  • two ceramics which already contain the phosphor are thinly coated with glass.
  • the glassy layer ei ⁇ nes of the two ceramic plates is then coated with phosphor, which sinks into this after a temperature treatment.
  • Following the glassy surfaces of the two ceramic plates are placed on each other and glued together in a further temperature step.
  • the color location of the two ceramic plates differs from that of the sunken phosphor.
  • only one ceramic plate is thinly coated with glass and then glued at a temperature treatment with the other ceramic plate.
  • the ceramic film As a substrate with glass on both sides, so that it is also possible to apply phosphor on both sides with the same or different emission.
  • a glass ceramic as a substrate.
  • the conversion element consists of a combination of glass and substrate, namely ceramic or glass ceramic, wherein a phosphor is embedded in glass.
  • the glass matrix can u. U. simultaneously serve as an adhesive for the composite of chip and conversion element.
  • the glass used should be compact, ie melted and low in bubbles.
  • the substrate, whether ceramic or glass ceramic can also serve as a light-scattering element and is at least translucent.
  • the substrate, whether ceramic or glass ceramic can also contain or consist of phosphor itself.
  • the optoelectronic semiconductor component may be an LED or else a laser.
  • An optoelectronic semiconductor device with a light source, a housing and electrical An circuits ⁇ , wherein the light source comprises a chip on ⁇ , the primary radiation in the UV or blue emitted whose peak wavelength is 300 to 490 nm, in particular in the area, where the primary radiation partially or is completely converted by a front thereof ⁇ mounted conversion element in radiation of a different wavelength, characterized in ⁇ net that the conversion element has a translucent or transparent substrate is made of Kera ⁇ mik or glass-ceramic, wherein the sub ⁇ strat applied to a glass matrix is, in which a phosphor is embedded.
  • the optoelectronic semiconductor device according to claim 1. ⁇ , characterized in that the Glasmat ⁇ rix is applied as a layer on the substrate.
  • the optoelectronic semiconductor device according to claim 1. ⁇ , characterized in that the substrate has pores into which the glass matrix is at least partially introduced.
  • the optoelectronic semiconductor device according to claim 1. ⁇ , characterized in that the substrate and the glass matrix form a laminate.
  • the optoelectronic semiconductor device according to claim 1. ⁇ , characterized in that the Glasmat ⁇ rix simultaneously serves as an adhesive for a composite of chip and conversion element or for a combination of two conversion elements.
  • the optoelectronic semiconductor device according to claim 1. ⁇ , characterized in that the Glasmat ⁇ rix free of bubbles or substantially free of bubbles.
  • the optoelectronic semiconductor device according to claim 1. ⁇ , characterized in that the substrate itself is partly or fully fluorescent.
  • the optoelectronic semiconductor device according to claim 1. ⁇ , characterized in that the substrate is acted upon on both sides with a glass matrix.
  • a method according to claim 10 characterized in that in the second step, a glass layer is laminated, in particular either by Siebdru ⁇ ck glassy powder with subsequent glazing or by mounting molten glass directly onto the substrate.
  • a glass layer is laminated, which is already provided with phosphor, in particular by screen printing of glassy powder which has been previously mixed with phosphor powder, followed by glazing.
  • Figure 1 shows a conversion LED according to the prior art
  • FIG. 2 shows an LED with a novel converter element
  • Figure 8 shows a substrate with pores and contained therein
  • FIG. 1 shows as a semiconductor component a conversion LED 1 which uses a chip 2 of the type InGaN as the primary radiation source. It has a housing 3 with a boar ⁇ rd 4, on which the chip is seated, and a reflector 5. The chip is preceded by a conversion element 6, which partly konver ⁇ the blue radiation by means of a phosphor, such as YAG: Ce, in longer wavelength radiation ⁇ advantage.
