WO2012043580A1 - アクリル-フッ素複合重合体粒子 - Google Patents

アクリル-フッ素複合重合体粒子 Download PDF

Info

Publication number
WO2012043580A1
WO2012043580A1 PCT/JP2011/072114 JP2011072114W WO2012043580A1 WO 2012043580 A1 WO2012043580 A1 WO 2012043580A1 JP 2011072114 W JP2011072114 W JP 2011072114W WO 2012043580 A1 WO2012043580 A1 WO 2012043580A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylic
polymer
unit
vinylidene fluoride
meth
Prior art date
Application number
PCT/JP2011/072114
Other languages
English (en)
French (fr)
Inventor
秀実 西井
井本 克彦
明紀 上田
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to KR1020137010695A priority Critical patent/KR101502710B1/ko
Priority to CN201180046089.XA priority patent/CN103119097B/zh
Publication of WO2012043580A1 publication Critical patent/WO2012043580A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • C09D133/16Homopolymers or copolymers of esters containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking

Definitions

  • the present invention includes a novel fluorine-containing copolymer particle suitable for a binder of a coating composition for coating various substrates, an aqueous dispersion containing the fluorine-containing copolymer particle, and the aqueous dispersion
  • the present invention relates to an aqueous coating composition.
  • water-based paints using water as a dispersion medium are known from the viewpoint of consideration for the natural environment and improvement of the painting work environment.
  • it is required to have excellent weather resistance, and in particular, a fluororesin that has excellent weather resistance, water resistance, chemical resistance, film-forming properties, etc. is used as a binder.
  • a water-based coating composition has been developed.
  • a vinylidene fluoride (VDF) -based fluororesin is seed-polymerized with a monomer mixture comprising a (meth) acrylic acid ester and an ethylenically unsaturated monomer in the presence of seed particles.
  • the monomer mixture contains 0.5 to 45% by mass of a monomer having a cyclohexyl group, and the monomer mixture is made to contain 50% by mass or less based on the fluororesin. It is described that an aqueous dispersion of a fluoropolymer provides a coating film having excellent adhesion.
  • the water-based paint composition requires longer time to dry than the solvent-based paint composition, it is usually forcibly dried. Forced drying is generally performed at 60 to 200 ° C. (base material temperature) for 3 seconds to 10 minutes. As a result, depending on the resin composition, the film formation becomes insufficient, so that the strength of the coating film is reduced. In addition to lowering, water resistance may be reduced, and interfacial adhesion with the substrate may be impaired.
  • the fluorine-containing polymer aqueous dispersion described in Patent Document 1 has room for improvement in the decrease in adhesion due to forced drying, and the proportion of the acrylic resin needs to be increased.
  • the present inventors have determined the composition of the crosslinkable acrylic polymer constituting the particles in the acrylic-fluorine composite polymer particles of the fluoropolymer and the acrylic monomer. By devising, it was found that the water resistance can be secured even by the forced drying method, and the amount of fluororesin can be reduced while maintaining the weather resistance and chemical resistance, and the present invention has been completed.
  • the present invention (A) a vinylidene fluoride polymer containing at least one fluoroolefin unit selected from the group consisting of a tetrafluoroethylene unit, a hexafluoropropylene unit and a chlorotrifluoroethylene unit as a structural unit, and a vinylidene fluoride unit; (B) The (meth) acrylic acid ester unit (b1) compatible with the vinylidene fluoride polymer (A), and the (meth) acrylic acid ester unit incompatible with the vinylidene fluoride polymer (A).
  • An acrylic-fluorine composite polymer particle comprising (b2) and a crosslinkable acrylic polymer (B) containing a (meth) acrylic monomer unit (b3) having a crosslinkable group capable of being crosslinked by heating,
  • the present invention also relates to acrylic-fluorine composite polymer particles in which the vinylidene fluoride polymer (A) / crosslinkable acrylic polymer (B) has a mass ratio of 10/90 to 90/10.
  • the present invention also relates to an aqueous dispersion containing the acrylic-fluorine composite polymer particles of the present invention, and further to an aqueous coating composition containing the aqueous dispersion.
  • acrylic-fluorine composite polymer particles that can ensure water resistance even by a forced drying method and can reduce the amount of fluororesin while maintaining weather resistance and chemical resistance.
  • the acrylic-fluorine composite polymer particles of the present invention are: (A) At least one fluoroolefin unit selected from the group consisting of a tetrafluoroethylene (TFE) unit, a hexafluoropropylene (HFP) unit, and a chlorotrifluoroethylene (CTFE) unit as a structural unit, and vinylidene fluoride (VDF) A VDF polymer containing units; (B) The (meth) acrylic acid ester unit (b1) compatible with the VDF polymer (A), the (meth) acrylic acid ester unit (b2) incompatible with the VDF polymer (A), and An acrylic-fluorine composite polymer particle comprising a crosslinkable acrylic polymer (B) containing a (meth) acrylic monomer unit (b3) having a crosslinkable group that can be cross-linked by heating, Acrylic-fluorine composite polymer particles in which the polymer (A) / crosslinkable acrylic polymer (B) has a mass ratio of 10/
  • the VDF polymer (A) and the crosslinkable acrylic polymer (B) are present in a single particle.
  • the VDF polymer (A) and the crosslinkable acrylic polymer (B) may be chemically bonded or may not be bonded.
  • the mass ratio of the VDF polymer (A) and the crosslinkable acrylic polymer (B) is in the single particle of the VDF polymer (A) and the crosslinkable acrylic polymer (B) constituting the single particle. Mass ratio.
  • the VDF polymer (A) in the present invention is selected from the group consisting of tetrafluoroethylene (TFE) units, hexafluoropropylene (HFP) units and chlorotrifluoroethylene (CTFE) units as structural units in addition to VDF. At least one fluoroolefin unit.
  • the VDF polymer (A) in the present invention preferably contains a tetrafluoroethylene unit and a chlorotrifluoroethylene unit.
  • VDF polymers as the VDF polymer (A) are VDF / TFE copolymer, VDF / TFE / CTFE copolymer, VDF / HFP copolymer, VDF / TFE / HFP copolymer, VDF / CTFE copolymer and the like.
  • it may contain a structural unit derived from another fluoroolefin or a non-fluorinated monomer copolymerizable with the fluoroolefin.
  • fluoroolefins examples include perfluoro (alkyl vinyl ether), Perfluoroolefins such as vinyl fluoride, trifluoroethylene, trifluoropropylene, pentafluoropropylene, tetrafluoropropylene, hexafluoroisobutene, 2,3,3,3-tetrafluoropropene, 1,3,3,3- Non-perfluoroolefins such as tetrafluoropropene and 1,1,3,3,3-pentafluoropropene are exemplified.
  • Perfluoroolefins such as vinyl fluoride, trifluoroethylene, trifluoropropylene, pentafluoropropylene, tetrafluoropropylene, hexafluoroisobutene, 2,3,3,3-tetrafluoropropene, 1,3,3,3-
  • Non-perfluoroolefins such as te
  • perfluoro (alkyl vinyl ether) examples include perfluoro (methyl vinyl ether) (PMVE), perfluoro (ethyl vinyl ether) (PEVE), perfluoro (propyl vinyl ether) (PPVE), and the like.
  • a functional group-containing fluoroolefin can also be used.
  • a group; X 1 and X 2 are the same or different and each is a hydrogen atom or a fluorine atom; Rf is a divalent fluorinated alkylene group having 1 to 40 carbon atoms, a fluorinated oxyalkylene group having 1 to 40 carbon atoms, or a carbon number A divalent fluorine-containing alkylene group containing 2 to 40 ether bonds; m is 0 or 1).
  • the polymer (A) may contain a repeating unit based on an iodine-containing monomer.
  • the iodine-containing monomer include perfluoro (6,6-dihydro-6-iodo-3-oxa-1-hexene) described in JP-B-5-63482 and JP-A-62-212734, Periodinated vinyl ethers such as perfluoro (5-iodo-3-oxa-1-pentene) can also be used.
  • the polymer (A) may contain a repeating unit based on a non-fluorinated monomer copolymerizable with a fluoroolefin.
  • the fluorine element content of the VDF polymer is preferably 50 to 76% by mass, more preferably 60 to 70% by mass.
  • the method for producing the VDF polymer (A) is not particularly limited, and can be performed by a conventionally known emulsion polymerization method.
  • the crosslinkable acrylic polymer (B) in the present invention comprises a (meth) acrylic acid ester unit (b1) compatible with the VDF polymer (A) and an incompatible (meta) (V) polymer (A). ) An acrylic ester unit (b2) and a (meth) acrylic monomer unit (b3) having a crosslinkable group that can be cross-linked by heating.
  • (B1) A (meth) acrylic acid ester compatible with the VDF polymer (A) (hereinafter sometimes referred to as “compatible (meth) acrylic acid ester”)
  • the compatible (meth) acrylic acid ester (b1) increases the compatibility between the VDF polymer (A) and the crosslinkable acrylic polymer (B), and improves the unity of the acrylic-fluorine composite polymer. In addition, the film-forming property at room temperature drying is improved.
  • compatible (meth) acrylic acid ester (b1) include linear alkyl esters having 1 to 4 carbon atoms such as methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, methyl Examples thereof include one or more of methacrylate, n-propyl methacrylate, ethyl methacrylate, n-butyl methacrylate, isopropyl methacrylate and the like.
  • methyl methacrylate (MMA), ethyl methacrylate (EMA), n-butyl methacrylate (n-MBA), n-butyl acrylate (n-BA), ethyl are preferred because of their good solubility in VDF polymers.
  • One type or two or more types such as acrylate (EA) and methyl acrylate are preferable.
  • the content of the compatible (meth) acrylic acid ester (b1) is 10 to 90% by mass, more preferably 20 to 75% by mass of the crosslinkable acrylic polymer (B) from the viewpoint of good transparency of the coating film. preferable.
  • VDF polymer (A) and incompatible (meth) acrylic acid ester (hereinafter sometimes referred to as “incompatible (meth) acrylic acid ester”)
  • the incompatible (meth) acrylic acid ester (b2) improves the film-forming property of the acrylic-fluorine composite polymer during forced drying, enhances the adhesion to the substrate, and provides water resistance of the coating film. Make it better.
  • VDF polymer (A) compatible and “VDF polymer (A) incompatible” are transparent when VDF polymer (A) is mixed with a monomer.
  • the case is referred to as “compatible with VDF polymer (A)”, and the case where it becomes cloudy when mixed is referred to as “incompatible with VDF polymer (A)”.
  • the incompatible (meth) acrylic acid ester (b2) include a chain alkyl ester having 6 to 20 carbon atoms, an alkyl ester having an alicyclic structure having 6 to 20 carbon atoms, or a carbon atom having 6 to 20 carbon atoms.
  • examples include aryl esters.