  • the conversion element 6 is platelet-shaped according to the prior art and has a silicone bed in which phosphor powder is dispersed. The electrical connections are not shown, they correspond übli ⁇ cher technology.
  • FIG. 2 shows a first exemplary embodiment according to the invention.
  • the conversion element 6 used is a substrate 7 made of Al 2 O 3, which is translucent and is shaped as a foil in the manner of a platelet.
  • a thin glass layer 8 is applied, in the sense of a matrix. In this phosphor particles are distributed, which are sunk into the glass matrix and are completely covered by this.
  • Glass layer 8 and substrate 7 form a laminate, wherein the side of the substrate on which the glass matrix is applied, the chip 2 faces, or is also facing away.
  • the conversion element is attached by means of known ⁇ adhesive on the chip (not provided DAR).
  • FIG. 3 shows an embodiment of an LED 1, in which the film of ceramic or glass ceramic, which acts as a substrate 7, is sintered only briefly at low temperature. That's why she has many open pores. The glass matrix fills these pores. By using an excess of glass, a thin layer 11 of glass also remains on the surface of the substrate. The phosphor is dispersed in the glass matrix both in the region of the thin layer 11 and in the region of the pores.
  • FIG. 8 shows a similar configuration in detail without layer 11. There, the substrate 7 with open pores 12 is shown. Into the pores, the glass matrix 10 is sucked in. Phosphor grains 13 are dispersed in the glass matrix.
  • FIG. 4 schematically shows an exemplary embodiment of an LED 1, in which the substrate 7 is connected via a conventional adhesive layer (not shown separately) to the InGaN chip 2, which emits blue (peak at approximately 440 to 450 nm).
  • the glass matrix 8 with the phosphor immersed therein is fastened on the side of the substrate 7 facing away from the chip.
  • the Kle ⁇ be Mrs conventional is usually silicone. It is used when re ⁇ tively temperature-sensitive chips are used. For less temperature sensitive chips, an adhesive layer of high refractive index glass is more advantageous. Because then the heat dissipation is better and the Lichtauskopp ⁇ ment is higher. This increases efficiency.
  • FIG. 5 schematically shows an exemplary embodiment of an LED 1 in which a double structure of the conversion element 6, 16 is used.
  • a first layer 8 with glass matrix and first phosphor preferably a red-emitting phosphor such as a nitridosilicate M2Si5N8: Eu
  • first substrate 7 which in turn is connected to a second glass matrix 8
  • second Substrate 7 is connected.
  • the glass matrix 8 acts in each case as an adhesive.
  • Particularly suitable phosphors are YAG: Ce or another garnet, orthosilicate or sione, nitridosilicate, sialon, calsine, etc.
  • FIG. 6 shows an embodiment of an LED 1, which is a conversion element 6 spaced upstream of the chip 2 before ⁇ connected.
  • the side wall 5 of the hous ⁇ ses which acts as a reflector, for example by the inner wall is suitably coated, at its end the conversion element 6.
  • the glass matrix 8 acts as an adhesive to the side wall, the substrate 7 is remote from the chip.
  • the conversion element 6 closes the opening of the reflector.
  • FIG. 7 shows an exemplary embodiment of an LED 1 in which a conversion element 6 has a sandwich structure. It uses a UV emitting chip 2 with about 380 nm peak wavelength.
  • a first glass matrix 8 adheres directly to the chip 2, in which a first phosphor is dispersed, for example a red, UV-excitable light source.
  • Embodiments of a converter for the conversion of the UV component into blue light are z.
  • An embodiment of a Kon ⁇ converter for the conversion of the UV component in yellow light is z , B. (Sri- x - y Ce x Li y ) 2 Si 5 N 8 .
  • x and y are each in the range of 0.1 to 0.01.
  • Exemplary embodiments of a converter for the conversion of the UV component into red light are z.

Landscapes

  • Led Device Packages (AREA)
PCT/EP2011/067381 2010-10-08 2011-10-05 Optoelektronisches halbleiterbauelement und verfahren zu seiner herstellung Ceased WO2012045772A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/878,249 US20130207151A1 (en) 2010-10-08 2011-10-05 Optoelectronic Semiconductor Component And Method For Producing Same
JP2013532182A JP2013539238A (ja) 2010-10-08 2011-10-05 オプトエレクトロニクス半導体コンポーネント及びその製造方法
CN201180048562.8A CN103155187B (zh) 2010-10-08 2011-10-05 光电子半导体器件及其制造方法
KR1020137011927A KR101845840B1 (ko) 2010-10-08 2011-10-05 광전자 반도체 컴포넌트 및 광전자 반도체 컴포넌트를 생산하기 위한 방법
EP11766989.5A EP2625724B1 (de) 2010-10-08 2011-10-05 Optoelektronisches halbleiterbauelement und verfahren zu seiner herstellung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010042217.7 2010-10-08
DE102010042217A DE102010042217A1 (de) 2010-10-08 2010-10-08 Optoelektronisches Halbleiterbauelement und Verfahren zu seiner Herstellung

Publications (1)

Publication Number Publication Date
WO2012045772A1 true WO2012045772A1 (de) 2012-04-12

Family

ID=44764153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/067381 Ceased WO2012045772A1 (de) 2010-10-08 2011-10-05 Optoelektronisches halbleiterbauelement und verfahren zu seiner herstellung

Country Status (7)

Country Link
US (1) US20130207151A1 (enExample)
EP (1) EP2625724B1 (enExample)
JP (2) JP2013539238A (enExample)
KR (1) KR101845840B1 (enExample)
CN (1) CN103155187B (enExample)
DE (1) DE102010042217A1 (enExample)
WO (1) WO2012045772A1 (enExample)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012107290A1 (de) * 2012-08-08 2014-02-13 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauteil, Konversionsmittelplättchen und Verfahren zur Herstellung eines Konversionsmittelplättchens
JP2015004071A (ja) * 2012-04-24 2015-01-08 株式会社光波 蛍光体及び発光装置
CN104365181A (zh) * 2012-06-15 2015-02-18 欧司朗股份有限公司 光电子半导体器件
CN104428588A (zh) * 2012-07-02 2015-03-18 Lg伊诺特有限公司 照明装置
KR20160032147A (ko) * 2013-07-08 2016-03-23 코닌클리케 필립스 엔.브이. 파장 변환 반도체 발광 디바이스

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012107797A1 (de) * 2012-08-23 2014-02-27 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines Licht emittierenden Halbleiterbauelements und Licht emittierendes Halbleiterbauelement
DE102012108160A1 (de) * 2012-09-03 2014-03-06 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauelement und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauelements
DE102012110668A1 (de) * 2012-11-07 2014-05-08 Osram Opto Semiconductors Gmbh Konvertermaterial, Verfahren zur Herstellung eines Konvertermaterials und optoelektronisches Bauelement
DE102012220980A1 (de) * 2012-11-16 2014-05-22 Osram Gmbh Optoelektronisches halbleiterbauelement
CN103489857B (zh) * 2013-09-06 2017-06-06 中山市天健照明电器有限公司 一种白光led发光装置
EP3092666B1 (en) * 2014-01-07 2019-08-28 Lumileds Holding B.V. Glueless light emitting device with phosphor converter
JP2015142046A (ja) * 2014-01-29 2015-08-03 シャープ株式会社 波長変換部材、発光装置、および波長変換部材の製造方法
JP6252982B2 (ja) * 2014-02-06 2017-12-27 日本電気硝子株式会社 ガラス部材及びその製造方法
JP6575923B2 (ja) * 2014-09-26 2019-09-18 日本電気硝子株式会社 波長変換部材及びそれを用いた発光装置
JP2017188592A (ja) 2016-04-06 2017-10-12 日亜化学工業株式会社 発光装置
DE102017104134A1 (de) * 2017-02-28 2018-08-30 Osram Gmbh Optoelektronisches Bauelement und Verfahren zur Herstellung eines optoelektronischen Bauelements
CN110612001B (zh) * 2018-06-14 2023-06-30 因特瓦克公司 多色介电涂层及uv喷墨打印
US10475968B1 (en) 2018-07-19 2019-11-12 Osram Opto Semiconductors Gmbh Optoelectronic component and a method for producing an optoelectronic component
EP3608959B1 (en) * 2018-08-06 2023-11-15 Nichia Corporation Light emitting device and method for manufacturing same
JP6963720B2 (ja) * 2018-08-30 2021-11-10 日亜化学工業株式会社 発光装置
WO2023072867A1 (en) * 2021-10-29 2023-05-04 Ams-Osram International Gmbh Optoelectronic semiconductor chip, optoelectronic component and method for producing an optoelectronic semiconductor chip