  • the content of the incompatible (meth) acrylic acid ester (b2) is 5 to 85% by mass of the crosslinkable acrylic polymer (B), more preferably 15 to 70% by mass from the viewpoint of good film forming property and adhesion. % Is preferred.
  • (B3) A (meth) acrylic monomer having a crosslinkable group that can be cross-linked by heating (hereinafter, also referred to as “crosslinkable group-containing (meth) acrylic monomer”).
  • the crosslinkable group-containing (meth) acrylic monomer (b3) is used as an incompatible (meth) acrylic acid ester in the acrylic polymer (B) during the film formation of the acrylic-fluorine composite polymer during forced drying. While acting to suppress separation of the unit (b2) and the VDF polymer (A), membrane turbidity, etc., the adhesion to the substrate is improved.
  • the crosslinkable group possessed by the crosslinkable group-containing (meth) acrylic monomer (b3) is a functional group that can be crosslinked by heating. Therefore, a crosslinkable group such as a non-blocking isocyanate group that is crosslinked at room temperature is not a crosslinkable group of the crosslinkable group-containing (meth) acrylic monomer (b3) in the present invention.
  • Examples of the crosslinkable group that can be crosslinked by heating include an epoxy group, a carboxyl group, a hydroxyl group, an amino group, a methylolamide group, a silyl group, a carbodiimide group, an oxazoline group, a blocked isocyanate group, and an ethyleneimine group. From the viewpoint of good stability, an epoxy group and a carboxyl group are preferable.
  • crosslinkable group-containing (meth) acrylic monomer having an epoxy group examples include glycidyl compounds such as glycidyl acrylate and glycidyl methacrylate (GMA). From the viewpoint of good stability during polymerization, glycidyl acrylate, One or more glycidyl methacrylates are preferred.
  • the crosslinkable group-containing (meth) acrylic monomer contains an epoxy group, the film-forming property between particles at the time of coating and the adhesion to the substrate are further improved.
  • crosslinkable group-containing (meth) acrylic monomer having a carboxyl group examples include acrylic acid, 2-acryloyloxyethyl phthalate, 2-acryloyloxyethyl hexahydrophthalate, methacrylic acid, and 2-methacryloyloxy phthalate. 1 or 2 or more types such as ethyl and 2-methacryloyloxyethyl hexahydrophthalate and the like, and 1 or 2 types of acrylic acid (AA) and methacrylic acid (MAA) from the viewpoint of good emulsion stability The above is preferable.
  • the crosslinkable group-containing (meth) acrylic monomer contains a carboxyl group, the film-forming property between particles at the time of coating and the adhesion to the substrate are further improved.
  • crosslinkable group-containing (meth) acrylic monomer having a hydroxyl group examples include one or more of 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, and the like. Can be given.
  • crosslinkable group-containing (meth) acrylic monomer having an amino group examples include aminoethyl acrylate, dimethylamino acrylate, diethylaminoethyl acrylate, aminoethyl methacrylate, dimethylamino methacrylate, diethylaminoethyl methacrylate, 2- (O— One or more of [1′-methylpropylideneamino] carboxyamino) ethyl methacrylate and the like.
  • crosslinkable group-containing (meth) acrylic monomer having a methylolamide group examples include one or more of methylolated acrylamide, alkoxymethylacrylamide and the like.
  • crosslinkable group-containing (meth) acrylic monomers (b3) are not limited to the type of crosslinkable group, and two or more types may be used in combination.
  • the content of the crosslinkable group-containing (meth) acrylic monomer (b3) is 1 to 20% by mass, more preferably 1 to 5% of the crosslinkable acrylic polymer (B) from the viewpoint of good emulsion stability. Mass% is preferred. Moreover, what is necessary is just to select a total amount suitably in said range, when two or more types of crosslinkable group containing (meth) acrylic-type monomer units (b3) are contained. For example, when an epoxy group-containing acrylic monomer and a carboxyl group-containing acrylic monomer are used in combination, the mass ratio is preferably in the range of 70/30 to 30/70.
  • the crosslinkable acrylic polymer (B) contains, in addition to the above (b1) to (b3), other structural units other than the above (b1) to (b3) as long as the effects of the present invention are not impaired. Also good.
  • other structural units include aromatic vinyl monomer units, epoxy group-containing monomer units other than the above (b3), unsaturated carboxylic acid monomer units other than the above (b3), vinyl ether single monomers Olefin monomers, hydrolyzable silyl group-containing vinyl monomers, vinyl ester monomers, and the like.
  • aromatic vinyl monomer examples include styrenes such as styrene and ⁇ -methylstyrene.
  • epoxy group-containing monomer examples include allyl glycidyl ether.
  • unsaturated carboxylic acid monomers include vinyl acetic acid, crotonic acid, cinnamic acid, 3-allyloxypropionic acid, 3- (2-allyloxyethoxycarbonyl) propionic acid, itaconic acid, itaconic acid monoester, malee
  • unsaturated carboxylic acid monomers include vinyl acetic acid, crotonic acid, cinnamic acid, 3-allyloxypropionic acid, 3- (2-allyloxyethoxycarbonyl) propionic acid, itaconic acid, itaconic acid monoester, malee
  • examples thereof include acid, maleic acid monoester, maleic anhydride, fumaric acid, fumaric acid monoester, vinyl phthalate, vinyl pyromellitic acid, and undecylenic acid.
  • Examples of vinyl ether monomers include alkyl vinyl ethers and hydroxyl group-containing vinyl ethers.
  • hydroxyl group-containing vinyl ethers include 2-hydroxyethyl vinyl ether, 3-hydroxypropyl vinyl ether, 2-hydroxypropyl vinyl ether, 2-hydroxy-2- Methylpropyl vinyl ether, 4-hydroxybutyl vinyl ether, 4-hydroxy-2-methylbutyl vinyl ether, 5-hydroxypentyl vinyl ether, 6-hydroxyhexyl vinyl ether, 2-hydroxyethyl allyl ether, 4-hydroxybutyl allyl ether, glycerol monoallyl ether Etc.
  • olefin monomer examples include ethylene, propylene, n-butene, isobutene, and styrene.
  • vinyl ester monomers examples include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl caproate, vinyl versatate, vinyl laurate, vinyl stearate, vinyl cyclohexylcarboxylate, and benzoic acid.
  • vinyl carboxylates such as vinyl acid and vinyl para-t-butylbenzoate.
  • the content of monomers other than the above (b1) to (b3) in the crosslinkable acrylic polymer (B) is preferably 10% by mass or less although it depends on the type of monomer.
  • a preferred specific composition of the crosslinkable acrylic polymer (B) is, for example, MMA / 2-EHA / MAA / GMA (60 to 80/10 to 30 / 0.5 to 5 / 0.5).
  • n-BA / CHMA / MAA / GMA (10 to 30/55 to 80 / 0.5 to 10 / 0.5 to 5 mass ratio)
  • MMA / n-BA / CHMA / MAA / GMA (1 to 50/5 to 40/1 to 70 / 0.5 to 5 / 0.5 to 10 mass ratio) and the like, but are not limited thereto.
  • the ratio of the VDF polymer (A) and the crosslinkable acrylic polymer (B) in the acrylic-fluorine composite polymer of the present invention is such that the VDF polymer (A) / crosslinkable acrylic polymer (B) is in mass.
  • the ratio is 10/90 to 90/10, and preferably 10/90 to 70/30.
  • (A) / (B) is greater than 70/30, that is, if the VDF polymer (A) exceeds 70% by mass, the advantages of film-forming properties during coating and adhesion to the substrate are impaired. More preferably, (A) / (B) is 20/80 to 50/50. More preferably, (A) / (B) is 30/70 to 40/60.
  • a conventionally known polymerization method particularly an emulsion polymerization method can be adopted, and for example, a seed polymerization method can be particularly preferably adopted.
  • the seed polymerization method is not particularly limited, and can be performed by a conventionally known method and conditions.
  • seed polymerization of an acrylic monomer mixture is a method in which the entire amount of the acrylic monomer mixture is charged into the reaction system in the presence of VDF polymer particles, or a part of the acrylic monomer mixture. Can be carried out by, for example, a method in which the remainder is continuously or dividedly charged and a method in which the entire amount of the acrylic monomer mixture is continuously charged.
  • the polymerization conditions for the seed polymerization are the same as those for normal emulsion polymerization.
  • an emulsifier, a polymerization initiator, a chain transfer agent, in some cases a chelating agent, a pH adjuster, and the like are added to an aqueous medium containing VDF polymer particles, and a temperature of 10 to 90 ° C. is 0.5 to It can superpose
  • the emulsifier may be a reactive emulsifier, a non-reactive emulsifier, or a combination thereof.
  • the non-reactive emulsifier conventionally known anionic emulsifiers and nonionic emulsifiers may be used alone or in combination thereof. In some cases, an amphoteric emulsifier can be used.
  • the polymerization initiator used in the seed polymerization is not particularly limited as long as it can be used for a free radical reaction in an aqueous medium. In some cases, it can be used in combination with a reducing agent.
  • the water-soluble polymerization initiator that can be used include persulfate, hydrogen peroxide, and examples of the reducing agent include sodium pyrobisulfite, sodium hydrogensulfite, sodium L-ascorbate, and longgarit.
  • examples of the oil-soluble polymerization initiator include diisopropyl peroxydicarbonate (IPP), benzoyl peroxide, dibutyl peroxide, azobisisobutyronitrile (AIBN), and the like.
  • the amount of the polymerization initiator used is usually 0.05 to 2.0 parts by mass per 100 parts by mass of the acrylic monomer mixture.
  • chain transfer agents examples include halogenated hydrocarbons such as chloroform and carbon tetrachloride; mercaptans such as n-dodecyl mercaptan, tert-dodecyl mercaptan, and n-octyl mercaptan. Can do.
  • the amount of the chain transfer agent used is usually 0 to 5.0 parts by mass per 100 parts by mass of the acrylic monomer mixture.
  • the ratio of the VDF polymer particles to the acrylic monomer mixture containing the above (b1) to (b3) is 100 parts by mass of the VDF polymer particles.
  • the acrylic monomer mixture is 100 parts by mass or more.
  • the acrylic monomer mixture is 110 parts by mass or more, particularly 150 parts by mass or more with respect to 100 parts by mass of the VDF polymer particles from the viewpoint of good film-forming properties at the time of coating.
  • the present invention is also an aqueous dispersion containing the above-mentioned acrylic-fluorine composite polymer particles.
  • the particle diameter of the acrylic-fluorine composite polymer particles in the aqueous dispersion is preferably 50 to 300 nm. More preferably, it is 50 to 250 nm.
  • the viscosity of the aqueous dispersion is remarkably increased when the concentration of the acrylic-fluorine composite polymer particles in the aqueous dispersion is 30% by mass or more, which is within the practical range, and this hinders the work of coating. May come.
  • it exceeds 300 nm the sedimentation stability of the resulting aqueous dispersion tends to decrease, and the minimum film-forming temperature of the acrylic-fluorine composite polymer particles may increase.
  • the solid content concentration of the aqueous dispersion of the acrylic-fluorine composite polymer particles of the present invention is preferably 30 to 65% by mass, more preferably 35 to 50% by mass from the viewpoint of coating application.
  • the aqueous dispersion of acrylic-fluorine composite polymer particles of the present invention can be used for various applications in various forms.
  • Examples include, but are not limited to, coating composition components of various coating compositions, molding materials for films and sheets, adhesive compositions, and ink compositions. When used as a composition for water-based paints, adhesion to a substrate is improved even when a film is formed by forced drying.
  • the aqueous dispersion of acrylic-fluorine composite polymer particles of the present invention can be produced by the seed polymerization method described above.
  • the aqueous dispersion of acrylic-fluorine composite polymer particles of the present invention comprises a (meth) acrylic acid ester compatible with the VDF polymer (A) in an aqueous dispersion containing particles comprising the VDF polymer (A).
  • the present invention is also an aqueous coating composition containing the above-mentioned aqueous dispersion.
  • aqueous coating composition of the present invention conventionally known additives and blending ratios can be employed in addition to the use of the acrylic-fluorine composite polymer particles as a film forming material.
  • concentration of the acrylic-fluorine composite polymer particles may be selected from a range of about 10 to 60% by mass, for example.
  • an aqueous dispersion of acrylic-fluorine composite polymer particles is prepared by using a pigment disperser such as a sand mill in advance with a pigment such as water or titanium oxide, an antifoaming agent or a pigment. After stirring and mixing a predetermined amount of a pigment dispersion in which a dispersant, a pH adjuster, etc. and a predetermined amount of a film-forming auxiliary agent are mixed, a predetermined amount of a thickener is added and mixed, and other necessary additives may be added as appropriate. Good.
  • a pigment disperser such as a sand mill in advance with a pigment such as water or titanium oxide, an antifoaming agent or a pigment.
  • aqueous coating composition without adding a pigment, water, a film-forming auxiliary, an antifoaming agent, a thickening agent, a pH adjusting agent, if necessary, in an aqueous dispersion of acrylic-fluorine composite polymer particles
  • other necessary additives may be added and stirred and mixed by a known method.
  • Additives for paint applications include film-forming aids, antifreeze agents, pigments, fillers, pigment dispersants, antifoaming agents, leveling agents, rheology modifiers, preservatives, UV absorbers, and antioxidants as necessary. Agents, matting agents, lubricants, vulcanizing agents and the like can also be added.
  • the substrate to which the aqueous coating composition of the present invention is applied is not particularly limited, and is a metal-based substrate such as a hot-dip plated steel plate, stainless steel plate, aluminum steel plate, slate, ceramic sizing material, foamed concrete, glass, etc. It can be applied to a plastic substrate such as a vinyl chloride sheet, a PET film, a polycarbonate, and an acrylic film.
  • a galvanized steel sheet include a galvanized steel sheet, a galvanized steel sheet, a galvanized steel sheet, a galvanized steel sheet, a galvanized steel sheet, a galvanized steel sheet, and the like.
  • a coating method such as spray coating, roll coating, flow coating, roller, or brush painting can be employed on the substrate.
  • the drying method after coating is not particularly limited, and may be natural drying at ambient temperature or drying at a low temperature (5 to 60 ° C.) over a drying time. Even in forced drying at room temperature to 200 ° C., particularly 60 to 200 ° C. (base material temperature), it is possible to form a coating film excellent in weather resistance, water resistance, strength, substrate adhesion, and film forming property.
  • the time required for forced drying is usually from 3 seconds to 10 minutes.
  • the coating composition includes a weather-resistant coating composition, particularly a weather-resistant coating composition for construction and building materials, an automotive interior / exterior coating composition, an electrical product interior / exterior coating composition, and office work.
  • a weather-resistant coating composition particularly a weather-resistant coating composition for construction and building materials, an automotive interior / exterior coating composition, an electrical product interior / exterior coating composition, and office work.
  • examples thereof include paint compositions for equipment or kitchen appliances, and can be advantageously applied to weather-resistant paint compositions for building materials from the viewpoint of good weather resistance and durability.
  • New Coal 707SF manufactured by Nippon Emulsifier Co., Ltd.
  • MMA methyl methacrylate
  • EHA 2-ethylhexyl acrylate
  • GMA glycidyl methacrylate
  • MAA methacrylic acid
  • the internal temperature of the separable flask was raised to 80 ° C., and the entire amount of the monomer solution was added to the aqueous dispersion of the VDF / TFE / CTFE copolymer particles over 3 hours.
  • 41.1 g of ammonium persulfate (APS) 1% by mass aqueous solution was added in 7 portions every 30 minutes, and the polymerization was advanced.
  • APS ammonium persulfate
  • the reaction solution was cooled to room temperature to complete the reaction, whereby an aqueous dispersion of acrylic-fluorine composite polymer particles was obtained (solid content concentration 52.0% by mass).
  • aqueous dispersion of acrylic-fluorine composite polymer was neutralized with triethylamine to pH 7.5.
  • a film-forming auxiliary (diethyl adipate) was added to the aqueous dispersion at 5% by mass / solid content, and the mixture was stirred with a three-one motor for 30 minutes to prepare an aqueous coating composition for clear coating.
  • test piece preparation A test piece having a clear coating film having a thickness of 4 ⁇ m, which was coated on a galvalume steel sheet (manufactured by Nippon Test Panel Co., Ltd.) with a bar coater and dried at 140 ° C. for 7 seconds. Was made.
  • the test piece After leaving the coating film to stand for 24 hours, the test piece is subjected to a cross-cut tape peeling test in accordance with JIS D0202-1988. Using cellophane tape (“CT24”, manufactured by Nichiban Co., Ltd.), the film is adhered to the film with the belly of the finger and then peeled off. The determination is represented by the number of squares that do not peel out of 25 squares.
  • CT24 cellophane tape
  • the prepared test piece is put into an accelerated weathering tester, and the infrared spectrum after 322 hours is measured using the ATR method (attenuated total reflection method).
  • the weather resistance is evaluated by the attenuation rate of absorption of acrylate-derived CH stretching vibration (around 1700 cm ⁇ 1 ).
  • Accelerated weathering tester (SUV): Super UV tester, Iwasaki Electric Co., Ltd. test cycle: pure water spray (every 10 seconds) 1 hour ⁇ exposure 11 hours (black panel temperature 63 ° C, relative humidity 70%) ⁇ condensation 11 hours (black panel temperature 30 ° C., relative humidity 100%). This cycle is defined as one cycle (23 hours). Test time: 322 hours (14 cycles)
  • the resulting aqueous coating composition is applied to a coated plate coated with galvalume steel sheet (manufactured by Nippon Test Panel Co., Ltd.) by Daikin Co., Ltd. (Zeffle thermal barrier paint undercoat), and intermediate coating: Daikin Co., Ltd. (Zeffle thermal barrier paint undercoat).
  • a test piece having a clear coating film having a thickness of 10 ⁇ m was prepared by applying using a bar coater and drying for one day.
  • test piece was treated with sunset water at 23 ° C. for 1 day, and immediately after being taken out, it was swollen (JIS K5600-8-2), cracked (JIS K5600-8-4), and peeled (JIS K5600-8-5). Evaluate the grade.
  • the prepared test piece is put into an accelerated weathering tester, and the gloss value, L value, a value, and b value are measured every fixed cycle.
  • the gloss retention is calculated from the result, and the weather resistance of the coating film is evaluated.
  • Accelerated weathering tester (SUV): Super UV tester, Iwasaki Electric Co., Ltd. test cycle: pure water spray (every 10 seconds) 1 hour ⁇ exposure 11 hours (black panel temperature 63 ° C, relative humidity 70%) ⁇ condensation 11 hours (black panel temperature 30 ° C., relative humidity 100%). This cycle is defined as one cycle (23 hours). Test time: 966 hours (42 cycles) to 1610 hours (70 cycles)
  • Examples 2-4 Seed polymerization was carried out in the same manner as in Example 1 except that the monomer mixture shown in Table 1 was used as the acrylic monomer mixture for the acrylic polymer to obtain an acrylic-fluorine composite polymer.
  • Example 1 Using the obtained aqueous dispersion of acrylic-fluorine composite polymer particles, a water-based paint composition for clear paint was prepared in the same manner as in Example 1, and a coating film was formed and tested in the same manner as in Example 1. Pieces were made and examined for various properties. The results are shown in Table 1.
  • the mass ratio (VDF / acrylic) of the VDF polymer portion and the acrylic polymer portion in the obtained acrylic-fluorine composite polymer particles was 70/30.
  • Example 1 Using the obtained aqueous dispersion of acrylic-fluorine composite polymer particles, a water-based paint composition for clear paint was prepared in the same manner as in Example 1, and a coating film was formed and tested in the same manner as in Example 1. Pieces were made and examined for various properties. The results are shown in Table 1.
  • MMA methyl methacrylate
  • n-BA n-butyl acrylate
  • CHMA cyclohexyl methacrylate
  • 2-EHA 2-ethylhexyl acrylate
  • GMA glycidyl methacrylate
  • MAA methacrylic acid
  • AA acrylic acid
  • MPTES 3-methacryloxypropyltriethoxysilane
  • the acrylic-fluorine composite polymer containing the component (b1), the component (b2), and the component (b3) improves the adhesion to the substrate.
  • Example 2 Using the obtained aqueous dispersion of acrylic-fluorine composite polymer particles, a water-based paint composition for clear paint was prepared in the same manner as in Example 1, and a coating film was formed and tested in the same manner as in Example 1. Pieces were made and examined for various properties. The results are shown in Table 2.
  • an aqueous coating composition for clear coating was prepared in the same manner as in Example 1, and a coating film was formed and tested in the same manner as in Example 1. Pieces were made and examined for various properties. The results are shown in Table 2.
  • the acrylic-VDF fluorine composite polymer containing the component (b1), the component (b2), and the component (b3) improves the adhesion to the substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Paints Or Removers (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