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5998925A (en) 1996-07-29 1999-12-07 Nichia Kagaku Kogyo Kabushiki Kaisha Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material
DE102004019802A1 (de) * 2004-03-11 2005-11-17 Schott Ag Lumineszierendes Glas und Kaltlichtquelle mit einem solchen Glas
WO2006122524A1 (de) 2005-05-19 2006-11-23 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Lumineszenzkonversions-led
DE102007055170A1 (de) * 2006-11-28 2008-06-12 Cree, Inc. Optische Vorformen für Festkörper-Lichtemissionswürfel und Verfahren und Systeme zu deren Herstellung und Zusammenbau
US20090001390A1 (en) * 2007-06-29 2009-01-01 Ledengin, Inc. Matrix material including an embedded dispersion of beads for a light-emitting device
DE102007057812A1 (de) * 2007-11-30 2009-06-25 Schott Ag Lichtemittierende Vorrichtung und Verfahren zu deren Herstellung sowie Lichtkonverter und dessen Verwendung
DE102008021666A1 (de) * 2008-04-30 2009-11-05 Ledon Lighting Jennersdorf Gmbh Lichtemittierende Vorrichtung und Verfahren zur Herstellung einer lichtemittierenden Vorrichtung
DE102010009456A1 (de) 2010-02-26 2011-09-01 Osram Opto Semiconductors Gmbh Strahlungsemittierendes Bauelement mit einem Halbleiterchip und einem Konversionselement und Verfahren zu dessen Herstellung

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030102473A1 (en) * 2001-08-15 2003-06-05 Motorola, Inc. Structure and method for fabricating semiconductor structures and devices utilizing the formation of a compliant substrate
US7553683B2 (en) * 2004-06-09 2009-06-30 Philips Lumiled Lighting Co., Llc Method of forming pre-fabricated wavelength converting elements for semiconductor light emitting devices
US8134292B2 (en) * 2004-10-29 2012-03-13 Ledengin, Inc. Light emitting device with a thermal insulating and refractive index matching material
JP4765525B2 (ja) * 2005-06-29 2011-09-07 日本電気硝子株式会社 発光色変換部材
JP2007048864A (ja) * 2005-08-09 2007-02-22 Nippon Electric Glass Co Ltd 蛍光体複合材料
JP2007191702A (ja) * 2005-12-22 2007-08-02 Nippon Electric Glass Co Ltd 発光色変換材料
JP4969119B2 (ja) * 2006-03-20 2012-07-04 日本碍子株式会社 発光ダイオード装置
US8481977B2 (en) * 2006-03-24 2013-07-09 Goldeneye, Inc. LED light source with thermally conductive luminescent matrix
JP4978886B2 (ja) * 2006-06-14 2012-07-18 日本電気硝子株式会社 蛍光体複合材料及び蛍光体複合部材
US20090200561A1 (en) * 2008-01-30 2009-08-13 Burrell Anthony K Composite phosphors based on coating porous substrates