強制乾燥法によっても耐水性が確保でき、しかも、耐候性や耐薬品性を維持したままフッ素樹脂量を低減化できるアクリル-フッ素複合重合体粒子、および該粒子を用いた水性塗料組成物を提供する。 (A)構造単位としてテトラフルオロエチレン単位、ヘキサフルオロプロピレン単位およびクロロトリフルオロエチレン単位よりなる群から選ばれる少なくとも1種のフルオロオレフィン単位ならびにフッ化ビニリデン単位を含むフッ化ビニリデン系重合体と、(B)該フッ化ビニリデン系重合体(A)と相溶性の(メタ)アクリル酸エステル単位(b1)、該フッ化ビニリデン系重合体(A)と非相溶性の(メタ)アクリル酸エステル単位(b2)および加熱により架橋可能な架橋性基を有する(メタ)アクリル系単量体単位(b3)を含む架橋性アクリル系重合体(B)とからなるアクリル-フッ素複合重合体粒子であって、フッ化ビニリデン系重合体(A)/架橋性アクリル系重合体(B)が質量比で10/90~90/10であるアクリル-フッ素複合重合体粒子。

Description

アクリル-フッ素複合重合体粒子
 本発明は、各種の基材の塗装用の塗料用組成物のバインダーに適した新規な含フッ素共重合体粒子、該含フッ素共重合体粒子を含む水性分散体、および該水性分散体を含む水性塗料用組成物に関する。
 塗装用の塗料組成物として、有機溶剤系の塗料のほか、自然環境への配慮や塗装作業環境の改善の点から水を分散媒とする水性塗料が知られている。また、建材、特に屋根材、外壁などの建材の塗装という面からは、耐候性に優れることが要求され、特に耐候性、耐水性、耐薬品性、造膜性などに優れたフッ素樹脂をバインダーとする水性塗料組成物が開発されている。
 しかし、フッ素樹脂は本質的に他材との密着性に劣るため、基材との密着性の改良が種々行われてきている。たとえば、特許文献1では、フッ化ビニリデン(VDF)系のフッ素樹脂をシード粒子の存在下に、(メタ)アクリル酸エステルとエチレン性不飽和単量体とからなる単量体混合物をシード重合させる際に、単量体混合物中にシクロヘキシル基を有する単量体を0.5~45質量%含ませると共に、単量体混合物をフッ素樹脂に対して50質量%以下にすることにより、得られる含フッ素系重合体水性分散液が密着性に優れた塗膜を提供することが記載されている。
特開平08-259773号公報
 水性塗料組成物は溶剤系の塗料組成物に比して乾燥に時間を要するため、通常、強制的に乾燥させている。強制乾燥は、一般的に60~200℃(基材の温度)で3秒間~10分間行われており、その結果、樹脂組成によっては、造膜が不充分になるため、塗膜の強度が低下するほか、耐水性が低下し、基材との界面接着が損なわれてしまうことがある。
 また別の観点、特に高価なフッ素樹脂の低減の観点から、フッ素樹脂の割合を減らす検討も行われているが、フッ素樹脂の特性を発揮させるためには限度があり、フッ素樹脂の割合を少なくとも50質量%以上、実用上は60~70質量%にする必要があった。
 これらの観点から、特許文献1に記載の含フッ素系重合体水性分散液は、強制乾燥による密着性の低下に改善の余地があり、また、アクリル樹脂の割合も多くする必要がある。
 本発明者らはかかる課題を解決するべく鋭意検討した結果、含フッ素重合体とアクリル系単量体とのアクリル-フッ素複合重合体粒子において、粒子を構成する架橋性アクリル系重合体の組成を工夫することにより、強制乾燥法によっても耐水性が確保でき、しかも、耐候性や耐薬品性を維持したままフッ素樹脂量を低減化できることを見出し、本発明を完成した。
 すなわち本発明は、
(A)構造単位としてテトラフルオロエチレン単位、ヘキサフルオロプロピレン単位およびクロロトリフルオロエチレン単位よりなる群から選ばれる少なくとも1種のフルオロオレフィン単位ならびにフッ化ビニリデン単位を含むフッ化ビニリデン系重合体と、
(B)該フッ化ビニリデン系重合体(A)と相溶性の(メタ)アクリル酸エステル単位(b1)、該フッ化ビニリデン系重合体(A)と非相溶性の(メタ)アクリル酸エステル単位(b2)および加熱により架橋可能な架橋性基を有する(メタ)アクリル系単量体単位(b3)を含む架橋性アクリル系重合体(B)とからなるアクリル-フッ素複合重合体粒子であって、フッ化ビニリデン系重合体(A)/架橋性アクリル系重合体(B)が質量比で10/90~90/10であるアクリル-フッ素複合重合体粒子に関する。
 本発明はまた、本発明のアクリル-フッ素複合重合体粒子を含む水性分散体、さらには、該水性分散体を含む水性塗料用組成物にも関する。
 本発明によれば、強制乾燥法によっても耐水性が確保でき、しかも、耐候性や耐薬品性を維持したままフッ素樹脂量を低減化できるアクリル-フッ素複合重合体粒子を提供することができる。
 本発明のアクリル-フッ素複合重合体粒子は、
(A)構造単位としてテトラフルオロエチレン(TFE)単位、ヘキサフルオロプロピレン(HFP)単位およびクロロトリフルオロエチレン(CTFE)単位よりなる群から選ばれる少なくとも1種のフルオロオレフィン単位ならびにフッ化ビニリデン(VDF)単位を含むVDF系重合体と、
(B)該VDF系重合体(A)と相溶性の(メタ)アクリル酸エステル単位(b1)、該VDF系重合体(A)と非相溶性の(メタ)アクリル酸エステル単位(b2)および加熱により架橋可能な架橋性基を有する(メタ)アクリル系単量体単位(b3)を含む架橋性アクリル系重合体(B)とからなるアクリル-フッ素複合重合体粒子であって、VDF系重合体(A)/架橋性アクリル系重合体(B)が質量比で10/90~90/10であるアクリル-フッ素複合重合体粒子である。
 VDF系重合体(A)及び架橋性アクリル系重合体(B)は単一粒子中に存在する。VDF系重合体(A)及び架橋性アクリル系重合体(B)は化学的に結合していてもよいし、結合していなくてもよい。VDF系重合体(A)及び架橋性アクリル系重合体(B)の質量比は、単一粒子を構成するVDF系重合体(A)及び架橋性アクリル系重合体(B)の単一粒子中の質量比である。
 以下、各成分について説明する。
 本発明におけるVDF系重合体(A)としては、VDFのほか、構造単位としてテトラフルオロエチレン(TFE)単位、ヘキサフルオロプロピレン(HFP)単位およびクロロトリフルオロエチレン(CTFE)単位よりなる群から選ばれる少なくとも1種のフルオロオレフィン単位を含む。本発明におけるVDF系重合体(A)としては、テトラフルオロエチレン単位およびクロロトリフルオロエチレン単位を含むことが好ましい。
 VDF系重合体(A)として特に好ましいVDF系重合体は、VDF/TFE共重合体、VDF/TFE/CTFE共重合体、VDF/HFP共重合体、VDF/TFE/HFP共重合体、VDF/CTFE共重合体などがあげられる。
 要すれば、他のフルオロオレフィン、フルオロオレフィンと共重合可能な非フッ素系単量体に由来する構造単位を含んでいてもよい。
 他のフルオロオレフィンとしては、たとえばパーフルオロ(アルキルビニルエーテル)、
Figure JPOXMLDOC01-appb-C000001
などのパーフルオロオレフィン;フッ化ビニル、トリフルオロエチレン、トリフルオロプロピレン、ペンタフルオロプロピレン、テトラフルオロプロピレン、ヘキサフルオロイソブテン、2,3,3,3-テトラフルオロプロペン、1,3,3,3-テトラフルオロプロペン、1,1,3,3,3-ペンタフルオロプロペンなどの非パーフルオロオレフィンがあげられる。パーフルオロ(アルキルビニルエーテル)としてはパーフルオロ(メチルビニルエーテル)(PMVE)、パーフルオロ(エチルビニルエーテル)(PEVE)、パーフルオロ(プロピルビニルエーテル)(PPVE)などがあげられる。
 また、官能基含有フルオロオレフィンも使用できる。官能基含有フルオロオレフィンとしては、たとえば式(1):
 CX =CX-(Rf)-Y     (1)
(式中、Yは-OH、-COOH、-SOF、-SO(Mは水素原子、NH基またはアルカリ金属)、カルボン酸塩、カルボキシエステル基、エポキシ基またはシアノ基;XおよびXは同じかまたは異なりいずれも水素原子またはフッ素原子;Rfは炭素数1~40の2価の含フッ素アルキレン基、炭素数1~40の含フッ素オキシアルキレン基または炭素数2~40のエーテル結合を含有する2価の含フッ素アルキレン基;mは0または1)で示される化合物があげられる。
 具体例としては、たとえば
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
などがあげられる。
 重合体(A)は、ヨウ素含有モノマーに基づく繰り返し単位を含んでいてもよい。ヨウ素含有モノマーとしては、たとえば特公平5-63482号公報や特開昭62-12734号公報に記載されているパーフルオロ(6,6-ジヒドロ-6-ヨード-3-オキサ-1-ヘキセン)、パーフルオロ(5-ヨード-3-オキサ-1-ペンテン)などのパーフルオロビニルエーテルのヨウ素化物も使用できる。
 重合体(A)は、フルオロオレフィンと共重合可能な非フッ素系単量体に基づく繰り返し単位を含んでいてもよい。
 VDF系重合体のフッ素元素含有量は、50~76質量%、さらには60~70質量%が好ましい。
 VDF系重合体(A)の製造方法は特に限定されず、従来公知の乳化重合法で行うことができる。
 本発明における架橋性アクリル系重合体(B)は、VDF系重合体(A)と相溶性の(メタ)アクリル酸エステル単位(b1)、VDF系重合体(A)と非相溶性の(メタ)アクリル酸エステル単位(b2)、および加熱により架橋可能な架橋性基を有する(メタ)アクリル系単量体単位(b3)を含む。
(b1)VDF系重合体(A)と相溶性の(メタ)アクリル酸エステル(以下、「相溶性(メタ)アクリル酸エステル」ということもある)
 相溶性(メタ)アクリル酸エステル(b1)は、VDF系重合体(A)と架橋性アクリル系重合体(B)との相溶性を高め、アクリル-フッ素複合重合体の一体性を高める働きをすると共に、常温乾燥時の造膜性を良好にする。
 相溶性(メタ)アクリル酸エステル(b1)の具体例としては、炭素数1~4の鎖状のアルキルエステル、たとえばメチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、メチルメタクリレート、n-プロピルメタクリレート、エチルメタクリレート、n-ブチルメタクリレート、イソプロピルメタクリレートなどの1種または2種以上が例示できる。なかでも、VDF系重合体への溶解性が良好な点から、メチルメタクリレート(MMA)、エチルメタクリレート(EMA)、n-ブチルメタクリレート(n-MBA)、n-ブチルアクリレート(n-BA)、エチルアクリレート(EA)、メチルアクリレートなどの1種または2種以上が好ましい。