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5998925A (en) 1996-07-29 1999-12-07 Nichia Kagaku Kogyo Kabushiki Kaisha Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material
DE102004019802A1 (de) * 2004-03-11 2005-11-17 Schott Ag Lumineszierendes Glas und Kaltlichtquelle mit einem solchen Glas
WO2006122524A1 (de) 2005-05-19 2006-11-23 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Lumineszenzkonversions-led
DE102007055170A1 (de) * 2006-11-28 2008-06-12 Cree, Inc. Optische Vorformen für Festkörper-Lichtemissionswürfel und Verfahren und Systeme zu deren Herstellung und Zusammenbau
US20090001390A1 (en) * 2007-06-29 2009-01-01 Ledengin, Inc. Matrix material including an embedded dispersion of beads for a light-emitting device
DE102007057812A1 (de) * 2007-11-30 2009-06-25 Schott Ag Lichtemittierende Vorrichtung und Verfahren zu deren Herstellung sowie Lichtkonverter und dessen Verwendung
DE102008021666A1 (de) * 2008-04-30 2009-11-05 Ledon Lighting Jennersdorf Gmbh Lichtemittierende Vorrichtung und Verfahren zur Herstellung einer lichtemittierenden Vorrichtung
DE102010009456A1 (de) 2010-02-26 2011-09-01 Osram Opto Semiconductors Gmbh Strahlungsemittierendes Bauelement mit einem Halbleiterchip und einem Konversionselement und Verfahren zu dessen Herstellung

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10836961B2 (en) 2012-04-24 2020-11-17 Koha Co., Ltd. Phosphor, method for manufacturing same, and light-emitting device
JP2015004071A (ja) * 2012-04-24 2015-01-08 株式会社光波 蛍光体及び発光装置
JP2015521791A (ja) * 2012-06-15 2015-07-30 オスラム ゲーエムベーハーOSRAM GmbH オプトエレクトロニクス半導体素子
CN104365181A (zh) * 2012-06-15 2015-02-18 欧司朗股份有限公司 光电子半导体器件
DE112013002930B4 (de) 2012-06-15 2023-03-23 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronisches Halbleiterbauelement
US10297729B2 (en) 2012-06-15 2019-05-21 Osram Opto Semiconductors Gmbh Optoelectronics semiconductor component
EP2848861A4 (en) * 2012-07-02 2015-11-04 Lg Innotek Co Ltd ILLUMINATION DEVICE
CN104428588A (zh) * 2012-07-02 2015-03-18 Lg伊诺特有限公司 照明装置
US9406847B2 (en) 2012-08-08 2016-08-02 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor component, conversion-medium lamina and method for producing a conversion-medium lamina
DE112013003979B4 (de) 2012-08-08 2021-12-09 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronisches Halbleiterbauteil, Konversionsmittelplättchen und Verfahren zur Herstellung eines Konversionsmittelplättchens
DE102012107290A1 (de) * 2012-08-08 2014-02-13 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauteil, Konversionsmittelplättchen und Verfahren zur Herstellung eines Konversionsmittelplättchens
KR20160032147A (ko) * 2013-07-08 2016-03-23 코닌클리케 필립스 엔.브이. 파장 변환 반도체 발광 디바이스
JP2016524344A (ja) * 2013-07-08 2016-08-12 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 波長変換式半導体発光デバイス
JP2020074419A (ja) * 2013-07-08 2020-05-14 ルミレッズ ホールディング ベーフェー 波長変換式半導体発光デバイス
US10790417B2 (en) 2013-07-08 2020-09-29 Lumileds Llc Wavelength converted semiconductor light emitting device
KR102180388B1 (ko) * 2013-07-08 2020-11-19 루미리즈 홀딩 비.브이. 파장 변환 반도체 발광 디바이스
JP7068771B2 (ja) 2013-07-08 2022-05-17 ルミレッズ ホールディング ベーフェー 波長変換式半導体発光デバイス
JP7316947B2 (ja) 2013-07-08 2023-07-28 ルミレッズ ホールディング ベーフェー 波長変換式半導体発光デバイス