 相溶性(メタ)アクリル酸エステル(b1)の含有量は、塗膜の透明性が良好な点から架橋性アクリル系重合体(B)の10~90質量%、さらには20~75質量%が好ましい。
(b2)VDF系重合体(A)と非相溶性の(メタ)アクリル酸エステル(以下、「非相溶性(メタ)アクリル酸エステル」ということもある)
 非相溶性(メタ)アクリル酸エステル(b2)は、強制乾燥時のアクリル-フッ素複合重合体の造膜性を改善し、基材との密着性を高める働きをすると共に、塗膜の耐水性を良好にする。
 なお、「VDF系重合体(A)と相溶性」および「VDF系重合体(A)と非相溶性」とは、VDF系重合体(A)を単量体と混合したとき、透明である場合を「VDF系重合体(A)と相溶性」といい、また、混合時、白く濁る場合を「VDF系重合体(A)と非相溶性」という。
 非相溶性(メタ)アクリル酸エステル(b2)の具体例としては、炭素数6~20の鎖状アルキルエステル、炭素数6~20の脂環構造を有するアルキルエステル、または炭素数6~20のアリールエステルがあげられる。たとえばヘキシルアクリレート、2-エチルヘキシルアクリレート、2-ヒドロキシアクリレート、2-ヒドロキシプロピルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、イソブチルアクリレート、ターシャリーブチルアクリレート、ラウリルアクリレート、トリデシルアクリレート、ステアリルアクリレート、2-エトキシエチルアクリレート、2-メトキシエチルアクリレート、ヘキシルメタクリレート、2-エチルヘキシルメタクリレート、2-ヒドロキシメタクリレート、2-ヒドロキシプロピルメタクリレート、n-プロピルメタクリレート、エチルメタクリレート、イソプロピルメタクリレート、イソブチルメタクリレート、ターシャリーブチルメタクリレート、ラウリルメタクリレート、トリデシルメタクリレート、ステアリルメタクリレート、2-エトキシエチルメタクリレート、2-メトキシエチルメタクリレートなど鎖状アルキルエステル;シクロヘキシルアクリレート、イソボルニルアクリレート、シクロヘキシルメタクリレート、イソボルニルメタクリレートなどの脂環式アルキルエステル;ベンジルアクリレート、ベンジルメタクリレートなどのアリールエステルの1種または2種以上が例示できる。なかでも、塗膜の耐候性が良好な点から、炭素数6~20の鎖状アルキルエステルおよび/または炭素数6~20の脂環構造を有するアルキルエステル、特に2-エチルヘキシルアクリレート(2-EHA)および/またはシクロヘキシルメタクリレート(CHMA)が好ましい。
 非相溶性(メタ)アクリル酸エステル(b2)の含有量は、造膜性、密着性が良好な点から架橋性アクリル系重合体(B)の5~85質量%、さらには15~70質量%が好ましい。
(b3)加熱により架橋可能な架橋性基を有する(メタ)アクリル系単量体(以下、「架橋性基含有(メタ)アクリル系単量体」ということもある)
 架橋性基含有(メタ)アクリル系単量体(b3)は、強制乾燥時のアクリル-フッ素複合重合体の造膜時に、アクリル系重合体(B)中の非相溶性(メタ)アクリル酸エステル単位(b2)とVDF系重合体(A)との分離や膜の白濁などを抑える働きをすると共に、基材への密着性を良好にする。
 架橋性基含有(メタ)アクリル系単量体(b3)が有する架橋性基は、加熱により架橋可能な官能基である。したがって、常温架橋する非ブロック型イソシアネート基などの架橋性基は本発明における架橋性基含有(メタ)アクリル系単量体(b3)の架橋性基ではない。
 加熱により架橋可能な架橋性基としては、たとえばエポキシ基、カルボキシル基、水酸基、アミノ基、メチロールアミド基、シリル基、カルボジイミド基、オキサゾリン基、ブロックイソシアネート基、エチレンイミン基などがあげられ、エマルションの安定性が良好な点から、エポキシ基、カルボキシル基が好ましい。
 エポキシ基を有する架橋性基含有(メタ)アクリル系単量体としては、たとえばグリシジルアクリレート、グリシジルメタクリレート(GMA)などのグリシジル化合物があげられ、重合時の安定性が良好な点から、グリシジルアクリレート、グリシジルメタクリレートの1種または2種以上が好ましい。架橋性基含有(メタ)アクリル系単量体がエポキシ基を含有する場合、塗装時の粒子間の造膜性や基材との密着性がさらに良好になる。
 カルボキシル基を有する架橋性基含有(メタ)アクリル系単量体としては、たとえばアクリル酸、フタル酸2-アクリロイルオキシエチル、ヘキサヒドロフタル酸2-アクリロイルオキシエチル、メタクリル酸、フタル酸2-メタクリロイルオキシエチル、ヘキサヒドロフタル酸2-メタクリロイルオキシエチルなどの1種または2種以上があげられ、エマルションの安定性が良好な点から、アクリル酸(AA)、メタクリル酸(MAA)の1種または2種以上が好ましい。架橋性基含有(メタ)アクリル系単量体がカルボキシル基を含有する場合、塗装時の粒子間の造膜性や基材との密着性がさらに良好になる。
 水酸基を有する架橋性基含有(メタ)アクリル系単量体としては、たとえば2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレートなどの1種または2種以上があげられる。
 アミノ基を有する架橋性基含有(メタ)アクリル系単量体としては、たとえば、アミノエチルアクリレート、ジメチルアミノアクリレート、ジエチルアミノエチルアクリレート、アミノエチルメタクリレート、ジメチルアミノメタクリレート、ジエチルアミノエチルメタクリレート、2-(O-〔1’-メチルプロピリデンアミノ〕カルボキシアミノ)エチルメタクリレートなどの1種または2種以上があげられる。
 メチロールアミド基を有する架橋性基含有(メタ)アクリル系単量体としては、たとえば、メチロール化アクリルアミド、アルコキシメチルアクリルアミドなどの1種または2種以上があげられる。
 シリル基を有する架橋性基含有(メタ)アクリル系単量体としては、たとえば、
CH=CHCOO(CHSi(OCH
CH=CHCOO(CHSi(CH)(OCH
CH=CHCOO(CHSi(OC
CH=CHCOO(CHSi(CH)(OC
CH=C(CH)COO(CHSi(OCH
CH=C(CH)COO(CHSi(CH)(OCH
CH=C(CH)COO(CHSi(OC
CH=C(CH)COO(CHSi(CH)(OC
CH=C(CH)COO(CHO(CHSi(OCH
CH=C(CH)COO(CH(CHSi(CH)(OCH
CH=C(CH)COO(CH11Si(OCH
CH=C(CH)COO(CH11Si(CH)(OCH
などの1種または2種以上があげられる。
 これらの架橋性基含有(メタ)アクリル系単量体(b3)は、架橋性基の種類に限らず、2種以上を併用してもよい。たとえば、エポキシ基含有アクリル系単量体とカルボキシル基含有アクリル系単量体、エポキシ基含有アクリル系単量体と水酸基含有アクリル系単量体、エポキシ基含有アクリル系単量体とアミノ基含有アクリル系単量体、エポキシ基含有アクリル系単量体とメチロールアミド基含有アクリル系単量体、カルボキシル基含有アクリル系単量体とカルボジイミド基含有アクリル系単量体、カルボキシル基含有アクリル系単量体とオキサゾリン基含有アクリル系単量体、水酸基含有アクリル系単量体とブロックイソシアネート基含有アクリル系単量体、水酸基含有アクリル系単量体とエチレンイミン基含有アクリル系単量体、水酸基含有アクリル系単量体とカルボキシル基含有アクリル系単量体、水酸基含有アクリル系単量体とメチロールアミド基含有アクリル系単量体、メチロールアミド基含有アクリル系単量体とエチレンイミン基含有アクリル系単量体、メチロールアミド基含有アクリル系単量体とカルボキシル基含有アクリル系単量体、アミノ基含有アクリル系単量体とエチレンイミン基含有アクリル系単量体との併用などがあげられ、なかでも、エポキシ基含有アクリル系単量体とカルボキシル基含有アクリル系単量体とを併用するときは、エマルションの安定性が特に優れたものになる。
 架橋性基含有(メタ)アクリル系単量体(b3)の含有量は、エマルションの安定性が良好な点から架橋性アクリル系重合体(B)の1~20質量%、さらには1~5質量%が好ましい。また、架橋性基含有(メタ)アクリル系単量体単位(b3)を2種以上含有する場合、合計量が上記の範囲において、適宜選定すればよい。たとえば、エポキシ基含有アクリル系単量体とカルボキシル基含有アクリル系単量体を併用する場合、質量比で70/30~30/70の範囲が好ましい。
 架橋性アクリル系重合体(B)は、上記(b1)~(b3)以外に、本発明の効果を損なわない範囲で、上記(b1)~(b3)以外の他の構造単位を含んでいてもよい。他の構造単位としては、たとえば芳香族ビニル単量体単位、上記(b3)以外のエポキシ基含有単量体単位、上記(b3)以外の不飽和カルボン酸系単量体単位、ビニルエーテル系単量体、オレフィン系単量体、加水分解性シリル基含有ビニル系単量体、ビニルエステル系単量体などがあげられる。
 芳香族ビニル単量体としては、スチレン、α-メチルスチレンなどのスチレン類が例示できる。エポキシ基含有単量体としては、アリルグリシジルエーテルなどが例示できる。
 不飽和カルボン酸系単量体としては、たとえばビニル酢酸、クロトン酸、桂皮酸、3-アリルオキシプロピオン酸、3-(2-アリロキシエトキシカルボニル)プロピオン酸、イタコン酸、イタコン酸モノエステル、マレイン酸、マレイン酸モノエステル、マレイン酸無水物、フマル酸、フマル酸モノエステル、フタル酸ビニル、ピロメリット酸ビニル、ウンデシレン酸などがあげられる。
 ビニルエーテル系単量体としては、アルキルビニルエーテル類、水酸基含有ビニルエーテル類などが、水酸基含有ビニルエーテルとしては、たとえば2-ヒドロキシエチルビニルエーテル、3-ヒドロキシプロピルビニルエーテル、2-ヒドロキシプロピルビニルエーテル、2-ヒドロキシ-2-メチルプロピルビニルエーテル、4-ヒドロキシブチルビニルエーテル、4-ヒドロキシ-2-メチルブチルビニルエーテル、5-ヒドロキシペンチルビニルエーテル、6-ヒドロキシヘキシルビニルエーテル、2-ヒドロキシエチルアリルエーテル、4-ヒドロキシブチルアリルエーテル、グリセロールモノアリルエーテルなどがあげられる。
 オレフィン系単量体としては、たとえばエチレン、プロピレン、n-ブテン、イソブテン、スチレンなどがあげられる。
 加水分解性シリル基含有ビニル系単量体としては、たとえば
CH=CHSi(OCH
CH=CHSi(CH)(OCH
CH=C(CH)Si(OCH
CH=C(CH)Si(CH)(OCH
CH=CHSi(OC
CH=CHSi(OC
CH=CHSi(OC
CH=CHSi(OC13
CH=CHSi(OC17
CH=CHSi(OC1021
CH=CHSi(OC1225
CH=CHCHOCO(o-C)COO(CHSi(OCH
CH=CHCHOCO(o-C)COO(CHSi(CH)(OCH
CH=CH(CHSi(OCH
CH=CH(CHSi(OCH
CH=CHO(CHSi(OCH
CH=CHCHO(CHSi(OCH
CH=CHCHOCO(CH10Si(OCH
などがあげられる。
 ビニルエステル系単量体としては、たとえば酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、カプロン酸ビニル、バーサチック酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、シクロヘキシルカルボン酸ビニル、安息香酸ビニル、パラ-t-ブチル安息香酸ビニルなどのカルボン酸ビニルエステル類などがあげられる。
 上記(b1)~(b3)以外の他の単量体の架橋性アクリル系重合体(B)中の含有量は、単量体の種類にもよるが10質量%以下が好ましい。
 本発明において、架橋性アクリル系重合体(B)の好ましい具体的な組成としては、たとえばMMA/2-EHA/MAA/GMA(60~80/10~30/0.5~5/0.5~10質量比)、n-BA/CHMA/MAA/GMA(10~30/55~80/0.5~10/0.5~5質量比)、MMA/n-BA/CHMA/MAA/GMA(1~50/5~40/1~70/0.5~5/0.5~10質量比)などがあげられるが、これらのみに限定されるものではない。
 本発明のアクリル-フッ素複合重合体におけるVDF系重合体(A)と架橋性アクリル系重合体(B)の割合は、VDF系重合体(A)/架橋性アクリル系重合体(B)が質量比で10/90~90/10であり、10/90~70/30であることが好ましい。たとえば(A)/(B)が70/30より大きくなる、すなわちVDF系重合体(A)が70質量%を超えると塗装時の造膜性、基材への密着性という利点が損なわれる。より好ましくは、(A)/(B)が20/80~50/50である。更に好ましくは、(A)/(B)が30/70~40/60である。
 本発明のアクリル-フッ素複合重合体粒子の製造に用いる重合法は、従来公知の重合法、特に乳化重合法が採用でき、たとえばシード重合法が特に好ましく採用できる。シード重合法は特に限定されず、従来公知の方法と条件で行うことができる。
 たとえば、アクリル系単量体混合物のシード重合は、VDF系重合体粒子の存在下に、反応系にアクリル系単量体混合物の全量を一括して仕込む方法、アクリル系単量体混合物の一部を仕込み反応させた後、残りを連続または分割して仕込む方法、アクリル系単量体混合物の全量を連続して仕込む方法などによって行うことができる。
 また、このシード重合の重合条件は、通常の乳化重合と同様である。たとえば、VDF系重合体粒子を含む水性媒体中に、乳化剤、重合開始剤、連鎖移動剤、場合によってはキレート化剤、pH調整剤などを添加し、10~90℃の温度で0.5~6時間反応を行うことにより重合することができる。
 乳化剤としては、反応性乳化剤でも非反応性乳化剤でも、またはそれらの併用でもよい。非反応性乳化剤としては、従来公知のアニオン性乳化剤、非イオン性乳化剤を単独またはこれらの併用があげられる。場合によっては両性乳化剤を用いることもできる。
 シード重合の際に用いる重合開始剤としては、水性媒体中でフリーラジカル反応に供し得るものであれば特に限定されず、場合によっては、還元剤と組み合せて用いることも可能である。使用可能な水溶性の重合開始剤としては、たとえば過硫酸塩、過酸化水素、還元剤としては、ピロ重亜硫酸ナトリウム、亜硫酸水素ナトリウム、L-アスコルビン酸ナトリウム、ロンガリットなどをあげることができる。油溶性の重合開始剤としては、たとえばジイソプロピルパーオキシジカーボネート(IPP)、過酸化ベンゾイル、過酸化ジブチル、アゾビスイソブチロニトリル(AIBN)などをあげることができる。重合開始剤の使用量は、通常、アクリル系単量体混合物100質量部あたり、0.05~2.0質量部である。
 シード重合の際に用いてもよい連鎖移動剤としては、たとえばクロロホルム、四塩化炭素などのハロゲン化炭化水素;n-ドデシルメルカプタン、tert-ドデシルメルカプタン、n-オクチルメルカプタンなどのメルカプタン類などをあげることができる。連鎖移動剤の使用量は、通常、アクリル系単量体混合物100質量部あたり、0~5.0質量部である。
 本発明のアクリル-フッ素複合重合体粒子の製造において、VDF系重合体粒子と上記(b1)~(b3)を含むアクリル系単量体混合物との比率は、VDF系重合体粒子100質量部に対してアクリル系単量体混合物は100質量部以上である。さらには、塗装時の造膜性が良好な点から、VDF系重合体粒子100質量部に対してアクリル系単量体混合物を110質量部以上、特に150質量部以上である。
 本発明は、上述のアクリル-フッ素複合重合体粒子を含む水性分散体でもある。本発明において水性分散体中でのアクリル-フッ素複合重合体粒子の粒子径は、50~300nmが好ましい。より好ましくは、50~250nmである。粒子径が50nm未満であると、水性分散体のアクリル-フッ素複合重合体粒子の濃度が実用的範囲である30質量%以上において水性分散体の粘度が著しく増大し、塗料化の作業に支障を来すことがある。一方300nmを超えると、得られる水性分散体の沈降安定性が低下する傾向があり、また、アクリル-フッ素複合重合体粒子の最低成膜温度の上昇を招くことがある。
 本発明のアクリル-フッ素複合重合体粒子の水性分散体の固形分濃度は、塗料用途の観点からは30~65質量%であることが好ましく、より好ましくは35~50質量%である。
 本発明のアクリル-フッ素複合重合体粒子の水性分散体は、種々の形態で各種の用途に利用できる。
 たとえば、各種の塗料用組成物の塗膜形成成分、フィルムやシートの成形材料のほか、接着剤組成物、インキ用組成物などが例示できるが、これらに限定されるものではない。水性塗料用組成物として用いる場合は、強制乾燥で造膜した場合でも基材との接着性が向上する。
 本発明のアクリル-フッ素複合重合体粒子の水性分散体は、上述したシード重合法により製造することができる。
 本発明のアクリル-フッ素複合重合体粒子の水性分散体は、VDF系重合体(A)からなる粒子を含む水性分散液に、VDF系重合体(A)と相溶性の(メタ)アクリル酸エステル(b1)、VDF系重合体(A)と非相溶性の(メタ)アクリル酸エステル(b2)、加熱により架橋可能な架橋性基を有する(メタ)アクリル系単量体(b3)、及び、重合開始剤を添加する工程、並びに、
(メタ)アクリル酸エステル(b1)、(メタ)アクリル酸エステル(b2)、及び、(メタ)アクリル系単量体(b3)を反応させる工程、
を含む製造方法により好適に製造することができる。
 本発明は、上述の水性分散体を含む水性塗料用組成物でもある。本発明の水性塗料用組成物は、膜形成材として前記のアクリル-フッ素複合重合体粒子を用いるほかは、従来公知の添加剤や配合割合が採用できる。たとえば、アクリル-フッ素複合重合体粒子の濃度としては、たとえば10~60質量%程度の範囲から選定すればよい。
 また、顔料入りの水性塗料用組成物を調製する場合は、アクリル-フッ素複合重合体粒子の水性分散液に、あらかじめサンドミル等の顔料分散機で水、酸化チタンなどの顔料、消泡剤、顔料分散剤、pH調整剤等を分散した顔料分散体の所定量と造膜補助剤の所定量を撹拌混合したのち、増粘剤を所定量加えて混合し、その他必要な添加剤を適宜加えればよい。顔料を加えない水性塗料用組成物を調製する場合は、アクリル-フッ素複合重合体粒子の水性分散液に、必要に応じ、水、造膜補助剤、消泡剤、増粘剤、pH調整剤、その他所要の添加剤を加えて公知方法で撹拌混合すればよい。
 塗料用途の添加剤としては、必要に応じ、造膜補助剤、凍結防止剤、顔料、充填剤、顔料分散剤、消泡剤、レベリング剤、レオロジー調整剤、防腐剤、紫外線吸収剤、酸化防止剤、つや消し剤、潤滑剤、加硫剤等を添加することもできる。
 本発明の水性塗料用組成物を適用する基材としては特に限定されず、溶融めっき鋼板、ステンレススチール板、アルミニウム鋼板、などの金属系基材;スレート、窯業系サイジング材、発泡コンクリート、ガラスなどのセラミック系基材;塩ビシート、PETフィルム、ポリカーボネート、アクリルフィルムなどのプラスチック基材に適用できる。溶融めっき鋼板としては、たとえば溶融亜鉛めっき鋼板、溶融亜鉛―アルミニウム―マグネシウム合金めっき鋼板、溶融アルミニウム-亜鉛めっき鋼板、溶融アルミニウムめっき鋼板などがあげられる。
 本発明の水性塗料用組成物を各種の基材に塗装する方法としては従来公知の方法と条件が採用できる。たとえば、基材にスプレーコーティングやロールコーティング、フローコーティング、ローラー、刷毛による塗装などの塗装方法が採用できる。
 塗装後の乾燥方法は特に制限されず、周囲温度での自然乾燥でもよいし、乾燥時間を掛けての低温(5~60℃)での乾燥でもよいが、本発明の塗料用組成物は、常温~200℃、特に60~200℃(基材温度)での強制乾燥においても、耐候性、耐水性、強度、基材密着性、造膜性に優れた塗膜を形成することができる。強制乾燥に要する時間は、通常3秒間~10分間である。
 塗料用組成物としては、耐候性塗料用組成物、特に建築・建材用の耐候性塗料用組成物、自動車の内・外装用塗料用組成物、電気製品の内・外装塗料用組成物、事務機器あるいは厨房器具類の塗料用組成物などが例示でき、特に耐候性・耐久性が良好な点から建材用の耐候性塗料用組成物に有利に適用できる。
 つぎに本発明を実施例に基づいて説明するが、本発明はこれらの実施例のみに限定されるものではない。
実施例1
(VDF系重合体(A)の水性分散液の製造)
 VDF系重合体粒子としてVdF/TFE/CTFE共重合体(=72.1/14.9/13(モル%))(VTC)の粒子の水性分散液(固形分濃度45.5質量%)659.3gを2.0L容のガラス製セパラブルフラスコに入れ、そこに乳化剤としてニューコール707SF(日本乳化剤(株)製)37.1gと、水56.8gを加えて充分に混合して水性分散液を調製した。