Also Published As

Publication number Publication date
DE102010042217A1 (de) 2012-04-12
CN103155187B (zh) 2016-12-07
JP2015109483A (ja) 2015-06-11
JP2013539238A (ja) 2013-10-17
KR101845840B1 (ko) 2018-04-06
US20130207151A1 (en) 2013-08-15
KR20130114671A (ko) 2013-10-17
JP6009020B2 (ja) 2016-10-19
EP2625724B1 (de) 2016-11-30
CN103155187A (zh) 2013-06-12
EP2625724A1 (de) 2013-08-14

Similar Documents

Publication Publication Date Title
EP2625724B1 (de) Optoelektronisches halbleiterbauelement und verfahren zu seiner herstellung
DE10349038B4 (de) Lichtquelle mit einer LED und einem Lumineszenzkonversionskörper und Verfahren zum Herstellen des Lumineszenzkonversionskörpers
EP1897152B1 (de) Wellenlängenkonvertierendes konvertermaterial, lichtabstrahlendes optisches bauelement und verfahren zu dessen herstellung
DE102013013296B4 (de) Konverter-Kühlkörperverbund mit metallischer Lotverbindung und Verfahren zu dessen Herstellung
WO2011104364A1 (de) Strahlungsemittierendes bauelement mit einem halbleiterchip und einem konversionselement und verfahren zu dessen herstellung
DE102013207308B4 (de) Verfahren zum Herstellen einer optoelektronischen Baugruppe und optoelektronische Baugruppe
WO2013186365A1 (de) Optoelektronisches halbleiterbauelement
DE112014005897B4 (de) Konversionselement, Bauelement und Verfahren zur Herstellung eines Bauelements
DE102015113692A1 (de) Wellenlängen-Umwandlungs-Element, Licht-emittierende Vorrichtung, Projektor und Verfahren zur Herstellung eines Wellenlängen-Umwandlungs-Elements
DE102011078689A1 (de) Verfahren zur Herstellung eines Konversionselements und Konversionselement
WO2013004735A1 (de) Verfahren zur herstellung eines konversionselements und konversionselement
DE102012220980A1 (de) Optoelektronisches halbleiterbauelement
WO2012104141A1 (de) Keramisches konversionselement, halbleiterchip mit einem keramischen konversionselement und verfahren zur herstellung eines keramischen konversionselements
WO2011012371A1 (de) Verfahren zur herstellung eines bauteils mit mindestens einem organischen material und bauteil mit mindestens einem organischen material
DE102013212247A1 (de) Optoelektronisches Bauelement und Verfahren zu seiner Herstellung
WO2018158194A1 (de) Optoelektronisches bauelement und verfahren zur herstellung eines optoelektronischen bauelements
DE102018106655A1 (de) Licht-emittierende Vorrichtung und Verfahren zu ihrer Herstellung
DE102013206133B4 (de) Verfahren zum Herstellen eines Konversionselements und Konversionselement
DE102009010468A1 (de) Strahlungsemittierendes Funktionsmaterial mit darauf angeordneten Lichtkonversionsstoff-Partikeln, Verfahren zu dessen Herstellung und optoelektronisches Bauelement, enthaltend ein derartiges Funktionsmaterial
DE102019105831A1 (de) Optoelektronisches bauelement mit einer transparenten verbindung zwischen zwei fügepartnern und verfahren zu dessen herstellung
DE102005012953B9 (de) Verfahren zur Herstellung eines optoelektronischen Bauelements und optoelektronisches Bauelement
DE102013105533A1 (de) Anorganisches optisches Element und Verfahren zur Herstellung eines anorganischen optischen Elements
DE102022132657A1 (de) Lichtemittierende vorrichtung
DE102018130526B4 (de) Bauteil mit einem reflektierenden Gehäuse und Herstellungsverfahren für ein solches Bauteil
WO2012152652A1 (de) Konversionselement für leuchtdioden und herstellungsverfahren

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180048562.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11766989

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011766989

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011766989

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013532182

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13878249

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137011927

Country of ref document: KR

Kind code of ref document: A