 つぎに1.0L容のガラス製フラスコに、メチルメタクリルレート(MMA)185.2g(71.2質量%)、2-エチルヘキシルアクリレート(2EHA)49.9g(19.2質量%)、グリシジルメタクリレート(GMA)14.3g(5.5質量%)、メタクリル酸(MAA)10.7g(4.1質量%)を加え、モノマー溶液を調製した。
 セパラブルフラスコの内温を80℃にまで昇温し、モノマー溶液の全量を前記VDF/TFE/CTFE共重合体粒子の水性分散液に3時間かけて添加した。また、モノマー溶液滴下と同時に過硫酸アンモニウム(APS)(1質量%水溶液)41.1gを30分ごとに7回に分けて添加しながら重合を進めた。重合開始から5時間後に反応溶液を室温まで冷却して反応を終了し、アクリル-フッ素複合重合体粒子の水性分散体を得た(固形分濃度52.0質量%)。得られたアクリル-フッ素複合重合体中のアクリル系重合体部分の組成は、MMA/2EHA/MAA/GMA=71.2/19.2/4.1/5.5(質量%比)であった。また、得られたアクリル-フッ素複合重合体粒子におけるVDF系重合体部分とアクリル系重合体部分との質量比(VDF/アクリル)は、50/50であった。
(水性塗料の調製)
 得られたアクリル-フッ素複合重合体の水性分散液を用い、トリエチルアミンでpH7.5まで中和した。水性分散液に成膜助剤(アジピン酸ジエチル)を5質量%/固形分添加し、スリーワンモーターで30分撹拌して、クリア塗料用の水性塗料用組成物を調製した。
(ワンコート塗装および試験片の作製)
 得られた水性塗料用組成物をガルバリウム鋼板(日本テストパネル(株)製)にバーコーターにより塗装し、140℃にて7秒間の条件で乾燥して厚さ4μmのクリア塗膜を有する試験片を作製した。
 得られた試験片を用いて、つぎの特性を評価した。結果を表1に示す。
(造膜性)
 (評価基準)
 10質量%の水酸化ナトリウム水溶液20μLを試験片に滴下した。滴下後、気泡発生までの時間をつぎの5段階で評価した。1:滴下後2分以内に発生、2:滴下後2~5分の間に発生、3:滴下後5~10分の間に発生、4:滴下後10~15分の間に発生、5:滴下後15分後以上に発生または発生せず。
(外観)
 (評価基準)
 作製した試験片に凝集物、ふくれ、割れ等があるか否かを目視により判断する。○はふくれ、割れ等が全くないもの、△はふくれ、割れ等が1つ以上で5つ以内のもの、×はふくれ、割れ等が5つより多いものである。
(初期密着性)
 塗膜の乾燥後24時間放置した後、試験片に対してJIS D0202-1988に準拠して碁盤目テープ剥離試験を行う。セロハンテープ(「CT24」、ニチバン(株)製)を用い、指の腹でフィルムに密着させた後剥離する。判定は25マスの内、剥離しないマス目の数で表す。
(耐候性)
 (試験方法)
 作製した試験片を促進耐候性試験機に入れ、322時間後の赤外分光スペクトルをATR法(減衰全反射法)を用い測定する。アクリレート由来のC-H伸縮振動(1700cm-1付近)の吸収の減衰率によって、耐侯性を評価する。
促進耐候性試験機(SUV):スーパーUVテスター、岩崎電気(株)製
試験サイクル:純水スプレー(10秒毎)1時間→露光11時間(ブラックパネル温度63℃、相対湿度70%)→結露11時間(ブラックパネル温度30℃、相対湿度100%)。このサイクルを1サイクル(23時間)とする。
試験時間:322時間(14サイクル)
 (評価基準)
 試験後の試験片表面部をATR法(減衰全反射法)を用い、赤外分光スペクトルを測定する。促進耐候性試験前の試験片と試験後(322時間後)の試験片を比較する。1150cm-1付近のC-F伸縮振動の吸収を規格化し、1700cm-1付近のアクリレート由来のC-H伸縮振動の吸収が試験前後で減衰していないかを確認する。○は試験前と比較し、1700cm-1付近のアクリレート由来のC-H伸縮振動の吸収の減衰が10%以内のもの、△は減衰が10%より大きく、25%以内のもの、×は減衰が25%より大きいものである。
ATR測定:Perkin Elmer社製 FT-IR Spectrometer Spectorum100を使用
(トップクリア塗装および試験片の作製)
 得られた水性塗料用組成物をガルバリウム鋼板(日本テストパネル社製)に下塗り:ダイキン社製(ゼッフル遮熱塗料下塗り)、中塗り:ダイキン社製(ゼッフル遮熱塗料下塗り)を塗布した塗板に、バーコーターを用いて塗布し、1日乾燥して厚さ10μmのクリア塗膜を有する試験片を作製した。
(初期密着試験)
 試験片に対してJIS D0202-1988に準拠して碁盤目テープ剥離試験を行う。セロハンテープ(「CT24」、ニチバン(株)製)を用い、指の腹でフィルムに密着させた後剥離する。判定は25マスの内、剥離しないマス目の数で表す。
(初期耐水試験)
 得られた試験片を23℃で1日没水処理し、取り出した直後の膨れ(JIS K5600-8-2)、割れ(JIS K5600-8-4)、はがれ(JIS K5600-8-5)の等級を評価する。
(2次密着性試験)
 また、没水処理後取り出し、23℃で1日乾燥した後、JIS D0202-1988に準拠して碁盤目テープ剥離試験を行う。セロハンテープ(「CT24」、ニチバン(株)製)を用い、指の腹でフィルムに密着させた後剥離する。判定は25マスの内、剥離しないマス目の数で表す。
(膨れ)
膨れの等級(JIS K5600-8-2)の評価基準
 密度を0~5の等級(小さい方が0)に、大きさをS1~S5の等級(S1の方が小さい)に分け、たとえば2(S1)のように記載する。
(割れ)
割れの等級(JIS K5600-8-4)の評価基準
 密度を0~5の等級(小さい方が0)に、大きさをS0~S5の等級(S0の方が小さい)に、深さをa~cの等級(aの方が浅い)に分け、たとえば2(S1)bのように記載する。
(はがれ)
はがれの等級(JIS K5600-8-5)の評価基準
 密度を0~5の等級(小さい方が0)に、大きさをS1~S5の等級(S1の方が小さい)に、深さをa~bの等級(aの方が浅い)に分け、たとえば2(S1)aのように記載する。
(一般耐水試験)
 試験片を23℃で6日没水処理し、取り出した直後の膨れ(JIS K5600-8-2)、割れ(JIS K5600-8-4)、はがれ(JIS K5600-8-5)の等級を評価する。
(2次密着性試験)
 また、没水処理後取り出し、23℃で1週間乾燥した後、JIS D0202-1988に準拠して碁盤目テープ剥離試験を行う。セロハンテープ(「CT24」、ニチバン(株)製)を用い、指の腹でフィルムに密着させた後剥離する。判定は25マスの内、剥離しないマス目の数で表す。
(耐候性)
 作製した試験片を促進耐候性試験機に入れ、一定サイクルごとに光沢値、L値、a値、b値を測定する。その結果から光沢保持率を算出し、塗膜の耐侯性を評価する。
促進耐候性試験機(SUV):スーパーUVテスター、岩崎電気(株)製
試験サイクル:純水スプレー(10秒毎)1時間→露光11時間(ブラックパネル温度63℃、相対湿度70%)→結露11時間(ブラックパネル温度30℃、相対湿度100%)。このサイクルを1サイクル(23時間)とする。
試験時間:966時間(42サイクル)~1610時間(70サイクル)
実施例2~4
 アクリル系重合体用のアクリル系単量体混合物として、表1に示す単量体混合物を用いたほかは実施例1と同様にしてシード重合を行い、それぞれアクリル-フッ素複合重合体を得た。
 得られたアクリル-フッ素複合重合体粒子の水性分散液を用い、実施例1と同様にしてクリア塗料用の水性塗料用組成物を調製し、実施例1と同様にして塗膜を形成し試験片を作製し、各種の特性を調べた。結果を表1に示す。
比較例1
 アクリル系重合体用のアクリル系単量体混合物として、MMA/n-BA/AA=98.0/1.0/1.0(質量%比)の比較用単量体混合物を用いたほかは実施例1と同様にしてシード重合を行い、比較用のアクリル-フッ素複合重合体を得た。アクリル系重合体部分の組成は、MMA/n-BA/AA=98.0/1.0/1.0(質量%比)であった。また、得られたアクリル-フッ素複合重合体粒子におけるVDF系重合体部分とアクリル系重合体部分との質量比(VDF/アクリル)は、70/30であった。
 得られたアクリル-フッ素複合重合体粒子の水性分散液を用い、実施例1と同様にしてクリア塗料用の水性塗料用組成物を調製し、実施例1と同様にして塗膜を形成し試験片を作製し、各種の特性を調べた。結果を表1に示す。
 表1における単量体の略号は、以下の化合物を示す。
MMA:メチルメタクリレート
n-BA:n-ブチルアクリレート
CHMA:シクロヘキシルメタクリレート
2-EHA:2-エチルへキシルアクリレート
GMA:グリシジルメタクリレート
MAA:メタクリル酸
AA:アクリル酸
MPTES:3-メタクリロキシプロピルトリエトキシシラン
Figure JPOXMLDOC01-appb-T000004
 表1から、成分(b1)、成分(b2)、成分(b3)を含むアクリル-フッ素複合重合体が、基材との密着性を向上させていることが分かる。
実施例5
 VDF系重合体粒子としてVdF/TFE共重合体(=80/20(モル%))(VT)の粒子の水性分散液(固形分濃度10.0質量%)を用いたほかは実施例3と同様にしてシード重合を行い、アクリル-フッ素複合重合体を得た。
 得られたアクリル-フッ素複合重合体粒子の水性分散液を用い、実施例1と同様にしてクリア塗料用の水性塗料用組成物を調製し、実施例1と同様にして塗膜を形成し試験片を作製し、各種の特性を調べた。結果を表2に示す。
実施例6
 VDF系重合体粒子としてVdF/HFP共重合体(=91/9(モル%))(VH)の粒子の水性分散液(固形分濃度10.0質量%)を用いたほかは実施例3と同様にしてシード重合を行い、アクリル-フッ素複合重合体を得た。
 得られたアクリル-フッ素複合重合体粒子の水性分散液を用い、実施例1と同様にしてクリア塗料用の水性塗料用組成物を調製し、実施例1と同様にして塗膜を形成し試験片を作製し、各種の特性を調べた。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000005
表2から、成分(b1)、成分(b2)、成分(b3)を含むアクリル-VDF系フッ素複合重合体が、基材との密着性を向上させていることが分かる。

Claims (9)

  1. (A)構造単位としてテトラフルオロエチレン単位、ヘキサフルオロプロピレン単位およびクロロトリフルオロエチレン単位よりなる群から選ばれる少なくとも1種のフルオロオレフィン単位ならびにフッ化ビニリデン単位を含むフッ化ビニリデン系重合体と、
    (B)該フッ化ビニリデン系重合体(A)と相溶性の(メタ)アクリル酸エステル単位(b1)、該フッ化ビニリデン系重合体(A)と非相溶性の(メタ)アクリル酸エステル単位(b2)および加熱により架橋可能な架橋性基を有する(メタ)アクリル系単量体単位(b3)を含む架橋性アクリル系重合体(B)と、
    からなるアクリル-フッ素複合重合体粒子であって、フッ化ビニリデン系重合体(A)/架橋性アクリル系重合体(B)が質量比で10/90~90/10であるアクリル-フッ素複合重合体粒子。
  2. フッ化ビニリデン系重合体(A)が、テトラフルオロエチレン単位およびクロロトリフルオロエチレン単位を含む請求項1記載のアクリル-フッ素複合重合体粒子。
  3. フッ化ビニリデン系重合体(A)が、フッ化ビニリデン/テトラフルオロエチレン共重合体である請求項1記載のアクリル-フッ素複合重合体粒子。
  4. フッ化ビニリデン系重合体(A)が、フッ化ビニリデン/テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体である請求項1記載のアクリル-フッ素複合重合体粒子。
  5. フッ化ビニリデン系重合体(A)が、フッ化ビニリデン/ヘキサフルオロプロピレン共重合体である請求項1記載のアクリル-フッ素複合重合体粒子。
  6. 相溶性(メタ)アクリル酸エステル単位(b1)が、(メタ)アクリル酸の炭素数1~4の鎖状のアルキルエステル単位である請求項1~5のいずれか1項に記載のアクリル-フッ素複合重合体粒子。
  7. 非相溶性(メタ)アクリル酸エステル単位(b2)が、(メタ)アクリル酸の脂環構造を有していてもよい炭素数6~20のアルキルエステル単位である請求項1~6のいずれか1項に記載のアクリル-フッ素複合重合体粒子。
  8. 請求項1~7のいずれか1項に記載のアクリル-フッ素複合重合体粒子を含む水性分散体。
  9. 請求項8記載の水性分散体を含む水性塗料用組成物。
PCT/JP2011/072114 2010-09-27 2011-09-27 アクリル-フッ素複合重合体粒子 WO2012043580A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020137010695A KR101502710B1 (ko) 2010-09-27 2011-09-27 아크릴-불소 복합 중합체 입자
CN201180046089.XA CN103119097B (zh) 2010-09-27 2011-09-27 丙烯酸-氟复合聚合物颗粒

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-215793 2010-09-27
JP2010215793 2010-09-27

Publications (1)

Publication Number Publication Date
WO2012043580A1 true WO2012043580A1 (ja) 2012-04-05

Family

ID=45893019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072114 WO2012043580A1 (ja) 2010-09-27 2011-09-27 アクリル-フッ素複合重合体粒子

Country Status (4)

Country Link
JP (1) JP5229367B2 (ja)
KR (1) KR101502710B1 (ja)
CN (1) CN103119097B (ja)
WO (1) WO2012043580A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105683314A (zh) * 2013-11-07 2016-06-15 株式会社日本触媒 成膜助剂
EP3536744A1 (en) 2015-04-21 2019-09-11 Daikin Industries, Ltd. Aqueous dispersion, coating film, and coated article
WO2019170694A1 (en) 2018-03-08 2019-09-12 Solvay Sa A process for the preparation of a solid polymer electrolyte useful in batteries
WO2022221992A1 (en) * 2021-04-19 2022-10-27 Solvay Specialty Polymers Italy S.P.A. Method for manufacturing partially fluorinated polymers

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103827203B (zh) * 2011-09-30 2015-12-23 大金工业株式会社 组合物和涂装物品
JP2014152186A (ja) * 2013-02-05 2014-08-25 Jsr Corp 水性フッ素樹脂組成物
JP6222458B2 (ja) * 2013-10-01 2017-11-01 Jsr株式会社 塗料用組成物、塗料及び塗装体
CN106188385B (zh) * 2016-08-16 2018-06-01 衡水新光新材料科技有限公司 一种用于多彩涂料的氟碳乳液及其制备工艺
RU2756456C1 (ru) * 2017-12-20 2021-09-30 Дайкин Индастриз, Лтд. Частица, обладающая структурой типа "ядро-оболочка", дисперсия и порошок
JP7046029B2 (ja) * 2018-03-30 2022-04-01 ダイキン工業株式会社 水性分散体、塗膜及び塗装物品、並びに、水性分散体の製造方法
JP2022013956A (ja) * 2018-10-29 2022-01-19 Agc株式会社 水性塗料および塗装物品
KR20210093845A (ko) 2018-11-22 2021-07-28 도레이 카부시키가이샤 불소 함유 중합체 입자

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271358A (ja) * 1992-03-27 1993-10-19 Japan Synthetic Rubber Co Ltd 水系フッ素重合体分散液の製造方法
JP2011192888A (ja) * 2010-03-16 2011-09-29 Jsr Corp リチウムイオンキャパシタおよびその製造方法、正極およびその製造方法、並びに、蓄電デバイス

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100333577B1 (ko) * 1993-09-22 2002-10-18 다이낑 고오교 가부시키가이샤 함불소 공중합체 수성 분산액
JP3175477B2 (ja) * 1994-03-30 2001-06-11 ジェイエスアール株式会社 水性フッ素樹脂組成物
FR2720750B1 (fr) * 1994-06-01 1996-07-19 Atochem Elf Sa Dispersion stable aqueuse de copolymères fluorés hydroxyles et de copolymères acryliques, son procédé de préparation et son utilisation comme peinture en phase aqueuse.
JPH08170045A (ja) * 1994-12-20 1996-07-02 Japan Synthetic Rubber Co Ltd 無機質建材用水性塗料
JP2003171520A (ja) * 2001-12-04 2003-06-20 Daikin Ind Ltd 架橋性含フッ素樹脂水性組成物
JP4016689B2 (ja) * 2002-03-28 2007-12-05 Jsr株式会社 水系分散体および塗装体

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271358A (ja) * 1992-03-27 1993-10-19 Japan Synthetic Rubber Co Ltd 水系フッ素重合体分散液の製造方法
JP2011192888A (ja) * 2010-03-16 2011-09-29 Jsr Corp リチウムイオンキャパシタおよびその製造方法、正極およびその製造方法、並びに、蓄電デバイス

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105683314A (zh) * 2013-11-07 2016-06-15 株式会社日本触媒 成膜助剂
US10150824B2 (en) 2013-11-07 2018-12-11 Nippon Shokubai Co., Ltd. Film-forming auxiliary
EP3536744A1 (en) 2015-04-21 2019-09-11 Daikin Industries, Ltd. Aqueous dispersion, coating film, and coated article
US10787587B2 (en) 2015-04-21 2020-09-29 Daikin Industries, Ltd. Aqueous dispersion, coating film, and coated article
WO2019170694A1 (en) 2018-03-08 2019-09-12 Solvay Sa A process for the preparation of a solid polymer electrolyte useful in batteries
WO2022221992A1 (en) * 2021-04-19 2022-10-27 Solvay Specialty Polymers Italy S.P.A. Method for manufacturing partially fluorinated polymers

Also Published As

Publication number Publication date
JP2012092316A (ja) 2012-05-17
KR20130072254A (ko) 2013-07-01
CN103119097A (zh) 2013-05-22
CN103119097B (zh) 2016-03-16
JP5229367B2 (ja) 2013-07-03
KR101502710B1 (ko) 2015-03-13

Similar Documents

Publication Publication Date Title
JP5229367B2 (ja) アクリル−フッ素複合重合体粒子
JP5293869B2 (ja) 水性分散体及びその製造方法
JP5288036B2 (ja) 組成物、及び、塗装物品
JP5569518B2 (ja) 含フッ素シード重合体粒子の水性分散液の製造方法、および水性塗料組成物ならびに塗装物品
JP4325719B2 (ja) 含フッ素複合重合体粒子の水性分散体の製法、水性分散体および複合重合体粒子
JP5732968B2 (ja) 含フッ素シード重合体粒子の水性分散体、および水性塗料組成物
WO2012036297A1 (ja) アクリル-フッ素複合重合体粒子および水性分散体
JP2013071989A (ja) 水性分散体及びその製造方法
WO2006073058A1 (ja) 硬化型含フッ素塗料用組成物
TW201730285A (zh) 烘烤型水性有機矽含氟聚合物塗料、塗層、與其形成方法
JP7301010B2 (ja) 複合重合体粒子及びその製造方法
JP6701648B2 (ja) 複合重合体粒子及びその製造方法
JP2012025836A (ja) フッ素樹脂水性分散体および塗料組成物
JP2015199944A (ja) 含フッ素シード重合体粒子の水性分散液の製造方法
JP2020029516A (ja) 水性分散液、塗膜及び塗装物品
JP5673288B2 (ja) フッ素樹脂塗膜を含む弾性塗膜積層構造
JP2013193366A (ja) 積層体
JP6671531B1 (ja) 水性塗料組成物
JP2009242479A (ja) 含フッ素複合粒子の水性分散体の製法
JP2015199943A (ja) 含フッ素シード重合体粒子の水性分散液の製造方法
JP2012021094A (ja) 耐ブロッキング改良剤および塗料組成物
JPH09302301A (ja) 塗料用組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180046089.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137010695

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11829133

Country of ref document: EP

Kind code of ref document: A1